ECE 493 Cheatsheet

Probability

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Agent preferences

Lottery

Let ${\cal O}$ be a set of outcomes. Lettery ${\cal A}$ is a probability distribution over outcomes.

- $A \prec B$ if agent strictly prefers A over B
- $A \leq B$ if agent weakly prefers A over B
- $A \sim B$ if agent is in different between A and B

VNM Rationality

- Completeness: $A \prec B$ or $A \preceq B$ or $A \sim B$
- Transitivity: $A \prec B$ and $B \prec C \Longrightarrow A \prec C$
- Independence: $A \prec B$ iff $pA + (1-p)C \prec pB + (1-p)C$
- Continuity: $A \prec B \prec C \Longrightarrow \exists p \in [0,1], B \sim pA + (1-p)C$
- Betweenness: $p \in (0,1) \Longrightarrow A \prec pA + (1-p)B \prec B$
- Monotonicity: $p > q \Longrightarrow pA + (1-p)B \preceq qA + (1-q)B$

VNM utility theorem

For any agent there exists utility function u s.t.

- $u(A) = u(\sum p_k o_k) = \sum_{n} u(o_k)$
- $u(A) \ge u(B)$ iff $A \preceq B$

Risk attitude

Let A = px + (1 - p)y, $z = \mathbb{E}(A)$

- Risk neutral: u(A) = u(z)
- Risk averse: u(A) < u(z)
- Risk seeking: u(A) > u(z)

Normal-form games

- Consists of N agents
- Agent i has available actions A_i
- Outcome is an action profile A of all agents
- Game is zero-sum if $\sum_i u_i(A) = 0 \ \forall A$

Dominant strategy equilibrium

- s_i strictly dominates s_j if $u_{i(s_i)} > u_{i(s_j)}$ for all j
- s_i weakly dominates s_j if $u_{i(s_i)} \ge u_{i(s_j)}$ for all j and $u_{i(s_i)} > u_{i(s_j)}$ for at least one j
- s_i is a strict/weak dominant strategy if it strictly/weakly dominates all other strategies
- s is a **dominant strategy equilibrium** if s_i is the dominant strategy for all i
- s if exists can be found by iterated elimination of dominated strategies
- · Order of elimination does not matter for strictly dominant strategies

Nash equilibrium

- s_i^* is a best response to s_{-i} if $u_i(s_i^*,s_{-i}) \geq u_i(s_i,s_{-i})$ for all $s_i \in A_i$
- Nash equilibrium: s^* such that $u_i(s^*, s^*_{-i}) \ge u_i(s'_i, s^*_{-i}) \ \forall i, s_{i'}$
- Nash theorem: every finite game has a Nash equilibrium
- · To compute a Nash equilibrium,
- 1. Assign probabilities p_i for each action for agent i
- Equate utilities of other agent given each action and their expected utilities
- Strict NE: $u_i(s^*, s^*_{-i}) > u_i(s'_i, s^*_{-i}) \ \forall i, s'_i \neq s^*_i$
- ▶ Must be pure strategy NE
- Strong NE: no group of agents win by unilateral deviation
- Stable NE: no agent win by any small deviations of any agent

Price of anarchy

- Braess's paradox: adding new zero-cost links to a network can increase travel time
- Price of anarchy: ratio between worse NE performance and optimal performance

Minmax and maxmin strategies

- Maxmin strategy: $\operatorname{argmax}_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$
- Minmax strategy: $\operatorname{argmin}_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$
- Minimax theorem: in any NE of any finite two-player zero-sum game, minmax value and maxmin value are equal

Rationalizability

• Rationalizable strategy: best response to some belief about strategies of other agents

Correlated equilibrium

- Recommendations: distribution $\pi \sim \Delta(A)$ over strategy profiles
- Given r sampled from $R \in \pi$, each agent forms belief of others' strategies by

$$\pi(r_{-i} \mid r_i) = \frac{\pi(r_i, r_{-i})}{\sum_{r'_i \in A_i} \pi(r_i, r'_{-i})}$$

