PMATH 347 - Groups and Rings

by Steven Cao

Contents

1.	Groups	2
	1.1. Notations	2
	1.2. Groups	2
	1.3. Symmetric groups	5
	1.4. Cayley tables	7
2.	Subgroups	9
	2.1. Subgroup tests	9
	2.2. Alternating groups	11
	2.3. Order of elements	12
	2.4. Cyclic groups	14
	2.5. Non-cyclic groups	16
3.	Normal subgroups	. 16
	3.1. Homomorphisms and isomorphisms	16
	3.2. Cosets and Lagrange's theorem	18
	3.3. Normal subgroups	21
4.	Isomorphism theorems	. 24
	4.1. Quotient groups	24
	4.2. Isomorphism theorems	25
5.	Group actions	. 29
	5.1. Cayley's theorem	29
	5.2. Group actions	30
6.	Sylow theorems	. 33
	6.1. p-groups	33
	6.2. Sylow's three theorems	34
7.	Finite abelian groups	37
	7.1. Primary decomposition	37
	7.2. Structure theorem of finite abelian groups	
8.	Rings	. 40
	8.1. Rings	40
	8.2. Subrings	
	8.3. Ideals	
	8.4. Isomorphism theorems	
9.	Commutative rings	
	9.1. Integral domains and fields	
	9.2. Prime ideals and maximal ideals	
	9.3. Fields of fractions	
10	. Polynomial rings	
	10.1. Polynomials	
	10.2. Polynomials over a field	57

§1. Groups

§1.1. Notations

In this course natural numbers \mathbb{N} start with 1.

Definition (\mathbb{Z}_n) .

Set of integers modulo n:

$$\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$$

where the congruence class

$$[r] = \{z \in \mathbb{Z} : z \in (r \operatorname{mod} n)\}$$

Note that for the sets $S = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_n$, S consists of two operations: **addition** and **multiplication**.

Definition $(\mathcal{M}_n(\mathbb{F}))$.

Set of all $n \times n$ matrices over field \mathbb{F} .

We can perform addition and multiplication on $\mathcal{M}_n(\mathbb{R})$.

§1.2. Groups

Definition (Group).

Let G be a set and * be an operation on $G \times G$ (can be addition, multiplication, matrix addition, matrix multiplication etc.).

G is a **group** of it satisfies:

- 1. Closure: if $a, b \in G$, then $a * b \in G$
- 2. Associativity: if $a, b, c \in G$, then a * (b * c) = (a * b) * c
- 3. Identity: there exists $e \in G$ (identity) such that $a * e = a = e * a \quad \forall a \in G$
- 4. Inverse: for all $a \in G$, there exists $b \in G$ (inverse) such that a * b = e = b * a

Definition (Abelian group).

G is abelian if $a * b = b * a \quad \forall a, b \in G$.

Problem 1.1.

Prove that in the definition of a group, it suffices to only have e*a=a in (3) and b*a=e in (4). Note e and b must be on the same side.

Theorem 1.1.

Let G be a group and $a \in G$.

- 1. The identity of G is unique.
- 2. The inverse of a is unique.

Proof.

- 1. If e_1 and e_2 are both identities, then $e_1 = e_1 * e_2 = e_2$
- 2. If b_1, b_2 are inverses of a, then $b_1 = b_1 * e = b_1 * (a * b_2) = (b_1 * a) * b_2 = e * b_2 = b_2$

Example.

The sets $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$ are abelian groups, where the additive identity is 0 and the additive inerse of an element r is (-r).

 $(\mathbb{N},+)$ is not a group as it does not have an identity and inverse for all elements.

Example.

The sets $(\mathbb{Q},\cdot),(\mathbb{R},\cdot),(\mathbb{C},\cdot)$ are not groups as 0 has no multiplicative inverse.

For a set $S=(\mathbb{F},\cdot)$, let S^* denote the subset of S containing all elements with multiplicative inverse. For example, $\mathbb{Q}^*=\mathbb{Q}\setminus\{0\}$. Then $(\mathbb{Q}^*,\cdot),(\mathbb{R}^*,\cdot),(\mathbb{C},\cdot)$ are abelian groups. The multiplicative identity is 1 and the multiplicative inverse is $\frac{1}{r}$.

Problem 1.2.

Let \mathbb{Z}_n denote the set of integers mod n. What is \mathbb{Z}_n^* ?

Example.

The set $(\mathcal{M}_n(\mathbb{R}),+)$ is an abelian group where the additive identity is the zero matrix and the additive inverse of A is -A.

Example.

 $(\mathcal{M}_n(\mathbb{R}),\cdot)$ is not a group because not all elements have a multiplicative inverse.

Let $GL_n(\mathbb{R})=\{M\in\mathcal{M}_n(\mathbb{R}):\det(M)\neq 0\}$, which is the set of full-rank/invertible matrices. Note that:

- If $A, B \in GL_n(\mathbb{R})$, then $\det(AB) = \det(A) \det(B) \neq 0$
- $\det(A^{-1}) = \det(A)^{-1} \neq 0$

 $(GL_n(\mathbb{R}),\cdot)$ is also known as the **general linear group** of degree n over \mathbb{R} .

Note that if $n \geq 2$, then the group $(GL_n\mathbb{R}, \cdot)$ is not abelian.

Problem 1.3.

What is $(GL_1(\mathbb{R}), \cdot)$?

Example.

Let G, H be groups. The **direct product** is the set $G \times H$ with the component-wise operation defined by

$$(g_1,h_1)\ast(g_2,h_2)=(g_1\ast g_2,h_1\ast h_2)$$

 $G \times H$ is a group with the identity (e_G, e_H) , and the inverse of (g, h) is (g^{-1}, h^{-1}) .

Similarly, if $G_1,G_2,...,G_n$ are groups, then $G_1\times G_2\times \cdots \times G_n$ is also a group.

Notation: we often denote:

- $g_1 * g_2$ by $g_1 g_2$
- Its identity by 1
- The inverse of $g \in G$ by g^{-1}
- $g^n = g * \underbrace{\cdots}_{n \text{ times}} * g$

Proposition 1.2.

Let G be a group and $g, h \in G$. We have:

- 1. $(g^{-1})^{-1} = g$
- 2. $(gh)^{-1} = h^{-1}g^{-1}$
- $3. g^n g^m = g^{n+m}$
- 4. $(g^n)^m = g^{nm}$

Proof.

- 1. $q^{-1}q = 1 = qq^{-1}$
- 2. $(gh)(h^{-1}g^{-1}) = g(hh^{-1})g^{-1} = gg^{-1} = 1$

Problem 1.4.

Prove the properties (3) and (4).

In general, it is **not** true that if $g, h \in G$, then $(gh)^n = g^n h^n$. For example, $(gh)^2 = ghgh$ and $g^2h^2 = gghh$ which is not equal unless G is abelian.

Theorem 1.3.

Let G be a group and $g, h, f \in G$. Then,

- 1. Left and right cancellation:
 - If gh = gf, then h = f
 - If hg = fg, then h = f
- 2. Given $a, b \in G$, the equations ax = b and ya = b has unique solutions for $x, y \in G$.

Proof.

• Left cancellation:

$$gh = gf \iff g^{-1}(gh) = g^{-1}(gf) <> (g^{-1}g)h = (g^{-1}g)f \iff h = f$$

Proof for right cancellation is similar.

• Let $x = a^{-1}b$. Then,

$$ax = a(a^{-1})b = b$$

If u is another solution, then au = b = ax. Then, u = x by cancellation.

Similarly, $y = ba^{-1}$ is the unique solution of ya = b.

§1.3. Symmetric groups

Definition (Permutation).

Given $L \neq \emptyset$, a **permutation** of L is a bijection from L to L. The set of all permutations is denoted by S_L .

Example.

Consider the set $L = \{1, 2, 3\}$. It has the following different permutations:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Definition.

For $n \in \mathbb{N}$, we denote $S_n = S_{\{1,2,\dots,n\}}$ as the set of all permutations of $\{1,\dots,n\}$.

We have seen that the order of $S_3 = 3! = 6$.

Proposition 1.4.

$$|S_n| = n!$$

Given $\sigma, \tau \in S_n$, we can *compose* them to get a third element $\sigma\tau$, where $\sigma\tau: \{1,...,n\} \to \{1,...,n\}$ given by $x \mapsto \sigma(\tau(x))$.

Since both σ, τ are bijections, so is $\sigma\tau$. Thus $\sigma\tau \in S_n$.

Example.

Given

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$

Then, the compositions are

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

Note that $\sigma \tau \neq \tau \sigma$.

For any $\sigma, \tau \in S_n$, we have $\sigma\tau, \tau\sigma \in S_n$, but $\sigma\tau \neq \tau\sigma$ in general.

On the other hand, $\sigma(\tau\mu) = (\sigma\tau)\mu$.

The **identity permutation** $\varepsilon \in S_n$ is defined as

$$\varepsilon = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$$

Then for any $\sigma \in S_n$, we have $\sigma \varepsilon = \sigma = \varepsilon \sigma$.

Given $\sigma \in S_n$, there also exists a unique **inverse permutation** bijection $\sigma^{-1} \in S_n$, such that $\sigma^{-1}(x) = y$ iff $\sigma(y) = x$. This also satisfies $\sigma(\sigma^{-1}(x)) = \sigma(y) = x$ and $\sigma^{-1}(\sigma(y)) = y$.

To compute the inverse, find y in $\sigma(y) = x$ for each $x \in [n]$.

Problem 1.5.

Find the inverse of

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$$

Proposition 1.5.

 S_n is a group called the **symmetric group** of degree n.

Problem 1.6.

Write down all rotations and reflections that fix a equilateral triangle. Then check why it is the "same" as S_3 .

Consider
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 1 & 7 & 6 & 9 & 0 & 2 & 5 & 8 & 10 \end{pmatrix} \in S_{10}.$$

Note that if we repeatedly apply σ , there are four cycles:

- $1 \rightarrow 3 \rightarrow 7 \rightarrow 2 \rightarrow 1$
- $4 \rightarrow 6 \rightarrow 4$
- $5 \rightarrow 9 \rightarrow 8 \rightarrow 5$
- $10 \rightarrow 10$

Thus σ can be **decomposed** into one 4-cycle $(1\ 3\ 7\ 2)$, one 2-cycle $(4\ 6)$, one 3-cycle $(5\ 9\ 8)$, and one 1-cycle (10) (usually omitted).

Note that these cycles are pairwise disjoint and we have

$$\sigma = (1\ 3\ 7\ 2)(4\ 6)(5\ 9\ 8)$$

We can also reorder the three cycles or rearranges the elements in each cycle. So these are also valid:

$$\sigma = (4\ 6)(5\ 9\ 8)(1\ 3\ 7\ 2) = (6\ 4)(9\ 8\ 5)(7\ 2\ 1\ 3)$$

Theorem 1.6 (Cycle Decomposition Theorem).

If $\sigma \in S_n$ with $\sigma \neq \varepsilon$, then σ is a product of one or more disjoint cycles of length at least 2.

This factorization is unique up to the order of the factors.

See Bonus 1 for proof.

Every permutation in S_n can be regarded as a permutation in S_{n+1} with the number n+1 fixed. Thus $S_1\subseteq S_2\subseteq \cdots \subseteq S_n\subseteq S_{n+1}\subseteq \cdots$.

§1.4. Cayley tables

For a finite group G, it is sometimes convenient to define its operation by a table.

Given $x, y \in G$, the product xy is the entry of the table in row x and column y. Such a table is a **Cayley table**.

Proposition 1.7.

The entries in each row or column n of a Cayley table are all distinct.

Example.

Consider $(\mathbb{Z}_2, +)$. Its Cayley table is

\mathbb{Z}_2	0	1
0	0	1
1	1	0

Example.

Consider $(\mathbb{Z}^* = \{1, -1\}, \times)$. Its Cayley table is

\mathbb{Z}^*	1	-1
1	1	-1
-1	-1	1

Note that if we replace 1 by [0] and -1 by [1], the Cayley tables of \mathbb{Z}^* and \mathbb{Z}_2 becomes the same.

In this case, we say \mathbb{Z}^* and \mathbb{Z}_2 are isomorphic: $\mathbb{Z}^* \cong \mathbb{Z}_2$.

Example

For $n \in \mathbb{N}$, the cyclic group of order n is defined by $C_n = \{1, a, a^2, ..., a^{n-1}\}$ with $a^n = 1$ and $1, a, ..., a^{n-1}$.

The Cayley table of C_n is

C_n	1	a	a^2		a^{n-2}	a^{n-1}
1	1	a	a^2		a^{n-2}	a^{n-1}
a	a	a^2	a^3	:	a^{n-1}	1
a^2	a^2	a^3	a^4		1	a
:						
a^{n-2}	a^{n-2}	a^{n-1}	1	:	a^{n-4}	a^{n-3}
a^{n-1}	a^{n-1}	1	a		a^{n-3}	a^{n-2}

Proposition 1.8.

Let G be a group. Up to isomorphism, we have

- 1. If |G| = 1, then $G \cong \{1\}$
- 2. If |G| = 2, then $G \cong C_2$
- 3. If |G| = 3, then $G \cong C_3$
- 4. If |G|=4, then $G\cong C_4$ or $G\cong K_4\cong C_2\times C_2$, the Klein 4-group

Proof. (1) If |G| = 1, then trivially $G = \{1\}$

(2) If |G|=2, then $G=\{1,g\}$ with $g=\pm 1$. Then $g^2=g$ or $g^2=1$. If $g^2=g$, then by cancellation g=1 which is a contradiction. Thus $g^2=1$.

Hence the Cayley table of G is

G	1	g
1	1	g
g	g	1

(3) If
$$|G|=3$$
, then $G=\{1,g,h\}$ with $g\neq 1,h\neq 1,g\neq h.$

By cancellation, we have $gh \neq g$, $gh \neq h$, thus gh = 1. Similarly, we have hg = 1.

Also, on the row for g, we have $g(1)=g,\,gh=1.$ Since all entries in the row are distinct, we have $g^2=h.$

The Cayley table of G is

G	1	g	h
1	1	g	h
g	g	h	1
h	h	1	g

Problem 1.7.

Consider the symmetry group of a non-square rectangle. How is it related to ${\cal K}_4$?

§2. Subgroups

§2.1. Subgroup tests

Definition (Subgroup).

Let G be a group. Let $H \subseteq G$. If H itself is a group, then we say H is a subgroup of G.

Since G is a group, for $h_1, h_2, h_3 \in H \subseteq G$, we have $h_1(h_2h_3) = (h_1h_2)h_3$. Thus, H is a subgroup of G if it satisfies the following conditions.

Remark (Subgroup test).

- 1. If $h_1, h_2 \in H$, then $h_1 h_2 \in H$
- 2. $I_h \in H$
- 3. If $h \in H$, then $h^{-1} \in H$

Problem 2.1.

Prove that $I_H = I_G$.

Example.

Given a group G, then $\{1\}$ and G are subgroups of G.

Example.

We have a chain of groups:

$$(\mathbb{Z},+)\subseteq (\mathbb{Q},+)\subseteq (\mathbb{R},+)\subseteq (\mathbb{C},+)$$

Example.

Recall the general linear group of order n over \mathbb{R} :

$$GL_n(\mathbb{R}) = (GL_n(\mathbb{R}), \cdot) = \{ M \in \mathcal{M}_n(\mathbb{R}) : \det(M) \neq 0 \}$$

We can define

$$SL_n(\mathbb{R}) = (SL_n\mathbb{R}, \cdot) = \{M \in GL_n(\mathbb{R}) : \det(M) = 1\} \subseteq GL_n(\mathbb{R})$$

Note that the identity matrix is $I \in SL_n(\mathbb{R})$. Let $A, B \in SL_n(\mathbb{R})$. Then,

$$\det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1$$

And

$$\det(A^{-1}) = \det(A)^{-1} = 1^{-1} = 1$$

So $AB, A^{-1} \in SL_n(\mathbb{R})$. By subgroup test, $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$.

 $SL_n(\mathbb{R})$ is the **special linear group** of order n over \mathbb{R} .

Example.

Given a group G, we define the **center** of G to be

$$Z(G) = \{ z \in G : zg = gz \ \forall g \in G \}$$

Note that Z(G) = G iff G is abelian.

Claim: Z(G) is an abelian subgroup of G.

Note that $I \in Z(G)$. Let $y, z \in Z(G)$. Then for all $g \in G$, we have

$$(yz)g = y(zg) = y(gz) = (yg)z = (gy)z = g(yz)$$

Thus $yz \in Z(G)$.

And, for $z \in Z(G)$ and $g \in G$, we have

$$zg = gz \Longleftrightarrow z^{-1}(zg)z^{-1} = z^{-1}(gz)z^{-1} \Longleftrightarrow \big(z^{-1}z\big)\big(gz^{-1}\big) = \big(z^{-1}g\big)\big(zz^{-1}\big) \Longleftrightarrow gz^{-1} = z^{-1}g$$

Proposition 2.1.

Let $H, K \subseteq G$. Then their intersection $H \cap K = \{g \in G : g \in H, g \in K\}$ is also a subgroup of G.

Problem 2.2.

Prove the intersection of subgroups property.

Theorem 2.2 (Finite subgroup test).

If $H \subseteq G$ is finite and non-empty, then H is a subgroup of G iff H is closed under its operation.

П

Proof. Let $H \subseteq G$ be finite and non-empty.

 (\Longrightarrow) Trivial.

 (\Leftarrow) Let $h \in H$. Since H is closed under its operation, we have $h, h^2, ...$ are all in H.

As H is finite, these elements are not all distinct. Thus $h^n=h^{n+m}$ for some $n,m\in\mathbb{N}$. By cancellation, $h^m=1$ and thus $1\in H$.

Also,
$$1 = h^{m-1}h \Longrightarrow h^{-1} = h^{m-1}$$
, so $h^{-1} \in H$.

By the subgroup test, H is a subgroup of G.

§2.2. Alternating groups

Definition (Transposition).

A **transposition** $\sigma \in S_n$ is a cycle of length 2.

Example.

