
Why is my Machine Learning
Model so Bad?

Alt-Tab W24: Sat Arora

https://satarora.com/w24-alt-tab.pdf

https://satarora.com/w24-alt-tab.pdf

Wtf is machine learning?

� “A branch of AI that focuses on imitating the way humans learn, gradually improving its
accuracy” according to IBM: https://www.ibm.com/topics/machine-learning

� The current state of ML? Well, that one’s subjective. Lots of $$$ into research though

� We will analyze a common problem: given data, find a function that best fits it

https://www.ibm.com/topics/machine-learning

Why is this problem important?

� Recall our problem: given data, find a function that best fits it
� This type of problem is known as a regression problem

� It allows you to analyze the relationship between two or more variates of interest: if you
get a good model, you can predict things just by plugging it in!

Regression example

What actually happened just now?

� With a linear model, the process of fitting is called linear regression

� Using the dataset points P = 𝑥! , 𝑦! , 𝑖 = 1, … , 𝑛, the objective of linear regression is to find a
function 𝑓∗ such that it gives the minimum value of

min
#
.
!

𝑓 𝑥! − 𝑦! $

which is the sum of squares of residuals (aka sum of squares of differences)

� There are other types of regression – but this is by far the most common and is
implemented this way in libraries if you don’t specify anything

Visualizing residuals

A residual is the
“error” or distance
between the
predicted value
and the actual
value.

Notice that our line is not perfectly
accurate!

� A perfect regression model would have loss 0 – aka every point is on the function you create

� Is that always possible?

� No! Thus there may always be some error!
� Can you think of a general idea of when this occurs? We will revisit this.

� Recall our original goal: Find 𝑓∗ that is the exact value of min
"
∑#$%& 𝑓 𝑥# − 𝑦# ', and this process

without specifying its “linear” is just “regression”
� We will transform this into a common “loss” function called Mean Squared Error (MSE):

𝑓∗ = min
"

1
𝑛,
#$%

&

𝑓 𝑥# − 𝑦# '

Assumption for our dataset

� IMPORTANT ASSUMPTION: Assume our dataset values come from some distribution 𝐷.

Now to learn more about errors in our
predictions!

� Recall again 𝑓∗ is our regression function. We show this is optimal for MSE!

� First note that as 𝑓∗ = min
"

%
&
∑#$%& 𝑓 𝑥# − 𝑦# ', thus:

� 𝑓∗ is the minimum value of the expected squared error for ALL possible functions 𝑓

� This is also the definition of conditional expectation, which for MSE is 𝐸 𝑌	 − 𝑓 𝑋
"
𝑋 = 𝑥]

� Thus, we have that the regression function 𝑓∗ satisfies 𝑓∗(𝑥) = 𝐸 𝑌	 𝑋 = 𝑥] for any input 𝑥

� Thus, for some arbitrary function 𝑓 that we may learn, we have that

𝑀𝑆𝐸 =
1
𝑛
,
#$%

&

𝑓 𝑥# − 𝑦# ' =
1
𝑛
,
#$%

&

𝑓 𝑥# − 𝑓∗ 𝑥 + [𝑓∗ 𝑥# 	− 𝑦#] '

=
1
𝑛 ,

#$%

&

𝑓 𝑥# − 𝑓∗ 𝑥#
' +,

#$%

&

𝑓∗ 𝑥# − 𝑦# ' + 2,
#$%

&

(𝑓 𝑥# − 𝑓∗ 𝑥#)(𝑓∗ 𝑥# − 𝑦#)

� We show the third term is 0 J

Showing the product term is 0

� We see that
1
𝑛
,
#$%

&

(𝑓 𝑥# − 𝑓∗ 𝑥#)(𝑓∗ 𝑥# − 𝑦#) = 𝐸 𝑓 𝑥 − 𝑓∗ 𝑥 𝑓∗ 𝑥 − 𝑦

where E is indicating that we are taking the expectation over the dataset.
� However, we know that 𝑓∗(𝑥) = 𝐸[𝑌|𝑋 = 𝑥], thus this expectation can be written as

