ECE 493 Cheatsheet

Probability
P(A|B) = w

\
P(B)
Agent preferences

Lottery

Let O be a set of outcomes. Lottery A is a probability distribution over
outcomes.

« A < Bif agent strictly prefers A over B

» A < Bif agent weakly prefers A over B

« A ~ Bif agent is indifferent between A and B

VNM Rationality

» Completeness: A< Bor A< BorA~DB

« Transitivity: A< Band B<C =A< C

+ Independence: A < Biff pA+ (1 —p)C <pB+ (1 —p)C

« Continuity: A< B<C =3p € [0,1], B~pA+ (1—p)C
+ Betweenness:p € (0,1) = A<pA+(1—p)B<B

+ Monotonicity: p > ¢= pA+ (1 —p)B<¢A+ (1—q)B

VNM utility theorem

For any agent there exists utility function u s.t.
* u(A) = u(}pro) = Zpk u(oy,)

« u(A)>u(B)if A< B

Risk attitude

Let A=pz+ (1—p)y, z = E(A)
« Risk neutral: u(A4) = u(2)

« Risk averse: u(A4) < u(z)

« Risk seeking: u(A4) > u(z)

Normal-form games

« Consists of NV agents

« Agent i has available actions A;

» Outcome is an action profile A of all agents
+ Game is zero-sum if 3 u;(4) =0 VA

Dominant strategy equilibrium

+ s; strictly dominates s; if u;(, ) > Uy(s)) for all j

+ s; weakly dominates s; if u;(, ) > Uj(s,) for all j and u,(, ) > Uj(s,)
for at least one j

s, is a strict/weak dominant strategy if it strictly/weakly dominates
all other strategies

s is a dominant strategy equilibrium if s; is the dominant strat-

egy for all ¢

s if exists can be found by iterated elimination of dominated strate-
gies

Order of elimination does not matter for strictly dominant strategies

Nash equilibrium

+ s} is a best response to s_; if u;(s},s_;) > u;(s;,s_;) forall s, €
A
Nash equilibrium: s* such that u,(s*, s*;) > (s}, s*;) Vi, s,
» Nash theorem: every finite game has a Nash equilibrium

To compute a Nash equilibrium,

)

1. Assign probabilities p; for each action for agent ¢

2. Equate utilties of other agent given each action and their
expected utilities

Strict NE: u;(s*, s*;) > u,(s;, s*;) Vi, s, # s}

» Must be pure strategy NE

Strong NE: no group of agents win by unilateral deviation

Stable NE: no agent win by any small deviations of any agent

Price of anarchy

« Braess’s paradox: adding new zero-cost links to a network can
increase travel time

« Price of anarchy: ratio between worse NE performance and optimal
performance

Minmax and maxmin strategies

+ Maxmin strategy: argmax, min,  u,(s;,5_;)

+ Minmax strategy: argmin, max, u,(s;,s_;)

« Minimax theorem: in any NE of any finite two-player zero-sum
game, minmax value and maxmin value are equal

Rationalizability
- Rationalizable strategy: best response to some belief about strategies
of other agents

Correlated equilibrium
» Recommendations: distribution 7 ~ A(A) over strategy profiles
» Given r sampled from R € =, each agent forms belief of others’
strategies by
W(Tiv 7"71-)

ZT;EA% Tr(riv r/—z)

« Correlated equilibrium: Vi, r;, 7

Z m(r_; | r)lus(ry ) —ug(rr_)] 2 0

T €A,

m(r_; | ) =

» mis CE le(lNﬂ'[u’L(A)] = an‘fr[ui(a’£7 a‘—i) ‘ ai]
» No agent can benefit from deviating from recommendation as-
suming other agents follow their recommendations
» Coarse correlated equilibrium: 7 such that E__ [u;(A)] >
anw [uz ((l;, a—i )]
» No agent can benefit from not receiving recommendation at all
assuming other agents follow their recommendations

MILP for games

Weak dominance

max Z {( Z palui(“z‘vai)) _ui(sivaz‘)]

a_;€A_; a;€A;
s.t. Z Pa,us(a;:a_5) 2 us(ss,a_;) Va_; € A_;
a;€EA;
> po =1
a;€A;
Da, =0 Ya; € 4,

« If optimal solution is strictly positive, then s; is weakly dominated

Strict dominance

max ¢
s.t. Z Pa,us(a,a_;) 2 uy(s;,a) +e Va, €A,
a;€A;
> Pa, =1
a,€A;
Dq, 20 Ya; € A,

« If optimal solution is strictly positive, then s; is strictly dominated

Maxmin
For agent 4,
max u;
s.t. Z Po,ui(a,0 ;) > u; Va_; €A
a;€A;
> P =1
a;€A;
Pa, =0 Va; € A;