• Correlated equilibrium: $\forall i, r_i, r'_i$,

$$\sum_{r_{-i} \in A_{-i}} \pi(r_{-i} \mid r_i) [u_i(r_i, r_{-i}) - u_i(r_i', r_{-i})] \geq 0$$

- π is CE if $\mathbb{E}_{a \sim \pi}[u_i(A)] \geq \mathbb{E}_{a \sim \pi}[u_i(a_i', a_{-i}) \mid a_i]$
- No agent can benefit from deviating from recommendation assuming other agents follow their recommendations
- Coarse correlated equilibrium: π such that $\mathbb{E}_{a\sim\pi}[u_i(A)]\geq \mathbb{E}_{a\sim\pi}[u_i(a_i',a_{-i})]$
- No agent can benefit from not receiving recommendation at all assuming other agents follow their recommendations

MILP for games

Weak dominance

$$\begin{aligned} & \max \quad \sum_{a_{-i} \in A_{-i}} \left[\left(\sum_{a_i \in A_i} p_{a_i} u_i(a_i, a_{-i}) \right) - u_i(s_i, a_{-i}) \right] \\ & \text{s.t.} \quad \sum_{a_i \in A_i} p_{a_i} u_i(a_i, a_{-i}) \geq u_i(s_i, a_{-i}) \\ & \sum_{a_i \in A_i} p_{a_i} = 1 \\ & p_{a_i} \geq 0 \end{aligned} \qquad \forall a_i \in A_i$$

• If optimal solution is strictly positive, then s_i is weakly dominated

Strict dominance

$$\begin{aligned} & \max \quad \varepsilon \\ & \text{s.t.} \quad \sum_{a_i \in A_i} p_{a_i} u_i(a_i, a_{-i}) \geq u_i(s_i, a_{-i}) + \varepsilon \quad \forall a_{-i} \in A_{-i} \\ & \sum_{a_i \in A_i} p_{a_i} = 1 \\ & p_{a_i} \geq 0 \qquad \qquad \forall a_i \in A_i \end{aligned}$$

• If optimal solution is strictly positive, then s_i is strictly dominated

Maxmin

For agent i,

$$\begin{aligned} & \text{max} \quad u_i \\ & \text{s.t.} \quad \sum_{a_i \in A_i} p_{a_i} u_i(a_i, a_{-i}) \geq u_i \quad \forall a_{-i} \in A_{-i} \\ & \sum_{a_i \in A_i} p_{a_i} = 1 \\ & p_{a_i} \geq 0 \qquad \qquad \forall a_i \in A_i \end{aligned}$$

- Polynomial time
- Can compute NE for two player zero-sum games

Nash equilibrium

$$\begin{split} & \max \quad f(u_1,u_2) \\ & \text{s.t.} \quad p_{a_i} \geq 0 \qquad \qquad \forall i,a_i \in A_i \\ & \sum_{a_i \in A_i} p_{a_i} = 1 \qquad \qquad \forall i \\ & \sum_{a_{-i} \in A_{-i}} p_{a_{-i}} u_i(a_i,a_{-i}) = u_{a_i} \quad \forall i,a_i \in A_i \\ & u_{a_i} \leq u_i \qquad \qquad \forall i,a_i \in A_i \\ & p_{a_i} \leq b_{a_i} \qquad \qquad \forall i,a_i \in A_i \\ & u_i - u_{a_i} \leq M \Big(1 - b_{a_i}\Big) \qquad \forall i,a_i \in A_i \\ & b_{a_i} \in \{0,1\} \qquad \forall i,a_i \in A_i \end{split}$$

- p_{a_i} is probability of choosing action a_i in mixed strategy
- u_{a_i} is utility of pure strategy a_i
- u_i is utility of the strategy

- b_a is the mixed strategy support
- M is a large constant

Correlated equilibrium

$$\begin{aligned} & \max \quad f(u_1,...,u_N) \\ & \text{s.t.} \quad \sum_{a_{-i} \in A_{-i}} p_a(u_i(a) - u_i(t_i,a_{-i})) \geq 0 \quad \forall i,a_i,t_i \in A_i \\ & \sum_{a \in A} p_a = 1 \\ & p_a \geq 0 \qquad \qquad \forall a \in A \end{aligned}$$

