Ulnit 1

explain how／why \rightarrow reason explain sth \longrightarrow describe＋reason
－实际运用类题荅题技的
（1）简化思想 \Rightarrow 图文合一
（3）模型归一 \Rightarrow 常见运动模型
（3）转化物理量
（4）从运动洁果入手
（9）公式题目中找影响因素
（6）得分点除了这辑起点和造辑终点，还有造辑证造
momentum vector moment vector Work（done）scalar

图

－base／derived unit注意unit 和 quantity

Mechanics
用于求运动
（1）大三式 条件：匀加迷
（2）能量守衡 条件 无heat friction 的存在 （侧重于转移的过程 eP．KE \rightarrow GPE）
（3）动量守候广 条件：© 短时间内爆发（ep．碰撞）
（2）合外力为 0
（侧重于转移的状态ep．$\left.\frac{v_{1}}{\left(m_{1}\right)} m_{v_{2}}\right) m_{1} v_{1}=m_{2} v_{2}$ ）
Gravitational field strength the gravitational force per unit mass

囦 纯运动
－Calculate 关迬斜率 线下面积
取点：の两点间隔大
（2）关注轴与轴间的信息
（3）尽量取 origin／截距
\rightarrow 不能提到力
Describe motion

constant velocity
gradient $=v=\frac{\Delta \Delta}{\Delta t}$
描述方向 $\left\{\begin{array}{l}\text { horizontal }\left\{\begin{array}{l}s \\ v \\ a\end{array}\right. \\ \text { vertical }\left\{\begin{array}{l}s \\ v \\ a\end{array}\right.\end{array}\right.$
 decreasing rate

Plot 1．确定起点和终点的两个坐标；确定斜率；注意正方向选取合适的scale，图形占据坐标纸不少于 $2 / 3$ 的空间
2．取点尽量远一点，尽量选原点或截距；gradient是 2 点的关系
3．注意横纵轴的量

抛体运动
题型 $\left\{\begin{array}{l}\text { 计算 }\left\{\begin{array}{l}\text { range 水平位移 } \\ \text { height }\end{array}\right. \\ \text { 解释 path }\left\{\begin{array}{l}\text { 无 air resistance } \\ \text { 有air resistance }\end{array}\right.\end{array}\right.$
－览
竖执
$H_{\max } \quad v=0 \quad u=v_{0} \quad a=-q \quad V_{0}$

$$
s=u t+\frac{1}{2} a t^{2}\left\{\begin{array}{l}
s>0 \text { 上执力 } \\
s<0 \text { 下执 }
\end{array}\right.
$$

－横执隹 horizontal vo vertical $u=0$

$$
S=V_{0} t
$$

$$
s=\frac{g t^{2}}{2}
$$

$$
\begin{aligned}
& x: v_{x}=v_{0} \cos \theta=\text { constant } \\
& \begin{array}{l}
v_{0} \quad y=u_{y}=v_{0} \sin \theta \\
t=\frac{v_{0} \sin \theta}{g}
\end{array} \\
& t_{\text {total }}=2 t=\frac{2 v_{0} \sin \theta}{g} \\
& \text { Range }=V_{0} \cos \theta \cdot t_{t-t a l}=V_{0} \cos \theta \cdot \frac{2 V_{0} \sin \theta}{V}=\frac{2 V_{0}^{2} \sin \cos \theta}{g}
\end{aligned}
$$

䨒 力与运动
－分析主语
1．未知量少
2．可能自身给自身的力（eq．气球唏气）
3．复杂归一（ep．多米诺牌）
4．以物体的一个物理量为主语
－拉力和位移相同做运动
（适用于 calculate／explain）
－$F_{\text {主动 }} \rightarrow F_{\text {被动 }} \rightarrow \Sigma F \rightarrow a / \Delta V \rightarrow V \rightarrow S$

$$
\text { 静 } 上 / \begin{aligned}
& \text { 运动状态 } \\
& \text { (explain) }
\end{aligned} \quad \text { 运动 } / F=m a
$$

