MATH 135 - Linear Diophantine $\varepsilon 3$ Modular Equations Review
Based on Language and Proofs in Algebra: An Introduction Version 1.3 by University of Waterloo Faculty of Mathematics. Sheet created in 2023 by wkennedy under fair use for education.

7.1 Linear Diophantine Equation Theorem, Part 1 (LDET 1)

For all integers a, b and c, with a and b both not zero,
the linear Diophantine equation $a x+b y=c$ (in variables x and y) has an integer solution if and only if $d \mid c$, where $d=\operatorname{gcd}(a, b)$.

7.2 Linear Diophantine Equation Theorem, Part 2 (LDET 2)

Let a, b and c be integers with a and b both not zero, and define $d=\operatorname{gcd}(a, b)$.
If $x=x_{0}$ and $y=y_{0}$ is one particular integer solution to the linear Diophantine equation $a x+b y=c$,
then the set of all solutions is given by $\left\{(x, y): x=x_{0}+\frac{b}{d} n, y=y_{0}-\frac{a}{d} n, n \in \mathbb{Z}\right\}$.

8.1 Definition of Congruence

Let m be a fixed positive integer.
For integers a and b, we say that a is congruent to b modulo m, and write
$a \equiv b(\bmod m)$, when $m \mid(a-b)$.
For integers a and b such that $m \nmid(a-b)$, we write $a \not \equiv b(\bmod m)$.
We refer to \equiv as congruence, and m as its modulus.

8.2 Congruence is an Equivalence Relation (CER)

For all integers a, b and c, we have

1. Reflexivity: $\quad a \equiv a(\bmod m)$
2. Symmetry: If $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$
3. Transitivity: If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$

8.2 Congruence Add and Multiply (CAM)

For all positive integers n, for all integers $a_{1}, a_{2}, \cdots, a_{n}$ and $b_{1}, b_{2}, \cdots, b_{n}$, if $a_{i} \equiv b_{i}(\bmod m)$ for all $1 \leq i \leq n$ then

1. $a_{1}+a_{2}+\cdots a_{n} \equiv b_{1}+b_{2}+\cdots b_{n}(\bmod m)$
2. $a_{1} a_{2} \cdots a_{n} \equiv b_{1} b_{2} \cdots b_{n}(\bmod m)$

8.2 Congruence Power (CP)

For all positive integers n and integers a and b, if $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$.

8.2 Congruence Divide (CD)

For all integers a, b and c,
if $a c \equiv b c(\bmod m)$ and $\operatorname{gcd}(c, m)=1$, then $a \equiv b(\bmod m)$.

8.3 Congruence Iff Same Remainder (CISR)

For all integers a and b,
$a \equiv b(\bmod m)$ if and only if a and b have the same remainder when divided by m.

8.3 Congruent to Remainder (CTR)

For all integers a and b with $0 \leq b<m$, $a \equiv b(\bmod m)$ if and only if a has remainder b when divided by m.

8.4 Linear Congruence Theorem (LCT)

For all integers a and c, with a non-zero, the linear congruence $a x \equiv c(\bmod m)$ has a solution if and only if $d \mid c$, where $d=\operatorname{gcd}(a, m)$.

Moreover, if $x=x_{0}$ is one particular solution to this congruence, then the set of all solutions is given by $\left\{x \in \mathbb{Z}: x \equiv x_{0}\left(\bmod \frac{m}{d}\right)\right\}$,
or, equivalently, $\left\{x \in \mathbb{Z}: x \equiv x_{0}, x_{0}+\frac{m}{d}, x_{0}+2 \frac{m}{d}, \ldots, x_{0}+(d-1) \frac{m}{d}(\bmod m)\right\}$.

8.5 Non-Linear Congruences

table go brrr
Test 2

8.6.1 Definition of a Congruence Class

The congruence class modulo m of the integer a is the set of integers $[a]=\{x \in \mathbb{Z}: x \equiv a(\bmod m)\}$.

8.6.2 Definition of \mathbb{Z}_{m}

We define \mathbb{Z}_{m} to be the set of m congruence classes
$\mathbb{Z}_{m}=\{[0],[1],[2], \ldots,[m-1]\}$
We define two operations on \mathbb{Z}_{m} as follows:
Addition:

$$
[a]+[b]=[a+b]
$$

$$
\text { Multiplication: } \quad[a][b]=[a b]
$$

Applying these operations on the set \mathbb{Z}_{m} is known as Modular Arithmetic.