Extensive-form games

- · Played sequentially
- Strategies can depend on previous actions
- · Every finite extensive-form game has a PSNE

Subgame perfect equilibrium

- Standard NE only requires root node best response
- s^* is SPE if it is NE for every subgame
- · Found using backward induction
- · Backward induction limitation: tie breaking affects result

Imperfect-info games

- · Some nodes are linked together as info sets
- Players don't know where on the info set they are
- · Mixed strategy: randomize then play
- Behavioral strategy: randomize actions every info set
- Expresses different set of strategies compared to mixed strategies
- In games with perfect recall, behavioral strategies are equivalent to mixed strategies

Repeated games

- · Agents play a stage game repeatedly
- · If stage game has NE, an SPE is repeating the NE strategy
- Memoryless/stationary strategy

Finite repeated games

- May have discount factor δ
- $u_i = \sum_{r=1}^R \delta^{r-1} u_i^{(r)}$

Infinite repeated games

- + Future-discounted utility: $u_i = \sum_{r=1}^\infty \delta^{r-1} u_i^{(r)}$
- s* is SPE iff there are no profitable one-shot deviations for each subgame and agent

Strategies

- Grim trigger strategy: punish other player forever if they deviate
- Done by switching to strategy which reduce utility of other player even more
- Tit-for-tat strategy: mirror opponent's last type of strategy

Folk theorem

- u is **feasible** if there exist rational, non-negative distribution α such that $\forall i, u_i = \sum_{a \in A} \alpha_a u_i(a)$.
- Convex hull of possible outcomes: $U = \text{Conv}\{u \in \mathbb{R}^N \mid \exists a \in A, u(a) = u\}$
- u is **enforceable** and **individually rational** if $u_i \ge \underline{v}_i \ \forall i$, where v_i is the minmax value of agent i
- · Can be enforced using grim trigger
- For infinitely repeated games with average utilities, if u is both feasible and enforceable, then u is the utility profile of some NE
- ▶ May not be SPE

Stochastic games

- State set S and action set A
- Action a at state s leads to s' with probability p(s, a, s')
- Each transition has a reward r(s, a, s')
- · Use future-discounted utility

Policies

- · Stationary policy: choose action based on current state
- · Value function:

$$\begin{split} V^{\pi}(s) &= \mathbb{E}\left[\sum_{t=1}^{\infty} \delta^{t-1} r_t(s_t, \pi(s_t), s(t+1)) \mid s_0 = s\right] \\ &= \sum_{s'} p(s, \pi(s), s') (r(s, a, s') + \delta V^{\pi}(s')) \end{split}$$

· State-action value function:

$$Q^{\pi}(s,a) = \sum_{s'} p(s,a,s') (r(s,a,s') + \delta V^{\pi}(s'))$$

Policy evaluation

• Find value of policy V^{π}

$$\begin{split} &V_0^\pi(s) \leftarrow 0 \ \forall s \in S \\ &\textbf{repeat until } V^\pi(s) \text{ converges } \forall s \in S \\ & \middle| \ \textbf{for } s \in S \\ & \middle| \ V_t^\pi(s') \leftarrow \sum_{s'} p(s,\pi(s),s')(r(s,\pi(s),s') + \delta V_{t-1}^\pi(s')) \end{split}$$

Value iteration $V_0(s) \leftarrow 0 \ \forall s \in S$

$$\begin{split} & \textbf{repeat until } V(s) \text{ converges } \forall s \in S \\ & \quad \mid \textbf{for } s \in S \\ & \quad \mid V_t(s') \leftarrow \max_{a \in A} \sum_{s'} p(s,a,s') (r(s,a,s') + \delta V_{t-1}^\pi(s')) \end{split}$$

$\text{ } \mid \pi^*(s) \leftarrow \text{argmax}_{a \in A} \textstyle \sum_{s'} p(s,a,s') (r(s,a,s') + \delta V_{t-1}^\pi(s'))$

Strategies

- $h_t = [s_0, a_0, ... a_{t-1}, s_t] \in H_t$ is the history of the game of t stages
- Set of all deterministic strategies for agent i is $\prod_{t,H_t} A_i$

