
CS 245

Notes

Author
Steven Cao

University of Waterloo
Fall 2023

1

CS 245 Fall 2023

Contents

1 Introduction 4
1.1 Aristotelian logic . 4
1.2 Propositional logic . 4

2 Propositional language 5
2.1 Parsing . 5
2.2 Semantics . 6

3 Propositional calculus 7
3.1 Laws of propositional calculus . 7
3.2 Normal forms (DNF, CNF) . 8
3.3 Connectives . 8
3.4 Boolean algebra . 9
3.5 Transistor . 9
3.6 Basic logic gates . 9
3.7 Adders . 10

4 Formal deduction 10
4.1 Formal deducibility . 10
4.2 Proofs . 11
4.3 Syntactic equivalence . 12
4.4 Soundness and completeness of formal deduction . 12

5 Formal deduction systems 13
5.1 Proving argument validity with resolution . 13
5.2 Set of support strategy . 14
5.3 Davis-Putnam procedure (DPP) . 16

6 First-order logic 17
6.1 Elements of first-order logic . 17
6.2 Quantifiers . 18
6.3 Syntax . 19
6.4 Terms . 20
6.5 Formulas . 20
6.6 Semantics . 22
6.7 Logical consequence in FoL . 24

7 Formal deduction in first-order logic 25
7.1 Resolution in first-order logic . 25

8 Computation and logic 29
8.1 Automatic theorem proving and verification . 29
8.2 Algorithm . 29
8.3 Halting Problem . 29
8.4 Turing machine . 30

2

CS 245 Fall 2023

8.5 Languages . 31
8.6 Decision problems . 32
8.7 Computation . 33
8.8 Complexity . 36

9 Peano Arithmetic and Gödel’s Incompleteness Theorem 37
9.1 Peano Arithmetic . 39
9.2 Gödel’s Incompleteness Theorem . 39

10 Program verification 39

11 Review 41

3

CS 245 Fall 2023

1 Introduction

1.1 Aristotelian logic

Definition 1.1 (Syllogism). A syllogism is a logical argument in which one position (con-
clusion) is inferred from two or more others (premises) of a specific form.

Example 1.1. Example of a syllogism:
All humans are mortal
Socrates is human
——————————
Socrates is mortal

Syllogism is good reasoning because it is truth-perserving.

Correctness of an argument depends on form (structure), not content.

1.2 Propositional logic

Definition 1.2 (Proposition). A proposition is a statement that is either true or false.

We can assign propositions to propositional variables such as p, q, r.

1 (true), 0 (false) are propositional constants. Any propositional variable can be assigned the value
of either 1 or 0.

Propositional variables are atomic propositions, meaning they cannot be futher subdivided.

Compound propositions are obtained by combining several atomic propositions.

Definition 1.3 (Logical connective). A logical connective is a word that combines propo-
sitions.

“or”, “and”, etc. are examples of logical connectives.

Statements formulated in natural languages are often ambiguous, so we will use mathematical
symbols instead.

Definition 1.4 (Propositional symbols). Here are some common propositional symbols.
¬p is the negation of p, meaning “not q”.
p ∧ q is the conjunction of p and q, meaning “p and q”.
p ∨ q is the disjunction of p and q, meaning “p or q inclusive”.

4

CS 245 Fall 2023

Definition 1.5 (Implication). p → q is false when p is true and q is false, and true otherwise.
p → q is the implication of p and q, meaning “if p then q”.

If p is false, then p → q is vacuously true.

¬ is an unary connective, while other connectives are binary connectives.

The binary connectives ∧,¬,↔ are symmetric, meaning the two proposition joined by the connective
can be swapped without affecting the truth value. However, → is not symmetric.

2 Propositional language

By using connectives, we can combine propositions.

To prevent ambiguity, we use fully parenthesized expressions, which can be parsed in a unique
way.

Definition 2.1. Lp is the formal language of propositional logic.
Strings in Lp are made of three classes of symbols:

1. Proposition symbols: p, q, r, . . .
2. Connective symbols: ¬,∧,∨,→,↔
3. Punctuation symbols: ()

Definition 2.2. Atom(Lp) is the set of atoms, or atomic formulas in Lp.

Definition 2.3. Form(Lp) is the set of formulas in Lp. It is defined recursively:
Base case: Let A ∈ Atom(Lp). Then, a ∈ Form(Lp).
Recursive: Let A,B ∈ Form(Lp). Then,

1. (¬A) ∈ Form(Lp).
2. (A ∧B) ∈ Form(Lp).
3. (A ∨B) ∈ Form(Lp).
4. (A → B) ∈ Form(Lp).
5. (A ↔ B) ∈ Form(Lp).

Restriction: No other expressions are formulas in Form(Lp).

2.1 Parsing

We can create a parse tree of any formula.

Example 2.1. ((p ∧ (¬q)) → r) can be expressed as the following parse tree:

5

CS 245 Fall 2023

Theorem 2.1 (Unique readability theorem). Every formula in Lp is of exactly one of these
forms:

1. An atom
2. (¬A)
3. (AcB), where c is one of ∧,∨,→,↔

Proof. We will prove this using structural induction.

Let P (n) be the property: every formula A containing at most n connectives satisfies:

1. The first symbol of A is either a left parenthesis or a proposition symbol.

2. A has an equal number of left and right parentheses, and each non-empty proper initial
segment of A has more left parentheses than right parentheses.

3. A has a unique construction as a formula.

We will prove P (n) holds for all n.

Base case: Let n = 0. Then, a formula with 0 connectives must be a propositional symbol, have
0 parentheses, and has non non-empty proper initial/terminal segments.

