
ECE 493 Cheatsheet

Probability
𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴)

𝑃(𝐵)

Agent preferences
Lottery
Let 𝑂 be a set of outcomes. Lottery 𝐴 is a probability distribution over
outcomes.
• 𝐴 ≺ 𝐵 if agent strictly prefers 𝐴 over 𝐵
• 𝐴 ⪯ 𝐵 if agent weakly prefers 𝐴 over 𝐵
• 𝐴 ∼ 𝐵 if agent is indifferent between 𝐴 and 𝐵

VNM Rationality
• Completeness: 𝐴 ≺ 𝐵 or 𝐴 ⪯ 𝐵 or 𝐴 ∼ 𝐵
• Transitivity: 𝐴 ≺ 𝐵 and 𝐵 ≺ 𝐶 ⟹ 𝐴 ≺ 𝐶
• Independence: 𝐴 ≺ 𝐵 iff 𝑝𝐴 + (1 − 𝑝)𝐶 ≺ 𝑝𝐵 + (1 − 𝑝)𝐶
• Continuity: 𝐴 ≺ 𝐵 ≺ 𝐶 ⟹ ∃𝑝 ∈ [0, 1], 𝐵 ∼ 𝑝𝐴 + (1 − 𝑝)𝐶
• Betweenness: 𝑝 ∈ (0, 1) ⟹ 𝐴 ≺ 𝑝𝐴 + (1 − 𝑝)𝐵 ≺ 𝐵
• Monotonicity: 𝑝 > 𝑞 ⟹ 𝑝𝐴 + (1 − 𝑝)𝐵 ⪯ 𝑞𝐴 + (1 − 𝑞)𝐵

VNM utility theorem
For any agent there exists utility function 𝑢 s.t.
• 𝑢(𝐴) = 𝑢(∑ 𝑝𝑘𝑜𝑘) = ∑𝑝𝑘

𝑢(𝑜𝑘)
• 𝑢(𝐴) ≥ 𝑢(𝐵) iff 𝐴 ⪯ 𝐵

Risk attitude
Let 𝐴 = 𝑝𝑥 + (1 − 𝑝)𝑦, 𝑧 = 𝔼(𝐴)
• Risk neutral: 𝑢(𝐴) = 𝑢(𝑧)
• Risk averse: 𝑢(𝐴) < 𝑢(𝑧)
• Risk seeking: 𝑢(𝐴) > 𝑢(𝑧)

Normal-form games
• Consists of 𝑁  agents
• Agent 𝑖 has available actions 𝐴𝑖
• Outcome is an action profile 𝐴 of all agents
• Game is zero-sum if ∑𝑖 𝑢𝑖(𝐴) = 0 ∀𝐴

Dominant strategy equilibrium
• 𝑠𝑖 strictly dominates 𝑠𝑗 if 𝑢𝑖(𝑠𝑖) > 𝑢𝑖(𝑠𝑗) for all 𝑗
• 𝑠𝑖 weakly dominates 𝑠𝑗 if 𝑢𝑖(𝑠𝑖) ≥ 𝑢𝑖(𝑠𝑗) for all 𝑗 and 𝑢𝑖(𝑠𝑖) > 𝑢𝑖(𝑠𝑗)

for at least one 𝑗
• 𝑠𝑖 is a strict/weak dominant strategy if it strictly/weakly dominates

all other strategies
• 𝑠 is a dominant strategy equilibrium if 𝑠𝑖 is the dominant strat-

egy for all 𝑖
• 𝑠 if exists can be found by iterated elimination of dominated strate-

gies
• Order of elimination does not matter for strictly dominant strategies

Nash equilibrium
• 𝑠∗

𝑖  is a best response to 𝑠−𝑖 if 𝑢𝑖(𝑠∗
𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) for all 𝑠𝑖 ∈

𝐴𝑖
• Nash equilibrium: 𝑠∗ such that 𝑢𝑖(𝑠∗, 𝑠∗

−𝑖) ≥ 𝑢𝑖(𝑠′
𝑖, 𝑠∗

−𝑖) ∀𝑖, 𝑠𝑖′

‣ Nash theorem: every finite game has a Nash equilibrium
• To compute a Nash equilibrium,

1. Assign probabilities 𝑝𝑖 for each action for agent 𝑖
2. Equate utilties of other agent given each action and their

expected utilities
• Strict NE: 𝑢𝑖(𝑠∗, 𝑠∗

−𝑖) > 𝑢𝑖(𝑠′
𝑖, 𝑠∗

−𝑖) ∀𝑖, 𝑠′
𝑖 ≠ 𝑠∗

𝑖
‣ Must be pure strategy NE

• Strong NE: no group of agents win by unilateral deviation
• Stable NE: no agent win by any small deviations of any agent