－受力分析及表达
2D：©受力公折到水平，鉴直方向
（2）\sum F求和

$F \&$ 力臂 $r_{\perp} \quad \begin{gathered}\text { perpenatioular distance between } \\ \text { fore and piont }\end{gathered}$

$$
\begin{array}{ll}
(\text { (f) linear } \\
\text { motion) }
\end{array} \downarrow \vec{M}=\vec{r} \times \vec{F}\left\{\begin{array}{ll}
\text { 大小 } & r_{\perp} \text { (level arm } \omega \times F=r F \sin \theta \\
\text { 方向 } & + \text { 逆村针 }
\end{array}\right. \text { —逆时针 }
$$

F Moment

IF $\Sigma M($ 一般为 0 ）equilibrium
a \quad 角加速度
\downarrow
$\begin{array}{ll}V & W \text { 角速度 } \\ \downarrow\end{array}$
$S \theta$ 角位移
－力矩守衡计算
1．确定杆子
2．确定 pivat
3．标记力／力矩
4．运用 equilibrium of momentum
a．合力为 0
b．合力天下为。

分清重心和支点
centre of gravity 重心」重心可以不在物体上，支点必须在
a point at which an the weight of an object appears to act on

Principal of moment
in equilibrium，the sum of anticlockwise moments $=$ the sum of clockwise moments

功能关系

项功

$$
\begin{aligned}
& \text { 正功 } \rightarrow \text { 运动增加 } \rightarrow \text { 与加的方向夹角 }<90^{\circ}{ }^{\circ} \\
& \text { 负功 } \rightarrow \text { 运动减少 } \rightarrow \text { 与的方向夹角 }>90^{\circ}
\end{aligned}
$$

W \qquad work／work done／energy \rightarrow scalar．

$$
\left.\begin{array}{l}
W_{F}=\Delta E \text { chemical } \\
W_{f}=-\Delta Q \\
W_{\text {weight }}=-\Delta G P E
\end{array}\right\} \begin{aligned}
& \\
& W_{\text {total }} \text { fore }
\end{aligned}=\Delta E
$$

$$
W_{e 1}=-\Delta E_{e l}
$$

ep．1．力速骩车

$$
\begin{aligned}
& \Delta E c h \downarrow=\Delta \theta \uparrow+\Delta K E \uparrow \\
& W_{F}=W_{f}+W_{2 F}
\end{aligned}
$$

conservation
2．匀速爬坡

－功率
氺速状态下，总功 $=0 \rightarrow$ 总功卒 $=0$
（1）把功卒当作功来分析 $P=\frac{w}{t}=\frac{\overline{5}}{t}$
（2）功卒考虑主语

雨动量
－转移式（trans）$\Delta P_{1}=\Delta P_{2}$（object 改变）

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
$$

守街式（con）$E P=\Sigma P^{\prime}$（time 改变）

$$
m\left(v_{1}^{\prime}-v_{1}\right)=-m\left(v_{2}^{\prime}-v_{2}\right)
$$

$$
\left\{\begin{array}{l}
F_{1} \xrightarrow{\Delta t} \Delta P_{1} \xrightarrow{\text { eon }} \Delta P_{2} \\
F_{\text {in }}^{\Delta t} \Delta \Sigma P \xrightarrow{\Delta t} \Delta P \xrightarrow{\text { con }} \Delta P_{\text {ex }} \\
F_{\text {con }} \Delta P_{\text {in }}
\end{array}\right.
$$

－通过 $N_{2} N_{3}$ 推导动量 根据N2

$$
\frac{\Delta \Sigma P}{\Delta t}=\frac{\Delta P_{1}+\Delta P_{2}}{\Delta t} \xlongequal[=]{=} F_{1}+\Sigma F_{2}
$$

用于求运动
（1）大三式
（2）能量守衡
（3）动量守衡 杀件
条件：匀加迷
无heat friction 的存在
（1）短时间内爆发（ep，碰撞）
（3）合外力为 0