Inductive step:

2.2 Semantics

While syntax is concerned with the rules used for constructing a formula, semantics is concerned
with the meaning of the formula.

We can use a truth table to represent the meaning of a formula.

Definition 2.4 (Truth valuation). A truth valuation is a function t : Atom(Lp) → {0, 1},
which corresponds to a single row in the truth table.

Definition 2.5 (Satisfiability). A set of formulas Σ is satisfiable iff there exists a truth
valuation t such that Σt = 1.
Otherwise, Σ is unsatisfiable.

Definition 2.6 (Tautology, contradiction, contingent). Let A be a formula.
A is a tautology iff for all truth valuation t, At = 1.
A is a contradiction iff for all truth valuation t, At = 0.
A is contingent if it is neither a tautology nor a contradiction.

Plato has three essential laws of thought regarding tautologies.

1. Law of identity: p = p

2. Law of contradiction: ¬(p ∧ ¬p)

6

CS 245 Fall 2023

3. Law of excluded middle: (p ∨ ¬p)

Definition 2.7 (Tautological consequence). Let Σ, A be formulas. A is a tautological
consequence of Σ (Σ |= A) iff for any truth valuation t, Σt = 1 implies At = 1.

In the special case ∅ |= A, this means the truth of A is unconditional. This means A is a tautology.

Definition 2.8 (Tautological equivalence). Let A,B be formulas.
A,B are tautologically equivalent (A |=| B) iff A |= B ∧B |= A.

Note tautological equivalence is weaker than formula equality, as different formulas can be tauto-
logically equivalent if their truth tables are the same.

Theorem 2.2 (Replaceability of tautologically equivalent formulas). Let A be a formula
which contains a subformula B.
Let C be a formula such that B |=| C. Let A′ be the formula obtained by replacing some
occurences of formula B by C. Then, A′ |=| A.

Theorem 2.3 (Duality). Let A be a formula composed only of atoms and connectives
¬,∧,∨.
Let ∆(A) be the formula made from replacing all occurences of ∧ with ∨, ∨ with ∧, and
each atom with its negation. Then, ¬(A) |=| ∆(A).

3 Propositional calculus

In standard algebra, we rely on many algebraic identities to manipulate expressions, similar to using
tautological equivalences to manipulate formulas.

Using → and ↔ can be cumbersome, so we may seek to simplify formulas with these connectors.

To remove →, use the equivalence
A → B |=| ¬A ∨B

To remove ↔, there are two ways depending on if we desire and disjunction or a conjunction.

A ↔ B |=| (A ∧B) ∨ (¬A ∧ ¬B) |=| (¬A ∨B) ∧ (¬B ∨A)

3.1 Laws of propositional calculus

The laws allow us to simply formulas. All laws can be proven by comparing truth tables.

All laws come in pairs, called dual pairs: for each formula depending only on connectives ¬,∧,∨,
a dual can be created by swapping 0, 1 and ∧,∨.

7

CS 245 Fall 2023

3.2 Normal forms (DNF, CNF)

Definition 3.1 (Normal forms). A disjuncton with conjunctive clauses as its disjuncts is in
disjunctive normal form (DNF). A conjunction with disjunctive clauses as its conjuncts
is in conjunctive normal form (CNF).

To convert a formula into CNF, we can use this algorithm.

1. Eliminate equivalence and implication.

2. Remove instances of ¬ that does not have an atom as its scope.

3. Perform recursive procedure CNF(A):

(a) If A is a literal, return A.

(b) If A = B ∧ C, return CNF(B) ∧ CNF(C).

(c) If A = B∨C, then let CNF(B) =
∧n

i=1 Bi,CNF(C) =
∧m

j=1. Return
∧(n,m)

(i,j)=(1,1)(Bi∨Cj).

Theorem 3.1 (Existance of normal forms). Any formula A is tautologically equivalent to
some formula in DNF and some formula in CNF.

We can also obtain a formula in DNF using a truth table. To do this, find all truth valuations
t that produces true. Then, for each t, create a conjunction using the truth values of each atom
that would produce true. Finally, create a disjunction using all conjunctions created in this way as
disjuncts.

3.3 Connectives

Definition 3.2 (Definability). A connector f is definable in terms of a set of connectors S
if there a formula with only connectors in S that is tautologically equivalent a formula with
only connector f .

Formulas A → B and ¬A ∧ B are tautologically equivalent., therfore → is definable (reducible) in
terms of ¬,∨.

Theorem 3.2 (n-ary connectives). There are 2(2
n) distinct n-ary connectives.

Definition 3.3 (Adequate set of connectives). A set of connectives S is adequete iff it
is able to express any truth table. Or, any n-ary connective can be defined in terms of
connectives in S.

The set of five standard connectives {¬,∧,∨,→,↔} is adequate.

{¬,∧,∨} is also adequate.

8

CS 245 Fall 2023

The NOR operator alone {↓} is adequete. So is the NAND operator {|}.

To prove adequacy, we can show that the set is definable in terms of one of the sets that are already
adequate.

To prove inadequacy, we can find a truth valuation that is impossible to be expressed with the
connectors in the set.

3.4 Boolean algebra

Definition 3.4 (Boolean algebra). A Boolean algebra is a set B = {0, 1} closed under
operations +, ·, .

Form(Lp) with operators ∨,∧,¬ is a Boolean algebra. Sets with operators ∪,∩, c, Boolean algebra.

Boolean algebra is used to modle the circuitry of electronic computers, which are devices with
inputs and outputs from the set {0, 1}.

Definition 3.5 (Boolean variable). A boolean variable is a variable in {0, 1}.

Definition 3.6 (Boolean function). An n-var boolean function is a function f : {0, 1}n →
{0, 1}.