Price of anarchy
• Braess’s paradox: adding new zero-cost links to a network can

increase travel time
• Price of anarchy: ratio between worse NE performance and optimal

performance

Minmax and maxmin strategies
• Maxmin strategy: argmax𝑠𝑖

min𝑠−𝑖
𝑢𝑖(𝑠𝑖, 𝑠−𝑖)

• Minmax strategy: argmin𝑠−𝑖
max𝑠𝑖

𝑢𝑖(𝑠𝑖, 𝑠−𝑖)
• Minimax theorem: in any NE of any finite two-player zero-sum

game, minmax value and maxmin value are equal

Rationalizability
• Rationalizable strategy: best response to some belief about strategies

of other agents

Correlated equilibrium
• Recommendations: distribution 𝜋 ∼ Δ(𝐴) over strategy profiles

‣ Given 𝑟 sampled from 𝑅 ∈ 𝜋, each agent forms belief of others’
strategies by

𝜋(𝑟−𝑖 | 𝑟𝑖) = 𝜋(𝑟𝑖, 𝑟−𝑖)
∑𝑟′

−𝑖∈𝐴−𝑖
𝜋(𝑟𝑖, 𝑟′

−𝑖)

• Correlated equilibrium: ∀𝑖, 𝑟𝑖, 𝑟′
𝑖 ,

∑
𝑟−𝑖∈𝐴−𝑖

𝜋(𝑟−𝑖 | 𝑟𝑖)[𝑢𝑖(𝑟𝑖, 𝑟−𝑖) − 𝑢𝑖(𝑟′
𝑖, 𝑟−𝑖)] ≥ 0

‣ 𝜋 is CE if 𝔼𝑎∼𝜋[𝑢𝑖(𝐴)] ≥ 𝔼𝑎∼𝜋[𝑢𝑖(𝑎′
𝑖, 𝑎−𝑖) | 𝑎𝑖]

‣ No agent can benefit from deviating from recommendation as-
suming other agents follow their recommendations

• Coarse correlated equilibrium: 𝜋 such that 𝔼𝑎∼𝜋[𝑢𝑖(𝐴)] ≥
𝔼𝑎∼𝜋[𝑢𝑖(𝑎′

𝑖, 𝑎−𝑖)]
‣ No agent can benefit from not receiving recommendation at all

assuming other agents follow their recommendations

MILP for games
Weak dominance

max ∑
𝑎−𝑖∈𝐴−𝑖

[( ∑
𝑎𝑖∈𝐴𝑖

𝑝𝑎𝑖
𝑢𝑖(𝑎𝑖, 𝑎−𝑖)) − 𝑢𝑖(𝑠𝑖, 𝑎−𝑖)]

s.t. ∑
𝑎𝑖∈𝐴𝑖

𝑝𝑎𝑖
𝑢𝑖(𝑎𝑖, 𝑎−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑎−𝑖) ∀𝑎−𝑖 ∈ 𝐴−𝑖

∑
𝑎𝑖∈𝐴𝑖

𝑝𝑎𝑖
= 1

𝑝𝑎𝑖
≥ 0 ∀𝑎𝑖 ∈ 𝐴𝑖

• If optimal solution is strictly positive, then 𝑠𝑖 is weakly dominated

Strict dominance
max 𝜀
s.t. ∑

𝑎𝑖∈𝐴𝑖

𝑝𝑎𝑖
𝑢𝑖(𝑎𝑖, 𝑎−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑎−𝑖) + 𝜀 ∀𝑎−𝑖 ∈ 𝐴−𝑖