- Behavioral strategy: $\pi_i(h_t a_i)$ is probability of playing a_i for h_t
- Markov strategy: behavioral strategy that only depends on current state s.
- Stationary strategy: Markov strategy that is time-independent
- Markov perfect equilibrium: Markov strategy such that it is NE regardless of starting state
- Every n-player, general-sum, discounted-reward game has a MPE

Computing equilibrium

- · Easier cases:
- ▶ 2P, general-sum, discounted, single-controller
- 2P, general-sum, discounted, separable-reward, state-independent transition
- ▶ 2P, zeros-sum, discounted

Shapley algorithm

• Compute MPE for two-player zero-sum games by value iteration

```
\begin{split} V_0(s) \leftarrow \text{random distribution } \forall s \\ \textbf{repeat until } V(s) \text{ converges } \forall s \\ & \begin{vmatrix} \textbf{for } s \in S \\ & | \text{ Compute matrix game } G(s, V_{t-1}) \\ & u(s, a) \leftarrow r(s, a) + \delta \sum_{s'} p(s, a, s') V_{t-1}^{\pi}(s') \\ & \textbf{for } s \in S \\ & | V_t^{\pi}(s) \leftarrow \max_{\pi_1} \min_{\pi_2} u(s, \pi_1, \pi_2) \text{ (NE)} \end{aligned}
```

Pollatschek & Avi-Itzhak Algorithm

• Compute MPE by policy iteration

 $V(s) \leftarrow \text{random distribution } \forall s$

```
 \begin{aligned} \textbf{repeat} \text{ until } \pi_1(s), \pi_2(s) \text{ converges } \forall s \\ & | \textbf{ for } s \in S \\ & | \text{ Compute matrix game } G(s,V) \\ & | \pi_1(s) \leftarrow \text{maxmin strategy of agent 1 in } G(s,V) \\ & | \pi_2(s) \leftarrow \text{minmax strategy of agent 1 in } G(s,V) \\ & | V(s) \leftarrow \text{policy evaluation for } \pi_1,\pi_2 \end{aligned}
```

Bayesian games

- Agents can have private types θ
- Update belief μ based on other agent types

Equilibria

• Ex-post: agents know everyone's types

$$\mathbb{E}[u_i(s,\theta)] = \sum_{a \in A} \prod_{j \in N} s_j \big(a_j \mid \theta_j\big) u_i(a,\theta)$$

• Interim: agents know about own type

$$\mathbb{E}[u_i(s,\theta_i)] = \sum_{\theta_{-i} \in \Theta_{-i}} p(\theta_{-i} \mid \theta_i) \mathbb{E}[u_i(s,(\theta_i,\theta_{-i}))]$$

 Ex-ante: agents know about common prior on types before game starts

$$\mathbb{E}[u_i(s)] = \sum_{\theta : \in \Theta_i} p(\theta_i) \mathbb{E}[u_i(s,\theta_i)] = \sum_{\theta \in \Theta} p(\theta) \mathbb{E}[u_i(s,\theta)]$$

- Bayes-NE: strategy profile s^* based on ex-ante best response
- Any finite Bayesian game has a BNE
- Ex-post equilibrium: $s_i^* \in \operatorname{argmax}_{s_i} \mathbb{E}[u_i(s_i, s_{-i}^*, \theta)] \ \forall i, \theta$

Auctions

- Each agent has private type v_i
- Winner chosen by rv $y_i = \max_{i \neq i} v_i$
- $G_{v_i}(v) = F(v)^{N-1}$
- $g_{y_i}(v) = (N-1)f(v)F(v)^{N-2}$
- $$\begin{split} & \bullet \ \mathbb{E}[p(v_i)] = G_{y_i}(v_i)\mathbb{E}[y_i \mid y_i \leq v_i] \\ & \bullet \ \frac{\mathrm{d}}{\mathrm{d}b}\beta^{-1}(b) = \frac{1}{\beta'(\beta^{-1}(b))} \end{split}$$
- In symmetric equilibrium, $\beta(v_i) = b_i$
- Boundary condition: $\beta(0) = 0$, $\beta(x) = 0 \ \forall x > v_i$
- Define symmetric and increasing bidding strategy $b_i = \beta(v_i)$
- Optimal bid maximizes $\mathbb{E}[p(v_i)]$
- ▶ Take first derivative
- · Second-price auctions
- ▶ Truthful bidding is weak ex-post equilibrium and unique BNE
- Expected payment is