Consider $(1\ 2\ 4\ 5)\in S_5$. The composition $(1\ 2)(2\ 4)(4\ 5)$ can be computed as

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 5 & 4 \\
1 & 4 & 3 & 5 & 2 \\
2 & 4 & 3 & 5 & 1
\end{pmatrix}$$

Thus we have

$$(1 \ 2 \ 4 \ 5) = (1 \ 2)(2 \ 4)(4 \ 5)$$

Also, we can show that

$$(1 \ 2 \ 4 \ 5) = (2 \ 3)(1 \ 2)(2 \ 5)(1 \ 3)(2 \ 4)$$

We can see from this example that the factorization into transpositions are not unique.

Theorem 2.3 (Parity theorem).

If a permutation ω has two factorizations

$$\sigma = \nu_1 \nu_2 ... \nu_r = \mu_1 \mu_2 ... \mu_s$$

where each ν_i and μ_j is a transposition, then $r \equiv s \pmod{2}$.

Definition.

A permutation is **even** (or **odd**) if it can be written as a product of an even (or odd) number of transpositions.

By parity theorem, a permutation is either even or odd, but not both.

Theorem 2.4.

For $n \geq 2$, let A_n denote the set of all even permutations in S_n . Then,

- 1. $\varepsilon \in A_n$
- 2. If $\sigma, \tau \in A_n$, then $\sigma \tau \in A_n$ and $\sigma^{-1} \in A_n$
- 3. $|A_n| = \frac{1}{2}n!$

Proof. (1) We can write $\varepsilon = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$. Thus ε is even.

(2) Let $\sigma, \tau \in A_n$. We can write $\sigma = \sigma_1 \cdots \sigma_r$ and $\tau = \tau_1 \cdots \tau_s$ where σ_i, τ_j are transpositions and r, s are even.

Then,

$$\sigma\tau = \sigma_1 \cdots \sigma_r \tau_1 \cdots \tau_s$$

is a product of r + s transpositions, so it is even.

Also, since σ_i is a transposition, we have $\sigma_i^2 = \varepsilon$ and thus $\sigma_i^{-1} = \sigma_i$. It follows that

$$\sigma^{-1} = \left(\sigma_1 \cdots \sigma_r\right)^{-1} = \sigma_r^{-1} \cdots \sigma_1^{-1} = \sigma_r \cdots \sigma_1$$

which is an even permutation.

(3) Let O_n denote the set of odd permutations in S_n , such that $S_n = A_n \cup O_n$, and the parity theorem implies $A_n \cap O_n = \emptyset$.

Since $|S_n| = n!$, to prove $|A_n| = \frac{1}{2}n!$, it suffices to show that $|A_n| = |O_n|$.

Let $\nu=(1\ 2)$ and let $f:A_n\to O_n$ be defined by $f(\sigma)=\nu\sigma$.

Since σ is even, we have that $\nu\sigma$ is odd. Thus the map is well-defined.

Also, if we have $\nu\sigma_1 = \nu\sigma_2$, by cancellation we get $\sigma_1 = \sigma_2$. So, f is one-to-one.

Let $\tau \in O_n$. Then, $\sigma = \nu \sigma \in A_n$ and

$$f(\sigma) = \nu \sigma = \nu(\nu \tau) = \nu^2 \tau = \tau$$

So f is onto

Putting together, f is a bijection. Thus, $|n| = |O_n|$.

From (1) and (2), we see that A_n is a subgroup of S_n .

 A_n is called the **alternating group** of degree n.

§2.3. Order of elements

Definition.

If G is a group and $g \in G$, we denote

$$\langle g \rangle = \left\{ g^{\beta} : \beta \in \mathbb{Z} \right\} = \left\{ ..., g^{-2}, g^{-1}, g^0, g^1, g^2, ... \right\}$$

Note that $1 = g^0 \in \langle g \rangle$. Also, if $x \in g^m$, $y \in g^n \in \langle g \rangle$ with $m, n \in \mathbb{Z}$, then

$$xy = g^m g^n = g^{m+n} \in \langle g \rangle$$

and $x^{-1}=g^{-m}\in\langle g\rangle.$ By the subgroup test, we have

Proposition 2.5.

If G is a group and $g \in G$, then $\langle g \rangle$ is a subgroup of G.

Definition.

Let G be a group and $g \in G$. We call $\langle g \rangle$ the **cyclic subgroup** of G generated by g.

If $G = \langle g \rangle$ for some $g \in G$, then we say G is **cyclic** and g is a **generator** of G.

Example.

Consider $(\mathbb{Z}, +)$. Note that for all $k \in \mathbb{Z}$, we can write $k = k \cdot 1$. Thus $(\mathbb{Z}, +) = \langle 1 \rangle$.

Similarly, $(\mathbb{Z}, +) = \langle -1 \rangle$.

For any $n \in \mathbb{Z}$ with $n \neq \pm 1$, there exists no $k \in \mathbb{Z}$ such that $k \cdot n = 1$, thus ± 1 are the only generators of $(\mathbb{Z}, +)$.

Let G be a group a $g \in \mathbb{G}$ suppose that there exists $k \in \mathbb{Z}$, $k \neq \text{such that } g^k = 1$. Then $g^{-k} = (gk)^{-1} = 1$. Thus we can assume that $k \geq 1$. By the well-ordering principle, there exists the "smallest" positive integer n such that $g^n = 1$.

Definition (Order).

Let G be a group and $g \in G$. If $n \in \mathbb{N}$ is the smallest value such that $g^n = 1$, then we say the **order** of q is n, denoted by o(q) = n.

If no such n exist, then we say g has **infinite order** and write $o(g) = \infty$.

Proposition 2.6.

Let G be a group and $g \in G$ such that $o(g) = n \in \mathbb{N}$. For $k \in \mathbb{Z}$, we have

- 1. $g^k = 1$ iff $n \mid k$ (divides)
- 2. $g^k = g^m \text{ iff } k \equiv m \pmod{n}$
- 3. $\langle g \rangle = \{1, g, g^2, ..., g^{n-1}\}$ where $g, g^2, ..., g^{n-1}$ are all distinct, and $|\langle g \rangle| = o(g)$

Proof. (1) (\Leftarrow) If $n \mid k$, then k = nq for some $q \in \mathbb{Z}$. Thus

$$g^k = g^{nz} = (g^n)^z = 1^z = 1$$

 (\Longrightarrow) By division algorithm, we can write k = nq + r with $q, r \in \mathbb{Z}$ and $0 \le r < n$. Since $g^k = 1$ and $g^n = 1$, we have

$$q^r = q^{k-nq} = q^k (q^n)^{-q} = 1(1)^{-q} = 1$$

As $0 \le r < n$ and o(g) = n, we have r = 0 and hence $n \mid k$.

- (2) Note that $g^k = g^m$ iff $g^{k-m} = 1$. By (1), we have $n \mid (k-m)$, so $k \equiv m \pmod{n}$.
- (3) From (2), it follows that $1, g, g^2, ..., g^{n-1}$ are all distinct. So, we have $\{1, g, g^2, ..., g^{n-1}\} \subseteq \langle g \rangle$.

Let $g^k \in \langle g \rangle$ for some $k \in \mathbb{Z}$. Write k = nq + r with $q, r \in \mathbb{Z}$ and $0 \le r < n$. Then,

$$g^k = g^{nq}g^r = 1^qg^r = g^r \in \{1, g, g^2, ..., g^{n-1}\}$$

Thus we have $\langle g \rangle = \{1, g, ..., g^{n-1}\}.$

Proposition 2.7.

Let G be a group and $g \in G$ satisfying $o(g) = \infty$. For $k \in \mathbb{Z}$, we have

- 1. $g^k = 1$ iff k = 0
- $2. \ g^k = g^m \text{ iff } k = m$
- 3. $\langle g \rangle = \left\{...,g^{-1},g^{=},g^{1},...\right\}$ where g^{i} are all distinct

Proposition 2.8.

Let G be a group and $g \in G$ with $o(g) = n \in \mathbb{N}$. If $d \in \mathbb{N}$, then $o\left(g^d\right) = \frac{n}{\gcd(n,d)}$ where $\gcd(n,d)$ is the gcd of n and d.

In particular, if $d \mid n$, then $o(g^d) = \frac{n}{d}$.

Proof. Let $n_1=\frac{n}{\gcd(n,d)}$ and $d_1=\frac{d}{\gcd(n,d)}$. By (divide by GCD from MATH 135) we have $\gcd(n_1,d_1)=1$. Note that

$$\left(g^d\right)^{n_1} = \left(g^d\right)^{\frac{n}{\gcd(n,d)}} = \left(g^n\right)^{\frac{d}{\gcd(n,d)}} = 1$$

Now we will show that n_1 is the smallest such possible integer.

Suppose $\left(g^{d}\right)^{r}=1$ with $r\in\mathbb{N}.$ Since o(g)=n, we have $n\mid dr.$ Thus there exists $q\in\mathbb{Z}$ such that dr=nq.

Dividing both sides by gcd(n, d), we have

$$d_1r = \frac{d}{\gcd(n,d)}r = \frac{n}{\gcd(n,d)}q = n_1q$$

Since $n_1 \mid d_1 r$ and $\gcd(n_1, d_1) = 1$, we get $n_1 \mid r$, so $r = n_1 l$ for some $l \in \mathbb{Z}$. As $l \ge 1$, we get $r \ge n_1$.

§2.4. Cyclic groups

For a group G, if $G=\langle g \rangle$ for some $g\in G$, then G is a cyclic group. For $a,b\in G$, we have $a=g^m$ and $b=g^n$ for some $m,n\in\mathbb{Z}$, which means

$$ab = g^m g^n = ba$$

Proposition 2.9.

Every cyclic group is abelian.

The converse of this is not true! For example, K_4 is ablian, but it is not cyclic.

Proposition 2.10.

Every subgroup of a cyclic group is cyclic.

Proof. Let $G = \langle g \rangle$ be cyclic. Let H be a subgroup of G.

If $H = \{1\}$, then trivially H is cyclic. Otherwise, there exists $g^k \in H$ with $k \in \mathbb{Z}, k \neq 0$. Since H is a group, we have $g^{-k} \in H$. Thus we can assume $k \in \mathbb{N}$.

Let $m \in \mathbb{N}$ be the smallest such that $g^m \in H$. We can show that $H = \langle g^m \rangle$ using division algorithm.

Proposition 2.11.

Let $G = \langle g \rangle$ be cyclic with o(g) = n. Then $G = \langle g^k \rangle$ iff $\gcd(k, n) = 1$.

Proof. By earlier proposition, $o(g^k) = \frac{n}{\gcd(n,k)}$.

Theorem 2.12 (Fundamental theorem of finite cyclic groups).

Let $G = \langle g \rangle$ be a cyclic group with o(g) = n.

- 1. If H is a subgroup of G, then $H = \langle g^d \rangle$ for some $d \mid n$. It follows that $|H| \mid |G|$
- 2. If $k \mid n$, then $g^{\frac{n}{k}}$ is a unique subgroup of G of order k.

Proof.

1. Let H be a subgroup of G. Then H is cyclic, so $H = \langle g^m \rangle$ for some $m \in \mathbb{N} \cup \{0\}$.

Let $d = \gcd(m, n)$. We will show $H = \langle g^d \rangle$.

- (\subseteq) Since $d \mid m$, we have m = dk for some $k \in \mathbb{Z}$. Then $g^m = g^{dk} \in \langle g^d \rangle$. Thus $H = \langle g^m \rangle \subseteq \langle g^d \rangle$.
- (\supseteq) As $d = \gcd(mn)$, there exists $x, y \in \mathbb{Z}$ such that d = mx + ny. Then,

$$g^d = g^{mx+ny} = g^{mx}(g^n)^y = g^{mx} \in \langle g^m \rangle$$

Thus $\langle g^d \rangle \subseteq \langle g^m \rangle = H$. It follows that $H = \langle g^d \rangle$.

Since $d = \gcd(m, n)$, we have $d \mid n$. So,

$$|H| = o\big(g^d\big) = \frac{n}{\gcd(n,d)} = \frac{n}{d}.$$

Thus, $|H| \mid |G|$.

2. The cyclic subgroup $\langle g^{\frac{n}{k}} \rangle$ is of order

$$o(g^{\frac{n}{k}}) = \frac{n}{\gcd(n, n/k)} = \frac{n}{n/k} = k$$

To show uniqueness, let K be a subgroup of G of order k, possible as $k \mid n$. By (1), let $K = \langle g^d \rangle$ with $d \mid n$. Then, we have

$$k = |k| = o(g^d) = \frac{n}{\gcd(n, d)} = \frac{n}{d}$$

It follows that $d = \frac{n}{k}$ and thus $K = \langle g^{\frac{n}{k}} \rangle$.

§2.5. Non-cyclic groups

Let X be a non-empty subset of a group G, and let

$$\langle X \rangle = \left\{ x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m} : m \in \mathbb{N}, x_i \in X, k_i \in \mathbb{Z} \right\}$$

denote the set of all products of powers of (not necessarily distinct) elements of X. Note that if $x_1^{k_1}\cdots x_m^{k_m}\in\langle X\rangle$ and $y_1^{r_1},\cdots y_n^{r_n}\in\langle X\rangle$, then

$$x_1^{k_1} \cdots x_m^{k_m} y_1^{r_1} \cdots y_n^{r_n} \in \langle X \rangle$$

Also, $x_1^0 \in \langle X \rangle$ and $\left(x_1^{k_1} \cdots x_m^{k_m}\right)^{-1} = x_m^{-k_1} \cdots x_1^{-k_m}$. Hence $\langle X \rangle$ is a subgroup of G containing X, called the subgroup of G generated by X.

Example.

$$K_4 = \{1, a, b, c\}$$
 with $a^2 = b^2 = c^2 = 1$ and $ab = c$. Thus

$$K_4 = \{a, b \cdot a^2 = b^2 = 1, \}$$

Definition (Dihedral group).

For $n \geq 2$, the **dihedral group** of order 2n is defined by

$$D_{2n} = \{1, a, ..., a^{n-1}, b, ba, ..., ba^{n-1}\}$$

where $a^n = 1 = b^2$ and aba = b.

Note that $D_4 \cong K_4$ and $D_6 \cong S_3$.

Problem 2.3.

For $n \geq 3$, consider a regular n-gon and its group of symmetries. How is it related to D_{2n} ?

§3. Normal subgroups

§3.1. Homomorphisms and isomorphisms

Definition (Homomorphism).

Let G, H be groups. A mapping $\alpha : G \to H$ is a **homomorphism** (HM) if

$$\alpha(a *_G b) = \alpha(a) *_H \alpha(b) \ \forall a, b \in G$$

We often omit the group specific operation for simplicity.

Example.

Consider the determinant map

$$\det: (GL_n(\mathbb{R}), \cdot) \to \mathbb{R}^*$$

given by $A \mapsto \det(A)$.

Since det(AB) = det(A) det(B), the mapping det is a homomorphism.

Proposition 3.1.

Let $\alpha: G \to H$ be a group HM. Then,

- 1. $\alpha(I_G) = I_H$
- 2. $\alpha(g^{-1}) = \alpha(g)^{-1} \ \forall g \in G$
- 3. $\alpha(g^k) = \alpha(g)^k \ \forall g \in G, k \in \mathbb{Z}$

Problem 3.1.

Prove Proposition 3.1.

Definition (Isomorphism).

A mapping $\alpha: G \to H$ is an isomorphism (IM) if α is HM and α is bijective.

Proposition 3.2.

We have

- 1. The identity map id is an IM
- 2. If $\sigma:G\to H$ is an IM, then the inverse map $\sigma^{-1}:H\to G$ os also an IM
- 3. If $\sigma:G\to H$ and $\tau:H\to K$ are IM, then $\sigma\tau:G\to K$ is also an IM

Thus, we see that \cong is an equivalence relation.

Problem 3.2.

Problem Proposition 3.2.

Example.

Let $\mathbb{R}^+ + \{r \in \mathbb{R} : r > 0\}$. We will show that $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$.

Define $\sigma:(\mathbb{R},+)\to(\mathbb{R}^+,\cdot)$ by $\sigma(r)=e^r$. Note that the exponential map from \mathbb{R} to \mathbb{R}^+ is bijective. Also, for $r,s\in\mathbb{R}$, we have

$$\sigma(r+s) = e^{r+s} = e^r e^s = \sigma(r)\sigma(s)$$

Thus, σ is an IM.

Example.

We will show $(\mathbb{Q}, +) \ncong (\mathbb{Q}^*, \cdot)$

Suppose $\tau:(\mathbb{Q},+)\to(\mathbb{Q}^*,\cdot)$ is an IM. Then, τ is onto, so there exists $q\in\mathbb{Q}$ such that $\tau(g)=2$.

Consider $\tau(\frac{q}{2}) = a \in \mathbb{Q}$. Since τ is an HM, we have

$$a^2 = \tau \left(\frac{q}{2}\right) \tau \left(\frac{q}{2}\right) = \tau \left(\frac{q}{2} + \frac{q}{2}\right) = \tau(q) = 2$$

which contradicts $a \in \mathbb{Q}$. Thus such τ does not exist and $(\mathbb{Q}, +) \ncong (\mathbb{Q}^*, \cdot)$.

§3.2. Cosets and Lagrange's theorem

Definition (Coset).

Let H be a subgroup of group G. If $a \in G$, we define

$$Ha = \{ha \mid h \in H\}$$

to be the **right coset** of H generated by a.

Similarly, we define

$$aH = \{ah \mid h \in H\}$$

to be the **left coset** of H generated by a.

Since $1 \in H$, we have H1 = H = 1H and $a \in Ha$ and $a \in aH$.

However in general, Ha and aH are not subgroups of G and $aH \neq Ha$. But if G is abelian, then Ha = aH.

Example.

Let $K_4=\{1,a,b,ab\}$ with $a^2=1=b^2$ and ab=ba. Let $H=\{1,a\}$ be a subgroup of K_4 . Note that since K_4 is abelian, we have $gH=Hg \ \forall g\in K_4$. Then the right/left cosets of H are

$$H1 = \{1, a\} = 1H$$
 $Hb = \{b, ab\} = bH$

Thus there are exactly two cosets of H in K_4 .

Example.