𝐸(𝐸)|(𝑓 𝑥 − 𝑓∗ 𝑥 𝑓∗ 𝑥 − 𝑦 = 𝐸(𝑓 𝑥 − 𝑓∗ 𝑥 𝑓∗ 𝑥 − 𝐸)|(𝑦
= 𝐸(𝑓 𝑥 − 𝑓∗ 𝑥 𝑓∗ 𝑥 − 𝑓∗(𝑥) = 0

� Thus, we get

𝑀𝑆𝐸 =
1
𝑛
,
#$%

&

𝑓 𝑥# − 𝑓∗ 𝑥#
' +

1
𝑛
,
#$%

&

𝑓∗ 𝑥# − 𝑦# '

� The second term here indicates the loss from our “most” ideal function – the regression function!

What did we learn so far?

� Thus, the ideal function is always the function learned from regression, but there is always
some error.

� Some sources of error?
� Points that are too close in 𝑥 axis but are far apart in 𝑦 axis

� Or even points that have the same 𝑥 value but different 𝑦 values!

� Thus this loss is uncontrollable when learning a function

� What can we do?
� Simply get as close to the regression function as possible :sunglasses:

� Smh this don’t work like Discord

We are so back

� In the formula 𝑀𝑆𝐸 = %
&
∑#$%& 𝑓 𝑥# − 𝑓∗ 𝑥#

' + %
&
∑#$%& 𝑓∗ 𝑥# − 𝑦# ', the first term is minimizable!

� Let ̅𝑓(𝑥) be the expectation of our learned 𝑓(𝑥) if we chose different datasets. In other words, of
all possible datasets from the same underlying distribution (the true distribution, which we
obviously don’t know)
� Thus, ̅𝑓 𝑥 = 𝐸# 𝑓 𝑥 where f is the function we learn.

� Then, we expand the first term as
1
𝑛
,
#$%

&

𝑓 𝑥# − 𝑓∗ 𝑥#
' =

1
𝑛
,
#$%

&

𝑓 𝑥# − ̅𝑓 𝑥# + [̅𝑓(𝑥#) − 𝑓∗ 𝑥#]
'

=
1
𝑛 ,

#$%

&

𝑓 𝑥# − ̅𝑓 𝑥#
'
+,

#$%

&

̅𝑓(𝑥#) − 𝑓∗ 𝑥#]
' + 2,

#$%

&

(𝑓 𝑥# − ̅𝑓 𝑥#)(̅𝑓(𝑥#) − 𝑓∗ 𝑥#)

� Can we cancel out the third term… again?

I swear this is the last math-y proof…

� Notice that
1
𝑛

.
!%&

'

(𝑓 𝑥! − ̅𝑓 𝑥!)(̅𝑓(𝑥!) − 𝑓∗ 𝑥!)

can be written as 𝐸 (𝑓 𝑥 − ̅𝑓 𝑥)(̅𝑓(𝑥) − 𝑓∗ 𝑥) where we once again take the
expectation over our dataset.

� However, recalling ̅𝑓 𝑥 = 𝐸(𝑓 𝑥 , we have the expectation is equivalent to
𝐸(,* (𝑓 𝑥 − ̅𝑓 𝑥)(̅𝑓(𝑥) − 𝑓∗(𝑥)) = 𝐸* 𝐸(𝑓 𝑥 − ̅𝑓 𝑥 ̅𝑓 𝑥 − 𝑓∗ 𝑥

= 𝐸* 𝐸([𝑓 𝑥] − ̅𝑓 𝑥 ̅𝑓 𝑥 − 𝑓∗ 𝑥 = 𝐸* ̅𝑓 𝑥 	− ̅𝑓 𝑥 ̅𝑓 𝑥 	− 𝑓∗ 𝑥 = 0

Sooo… what did we get?

