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7.1 Linear Diophantine Equation Theorem, Part 1 (LDET 1)

For all integers a, b and c, with a and b both not zero,
the linear Diophantine equation ax+ by = c (in variables x and y)
has an integer solution if and only if d | c, where d = gcd(a, b).

7.2 Linear Diophantine Equation Theorem, Part 2 (LDET 2)

Let a, b and c be integers with a and b both not zero, and define d = gcd(a, b).
If x = x0 and y = y0 is one particular integer solution to
the linear Diophantine equation ax+ by = c,
then the set of all solutions is given by {(x, y) : x = x0 +

b
dn, y = y0 − a

dn, n ∈ Z}.

8.1 Definition of Congruence

Let m be a fixed positive integer.
For integers a and b, we say that a is congruent to b modulo m, and write
a ≡ b (mod m), when m | (a− b).

For integers a and b such that m ∤ (a− b), we write a ̸≡ b (mod m).
We refer to ≡ as congruence, and m as its modulus.

8.2 Congruence is an Equivalence Relation (CER)

For all integers a, b and c, we have

1. Reflexivity: a ≡ a (mod m)

2. Symmetry: If a ≡ b (mod m), then b ≡ a (mod m)

3. Transitivity: If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m)

8.2 Congruence Add and Multiply (CAM)

For all positive integers n, for all integers a1, a2, · · · , an and b1, b2, · · · , bn,
if ai ≡ bi (mod m) for all 1 ≤ i ≤ n then

1. a1 + a2 + · · · an ≡ b1 + b2 + · · · bn (mod m)

2. a1a2 · · · an ≡ b1b2 · · · bn (mod m)

8.2 Congruence Power (CP)

For all positive integers n and integers a and b,
if a ≡ b (mod m), then an ≡ bn (mod m).

8.2 Congruence Divide (CD)

For all integers a, b and c,
if ac ≡ bc (mod m) and gcd(c,m) = 1, then a ≡ b (mod m).

8.3 Congruence Iff Same Remainder (CISR)

For all integers a and b,
a ≡ b (mod m) if and only if a and b have the same remainder when divided by m.

8.3 Congruent to Remainder (CTR)

For all integers a and b with 0 ≤ b < m,
a ≡ b (mod m) if and only if a has remainder b when divided by m.
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8.4 Linear Congruence Theorem (LCT)

For all integers a and c, with a non-zero,
the linear congruence ax ≡ c (mod m) has a solution if and only if d | c, where d = gcd(a,m).

Moreover, if x = x0 is one particular solution to this congruence,
then the set of all solutions is given by {x ∈ Z : x ≡ x0 (mod m

d )},
or, equivalently, {x ∈ Z : x ≡ x0, x0 +

m
d , x0 + 2m

d , . . . , x0 + (d− 1)md (mod m)}.

8.5 Non-Linear Congruences

table go brrr

Test 2

8.6.1 Definition of a Congruence Class

The congruence class modulo m of the integer a is the set of integers
[a] = {x ∈ Z : x ≡ a (mod m)}.

8.6.2 Definition of Zm

We define Zm to be the set of m congruence classes
Zm = {[0], [1], [2], . . . , [m− 1]}
We define two operations on Zm as follows:
Addition: [a] + [b] = [a+ b]
Multiplication: [a][b] = [ab]

Applying these operations on the set Zm is known as Modular Arithmetic.

8.6 Properties of Modular Arithmetic (Example 13)

In Modular Arithmetic, the following properties hold for all [a] ∈ Zm.

1) [a] + [0] = [a] = [0] + [a] We say that [0] is the additive identity.

2) [a][0] = [0] = [0][a]

3) [a] + [−a] = [0] = [−a] + [a] We say that [−a] is the additive inverse of [a].

4) [a][1] = [a] = [1][a] We say that [1] is the multiplicative identity.

For any [a] ∈ Z, if there exists [b] ∈ Z such that [a][b] = [b][a] = 1,
we say that [b] is the multiplicative inverse of [a], and use the notation [b] = [a]−1.

8.6 Modular Arithmetic Theorem (MAT)

For all integers a and c, with a non-zero,
the equation [a][x] = [c] in Zm has a solution if and only if d | c, where d = gcd(a,m).

Moreover, when d | c, there are d solutions, given by
[x0], [x0 +

m
d ], [x0 + 2m

d ], . . . , [x0 + (d− 1)md ]
where [x] = [x0] is one particular solution.

8.6 Inverses in Zm (INV Zm)

Let a be an integer with 1 ≤ a ≤ m− 1.
The element [a] in Zm has a multiplicative inverse if and only if gcd(a,m) = 1.
Moreover, when gcd(a,m) = 1, the multiplicative inverse is unique.

8.6 Inverses in Zp (INV Zp)

For all prime numbers p and non-zero elements [a] in Zp,
the multiplicative inverse [a]−1 exists and is unique.
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8.7 Fermat’s Little Theorem (FℓT)

For all prime numbers p and integers a not divisible by p, we have
ap−1 ≡ 1 (mod p)

8.7 (Corollary 15)

For all prime numbers p and integers a, we have
ap ≡ a (mod p)

8.8 Chinese Remainder Theorem (CRT)

For all integers a1 and a2, and positive integers m1 and m2, if gcd(m1,m2) = 1,
then the simultaneous linear congruences n ≡ a1 (mod m1) and n ≡ a2 (mod m2)
has a unique solution modulo m1m2.

Moreover, if n = n0 is one particular solution,
then the solutions are given by the set of all integers n such that
n = n0 (mod m1m2)

8.8 Generalized Chinese Remainder Theorem (GCRT)

For all positive integers k and m1,m2, . . . ,mk, and integers a1, a2, . . . , ak,
if gcd(mi,mj) = 1 for all i ̸= j, then the simultaneous congruences
n ≡ a1 (mod m1), n ≡ a2 (mod m2), · · · , n ≡ ak (mod mk)
have a unique solution modulo m1m2 · · ·mk

Moreover, if n = n0 is one particular solution,
then the solutions are given by the set of all integers n such that
n ≡ n0 (mod m1m2 · · ·mk)

8.9 Splitting Modulus Theorem (SMT)

For all integers a and positive integers m1 and m2, if gcd(m1,m2) = 1,
then the simultaneous congruences n ≡ a (mod m1) and n ≡ a (mod m2)
have exactly the same solutions as the single congruence n ≡ a (mod m1m2)
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