Let $S_3=\left\{ arepsilon,\sigma,\sigma^2, au, au\sigma, au\sigma^2 \right\}$ with $\sigma^3=arepsilon=\tau^2$ and $\sigma\tau\sigma=\tau$. Let $H=\left\{ arepsilon, au \right\}$ which is a subgroup of S_3 . Since $\sigma\tau=\tau\sigma^{-1}=\tau\sigma^2$, the right cosets of H are

$$\begin{split} H\varepsilon &= \{\varepsilon,\tau\} = H\tau \\ H\sigma &= \{\sigma,\tau\sigma\} = H\tau\sigma \\ H\sigma^2 &= \{\sigma^2,\tau\sigma^2\} = H\tau\sigma^2 \end{split}$$

And, the left cosets of H are

$$\begin{split} \varepsilon H &= \{\varepsilon, \tau\} = \tau H \\ \sigma H &= \left\{\sigma, \tau \sigma^2\right\} = \tau \sigma^2 H \\ \sigma^2 H &= \left\{\sigma^2, \tau \sigma\right\} = \tau \sigma H \end{split}$$

Note that $H\sigma \neq \sigma H$ and $H\sigma^2 \neq \sigma^2 H$.

Proposition 3.3.

Let H be a subgroup of a group G and let $a, b \in G$.

- 1. Ha = Hb iff $ab^{-1} \in H$.
 - In particular, Ha = H iff $a \in H$.
- 2. If $a \in Hb$, then Ha = Hb.
- 3. Either Ha = Hb or $Ha \cap Hb = \emptyset$. Thus, the right cosets of H forms a partition of G.

Proof.

- 1. (\Longrightarrow) Suppose Ha=Hb. Then $a=1a\in Ha=Hb$. Thus a=hb for some $h\in H$ and we have $ab^{-1}=h\in H$.
 - (\Leftarrow) Suppose $ab^{-1} \in H$. Then, for all $h \in H$,

$$ha = (ha)(b^{-1}b) = h(ab^{-1})b \in Hb$$

so $Ha \subseteq Hb$.

Note that if $ab^{-1} \in H$, since H is a subgroup, then $(ab^{-1})^{-1} = ba^{-1} \in H$. Thus for all $h \in H$,

$$hb = h(ba^{-1}) \in Ha$$

so $Hb \subseteq Ha$. It follows that Ha = Hb.

- 2. If $a \in Hb$, then $ab^{-1} \in H$. Thus by (1), we have Ha = Hb.
- 3. If $Ha \cap Hb = \emptyset$, then we are done. Otherwise, there exists $x \in Ha \cap Hb$. Since $x \in Ha$, by (2), we have Ha = Hx. And since $x \in Hb$, similarly we have Hb = Hx. Thus Ha = Hx = Hb.

The analogues of Proposition 3.3 also holds for left cosets.

Problem 3.3.

Let G be a group and Ha be a subset of G. For $a, b \in G$, do we still have Ha = Hb or $Ha \cap Hb = \emptyset$ if H s not a subgroup of G?

From Proposition 3.3 we see that G can be written as a disjoint union of right cosets of H.

Definition (Index).

The **index** [G:H] is the number of disjoint right (or left) cosets of H in G.

Theorem 3.4 (Lagrange's theorem).

Let H be a subgroup of a finite group G. We have $|H| \mid |G|$ and $[G:H] = \frac{|G|}{|H|}$.

Proof. Let k = [G:H] and let $Ha_1, Ha_2, ..., Ha_k$ be the distinct right cosets of H in G. By Proposition 3.3,

$$G = Ha_1 \cup \cdots \cup Ha_k$$

is a disjoint union. Since $|Ha_i|=|H|$ for each i, we have

$$|G| = |Ha_1| + \dots + |Ha_k| = k|H|$$

It follows that $|H| \mid |G|$ and $[G:H] = k = \frac{|G|}{|H|}.$

Corollary 3.5.

Let G be a finite group.

- 1. If $g \in G$, then $o(g) \mid |G|$.
- 2. If |G| = n, then for all $g \in G$, we have $g^n = 1$.

Proof.

- 1. Take $H = \langle g \rangle$. Note that |H| = o(G).
- 2. Let o(g) = m. Then by (1) we have $m \mid n$. Thus

$$g^n = (g^m)^{\frac{n}{m}} = 1^{\frac{n}{m}} = 1$$

Example.

For $n \in \mathbb{N}$, $n \ge 2$, let \mathbb{Z}_n^* be the set of (multiplicative) invertible elements in \mathbb{Z}_n . Let the **Euler's** φ -function, $\varphi(n)$, denote the order of \mathbb{Z}_n^* :

$$\varphi(n) = |\{[k] \in \mathbb{Z}_n : k \in \{0, ..., n-1\}, \gcd(k, n) = 1\}|$$

As a direct consequence of the previous corollary, we see that if $a \in \mathbb{Z}$ with $\gcd(a,n) = 1$, then $a^{\varphi(n)} \equiv 1 \pmod n$. This is Euler's theorem. If n = p is a prime number, then Euler's theorem implies $a^{p-1} \equiv 1 \pmod p$, which is Fermat's little theorem.

Recall that $|G|=2\Longrightarrow G\cong C_2$ and $|G|=3\Longrightarrow G\cong C_3$.

Corollary 3.6.

If G is a group with |G| = p, a prime number, then $G \cong C_p$, the cyclic group of order p.

Proof. Let $g \in G$ with $g \neq 1$. Then we have $\mathscr{O}(g) \mid p$. Since $g \neq 1$ and p is prime, we have $\mathscr{O}(g) = p$. Thus, $|\langle g \rangle| = \mathscr{O}(g) = p$. It follows that $G = \langle g \rangle \cong C_p$.

Corollary 3.7.

Let H, K be finite subgroups of G. If gcd(|H|, |K|) = 1, then $H \cap K = \{1\}$.

§3.3. Normal subgroups

Definition (Normal).

Let H be a subgroup of G. If gH = Hg for all $g \in G$, then we say H is **normal**, denoted by $H \triangleleft G$.

Example.

We have $\{1\} \triangleleft G$ and $G \triangleleft G$.

Example.

The center of G, $Z(G) = \{z \in g : zg = gz \ \forall g \in G\}$ is an abelian subgroup of G. By its definition, $Z(G) \triangleleft G$. Thus every subgroup of Z(G) is normal in G.

Example.

If G is an abelian group, then every subgroup of G is normal in G. The converse is false.

Proposition 3.8 (Normality test).

Let H be a subgroup of a G. The following are equivalent:

- 1. $H \triangleleft G$
- 2. $gHg^{-1} \subseteq H \ \forall g \in G$ (conjugate of H)
- 3. $gHg^{-1} = H \ \forall g \in G$

Remark.

To prove normality by the normality test, showing (2) is enough.

Proof. (1) \Longrightarrow (2). Let $ghg^{-1} \in gHg^{-1}$ for some $h \in H$. Then, by (1), $gh \in gH = Hg$. Suppose $gh = h_1g$ for some $h_1 \in H$. Then

$$ghg^{-1} = h_1gg^{-1} = h_1 \in H$$

(2) \Longrightarrow (3). If $g \in G$, then by (2), $gHg^{-1} \subseteq H$. Taking g^{-1} in place of g in (2), we get $g^{-1}Hg \subseteq H$. Then $H \subseteq gHg^{-1}$ so $H = gHg^{-1}$.

(3)
$$\Longrightarrow$$
 (1) If $gHg^{-1} = H$, then $gH = Hg$.

Example.

Let $G = GL_n(\mathbb{R})$ and $H = SL_n(\mathbb{R})$. For $A \in G, B \in H$, we have

$$\det(ABA^{-1}) = \det(A)\det(B)\det(A^{-1}) = \det(B) = 1$$

Thus $ABA^{-1} \in H$ and it follows that $AHA^{-1} \subseteq H \ \forall A \in G$. By normality test, $H \triangleleft G$, which means $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$.

Proposition 3.9.

If H is a subgroup of G with [G:H]=2, then $H \triangleleft G$.

Proof. Let $g \in G$. If $g \in H$, then Hg = H = gH.

If $g \notin H$, since [G:H]=2, then $G=H \cup Hg$, a disjoint union. Then $Hg=G \setminus H$. Similarly, $gH=G \setminus H$. Thus $gH=Hg \ \forall g \in G$, so $H \lhd G$.

Example.

Let A_n be the alternating group contained in S_n . Since $[S_n:A_n]=2$, we have $A_n\lhd S_n$.

Example.

Let D_{2n} be the dihedral group of order 2n. Since $[D_{2n}:\langle a\rangle]=2$, we have $\langle a\rangle\lhd D_{2n}$.

Let H, K be subgroups of G. The intersection $H \cap K$ is the "largest" subgroup of G contained in both H and K. What is the "smallest" subgroup containing H and K?

Note that $H \cup K$ is the "smallest subset" containing H and K, but $H \cup K$ is a subgroup of G iff $H \subseteq K$ or $K \subseteq H$. A more useful subset to consider is the **product** HK of H and K defined as follows:

$$HK = \{hk : h \in H, k \in K\}$$

Note this is still not always a subgroup of G.

Lemma 3.10.

Let H and K be subgroups of G. The following are equivalent:

- 1. HK is a subgroup of G
- 2. HK = KH
- 3. KH is a subgroup of G

Proof. We will prove $(1) \iff (2)$, then $(2) \iff (3)$ follows.

(2) \Longrightarrow (1). We have $1=1(1)\in HK$. Also, if $hk\in HK$, then $(hk)^{-1}=k^{-1}h^{-1}\in KH=HK$. And, for $hk,h_1,k_1\in HK$, we have $kh_1\in KH=HK$, say $kh_1=h_2k_2$. It follows that

$$(hk)(h_1k_1) = h(kh_1)k_1 = h(h_2k_2)k_1 = (hh_2)(k_2k_1) \in HK$$

By subgroup test, HK is a subgroup of G.

(1) \Longrightarrow (2). Let $kh \in KH$ with $k \in K$ and $h \in H$. Since H and K are subgroups of G, we have $h^{-1} \in H$ and $k^{-1} \in K$. As HK is a subgroup of G, we have

$$(kh) = (h^{-1}k^{-1})^{-1} \in HK$$

Thus $KH \subseteq HK$. Similarly, we can show $HK \subseteq KH$, so HK = KH.

Proposition 3.11.

Let H and K be subgroups of G.

- 1. If $H \triangleleft G$ or $K \triangleleft G$, then HK = KH is a subgroup of G.
- 2. If $H \triangleleft G$ and $K \triangleleft G$, then $HK \triangleleft G$.

Proof.

1. Suppose $H \triangleleft G$. Then,

$$HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$$

Then, HK = KH is a subgroup of G.

2. If $g \in G$ and $hk \in HK$, since $H \triangleleft G$ and $K \triangleleft G$, we have

$$g^{-1}(hk)g = \big(g^{-1}hg\big)\big(g^{-1}kg\big) \in HK$$

Thus $g^{-1}HKg \subseteq HK$ and $HK \triangleleft G$.

Definition (Normalizer).

Let H be a subgroup of G. The **normalizer** of H, $N_G(H)$, is defined to be

$$N_G(H) = \{g \in G : gH = Hg\}$$

which has that $H \lhd G$ iff $N_G(H) = G$.

In the previous proof, we do not need the full assumption that $H \triangleleft G$. We only need kH = Hk for all $k \in K$, that is $k \in N_G(H)$.

Corollary 3.12.

Let H and K be subgroups of a group G. If $K \subseteq N_G(H)$ (or $H \subseteq N_G(K)$), then HK = KH is a subgroup of G.

Theorem 3.13.

If $H \triangleleft G$ and $K \triangleleft G$ satisfy $H \cap K = \{1\}$, then $HK \cong H \times K$.

Proof. We first will show that, (1) if $H \triangleleft G$ and $K \triangleleft G$ satisfy $H \cap K = \{1\}$, then hk = kh for all $h \in H$ and $k \in K$.

Consider $x=hk(kh)^{-1}=hkh^{-1}k^{-1}$. Note that $kh^{-1}k^{-1}\in kHk^{-1}=H$ (since $H\lhd G$). Thus $x=h(kh^{-1}k)\in H$. Similarly, since $hkh^{-1}\in hKh^{-1}=K$, we have $x=(hkh^{-1})k^{-1}\in K$.

Since $x \in H \cap K = \{1\}$, we have $hkh^{-1}k^{-1} = 1$, so hk = kh. As $H \triangleleft G$, by property of normality, we have that HK is a subgroup of G.

Now, define $\sigma: H \times K \to HK$ by $\sigma((h, k)) = hk$. We will show that (2) σ is an IM.

Let $(h, k), (h_1, k_1) \in H \times K$. By (1), we have $h_1 k = k h_1$. Thus

$$\begin{split} \sigma((h,k)(h_1,k_1)) &= \sigma((hh_1,kk_1)) = (hh_1)(kk_1) = h(h_1k)k_1 \\ &= h(kh_1)k_1 = (hk)(h_1k_1) = \sigma((h,k))\sigma((h_1,k_1)) \end{split}$$

so σ is a HM.

Note that by the definition of HK, σ is onto. Also, if $\sigma((h,k))=\sigma((h_1,k_1))$, we have $hk=h_1k_1$. Thus $h_1^{-1}h=k_1k^{-1}\in H\cap K=\{1\}$. So, $h_1^{-1}h=1=k_1k^{-1}$ ($h_1=h$ and $k_1=k$). Thus σ is one-to-one.

Thus, σ is an IM and we have $HK \cong H \times K$.

Corollary 3.14.

Let G be a finite group, and H, K be normal subgroups of G such that $H \cap K = \{1\}$ and |H||K| = |G|. Then $G \cong H \times K$.

Example.

Let $m, n \in \mathbb{N}$ and $\gcd(m, n) = 1$. Let $G = \langle a \rangle$ be the cyclic group with O(G) = mn.. Let $H = \langle a^n \rangle$ and $K = \langle a^m \rangle$.

Then, $|H| = \mathrm{O}(a^n) = m$ and $|K| = \mathrm{O}(a^m) = n$. It follows that |H||K| = mn = |G|. Since $\gcd(m,n)=1$, we have $H\cap K=\{1\}$. Also, since G is cyclic (abelian), we have $H\lhd G$ and $K\lhd G$

Then, we have $G \cong H \times K$. That is, $C_{mn} \cong C_m \times C_n$.

Hence to consider finite cyclic groups, it suffices to consider cyclic groups of prime power order.

§4. Isomorphism theorems

§4.1. Quotient groups

Let K be a subgroup of G. Consider the set of right cosets of K, $\{Ka:a\in G\}$. To make it a group, a natural way is to define

$$Ka \cdot Kb = Kab \quad \forall a, b \in G$$

Note that we could have $Ka = Ka_1$ and $Kb = Kb_1$ with $a \neq a_1$ and $b \neq b_1$. Thus in order for the previous equation to make sense, a necessary condition is

$$Ka=Ka_1, Kb=Kb_1 \Longrightarrow Kab=Ka_1b_1$$

In this case, we say that the multiplication KaKb = Kab is well-defined.

Lemma 4.1.

Let K be a subgroup of G. The following are equivalent:

- 1. $K \triangleleft G$.
- 2. For $a, b \in G$, the multiplication KaKb is well-defined.

Proof. (1) \Longrightarrow (2). Let $Ka=Ka_1$ and $Kb=Kb_1$. Thus $aa_1^{-1}\in K$ and $bb_1^{-1}\in K$.

To get $Kab=Ka_1b_1$, we need $ab(a_1b_1)^{-1}\in K$. Note that since $K\lhd G$, we have $aKa^{-1}=K$. Thus,

$$ab(a_1b_1)^{-1} = abb_1^{-1}a_1^{-1} = (abb_1^{-1}a^{-1})(aa_1^{-1}) \in K$$

so $Kab = Ka_1b_1$.

(2) \Longrightarrow (1). If $a \in G$, to show $K \triangleleft G$, we need $aka^{-1} \in K$, $\forall k \in K$. Since Ka = Ka and Kk = K1, by (2), we have Kak = Ka1, i.e. Kak = Ka. It follows that $aka^{-1} \in K$. Thus $K \triangleleft G$.

Proposition 4.2.

Let $K \triangleleft G$ and write $G/K = \{Ka : a \in G\}$ for the set of all cosets of K. Then,

- 1. G/K is a group under the operation KaKb = Kab.
- 2. The mapping $\varphi: G \to G/K$ given by $\varphi(a) = Ka$ is an onto HM.
- 3. If [G:K] is finite, then $|G/K| = [G:K] = \frac{|G|}{|K|}$.

Definition (Quotient group).

Let $K \triangleleft G$. The group G/K of all cosets K in G is called the **quotient group** of G by K. And, the mapping $\varphi: G \rightarrow G/K$ given by $\varphi(a) = Ka$ is called the **coset map**.

Remark.

G/K represents the set of **all distinct cosets** (left or right) of K generated by G. It is not a subgroup of G.

Problem 4.1.

List all normal subgroups of D_{10} and all quotient groups of D_{10}/K .

§4.2. Isomorphism theorems

Definition (Kernel).

Let $\alpha: G \to H$ be a group HM. The **kernel** of α is defined by

$$\ker(\alpha) = \{g \in G : \alpha(g) = I_H\} \subseteq G$$

which is the set of all elements in G for which α maps to the identity in H.

Definition (Image).

The **image** of α is defined by

$$\operatorname{im}(\alpha) = \alpha(G) = \{\alpha(g) : g \in G\} \subseteq H$$

Proposition 4.3.

Let $\alpha:G\to H$ be a group HM. Then,

- 1. $im(\alpha)$ is a subgroup of H.
- 2. $\ker(\alpha) \triangleleft G$.

Proof.

1. Note that $I_H=\alpha(I_G)\in\alpha(G)$. Also, for $h_1=\alpha(g_1), h_2=\alpha(g_2)\in\alpha(G)$, we have

$$h_1h_2 = \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \in \alpha(G)$$

Also, $\alpha(g)^{-1} = \alpha(g^d) \in \alpha(G)$. By the subgroup test, $\alpha(G)$ is a subgroup of H.

2. For $\ker(\alpha)$, note that $\alpha(I_G) = I_H$. And, for $k_1, k_2 \in \ker(\alpha)$, we have

$$\alpha(k_1 k_2) = \alpha(k_1)\alpha(k_2) = 1 \cdot 1 = 1$$

and

$$\alpha(k_1^{-1}) = \alpha(k_1)^{-1} = 1^{-1} = 1$$

By the subgroup test, $\ker(\alpha)$ is a subgroup of G. Note that if $g \in G$ and $k \in \ker(\alpha)$, then

$$\alpha(gkg^{-1}) = \alpha(g)\alpha(k)\alpha(g^{-1}) = \alpha(g)\cdot 1\cdot \alpha(g)^{-1} = 1$$

Thus $g \ker(\alpha) g^{-1} \subseteq \ker(a)$. By the normality test, $\ker(\alpha) \triangleleft G$.