« Polynomial time
« Can compute NE for two player zero-sum games

Nash equilibrium

max  f(uy,u,)

st. pg, =20 Vi,a; € A;
Z paq‘ =1 A
a;€A; )

Z pa,lui(aia a—i) = ual Via a; € Az
a_€A_;
Uq, < U; Vi,a; € A;
Pa, < b, Vi, a; € A
u; —u,, < M(1-b, ) Vi,a; € A,
b,, € {0,1} Vi,a; € A

* P,, is probability of choosing action a; in mixed strategy
* U, is utility of pure strategy a;
« wu,; is utility of the strategy



* b, is the mixed strategy support
« M is a large constant

Correlated equilibrium
max  f(ug, ..., uy)

s.t. Z Do (u;(a) —u;(t,a_;)) >0 Vi a;t, € A,

a_j€A_;
D pa=1
acA

p, >0 Yae A

Extensive-form games

« Played sequentially

« Strategies can depend on previous actions

« Every finite extensive-form game has a PSNE

Subgame perfect equilibrium

« Standard NE only requires root node best response

« s*is SPE if it is NE for every subgame

« Found using backward induction

« Backward induction limitation: tie breaking affects result

Imperfect-info games
« Some nodes are linked together as info sets
» Players don’t know where on the info set they are
» Mixed strategy: randomize then play
« Behavioral strategy: randomize actions every info set
» Expresses different set of strategies compared to mixed strategies
« In games with perfect recall, behavioral strategies are equivalent to
mixed strategies

Repeated games

« Agents play a stage game repeatedly

« If stage game has NE, an SPE is repeating the NE strategy
» Memoryless/stationary strategy

Finite repeated games

» May have discount factor §
o= Zf:1 5T—1u£7")

Infinite repeated games
« Future-discounted utility: u; = Z:i L Jr’luy)
« s* is SPE iff there are no profitable one-shot deviations for each

subgame and agent

Strategies
« Grim trigger strategy: punish other player forever if they deviate
» Done by switching to strategy which reduce utility of other player
even more
« Tit-for-tat strategy: mirror opponent’s last type of strategy

Folk theorem

« u is feasible if there exist rational, non-negative distribution o such
that Vi, u; = 3, aqu;(a).
» Convex hull of possible outcomes: U = Conv{u € RY | Ja €

A u(a) = u}

« u is enforceable and individually rational if u; > v; Vi, where
v; is the minmax value of agent ¢
» Can be enforced using grim trigger

« For infinitely repeated games with average utilities, if w is both
feasible and enforceable, then u is the utility profile of some NE
» May not be SPE

Stochastic games

« State set S and action set A

« Action a at state s leads to s” with probability p(s, a, s”)
« Each transition has a reward 7(s, a, s")

« Use future-discounted utility

Policies
« Stationary policy: choose action based on current state
« Value function:

00

VT(s) =E|> 67 r,(s,,m(s,), s(t +1)) | s =5

t=1
= Zp(s7 w(s),8")(r(s,a,8")+dV™(s"))
’
« State-action value function:

Q™ (s,a) = Zp(s,a, s")(r(s,a,s") +dV™(s))

Policy evaluation
« Find value of policy V'™

Vi (s) < 0VseS
repeat until V7 (s) converges Vs € S
forse S

Vir(s') < 322, p(s,m(s), ") (r(s, m(s), 8') + 6V,71(s"))

Value iteration

Vo(s) <~ 0Vse S
repeat until V(s) converges Vs € S
forse S
Vi(s') - ma,es 5, 050, 8) (5,0, 8') + SV (57)
forse S
T (s) < argmax,c 4 -, p(s,a,8")(r(s,a,8") + 0V, (s"))

Strategies
o hy =[sg,aq,---Gy_1, ;] € H, is the history of the game of ¢ stages
« Set of all deterministic strategies for agent  is [ | om A

Lkt 4

Behavioral strategy: ; (h,a;) is probability of playing a, for h,
Markov strategy: behavioral strategy that only depends on current
state s;

Stationary strategy: Markov strategy that is time-independent
Markov perfect equilibrium: Markov strategy such that it is NE
regardless of starting state

Every n-player, general-sum, discounted-reward game has a MPE

Computing equilibrium
« Easier cases:
» 2P, general-sum, discounted, single-controller
» 2P, general-sum, discounted, separable-reward, state-indepen-
dent transition
» 2P, zeros-sum, discounted

Shapley algorithm

« Compute MPE for two-player zero-sum games by value iteration

V5 (s) « random distribution Vs
repeat until V(s) converges Vs
forse S
Compute matrix game G(s,V,_;)
u(s, @)  r(s,a) + 55, pls,a, 8 )"y (")
forse S k
V™ (s)  max, min, u(s,m, ;) (NE)