$$p(v_i) = P(y_i \le v_i) G_{y_i}(v_i)^{-1} \int_0^{v_i} y g_{y_i}(y) \, \mathrm{d}y = \int_0^{v_i} y g_{y_i}(y) \, \mathrm{d}y$$

- First-price auctions
- Optimal bid is $b_i = \operatorname{argmax}_{b>0} G_{v_i}(\beta^{-1}(b))(v_i b)$
- ▶ Take first derivative w.r.t. *b* eventually results in

$$\beta(v_i) = G_{y_i}(y)^{-1} \int_0^{v_i} y g_{y_i}(y) \, \mathrm{d}y$$

Same expected payment as second-price auctions

Perfect Bayesian equilibrium

- Conditions:
- 1. Beliefs μ specified
- 2. Sequential rationality: strategies s must be optimal given μ
- 3. On-the-path consistency: for any on-equilibrium path, μ must be derived from s according to Bayes' rule
- 4. Off-the-path consistency: for any off-equilibrium path, μ must be derived from s according to Bayes' rule whenever possible
- Weak PBE: first three conditions
- · Strong PBE: all four conditions

Signaling games

- · Informed agent move first to signal some information to uninformed
- · Sending signal is more costly if it contains false information
- Separating: informed agent sends distinct signals for each type
- Pooling: informed agent sends the same signal for all types
- · Semi-separating: informed agent sends distinct signals for some types and the same signal for others

Learning in games

- · Safety: guarantees at least minmax value
- Rationality: settle on best response to opponent's strategy if opponents are stationary
- · No regret: yield payoff no less than any pure strategy

Fictitious play

· Update belief according to

$$\mu_i^t(a_{-i}) = \frac{\eta_i^t(a_{-i})}{\sum_{a_{-i}'} \eta_i^t(a_{-i}')}$$

where $\eta_i^t(a_{-i})$ is the number of times agent *i* observed a_{-i} at round *t*.

- Play best response based on empirical distribution: $a_i^{t+1} =$ $\operatorname{argmax}_{a_i} \mu_i^t(a_i, \mu_i^t)$
- · Do not need to know opponent's utilities
- Myopic: maximize current utility without considering future ones
- Converges to pure strategies
- Let $\{a^t\}$ be a sequence of actions generated by FP
- If $\{a^t\}$ converges to steady state a^* , then a^* is a PSNE
- If for some t, $a^t = a^*$ where a^* is a strict NE, then $a^\tau = a^*$ for all $\tau > t$
- · Proof of strict
- Suppose $a^t = a^*$
- We can write μ as

$$\mu_i^{t+1} = (1-\alpha)\mu_i^t + \alpha a_{-i}^t = (1-\alpha)\mu_i^t + \alpha a_{-i}^*$$

where $\alpha = \frac{1}{\sum_{a'} \eta_i^t(a'_{-i})+1}$

• By linearity of expectation, for all a_i ,

$$u_i\big(a_i,\mu_i^t+1\big)=(1-\alpha)u_i\big(a_i,\mu_i^t\big)+\alpha u_i(a_i,a_{-i}^*)$$

- Since a_i^* maximizes both terms, the action a_i^* is played
- Converges time-average to mixed strategy NE s^* :

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{1}\big(a_i^t = a_i\big) = s_i^*(a_i)$$