� We end up with

𝑀𝑆𝐸 =
1
𝑛
1
$%&

'

𝑓 𝑥$ − ̅𝑓 𝑥$
"
+
1
𝑛
1
$%&

'

̅𝑓(𝑥$) − 𝑓∗ 𝑥$]
" +

1
𝑛
1
$%&

'

𝑓∗ 𝑥$ − 𝑦$ "

as our final formula!
� Ok, let’s rearrange these values to write these nicer later

𝑀𝑆𝐸 =
1
𝑛
1
$%&

'

̅𝑓(𝑥$) − 𝑓∗ 𝑥$]
" +

1
𝑛
1
$%&

'

𝑓 𝑥$ − ̅𝑓 𝑥$
"
+
1
𝑛
1
$%&

'

𝑓∗ 𝑥$ − 𝑦$ "

� Recap:
� 𝑓: Function that we learn
� ̅𝑓: Expectation of function output if we get functions from many samples of the underlying distribution behind

our sample itself
� 𝑓∗: The function that is learned when doing regression (linear regression if just a linear model) – aka the function

that depicts 𝐸 𝑌 𝑋 = 𝑥 for all 𝑥

Looking at the Three Terms again:

� Function:

𝑀𝑆𝐸 =
1
𝑛.
!%&

'

̅𝑓(𝑥!) − 𝑓∗ 𝑥!]
$ +

1
𝑛.
!%&

'

𝑓 𝑥! − ̅𝑓 𝑥!
$
+
1
𝑛.
!%&

'

𝑓∗ 𝑥! − 𝑦! $

� The first term:
1
𝑛.
!%&

'

̅𝑓(𝑥!) − 𝑓∗ 𝑥!]
$

represents the model’s (square) bias: this comes from the assumptions in the learning
algorithm – i.e., the simpler you make your model, the more variance you will have!

Looking at the Three Terms again:

� Function:

𝑀𝑆𝐸 =
1
𝑛.
!%&

'

̅𝑓(𝑥!) − 𝑓∗ 𝑥!]
$ +

1
𝑛.
!%&

'

𝑓 𝑥! − ̅𝑓 𝑥!
$
+
1
𝑛.
!%&

'

𝑓∗ 𝑥! − 𝑦! $

� The second term:
1
𝑛.
!%&

'

𝑓 𝑥! − ̅𝑓 𝑥!
$

represents the model’s variance: how far away is our model compared to the expected
model if we had repeated sampling of the dataset’s sample distribution? It represents
“how unlucky” you got with your dataset compared to the distribution the dataset is taken
from

Looking at the Three Terms again:

� Function:

𝑀𝑆𝐸 =
1
𝑛.
!%&

'

̅𝑓(𝑥!) − 𝑓∗ 𝑥!]
$ +

1
𝑛.
!%&

'

𝑓 𝑥! − ̅𝑓 𝑥!
$
+
1
𝑛.
!%&

'

𝑓∗ 𝑥! − 𝑦! $

� The third term:
1
𝑛.
!%&

'

𝑓∗ 𝑥! − 𝑦! $

represents the model’s noise: things that you can’t control when you try to create a
function. Remember, we wanted the dataset to come from some distribution – but this
suggests that there is noise between that distribution and the points themselves.

How does model complexity affect the
three terms?

� Bias: The larger the model, the less bias there is. This is because you can be “potentially”
closer to the regression model.

� Variance: The larger the model, the more variance you can have because there is more
room for deviation from the expected model.

� Noise: I think I’ve said it enough times – you tell me, what is it?

What did we just do?

� 𝑀𝑆𝐸 = &
'
∑!%&' ̅𝑓(𝑥!) − 𝑓∗ 𝑥!]

$ + &
'
∑!%&' 𝑓 𝑥! − ̅𝑓 𝑥!

$
+ &

'
∑!%&' 𝑓∗ 𝑥! − 𝑦! $

� This is known as the bias-variance decomposition.
� Models will always have a sense of inaccuracy, but the bias and variance can be toyed

around with.

� Try it out for yourself!

Thanks for watching!

Feel free to take another look at this at https://satarora.com/w24-alt-tab.pdf

https://satarora.com/w24-alt-tab.pdf