The basic elements of circuits are called logic gates, which implement the three Boolean operators.
A logic gate is a device that acts like a Boolean function.

3.5 Transistor

Logic gates are physically implemented by transistors. A transistor has three lines: control (in),
collector (in), emitter (out).

The input value on the control line represents the state of the transistor: 1 allows current to flow
from collector to emitter, and 0 prevents the current flow.

Transistors are the building blocks of high-level computers today, but it is not the only possible
device to accomplish this. Any bistable device can be used to build binary computers.

3.6 Basic logic gates

Definition 3.7 (NOT gate). An inverter, or a NOT gate, is a logic gate that implements
negation.
It is implemented using one transistor between output and ground.

9

CS 245 Fall 2023

Definition 3.8 (NOR gate). A NOR gate is implemented with two transistors connected
in parallel.

Definition 3.9 (OR gate). An OR gate is implemented using a NOT gate connected at
the output of a NOR gate.

Definition 3.10 (NAND gate). A NAND gate is implemented with two transistors con-
nected in series.

Definition 3.11 (AND gate). An AND gate is implemented using a NOT gate connected
at the output of a NAND gate.

3.7 Adders

Logic circuits can be used to carry out addition of two positive integers from their binary expansions.

Definition 3.12 (Half-adder). A half-adder is used to add two bits.
It has two inputs x, y and two outputs s, c.
s = xy + xy = (x+ y)(xy) (xor) represents the sum of x and y.
c = xy (and) represents the carry from the addition.

We can make a half-adder using a NOT gate, two AND gates, and an OR gate.

Definition 3.13 (Full-adder). A full-adder is used to add two bits and the carry from the
previous adder.
It has three inputs x, y, ci and two outputs s, ci+1.

We can make a full-adder by chaining two half adders and an OR gate.

4 Formal deduction

4.1 Formal deducibility

Up until now, we have used semantic methods, such as truth tables and tautological consequence,
to prove arguments.

We will now replace it with a purely syntactic method.

Definition 4.1 (Formal deducibility). Formula A is formally deducible from Σ (written
Σ ⊢ A) iff Σ ⊢ A is generated by the rules of formal deduction.

10

CS 245 Fall 2023

Definition 4.2 (11 rules of formal deduction). For all formulas A,B,C and any set Σ of
formulas:

1. (Ref) A ⊢ A.
2. (+) If Σ ⊢ A then Σ,Σ′ ⊢ A.
3. (¬ −) If Σ,¬A ⊢ B and Σ,¬A ⊢ ¬B then Σ ⊢ A.
4. (→ −) If Σ ⊢ A → B and Σ ⊢ A then Σ ⊢ B.
5. (→ +) If Σ, A ⊢ B then Σ, A → B
6. (∧−) If Σ ⊢ A ∧B then Σ ⊢ A and Σ ⊢ B
7. (∧+) If Σ ⊢ A and Σ ⊢ B then Σ ⊢ A ∧B
8. (∨−) If Σ, A ⊢ C and Σ, B ⊢ C then Σ, A ∨B ⊢ C
9. (∨+) If Σ ⊢ A then Σ ⊢ A ∨B and Σ ⊢ B ∨A
10. (↔ −) If Σ ⊢ A ↔ B and Σ ⊢ A then Σ ⊢ B
11. (↔ +) If Σ, A ⊢ B and Σ, B ⊢ A then Σ ⊢ A ↔ B

We can use these rules to prove new theorems.

Example 4.1. Prove the following theorem (membership rule):
(∈) If A ∈ Σ then Σ ⊢ A.

Proof. Assume A ∈ Σ. Let Σ′ = Σ−A.

Then,
A ⊢ A (Ref)

A,Σ′ ⊢ A (+)

Σ ⊢ A

4.2 Proofs

To check if a sequence of steps is a formal proof, check:

1. Rules of formal deduction are correctly applied at each step.

2. Last term of the formal proof is identical with the desired theorem.

Theorem 4.1 (Finiteness of premise set). If Σ ⊢ A, then there exists a finite Σ0 ⊆ Σ such
that Σ0 ⊢ A.

This shows that any proof involves only finitely many steps and finitely many formulas in the
premise set Σ.

Theorem 4.2 (Transitivity of deducibility (Tr.)). Let Σ,Σ′ ∈ Form(Lp). If Σ ⊢ Σ′ and
Σ′ ⊢ A, then Σ ⊢ A.

11

CS 245 Fall 2023

Theorem 4.3 (Reductio ad absurdum (¬+)). If Σ, A ⊢ B and Σ, A ⊢ ¬B, then Σ ⊢ ¬A.

Note (¬−) is stronger than (¬+).

4.3 Syntactic equivalence

Definition 4.3. For formulas A,B,
A ⊢⊣ B

means A ⊢ B and B ⊢ A. That is, A and B are syntactically equivalent.

Theorem 4.4 (Replaceability of syntactically equivalent formulas (Repl.)). Let B ⊢⊣ C.
For any A, let A′ be constructed from A by replacing some occurences of B by C. Then,

A ⊢⊣ A′

Similar to tautological equivalence, ∅ ⊢ A iff Σ ⊢ A for any Σ. If ∅ ⊢ A, then A is formally
provable.

For example, the law of non-contadiction is formally provable. That is, ∅ ⊢ ¬(A ∧ ¬A).

4.4 Soundness and completeness of formal deduction

Why do we need formal deduction? To define a proof system for which we can prove formally
(syntactically) everything that is correct semantically.