Example.

Consider the determinant map $\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$ defined by $A \mapsto \det(A)$.

Then, $\ker(\det) = SL_n(\mathbb{R})$ and $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$.

Example.

Define the **sign** of a permutation $\sigma \in S_n$ by

$$sgn(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}$$

Note that $\operatorname{sgn}: S_n \to (\pm 1, \cdot)$ defined by $\sigma \mapsto \operatorname{sgn}(\sigma)$ is a HM. Also, $\operatorname{ker}(\operatorname{sgn}) = A_n$. Thus we have another example that $A_n \lhd S_n$.

Theorem 4.4 (1st IM).

Let $\alpha: G \to H$ be a group HM. We have $G/\ker(\alpha) \cong \operatorname{im}(\alpha)$.

Proof. Let $K = \ker(\alpha)$. Since $K \triangleleft G$, G/K is a group. Define the group map $\bar{\alpha} : G/K \to \operatorname{im}(\alpha)$ by

$$\bar{\alpha}(Kg) = \alpha(g) \quad \forall Kg \in G/K.$$

Note that

$$Kg = Kg_1 \Longleftrightarrow gg_1^{-1} \in K = \ker(\alpha) \Longleftrightarrow \alpha(gg_1^{-1}) = 1 \Longleftrightarrow \alpha(g) = \alpha(g_1)$$

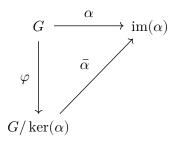
Thus $\bar{\alpha}$ is well-defined and one-to-one. Also, $\bar{\alpha}$ is clearly onto.

For $g, h \in G$, we have

$$\bar{\alpha}(KgKh) = \bar{\alpha}(K(gh)) = \alpha(gh) = \alpha(g)\alpha(h) = \bar{\alpha}(Kg)\bar{\alpha}(Kh)$$

Thus $\bar{\alpha}$ is a group IM and we have $G/\ker(\alpha) \cong \operatorname{im}(\alpha)$.

Let $\alpha: G \to H$ be a group HM and $K = \ker(\alpha)$. Let $\varphi: G \to G/K$ be the coset map and let $\bar{\alpha}$ be defined as in the previous proof. We have the following relationship:



Note that for $g \in G$, we have

$$\bar{\alpha}\varphi(g) = \bar{\alpha}(Kg) = \alpha(g)$$

Thus $\alpha = \bar{\alpha}\varphi$.

On the other hand, if we have $\alpha = \bar{\alpha}\varphi$, then the action of \bar{a} is determined by α and φ as

$$\bar{\alpha}(Kg) = \bar{\alpha}(\varphi(g)) = \alpha(g)$$

Thus $\bar{\alpha}$ is the *only* HM $G/K \to H$ satisfying $\bar{\alpha}\varphi = \alpha$.

Proposition 4.5.

Let $\alpha:G\to H$ be a group HM and $K=\ker(\alpha)$. Then α factors uniquely as $\alpha=\bar{\alpha}\varphi$ where $\varphi:G\to G/K$ is the coset map and $\bar{\alpha}:G/K\to H$ is defined by $\bar{\alpha}(Kg)=\alpha(g)$.

Note that φ is onto and $\bar{\alpha}$ is one to one.

Example.

We have seen that $(\mathbb{Z}, +) = \langle \pm 1 \rangle$ and for $n \in \mathbb{N}$, $(\mathbb{Z}_n, +) = \langle [1] \rangle$ are cyclic groups. We will show that these two together represent all cyclic groups.

Let $G=\langle g \rangle$ be a cyclic group. Consider $\alpha:(\mathbb{Z},+)\to G$ defined by $\alpha(k)=g^k$ for all $k\in\mathbb{Z}$, which is a group HM. By the definition of $\langle g \rangle$, α is onto. Note that $\operatorname{im}(\alpha)=G$ and $\ker(\alpha)=\{k\in\mathbb{Z}:g^k=1\}$. We have two cases.

Suppose $\varrho(g)=\infty$. Then $\ker(\alpha)=\{0\}$. By 1st IM, we have $G\cong \mathbb{Z}/\langle 0\rangle\cong \mathbb{Z}$.

Suppose $\varrho(g)=n$. Then, by Proposition 2.6, $\ker(\alpha)=n\mathbb{Z}$. By 1st IM, we have $G\cong\mathbb{Z}/(n\mathbb{Z})\cong\mathbb{Z}_n$.

Thus, we can conclude that if G is cyclic, then $G \cong \mathbb{Z}$ or $G \cong \mathbb{Z}_n$.

Theorem 4.6 (2nd IM).

Let H, K be subgroups of G with $K \triangleleft G$. Then,

- HK is a subgroup of G.
- $K \triangleleft HK$.
- $H \cap K \triangleleft H$.
- $HK/K \cong H/H \cap K$.

Proof. Since $K \triangleleft G$, by Proposition 3.11, HK is a subgroup, HK = KH and $K \triangleleft HK$.

Consider $\alpha: H \to HK/K$ defined by $\alpha(h) = Kh$ (note that $h \in H \subseteq HK$). Then α is a HM. Also, if $x \in HK = KH$, say x = kh, then

$$Kx = K(kh) = kh = \alpha(h)$$

Thus α is onto.

Finally, by Proposition 3.3,

$$\ker(\alpha) = \{ h \in H : Kh = K \} = \{ h \in H : h \in K \} = H \cap K$$

By 1st IM, $H/H \cap K \cong HK/K$.

Theorem 4.7 (3rd IM).

Let $K \subseteq H \subseteq G$ be groups with $K \triangleleft G$ and $H \triangleleft G$. Then,

- $H/K \triangleleft G/K$.
- $(G/K)/(H/K) \cong G/H$.

Proof. Define $\alpha: G/K \to G/H$ by $\alpha(Kg) = Hg$ for all $g \in G$. Note that if $Kg = Kg_1$, then $gg_1^{-1} \in K \subseteq H$. Thus $Hg = Hg_1$, and α is well-defined and onto.

Note that

$$\ker(\alpha) = \{Kg : Hg = H\} = \{Kg : g \in H\} = H/K$$

By 1st IM,

$$(G/K)/(H/K) \cong G/H$$

§5. Group actions

§5.1. Cayley's theorem

Theorem 5.1 (Cayley's theorem).

If G is a finite group of order n, then G is isomorphic to a subgroup of S_n .

Proof. Let $G=\{g_1,...,g_n\}$. Let S_G be the permutation group of G. By identifying g_i with i, we see that $S_G\cong S_n$. Thus it suffices to find a one-to-one HM $\sigma:G\to S_G$.

For $a \in G$, define $\mu_a : G \to G$ by $\mu_a(g) = ag$ for all $g \in G$. Note that $ag = ag \Longrightarrow g = g$, and $a(a^{-1}g) = g$. Hence μ_a is a bijection and $\mu_a \in S_G$.

Now define $\sigma:G\to S_G$ by $\sigma(a)=\mu_a$. For $a,b\in G$, we have $\mu_a\mu_b=\mu_{ab}$ and σ is HM. Also, if $\mu_a=\mu_b$, then $a=\mu_a(1)=\mu_b(1)=b$. Thus σ is a one-to-one HM.

By 1st IM, we have $G \cong \operatorname{im}(\sigma)$, which is a subgroup of $S_G \cong S_n$.

Example.

Let H be a subgroup of G with $[G:H]=m<\infty$. Let $X=\{g_1H,g_2H,...,g_mH\}$ be the set of all distinct left cosets of H in G.

For $a \in G$, define $\lambda_a : X \to X$ by

$$\lambda_a(gH) = agH \quad \forall gH \in X$$

Note that $agH=ag_1H$ implies $gH=g_1H$ and $a(a_{-1}gH)=gH$. Hence λ_a is a bijection and thus $\lambda_a\in S_x$.

Consider $\tau:G\to S_x$ defined by $\tau(a)=\lambda_a$. For $a,b\in G$, we have $\lambda_{ab}=\lambda_a\lambda_b$, thus τ is a HM. Note that if $a\in\ker(\tau)$, then λ_a is the identity permutation. In particular, $aH=\lambda_a(H)=H$ and $a\in H$. Thus, $\ker(\tau)\subseteq H$.

Theorem 5.2 (Extended Cayley's theorem).

Let H be a subgroup of G with $[G:H]=m<\infty$. If G has a normal subgroup contained in H except for $\{1\}$, then G is isomorphic to a subgroup of S_m .

Proof. Let X be the set of all distinct left cosets of H in G. Then we have |X| = m and $S_x \cong S_m$.

We have seen from the above example that there exists a group HM $\tau:G\to S_x$ with $K=\ker(\tau)\subseteq H$. By 1st IM, we have $G/K\cong\operatorname{im}(\tau)$. Since $K\subseteq H$ and $K\lhd G$, by the assumption, we have $K=\{1\}$. It follows that $G\cong\operatorname{im}(\tau)$, a subgroup of $S_x\cong S_m$.

Corollary 5.3.

Let G be a finite group and p be the smallest prime dividing |G|. If H is a subgroup of G with |G| : H| = p, then $H \triangleleft G$.

Proof. Let X be the set of all distinct left cosets of H in G. Then we have |X| = p and $S_x \cong S_p$.

Let $\tau:G\to S_x\cong S_p$ be the group HM defined in the previous example with $K=\ker(\tau)\subseteq H$. By 1st IM, we have $G/K\cong \operatorname{im}(\tau)\subseteq S_p$. Thus G/K is isomorphic to a subgroup of S_p .

By Lagrange's theorem, $|G/K| \mid |S_p| = p!$. Also, since $K \subseteq H$, if [H:k] = k, then $|G/K| = \frac{|G|}{|K|} = \frac{|G|}{|H|} \frac{|H|}{|K|} = k$. Thus $pk \mid p!$ and hence $k \mid (p-1)!$. Since $k \mid |H|$ which divides |G| and p is the smallest prime dividing |G|, we see that every prime divisor of k must be $\geq p$ unless k=1. Combining this with $k \mid (p-1)!$, this forces k=1, which implies K=H. Thus $H \triangleleft G$.

§5.2. Group actions

Definition (Group action).

Let X be a non-empty set. A (left) **group action** of G on x is a mapping $G \times X \to X$, denoted $(a, x) \mapsto a \cdot x$ such that

1.
$$1 \cdot x = x \ \forall x \in X$$

2.
$$a \cdot (b \cdot x) = (ab) \cdot x \ \forall a, b \in G, x \in X$$

In this we say G acts on X.

Remark.

Let G be a group acting on a set $X \neq \emptyset$. For $a, b \in G$ and $x, y \in X$, by (1) and (2), we have

$$a \cdot x = b \cdot y \iff (b^{-1}a) \cdot x = y$$

In particular, we have $a \cdot x = a \cdot y \iff x = y$.

Example.

If G is a group, let G act on itself (X = G), by

$$a\cdot x=axa^{-1}\quad \forall a,x\in G$$

Note that

$$1 \cdot x = 1x1^{-1} = x$$

and

$$a(b \cdot x) = a(bxb^{-1})a^{-1} = (ab)x(ab)^{-1} = (ab) \cdot x$$

In this case, we say G acts on itself by *conjugation*.

Definition (Stabilizer).

Let G act on $X \neq \emptyset$ and $x \in X$.

$$G \cdot x = \{g \cdot x : g \in G\} \subseteq X$$

is the **orbit** of x. And,

$$S(x) = \{g \in G : g \cdot x = x\} \subseteq G$$

is the **stabilizer** of x.

Remark.

Orbit is like the image of x under the action of G, and stabilizer is like the kernel of x under the action of G.

Proposition 5.4.

- 1. S(x) is a subgroup of G.
- 2. There exists a bijection $G \cdot x \to \{gS(x) : g \in G\}$, and thus $|G \cdot x| = [G : S(x)]$.

Proof.

1. Since $1 \cdot x = x$, we have $1 \in S(x)$. Also, if $g, h \in S(x)$, then

$$(qh) \cdot x = q \cdot (h \cdot x) = q \cdot x = x$$

and

$$g^{-1} \cdot x = g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = 1 \cdot x = x$$

thus $gh, g^{-1} \in S(x)$. By the subgroup test, S(x) is a subgroup of G.

2.

Theorem 5.5 (Orbit decomposition theorem).

Let G be a group acting on set $X \neq \emptyset$. Let

$$X_f = \{ x \in X : a \cdot x = x \ \forall a \in G \}$$

Note that $x \in X_f \iff |G \cdot x| = 1$.

Let $G \cdot x_1, ..., G \cdot x_n$ denote the distinct non-singleton orbits (i.e. $|G \cdot x_i| > 1$). Then,

$$|X| = |X_f| + \sum_{i=1}^n [G:S(x_i)]$$

Proof. Note that for $a, b \in G$ and $x, y \in X$,

$$a \cdot x = b \cdot y \Longleftrightarrow (b^{-1}a) \cdot x = y \Longleftrightarrow y \in G \cdot x \Longleftrightarrow G \cdot y = G \cdot x$$

Thus two orbits are either disjoint or the same, so the orbits form a disjoint union of X.

Since $x \in X_f$ iff $|G \cdot x| = 1$, the set $X \setminus X_f$ contain all non-singleton orbits, which are disjoint. Thus, by Proposition 5.4, we have

$$\begin{split} |X| &= \left| X_f \right| + \sum_{i=1}^n |G \cdot x_i| \\ &= \left| X_f \right| + \sum_{i=1}^n [G : S(x_i)] \end{split}$$

Let G be a group acting on itself by conjugation $(g \cdot x = gxg^{-1})$. Then,

$$G_f = \{x \in G : gxg^{-1} = x \ \forall g \in G\}$$
$$= \{x \in G : gx = xg \ \forall g \in G\}$$
$$= Z(G)$$

Also, for $x \in G$,

$$S(x) = \{g \in G : gxg^{-1} = x\}$$

= $\{g \in G : gx = xg\}$

This set is called the **centralizer** of x and is denoted by $S(x) = C_G(x)$.

Finally, in this case, the orbit

$$G\cdot x=\left\{gxg^{-1}:g\in G\right\}$$

is called the **conjugacy class** of x.

By Theorem 5.5, we get

Corollary 5.6 (Class equation).

Let G be a finite group and let $\{gx_1g^{-1}:g\in G\},...,\{gx_ng^{-1}:g\in G\}$ denote the distinct non-singleton conjugacy classes. Then,

$$|G| = |Z(G)| + \sum_{i=1}^n [G:C_G(x_i)]$$

Lemma 5.7.

Let p be prime and $m \in \mathbb{N}$. Let G be a group of order p^m acting on a finite set $X \neq \emptyset$. Let X_f be denoted as in Theorem 5.5. Then we have

$$|X| \equiv |X_f| \pmod{p}$$

Proof. By Theorem 5.5, we have

$$|X| = |X_f| + \sum_{i=1}^n [G:S(x_i)]$$

with $[G:S(x_i)] > 1$ for $1 \le i \le n$.

Since $[G:S(x_i)]$ divides $|G|=p^m$ and $[G:S(x_i)]>1$, we have $p\mid [G:S(x_i)]$ for all i. It follows that $|X|\equiv \left|X_f\right|\pmod p$

Theorem 5.8 (Cauchy's Theorem).

Let p be prime and G be a finite group. If $p \mid |G|$, then G contains an element of order p.

Proof. Define

$$X=\left\{\left(a_{1},...,a_{p}\right):a_{i}\in G,a_{1}\cdots a_{p}=1\right\}$$

Since a_p is uniquely determined by $a_1,...,a_{p-1}\in G$, if |G|=n, we have $|X|=n^{p-1}$. Since $p\mid n$, we have $|X|\equiv 0\pmod p$.

Let the group $\mathbb{Z}_p = (\mathbb{Z}_p, +)$ act on X by *cycling*, that is for $k \in \mathbb{Z}_p$,

$$k \cdot \left(a_1, ..., a_p\right) = \left(a_{k+1}, ..., a_p, a_1, ..., a_k\right)$$

One can verify that this action is well-defined.

Let X_f be defined as in Theorem 5.5. Then $\left(a_1,...,a_p\right)\in X_f$ iff $a_1=a_2=\cdots=a_p$. Clearly, $(1,...,1)\in X_f$ and hence $\left|X_f\right|\geq 1$. Since $\left|\mathbb{Z}_p\right|=p$, by Lemma 5.7, we have

$$|X_f| \equiv |X| \equiv 0 \pmod{p}$$

And since $|X| \equiv 0 \pmod{p}$ and $|X_f| \ge 1$, it follows that $|X_f| \ge p$. Therefore, there exists $a \ne 1$ such that $(a, ..., a) \in X_f$, which implies that $a^p = 1$. Since p is a prime and $a \ne 1$, the order of a is p. \square

§6. Sylow theorems

§6.1. p-groups

Definition (*p*-group).

Let p be prime. A group in which every element has order of a non-negative power of p is called a p-group.

As a direct corollary of Cauchy's theorem (Theorem 5.8), we have

Corollary 6.1.

A finite group G is a p-group iff |G| is a power of p.

Lemma 6.2.

The center Z(G) of a non-trivial finite p-group G contains more than one element.

Proof. The class equation of G (Corollary 5.6) states that

$$|G| = |Z(G)| + \sum_{i=1}^{m} [G : C_G(x_i)]$$

where $[G: C_G(x_i)] > 1$.

Since G is a p-group, by Corollary 6.1, $p \mid |G|$. By Lemma 5.7, $|Z(G)| \equiv |G| \equiv 0 \pmod{p}$. It follows that $p \mid |Z(G)|$.

Since $1 \in Z(G)$ and $Z(G) \ge 1$, Z(G) has at least p elements.

Recall that if H is a subgroup of G, then

$$N_G(H)=\left\{g\in G:gHg^{-1}=H\right\}$$

is the normalizer of H in G. In particular, $H \triangleleft N_G(H)$.

Lemma 6.3.

