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3.4.1 Transitivity of Divisibility (TD)

For all integers a,b and ¢, if a | band b | ¢, then a | c.

3.4.2 Divisibility of Integer Combinations (DIC)
For all integers a,b and ¢, if a | b and a | ¢, then for all integers « and y, a | (bx + cy).

Proof:

Let a,b and ¢ be arbitrary integers, and assume that a | b and a | c.
Since a | b, there exists an integer r such that b = ra.

Since a | ¢, there exists an integer s such that ¢ = sa.

Let x and y be arbitrary integers. Then bx + cy is also an integer.
Using the assumptions, we have bz + ¢y = (ra)z + (sa)y = rax + say = a(rzx + sy).
Since rz + sy is an integer, it follows from the definition of divisibility that a | (bx + cy).

6.1 Division Algorithm (DA)

For all integers a and positive integers b, there exist unique integers ¢ and r such that
a = qb+r where 0 < r <b.

6.2 GCD with Remainders (GCD WR)
For all integers a,b,q and r, if a = gb+ r, then ged(a,b) = ged(b,r).

6.3 GCD Characterization Theorem (GCD CT)

For all integers a and b, and non-negative integers d,
if d is a common divisor of a and b, and there exist integers s and t such that as + bt = d,
then d = ged(a, b).

6.3 Bézout’s Lemma (BL)
For all integers a and b, there exist integers s and ¢ such that as + bt = d, where d = ged(a, b).

6.4 Extended Euclidean Algorithm (EEA)

yes

6.5 Common Divisor Divides GCD (CDD GCD)
For all integers a,b and ¢, if ¢ | a and ¢ | b, then ¢ | ged(a,b).

6.5 Coprimeness Characterization Theorem (CCT)

For all integers a and b,
ged(a,b) =1 if and only if there exist integers s and ¢ such that as + bt = 1.

6.5 Division by the GCD (DB GCD)
For all integers a and b, not both zero, ged (5, g) = 1, where d = gcd(a, b).

6.5 Coprimeness and Divisibility (CAD)
For all integers a,b and ¢, if ¢ | ab and ged(a, ) = 1, then ¢ | b.
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Prime Factorization (PF)

Every natural number n > 1 can be written as a product of primes.

Euclid’s Theorem (ET)

The number of primes is infinite.

Euclid’s Lemma (EL)

For all integers a and b, and prime numbers p, if p | ab, then p | a or p | b.

Generalized Euclid’s Lemma (Proposition 14) - Note: Not Proved
Let p be a prime number, n be a natural number, and a1, as,--- ,a, be integers.
Ifp|(ar-ag-... ap), then p| a; for some i =1,2,--- ,n.

Unique Factorization Theorem (UFT) - Fundamental Theorem of Arithmetic

Every natural number n > 1 can be written as a product of prime factors uniquely, apart from
the order of factors.

Finding a Prime Factor (FPF)

Every natural number n > 1 is either prime or has a prime factor less than or equal to /n.

Divisors From Prime Factorization (DFPF)

Let n and ¢ be positive integers, and

let n = pi"p3? - ppt

be a way to express n as a product of the distinct primes p1,pa,--- , pk
where some or all of the exponents may be zero.

The integer c is a positive divisor of n if and only if ¢ can be represented as a product
c:pflpg2 -~-p§’“, where 0 < 3; < ; fori=1,2,--- k.

Number of Divisors - Note: Exercise

The number of positive divisors of an integer n with unique prime factorization n = p7'ps? - - - pp*

is given by the product (cq + 1)(ae +1)--- (ag + 1).

GCD From Prime Factorization (GCD PF)

Let a and b be positive integers, and

let a = pi"p5? - - - p*,
and b = 10?11022 . ~pf’“
be ways to express a and b as products of the distinct primes p1,ps2,- -+ , Pk,

where some or all of the exponents may be zero.

We have ged(a, b) = pi*p3® -+ - p*
where v; = min{ay, 3;} fori =1,2,--- k.



