® M11 BT

Tree

a set of nodes and edges
&I L node —> root
A tree is connected

internal nodes Other useful terms:

Iabels( y

14 &
®©
leave
Binary tree

@ leaves: nodes with no children
@ internal nodes: nodes that have children
@ labels: data attached to a node

@ ancestors of node n: n itself, the parent of n, the
parent of the parent of n, etc. up to the root

@ descendents of n: all the nodes that have n as an
ancestor (which includes n)

@ subtree rooted at n: all of the descendents of n

A tree with two children for each node

Data definition

(define-struct node (key left right))
;3 A Node is a (make-node Nat BT BT)

;; A binary tree (BT) is one of:

;3 * empty
;3 * Node

Path: i3 ‘( right left right)

Binary search tree: Ordering property: ZEii/NF A8 A tree

Augmenting tree:

So far nodes have been (define-struct node (key left right)).

We can augment the node with additional data:
(define-struct node (key val left right)).

@ The name val is arbitrary — choose any name you like.
@ The type of val is also arbitrary: could be a number, string, structure, etc.
@ You could augment with multiple values.

@ The set of keys remains unigue.

@ The tree could have duplicate values.



BST dictionaries M11 P33

Binary expression tree

Internal nodes each have exactly two children.
Leaves have number labels.
Internal nodes have symbol labels.

We care about the order of children.

The structure of the tree is dictated by the expression.
Template

;3 A binary arithmetic expression (BinExp) is one of:
73 % a Num
;3 * a BINode

(define-struct binode (op left right))
;+ A Binary arithmetic expression Internal Node (BINode)
Hi- is a (make-binode (anyof 'x '+ '/ '-) BinExp BinExp)

;3 binexp-template: BinExp — Any
(define (binexp-template ex)
(cond [(number? ex) (... ex)]
[(binode? ex) (... (binode-op ex)
(binexp-template (binode-left ex))
(binexp-template (binode-right ex)))]))



® M12 Mutual Recursion

Occurs when two or more functions apply each other
Template

;+ binexp-template-v2: BinExp — Any
(define (binexp-template-v2 ex)
(cond [(number? ex) (... ex)]
[(binode? ex) (binode-template ex)]))

;3 binode-template-v2: BINode — Any
(define (binode-template node)
(... (binode-op node)
(binexp-template-v2 (binode-left node))
(binexp-template-v2 (binode-right node))))

® M13 General Tree

Trees with an arbitrary number of children (subtrees) in each node

> Representing general trees

;3 An Arithmetic Expression (AExp) is one of:
;3 % Num
;3 * OpNode

(define-struct opnode (op args))
;5 An OpNode (operator node) is a
;3 (make-opnode (anyof 'x '+) (listof AExp)).




® M14 Local

Local definitions M14 1/40
The functions and special forms we’ve seen so far can be arbitrarily nested—except define
and check-expect.

So far, definitions have to be made “at the top level”, outside any expression.

The Intermediate language provides the special form local, which contains a series of local
definitions plus an expression using them.

(local [(define x_ 1 exp_1) ... (define x n exp_n)] bodyexp)

What use is this?

(define (fxy)
(local [ (defineg...)]
(--))

Fresh identifier (fresh name)

A new, unigue name that has not been used anywhere else in the program

Reasons to use local (advantage)

Clarity: Naming subexpressions
Efficiency: Avoid recomputation
Encapsulation: Hiding stuff

Scope: Reusing parameters

* Encapsulation: the process of grouping things together in a capsule
* information hiding: we did not see with structures
* behavior encapsulation: evaluating local expression creates new, unique names for the
functions just as for the values.
Behaviour encapsulation allows us to move helper functions within the function that
usesthem, so they:
1. areinvisible outside the function.
2. do not clutter the “namespace” at the top level.
(FEAREIRY scope Ha] Y H IRAEEAY function name)

3. cannot be used by mistake. (check-expect ANgE check local) «



(define (my-func x) 3)

(dofine (testm m) function name EE Y
(local SEEARRNERE

[(define (my-func x) 5)]
(my-func m)))

(check-expect (testm 9) 5) |

;3 Full Design Recipe for isort goes here...
(define (isort lon)
(Local [;; (insert n slon) inserts n into slon, preserving the order
;7 insert: Num (listof Num) — (listof Num)
;+ requires: slon is sorted in nondecreasing order
(define (insert n slon)
(cond [(empty? slon) (cons n empty)]
[(«= n (first slon)) (cons n slon)]
[else (cons (first slon) (insert n (rest slon)))1))]

(cond [(empty? lon) empty]
[else (insert (first lon) (isort (rest lon)))])))



® M15 Functions as values

Racket functions are First class values (5 Hfth values #8EE T [ take Z£0)

Like other values, they can be:
Consumed by functions (e.g. filter)
Produced by functions (e.g. make-adder)
Bound to identifiers
Stored in lists and structures

