MATH 135 - Number Theory Review

Based on Language and Proofs in Algebra: An Introduction Version 1.3 by University of Waterloo Faculty of Mathematics. Sheet created in 2023 by wkennedy under fair use for education.

3.4.1 Transitivity of Divisibility (TD)

For all integers a, b and c, if $a \mid b$ and $b \mid c$, then $a \mid c$.

3.4.2 Divisibility of Integer Combinations (DIC)

For all integers a, b and c, if $a \mid b$ and $a \mid c$, then for all integers x and $y, a \mid(b x+c y)$.
Proof:
Let a, b and c be arbitrary integers, and assume that $a \mid b$ and $a \mid c$.
Since $a \mid b$, there exists an integer r such that $b=r a$.
Since $a \mid c$, there exists an integer s such that $c=s a$.
Let x and y be arbitrary integers. Then $b x+c y$ is also an integer.
Using the assumptions, we have $b x+c y=(r a) x+(s a) y=r a x+s a y=a(r x+s y)$.
Since $r x+s y$ is an integer, it follows from the definition of divisibility that $a \mid(b x+c y)$.

6.1 Division Algorithm (DA)

For all integers a and positive integers b, there exist unique integers q and r such that $a=q b+r$ where $0 \leq r<b$.

6.2 GCD with Remainders (GCD WR)

For all integers a, b, q and r, if $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

6.3 GCD Characterization Theorem (GCD CT)

For all integers a and b, and non-negative integers d,
if d is a common divisor of a and b, and there exist integers s and t such that $a s+b t=d$, then $d=\operatorname{gcd}(a, b)$.

6.3 Bézout's Lemma (BL)

For all integers a and b, there exist integers s and t such that $a s+b t=d$, where $d=\operatorname{gcd}(a, b)$.

6.4 Extended Euclidean Algorithm (EEA)

yes

6.5 Common Divisor Divides GCD (CDD GCD)

For all integers a, b and c, if $c \mid a$ and $c \mid b$, then $c \mid \operatorname{gcd}(a, b)$.

6.5 Coprimeness Characterization Theorem (CCT)

For all integers a and b, $\operatorname{gcd}(a, b)=1$ if and only if there exist integers s and t such that $a s+b t=1$.

6.5 Division by the GCD (DB GCD)

For all integers a and b, not both zero, $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$, where $d=\operatorname{gcd}(a, b)$.

6.5 Coprimeness and Divisibility (CAD)

For all integers a, b and c, if $c \mid a b$ and $\operatorname{gcd}(a, c)=1$, then $c \mid b$.

6.6 Prime Factorization (PF)

Every natural number $n>1$ can be written as a product of primes.

6.6 Euclid's Theorem (ET)

The number of primes is infinite.

6.7 Euclid's Lemma (EL)

For all integers a and b, and prime numbers p, if $p \mid a b$, then $p \mid a$ or $p \mid b$.
6.7 Generalized Euclid's Lemma (Proposition 14) - Note: Not Proved

Let p be a prime number, n be a natural number, and $a_{1}, a_{2}, \cdots, a_{n}$ be integers.
If $p \mid\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}\right)$, then $p \mid a_{i}$ for some $i=1,2, \cdots, n$.

6.7 Unique Factorization Theorem (UFT) - Fundamental Theorem of Arithmetic

Every natural number $n>1$ can be written as a product of prime factors uniquely, apart from the order of factors.

6.7 Finding a Prime Factor (FPF)

Every natural number $n>1$ is either prime or has a prime factor less than or equal to \sqrt{n}.

6.8 Divisors From Prime Factorization (DFPF)

Let n and c be positive integers, and
let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$
be a way to express n as a product of the distinct primes $p_{1}, p_{2}, \cdots, p_{k}$
where some or all of the exponents may be zero.
The integer c is a positive divisor of n if and only if c can be represented as a product $c=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$, where $0 \leq \beta_{i} \leq \alpha_{i}$ for $i=1,2, \cdots, k$.

6.8 Number of Divisors - Note: Exercise

The number of positive divisors of an integer n with unique prime factorization $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is given by the product $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)$.

6.8 GCD From Prime Factorization (GCD PF)

Let a and b be positive integers, and
let $a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$,
and $b=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$
be ways to express a and b as products of the distinct primes $p_{1}, p_{2}, \cdots, p_{k}$, where some or all of the exponents may be zero.
We have $\operatorname{gcd}(a, b)=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdots p_{k}^{\gamma_{k}}$
where $\gamma_{i}=\min \left\{\alpha_{i}, \beta_{i}\right\}$ for $i=1,2, \cdots, k$.