If H is a p-subgroup of a finite group G, then

$$[N_G(H):H] \equiv [G:H] \pmod p$$

Proof. Let X be the set of all left cosets of H in G. Hence |X| = [G:H]. Let H act on X by left multiplication. Then for $x \in G$, we have

$$\begin{split} xHx^{-1} &\iff hxH = xH \quad \forall h \in H \\ &\iff x^{-1}hxH = H \quad \forall h \in H \\ &\iff x^{-1}Hx = H \\ &\iff x \in N_G(H) \end{split}$$

Thus $|X_f|$ is the number of cosets xH with $x \in N_G(H)$, and hence $|X_f| = [N_G(H):H]$. By Lemma 5.7,

$$[N_G(H):H] = |X_f| \equiv |X| = [G:H] \pmod{p}$$

Corollary 6.4.

Let H be a p-subgroup of a finite group G. If $p \mid [G:H]$, then $p \mid [N_G(H):H]$ and $N_G(H) \neq H$.

Proof. Since $p \mid [G:H]$, by Lemma 6.3, we have

$$[N_G(H):H] \equiv [G:H] \equiv 0 \pmod{p}$$

Since $p \mid [N_G(H):H]$ and $[N_G(H):H] \geq 1$, we have $[N_G(H):H] \geq p$. Thus $N_G(H) \neq H$. \square

§6.2. Sylow's three theorems

Recall Cauchy's theorem (Theorem 5.8) that states if $p \mid |G|$, then |G| contains an element a of order p. Thus $|\langle a \rangle| = p$. The following first Sylow theorem can be viewed as a generalization of Cauchy's theorem.

Theorem 6.5 (1st Sylow theorem).

Let G be a group of order $p^n m$ where p is a prime, $n \ge 1$ and gcd(p, m) = 1. Then G contains a subgroup of order p^i for all $1 \le i \le n$.

Moreover, every subgroup of G of order p^i (i < n) is normal in some subgroup of order p^{i+1} .

Proof. We prove this theorem by induction on i.

For i=1, since $p\mid |G|$, by Cauchy's theorem, G contains an element a such that $|\langle a\rangle|=p$.

Suppose the statement holds for some $i \leq i < n$, say H is a subgroup of G of order p^i . Then $p \mid [G:H]$. By Corollary 6.4, $p \mid [N_G(H):H]$ and $[N_G(H):H] \geq p$. Then, by Cauchy's theorem, $N_G(H)/H$ contains a subgroup of order p. Such a group is of the form H_1/H , where H_1 is a subgroup of $N_G(H)$ containing H. Since $H \triangleleft N_G(H)$, we have $H \triangleleft H_1$. Finally,

$$|H_1| = |H||H_1/H| = p^i \cdot p = p^{i+1}$$

Definition (Sylow *p*-subgroup).

A subgroup P of G is a **Sylow** p-subgroup of G if P is a maximal p-subgroup of G.

That is, if $P \subseteq H \subseteq G$ with H a p-group, then P = H.

As a direct consequence of Theorem 6.5, we have

Corollary 6.6.

Let G be a group of order $p^n m$ where p is a prime, $n \ge 1$ and gcd(p, m) = 1. Let H be a p-subgroup of G. Then,

- 1. H is a Sylow p-subgroup iff $|H| = p^n$.
- 2. Every conjugate of a Sylow *p*-subgroup is also a Sylow *p*-subgroup.
- 3. If there is only one Sylow *p*-subgroup *P*, then $P \triangleleft G$.

Theorem 6.7 (2nd Sylow theorem).

If H is a p-subgroup of a finite group G and P is any Sylow p-subgroup of G, then there exists $g \in G$ such that $H \subseteq gPg^{-1}$.

In particular, any two Sylow p-subgroups of G are conjugate.

Proof. Let X be the set of all left cosets of P in G, and let H act on X by left multiplication. By Lemma 5.7, we have $|X_f| \equiv |X| = [G:P] \pmod{p}$.

Since $p \nmid [G:P]$, we have $|X_f| \neq 0$. Thus there exists $gP \in X_f$ for some $g \in G$. Note that

$$\begin{split} gP \in X_f &\iff hgP = gP \quad \forall h \in H \\ &\iff g^{-1}hgP = P \quad \forall h \in H \\ &\iff g^{-1}Hg \subseteq P \\ &\iff H \subseteq qPq^{-1} \end{split}$$

If H is a Sylow p-subgroup, then $|H| = |P| = |gHg^{-1}|$. Thus $H = gPg^{-1}$.

Theorem 6.8 (3rd Sylow theorem).

If G is a finite group and p is prime with $p \mid |G|$, then the number of Sylow p-subgroups of G divides |G| and is of the form kp + 1 for some $K \in \mathbb{N} \cup \{0\}$.

Proof. By Theorem 6.7, the number of Sylow p-subgroups of G is the number of conjugates of any of them, say P.

This number is $[G:N_G(P)]$ where $N_G(P)=\{g\in G:gP:Pg\}$, which is a divisor of |G|. Let X be the set of all Sylow p-subgroups of G and let P act on X by conjugation. Then $Q\in X_f$ iff $gQg^{-1}=G\ \forall g\in P$. The latter condition holds iff $P\subseteq N_G(Q)$. Both P and Q are Sylow p-subgroups of G and hence $N_G(Q)$.

Thus by Corollary 6.6, they are conjugate in $N_G(Q)$. Since $Q \triangleleft N_G(Q)$, this can only occur if Q = P and $X_f = \{P\}$. By Lemma 5.7, $|X| \equiv |X_f| \equiv 1 \pmod{p}$. Thus |X| = kp + 1 for some $k \in \mathbb{N} \cup \{0\}$. \square

Remark.

Suppose that G is a group with $|G| = p^n m$ and gcd(p, m) = 1. Let n_p be the number of Sylow p-subgroups of G.

By the 3rd Sylow theorem, we have $n_p \mid p^n m$ and $n_p \equiv 1 \pmod{p}$. And since $p \nmid n_p$, we have $n_p \mid m$.

Example.

We will show that every group of order 15 is cyclic.

Let G be a group of order $15 = 3 \cdot 5$. Let n_p be the number of Sylow p-subgroups of G.

By Theorem 6.8 (3rd Sylow theorem), we have $n_3 \mid 5$ and $n_3 \equiv 1 \pmod 3$. Thus $n_3 = 1$. Similarly, we have $n_5 \mid 3$ and $n_5 \equiv 1 \pmod 5$. Thus $n_5 = 1$.

It follows that there is only one Sylow 3-subgroup P_3 and one Sylow 5-subgroup P_5 . Thus $P_3 \lhd G$ and $P_5 \lhd G$.

Consider $|P_3 \cap P_5|$, which divides 3 and 5. Thus $|P_3 \cap P_5| = 1$ and $|P_3 \cap P_5| = 1$. Also, $|P_3 P_5| = 1$. In this

$$G \cong P_3 \times P_5 \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \cong \mathbb{Z}_{15}$$

Problem 6.1.

Construct a cyclic group of order > 100.

Example.

There are two isomorphism classes of groups of order 21.

Let G be a group of order $21 = 3 \cdot 7$. By 3rd Sylow theorem, $n_3 \mid 7$ and $n_3 \equiv 1 \pmod{3}$. Thus $n_3 = 1$ or 7. Also, we have $n_7 \mid 3$ and $n_7 \equiv 1 \pmod{7}$. Thus, $n_7 = 1$.

It follows that G has a unique Sylow 7-subgroup P_7 . Note that $P_7 \in G$ and $P_7 = \langle x : x^7 = 1 \rangle$. Let H be a Sylow 3-subgroup. Since |H| = 3, H is cyclic and $H = \langle y : y^3 = 1 \rangle$. Since $P_7 \lhd G$, we have $gxg^{-1} = x^i$ for some $0 \le i \le 6$. Hence,

$$x = y^3 x y^{-3} = y^2 (y x y^{-1}) y^{-2} = y^2 (x^i) y^{-2} = x^{i^3}$$

Since $x^{i^3} = x$ and $x^7 = 1$, we have $i^3 = -i \equiv 0 \pmod{7}$.

Since $0 \le i \le 6$, we have i=1,2,4. If i=1, then $yxy^{-1}=x \Longrightarrow yx=xy$. Thus G is an abelian group. Since $P_3 \lhd G$ $P_7 \lhd G$, $P_3 \cap P_7 = \{1\}$ and $|G|=|P_3P_7|$. We have

$$G \cong P_3 \times P_7 \cong \mathbb{Z}_3 \times \mathbb{Z}_7 \cong \mathbb{Z}_{21}$$

If i = 2, then $yxy^{-1} = x^2$. Thus

$$G = \left\{ x^i y^i : 0 \le i \le 6, 0 \le j \le 2, yxy^{-1} = x^2 \right\}$$

If i = 4, then $yxy^{-1} = x^4$. Note that

$$y^2xy^{-2} = x^{16} = x^2$$

Note that g^2 is also a generator of H. Thus by replacing g by g^2 , we get back to case i=2. It follows that there are two isomorphism classes of groups of order 21.

§7. Finite abelian groups

§7.1. Primary decomposition

Let G be a group and $m \in \mathbb{Z}$, we define

$$G^{(m)} = \{ g \in G : g^m = 1 \}$$

Proposition 7.1.

Let G be an abelian group. Then $G^{(m)}$ is a subgroup of G.

Proof. We have $1 = 1^m \in G^{(m)}$. Also, if $g, h \in G^{(m)}$, since G is abelian, we have

$$(ah)^m = a^m h^m = 1$$

Finally, if $g \in G^{(m)}$ we have

$$g^{(-1)^m} = (g^m)^{-1} = 1$$

and thus $g^{-1} \in G^{((m)}$. By the subgroup test, $G^{(m)}$ is a subgroup of G.

Proposition 7.2.

Let G be a finite abelian group and |G| = mk with gcd(m, k) = 1. Then,

- 1. $G \cong G^{(m)} \times G^{(k)}$
- 2. $|G^{(m)}| = m$ and $|G^{(k)}| = k$

Proof.

1. Since G is abelian, we have $G^{(m)} \triangleleft G$ and $G^{(k)} \triangleleft G$. We will show that $G^{(m)} \cap G^{(k)} = \{1\}$ and $G = G^{(m)}G^{(k)}.$

Let $q \in G^{(m)} \cap G^{(k)}$. Then $q^m = 1 = q^k$. We have

$$g = g^{mx+ky} = (g^m)^x (g^k)^y = 1$$

Let $g \in G$. Then,

$$1 = g^{mk} = (g^m)^k = (g^k)^m$$

It follows that $g^k \in G^{(m)}$ and $g^m \in G^{(k)}$. Thus

$$g = g^{mx+ky} = (g^m)^x (g^k)^y \in G^{(m)}G^{(k)}$$

Combining the two results, by Theorem 3.13, we have

$$G\cong G^{(m)}\times G^{(k)}$$

2. Write $|G^{(m)}| = m'$ and $|G^{(k)}| = k'$. By (1), we have

$$mk = |G| = m'k'$$

We will show that gcd(m, k') = 1.

Suppose $gcd(m, k') \neq 1$. Then there exists prime p such that $p \mid m$ and $p \mid k'$. By Cauchy's theorem (Theorem 5.8), there exists $g \in G^{(k)}$ such that o(g) = p. Since $p \mid m$, we have

$$g^m = (g^p)^{\frac{m}{p}} = 1$$

that is, $q \in G^{(m)}$.

By (1), we have $g \in G^{(m)} \cap G^{(k)} = \{1\}$, which gives a contradiction since $\mathfrak{O}(g) = p$. Thus we have gcd(m, k') = 1.

Note that since $m \mid m'k'$ and gcd(m, k') = 1, we have $m \mid m'$. Similarly, we have $k \mid k'$. Since mk = m'k', it follows that m = m' and k = k'.

As a direct consequence of Proposition 7.2, we have

Theorem 7.3 (Primary decomposition theorem).

Let G be a finite abelian group and $|G|=p_1^{n_1}\cdots p_k^{n_k}$ where $p_1,...,p_k$ are distinct primes and

- $\begin{array}{l} n_1, \dots, n_k \in \mathbb{N}. \text{ Then,} \\ 1. \ \ G \cong G^{\left(p_1^{n_1}\right)} \times \dots \times G^{\left(p_k^{n_k}\right)} \\ 2. \ \ \left|G^{\left(p_i^{n_i}\right)}\right| = p_i^{n_i} \text{ for all } 1 \leq i \leq k \end{array}$

Example.

Let $G = \mathbb{Z}_{13}^*$. Then $|G| = 12 = 2^2 \cdot 3$. Note that

$$G^{(3)} = \{ a \in \mathbb{Z}_{13}^* : a^3 = 1 \} = \{1, 3, 9\}$$

$$G^{(4)} = \{a \in \mathbb{Z}_{13}^* : a^4 = 1\} = \{1, 5, 8, 12\}$$

By Theorem 7.3, we have

$$\mathbb{Z}_{13}^* \cong \{1, 5, 8, 12\} \times \{1, 3, 9\}$$

§7.2. Structure theorem of finite abelian groups

We have seen that if |G|=p where p is a prime, then $G\cong C_p$. Also, if $|G|=p^2$, then $G\cong C_{p^2}\cong C_p\times C_p$. What about abelian groups of order p^n for general $n\in\mathbb{N}$?

Proposition 7.4.

Let G be a finite abelian p-group that contains only one subgroup of order p. Then G is cyclic.

In other words, if a finite abelian p-group G is not cyclic, then G has at least two subgroups of order p.

Proof. Let $y \in G$ be of maximal order $(o(y) \ge o(x) \ \forall x \in G)$. We will show that $G = \langle y \rangle$.

Suppose that $G \neq \langle y \rangle$. Then the quotient group $G/\langle y \rangle$ is a non-trivial p-group, which contains an element $z \neq 1$ of order p by Cauchy's theorem (Theorem 5.8).

Consider the coset map $\pi: G \to G/\langle y \rangle$. Let $x \in G$ such that $\pi(x) = z$. Since $\pi(x^p) = \pi(x)^p = z^p = 1$, we see that $x^p \in \langle y \rangle$. Thus $x^p = y^m$ for some $m \in \mathbb{Z}$. We have two cases.

If $p \nmid m$, since $o(y) = p^r$ for some $r \in \mathbb{N}$, by Proposition 2.11, $o(y^m) = o(y)$. Since y is of maximal order, we have

$$o(x^p) < o(x) < o(y) = o(y^m) = o(x^p)$$

which leads to a contradiction.

If $p \mid m$, then m = pk for some $k \in \mathbb{Z}$. Thus we have $x^p = y^m = y^{pk}$. Since G is abelian, we have $\left(xy^{-k}\right)^p = 1$. Thus xy^{-k} belongs to the one and only subgroup of order p, say H. On the other hand, the cyclic group $\langle y \rangle$ contains a subgroup of order p, which must be H. Thus $xy^{-k} \in \langle y \rangle \Longrightarrow x \in \langle y \rangle$. It follows that $z = \pi(x) = 1$, a contradiction.

Combing the two cases, we conclude that $G = \langle y \rangle$.

Proposition 7.5.

Let $G \neq \{1\}$ be a finite abelian p-group. Let C be a cyclic subgroup of max order. Then G contains a subgroup B such that G = CB and $C \cap B = \{1\}$.

Theorem 7.6.

Let $G \neq \{1\}$ be a finite abelian p-group. Then G is isomorphic to a direct product of cyclic groups.

Proof. By Proposition 7.5, there exists a cyclic group C_1 and a subgroup B_1 of G such that $G\cong C_1\times B_1$. Since $|B_1|\mid |G|$ by Lagrange's theorem, the group B_1 is also a p-group. Thus if $B_1\neq \{1\}$, by Proposition 7.5, there exists a cyclic group C_2 and a subgroup B_2 such that $B_1\cong C_2\times B_2$. Continue in this way to get cyclic groups $C_1,...,C_k$ until we get $B_k=\{1\}$ for some $k\in\mathbb{N}$. Then, $G\cong C_1\times \cdots\times C_k$.

Remark.

One can show that the decomposition of a finite abelian p-group into a direct product of cyclic group is unique up to its order.

Combining this remark, Theorem 7.6 and Theorem 7.3, we have

Theorem 7.7 (Structure theorem of finite abelian groups). If G is a finite abelian group, then

$$G \cong \mathbb{Z}_{p_1}^{n_1} \times \cdots \times \mathbb{Z}_{p_k}^{n_k}$$

where $\mathbb{Z}_{p_i}^{n_i} = \left(\mathbb{Z}_{p_i}^{n_i}, +\right) \cong C_{p_i}^{n_1}$ are cyclic groups of order $p_i^{n_i}, 1 \leq i \leq k$.

Note that p_i are not necessarily distinct. The numbers $p_i^{n_i}$ are uniquely determined up to their order.

Note that if p_1 and p_2 are distinct primes, then $C_{p_1}^{n_1} \times C_{p_2}^{n_2} \cong C_{p_1^{n_1}p_2^{n_2}}$. Thus by combining suitable coprime factors together,

Theorem 7.8 (Invariant factor decomposition of finite abelian group). Let G be a finite abelian group. Then,

$$G \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_n}$$

where $n_i \in \mathbb{N}$, $n_i > 1$ and $n_1 \mid n_2 \mid \cdots \mid n_r$.

Example.

Let G be an abelian group of order 48. Since $48=2^4\cdot 3$, by Theorem 7.3, $G\cong H\times \mathbb{Z}_3$ where H is an abelian group of order 2^4 . The options for H are \mathbb{Z}_{2^4} , $\mathbb{Z}_{2^3}\times \mathbb{Z}_2$, $\mathbb{Z}_{2^2}\times \mathbb{Z}_{2^2}\times \mathbb{Z}_2\times \mathbb{Z}_$

Thus, we have:

- 1. $G \cong \mathbb{Z}_{2^4} \times \mathbb{Z}_3 \cong \mathbb{Z}_{48}$
- 2. $G \cong \mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_{24}$
- 3. $G \cong \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \cong \mathbb{Z}_4 \times \mathbb{Z}_{12}$
- 4. $G \cong \mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{12}$
- 5. $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_6$

There are 5 non-isomorphic groups in total.

§8. Rings

§8.1. Rings

Definition (Ring).