∑
𝑎𝑖∈𝐴𝑖

𝑝𝑎𝑖
= 1

𝑝𝑎𝑖
≥ 0 ∀𝑎𝑖 ∈ 𝐴𝑖

• If optimal solution is strictly positive, then 𝑠𝑖 is strictly dominated

Maxmin
For agent 𝑖,

max 𝑢𝑖

s.t. ∑
𝑎𝑖∈𝐴𝑖

𝑝𝑎𝑖
𝑢𝑖(𝑎𝑖, 𝑎−𝑖) ≥ 𝑢𝑖 ∀𝑎−𝑖 ∈ 𝐴−𝑖

∑
𝑎𝑖∈𝐴𝑖

𝑝𝑎𝑖
= 1

𝑝𝑎𝑖
≥ 0 ∀𝑎𝑖 ∈ 𝐴𝑖

• Polynomial time
• Can compute NE for two player zero-sum games

Nash equilibrium
max 𝑓(𝑢1, 𝑢2)
s.t. 𝑝𝑎𝑖

≥ 0 ∀𝑖, 𝑎𝑖 ∈ 𝐴𝑖

∑
𝑎𝑖∈𝐴𝑖

𝑝𝑎𝑖
= 1 ∀𝑖

∑
𝑎−𝑖∈𝐴−𝑖

𝑝𝑎−𝑖
𝑢𝑖(𝑎𝑖, 𝑎−𝑖) = 𝑢𝑎𝑖

∀𝑖, 𝑎𝑖 ∈ 𝐴𝑖

𝑢𝑎𝑖
≤ 𝑢𝑖 ∀𝑖, 𝑎𝑖 ∈ 𝐴𝑖

𝑝𝑎𝑖
≤ 𝑏𝑎𝑖

∀𝑖, 𝑎𝑖 ∈ 𝐴𝑖

𝑢𝑖 − 𝑢𝑎𝑖
≤ 𝑀(1 − 𝑏𝑎𝑖

) ∀𝑖, 𝑎𝑖 ∈ 𝐴𝑖

𝑏𝑎𝑖
∈ {0, 1} ∀𝑖, 𝑎𝑖 ∈ 𝐴𝑖

• 𝑝𝑎𝑖
 is probability of choosing action 𝑎𝑖 in mixed strategy

• 𝑢𝑎𝑖
 is utility of pure strategy 𝑎𝑖

• 𝑢𝑖 is utility of the strategy



• 𝑏𝑎𝑖
 is the mixed strategy support

• 𝑀  is a large constant

Correlated equilibrium
max 𝑓(𝑢1, …, 𝑢𝑁)

s.t. ∑
𝑎−𝑖∈𝐴−𝑖

𝑝𝑎(𝑢𝑖(𝑎) − 𝑢𝑖(𝑡𝑖, 𝑎−𝑖)) ≥ 0 ∀𝑖, 𝑎𝑖, 𝑡𝑖 ∈ 𝐴𝑖

∑
𝑎∈𝐴

𝑝𝑎 = 1

𝑝𝑎 ≥ 0 ∀𝑎 ∈ 𝐴

Extensive-form games
• Played sequentially
• Strategies can depend on previous actions
• Every finite extensive-form game has a PSNE

Subgame perfect equilibrium
• Standard NE only requires root node best response
• 𝑠∗ is SPE if it is NE for every subgame
• Found using backward induction
• Backward induction limitation: tie breaking affects result

Imperfect-info games
• Some nodes are linked together as info sets

‣ Players don’t know where on the info set they are
• Mixed strategy: randomize then play
• Behavioral strategy: randomize actions every info set

‣ Expresses different set of strategies compared to mixed strategies
• In games with perfect recall, behavioral strategies are equivalent to

mixed strategies

Repeated games
• Agents play a stage game repeatedly
• If stage game has NE, an SPE is repeating the NE strategy

‣ Memoryless/stationary strategy

Finite repeated games
• May have discount factor 𝛿
• 𝑢𝑖 = ∑𝑅

𝑟=1 𝛿𝑟−1𝑢(𝑟)
𝑖

Infinite repeated games
• Future-discounted utility: 𝑢𝑖 = ∑∞

𝑟=1 𝛿𝑟−1𝑢(𝑟)
𝑖

• 𝑠∗ is SPE iff there are no profitable one-shot deviations for each
subgame and agent

Strategies
• Grim trigger strategy: punish other player forever if they deviate

‣ Done by switching to strategy which reduce utility of other player
even more

• Tit-for-tat strategy: mirror opponent’s last type of strategy

Folk theorem
• 𝑢 is feasible if there exist rational, non-negative distribution 𝛼 such

that ∀𝑖, 𝑢𝑖 = ∑𝑎∈𝐴 𝛼𝑎𝑢𝑖(𝑎).
‣ Convex hull of possible outcomes: 𝑈 = Conv{𝑢 ∈ ℝ𝑁 | ∃𝑎 ∈

𝐴, 𝑢(𝑎) = 𝑢}
• 𝑢 is enforceable and individually rational if 𝑢𝑖 ≥ 𝑣𝑖 ∀𝑖, where

𝑣𝑖 is the minmax value of agent 𝑖
‣ Can be enforced using grim trigger

• For infinitely repeated games with average utilities, if 𝑢 is both
feasible and enforceable, then 𝑢 is the utility profile of some NE
‣ May not be SPE