Higher order function either consume a function or produce a function

® Filter

;7 (filter pred? 1st) —-> 1lst (PiBelementff&pred)
(define (my-filter pred? 1st)
(cond [ (empty? 1lst) empty]
[ (pred? (first 1st))

(cons (first 1st) (my-filter pred? (rest 1st)))]
[else (my-filter pred? (rest 1lst))]))

; ;foldrik/Rfilter
(define (my-filter pred? 1lst)
(foldr (lambda(x rror)
(cond [(pred? x) (cons X rror)]
[else rror]))
empty
1st))

Functional abstraction 5k is the process of creating abstract functions such as filter.
Advantages:

1. Reducing code size

2. Avoiding cut-and-paste.

3. Fixing bugs in one place instead of many.

4. Improving one functional abstraction improves many applications.

® type variable : a symbol that stands for some specific, but currently unknown, type

ep i: filter: (X — Bool) (listof X) — (listof X)

polymorphic / generic i TR Z A list



® M16 Functions as abstraction

Abstraction : the process of finding similarities or common aspects
not explicitly recursive : a function where recursion is done via a higher order function

such as foldr
Function name is anonymous
Higher order function

® Lambda (182 F make function)

I(Ilambda(x_l X 2 ... X n) exp)

® Map
(map f 1st)-> new list

new list RE— element £33 function 438
length-list <38

(define (my-map f 1st)
(cond [ (empty? lst) empty]
[else (cons (f (first 1st)) (my-map f (rest 1st)))]))

;. foldr &< map

(define (my-map f 1st)
(foldr (lambda(x rror)

(cons (f x) rror))  combine’
empty Base case
1st)) Whole list

|

® Foldr

(foldr f base 1lst) -> new list

Ep.

-> (+ 1 (foldr + 5 "(2 3 4))) B base m ABREE list

- ...

> (+1 (+ 2 (+ 3 (+ 4 (foldr + 5 empty)))))

> (+1 (+2 (+ 3 (+ 4 5))))

(define (my-foldr combine basecase 1st)
(cond [ (empty? 1lst) basecase]
[else (combine (first lst)
(my-foldr combine basecase (rest 1lst)))]1))

—f#% 5 lambda(x rror)45&
rror: Result of Recursing On the Rest



® Foldl

(define (my-foldl combine basecase done-1st)
(local
[ (define (foldl/acc lst acc)
(cond [(empty? 1st) acc]
[else (foldl/acc (rest 1st)
(combine (first 1st) acc))]1))]
(foldl/acc done-lst base)))

Differences:

the initial value of the accumulator

the computation of the new value of the accumulator, given the old value of the
accumulator and the first element of the list.

(foldr string-append "2B"™ ' ("To" "be" "or"™ "not")) r NBTTE/E

= "Tobeornot2B"
(foldl string-append "2B" ' ("To" "be" "or"™ "not")) | METERT

= "notorbeTo2B"

(foldr + 0 "(1 2 3 4))

=> (+ 1 (foldr "(2 3 4))) ; omitting + and 0, since they don't change
= (+ 1 (+ 2 (foldr "(3 4))))

= (+ 1 (+ 2 (+ 3 (foldr "(4)))))

=2 (+1 (+ 2 (+ 3 (+ 4 foldr "()))))

=> (+ 1 (+2 (+ 3 (+40))) =* 10

(foldl + 0 "(1 2 3 4))

= (f/acc '(1 2 3 4) 0) foldl: tail recursion
= (f/acc "(2 3 4) 1)

= (f/acc '(3 4) 3)

= (f/acc " (4) 6)

= (f/acc '() 10) =* 10

Similarity:

Both consume a combining function.
Both consume a base value.
Both consume a list.

® build-list

(build-1list num f) -> list
;;length list = num

;i MOE (num-1) AT E

® |ist-ref
(list-ref list num) -> listMEnum P
BHE num Ehl—H—



® M17 Generative recursion

Def: recursive cases are generated based on the problem to be solved

depth of recursion :the number of applications of the functionbefore arriving at a base case

(sum-list (list 3 6 5 4)) HH
= (+ 3 (sum-list (list 6 5 4))) HH
= (+ 3 (+ 6 (sum-list (list 5 4)))) h
= (+ 3 (+ 6 (+ 5 (sum-list (list 4))))) 3
= (+3 (+6 (+5 (+ 4 (sum-list (list )))))) 3
= (+3 (+6 (+5((+40))))=...=18

QB WN =

rrived at base case

® Quicksort
The Quicksort algorithm is an example of divide and conquer:
m  divide a problem into smaller subproblems;
= recursively solve each one:
= combine the solutions to solve the original problem.
Quicksort sorts a list of numbers into non-decreasing order by first choosing a pivot lement
from the list.