Pollatschek & Avi-Itzhak Algorithm
« Compute MPE by policy iteration

V(s) - random distribution Vs
repeat until 7, (s), 75 (s) converges Vs
forse S
Compute matrix game G(s, V)
7, (s) « maxmin strategy of agent 1 in G(s, V)
7 (8) < minmax strategy of agent 1in G(s, V)

V (s) <+ policy evaluation for 7y, my

Bayesian games
« Agents can have private types ¢
« Update belief i based on other agent types
Equilibria
« Ex-post: agents know everyone’s types
Efu,(s,0)] = Z H sj(aj ‘ oj)ui(avg)
acA jeN
« Interim: agents know about own type
Efu;(s, 0;)] = Z p(0_; | 0;)E[u;(s, (0;,0_;))]
6_,€0_;

- Ex-ante: agents know about common prior on types before game
starts



Elu;(s)] = Y p(0:)E[u;(5,6,)] = D p(6)E[ui(s,6)]
0,€0; 0O
« Bayes-NE: strategy profile s* based on ex-ante best response
» Any finite Bayesian game has a BNE

+ Ex-post equilibrium: s} € argmax, Elu,(s;, s*;,0)] Vi,0

Auctions

Each agent has private type v;

« Winner chosen b?rvrxlr Y; = MaxX;; v;
» Gy (v) = F(v) .
> gy, (v )*(Nfl)f( )F(v)™

. E[p )] =Gy, (v )E[yl |y < vy
» @870 = Ty

» In symmetric equilibrium, B(v;) = b;

» Boundary condition: 3(0) = 0, 3(z) =0 Vz > v;

Define symmetric and increasing bidding strategy b, = 3(v;)
Optimal bid maximizes E[p(v;)]

» Take first derivative

Second-price auctions
» Truthful bidding is weak ex-post equilibrium and unique BNE
» Expected payment is

p(v;) = Ply; <v,)G, (v,) " / yg,, (y) dy = / yg,, (y) dy
0 0

First-price auctions
» Optimal bid is b; = argmax,, G, (571 (b))(v; — b)
» Take first derivative w.r.t. b eventually results in

500 = G, ™ [ vg, W)
0

» Same expected payment as second-price auctions

Perfect Bayesian equilibrium
« Conditions:
1. Beliefs u specified
2. Sequential rationality: strategies s must be optimal given p
3. On-the-path consistency: for any on-equilibrium path, u must be
derived from s according to Bayes’ rule
4. Off-the-path consistency: for any off-equilibrium path, x4 must be
derived from s according to Bayes’ rule whenever possible
» Weak PBE: first three conditions
« Strong PBE: all four conditions

Signaling games

Informed agent move first to signal some information to uninformed
agent

Sending signal is more costly if it contains false information

Separating: informed agent sends distinct signals for each type

Pooling: informed agent sends the same signal for all types

Semi-separating: informed agent sends distinct signals for some
types and the same signal for others

Learning in games

« Safety: guarantees at least minmax value

« Rationality: settle on best response to opponent’s strategy if oppo-
nents are stationary

« No regret: yield payoff no less than any pure strategy

Fictitious play
« Update belief according to

;a N — 775(’14)
H) = 5 i)

where 1! (a_
t+1

« Play best response based on empirical dlstnbutlon a;
argmaxai i ( Ay Mz)

Do not need to know opponent’s utilities

Myopic: maximize current utility without considering future ones

Converges to pure strategies

» Let {a’} be a sequence of actions generated by FP

» If {a'} converges to steady state a*, then a* is a PSNE

» If for some t, a* = a* where a* is a strict NE, then a™ = a* for all
T>1t

Proof of strict

» Suppose a’ = a*
» We can write p as

it =(1-

where a =

a)ut +aal, = (1—a)ut + aa’,

1

Ea/ﬂ ni(al;)+1

» By linearity of expectation, for all a;,
ui(“iv Nf + 1) = (1 - a)ui(a’i7 M:) + aui(ai7 a/*—z)

» Since aj maximizes both terms, the action aj is played

Converges time-average to mixed strategy NE s*:

Proof

Suppose {a'} converges to s* in time-average sense but s* is not
NE

There is some 4, a; with s}(a;) > 0 s.t. u;(a;,
Choose € < %(u;(a}, s*;) — u;(a;, s7;))
Choose T st for all t>T, |pi(a_;)—s"s(ay)|<
e/ max, u,;(a’) for all a_;, which is possible as uf approaches s*;
by assumption

Then, for any ¢t > T', we have

v

v

8%5) > u;(ay, 8%5)

v

v

v

ui(aizﬂf) < u,(af, pf)

v

After sufficiently large ¢, a; is never played
Soast — 0, uf(a;) — 0, which contradicts s} (a;) > 0

v

Best response dynamics
« Agents start playing arbitrary actions

;) is the number of times agent ¢ observed a_; at round ¢.