Stochastic games
• State set 𝑆 and action set 𝐴
• Action 𝑎 at state 𝑠 leads to 𝑠′ with probability 𝑝(𝑠, 𝑎, 𝑠′)
• Each transition has a reward 𝑟(𝑠, 𝑎, 𝑠′)
• Use future-discounted utility

Policies
• Stationary policy: choose action based on current state
• Value function:

𝑉 𝜋(𝑠) = 𝔼[∑
∞

𝑡=1
𝛿𝑡−1𝑟𝑡(𝑠𝑡, 𝜋(𝑠𝑡), 𝑠(𝑡 + 1)) | 𝑠0 = 𝑠]

= ∑
𝑠′

𝑝(𝑠, 𝜋(𝑠), 𝑠′)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛿𝑉 𝜋(𝑠′))

• State-action value function:

𝑄𝜋(𝑠, 𝑎) = ∑
𝑠′

𝑝(𝑠, 𝑎, 𝑠′)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛿𝑉 𝜋(𝑠′))

Policy evaluation
• Find value of policy 𝑉 𝜋

𝑉 𝜋
0 (𝑠) ← 0 ∀𝑠 ∈ 𝑆

repeat until 𝑉 𝜋(𝑠) converges ∀𝑠 ∈ 𝑆
for 𝑠 ∈ 𝑆

𝑉 𝜋
𝑡 (𝑠′) ← ∑𝑠′ 𝑝(𝑠, 𝜋(𝑠), 𝑠′)(𝑟(𝑠, 𝜋(𝑠), 𝑠′) + 𝛿𝑉 𝜋

𝑡−1(𝑠′))

Value iteration

𝑉0(𝑠) ← 0 ∀𝑠 ∈ 𝑆
repeat until 𝑉 (𝑠) converges ∀𝑠 ∈ 𝑆

for 𝑠 ∈ 𝑆
𝑉𝑡(𝑠′) ← max𝑎∈𝐴 ∑𝑠′ 𝑝(𝑠, 𝑎, 𝑠′)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛿𝑉 𝜋

𝑡−1(𝑠′))
for 𝑠 ∈ 𝑆

𝜋∗(𝑠) ← argmax𝑎∈𝐴 ∑𝑠′ 𝑝(𝑠, 𝑎, 𝑠′)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛿𝑉 𝜋
𝑡−1(𝑠′))

Strategies
• ℎ𝑡 = [𝑠0, 𝑎0, …𝑎𝑡−1, 𝑠𝑡] ∈ 𝐻𝑡 is the history of the game of 𝑡 stages
• Set of all deterministic strategies for agent 𝑖 is ∏𝑡,𝐻𝑡

𝐴𝑖

• Behavioral strategy: 𝜋𝑖(ℎ𝑡𝑎𝑖) is probability of playing 𝑎𝑖 for ℎ𝑡
• Markov strategy: behavioral strategy that only depends on current

state 𝑠𝑡
• Stationary strategy: Markov strategy that is time-independent
• Markov perfect equilibrium: Markov strategy such that it is NE

regardless of starting state
• Every 𝑛-player, general-sum, discounted-reward game has a MPE

Computing equilibrium
• Easier cases:

‣ 2P, general-sum, discounted, single-controller
‣ 2P, general-sum, discounted, separable-reward, state-indepen-

dent transition
‣ 2P, zeros-sum, discounted

Shapley algorithm
• Compute MPE for two-player zero-sum games by value iteration

𝑉0(𝑠) ← random distribution ∀𝑠
repeat until 𝑉 (𝑠) converges ∀𝑠

for 𝑠 ∈ 𝑆
Compute matrix game 𝐺(𝑠, 𝑉𝑡−1)
𝑢(𝑠, 𝑎) ← 𝑟(𝑠, 𝑎) + 𝛿 ∑𝑠′ 𝑝(𝑠, 𝑎, 𝑠′)𝑉 𝜋

𝑡−1(𝑠′)
for 𝑠 ∈ 𝑆

𝑉 𝜋
𝑡 (𝑠) ← max𝜋1

min𝜋2
𝑢(𝑠, 𝜋1, 𝜋2) (NE)

Pollatschek & Avi-Itzhak Algorithm
• Compute MPE by policy iteration

𝑉 (𝑠) ← random distribution ∀𝑠
repeat until 𝜋1(𝑠), 𝜋2(𝑠) converges ∀𝑠

for 𝑠 ∈ 𝑆
Compute matrix game 𝐺(𝑠, 𝑉 )
𝜋1(𝑠) ← maxmin strategy of agent 1 in 𝐺(𝑠, 𝑉 )
𝜋2(𝑠) ← minmax strategy of agent 1 in 𝐺(𝑠, 𝑉 )

