
MATH 237 Cheatsheet

Scalar functions
Level curves
Level curve 𝐿 = 𝑘 of function 𝑓(𝑥, 𝑦) is the set
of points 𝑥, 𝑦 which satisfy 𝑓(𝑥, 𝑦) = 𝑘. Can be
generalized to level surfaces or level sets.

Cross sections
Cross section of a surface 𝑧 = 𝑓(𝑥, 𝑦) is the inter!
section of 𝑧 = 𝑓(𝑥, 𝑦) with a plane.

Limits
Neighborhood
𝑟!neighborhood of point (𝑎, 𝑏) is the set of points
within distance 𝑟 from (𝑎, 𝑏):

𝑁𝑟(𝑎, 𝑏) = {(𝑥, 𝑦) | ‖(𝑥, 𝑦) − (𝑎, 𝑏)‖ < 𝑟}

Limit
lim(𝑥,𝑦)→(𝑎,𝑏) 𝑓(𝑥, 𝑦) = 𝐿 if for every 𝜀 > 0 there
exists 𝛿 > 0 such that for all (𝑥, 𝑦) ∈ 𝑁𝛿(𝑎, 𝑏),

|𝑓(𝑥) − 𝐿| < 𝜀

• To prove a limit does not exist, show that there
are two paths to (𝑎, 𝑏) which results in different
limits.

Squeeze theorem
If there exists a function 𝐵(𝑥, 𝑦) such that

|𝑓(𝑥, 𝑦) − 𝐿| ≤ 𝐵(𝑥, 𝑦) ∀(𝑥, 𝑦) ≠ (𝑎, 𝑏)

in some neighborhood of (𝑎, 𝑏), and

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝐵(𝑥, 𝑦) = 0

Then, lim(𝑥,𝑦)→(𝑎,𝑏) 𝑓(𝑥, 𝑦) = 𝐿.

Linear approximation
Partial derivatives

𝜕𝑓
𝜕𝑥
(𝑥, 𝑦) = lim

ℎ→0

𝑓(𝑥 + ℎ, 𝑦) − 𝑓(𝑥, 𝑦)
ℎ

• Variables other than the differentiated one is held
constant.

• Clariaut’s theorem: 𝑓𝑥𝑦(𝑎, 𝑏) = 𝑓𝑦𝑥(𝑎, 𝑏) if they
are continuous.

Hessian matrix

𝐻𝑓(𝑥, 𝑦) = [
𝑓𝑥𝑥(𝑥, 𝑦)
𝑓𝑦𝑥(𝑥, 𝑦)

𝑓𝑥𝑦(𝑥, 𝑦)
𝑓𝑦𝑦(𝑥, 𝑦)

]

Tangent plane/linearization
𝐿𝑎,𝑏(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏)

Gradient
∇𝑓(𝑥, 𝑦) = [𝑓𝑥(𝑥, 𝑦) 𝑓𝑦(𝑥, 𝑦)]

Second degree Taylor polynomial

𝑃2,(𝑎,𝑏)(𝑥, 𝑦) = 𝐿𝑎,𝑏(𝑥, 𝑦) +
1
2
(𝑓𝑥𝑥(𝑎, 𝑏)(𝑥 − 𝑎)2

+2𝑓𝑥𝑦(𝑎, 𝑏)(𝑥 − 𝑎)(𝑦 − 𝑏) + 𝑓𝑦𝑦(𝑎, 𝑏)(𝑦 − 𝑏)2)

Taylor’s theorem
𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + 𝐿𝑎,𝑏(𝑥, 𝑦) + 𝑅1,(𝑎,𝑏)(𝑥, 𝑦)

where

𝑅1,(𝑎,𝑏)(𝑥, 𝑦) =
1
2
(𝑓𝑥𝑥(𝑥 − 𝑎)2

+2𝑓𝑥𝑦(𝑥 − 𝑎)(𝑦 − 𝑏) + 𝑓𝑦𝑦(𝑦 − 𝑏)2)

• If 𝑓(𝑥, 𝑦) ∈ 𝐶2 around (𝑎, 𝑏), then there
exists 𝑀 > 0 such that |𝑅1,(𝑎,𝑏)(𝑥, 𝑦)| ≤
𝑀‖(𝑥, 𝑦) − (𝑎, 𝑏)‖2

Derivatives
Differentiable
𝑓(𝑥, 𝑦) is differentiable at (𝑎, 𝑏) if

lim
(𝑥,𝑦)→(𝑎,𝑏)

|𝑅1,(𝑎,𝑏)(𝑥, 𝑦)|
‖(𝑥, 𝑦) − (𝑎, 𝑏)‖

= 0

where 𝑅1,(𝑎,𝑏)(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝐿𝑎,𝑏(𝑥, 𝑦)
• Linear approximation is only reasonable if 𝑓  is

differentiable at the point.

Mean value theorem
If 𝑓(𝑥) is continuous on [𝑎, 𝑏] and differentiable on
(𝑎, 𝑏), then there exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓(𝑏) − 𝑓(𝑎) = 𝑓 ′(𝑐)(𝑏 − 𝑎)

Basic chain rule
Let 𝑔(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡)). Then,

𝑔′(𝑡) = 𝑓𝑥(𝑥(𝑡), 𝑦(𝑡))𝑥′(𝑡) + 𝑓𝑦(𝑥(𝑡), 𝑦(𝑡))𝑦′(𝑡)

= ∇𝑓 ⋅ 𝜕(𝑥, 𝑦)
𝜕𝑡

provided that 𝑓  is differentiable at (𝑥(𝑡), 𝑦(𝑡)) and
𝑥(𝑡) and 𝑦(𝑡) are differentiable at 𝑡.