没有弹开的磁撞一定不能用能量导候可以先用能量守衡再用动量守衡

Conservation of linear momentum
the sum momentum before a collision is equal to the sum of momentum after a collision, if mo external force act.
Impulse 冲量

$$
\Sigma I^{\prime}=\Delta P=\Sigma F \times \Delta t
$$

Materials

分杆物体说浮：直接因素负力，不㺼
－viscosity
$\left\{\begin{array}{ll}\text { gas }: ~ & \alpha T \\ \text { liquid：} & \boldsymbol{y} \alpha \\ \hline\end{array} \quad T \uparrow \rightarrow \eta \uparrow \rightarrow D \uparrow \rightarrow \Sigma F \rightarrow\right.$ rate of flow liquid：$y \propto \frac{1}{T} \quad T \uparrow \rightarrow y \downarrow$
def．resistance of a fluid to flow
－Drag fore 跳平

（1）only W act $\rightarrow a=g$
（2）V 与 drag force 成正比
（3）$D=W$ $a=0$ terminal velocity
（4）$D-W=m a$
Eur $\rightarrow \vee \downarrow \rightarrow D \downarrow \rightarrow a \downarrow$
（5）$D=W \quad a=0$ terminal velocity
$m \uparrow \rightarrow$ terminal velocity \uparrow
原因：Drag $=m g$
－Rain consists of droplets of water of different sizes．
Explain why larger droplets of rain reach the ground more quickly． You may assume that the upthrust acting on a rain droplet is negligible．

1 At terminal／constant velocity the resultant force is zero（weight＝drag）
2 Larger droplets require a greater air resistance to equal a greater weight Or as the radius increases，weight increases more rapidly than drag（at a given speed）

3 Drag increases with velocity
4 Larger droplets have a greater terminal velocity

Solid．
$\underbrace{}_{\text {restoring }} \downarrow W \downarrow \rightarrow \triangle E P E \xrightarrow{\text { conservation }} \triangle E$
Wres S before PL $\frac{1}{2} F \Delta x=\frac{1}{2} k \Delta x^{2} \quad W=\Delta E P E$ Fan mean after PL 数格子／近似面积
－Hooke＇s law
－Before PL Frestring $=-k \overrightarrow{\Delta x}$
（2）$\Sigma F x$ ．TX．WX
（3）$\Delta x\left\{\begin{array}{l}+ \text { iextension 拉伸 } \\ - \text { ：compression 压缩 }\end{array}\right.$
（4）k ：spring constant stiffress

$$
F=k \Delta x
$$

\longrightarrow stiffness constant Nm^{-1}

- k越大，越 stiffer，extension越小
- F Δx 图像求area

看清横认坐标，ΔW 求与 Δx 轴的面积
－串／并联

$$
\begin{aligned}
& \sum_{k_{1}} \frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}} \\
& k_{1} \\
& k_{2} \sum_{k_{2}} k=k_{1}+k_{2}
\end{aligned}
$$

通过图象展开
看一个物体先否能水受大力 ep．concrete
5点．1斜率， 2 个区域》 stress when a material is breaking
通过求图中区域面积比较energy per volume
the maximum tensile stress for a material

Oxperiment

通过画图法减小差措，求bestfitine 辚立 error $\left\{\begin{array}{ll}\text { random error：不可避免 多算几次，取平均值 }\end{array} \quad \begin{array}{l}\text { systematic error：可避党 }\left\{\begin{array}{l}\text { zero error 器仏未归 } \\ \text { parallex error 视益 }\end{array}\right. \\ \\ \text { measure sth at eye level }\end{array}\right.$
－求 uncertainty
accuracy 精确度
损道 accuracy
（1）measure ．．．at different position because actural ．．．may not be uniform
（2）calculate the average
because it can reduce random error
1．用 digitewl camera iso好处
（1）no reaction time
（2）can be paused
（3）can be read every frame
2．用 data logger 的好处（数据检测器）
（1）measure 2 data simultaneously
（2）more readings
要图法女子处
（1）greater accuracy
（2）Clearly show the rate varies

先排除异常值，再求平均