𝑉 (𝑠) ← policy evaluation for 𝜋1, 𝜋2

Bayesian games
• Agents can have private types 𝜃
• Update belief 𝜇 based on other agent types

Equilibria
• Ex-post: agents know everyone’s types

𝔼[𝑢𝑖(𝑠, 𝜃)] = ∑
𝑎∈𝐴

∏
𝑗∈𝑁

𝑠𝑗(𝑎𝑗 | 𝜃𝑗)𝑢𝑖(𝑎, 𝜃)

• Interim: agents know about own type

𝔼[𝑢𝑖(𝑠, 𝜃𝑖)] = ∑
𝜃−𝑖∈Θ−𝑖

𝑝(𝜃−𝑖 | 𝜃𝑖)𝔼[𝑢𝑖(𝑠, (𝜃𝑖, 𝜃−𝑖))]

• Ex-ante: agents know about common prior on types before game
starts



𝔼[𝑢𝑖(𝑠)] = ∑
𝜃𝑖∈Θ𝑖

𝑝(𝜃𝑖)𝔼[𝑢𝑖(𝑠, 𝜃𝑖)] = ∑
𝜃∈Θ

𝑝(𝜃)𝔼[𝑢𝑖(𝑠, 𝜃)]

• Bayes-NE: strategy profile 𝑠∗ based on ex-ante best response
‣ Any finite Bayesian game has a BNE

• Ex-post equilibrium: 𝑠∗
𝑖 ∈ argmax𝑠𝑖

𝔼[𝑢𝑖(𝑠𝑖, 𝑠∗
−𝑖, 𝜃)] ∀𝑖, 𝜃

Auctions
• Each agent has private type 𝑣𝑖
• Winner chosen by rv 𝑦𝑖 = max𝑗≠𝑖 𝑣𝑗

‣ 𝐺𝑦𝑖
(𝑣) = 𝐹(𝑣)𝑁−1

‣ 𝑔𝑦𝑖
(𝑣) = (𝑁 − 1)𝑓(𝑣)𝐹(𝑣)𝑁−2

• 𝔼[𝑝(𝑣𝑖)] = 𝐺𝑦𝑖
(𝑣𝑖)𝔼[𝑦𝑖 | 𝑦𝑖 ≤ 𝑣𝑖]

‣ d
d𝑏𝛽

−1(𝑏) = 1
𝛽′(𝛽−1(𝑏))

‣ In symmetric equilibrium, 𝛽(𝑣𝑖) = 𝑏𝑖
‣ Boundary condition: 𝛽(0) = 0, 𝛽(𝑥) = 0 ∀𝑥 > 𝑣𝑖

• Define symmetric and increasing bidding strategy 𝑏𝑖 = 𝛽(𝑣𝑖)
• Optimal bid maximizes 𝔼[𝑝(𝑣𝑖)]

‣ Take first derivative
• Second-price auctions

‣ Truthful bidding is weak ex-post equilibrium and unique BNE
‣ Expected payment is

𝑝(𝑣𝑖) = 𝑃(𝑦𝑖 ≤ 𝑣𝑖)𝐺𝑦𝑖
(𝑣𝑖)

−1 ∫
𝑣𝑖

0
𝑦𝑔𝑦𝑖

(𝑦) d𝑦 = ∫
𝑣𝑖

0
𝑦𝑔𝑦𝑖

(𝑦) d𝑦

• First-price auctions
‣ Optimal bid is 𝑏𝑖 = argmax𝑏≥0 𝐺𝑦𝑖

(𝛽−1(𝑏))(𝑣𝑖 − 𝑏)
‣ Take first derivative w.r.t. 𝑏 eventually results in

𝛽(𝑣𝑖) = 𝐺𝑦𝑖
(𝑦)−1 ∫

𝑣𝑖

0
𝑦𝑔𝑦𝑖

(𝑦) d𝑦

‣ Same expected payment as second-price auctions

Perfect Bayesian equilibrium
• Conditions:

1. Beliefs 𝜇 specified
2. Sequential rationality: strategies 𝑠 must be optimal given 𝜇
3. On-the-path consistency: for any on-equilibrium path, 𝜇 must be

derived from 𝑠 according to Bayes’ rule
4. Off-the-path consistency: for any off-equilibrium path, 𝜇 must be

derived from 𝑠 according to Bayes’ rule whenever possible
• Weak PBE: first three conditions
• Strong PBE: all four conditions