Consider a system of formal deducibility. For this system to be “good”, it has to be connected to
informal reasoning in the following sense:

1. It should not be able to formally prove incorrect statements (soundness)

2. It should be able to formally prove every correct statement (completeness)

Theorem 4.5 (Soundness theorem). If Σ ⊢ A, then Σ |= A, where ⊢ means the formal
deduction based on the 11 given rules.

Theorem 4.6 (Completeness theorem). If Σ |= A, then Σ ⊢ A, where ⊢ means the formal
deduction based on the 11 given rules.

12

CS 245 Fall 2023

5 Formal deduction systems

Definition 5.1 (Resolution theorem proving). Resolution theorem proving is a method
of formal derivation (formal deduction) that has the following features:

• Only formulas allowed are disjunction of literals.
• All formulas must be disjunctive clauses.
• There is only one rule of formula deduction: resolution.

To prove an argument A1, . . . , An |= C is valid, show the set {A1, . . . , An,¬C} is not satisfiable.

We can convert any formula into one or more disjunctive clauses. That is, convert the formula into
conjunctive normal form. Each term of the conjunction is then made into a clause of its own.

Definition 5.2 (Resolution). Resolution is the formal deduction rule

C ∨ p,D ∨ ¬p ⊢r C ∨D

where C,D are disjunctive clauses, and p is a literal.

C ∨ p and D ∨ ¬p are parent clauses, and C ∨D is the resolvent. We say that we resolve two
parent clauses over p.

The ⊥ (contradiction) clause is always false (empty clause). The resolvent of p,¬p is the empty
clause (p,¬p ⊢r ⊥).

Example 5.1. Find the resolvent of p ∨ ¬q ∨ r and ¬s ∨ q.

The two parent clauses can be resolved over q, as q is negative in the first clause and positive in
the second.

Then, the resolvent is p ∨ r ∨ ¬s.

5.1 Proving argument validity with resolution

To prove an argument with premises A1, . . . , An and conclusion C is valid, show that from set

{A1, . . . , An,¬C}

we can derive, by ⊢r, the empty clause ⊥, by:

• Transform each formula in the set into conjunctive normal form.

• Make each disjunctive clause a distinct clause, used for input of resolution procedure.

• If the resolution procedure outputs the empty clause, this implies the set is inconsistent, hence
not satisfiable, and thus the argument is valid.

The resolution procedure takes input a set of disjunctive clauses S = {D1, . . . , Dm}. Then,
repeat to get ⊥:

13

CS 245 Fall 2023

• Choose two parent clauses in S, one with p and one with ¬p.

• Resolve the two parent clauses, and call the resolvent D.

• If D = ⊥, then output empty clause.

• Otherwise, add D to S.

Example 5.2. Prove modus ponens:

p, p → q ⊢r q

Proof. By resolution,

(1) p (Premise)

(1) ¬p ∨ q (Premise)

(1) ¬q (Negation of conclusion)

(1) q (Resolvent of 1, 2 over p)

(1) ⊥ (Resolvent of 3, 4 over q)

Theorem 5.1 (Soundness of resolution formal deduction). The resolvent is tautologically
implied by its parent. Thus, resolution is a sound rule of formal deduction.

5.2 Set of support strategy

When doing resolution automatically, we need to decide the order to resolve the clauses. Depending
on the order, it can greatly affect the time to find a contradiction.

Strategies include:

• Set-and-support strategy

• Davis-Putnam procedure (DPP)

In set-of-support strategy, we partition all clauses into two sets: the set of support and the
auxiliary set.

The auxiliary set is a set of non-contradictory formulas.

At the start, use the set of premises as the auxiliary set, and the negation of the conclusion as the
set of support.

We then perform all possible resolutions involving the set of support. The resolvent is added to the
set of support.

14

CS 245 Fall 2023

Example 5.3. Prove p4 from

p1 → p2,¬p2,¬p1 → p3 ∨ p4, p3 → p5, p6 → ¬p5, p6

using set-of-support.

Proof. Let the auxiliary set be p1 → p2,¬p2,¬p1 → p3 ∨ p4, p3 → p5, p6 → ¬p5, p6. Let the initial
set of support be Σ = ¬p4.

(1) ¬p1 ∨ p2 (Premise)

(1) ¬p2 (Premise)

(1) p1 ∨ p3 ∨ p4 (Premise)

(1) ¬p3 ∨ p5 (Premise)

(1) ¬p6 ∨ ¬p5 (Premise)

(1) p6 (Premise)

(1) ¬p4 (Negation of conclusion) Σ = {7}

(1) p1 ∨ p3 (Resolvent of 7, 3) Σ = {7, 8}

(1) p2 ∨ p3 (Resolvent of 1, 8) Σ = {7, 8, 9}

(1) p3 (Resolvent of 2, 9) Σ = {7, 8, 9, 10}

(1) p5 (Resolvent of 4, 11) Σ = {7, 8, 9, 10, 11}

(1) ¬p6 (Resolvent of 5, 11) Σ = {7, 8, 9, 10, 11, 12}

(1) ⊥ (Resolvent of 6, 12)

Theorem 5.2 (Pigeonhole principle Pn). One cannot put n+ 1 objects into n slots.

We can formulate the pigeonhole principle as a conjunction of formulas.

1. Choose propositional variables pij , i ≤ n ≤ n+ 1, i ≤ j ≤ n.

2. Define pij as true if the i-th pigeon goes into the j-th slot.

3. Construct clauses for:

(a) Each pigeon i, 1 ≤ i ≤ n+ 1 goes into some slot k, 1 ≤ k ≤ n:

pi1 ∨ pi2 ∨ · · · ∨ pin

for 1 ≤ i ≤ n+ 1.