A set R is a (unitary) **ring** if it has two operations, addition + and multiplication \cdot , such that (R, +) is an abelian group and (R, \cdot) satisfies the closure, associativity and identity properties of a group, and distributive law.

More precisely, for all $a, b, c \in R$,

- 1. $a+b \in R$
- 2. a + (b + c) = (a + b) + c
- 3. There exists $0 \in R$ (zero of R) such that a + 0 = a = 0 + a
- 4. There exists $-a \in R$ (negative of R) such that a + (-a) = 0 = (-a) + a
- 5. a + b = b + a
- 6. $ab = a \cdot b \in R$
- 7. $a(bc) = (ab)c \in R$
- 8. There exists $1 \in R$ (unity of R) such that $a \cdot 1 = 1 \cdot a$
- 9. a(b+c) = ab + ac and (b+c)a = ba + ca

Definition (Commutative ring).

Ring R is a **commutative ring** if it also satisfies

10.
$$ab = ba$$

Example.

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings with the zero being 0 and the unity being 1.

Example.

For $n \in \mathbb{N}$, \mathbb{Z}_n is a commutative ring with the zero being [0] and the unity being [1].

Example.

For $n\in\mathbb{N}$ with $n\geq 2$, the set $M_n(\mathbb{R})$ is a ring using matrix addition and matrix multiplication with the zero being the zero matrix and the unity being the identity matrix. Note that $\mathbb{M}_n(\mathbb{R})$ is not commutative.

Remark.

Note that since (R, \cdot) is not a group, there is no left/right cancellation.

For example, $0 \cdot x = 0 \cdot y$ does not imply x = y.

Given a ring R, to distinguish the difference between multiples in addition and multiplication, for $n \in \mathbb{N}$ and $a \in R$ we write

$$na = a + \dots + a$$

and

$$a^n = a \cdot \cdots \cdot a$$

Note that for a group G and $g \in G$, we have $g^0 = 1$, $g^1 = g$ and $\left(g^{-1}\right)^{-1}$. Thus for addition, we have

$$0 \cdot a = 0 \quad 1a = a \quad -(-a) = a$$

For $n \in \mathbb{N}$, we define

$$(-n)a = (-a) + \dots + (-a)$$

Also, we define

$$a^0 = 1$$

If the multiplicative inverse of a (a^{-1}) exists, we define

$$a^{-n} = (a^{-1})^n$$

Also, by Proposition 1.2, for $n, m \in \mathbb{Z}$, we have

$$(na) + (ma) = (n+m)a$$
$$n(ma) = (nm)a$$
$$n(a+b) = na + nb$$

We can also prove that

Proposition 8.1.

Let R be a ring and $r, s \in R$.

- 1. If 0 is the zero of R, then 0r = 0 = r0 (all zeroes are the same zero of R)
- 2. (-r)s = r(-s) = -(rs)
- 3. (-r)(-s) = rs
- 4. For any $m, n \in \mathbb{Z}$, (mr)(ns) = (mn)(rs)

Definition (Trivial ring).

A **trivial ring** is a ring with only one element. In this case, we have 1 = 0.

Remark.

If R is a ring with $R \neq \{0\}$, since r = r1 for all $r \in \mathbb{R}$, we have $1 \neq 0$. Otherwise r = r1 = r0 = 0 by Proposition 8.1 for all $r \in R$.

Example.

Let $R_1,...,R_n$ be rings. Define component-wise operations on the product $R_1\times\cdots\times R_n$ as

$$(r_1,...,r_n) + (s_1,...,s_n) = (r_1 + s_1,...,r_n + s_n)$$

$$(r_1,...,r_n) \cdot (s_1,...s_n) = (r_1 \cdot s_1,...,r_n \cdot s_n)$$

One can check that $R_1 \times \cdots \times R_n$ is a ring with the zero being $\left(0_{R_1},...,0_{R_n}\right)$ and the unity being $\left(1_{R_1},...,1_{R_n}\right)$.

This set $R_1 \times \cdots \times R_n$ is called the **direct product** of $R_1, ..., R_n$.

Definition (Characteristic).

Let R be a ring. We define the **characteristic** of R, ch(R), in terms of the order of 1_R in the additive group (R, +):

$$\operatorname{ch}(R) = \begin{cases} n & \operatorname{\mathscr{O}}(1_R) = n \in \mathbb{N} \text{ in } (R,+) \\ 0 & \operatorname{\mathscr{O}}(1_R) = \infty \text{ in } (R,+) \end{cases}$$

For $k \in \mathbb{Z}$, we write kR = 0 to mean that $kr = 0 \ \forall r \in R$. By Proposition 8.1, we have

$$kr = k(1_R r) = (k1_R)r$$

Thus kR = 0 iff $k1_R = 0$. By Proposition 2.6 and Proposition 2.7,

Proposition 8.2.

Let R be a ring and $k \in \mathbb{Z}$.

- 1. If $ch(R) = n \in \mathbb{N}$, then kR = 0 iff $n \mid k$.
- 2. If ch(R) = 0, then kR = 0 iff k = 0.

Example.

Each of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ has a characteristic 0.

For $n \in \mathbb{N}$ with $n \geq 2$, the ring \mathbb{Z}_n has characteristic n.

§8.2. Subrings

Definition (Subring).

A subset $S \subseteq R$ of ring R is a **subring** if S is a ring itself with $1_S = 1_R$ with the same addition and multiplication.

Note that properties (2), (3), (7), (9), are automatically satisfied. Thus to show that S is a subring, it suffices to show

Remark (Subring test).

- 1. $1_R \in S$.
- 2. If $s, t \in S$, then $s + t \in S$ and $st \in S$.

Note that if (2) holds, then $0 = s - s \in S$ and $-t = 0 - t \in S$.

Example.

We have a chain of commutative rings $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.

Example.

If R is a ring, the center Z(R) of R is defined to be

$$Z(R) = \{ z \in R : zr = rz \ \forall r \in R \}$$

Note that $1_R \in Z(R)$. Also, if $s, t \in Z(R)$, then for $r \in R$,

$$(s-t)r = sr - tr = rs - rt = r(s-t)$$

$$(st)r = s(tr) = s(rt) = (sr)t = (rs)t = r(st)$$

By the subring test, Z(R) is a subring of R.

Example.

Let $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}, i^2 = -1\} \subseteq \mathbb{C}$. Then one can show that $\mathbb{Z}[i]$ is a subring of \mathbb{C} , called the **ring of Gaussian integers**.

§8.3. Ideals

Let R be a ring and A be an additive subgroup of (R,+). Since (R,+) is abelian, we have $A \lhd R$. Thus we have the additive quotient group

$$R/A = \{r + A : r \in R\}$$
 with $r + A = \{r + a : a \in A\}$

Using the known properties about cosets and quotient groups, we have

Proposition 8.3.

Let R be a ring and A an additive subgroup of R. For $r, s \in R$, we have

- 1. $r + A = s + A \text{ iff } (r s) \in A$.
- 2. (r+A) + (s+A) = (r+s) + A.
- 3. 0 + A = A is the additive identity of R/A.
- 4. -(r+A) = (-r) + A is the additive inverse of r+A.
- 5. $k(r+A) = kr + A \ \forall k \in \mathbb{Z}$.

To make R/A a ring, a natural way to define multiplication in R/A is

$$(r+A)(s+A) = rs + A \quad \forall r, s \in R$$

Note that we could have $r+A=r_1+A$ and $s+A=s_1+A$ with $r\neq r_1$ and $s\neq s_1$. In order for multiplication to make sense, a necessary condition is

$$r + A = r_1 + A$$
 and $s + A = s_1 + A \Longrightarrow rs + A = r_1s_1 + A$

In this case, we say the multiplication (r+A)(s+A) is **well-defined**.

Proposition 8.4.

Let A be an additive subgroup of ring R. For $a \in A$, define

$$Ra = \{ra : r \in R\}, \quad aR = \{ar : r \in R\}$$

The following are equivalent:

- 1. $Ra \subseteq A$ and $aR \subseteq A$ for all $a \in A$.
- 2. For $r, s \in R$, the multiplication (r + A)(s + A) = rs + A is well-defined in R/A.

Proof. (1) \Longrightarrow (2). Suppose $r+A=r_1+A$ and $s+A=s_1+A$. We need to show that $rs+A=r_1s_1+A$.

Since $(r - r_1) \in A$ and $(s - s_1) \in A$, by (1), we have

$$\begin{split} rs - r_1 s_1 &= rs - r_1 s + r_1 s - r_1 s_1 \\ &= (r - r_1) s + r_1 (s - s_1) \in (r - r_1) R + R(s - s_1) \subseteq A \end{split}$$

By Proposition 8.3, $rs + A = r_1s_1 + A$, so the multiplication is well-defined.

 $(2) \Longrightarrow (1)$. Let $r \in R$ and $a \in A$. By Proposition 8.1, we have

$$ra + A = (r + A)(a + A) = (r + A)(0 + A) = r0 + A = 0 + A = A$$

Thus $ra \in A$ and we have $Ra \subseteq A$. Similarly, we can show $aR \subseteq A$.

Definition (Ideal).

An additive subgroup A of ring R is an **ideal** of R if $Ra \subseteq A$ and $aR \subseteq A$ for all $a \in A$.

Remark (Ideal test).

- 1. $0 \in A$.
- 2. For $a, b \in A$ and $r \in R$, we have $a b \in A$ and $ra, ar \in A$.

Example.

if R is a ring, then $\{0\}$ and R are ideals of R.

Example.

Let R be a commutative ring and $a_1, ..., a_n \in R$. Consider the set I generated by $a_1, ..., a_n$:

$$I = \langle a_1, ..., a_n \rangle = \{ r_1 a_1 + \dots + r_n a_n : r_1, ..., r_n \in R \}$$

Then one can show that I is an ideal of R.

Proposition 8.5.

Let A be an ideal of a ring R. If $1_R \in A$, then A = R.

Proof. Let $r \in R$. Since A is an ideal and $1_R \in A$, we have $r = r1_R \in A$. It follows that $R \subseteq A \subseteq R$, and hence A = R.

From the above discussion, we have

Proposition 8.6.

Let A be an ideal of ring R. Then the additive quotient group R/A is a ring with multiplication (r+A)(s+A)=rs+A. The unity of R/A is 1+A.

Definition (Quotient ring).

Let A be an ideal of a ring R. The ring R/A is called the **quotient ring** of R by A.

Definition (Principle).

Let R be a commutative ring and A an ideal of R. If $A = aR = \{ar : r \in R\} = Ra$ for some $a \in R$, we say A is a principle ideal generated by a and is denoted by $A = \langle a \rangle$.

Example.

If $n \in \mathbb{Z}$, then $\langle n \rangle = n\mathbb{Z}$ is an ideal of \mathbb{Z} .

Proposition 8.7.

All ideals of \mathbb{Z} are of form $\langle n \rangle$ for some $n \in \mathbb{Z}$. If $\langle n \rangle \neq \{0\}$ and $n \in \mathbb{N}$, then the generator is uniquely determined.

Proof. Let A be an ideal of \mathbb{Z} . If $A = \{0\}$, then $A = \langle 0 \rangle$. Otherwise, choose $a \in A$ with $a \neq 0$ and |a| minimum. Clearly $\langle a \rangle \subseteq A$.

To prove the other inclusion, let $b \in A$. By division algorithm, we have b = qa + r with $q, r \in \mathbb{Z}$ and 0 < r < |a|. If $r \neq 0$, since A is an ideal and $a, b \in A$, we have $r = b - qa \in A$ with |r| < |a|, a contradiction. Thus r = 0 and b = qa, which means $b \in \langle a \rangle$. It follows that $A = \langle a \rangle$.

§8.4. Isomorphism theorems

Definition (Ring homomorphism mapping).

Let R, S be rings. A mapping $\theta : R \to S$ is a **ring homomorphism** if for all $a, b \in R$,

- 1. $\theta(a+b) = \theta(a) + \theta(b)$
- 2. $\theta(ab) = \theta(a)\theta(b)$
- 3. $\theta(1_R) = 1_S$

Example.

The mapping $k \to [k]$ from $\mathbb{Z} \to \mathbb{Z}_n$ is an onto ring HM.

Example.

If R_1,R_2 are rings, the projection $\pi_1:R_1\times R_2\to R_1$ defined by $\pi_1(r_1,r_2)=r_1$ is an onto ring HM. Similarly, $\pi_2:R_1\times R_2\to R_2$ defined by $\pi_2(r_1,r_2)=r_2$ is also an onto ring HM.

Proposition 8.8.

Let $\theta:R\to S$ be a ring HM and let $r\in R$. Then,

- 1. $\theta(0_R) = 0_S$
- 2. $\theta(-r) = -\theta(r)$
- 3. $\theta(kr) = k\theta(r) \ \forall k \in \mathbb{Z}$
- 4. $\theta(r^n) = (\theta(r))^n \ \forall n \in \mathbb{Z}^+$
- 5. If $a \in R^*$ (set of elements in R with multiplicative inverse), then $\theta(u^k) = \theta(u)^k \ \forall k \in \mathbb{Z}$.

Definition (Ring isomorphism).

A mapping of ring $\theta: R \to S$ is a **ring isomorphism** if θ is a homomorphism and θ is bijective. In this case, we say R and S are isomorphic and write $R \cong S$.

Problem 8.1.

Let $\theta: R \to S$ be a bijection of rings with $\theta(rr') = \theta(r)\theta(r')$ for all $r, r' \in R$. Write $\theta(1_R) = 0$.

Prove that se = es for all $s \in S$, hence condition (3) for ring HM can be omitted.

Definition (Kernel and image).

Let $\theta: R \to S$ be a ring HM. The **kernel** of θ is defined by

$$\ker(\theta) = \{r \in R : \theta(r) = 0\} \subseteq R$$

and the **image** of θ is defined by

$$im(\theta) = \theta(R) = \{\theta(r) : r \in R\} \subseteq S$$

We ave seen earlier that $ker(\theta)$ and $im(\theta)$ are additive subgroups of R and S respectively.

Proposition 8.9.

Let $\theta: R \to S$ be a ring HM. Then,

- 1. $im(\theta)$ is a subring of S
- 2. $ker(\theta)$ is an ideal of R

Proof. (1). Since $\operatorname{im}(\theta) = \theta(R)$ is an additive subgroup of S, it suffices to show that $\theta(R)$ is closed under multiplication and $1_S \in \theta(R)$.

Note that $1_S = \theta(1_R) \in \theta(R)$. Also, if $s_1 = \theta(r_1)$ and $s_2 = \theta(r_2)$, then

$$s_1 s_2 = \theta(r_1)\theta(r_2) = \theta(r_1 r_2) \in \theta(R)$$

By the subring test, $im(\theta)$ is a subring of S.

(2). Since $\ker(\theta)$ is an additive subgroup of S, it suffices to show that $ra, ar \in \ker(\theta)$ for all $r \in R$ and $a \in \ker(\theta)$. If $r \in R$ and $a \in \ker(\theta)$, then

$$\theta(ra) = \theta(r)\theta(a) = \theta(r)0 = 0$$

Then $ra \in \ker(\theta)$. Similarly, we can show that $ar \in \ker(\theta)$. Thus $\ker(\theta)$ is an ideal of R.

Theorem 8.10 (1st IM).

Let $\theta: R \to S$ be a ring HM. We have $R/\ker(\theta) \cong \operatorname{im}(\theta)$.

Proof. Let $A = \ker(\theta)$. Since A is an ideal of R, R/A is a ring. Define the ring map $\overline{\theta}: R/A \to \operatorname{im}(\theta)$ by

$$\overline{\theta}(r+A) = \theta(r) \quad \forall r+A \in R/A$$

Note that

$$r+A=s+A \Longleftrightarrow r-s \in A \Longleftrightarrow \theta(r-s)=0 \Longleftrightarrow \theta(r)=\theta(s)$$

Thus $\bar{\theta}$ is well-defined and one-to-one. And, $\bar{\theta}$ is clearly onto. One can show that $\bar{\theta}$ is a HM.

It follows that $\overline{\theta}$ is a ring IM and $R/\ker(\theta) \cong \operatorname{im}(\theta)$.

Let A and B be two subsets of ring R. If A and B are both subrings, then $A \cap B$ is the "largest" subring of R contained in both A and B.

To consider the "smallest" subring of R containing both A and B, we define

$$A + B = \{a + b : a \in A, b \in B\}$$

Proposition 8.11.

If R is a ring, then we have

- 1. If A, B are both subrings of R with $1_A = 1_B = 1_R$, then $A \cap B$ is a subring of R
- 2. If A is a subring and B is an ideal of R, then A + B is a subring of R
- 3. If A, B are ideals of R, then A + B is an ideal of R

Theorem 8.12 (2nd IM).

Let A be a subring and B an ideal of ring R. Then,

$$(A+B)/B \cong A/(A \cap B)$$

Theorem 8.13 (3rd IM).

Let A, B be ideals of ring R with $A \subseteq B$. Then B/A is an ideal in R/A and

$$(R/A)/(B/A) \cong R/B$$

Example.

Combining the 3rd IM theorem and the fact that all ideals of \mathbb{Z} are principle, all ideals of \mathbb{Z}_n are principle.

Corollary 8.14 (Correspondence theorem / 4th IM).

Let R be a ring and A an ideal. There exists a bijection between the set of ideals B of R that contains A and the set of ideals of R/A.

Theorem 8.15 (Chinese remainder theorem).

Let A, B be ideals of R.

- 1. If A + B = R, then $R/(A \cap B) \cong R/A \times R/B$
- 2. If A + B = R and $A \cap B = \{0\}$, then $R \cong R/A \times R/B$

Proof. Note that (2) is a direct consequence of (1), so we will prove just (1).

Define $\theta: R \to R/A \times R/B$ by $\theta(r) = (r+A, r+B)$. Then θ is a ring HM with $\ker(\theta) = A \cap B$.