Signaling games
• Informed agent move first to signal some information to uninformed

agent
• Sending signal is more costly if it contains false information
• Separating: informed agent sends distinct signals for each type
• Pooling: informed agent sends the same signal for all types
• Semi-separating: informed agent sends distinct signals for some

types and the same signal for others

Learning in games
• Safety: guarantees at least minmax value
• Rationality: settle on best response to opponent’s strategy if oppo-

nents are stationary
• No regret: yield payoff no less than any pure strategy

Fictitious play
• Update belief according to

𝜇𝑡
𝑖(𝑎−𝑖) = 𝜂𝑡

𝑖(𝑎−𝑖)
∑𝑎′

−𝑖
𝜂𝑡

𝑖(𝑎′
−𝑖)

where 𝜂𝑡
𝑖(𝑎−𝑖) is the number of times agent 𝑖 observed 𝑎−𝑖 at round 𝑡.

• Play best response based on empirical distribution: 𝑎𝑡+1
𝑖 =

argmax𝑎𝑖
𝜇𝑡

𝑖(𝑎𝑖, 𝜇𝑡
𝑖)

• Do not need to know opponent’s utilities
• Myopic: maximize current utility without considering future ones
• Converges to pure strategies

‣ Let {𝑎𝑡} be a sequence of actions generated by FP
‣ If {𝑎𝑡} converges to steady state 𝑎∗, then 𝑎∗ is a PSNE
‣ If for some 𝑡, 𝑎𝑡 = 𝑎∗ where 𝑎∗ is a strict NE, then 𝑎𝜏 = 𝑎∗ for all

𝜏 > 𝑡
• Proof of strict

‣ Suppose 𝑎𝑡 = 𝑎∗

‣ We can write 𝜇 as

𝜇𝑡+1
𝑖 = (1 − 𝛼)𝜇𝑡

𝑖 + 𝛼𝑎𝑡
−𝑖 = (1 − 𝛼)𝜇𝑡

𝑖 + 𝛼𝑎∗
−𝑖

where 𝛼 = 1
∑𝑎′

−𝑖
𝜂𝑡

𝑖(𝑎′
−𝑖)+1

‣ By linearity of expectation, for all 𝑎𝑖,

𝑢𝑖(𝑎𝑖, 𝜇𝑡
𝑖 + 1) = (1 − 𝛼)𝑢𝑖(𝑎𝑖, 𝜇𝑡

𝑖) + 𝛼𝑢𝑖(𝑎𝑖, 𝑎∗
−𝑖)

‣ Since 𝑎∗
𝑖  maximizes both terms, the action 𝑎∗

𝑖  is played
• Converges time-average to mixed strategy NE 𝑠∗:

lim
𝑇→∞

1
𝑇

∑
𝑇

𝑡=1
𝟙(𝑎𝑡

𝑖 = 𝑎𝑖) = 𝑠∗
𝑖 (𝑎𝑖)

• Proof
‣ Suppose {𝑎𝑡} converges to 𝑠∗ in time-average sense but 𝑠∗ is not

NE
‣ There is some 𝑖, 𝑎𝑖 with 𝑠∗

𝑖 (𝑎𝑖) > 0 s.t. 𝑢𝑖(𝑎′
𝑖, 𝑠∗

−𝑖) > 𝑢𝑖(𝑎𝑖, 𝑠∗
−𝑖)

‣ Choose 𝜀 < 1
2(𝑢𝑖(𝑎′

𝑖, 𝑠∗
−𝑖) − 𝑢𝑖(𝑎𝑖, 𝑠∗

−𝑖))
‣ Choose 𝑇  s.t. for all 𝑡 ≥ 𝑇 , |𝜇𝑡

𝑖(𝑎−𝑖) − 𝑠∗
−𝑖(𝑎−𝑖)| <

𝜀/ max𝑎′ 𝑢𝑖(𝑎′) for all 𝑎−𝑖, which is possible as 𝜇𝑡
𝑖  approaches 𝑠∗

−𝑖
by assumption

‣ Then, for any 𝑡 ≥ 𝑇 , we have

𝑢𝑖(𝑎𝑖, 𝜇𝑡
𝑖) ≤ 𝑢𝑖(𝑎′

𝑖, 𝜇𝑡
𝑖)

‣ After sufficiently large 𝑡, 𝑎𝑖 is never played
‣ So as 𝑡 → 0, 𝜇𝑡

𝑖(𝑎𝑖) → 0, which contradicts 𝑠∗
𝑖 (𝑎𝑖) > 0

Best response dynamics
• Agents start playing arbitrary actions

• In arbitrary order, agents take turns updating their actions to
improve their utility