15

CS 245 Fall 2023

(b) Distinct pigeons i ≤ j, 1 ≤ i, j ≤ n+ 1 cannot go in the same slot k:

¬pik ∨ ¬pjk

for 1 ≤ i < j ≤ n+ 1, 1 ≤ k ≤ n.

Any truth valuation that satisfies the conjunction of all clauses would map n+1 pigeons one-to-one
into n slots. By pigeonhole principle, this cannot be done, so the set of clauses is unsatisfiable.

5.3 Davis-Putnam procedure (DPP)

Any clause corresponds to a set of literals contained within the clause. Since the order and multi-
plicity (num of duplicates) of the literals is irrelevant, the set associated with the clauses completely
determines the clause.

If clauses are represented as sets, we can write the resolvent on p of two clauses C ∪ {p} , D ∪ {¬p}
where neither C,D is empty as

[(C ∪ {p}) ∪ (D ∪ {¬p})] \ {p,¬p}

In other words, the resolvent is the union of all literals in the parent clauses except the two literals
involving p.

If C,D are both empty, then the resolvent of {p} , {¬p} is the empty clause ⊥.

In DPP, given a non-empty set of clauses in the propositional variables p1, . . . , pn, we repeat the
following steps until there are no variables left:

1. Remove all clauses that have both both q,¬q.

2. Choose a variable p appearing in one of the clauses.

3. Add to the set of clauses all possible resolvents using resolution on p.

4. Discard all (parent) clauses with p or ¬p in them.

5. Discard any duplicate clauses.

This is referred as eliminating the variable p.

If in some step we resolve {p} , {¬p}, then we obtain the empty clause {⊥}.

If there is no pair {p} , {¬p} to resolve, then all the clauses are discarded and the output will be no
clauses.

The output of DPP is either {¬} or ∅.

Example 5.4. Apply DPP to the set of clauses

{¬p, q} , {¬q,¬r, s} , {p} , {r} , {¬s}

1. Eliminating p gives {q} , {¬q,¬r, s} , {r} , {¬s}.

2. Eliminating q gives {¬r, s} , {r} , {¬s}.

16

CS 245 Fall 2023

3. Eliminating r gives {s} , {¬s}.

4. Eliminating s gives {⊥}.

The output is an empty clause.

If the output of DPP is the empty clause {⊥}, then both p,¬p are produced. Therefore, the set
of clauses obtained by preprocessing premises and negation of conclusion is inconsistent. Thus, the
theorem is valid.

If the output of DPP is the no clause ∅, then no contradictions can be found. In this case, the
theorem is invalid.

Theorem 5.3. Let S be a finite set of clauses. Then, S is not satisfiable iff the output of
DPP on input S is the empty clause {⊥}.

6 First-order logic

In propositional logic, a simple proposition is an unanalyzed whole which is either true or false.
There are certain arguments that cannot be expressed using propositional logic.

6.1 Elements of first-order logic

First-order logic is used to describe theories that comprise certain concepts specific to the structure
or category.

For example:

• Domain of objects (e.g. set of natural numbers)

• Designated individuals (e.g. 0)

• Relations (e.g. equality)

• Functions (e.g. succession, addition, multiplication)

Definition 6.1 (Domain). The domain (universe of discourse) is the collection of all things
that affect the logical argument under consideration.

The elements of the domain are called individuals, which can be anything.

A domain must be non-empty.

Relationsmake statements about individuals. Each relation is given a name, which is then followed
by an argument list.

Example 6.1. The argument “the sum of 2 and 3 is 5” can be written as sum2(2, 3, 5). It
has arity 3.

17

CS 245 Fall 2023

A one-place relation is a property.

Variables are used as a placeholder for an individual in relations.

Definition 6.2 (Atomic formula). A relation name, followed by an argument list in paren-
theses is an atomic formula.

Atomic formulas take on true/false values.

Atomic formulas can be combined by logical connectives similar to propositions.

Example 6.2. Define atomic formulas Human(Socrates),Mortal(Socrates). The statement
“if Socrates is human, then Socrates is a mortal” can be written as

Human(Socrates) → Mortal(Socrates)

We can write relations in a table/array. Relations of arity n can be represented in an n-dimensional
array.

As in propositional logic, formulas can be given names.

6.2 Quantifiers

In statements, we often need to indicate how frequent certain things are true. In first-order logic,
quantifiers are used in this context.

Definition 6.3 (Universal quantifier). ∀xA(x) indicates A(u) is true for all possible values
of u in the domain.

Example 6.3. Translate “everyone needs a break” into first-order logic.

Let the domain D be the set of all people. Define B(u) to mean “u needs a break”.

The translation is
∀xB(x)

Definition 6.4 (Existential quantifier). ∃xA(x) indicates A(u) is true for at least one u in
the domain.

Example 6.4. Translate “some people like their tea iced” into first-order logic.

Let the domain D be the set of all people. Define P (u) to mean “u likes their tea iced”.

The translation is
∃xP (x)

18

CS 245 Fall 2023

Variables that appear in a qualifier is bound. Otherwise, the variable is free.

Bound variables are local to the scope of the quantifier. Theefore, if several quantifiers use the same
bound variable for quantification, then all these variables are local to their scope and are distinct.

∀x,∃x are treated like unary connectives, and have higher precedence than all binary connectives.

We can quantify over a subset of the domain. For universal quantifiers, use implication (→). And
for existential quantifiers, use and (∧)

Quantifiers can be nested. However, multiple quantifiers are not commutative.

We can represent a universal quantifier in terms of an existential quantifier (or vice versa) by
negating one.

¬∀xA(x) |=| ∃x¬A(x)

¬∃xA(x) |=| ∀x¬A(x)

This way, the universal quantifier is similar to a conjunction, and the existential quantifier is similar
to a disjuncton.

