
CS 341 Cheatsheet

Divide and Conquer
Asymptotic notation
Lower bound: 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛))
• ∃𝑐 > 0, 𝑛0, ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)

Upper bound: 𝑓(𝑛) ∈ Ω(𝑔(𝑛))
• ∃𝑐 > 0, 𝑛0, ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≥ 𝑐𝑔(𝑛)

Equivalent: 𝑓(𝑛) ∈ Θ(𝑔(𝑛))
• ∃𝑐1, 𝑐2, 𝑛0, ∀𝑛 ≥ 𝑛0, 𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛)
• lim𝑛→∞

𝑓(𝑛)
𝑔(𝑛) = 𝑐; 𝑐 ∈ (0,∞)

Master theorem
𝑇 (𝑛) = 𝑎𝑇(𝑛𝑏) + Θ(𝑛𝑦) ⇒

𝑇(𝑛) ∈
{{
{
{{Θ(𝑛𝑥) 𝑦 < 𝑥
Θ(𝑛𝑦 log 𝑛) 𝑦 = 𝑥
Θ(𝑛𝑦) 𝑦 > 𝑥

where 𝑥 = log𝑏 𝑎

Graph Algorithms
BFS
• Traverse graph 𝐺 level by level from source 𝑣0

algorithm BFS(𝐺, 𝑣0)
𝑄 = [𝑣0]
level(𝑣0) = 0
while 𝑄 is non-empty
𝑣 = 𝑄.pop(0)
for 𝑢 ∈ 𝑁(𝑣)

if level(𝑢) is undefined
level(𝑢) = level(𝑣) + 1
𝑄.append(𝑢)

• Finds shortest paths tree from 𝑣0
• 𝑄 contains vertices in non-decreasing level order
• level(𝑣) is length of shortest path from 𝑣0 to 𝑣
• Non-tree edges cross between branches and dif-

fer by at most one level
• Check if 𝐺 is bipartite

‣ If cross edge exists on the same level, 𝐺 is
bipartite

• 𝑂(𝑛 +𝑚) time

DFS
• Traverse graph 𝐺 depth-first from 𝑣0
• White path lemma: any vertex connected to 𝑣0 is

visited in DFS traversal
• Non-tree edges (undirected): back edges
• Non-tree edges (directed): forward edges, back

edges, cross edges
• Produces topological sort of DAG
• Strongly connected

‣ Kosaraju’s algorithm
‣ Starting from a vertex, run DFS forwards and

backwards
• 𝑂(𝑛 +𝑚) time

Minimum Spanning Tree
• Find least weighted spanning tree

algorithm Kruskal-MST(𝐺)
sort 𝐸 by weight
for 𝑒 ∈ 𝐸

if 𝑒 does not make a cycle with 𝑇
add 𝑒 to 𝑇

• Use union-find data structure to partition edges
into sets of connected components

• 𝑂(𝑚 log 𝑛) time

Greedy Algorithms
• Algorithms with no backtracking and lookahead

Interval Scheduling
• Given intervals 𝐼 with start times 𝑠 and finish

times 𝑓 , find 𝑆 ⊂ 𝐼 of pairwise disjoint intervals
of maximum size

• Greedy solution: sort intervals by finish time and
select valid intervals in order

algorithm Interval-Scheduling(𝐼, 𝑠, 𝑓)
sort 𝐼 by finish time
𝑆 ← {}
for 𝑖 = 1 to 𝑛

if 𝑖 is pairwise disjoint with all 𝑆
𝑆 ← 𝑆 ∪ {𝑖}

• 𝑂(𝑛 log 𝑛) time

Interval Coloring
• Given intervals 𝐼 with start times 𝑠 and finish

times 𝑓 , find 𝑆 ⊂ 𝐼 of pairwise disjoint intervals
of maximum size

• Greedy solution: sort intervals by finish time and
select valid intervals in order

Minimal Lateness Scheduling
• Given 𝑛 jobs where job 𝑖 requires 𝑡𝑖 to complete

and has a deadline at 𝑎𝑖.
• Greedy solution: do earliest deadline job first

Fractional Knapsack
• Given 𝑛 items with weights 𝑤𝑖 and values 𝑣𝑖,

find 𝑆 ⊂ 𝐼 of items of maximum value subject to
weight constraint 𝑊

• Greedy solution: sort items by value-to-weight
ratio and select items until weight limit is
reached

Dynamic Programming
Edit Distance
• Given strings 𝑥 and 𝑦, find minimum edit dis-

tance using replace, add, delete operations
• DP solution

‣ Let 𝑀[𝑖, 𝑗] represent the minimum edit dis-
tance between 𝑥[1..𝑖] and 𝑦[1..𝑗]

𝑀[𝑖, 𝑗] = min
{{
{
{{𝑀[𝑖 − 1, 𝑗 − 1] + 𝑐𝑟 replace 𝑥[𝑖] → 𝑦[𝑗]
𝑀[𝑖 − 1, 𝑗] + 𝑐𝑖 delete 𝑥[𝑖]
𝑀[𝑖, 𝑗 − 1] + 𝑐𝑑 insert 𝑦[𝑗]

‣ 𝑀[0, 𝑗] = 𝑗
‣ 𝑀[𝑖, 0] = 𝑖
‣ 𝑂(𝑚𝑛) space and time

Optimal BST
• Given probability distribution of accesses 𝑝,

compute BST which minimizes expected search
depth

• DP solution
‣ Let 𝑀[𝑖, 𝑗] represent the optimal BST for [𝑖..𝑗]

𝑀[𝑖, 𝑗] = min
𝑘∈[𝑖,𝑗]

(𝑝𝑘 +𝑀[𝑖, 𝑘 − 1] +𝑀[𝑘 + 1, 𝑗])

Independent Set

	Divide and Conquer
	Asymptotic notation
	Master theorem

	Graph Algorithms
	BFS
	DFS
	Minimum Spanning Tree

	Greedy Algorithms
	Interval Scheduling
	Interval Coloring
	Minimal Lateness Scheduling
	Fractional Knapsack

	Dynamic Programming
	Edit Distance
	Optimal BST
	Independent Set