• Repeat until no agent can improve their utility
• If BRD halts, the strategy is a PSNE

Congestion games
• 𝑛 agents and 𝑚 resources
• Congestion cost function 𝑙𝑗(𝑘) for cost of resource 𝑗 when 𝑘 agents

use it
• 𝑛𝑗(𝑎) = |{𝑖 | 𝑗 ∈ 𝑎𝑖}|
• 𝑐𝑖(𝑎) = ∑𝑗∈𝑎𝑖

𝑙𝑗𝑛𝑗(𝑎)
• Agents minimize own cost 𝑐𝑖
• NE exists

‣ Take potential function

𝜑(𝑎) = ∑
𝑚

𝑗=1
∑
𝑛𝑗(𝑎)

𝑘=1
𝑙𝑗(𝑘) 𝑘 ∈ 𝐴

‣ If this is not NE, some agent 𝑖 switches 𝑎𝑖 to 𝑏𝑖, with

Δ𝑐𝑖(𝑎) = ∑
𝑗∈𝑏𝑖\𝑎𝑖

𝑙𝑗(𝑛𝑗(𝑎) + 1) + ∑
𝑗∈𝑎𝑖\𝑏𝑖

𝑙𝑗(𝑛𝑗(𝑎)) < 0

‣ Change in potential is

Δ𝜑(𝑎) = Δ𝑐𝑖(𝑎)

‣ Since potential can only take finite number of values, BRD must
halt

• 𝜑 is an exact potential function if Δ𝜑 = Δ𝑐𝑖
• 𝜑 is an ordinal potential function if Δ𝑐𝑖 < 0 ⟹ Δ𝜑 < 0 (same

sign)
• BRD is guaranteed to half iff the game has an ordinal potential

function

No-regret learning
• 𝑁  experts make predictions 𝑝𝑡

𝑖 ∈ {𝑈, 𝐷}
• One expert is always correct
• Halving algorithm: predict by majority vote, observe true out-

come, eliminate all wrong experts
‣ Converges in 𝑂(log 𝑁)
‣ Makes at most log 𝑁  mistakes

• Iterated halving algorithm: reset if no expert remain
‣ Works when best expert makes 𝑘 mistakes
‣ Makes at most (𝑘 + 1) log 𝑁  mistakes

• Weighted majority algorithm: use weight vector 𝑊 𝑡, half weight
of wrong experts each iteration
‣ When algorithm makes mistake, at least half of the experts are

downweighted, so 𝑊 𝑡+1 = 3
4𝑊 𝑡

‣ Suppose algorithm makes 𝑀  mistakes, then 𝑊𝑇 ≤ 𝑁(3
4)𝑀

‣ Since the best expert makes 𝑘 mistakes, (1
2)𝑘 ≤ 𝑁(3

4)𝑀 ⟹
𝑀 ≤ 2.4(𝑘 + log 𝑁)

‣ Makes at most 2.4(𝑘 + log 𝑁) mistakes
• Multiplicative weights algorithm: downweight by 𝑤𝑡+1

𝑖 =
𝑤𝑡

𝑖𝑒−𝜀𝑙𝑡𝑖  where 𝑙 is the loss function



‣ 𝜀 is learning rate
‣ For any sequence of losses and experts 𝑘,

1
𝑇

𝔼[𝐿𝑇
MW] ≤ 1

𝑇
𝐿𝑇

𝑘 + 𝜀 + ln(𝑁)
𝜀𝑇

‣ Setting 𝜀 = √ ln(𝑁)
𝑇  gives

1
𝑇

𝔼[𝐿𝑇
MW] ≤ 1

𝑇
min

𝑘
𝐿𝑇

𝑘 + 2√ln(𝑁)
𝑇

‣ Average loss approaches best expert exactly at rate 1√
𝑇

‣ Can be used to play games (experts ⇔ actions, losses ⇔ costs)
• Proof of minimax theorem using MW:

‣ Assume utilities are scaled to [0, 1]
‣ Let 𝑣1, 𝑣2 be minmax and maxmin values respectively
‣ Suppose 𝑣1 = 𝑣2 + 𝜀 for some 𝜀 > 0
‣ Suppose A2 uses MW and A1 plays best response
‣ For A2,