In arbitrary order, agents take turns updating their actions to
improve their utility

Repeat until no agent can improve their utility

If BRD halts, the strategy is a PSNE

Congestion games

n agents and m resources

Congestion cost function /;(k) for cost of resource j when k agents
use it

nj(a) = {i|J€a;}l

ci(a) = Z]Ea l]n’](a)

Agents minimize own cost ¢;

NE exists

» Take potential function

n]a

i (k) keA
J=

=
Il

1
» If this is not NE, some agent ¢ switches a; to b;, with
Ac;(a) = Z Li(n;(a) +1) + Z l(n;(a)) <0
jebi\a; j€a;\b;
» Change in potential is

Ap(a)

» Since potential can only take finite number of values, BRD must
halt
 is an exact potential function if Ap = Ag;

= Ac;(a)

¢ is an ordinal potential function if Ac; < 0= Ap < 0 (same
sign)

BRD is guaranteed to half iff the game has an ordinal potential
function

No-regret learning

N experts make predictions p! € {U, D}

One expert is always correct

Halving algorithm: predict by majority vote, observe true out-

come, eliminate all wrong experts

» Converges in O(log N)

» Makes at most log N mistakes

Iterated halving algorithm: reset if no expert remain

» Works when best expert makes k mistakes

» Makes at most (k + 1) log N mistakes

Weighted majority algorithm: use weight vector W, half weight

of wrong experts each iteration

» When algorithm makes mistake, at least half of the experts are
downweighted, so W't = 3t

» Suppose algorithm makes M mistakes, then WT < N(%)

» Since the best expert makes k mistakes, (—) < N(%) =
M <24(k+1logN)

» Makes at most 2.4(k + log N) mistakes

Multiplicative weights algorithm: downweight by w!t! =

wte_ell where [ is the loss function

1



» ¢ is learning rate
» For any sequence of losses and experts k,

1 1 In(N)
T]E[L{,IW} < TL{ +tet —5
> Setting € = 4/ w gives
1 1 In(NV)
fE[LI{IW] S T mn Lf +2 T

» Average loss approaches best expert exactly at rate %

» Can be used to play games (experts <> actions, losses <> costs)
« Proof of minimax theorem using MW:

» Assume utilities are scaled to [0, 1]

» Let vy, vy be minmax and maxmin values respectively

» Suppose v; = v, + ¢ for some € > 0

» Suppose A2 uses MW and A1 plays best response

» For A2,

1 Z ., 1 & . In(N)
?Z]E[ul(aha?)} < fn%mZE[ul(alv%)]*'Q T
t=1 ? =1

» Lets; be a mixed strategy which puts weight % on each action a}
1 T T
—min Y u,(at,a,) =min Y wu,(at,a,) = minu, (5,,a
2 1lag, ag 1lag, ag 181, Go
T 2 az ay
t=1 t=1
» By definition min,, u,(8;, a,) < max, min, u,(5;,a,) = v,

In(N)
T

B[y (af 0b)] < v +2

» As A1 best responds to A2 mixed strategy,

1 & 1 &
=D _E[ui(af,ah)] = 7 ) maxuy(ay,ah)

T
1 .
== E min max u, (aq, S5)
-1 S22 4

» Taking T large enough leads to contradiction
« Exp3 algorithm:

5]

w; < 1Vi
fort € [1,T]
Wt Zil wt
Pl wt/Wt Vi
af = (1—7)p} +u
Choose i, randomly by distribution ¢

u |

Observe loss lﬁt

Set other experts losses If + 0 Vi # i,

Calculate scaled losses Zf — lﬁ/q;5 Vi
with — wt exp(fsg) Vi

External regret

« al,...,a” has external regret of A(T) if for every agent 5 and action
a;,
1& W 1&
72 wa(et) = 7 D wilajay) — A(T)
=1 t=1

If A(T) € op(1) then the sequence has no external regret
External regret measures regret to the best fixed action in hindsight

If a*,...,a” has ¢ external regret, then distribution 7 that picks

actions uniformly forms an e-approximate CCE

Suppose all agents use MW algorithm to choose between k actions
After T steps, sequence of outcomes has external regret A(T) =

24/logk/T

Swap regret

. al,...,a” has swap regret of A(T) if for every agent i and every

switching function Fj,
1 & 1 &
T Zui(at) > T Z u(F(a;),a_;) — A(T)
t=1 =1

« If A(T) € op(1) then the sequence has no swap regret

« Swap regret measures regret where every action could have been
swapped to another action

. Ifat, ..., aT has e swap regret, then distribution 7 that picks actions
uniformly forms an e-approximate CE
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