6.3 Syntax

In first-order logic, we add the capacity to refer to individuals, and their properties and relationships.
This means formulas are more fine-grained, with:

• Specification of basic individuals given by domain

• Terms, expresions referring to individuals

• Atomic formulas which use relations to combine terms

• Formulas which are recursively built starting from atomic formulas

We use two kinds of symbols:

• Logical symbols with fixed syntactic use and fixed semantic meaning (e.g. ¬,∧,∀)

• Non-logical symbols (parameters) with designated syntax but not pre-defined semantic mean-
ing (e.g. <,+)

We use L as the formal language for first-order logic.

It has logical symbols:

• Connectives: ¬,∨,∧,→,↔

• Free variable symbols: u, v, w, u1, . . .

• Bound variable symbols: x, y, z, x1, . . .

• Quantifiers: ∀,∃

• Puctuation symbols: (), “,”

and non-logcal symbols:

19

CS 245 Fall 2023

• Individual symbols: a, b, c, a1, . . .

• Relation symbols: F,G,H, . . .

• Function symbols: f, g, h, f1, . . .

There is a special binary relation symbols called the equality symbol (≈). L may or may not
contain ≈. If L contains ≈, then it is called the first-order language with equality.

6.4 Terms

Definition 6.5 (Term). Term(L) is the smallest class of expressions of L closed under the
following formation rules:

1. Every individual symbol a is a term in Term(L).
2. Every free variable symbol u is a term in Term(L).
3. If t1, . . . , tn, n ≥ 1 are terms in Term(L) and f is an n-ary function symbol, then

f(t1, . . . , tn) is a term in Term(L).

Terms containing no free variables are called closed terms.

Example 6.5. Consider the first-order language of elementary number theory.
• Equality relation: yes
• Relation symbols: < (less than)
• Individual (constant) symbols: 0
• 1-place function symbols: s (successor)
• 2-place function symbols: +,×

The expressions ×(u, 0), s(s(0)),+(u,×(v, w)) are terms. They are usually written as u+0, 2, u+vw.

6.5 Formulas

Definition 6.6 (Atom). An expression of L is an atom or atomic formula in Atom(L)
iff it is of one of the following forms:

1. F (t1, . . . , tn), n ≥ 1 where F is an n-ary relation symbol and t1, . . . , tn are terms in
Term(L).

2. ≈ (t1, t2) where t1, t2 are terms in Term(L), also written as t1 ≈ t2.

In first-order language of elementary number theory, expressions ≈ (+(s(0), s(0)), s(s(0))) and
< (+(u,+(v, w)),+(u,w)) are atoms.

20

CS 245 Fall 2023

Definition 6.7 (Formulas in L). A formula in Form(L) is one of:
1. An atom in Atom(L).
2. ¬A for some A ∈ Form(L).
3. (A ∧B), (A ∨B), (A → B), or (A ↔ B) for some A,B ∈ Form(L).
4. ∀xA(x) or ∃xA(x) for some A(u) ∈ Form(L) in which every occurence of u in A(u) is

replaced with x.

Example 6.6. Translate this into first-order logic:
(1) For every integer x there is an integer which is greater than x.
(1) 500 is an integer.
(1) There is an integer which is greater than 500.

where
• N(u): u is an integer
• G(u, v): u is greater than v

The argument can be formalized as:

(1) ∀x(N(x) → ∃y(N(y) ∧G(y, x)))

(1) N(500)

(1) ∃y(N(y) ∧G(y, 500))

Definition 6.8 (Sentence). A sentence or closed formula in Form(L) is a formula in
which no free variables occur.
The set of sentences of L is denoted by Sent(L).

We can define some other first-order languages.

Definition 6.9 (First-order language of group theory). The first-order language of group
theory has the following properties:

• Equality relation: yes
• Relation symbols: none
• Individual symbols: e (identity element)
• Function symbols: −1 (inverse), ◦

Definition 6.10 (First-order language of set theory). The first-order language of set theory
has the following properties:

• Equality relation: yes
• Relation symbols: ∈
• Individual symbols: ∅
• Function symbols: none

21

CS 245 Fall 2023

6.6 Semantics

A valuation for L consists of an interpretation of its non-logical symbols and with an assignment
of values to its free variables. The valuation must contain enough information to determine if each
formula in Form(L) is true or false.

Logical symbols in L have a fixed semantics:

• Connectives are interpreted as in propositional logic.

• Meaning of quantifiers are explained intuitively.

• Equality symbol ≈ denotes the relation “equal to”.

• Variable symbols are interpreted as variables ranging over the domain.

• Punctuation symbols serve just like ordinary punctuation.

For non-logical symbols, a valuation consists of an interpretation plus an assignment.

An interpretation consists of:

• Non-empty set of individuals (domain).

• Specification for each individual symbol, relation symbol, and function symbol, of the actual
individuals, relations and functions that each will denote.

An assignment assigns each free variable a value in the domain.

We denote the meaning given by valuation v to a symbol s by sv.

Definition 6.11 (Valuation, FoL). A valuation for first-order logic language L consists of:
• A domain D ̸= ∅.
• A function v with properties:

– For each individual symbol a and free variable symbol u, we have that au, uv ∈ D.
– For each n-ary relation symbol F , we have that F v ⊆ Dn. In particular, ≈v=

{(x, x)|x ∈ D} ⊆ D2.
– For each m-ary function symbol f , we have that fv : Dm → D is a total (never

undefined) function.

It is very important that domain D ̸= ∅. For example, “an existing unicorn exists” can be modelled
as ∀xE(x) where E(x) means x exists. This is a vacuously true formula.

