MATH 235 Cheatsheet

Abstract Vector Space

Vector space

A vector space over I has operations

+:V xV — V (addition)
:F x V — V (scalar multiplication)

and satisfies the axioms

Vi, §,Z, 2+ (§+ 2) =
ity of addition)

30, V7,0 + 9 = ¥ (additive identity)

VI, 32,7 + (—2) =

VZ,y, T+ 9y =9y -+ (commutativity of addi-
tion)
VZ,s,t,s(td) =
multiplication)

(Z4+9)+ Z (associativ-

0 (additive inverse)

(st)Z (associativity of scalar

VZ,s,t, (s +t)Z = s¥ + tZ (commutativity of
scalar multiplication)

VZ,y,s,s(Z+y) = sk + sy (distributivity of
scalar multiplication over vector addition)
VZ,1Z = Z (multiplicative identity)

Properties of vector spaces:

Zero vector 0 is unique

 Additive inverse is unique

Subspace
U is a subspace of V' by subspace test if

U is nonempty, e.g. 0 € U

VZ,yj € U,Z+ 4y € U (closed under addition)
VieU,s€F,s2 €U (closed under scalar
multiplication)

Span

Given S = {7, ...

76k}’

Span(S) = {tl'l_jl + ...+ tk:’l_jk . tl’ ’tk: € F}

S is a subspace of V.

Linear independence
Set of vectors S is LI iff

tl'l_jl + cee +tk/l_jk‘ - O = tl? ’tk - 0

« Empty set is LL

S is LI iff no vector in S is a linear combination
of other vectors in S.

Basis
A basis B for V is a LI set of vectors that spans V.

vo, 3y, ...z, €F,

77 == :EIT)I + ee + xnl;n

(unique representation theorem)

Dimension

dim (V) = |B| for any basis B.

|S| > dim(V) = S is LD.

|S] < dim(V') = S cannot span V.

|S| = dim(V') = S spans V iff S is LI

W is a subspace of V = dim(W) < dim(V).

Coordinate

Given B = {7)1, b,

} and

.’f = 17181 + + :L"ngn

The coordinate vector w.r.t. B is

@y=| ¢

L,

+ [Z] 3 is linear over addition and scalar multipli-

cation.

Linear Transformation

LT between abstract vectors

L :V — W is a linear transformation if
« L(Z +y) = L(Z) + L)

o L(tZ) =tL(%)

Properties:

- L(0) =0

Rank and nullity
Given L :V —- W,

« range(L) = {L(Z): 2 €V} CW
« ker(L) ={Z €V :L@& =0} CV
« rank(L) =

dim(range(L))

+ nullity(L) = dim(ker(L))

« rank(L) + nullity(L) = di
theorem)

m(V') (rank-nullity

LT matrix

Matrix representation of L:
[L(V)]e = Alv]5

+ U € range(L) = [U]5 € Col(L)
« W € ker(L) = [U]g € Null(L)

Change of base matrix
elLlp = [[L(El)]e

» elid]p = 5lidlg!
-1 _ 1 . .. .
« oLz = 23[L ] o 8iven L is invertible

[Z(en)], ]

Isomorphism

L is injective if
L(v ) L(¥y) = ¥y = Us.

« ker(L {6}

. nulhty(L) 0

L is surjective if
« range(L) = W.



« rank(L) = dim(W)

L is an isomorphism if

» L is injective and surjective.

« V=W (V is isomorphic to W)

« If {¥;,...,9,} is a basis for V, then
L(v,), ..., L(Y,,) is a basis for W.

Additional properties:

« dim(V) < dim(W) = L cannot be surjective

« dim(V) > dim(W) = L cannot be injective

« dim(V) = dim(W) = L is injective iff L is sur-
jective

« V2Wiff dim(V) = dim(W)

« L is an isomorphism iff there exists L™! : W —
V suchthat LL™' = L7'L =id

Diagonalization

Eigenvalue and eigenvector
A, ¥ such that

L(%) = AB = Ao

Eigenspace
E, = {8 eV : A = X0} = Null(A — AI)

Diagonalization algorithm

1. Find X as roots of characteristic polynomial
Cy=det(A—A)=0
2. For each A, find eigenvectors ¢ by solving
(A—Xv=0

3. Take D =diag(A,...,A,),
which satisfies A = PDP~1

Similar

A and B are similar if there exists P such that B =
P~1AP. They also have the same:

« characteristic polynomial

« trace
« determinant

eigenvalues
« rank and nullity

Diagonalizability test
A is diagonalizable iff forea each A, algebraic mul-
tiplicity of A = geometric multiplicity of A.

Inner product spaces

Inner product
A function (9, ) such that

Additional properties:

+ (0,9) = (v,0w;) =0

(U, aw) = @ (v, W)

+ Any finite-dimensional vector space has an inner
product.