Directional derivative

D𝑢⃗𝑓(𝑎, 𝑏) = I
d
d𝑠
𝑓(𝑎 + 𝑠𝑢1, 𝑏 + 𝑠𝑢2)|

𝑠=0

= ∇𝑓(𝑎, 𝑏) ⋅ 𝑢̂

• For gradient case 𝑓  must be differentiable at
(𝑎, 𝑏).

• ∇𝑓(𝑎, 𝑏) is the direction of the greatest rate of
change.



Optimization problems
Critical point
(𝑎, 𝑏) is a critical point of 𝑓(𝑥, 𝑦) if 𝜕𝑓𝜕𝑥(𝑎, 𝑏) = 0 or
does not exist, and 𝜕𝑓𝜕𝑦 (𝑎, 𝑏) = 0 or does not exist.
• Find using first derivative.

Second derivative test
Let (𝑎, 𝑏) be a critical point.
• If 𝐻𝑓(𝑎, 𝑏) is positive definite (det(𝐻𝑓(𝑎, 𝑏)) >
0 and 𝑎, 𝑏 > 0) then (𝑎, 𝑏) is a local minimum.

• If 𝐻𝑓(𝑎, 𝑏) is negative definite (det(𝐻𝑓(𝑎, 𝑏)) >
0 and 𝑎, 𝑏 < 0) then (𝑎, 𝑏) is a local maximum.

• If 𝐻𝑓(𝑎, 𝑏) is indefinite (det(𝐻𝑓(𝑎, 𝑏)) < 0)
then (𝑎, 𝑏) is a saddle point.

• If 𝐻𝑓(𝑎, 𝑏) is semidefinite (det(𝐻𝑓(𝑎, 𝑏)) = 0)
then (𝑎, 𝑏) is degenerate.

Algorithm for extreme values
To find max/min value on closed and bounded
region 𝑆,
1. Find all critical points contained in 𝑆.
2. Find max/min points on the boundary of 𝑆.
3. Max/min point is on one of the points found in

the previous steps.

Lagrange multiplier algorithm
To find max/min value given constraint 𝑔(𝑥, 𝑦) =
𝑘, find all points satisfying
1. ∇𝑓(𝑎, 𝑏) = 𝜆∇𝑔(𝑎, 𝑏) for some 𝜆 and 𝑔(𝑎, 𝑏) =
𝑘.

𝑓𝑥(𝑥, 𝑦) = 𝜆𝑔𝑥(𝑥, 𝑦)
𝑓𝑦(𝑥, 𝑦) = 𝜆𝑔𝑦(𝑥, 𝑦)

𝑔(𝑎, 𝑏) = 𝑘
2. ∇𝑔(𝑎, 𝑏) = 0 and 𝑔(𝑎, 𝑏) = 𝑘.
3. Endpoint on curve 𝑔(𝑥, 𝑦) = 𝑘.

Coordinate systems
Polar coordinates

𝑥 = 𝑟 cos(𝜃)
𝑦 = 𝑟 sin(𝜃)

𝑟 = √𝑥2 + 𝑦2

tan 𝜃 = 𝑦
𝑥

• 𝜕(𝑥,𝑦)
𝜕(𝑟,𝜃) = 𝑟

• Cylinderical: add 𝑧 = 𝑧

Spherical coordinates
𝑥 = 𝜌 sin(𝜑) cos(𝜃)
𝑦 = 𝜌 sin(𝜑) sin(𝜃)
𝑧 = 𝜌 cos(𝜑)

𝜌 = √𝑥2 + 𝑦2 + 𝑧2

cos 𝜑 = 𝑧
√𝑥2 + 𝑦2 + 𝑧2

tan 𝜃 = 𝑦
𝑥

• 𝜕(𝑥,𝑦,𝑧)
𝜕(𝜌,𝜑,𝜃) = 𝜌

2 sin(𝜑)

Trig identities
• sin2 𝑥 + cos2 𝑥 = 1
• cos2 𝑥 − sin2 𝑥 = cos(2𝑥)
• sin(𝑥 + 𝑦) = sin 𝑥 cos 𝑦 + cos 𝑥 sin 𝑦
• cos(𝑥 + 𝑦) = cos 𝑥 cos 𝑦 − sin 𝑥 sin 𝑦

Mappings
Jacobian

𝜕(𝑢, 𝑣)
𝜕(𝑥, 𝑦)

= det(D𝐹(𝑥, 𝑦)) = det
[
[[
𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑥

𝜕𝑢
𝜕𝑦
𝜕𝑣
𝜕𝑦]
]]

• Inverse mapping theorem: if 𝐹  has continuous
partial derivatives on 𝐷𝑥𝑦 and is invertible

with continuous partial derivatives on 𝐷𝑢𝑣, then
𝜕(𝑢,𝑣)
𝜕(𝑥,𝑦) =

𝜕(𝑥,𝑦)
𝜕(𝑢,𝑣)

−1
.

Change of variable theorem

∭
𝐷𝑥𝑦𝑧

𝑑𝑉 =∭
𝐷𝑢𝑣𝑤

| 𝜕(𝑥, 𝑦, 𝑧)
𝜕(𝑢, 𝑣, 𝑤)

|𝑑𝑉
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