The purpose of a valuation is to provide semantic meaning to L.

Definition 6.12 (Value of a term). The value of a term t under valuation v over domain
D, denoted by tv, is defined as:

• If t = a is an individual/free variable symbol a, then its value is av ∈ D.
• If t = f(t1, . . . , tm),m ≥ 1, t1, . . . , tm ∈ Term(L), then

f(t1, . . . , tm)
v
= fv(tv1, . . . , t

v
m)

22

CS 245 Fall 2023

Theorem 6.1. If v is a valuation over D and t ∈ Term(D), then tv ∈ D.

We can precisely express the truth value of a formula in Form(L).

For any valuation v, free variable u, and individual d ∈ D we write v(u/d) to denote a valuation
which is exactly the same as v, except that uv(u/d) = d (substituting u with d).

That is, for each free variable w,

wv(u/d) =

{
d, w = u

wv, otherwise

Definition 6.13 (Value of a quantified formula). Let A(x) ∈ Form(L). Let u be a free
variable not occuring in A(x).
The values of ∀xA(x) under valuation v with domain D are given by:

∀xA(X)
v
=

{
1, A(u)

v(u/d)
= 1 for all d ∈ D

0, otherwise

∃xA(X)
v
=

{
1, A(u)

v(u/d)
= 1 for some d ∈ D

0, otherwise

v(u/d) is needed because u is a free variable and A(x) may also contain other free variables w.
When we evaluate A(u), unless we specify u is assigned value d (ranging over domain D), the
default assignment of u by the valuation v would be the individual uv.

Definition 6.14 (Value of a formula). Let v be a valuation with domain D. The value of a
formula in Form(L) under v is defined as:

• R(t1, . . . , tn)
v
= 1, n ≥ 1 iff (tv1, . . . , t

v
n) ∈ R ⊆ Dn.

• (¬A)
v
= 1 iff Av = 0.

• (B ∧ C)
v
= 1 iff Bv = 1 and Cv = 1 (etc. for other logical connectives).

• ∀xA(x)
v
,∃xA(x)

v
as defined earlier.

Theorem 6.2. If v is a valuation over D and A ∈ Form(L), then Av ∈ {0, 1}.

Definition 6.15 (Satisfiability and (universal) validity). Formula A ∈ Form(L) is:
• Satisfiable if there exists a valuation v such that Av = 1.
• (Universally) valid if for all valuations v, we have that Av = 1.
• Unsatisfiable if Av = 0 for all valuations v.

23

CS 245 Fall 2023

Definition 6.16 (Satisfiability of set of formulas). A set Σ ⊆ Form(L) is satisfiable iff
there is some valuation v such that Σv = 1.

Universally valid formulas in Form(L) is similar to tautologies in Form(Lp). However, verifying
if a formula in Form(L) requires all possible valuations over all possible domains to be checked,
including infinite domains.

Theorem 6.3 (Church, 1936). There is no algorithm for deciding the (universal) validity
of formulas in first-order logic.

In second-order logic, we can also range over subsets of the domain and relations to the domain.

6.7 Logical consequence in FoL

Logical consequences in first-order logic involves semantics.

Same as before, we use (|=) to notate tautological consequence.

Definition 6.17 (Logical consequence). Let Σ ⊆ Form(L), A ∈ Form(L). A is a logical
consequence of Σ iff for any valuation v with Σv = 1, we have Av = 1.

Example 6.7. Prove
∀x¬A(x) |= ¬∃xA(x)

Proof. By contradiction, suppose for some valuation v over domain D,

(∀x¬A(x))
v
= 1 (1)

(¬∃xA(x))
v
= 0 (2)

Negating (2) gives
(∃xA(x))

v
= 1 (3)

Then, for some d ∈ D,
A(d)

v
= 1 (4)

Negating (4) gives
(¬A(d))

v
= 0 (5)

However, from (1), it means that
(¬A(d))

v
= 1 (6)

(5), (6) creates a contradiction.

24

CS 245 Fall 2023

To prove that a formula F is valid, show that ∅ |= A.

The problem of proving if a formula is valid or not is undecidable. That is, there is no general
algorithm that can determine if a formula is valid in all cases.

7 Formal deduction in first-order logic

We add 6 additional rules to formal deduction.

Definition 7.1 (Rules of formal deduction in FoL). Let t be a term. In addition to the 11
rules of formal deduction, we have:
12. (∀−) If Σ ⊢ ∀xA(x) then Σ ⊢ A(t)
13. (∀+) If Σ ⊢ A(u) and u does not occur in Σ then Σ ⊢ ∀xA(x)
14. (∃−) If Σ, A(u) ⊢ B and u does not occur in Σ or in B then Σ,∃xA(x) ⊢ B
15. (∃+) If Σ ⊢ A(t) then Σ ⊢ ∃xA(x) (only some t needs to be replaced with x in A(x))
16. (≈ −) If Σ ⊢ A(t1) and Σ ⊢ t1 ≈ t2 then Σ ⊢ A(t2)
17. (≈ +) ∅ ⊢ u ≈ u

For (∃+), substitution allows any number of t to be replaced by x.

For (∀+) and (∃−), substitution requires all u to be replaced by x.

7.1 Resolution in first-order logic

It’s generally convenient to deal with formulas in which all quantifiers are moved to the front.

Definition 7.2 (Prenex normal form). A formula is in prenex normal form (PNF) if it
is of form

Q1x1Q2x2 . . . QnxnB

where n ≥ 1, Qi is a quantifier, B is quantifier-free.

Q1x1Q2x2 . . . Qnxn is the prefix, and B is the matrix.