- · Proof
- Suppose $\{a^t\}$ converges to s^* in time-average sense but s^* is not
- There is some i, a_i with $s_i^*(a_i) > 0$ s.t. $u_i(a_i', s_{-i}^*) > u_i(a_i, s_{-i}^*)$
- Choose $\varepsilon < \frac{1}{2}(u_i(a'_i, s^*_{-i}) u_i(a_i, s^*_{-i}))$
- Choose T s.t. for all $t \geq T$, $|\mu_i^t(a_{-i}) s_{-i}^*(a_{-i})| <$ $\varepsilon / \max_{a'} u_i(a')$ for all a_{-i} , which is possible as μ_i^t approaches s_{-i}^* by assumption
- Then, for any $t \geq T$, we have

$$u_i(a_i, \mu_i^t) \le u_i(a_i', \mu_i^t)$$

- After sufficiently large t, a_i is never played
- So as $t \to 0$, $\mu_i^t(a_i) \to 0$, which contradicts $s_i^*(a_i) > 0$

Best response dynamics

· Agents start playing arbitrary actions

- · In arbitrary order, agents take turns updating their actions to improve their utility
- · Repeat until no agent can improve their utility
- If BRD halts, the strategy is a PSNE

Congestion games

- n agents and m resources
- Congestion cost function $l_i(k)$ for cost of resource j when k agents use it
- $n_j(a) = |\{i \mid j \in a_i\}|$
- $c_i(a) = \sum_{j \in a_i} l_j n_j(a)$
- Agents minimize own cost c_i
- NE exists
- Take potential function

$$\varphi(a) = \sum_{j=1}^m \sum_{k=1}^{n_j(a)} l_j(k) \quad k \in A$$

• If this is not NE, some agent i switches a_i to b_i , with

$$\Delta c_i(a) = \sum_{j \in b_i \backslash a_i} l_j \big(n_j(a) + 1 \big) + \sum_{j \in a_i \backslash b_i} l_j \big(n_j(a) \big) < 0$$

• Change in potential is

$$\Delta \varphi(a) = \Delta c_i(a)$$

- Since potential can only take finite number of values, BRD must
- φ is an exact potential function if $\Delta \varphi = \Delta c_i$
- φ is an ordinal potential function if $\Delta c_i < 0 \Longrightarrow \Delta \varphi < 0$ (same
- · BRD is guaranteed to half iff the game has an ordinal potential function

No-regret learning

- N experts make predictions $p_i^t \in \{U, D\}$
- · One expert is always correct
- · Halving algorithm: predict by majority vote, observe true outcome, eliminate all wrong experts
- Converges in $O(\log N)$
- Makes at most $\log N$ mistakes
- Iterated halving algorithm: reset if no expert remain
- ightharpoonup Works when best expert makes k mistakes
- Makes at most $(k+1) \log N$ mistakes
- Weighted majority algorithm: use weight vector W^t, half weight of wrong experts each iteration
- When algorithm makes mistake, at least half of the experts are downweighted, so $W^{t+1} = \frac{3}{4}W^t$
- Suppose algorithm makes M mistakes, then $W^T \leq N(\frac{3}{4})^M$
- Since the best expert makes k mistakes, $\left(\frac{1}{2}\right)^k \leq N\left(\frac{3}{4}\right)^M \Longrightarrow$ $M \le 2.4(k + \log N)$
- Makes at most $2.4(k + \log N)$ mistakes
- Multiplicative weights algorithm: downweight by $w_i^{t+1} =$ $w_i^t e^{-\varepsilon l_i^t}$ where l is the loss function

- ε is learning rate
- ▶ For any sequence of losses and experts k,

$$\frac{1}{T}\mathbb{E}\big[L_{\mathrm{MW}}^T\big] \leq \frac{1}{T}L_k^T + \varepsilon + \frac{\ln(N)}{\varepsilon T}$$

• Setting $\varepsilon = \sqrt{\frac{\ln(N)}{T}}$ gives

$$\frac{1}{T}\mathbb{E}\big[L_{\mathrm{MW}}^T\big] \leq \frac{1}{T}\min_k L_k^T + 2\sqrt{\frac{\ln(N)}{T}}$$

- Average loss approaches best expert exactly at rate $\frac{1}{\sqrt{T}}$
- Can be used to play games (experts ⇔ actions, losses ⇔ costs)
- · Proof of minimax theorem using MW:
- Assume utilities are scaled to [0, 1]
- Let v_1, v_2 be minmax and maxmin values respectively
- Suppose $v_1 = v_2 + \varepsilon$ for some $\varepsilon > 0$
- Suppose A2 uses MW and A1 plays best response
- For A2,