Since A+B=R, there exists $a\in A$ and $b\in B$ such that a+b=1. Let r=sb+ta. Then,

$$s - r = s - sb - ta = s(1 - b) - ta = sa - ta = (s - t)a \in A$$

Thus s+A=r+A. Similarly, we can have t+B=r+B. Thus $\theta(r)=(r+A,r+B)=(s+A,t+B)$. Therefore, $\operatorname{im}(\theta)=R/A\times R/B$. By 1st IM, we have

$$R/(A \cap B) \cong R/A \times R/B$$

Let $m, n \in \mathbb{N}$ with $\gcd(m, n) = 1$. By Euclid's lemma, we have 1 = mr + ns for some $r, s \in \mathbb{Z}$. Thus $1 \in m\mathbb{Z} + n\mathbb{Z}$ and hence $m\mathbb{Z} + n\mathbb{Z} = \mathbb{Z}$. And since $\gcd(m, n) = 1$, we have $m\mathbb{Z} \cap n\mathbb{Z} = mn\mathbb{Z}$. By CRT (Theorem 8.15),

Corollary 8.16.

Let $m, n \in \mathbb{N}$ with gcd(m, n) = 1. Then,

- 1. $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$
- 2. If $m, n \geq 2$, then $\varphi(mn) = \varphi(m)\varphi(n)$, where $\varphi(m) = |\mathbb{Z}_m|$ is the Euler φ -function

Proof. (2). From (1), we have

$$\left(\mathbb{Z}_{mn}\right)^{*} \cong \left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right)^{*} \cong \mathbb{Z}_{m}^{*} \times \mathbb{Z}_{n}^{*}$$

Since $|\mathbb{Z}_m^*| = \varphi(m)$, we have $\varphi(mn) = \varphi(m)\varphi(n)$.

Remark.

Let $m, n \in \mathbb{Z}$ with $\gcd(m, n) = 1$. For $a, b \in \mathbb{Z}$, by Corollary 8.16 and the proof of Theorem 8.15, for $[a] \in \mathbb{Z}_m$ and $[b] \in \mathbb{Z}_n$, there exists a unique $[c] \in \mathbb{Z}_{mn}$ such that [c] = [a] in \mathbb{Z}_m and [c] = [b] in \mathbb{Z}_n .

In other words, the simultaneous congruences $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ has a unique solution $x \equiv c \pmod{mn}$. This is the standard CRT.

Proposition 8.17.

If R is a ring with |R| = p where p is prime, then

$$R \cong \mathbb{Z}_p$$

Proof. Define $\theta: \mathbb{Z}_p \to R$ by $\theta(k) = k1_R$. Note that since R is an additive group and |R| = p, by Lagrange's theorem, $\phi(1_R) \in \{1,p\}$. Since $1_R \neq 0$, we have $\phi(1_R) = p$. Thus,

$$[k] = [m] \Longleftrightarrow p \mid (k-m) \Longleftrightarrow (k-m) 1_R = 0 \Longleftrightarrow k 1_R = m 1_R \text{ in } R$$

So θ is well-defined and one-to-one. Since $|\mathbb{Z}_p| = p = |R|$ and θ is one-to-one, θ is onto. Finally, we can prove that θ is a ring HM (exercise). It follows that θ is a ring IM and $R \cong \mathbb{Z}_p$.

Problem 8.2.

What are the possible rings R with $|R| = p^2$?

§9. Commutative rings

§9.1. Integral domains and fields

Definition (Unit).

Let R be a ring. We say $a \in R$ is a unit if u has a multiplicative inverse in R, denoted by u^{-1} .

We have that $uu^{-1} = u^{-1}u = 1$. Note that if u is a unit in R and $r, s \in R$, we have

$$ur = us \Longrightarrow r = s, \quad ru = su \Longrightarrow r = s$$

Let R^* denote the set of all units in R. One an show (R^*, \cdot) is a group, called the **group of units** of R.

Example.

Note that 2 is a unit in \mathbb{Q} , but not a unit in \mathbb{Z} We have $\mathbb{Q}^* = \mathbb{Q} \setminus \{n\}$ and $\mathbb{Q}^* = \{\pm 1\}$.

Problem 9.1.

Consider the ring of Gaussian integers

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}, i^2 = 1\} \subseteq \mathbb{C}$$

Show that $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}.$

Hint: define norm $N(a+bi)=a^2+b^2$ and prove that N(xy)=N(x)N(y) and N(x)=1 iff x is a unit.

Definition (Division ring).

A ring $R \neq \{0\}$ is a **division ring** if $R^* = R \setminus \{0\}$. That is, every non-zero element of R is a unit in R.

A commutative division ring is a **field**.

Example.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields, but \mathbb{Z} is not a field.

Example.

Recall that [a][x] = [1] has a solution in \mathbb{Z}_n iff $\gcd(a,n) = 1$. Thus if n = p is a prime, then $\gcd(a,p) = 1 \ \forall a \geq 1$, so $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ and hence \mathbb{Z}_p is a field.

However, if n is not a prime, say n=ab with 1 < a, b < n, then the non-zero congruence claims [a], [b] are not units in \mathbb{Z}_n as there is no solution for [a][x]=1 and hence $\mathbb{Z}_n^* \neq \mathbb{Z}_n \setminus \{0\}$. Thus \mathbb{Z}_n is a field iff n is a prime.

Remark.

If R is a division ring or a field, then its only ideals are $\{0\}$ and R since if $A \neq \{0\}$ is an ideal of R, then $0 \neq a \in A$ implies that $1 = aa^{-1} \in A$. By Proposition 8.5, A = R.

As a consequence, if we have a ring HM θ from a field F to a ring S, since $\ker(\theta)$ is an ideal, $\ker(\theta) = \{0\}$ or $\ker(\theta) = F$. Hence θ is either injective or a zero map.

Problem 9.2.

Prove that every finite division ring is a field (Wedderburn's little theorem).

Note that for $r, s \in \mathbb{R}$, we have if rs = 0 then r = 0 or s = 0. This property is useful for solving equations, say if $x^2 - x - 6 = (x - 3)(x + 2) = 0$, then x = 3 or x - 2. However, this property is not always true. For example, [2][3] = [6] = [0] in \mathbb{Z}_6 , but $[2] \neq [0]$ or $[3] \neq [0]$.

Problem 9.3.

Solve [(x-3)(x-2)] = [0] in \mathbb{Z}_6 .

Definition (Zero divisor).

Let $R \neq \{0\}$ be a ring. For $0 \neq a \in R$, a is a **zero divisor** if there exists $0 \neq b \in R$ such that ab = 0.

Example.

In $\mathbb{Z}_6,$ [2], [3], [4] are zero divisors since [2][3]=[0]=[4][3].

Example.

In $\mathcal{M}_2(\mathbb{R})$, we have

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Thus $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is a zero divisor.

Proposition 9.1.

Given a ring R and $a, b, c \in R$. The following are equivalent:

- 1. If ab = a in R, then a = 0 or b = 0.
- 2. If ab = ac in R and $a \neq 0$, then b = c
- 3. If ba = ca in R and $a \neq 0$, then b = c

Proof. (1) \Longrightarrow (2). Let ab=ac with $a\neq 0$. Then a(b-c)=0. By (1), since $a\neq 0$, we have b-c=0, so b=c.

(2) \Longrightarrow (1). Let ab=0. If a=0, then we are done. If $a\neq 0$, then ab=0=a0. By (2), since $a\neq 0$, we have b=0.

The proof of $(1) \iff (3)$ is similar.

Definition (Integral domain).

A commutative ring $R \neq \{0\}$ is an **integral domain** (ID) if it has no zero divisor. That is, if ab = 0 in R, then a = 0 or b = 0.

Example.

 \mathbb{Z} is an integral domain since for $a, b \in \mathbb{Z}$, ab = 0 implies a = 0 or b = 0.

Example.

Note that if p is a prime, then $p \mid ab$ then $p \mid a$ or $p \mid b$. That is, [a][b] = [0] in \mathbb{Z}_p implies [a] = [0] or [b] = [0]. Thus \mathbb{Z}_p is an ID.

However, if n = ab with 1 < a, b < n, then [a][b] = [0] in \mathbb{Z}_n with $[a] \neq [0]$ and $[b] \neq [0]$. Thus \mathbb{Z}_n is an ID iff n is a prime.

Proposition 9.2.

Every field is an ID.

Proof. Let ab=0 in field R. If a=0, then we are done. If $a\neq 0$, since R is a field, $a\in R^*$ thus $a^{-1}\in R$ exists. Then,

$$b = 1 \cdot b = a^{-1}ab = a^{-1}0 = 0$$

Thus R is an ID.

Remark.

Using the above proof, one can show that every subring of a field is an ID.

Remark.

The converse of Proposition 9.2 is not true. For example, $\mathbb Z$ is an ID but not a field.

Example.

The Gaussian ring $\mathbb{Z}[i]$ is an ID, but not a field.

Proposition 9.3.

Every finite ID is a field.

Proof. Let R be a finite ID and $a \in R$ with $a \neq 0$. Consider the map $\theta : R \to R$ defined by $\theta(r) = ar$. Since R is an ID, ar = as (and $a \neq 0$) implies = s. Hence θ is injective.

Since R is finite, θ is also surjective. Hence there exists $s \in R$ such that $1 = \theta(s) = as$.

Proposition 9.4.

The characteristic of an ID is either 0 or a prime p.

Proof. Let R be an ID. If $\operatorname{ch}(R)=0$, then we are done. If $\operatorname{ch}(R)\neq 0$, note that since $R\neq \{0\}$, we have $\operatorname{ch}(R)\neq 1$.

If $ch(R) = n \in \mathbb{N} \setminus \{1\}$, suppose n is not prime, say n = ab where 1 < ab < n. If 1 is the unity of R, then by Proposition 8.1, we have

$$(a\cdot 1)(b\cdot 1)=(ab)\cdot 1=n\cdot 1=0$$

Since R is an ID, we have $a \cdot 1 = 0$ or $b \cdot 1 = 0$, which contradicts $\operatorname{ch}(R) = o(1) = n$. Therefore, n is prime.

Remark.

Let R be an ID with ch(R) = p, a prime. For $a, b \in R$, we have

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^k b^{p-k}$$

Since p is prime, $p \mid \binom{p}{k}$ for all $1 \le k \le (p-1)$. And since $\operatorname{ch}(R) = p$, we have

$$(a+b)^p = a^p + b^p$$

§9.2. Prime ideals and maximal ideals

Let p be prime and $a,b\in\mathbb{Z}$. Recall from MATH 135 that $p\mid ab$ implies $p\mid a$ or $p\mid b$. In other words, if $ab\in p\mathbb{Z}$, then $a\in p\mathbb{Z}$ or $b\in p\mathbb{Z}$.

Definition (Prime ideal).

Let R be a commutative ring. An ideal $P \neq R$ of R is a prime ideal if whenever r, s satisfy $rs \in P$, then $r \in P$ or $s \in P$.

Example.

 $\{0\}$ is a prime ideal of \mathbb{Z} .

Example.

For $n \in \mathbb{N}$ with $n \geq 2$, $n\mathbb{Z}$ is a prime ideal of \mathbb{Z} iff n is prime.

Proposition 9.5.

If R is a commutative ring, then an ideal P of R is a prime ideal iff R/P is an ID.

Proof. Since R is commutative, so is R/P. Note that

$$R/P \neq \{0\} \Longleftrightarrow 0 + P \neq 1 + P \Longleftrightarrow 1 \notin P \Longleftrightarrow P \neq R$$

Also, for $r, s \in R$, we have P is a prime ideal iff $r, s \in P$ implies $r \in P$ or $s \in P$. Equivalently, (r + P)(s + P) = 0 + P implies r + P = 0 + P or s + P = 0 + P. So by definition, R/P is an ID.

Definition (Maximal ideal).

If R is commutative, an ideal M of R is a **maximal ideal** iff R/M is a field.

Proof. Let M be a maximal ideal of R and $r \notin M$. Then, $M \subseteq \langle r \rangle + M \subseteq R$. Since $M \neq \langle r \rangle + M$, we have $\langle r \rangle + M = R$.

Proposition 9.6.

If R is a commutative ring, then an ideal M of R is a maximal ideal iff R/M is a field.

Proof. Since R is commutative, so is R/M. Note that

$$R/M \neq \{0\} \iff 0 + M \neq 1 + M \iff 1 \notin M \iff M \neq R$$

Also for $r \in R$, note that $r \neq M \iff r + M \neq 0 + M$. Thus, we have

$$\begin{split} M \text{ is maximal} &\iff \langle r \rangle + M = R \ \forall r \notin M \\ &\iff 1 \in \langle r \rangle + M \ \forall r \notin M \\ &\iff \forall r \notin M, \exists s \in R, 1 + M = rs + M \\ &\iff \forall r + M \neq 0 + M, \exists s + M \in R/M, (r + M)(s + M) = 1 + M \\ &\iff R/M \text{ is a field} \end{split}$$

Combining Proposition 9.2, Proposition 9.5, and Proposition 9.6, we have

Corollary 9.7.

Every maximal ideal of a commutative ring is a prime ideal.

Remark.

The converse of Corollary 9.7 is not true. For example, $\{0\}$ is a prime ideal in \mathbb{Z} , but not a maximal ideal.

Example.

Consider the ideal $\langle x^2+1\rangle$ in the ring $\mathbb{Z}[x]$. Let $\theta:\mathbb{Z}[x]\to\mathbb{Z}[i]$ be defined by $\theta(f(x))=f(i)$. Then θ is surjective as $\theta(a+bx)=a+bi$. Also, one can check that $\ker(\theta)=\langle x^2+1\rangle$.

By 1st IM (Theorem 8.10), we have $\mathbb{Z}[x]/\langle x^2+1\rangle\cong\mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is an ID but not a field, the ideal $\langle x^2+1\rangle$ is prime but not maximal.

§9.3. Fields of fractions

Let R be an ID and let $D = R \setminus \{0\}$. Consider the set

$$X = R \times D = \{(r, s) : r \in R, s \in D\}$$

We say $(r, s) \equiv (r', s')$ iff rs' = r's. One can show \equiv is an equivalence relation. In particular,

- 1. $(r, s) \equiv (r, s)$
- 2. If $(r, s) \equiv (r', s')$, then $(r', s') \equiv (r, s)$
- 3. If $(r, s) \equiv (r', s')$ and $(r', s') \equiv (r'', s'')$, then $(r, s) \equiv (r'', s'')$

Motivated by the case $R = \mathbb{Z}$, we can now define the fraction $\frac{r}{s}$ to be the equivalence class [(r,s)] of the pairs (r,s) on X. Let F denote the set of all such fractions:

$$F = \left\{ \frac{r}{s} : r \in R, s \in D \right\} = \left\{ \frac{r}{s} : r, s \in R, s \neq 0 \right\}$$

The addition and multiplication in F are defined by

$$\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'}$$
$$\left(\frac{r}{s}\right)\left(\frac{r'}{s'}\right) = \frac{rr'}{ss'}$$

Since R is an ID, these operations are well-defined. Then one can show that with the above defined addition and multiplication, F becomes a field with the zero being $\frac{0}{1}$, the unity $\frac{1}{1}$, and the negative of $\frac{r}{s}$ being $-\frac{r}{s}$. Moreover, if $\frac{r}{s} \neq 0$, then $r \neq 0$ and its multiplicative inverse is $\frac{s}{r}$.

In addition, we have $R \cong R'$ where $R' = \{\frac{r}{1} : r \in R\} \subseteq F$. Thus we have

Theorem 9.8.

Let R be an ID. Then there exists a field F consisting of fractions $\frac{r}{s}$ with $r, s \in R$ and $s \neq 0$. By identifying $r = \frac{r}{1}$ for all $r \in R$, we can view R as a subring of F.

The field F is called the **field of fractions** of R.

§10. Polynomial rings

§10.1. Polynomials

Definition (Polynomial).

Let R be a ring and x be a variable. Let

$$R[x] = \left\{ f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m : m \in \mathbb{Z}^+, a_i \in R \ \forall 0 \leq i \leq m \right\}$$

Such f(x) is called a **polynomial** in x over R.

If $a_m \neq 0$, we say f(x) has degree m, denoted by $\deg(f) = m$, and we say a_m is the leading coefficient of f(x).

If the leading coefficient $a_m = 1$, we say f(x) is **monic**.

If $\deg(f)=0$, then $f(x)=a_0\in\mathbb{R}\setminus\{0\}$. In this case, we say f(x) is a **constant polynomial**.

Note that

$$f(x)=0 \Longleftrightarrow a_0=a_1=\cdots=a_m=0$$

0 is also a constant polynomial and we define $deg(0) = -\infty$.

Let $f(x) = \sum_{i=0}^m a_i x^i, g(x) = \sum_{i=0}^n b_i x^i \in R[x]$ with $m \le n$. Then we write $a_i = 0 \ \forall (m+i) \le i < n$.

We can define addition and multiplication on R[x] as follows:

$$f(x) + g(x) = \sum_{i=0}^{n} (a_i + b_i)x^i$$

$$f(x)g(x)=\sum_{k=0}^{m+n}c_kx^k,\quad c_k=\sum_{i=0}^ka_ib_{k-i}$$

Proposition 10.1.

Let R be a ring and x be a variable.

- 1. R[x] is a ring
- 2. R is a subring of R[x]
- 3. If Z = Z(R) denotes the center of R, then Z(R[x]) = Z[x]

Proof. (3). Let $f(x) = \sum_{i=0}^m a_m x^m \in Z[x]$ and $g(x) = \sum_{j=0}^n b_n x^n \in R[x]$. We have

$$f(x)g(x) = \sum_{k=0}^{m+n} c_k x^k$$

with $c_k = \sum_{i=0}^k a_i b_{k-i}$.

Since $a_i \in Z$, we have $a_i b_j = b_j a_i$ for all i, j. Thus we get f(x)g(x) = g(x)f(x) for all $g(x) \in R[x]$, and hence $Z[x] \subseteq Z(R[x])$.

To show the other inclusion, if $h(x)=\sum_{i=0}^s c_i x^i\in Z(R[x])$, then for all $r\in R$, we have h(x)r=rh(x). Thus $c_i r=rc_i$ for all $r\in R$ and $0\le i\le s$. Hence $c_i\in Z$ and $Z(R[x])\subseteq Z[x]$. It follows that Z(R[x])=Z[x].

Proposition 10.2.