Examples of inner products
+ Standard inner product on C™

(U, ) g VW,

« L? inner product on C|a, b]
b —
.0) = [ b ds

« Frobenius inner product on M"™*"(C)
» Elementwise standard inner product

ZZAW »

=1 j=

(A, B) = tr(B*A

Norm
o] = v/(@,%)
+ (U,w) = 0 = ¥ perp w (Orthogonal)
« 3L = v+ @|? = |9)* + |@||* (Pythagorean
theorem)
« [(U,w)| < |9]|w| (Cauchy-Schwarz inequality)
« |04 w| < ||¥]| + |@| (Triangle inequality)

Angle

U, V) + dist(v,w) (Triangle

1nequa11ty)

Orthonormal basis

« {®,, ..., 9, } is orthogonalif (7;,¥;) = 0fori # j

+ It is orthornormal if additionally ||7;| = 1 for all
i

« It is an orthonormal basis if it is orthogonal and
is a basis for V'

« Every finite-dimensional inner product space
has an orthonormal basis

Projection

Gram-Schmidt orthogonalization

Given basis {1, ..., 7, },



71)1 - 61
- <r‘727ﬂ}1>—>
2 — Y2 12 1
e,
S o <Il_53aﬂ>)1> = <173717)2> —
3 = Us o 12 1 D) 2
e, 1,

Orthogonal complement
Given subspace W C V,

L={4eV:{Hw =0VvwecW}

« W is a subspace of V
dim(W) + dim(W+) =

- Wnwt = {0}

- (WH =W

Orthogonal projection

Given orthogonal basis W = {w,, ..., W},

U = projy () + perpy,(?)

Least squares solution

Given system AZ = b, 5 is a least squares solution
to the system iff AT AZ = ATb.

Unitary diagonalization

Adjoint

A* = AT
. (3, ®) = 0T
. (AT, @) = (v, A*D)

Unitary/orthogonal matrix
UeM,,,(F)isunitary if U* = UL IfF=RU
is also orthogonal (UT = U~ 1).

« (UY,Uw) = (v, w)

= [l

o Columns and rows of U form orthonormal bases.

Schur’s triangularization theorem

For any matrix A there exists a unitary matrix

U such that T = U* AU is upper triangular with

eigenvalues of A on the diagonal.

+ Any matrix over C is similar to an upper trian-
gular matrix.

Cayley-Hamilton theorem
Let A e M,,,,,(C). Then, C4(A) = 0.

nxn

s cgl +ciA+...+c, A" =0

Spectral theorem

+ Aisnormal (AA* = A*A) iff A is unitarily diag-
onalizable.

+ Ais self-adjoint (A = A*) iff A is unitarily diag-
onalizable with real eigenvalues.

« Aover R is symmetric (A = A") iff A is orthog-
onally diagonalizable.

Properties of normal matrices

Let A be normal.

. 43| = |A4*3]

« If (A, Z) is an eigenpair of A, then (X, 3?) is an
eigenpair of A*.

« If Z, y are eigenvectors of A with different eigen-
values, then Z and § are orthogonal.

Unitary diagonalization algorithm
1. Diagonalize A = PDP!
2. Perform Gram-Schmidt procedure on the

as usual.

columns of P and obtain an orthogonal matrix
U.
3. Resultis A = UDU™.

Quadratic form

Given 4 = (uq,...,u, ), the quadratic form is a
polynomial of form

Zaw Uit;

Positive definite: Q (%) > 0 V4 # 0.
+ Positive semidefinite: Q (%) > 0 V.
« Negative definite: Q(4) < 0 Va # 0.
+ Negative semidefinite: Q (i) < 0 V.
Indefinite: 34, ¥, Q(d) > 0, Q(¥) < 0

Singular value decomposition

Singular values and singular vectors
Let A e M, ., (C). The singular values of A are
o; = /), for each eigenvalue \; of A*A. The sin-
gular vectors are the eigenvectors of A*A.

+ A*A is self-adjoint.

. A*AZ = | AZ|2

« Null(A*A) = Null(A).

« Col(A)t = Null(4%)

SVD algorithm
Let Ae M

mxn () be a matrix with rank 7.

1. Find eigenpairs ();, ;) for A*A, where v; is
normalized.

2. Seto; = \/)\_Z for ¢ < r, generally ordered from
largest to smallest

3. Set 4, —A fori <.

4. Ifr <m, extend {1, ..., 1, } to an orthonormal
basis of F"*. Use Gram-Schmidt procedure.

5 Set V ={9,...,9,.}, U={4y,..,4,}, ¥=
diag(oy, ..., 0,.)

This results in
A=UXV*

» Compact SVD: remove zero rows/columns of ¥
and columns above 7 of U and V.



Low rank approximation
Rank-k approximation of A = U, X, V" is

k
. L
A = E O;U;U;
i—1

s A=A,
« rank(A) =r
A Al = [T R <L 0 where

| X| is the Frobenius norm.
« Eckert-Young theorem: |[A — B| > |A — A,|
» A, is the best rank-k approximation of A.

Pseudoinverse
Given A = UX V™, the pseudoinverse of A is

At = Vxiy

where X1 is diagonal with EZT = {g? gig

k3

+ Defined for matrices of any shape.
« If A is square and invertible, then At = A1
« Results in minimal norm solution

Minimal norm solution

Given system A% = B the minimal norm solution

is , = ATb.

» If the system is consistent, then z is the solution
such that |Z] > |Z,|

« If the system is inconsistent, then z, is the least
squares solution.
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