8.6 Properties of Modular Arithmetic (Example 13)

In Modular Arithmetic, the following properties hold for all $[a] \in \mathbb{Z}_{m}$.

1) $[a]+[0]=[a]=[0]+[a] \quad$ We say that $[0]$ is the additive identity.
2) $[a][0]=[0]=[0][a]$
3) $[a]+[-a]=[0]=[-a]+[a] \quad$ We say that $[-a]$ is the additive inverse of $[a]$.
4) $[a][1]=[a]=[1][a] \quad$ We say that $[1]$ is the multiplicative identity.

For any $[a] \in \mathbb{Z}$, if there exists $[b] \in \mathbb{Z}$ such that $[a][b]=[b][a]=1$,
we say that $[b]$ is the multiplicative inverse of $[a]$, and use the notation $[b]=[a]^{-} 1$.

8.6 Modular Arithmetic Theorem (MAT)

For all integers a and c, with a non-zero,
the equation $[a][x]=[c]$ in \mathbb{Z}_{m} has a solution if and only if $d \mid c$, where $d=\operatorname{gcd}(a, m)$.
Moreover, when $d \mid c$, there are d solutions, given by
$\left[x_{0}\right],\left[x_{0}+\frac{m}{d}\right],\left[x_{0}+2 \frac{m}{d}\right], \ldots,\left[x_{0}+(d-1) \frac{m}{d}\right]$
where $[x]=\left[x_{0}\right]$ is one particular solution.

8.6 Inverses in \mathbb{Z}_{m} (INV \mathbb{Z}_{m})

Let a be an integer with $1 \leq a \leq m-1$.
The element $[a]$ in \mathbb{Z}_{m} has a multiplicative inverse if and only if $\operatorname{gcd}(a, m)=1$.
Moreover, when $\operatorname{gcd}(a, m)=1$, the multiplicative inverse is unique.

8.6 Inverses in \mathbb{Z}_{p} (INV \mathbb{Z}_{p})

For all prime numbers p and non-zero elements $[a]$ in \mathbb{Z}_{p}, the multiplicative inverse $[a]^{-1}$ exists and is unique.

8.7 Fermat's Little Theorem ($\mathbf{F} \ell \mathbf{T}$)

For all prime numbers p and integers a not divisible by p, we have $a^{p-1} \equiv 1(\bmod p)$

8.7 (Corollary 15)

For all prime numbers p and integers a, we have
$a^{p} \equiv a(\bmod p)$

8.8 Chinese Remainder Theorem (CRT)

For all integers a_{1} and a_{2}, and positive integers m_{1} and m_{2}, if $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then the simultaneous linear congruences $n \equiv a_{1}\left(\bmod m_{1}\right)$ and $n \equiv a_{2}\left(\bmod m_{2}\right)$ has a unique solution modulo $m_{1} m_{2}$.

Moreover, if $n=n_{0}$ is one particular solution,
then the solutions are given by the set of all integers n such that $n=n_{0}\left(\bmod m_{1} m_{2}\right)$

8.8 Generalized Chinese Remainder Theorem (GCRT)

For all positive integers k and $m_{1}, m_{2}, \ldots, m_{k}$, and integers $a_{1}, a_{2}, \ldots, a_{k}$, if $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$, then the simultaneous congruences $n \equiv a_{1}\left(\bmod m_{1}\right), \quad n \equiv a_{2}\left(\bmod m_{2}\right), \quad \cdots, \quad n \equiv a_{k}\left(\bmod m_{k}\right)$ have a unique solution modulo $m_{1} m_{2} \cdots m_{k}$

Moreover, if $n=n_{0}$ is one particular solution, then the solutions are given by the set of all integers n such that $n \equiv n_{0}\left(\bmod m_{1} m_{2} \cdots m_{k}\right)$

8.9 Splitting Modulus Theorem (SMT)

For all integers a and positive integers m_{1} and m_{2}, if $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then the simultaneous congruences $n \equiv a\left(\bmod m_{1}\right)$ and $n \equiv a\left(\bmod m_{2}\right)$ have exactly the same solutions as the single congruence $n \equiv a\left(\bmod m_{1} m_{2}\right)$

