
CS 341 Cheatsheet

Divide and Conquer
Asymptotic notation
Lower bound: 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛))
• ∃𝑐 > 0, 𝑛0, ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)

Upper bound: 𝑓(𝑛) ∈ Ω(𝑔(𝑛))
• ∃𝑐 > 0, 𝑛0, ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≥ 𝑐𝑔(𝑛)

Equivalent: 𝑓(𝑛) ∈ Θ(𝑔(𝑛))
• ∃𝑐1, 𝑐2, 𝑛0, ∀𝑛 ≥ 𝑛0, 𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛)
• lim𝑛→∞

𝑓(𝑛)
𝑔(𝑛) = 𝑐; 𝑐 ∈ (0,∞)

Master theorem
𝑇 (𝑛) = 𝑎𝑇(𝑛𝑏 ) + Θ(𝑛𝑦) ⇒

𝑇(𝑛) ∈
{{
{
{{Θ(𝑛𝑥) 𝑦 < 𝑥
Θ(𝑛𝑦 log 𝑛) 𝑦 = 𝑥
Θ(𝑛𝑦) 𝑦 > 𝑥

where 𝑥 = log𝑏 𝑎

Graph Algorithms
BFS
• Traverse graph 𝐺 level by level from source 𝑣0

algorithm BFS(𝐺, 𝑣0)
𝑄 = [𝑣0]
level(𝑣0) = 0
while 𝑄 is non-empty
𝑣 = 𝑄.pop(0)
for 𝑢 ∈ 𝑁(𝑣)

if level(𝑢) is undefined
level(𝑢) = level(𝑣) + 1
𝑄.append(𝑢)

• Finds shortest paths tree from 𝑣0
• 𝑄 contains vertices in non-decreasing level order
• level(𝑣) is length of shortest path from 𝑣0 to 𝑣
• Non-tree edges cross between branches and dif-

fer by at most one level
• Check if 𝐺 is bipartite

‣ If cross edge exists on the same level, 𝐺 is
bipartite

• 𝑂(𝑛 +𝑚) time

DFS
• Traverse graph 𝐺 depth-first from 𝑣0
• White path lemma: any vertex connected to 𝑣0 is

visited in DFS traversal
• Non-tree edges (undirected): back edges
• Non-tree edges (directed): forward edges, back

edges, cross edges
• Produces topological sort of DAG
• Strongly connected

‣ Kosaraju’s algorithm
‣ Starting from a vertex, run DFS forwards and

backwards
• 𝑂(𝑛 +𝑚) time

Minimum Spanning Tree
• Find least weighted spanning tree

algorithm Kruskal-MST(𝐺)
sort 𝐸 by weight
for 𝑒 ∈ 𝐸

if 𝑒 does not make a cycle with 𝑇
add 𝑒 to 𝑇

• Use union-find data structure to partition edges
into sets of connected components

• 𝑂(𝑚 log 𝑛) time

Greedy Algorithms
• Algorithms with no backtracking and lookahead

Interval Scheduling
• Given intervals 𝐼  with start times 𝑠 and finish

times 𝑓 , find 𝑆 ⊂ 𝐼  of pairwise disjoint intervals
of maximum size

• Greedy solution: sort intervals by finish time and
select valid intervals in order

algorithm Interval-Scheduling(𝐼, 𝑠, 𝑓 )
sort 𝐼  by finish time
𝑆 ← {}
for 𝑖 = 1 to 𝑛

if 𝑖 is pairwise disjoint with all 𝑆
𝑆 ← 𝑆 ∪ {𝑖}

• 𝑂(𝑛 log 𝑛) time

Interval Coloring
• Given intervals 𝐼  with start times 𝑠 and finish

times 𝑓 , find 𝑆 ⊂ 𝐼  of pairwise disjoint intervals
of maximum size

• Greedy solution: sort intervals by finish time and
select valid intervals in order

Minimal Lateness Scheduling
• Given 𝑛 jobs where job 𝑖 requires 𝑡𝑖 to complete

and has a deadline at 𝑎𝑖.
• Greedy solution: do earliest deadline job first

Fractional Knapsack
• Given 𝑛 items with weights 𝑤𝑖 and values 𝑣𝑖,

find 𝑆 ⊂ 𝐼  of items of maximum value subject to
weight constraint 𝑊

• Greedy solution: sort items by value-to-weight
ratio and select items until weight limit is
reached



Dynamic Programming
Edit Distance
• Given strings 𝑥 and 𝑦, find minimum edit dis-

tance using replace, add, delete operations
• DP solution

‣ Let 𝑀[𝑖, 𝑗] represent the minimum edit dis-
tance between 𝑥[1..𝑖] and 𝑦[1..𝑗]

𝑀[𝑖, 𝑗] = min
{{
{
{{𝑀[𝑖 − 1, 𝑗 − 1] + 𝑐𝑟 replace 𝑥[𝑖] → 𝑦[𝑗]
𝑀[𝑖 − 1, 𝑗] + 𝑐𝑖 delete 𝑥[𝑖]
𝑀[𝑖, 𝑗 − 1] + 𝑐𝑑 insert 𝑦[𝑗]

‣ 𝑀[0, 𝑗] = 𝑗
‣ 𝑀[𝑖, 0] = 𝑖
‣ 𝑂(𝑚𝑛) space and time

Optimal BST
• Given probability distribution of accesses 𝑝,

compute BST which minimizes expected search
depth

• DP solution
‣ Let 𝑀[𝑖, 𝑗] represent the optimal BST for [𝑖..𝑗]

𝑀[𝑖, 𝑗] = min
𝑘∈[𝑖,𝑗]

(𝑝𝑘 +𝑀[𝑖, 𝑘 − 1] +𝑀[𝑘 + 1, 𝑗])
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