(quicksort (listof Any) (...>/<)) —> (HHFFMI1list)
& AT — U8B ELER R /INAY list

Ep. M/NEIRHES

; rquicksort
(define (my-quicksort lon)
(cond [ (empty? lon) empty]

[else
(local
[ (define pivot (first lon))
(define less (filter (lambda(x) (<= x pivot)) (rest lon)))
(define more (filter (lambda(x) (> x pivot)) (rest lon)))]
(append (my-quicksort less)

(1ist pivot)
(my-quicksort more)))]))



® M18 Graphs

® Directed graph

@& cycle

DAG: directed acyclic graphs (%% cycle f9)

(‘A (CDE)) :adjacency list
® Data definition

; A Node is a Sym

; A Graph is one of:
; * empty
% (cons: (LISt v (LisE wol ...
where g is a Graph

v, w.1,

® Template

;3 graph-template: Graph — Any
(define (graph-template g)

(cond
[(empty? g) ...]
[(cons? g)

(... (first (first g))
(listof-node-template
(second (first g)))
(graph-template (rest g))

Def. each edge has a direction
=. nodes / vertices

N

Z(->). edge

(AD): Ais out-neighbour of D
D is in-neighbour of A

ADFH: path / route

w.n)) g)

. w._n are Nodes
v is the in-neighbour to w_1 .
v does not appear as an in-neighbour in g

. w_n in the Graph

; first node in graph list

; list of adjacent nodes

o)1)



® M19 History

Charles Babbage

- Developed mechanical computation for military applications
o Difference Engine
o Analytical Engine

Ada Augusta Byron

- Assisted Babbage

- Write article about the use and operation of analytical engine
David Hilbert

- Formalized the axiomatic treatment of Euclidean geometry

- 23 problems, meaning of proof

- Believe the answer would be yes for the first three questions

Kurt Godel

- Incompleteness theorem to Hilbert’s questions

Alonzo Church

- Give a ‘no’ answer to the third question (deciding provability of formula)
with his student Kleene

- Created notation to describe functions on the natural numbers - Lambda

Alan Turning

- Two machine halting proof
- Help to break encrypted German radio traffic

- Co-worders developed what we now know to be the world first working

electronic computer (Colossue)

- Turning Test in Al

John von Neumann

- Erased the distinction between specification and execution, or program
and data

Grace Murray Hopper

Wrote the first compiler
- COBOL, (Common Business-Oriented Language)



- Defined first English-like data processing language

John Backus

- Fortran, language for numerical and scientific computation

John McCarthy

- Lisp o Dominant language for Al implementations o



® Stepper

local

Substitution rule M14 36/40
An expression of the form (local [d_1 ... d_n] bodyexp) is rewritten as follows:
@ d i will be of the form (define x i exp i) or (define (x i p 1 ... p.m) exp i).In

either case, x_i is replaced with a fresh identifier (call it x_i_new) everywhere in the
local expression, for 1 <i < n.

@ The definitions d 1 ... d n are then lifted out (all at once) to the top level of the
program, preserving their ordering.

@ What remains looks like (local [] bodyexp'), where bodyexp' is the rewritten version
of bodyexp. Replace the local expression with bodyexp'.

Al of this (the renaming, the lifting, and removing the local with an empty definitions list) is
a single step.

Terminology associated with local M14 37/40

The binding occurrence of a name is its use in a definition, or formal parameter to a
function.

The associated bound occurrences are the uses of that name that correspond to that
binding.

The lexical scope of a binding occurrence is all places where that binding has effect, taking
note of holes caused by reuse of names.

Global scope is the scope of top-level definitions.

Binding functions

(define add2 (make-adder 2))
= (define add2 (local [(define (f m) (+ 2 m))] f))

(define add2 (make-adder 2)) = (define (f_1m) (+ 2 m)) ; rename and lift out f
(define add3 (make-adder 3)) b Ml -1
(add2 3)
(add2 3) =5 = (f_1 3)
(add3 10) = 13 L 2

=5

(add3 13) = 16

Lambda

MNEFETE
it lambda EX MIE, B 28] define A constant



(define make-adder
(lambda (x)
(Lambda (y)
(+ xy))))

(define make-adder (lambda (x) (lambda (y) (+ x y))))
((make-adder 3) 4) = ;3 substitute the lambda expression
(((lambda (x) (lambda (y) (+ x y))) 3) 4) =

((lambda (y) (+ 3 y)) 4) =

(+ 34)=7
Foldr / foldl
(foldl (lambda(x y) (+ x y y)) 1 (list 3 4 5))
(co. (#311) ...)
(ce. 5 ..2)
(... (+455) ...)
(... 14 ...)
(-.. (+ 5 14 14) ...)
33
(foldr (lambda(x y) (+ x y y)) 1 (list 3 4 5))
(coe (+511) ..2)
(«oo 7 ..0)
(«.. (4 77) ...)
(... 18 ...)
(«.. (+ 3 18 18) ...)
39
® Template

List template

(define (list-template lst)
(cond [(empty? lst) ...]
[else (... (first lst) ...
(list-template (rest lst)) ...)1))