Let R be an ID. Then,

- 1. R[x] is an ID
- 2. If $f \neq 0$ and $g \neq 0$ in R[x], then $\deg(fg) = \deg(f) + \deg(g)$ (product formula)
- 3. The units in R[x] are R^* , the units of R

Proof. Suppose $f(x)=\sum_{i=0}^m a_ix^i\neq 0$ and $g(x)=\sum_{i=0}^n b_ix^i\neq 0$ are polynomials in R[x] with $a_m\neq 0,\,b_n\neq 0$. Then,

$$f(x)g(x) = (a_m b_n)x^{m+n} + \dots + a_0 b_0$$

Since R is an ID, $a_m b_n \neq 0$ and thus $f(x)g(x) \neq 0$. It follows that R[x] is an ID, and $\deg(fg) = \deg(f) + \deg(g)$.

Let $u(x) \in R[x]$ be a unit with inverse $v(x) \in R[x]$. Since u(x)v(x) = 1, by (1) we have $u(x) \neq 0$, $v(x) \neq 0$ and by (2), we have $\deg(u) + \deg(v) = \deg(1) = 0$, meaning $\deg(u) = \deg(v) = 0$. Thus u(x), v(x) are units in R and hence $R[x]^* \subseteq R^*$. Since trivially $R^* \subseteq R[x]^*$, we have $R[x]^* = R^*$. \square

Remark.

Note that in $\mathbb{Z}_4[x]$, we have $2x \cdot 2x = 4x^2 = 0$. Thus $\deg(2x) + \deg(2x) \neq \deg(4x^2)$, hence the product formula in Proposition 10.2 only applies when R is an ID.

Remark.

To extend the product formula to 0, we define $deg(0) = \pm \infty$.

§10.2. Polynomials over a field

Definition (Divides).

Let F be a field and $f(x), g(x) \in F[x]$. We say f(x) divides g(x), denoted by $f(x) \mid g(x)$, if there exists $g(x) \in F[x]$ such that g(x) = f(x)g(x).

Proposition 10.3.

Let F be a field and $f(x), g(x), h(x) \in F[x]$.

- 1. If $f(x) \mid g(x)$ and $g(x) \mid h(x)$, then $f(x) \mid h(x)$ (transitivity of divisibility)
- 2. If $f(x) \mid g(x)$ and $f(x) \mid h(x)$, then $f(x) \mid (g(x)u(x) + h(x)v(x))$ for any $u(x), v(x) \in F[x]$ (division of integer combinations)

Recall for $a, b \in \mathbb{Z}$, if $a \mid b, b \mid a$ and a, b are positive, then a = b. The following is its analogue in F[x].

Proposition 10.4.

Let F be a field and $f(x), g(x) \in F[x]$ be monic. If $f(x) \mid g(x)$ and $g(x) \mid f(x)$, then f(x) = g(x).

Proof. Since $f(x) \mid g(x)$ and $g(x) \mid f(x)$, we have g(x) = r(x)f(x) and f(x) = s(x)g(x) for some $r(x), s(x) \in F[x]$. Then, f(x) = s(x)r(x)f(x). By Proposition 10.2, we have $\deg(f) = \deg(s) + \deg(f) + \deg(f)$, so $\deg(s) = \deg(r) = 0$. Thus, f(x) = sg(x) for some $s \in F$.

Since both f(x) and g(x) are monic, we have s=1 and hence f(x)=g(x).

Proposition 10.5 (Division algorithm).

Let F be a field and $f(x), g(x) \in F[x]$ with $f(x) \neq 0$. Then there exists unique $q(x), r(x) \in F[x]$ such that

$$g(x) = f(x)q(x) + r(x), \quad \deg(r) < \deg(f)$$

Note that this includes the case for r=0, which explains why we define $deg(0)=-\infty$.

Proof. Let $m = \deg(f)$ and $n = \deg(g)$. If n < m, then $g(x) = 0 \cdot f(x) + g(x)$.

Otherwise suppose $n \geq m$. Write $f(x) = \sum_{i=0}^m a_i x^i$ and $g(x) = \sum_{i=0}^n b_i x^i$ with $a_m \neq 0$.

Since F is a field, a_m^{-1} exists. Consider

$$\begin{split} g_1(x) &= g(x) - b_n a_m^{-1} x^{n-m} f(x) \\ &= 0 \cdot x_n + (b_{n-1} - b_n a_m^{-1} a_{m-1}) x^{n-1} + \cdots \end{split}$$

Since $\deg(g_1) < n$, by the other case, there exists $q_1(x), r_1(x) \in F[x]$ such that

$$g_1(x) = g_1(x)f(x) + r_1(x), \quad \deg(r_1) < \deg(f)$$

It follows that

$$\begin{split} g(x) &= g_1(x) + b_n a_m^{-1} x^{n-m} f(x) \\ &= \big(q_1(x) + b_n a_m^{-1} x^{n-m} \big) f(x) + r_1(x) \end{split}$$

By taking $q(x)=q_1(x)+b_na_m^{-1}x^{n-m}$ and $r(x)=r_1(x)$, we have that g(x)=q(x)f(x)+r(x) with $\deg(r)<\deg(f)$.

For uniqueness, suppose there exist $q'(x), r'(x) \in F[x]$ such that $g(x) = q_1 f(x) + r_1(x)$ with $\deg(r_1) < \deg(f)$. Then, $r(x) - r_1(x) = (q_1(x) - q(x))f(x)$. If $q_1(x) \neq q(x)$, we get

$$\deg(r-r_1) = \deg(q_1-q) + \deg(f) \ge \deg(f)$$

which contradicts $\deg(r-r_1) < \deg(f)$. Thus $q_1(x) = q(x)$ and hence $r_1(x) = r(x)$.

For $a, b \in \mathbb{Z} \setminus \{0\}$, Bezout's lemma states that $\gcd(a, b) = ax + by$ for some $x, y \in \mathbb{Z}$.

Proposition 10.6.

Let F be a field and $f(x), g(x) \in F[x] \setminus \{0\}$. Then there exists $d(x) \in F[x]$ which satisfies

- d(x) is monic
- $d(x) \mid f(x)$ and $d(x) \mid g(x)$
- If $e(x) \mid f(x)$ and $e(x) \mid g(x)$, then $e(x) \mid d(x)$
- d(x) = u(x)f(x) + v(x)g(x) such that $u(x), v(x) \in F[x]$

Note that if both d(x) and $d_1(x)$ satisfy the above conditions, since $d(x) \mid d_1(x)$ and $d_1(x) \mid d(x)$ and both of them are monic, by Proposition 10.4, we have $d(x) = d_1(x)$. We call such unique d(x) the GCD of f(x) and g(x), denoted by $d(x) = \gcd(f(x), g(x))$.

Proof. Let $X=\{u(x)f(x)+v(x)g(x):u(x),v(x)\in F[x]\}$. Since $f(x)\in X$, the set X contains non-zero polynomials and thus monic polynomials. Among all monic polynomials in X, let d(x)=u(x)f(x)+v(x)g(x) of minimum degree. Then, (1) and (4) are satisfied.

For (3), if $e(x) \mid f(x)$ and $e(x) \mid g(x)$, since d(x) = u(x)f(x) + v(x)g(x), by Proposition 10.3, we have $e(x) \mid d(x)$.

For (2), by division algorithm (Proposition 10.5), write f(x) = q(x)d(x) + r(x) with $\deg(r) < \deg(d)$. Then,

$$\begin{split} r(x) &= f(x) - q(x)d(x) \\ &= f(x) - q(x)(u(x)f(x) + v(x)g(x)) \\ &= (1 - q(x)u(x))f(x) - q(x)v(x)g(x) \end{split}$$

Note that if $r(x) \neq 0$, let $c \neq 0$ be the leading coefficient of r(x). Since F is a field, c^{-1} exists. The above expression shows that $c^{-1}r(x)$ is a monic polynomial with X with $\deg(c^{-1}r) = \deg(r) < \deg(d)$, which contradicts the minimum degree property of d(x). Thus r(x) = 0 and we have $d(x) \mid f(x)$. Similarly, we can show that $d(x) \mid g(x)$. Thus, (2) follows.

Recall that $p \in \mathbb{Z}$ is a prime if $p \ge 2$ and whenever p = ab, then $a = \pm 1$ or $b = \pm 1$, where ± 1 are units in \mathbb{Z} .

Definition (Irreducible).

 $l(x) \neq 0$ is **irreducible** if $\deg(l) \geq 1$ and whenever $l(x) = l_1(x)l_2(x)$, then $\deg(l_1) = 0$ or $\deg(l_2) = 0$.

Example.

If $l(x) \in F[x]$ satisfies deg(l) = 1, then l(x) is irreducible.

Given prime $p \in \mathbb{Z}$ and $a, b \in \mathbb{Z}$, Euclid's Lemma shows that if $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proposition 10.7.

Let F be a field and $f(x), g(x) \in F[x]$. If $l(x) \in F[x]$ is irreducible and $l(x) \mid f(x)g(x)$, then $l(x) \mid f(x)$ or $l(x) \mid g(x)$.

Proof. Suppose $l(x) \mid f(x)g(x)$. If $l(x) \mid f(x)$, then we are done.

If $l(x) \nmid f(x)$, then $d(x) = \gcd(l(x), f(x)) = 1$. By Proposition 10.6, we have 1 = l(x)u(x) + f(x)v(x) for some $u(x), v(x) \in F[x]$. Then,

$$g(x) = g(x)l(x)u(x) + g(x)f(x)v(x)$$

Since $l(x) \mid l(x)$ and $l(x) \mid g(x)f(x)$, by Proposition 10.3, we have $l(x) \mid g(x)$.

Remark.

Let $f_1(x), \cdots, f_n(x) \in F[x]$ and let $l(x) \in F[x]$ be irreducible. If $l(x) \mid f_1(x) \cdots f_n(x)$, by applying Proposition 10.7 repeatedly, we have $l(x) \mid f_i(x)$ for some $1 \leq i \leq n$.

For an integer $n \in \mathbb{Z}$ with $|n| \ge 2$, up to $\pm \operatorname{sgn}(n)$, n can be written uniquely as a product of primes. By induction and Proposition 10.7, we have the following analogous result in F[x].

Theorem 10.8 (Unique factorization theorem).

Let F be a field and $f(x) \in F[x]$ with $\deg(f) \ge 1$. Then we can write

$$f(x) = cl_1(x)l_2(x)\cdots l_m(x)$$

where $c \in F^*$ and $l_i(x)$ are monic irreducible polynomials (not necessarily distinct).

The factorization is unique up to the order of l_i .

Problem 10.1.

Use Theorem 10.8 to prove that there are infinitely many irreducible polynomials in F[x].

Recall in \mathbb{Z} , all ideals are of the form $\langle n \rangle = n \mathbb{Z}$ and if $n \in \mathbb{N}$, then n is uniquely determined.

Proof. Let A be an ideal of F[x]. If $A = \{0\}$, then $A = \langle 0 \rangle$. If $A \neq \{0\}$, since F is a field, if $f \in A$ with leading coefficient a, then $a^{-1}f \in A$. Thus A contains a monic polynomial.

Among all monic polynomials in A, choose $h(x) \in A$ of minimum degree. Then $\langle h(x) \rangle \subseteq A$.

To prove the other inclusion, let $f(x) \in A$. By division algorithm, we have f(x) = q(x)h(x) + r(x) with $q(x), r(x) \in F[x]$ and $\deg(r) < \deg(h)$. If $r(x) \neq 0$, let $u \neq 0$ be its leading coefficient. Since A is an ideal and $f(x), h(x) \in A$, we have

$$u^{-1}r(x)=u^{-1}(f(x)-q(x)h(x))=u^{-1}f(x)-u^{-1}q(x)h(x)\in A$$

which is a monic polynomial in A with $\deg(u^{-1}r(x)) < \deg(h)$. This contradicts the minimum degree property of h. Thus r(x) = 0 and f(x) = q(x)h(x). It follows that $f(x) \in \langle h(x) \rangle$ and hence $A = \langle h(x) \rangle$.

To prove uniqueness, suppose $A = \langle h(x) \rangle = \langle h_1(x) \rangle$. Since $h(x) \mid h_1(x)$ and $h_1(x) \mid h(x)$, by Proposition 10.4, we have $h(x) = h_1(x)$.

Proposition 10.9.

Let F be a field. Then all ideals of F[x] are of the form $\langle h(x) \rangle = h(x)F[x]$ for some $h(x) \in F[x]$. If $\langle h(x) \rangle \neq 0$ and h(x) is monic, then the generator is uniquely determined.

We have seen in \mathbb{Z} that all ideals are of the form $\langle n \rangle$ for some $n \in \mathbb{Z}$. For $n \geq 2$, if we divide an integer by n, the remainder is $0 \leq r \leq n-1$. Then we have

$$\mathbb{Z}_n = \mathbb{Z}/\langle n \rangle = \{r + \langle n \rangle : 0 \le r \le n - 1\} = \{[i] : 0 \le i \le n - 1\}$$

We now consider its analogue in F[x].

Let F be a field. By Proposition 10.9, all ideals of F[x] are of the form $\langle h(x) \rangle$. Suppose that h(x) is monic and $\deg(h) = m \geq 1$.

Consider the quotient ring $R = F[x]/\langle h(x) \rangle$.

$$R = \left\{\overline{f(x)} \coloneqq f(x) + \langle h(x) \rangle : f(x) \in F[x]\right\}$$

Write $t = \overline{x} = x + \langle h(x) \rangle$. We have h(t) = 0 in R. By the division algorithm, we can write f(x) = q(x)h(x) + r(x) with $\deg(r) < \deg(h) = m$. Thus we can show that

$$R = \left\{ \sum_{i=0}^{m-1} \overline{a_i} t^i : a_i \in F, h(t) = 0 \right\}$$

Consider the map $\theta: F \to R$ given by $\theta(a) = \overline{a}$. Since θ is not the zero map and $\ker(\theta)$ is an ideal of F, we have $\ker(\theta) = \{0\}$. Thus θ is a one-to-one ring HM. Since $F \cong \theta(F)$, by identifying F with $\theta(F)$, we have

$$R = \left\{ \sum_{i=0}^{m-1} a_i t^i : a_i \in F, h(t) = 0 \right\}$$

Note that in R, we have

$$\sum_{i=0}^{m-1}a_it^i=\sum_{i=0}^{m-1}b_it^i \Longleftrightarrow a_i=b_i \ \forall 0\leq i\leq m-1$$

Hence this representation of elements in R is unique.

Proposition 10.10.

Let F be a field and $h(x) \in F[x]$ be monic with $\deg(h) = m \ge 1$. Then the quotient ring $F[x]/\langle h(x) \rangle$ is given by

$$R = \left\{ \sum_{i=0}^{m-1} a_i t^i : a_i \in F, h(t) = 0 \right\}$$

in which an element of R can be uniquely represented in the above form.

Example.

Consider the ring $\mathbb{R}[x]$. Let $h(x) = x^2 + 1 \in \mathbb{R}[x]$. By Proposition 10.10, we have

$$\mathbb{R}[x]/\langle x^2 + 1 \rangle = \{a + bt : a, b \in \mathbb{R}, t^2 + 1 = 0\} \cong \{a + bi : a, b \in \mathbb{R}, i^2 = -1\} = \mathbb{C}$$

Proposition 10.11.

Let F be a field and $h(x) \in F[x]$ with $deg(h) \ge 1$. The following are equivalent:

- 1. $F[x]/\langle h(x)\rangle$ is a field
- 2. $F[x]/\langle h(x)\rangle$ is an ID
- 3. h(x) is irreducible in F[x]

Proof. Let $A = \langle h(x) \rangle$.

- $(1) \Longrightarrow (2)$. A field is an ID.
- (2) \Longrightarrow (3). If h(x) = f(x)g(x) with $f(x), g(x) \in F[x]$, then

$$(f(x) + A)(g(x) + A) = h(x) + A = 0 + A \in F[x]/A$$

By (2), either f(x) + A = 0 + A or g(x) + A = 0 + A. If $f(x) \in A$, then f(x) = q(x)h(x) for some $q(x) \in F[x]$. Thus h(x) = f(x)g(x) = q(x)h(x)g(x). Since F[x] is an ID, this implies that q(x)g(x) = 1, so $\deg(g) = 0$. Similarly, if $g(x) \in A$, then $\deg(f) = 0$. Thus h(x) is irreducible in F[x].

(3) \Longrightarrow (1). Note that F[x]/A is a commutative ring. Thus to show that F[x]/A is a field, it suffices to show that every non-zero element of F[x]/A has an inverse.

Let $f(x) + A \neq 0 + A$ with $f(x) \in F[x]$. Then $f(x) \neq A$ and hence $h(x) \nmid f(x)$. Since h(x) is irreducible and $h(x) \nmid f(x)$, we have $\gcd(f(x), h(x)) = 1$.

By Proposition 10.6, there exist $u(x), v(x) \in F[x]$ such that

$$1 = u(x)h(x) + v(x)f(x) \Longrightarrow (v(x) + A)(f(x) + A) = 1 + A$$

It follows that f(x) + A has an inverse v(x) + A in F[x]/A, and hence F[x]/A is a field.

Example.

Since $\mathbb{R}[x]/\langle x^2+1\rangle\cong\mathbb{C}$, which is a field, the polynomial x^2+1 is irreducible in $\mathbb{R}[x]$.

Example.

Since $x^2 + x + 1$ has no root in \mathbb{Z}_2 , it is irreducible in \mathbb{Z}_2 . Thus

$$\mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle = \{a + bt : a, b \in \mathbb{Z}_2, t^2 + t + 1 = 0\}$$

is a field with 4 elements.

Remark.

Before the previous example, the only finite fields we know are of the form \mathbb{Z}_p where p is prime. We have seen before that there are infinitely many irreducible polynomials in $\mathbb{Z}_p[x]$.

One can show that for any $n \in \mathbb{N}$, there exists at least one irreducible polynomial $f_n(x)$ of degree n in $\mathbb{Z}_p[x]$. Since $f_n(x)$ is irreducible, $\mathbb{Z}_p[x]/\langle f_n(x)\rangle$ is a field of order p^n .

Note that \mathbb{Z}_{p^n} is not a field if $n \geq 2$.

	$\mathbb Z$	F[x]
Elements	m	f(x)
Size	m	$\deg(f)$
Units	±1	F^*
Unique factorization	$m=\pm p_1p_2\cdots p_k$	$f(x) = cl_1(x)l_2(x)\cdots l_k(x)$
Ideals	$\langle n \rangle$	$\langle h(x) \rangle$
Prime ideal generators	Primes	Irreducible polynomials

Table 1: Analogies between $\mathbb Z$ and F[x]