1
𝑇

∑
𝑇

𝑡=1
𝔼[𝑢1(𝑎𝑡

1, 𝑎𝑡
2)] ≤ 1

𝑇
min
𝑎2

∑
𝑇

𝑡=1
𝔼[𝑢1(𝑎𝑡

1, 𝑎2)] + 2√ln(𝑁)
𝑇

‣ Let 𝑠1 be a mixed strategy which puts weight 1
𝑇  on each action 𝑎𝑡

1

1
𝑇

min
𝑎2

∑
𝑇

𝑡=1
𝑢1(𝑎𝑡

1, 𝑎2) = min
𝑎2

∑
𝑇

𝑡=1
𝑢1(𝑎𝑡

1, 𝑎2) = min
𝑎2

𝑢1(𝑠1, 𝑎2)

‣ By definition min𝑎2
𝑢1(𝑠1, 𝑎2) ≤ max𝑠1

min𝑠2
𝑢1(𝑠1, 𝑎2) = 𝑣2

1
𝑇

𝔼[𝑢1(𝑎𝑡
1, 𝑎𝑡

2)] ≤ 𝑣2 + 2√ln(𝑁)
𝑇

‣ As A1 best responds to A2 mixed strategy,

1
𝑇

∑
𝑇

𝑡=1
𝔼[𝑢1(𝑎𝑡

1, 𝑎𝑡
2)] = 1

𝑇
∑
𝑇

𝑡=1
max

𝑎1
𝑢1(𝑎1, 𝑎𝑡

2)

= 1
𝑇

∑
𝑇

𝑡=1
min
𝑠2

max
𝑎1

𝑢1(𝑎1, 𝑠2)

≥ 𝑣1

‣ So 𝑣1 ≤ 𝑣2 + 2√ ln(𝑁)
𝑇

‣ Then 𝜀 ≤ 2√ ln(𝑁)
𝑇

‣ Taking 𝑇  large enough leads to contradiction
• Exp3 algorithm:

𝑢 ← [ 1
𝑁 , …]

𝑤𝑖 ← 1 ∀𝑖
for 𝑡 ∈ [1, 𝑇 ]

𝑊 𝑡 ← ∑𝑁
𝑖=1 𝑤𝑡

𝑖

𝑝𝑡
𝑖 ← 𝑤𝑡

𝑖/𝑊 𝑡 ∀𝑖
𝑞𝑡
𝑖 = (1 − 𝛾)𝑝𝑡

𝑖 + 𝛾𝑢
Choose 𝑖𝑡 randomly by distribution 𝑞𝑡

Observe loss 𝑙𝑡𝑖𝑡

Set other experts losses 𝑙𝑡𝑖 ← 0 ∀𝑖 ≠ 𝑖𝑡

Calculate scaled losses ̂𝑙𝑡𝑖 ← 𝑙𝑡𝑖/𝑞𝑡
𝑖  ∀𝑖

𝑤𝑡+1
𝑖 ← 𝑤𝑡

𝑖 exp(−𝜀𝑙̂𝑡𝑖) ∀𝑖

External regret
• 𝑎1, …, 𝑎𝑇  has external regret of Δ(𝑇 ) if for every agent 𝑖 and action

𝑎′
𝑖,

1
𝑇

∑
𝑇

𝑡=1
𝑢𝑖(𝑎𝑡) ≥ 1

𝑇
∑
𝑇

𝑡=1
𝑢𝑖(𝑎′

𝑖, 𝑎−𝑖) − Δ(𝑇 )

• If Δ(𝑇 ) ∈ 𝑜𝑇 (1) then the sequence has no external regret
• External regret measures regret to the best fixed action in hindsight
• If 𝑎𝑡, …, 𝑎𝑇  has 𝜀 external regret, then distribution 𝜋 that picks

actions uniformly forms an 𝜀-approximate CCE
• Suppose all agents use MW algorithm to choose between 𝑘 actions
• After 𝑇  steps, sequence of outcomes has external regret Δ(𝑇 ) =

2√log 𝑘/𝑇

Swap regret
• 𝑎1, …, 𝑎𝑇  has swap regret of Δ(𝑇 ) if for every agent 𝑖 and every

switching function 𝐹𝑖,

1
𝑇

∑
𝑇

𝑡=1
𝑢𝑖(𝑎𝑡) ≥ 1

𝑇
∑
𝑇

𝑡=1
𝑢𝑖(𝐹𝑖(𝑎𝑖), 𝑎−𝑖) − Δ(𝑇 )

• If Δ(𝑇 ) ∈ 𝑜𝑇 (1) then the sequence has no swap regret
• Swap regret measures regret where every action could have been

swapped to another action
• If 𝑎𝑡, …, 𝑎𝑇  has 𝜀 swap regret, then distribution 𝜋 that picks actions

uniformly forms an 𝜀-approximate CE
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