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E}[u_1(a_1^t, a_2^t)] \leq \frac{1}{T} \min_{a_2} \sum_{t=1}^T \mathbb{E}[u_1(a_1^t, a_2)] + 2\sqrt{\frac{\ln(N)}{T}}$$

• Let \overline{s}_1 be a mixed strategy which puts weight $\frac{1}{T}$ on each action a_1^t

$$\frac{1}{T} \min_{a_2} \sum_{t=1}^T u_1(a_1^t, a_2) = \min_{a_2} \sum_{t=1}^T u_1(a_1^t, a_2) = \min_{a_2} u_1(\overline{s}_1, a_2)$$

• By definition $\min_{a_2} u_1(\overline{s}_1, a_2) \leq \max_{s_1} \min_{s_2} u_1(\overline{s}_1, a_2) = v_2$

$$\frac{1}{T}\mathbb{E}[u_1(a_1^t,a_2^t)] \leq v_2 + 2\sqrt{\frac{\ln(N)}{T}}$$

As A1 best responds to A2 mixed strategy,

$$\begin{split} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \big[u_1(a_1^t, a_2^t) \big] &= \frac{1}{T} \sum_{t=1}^{T} \max_{a_1} u_1(a_1, a_2^t) \\ &= \frac{1}{T} \sum_{t=1}^{T} \min_{s_2} \max_{a_1} u_1(a_1, s_2) \\ &\geq v_1 \end{split}$$

- So $v_1 \le v_2 + 2\sqrt{\frac{\ln(N)}{T}}$
- Then $\varepsilon \leq 2\sqrt{\frac{\ln(N)}{T}}$
- Taking T large enough leads to contradiction
- Exp3 algorithm:

$$\begin{split} u \leftarrow \left[\frac{1}{N}, \ldots\right] \\ w_i \leftarrow 1 \ \forall i \\ \text{for } t \in [1, T] \\ & \left[\begin{array}{c} W^t \leftarrow \sum_{i=1}^N w_i^t \\ p_i^t \leftarrow w_i^t / W^t \ \forall i \\ q_i^t = (1 - \gamma) p_i^t + \gamma u \\ \text{Choose } i_t \text{ randomly by distribution } q^t \\ \text{Observe loss } l_{i_t}^t \\ \text{Set other experts losses } l_i^t \leftarrow 0 \ \forall i \neq i_t \end{split}$$

$$\begin{array}{l} \text{Calculate scaled losses } \hat{l}_i^t \leftarrow l_i^t/q_i^t \ \forall i \\ w_i^{t+1} \leftarrow w_i^t \exp\left(-\varepsilon \hat{l}_i^t\right) \ \forall i \end{array}$$

External regret

• $a^1,...,a^T$ has external regret of $\Delta(T)$ if for every agent i and action a_i' ,

$$\frac{1}{T} \sum_{t=1}^T u_i(a^t) \geq \frac{1}{T} \sum_{t=1}^T u_i(a_i', a_{-i}) - \Delta(T)$$

- If $\Delta(T) \in o_T(1)$ then the sequence has no external regret
- External regret measures regret to the best fixed action in hindsight
- If $a^t,...,a^T$ has ε external regret, then distribution π that picks actions uniformly forms an ε -approximate CCE
- Suppose all agents use MW algorithm to choose between k actions
- After T steps, sequence of outcomes has external regret $\Delta(T) = 2\sqrt{\log k/T}$

Swap regret

 a¹,...,a^T has swap regret of Δ(T) if for every agent i and every switching function F_i,

$$\frac{1}{T} \sum_{t=1}^T u_i(a^t) \geq \frac{1}{T} \sum_{t=1}^T u_i(F_i(a_i), a_{-i}) - \Delta(T)$$

- If $\Delta(T) \in o_T(1)$ then the sequence has no swap regret
- Swap regret measures regret where every action could have been swapped to another action
- If $a^t,...,a^T$ has ε swap regret, then distribution π that picks actions uniformly forms an ε -approximate CE