We can algorithmically convert any formula into a logical equivalent formula in PNF:

1. Eliminate all occurences of → and ↔.

2. Move all negations inward such negations only appear as part of literals.

3. Ensure distinct bound variables have different names (standard variables apart)

4. Move all quantifiers to the front

If formula A does not depend on x, then it can be quanitifed over x using any quantifier. Use this
fact to move quantifiers to the front.

Additionally,

• ∀xA(x) ∧ ∀xB(x) |=| ∀x(A(x) ∧B(x))

25

CS 245 Fall 2023

• ∃xA(x) ∨ ∃xB(x) |=| ∃x(A(x) ∨B(x))

• QxQyA(x, y) |=| QyQxA(x, y)

• Q1xA(x) ∧Q2yB(y) |=| Q1xQ2y(A(x) ∧B(y)), where x, y is not in B(y), A(x)

• Q1xA(x) ∨Q2yB(y) |=| Q1xQ2y(A(x) ∨B(y)), where x, y is not in B(y), A(x)

Example 7.1. Find the prenex normal form of

∀x(∃yR(x, y) ∧ ∀y¬S(x, y) → ¬∃y¬Q(x, y))

Eliminate →:
∀x(¬(∃yR(x, y) ∧ ∀y¬S(x, y)) ∨ ¬∃y¬Q(x, y))

Move negation inwards:
∀x(∀y¬R(x, y) ∨ ∃yS(x, y) ∨ ∀yQ(x, y))

Standardize variables apart:

∀x(∀y1¬R(x, y1) ∨ ∃y2S(x, y2) ∨ ∀y3Q(x, y3))

Move quantifiers to front:

∀x∀y1∃y2∀y3(¬R(x, y1) ∨ S(x, y2) ∨Q(x, y3))

Definition 7.3 (∃-free prenex normal form). A sentence is in ∃-free prenex normal form
if it’s in PNF and does not contain and existential quantifier symbols.

Definition 7.4 (Skolem function). Consider a sentence of form

∀x1 . . . ∀xn∃yA

where n ≥ 0 and A is an expression possibly involving other quantifiers.
∃yA generates at least one individual for each n-tuple (a1, . . . , an) in the domain, which can
be expressed using f(x1, . . . , xn).
f is a Skolem function.

Skolem functions can be used to eliminate all existential quantifiers.

The skolemized version of ∀x1 . . . ∀xn∃yA is

∀x1 . . . ∀xnA
′

where A′ is the expression obtained from A by substituting each occurence of y by f(x1, . . . , xn).

26

CS 245 Fall 2023

Example 7.2. Skolemize ∀x∃y(x+ y = 0) with domain Z.

Each instance of x = d generates a corresponding y = −d that makes the formula true.

Define f(x) = −x. Then, we have the skolemized version of the formula:

∀x(x+ f(x) = 0)

More generally, the skolemized version of ∀x∃yP (x, y) is

∀xP (x, g(x))

where g(x) is the Skolem function generating a value y = g(x) for each x.

Note that the sentence obtained using Skolem functions is not, in general, logically equivalent to the
original sentence. This is because there can be more than one individual arising from the existential
quantifier.

Now, we can convert a sentence into ∃-free PNF algorithmically:

1. Transform the sentence A0 into a logically equivalent sentence A1 in PNF.

2. Repeat until all ∃ are removed:

(a) Assume Ai is of form Ai = ∀x1 . . . ∀xn∃yA.

(b) If n = 0, then Ai is of form ∃yA. Then, Ai+1 = A′ where A′ is obtained from replacing
all occurences of y by some unused individual symbol c in Ai (Skolem function with no
arguments).

(c) If n > 0, then Ai = ∀x1 . . . xnA
′ where A′ is obtained from replacing all occurences of y

by f(x1, . . . , xn) for some unused function symbol f .

Example 7.3. Find the ∃-free PNF of the sentence

∃x∀y∀z∃sP (x, y, z, s)

Consider x. Replace x with individual symbol a:

∀y∀z∃sP (a, y, z, s)

Consider s. Replace s with Skolem function g(y, z):

∀y∀zP (a, y, z, g(y, z))

Theorem 7.1. Given sentence F , there is an effective procedure for finding an ∃-free prenex
normal form formula F ′ such that F is satisfiable iff F ′ is satisfiable.

27

CS 245 Fall 2023

After all existential quantifiers have been eliminated through Skolem functions, we can “drop” the
universal quantifiers. For example, ∀y∀zP (a, y, z, g(y, z)) becomes P (a, y, z, g(y, z)).

Working under this convention, all variables are implicitly universally quantified.

Theorem 7.2. Given sentence F in ∃-free prenex normal form, one can construct a finite
set CF of disjunctive clauses such that F is satisfiable iff CF is satisfiable.

Theorem 7.3. Let Σ be a set of clauses and A be a sentence. The argument Σ |= A is valid
iff the set (⋃

F∈Σ

CF

)
∪ C¬A

is not satisfiable.

In resolution, we aim to reach the empty clause.

For propositional logic, it is impossible to derive a contradiction from a set of formulas unless the
same variable occurs more than once. Similarly, in first-order logic, we cannot derive a contradiction
from two formulas A,B unless A,B share complementary literals.

This cane be done by unification.

Definition 7.5 (Instantiation). An instantiation xi := t′i is an assignment to a variable xi

of a quasi-term t′i.

Definition 7.6 (Unification). Two formulas in FoL unify if there are instantiations that
make the formulas identical.
The instantiation that unifies the formulas are call a unifier.

Unification works because in resolution, all variables are implicitly universally quantified. Thus, the
steps that lead to unification are either variable renamings, or applications of universal instantiation
(∀−).

Example 7.4. Show that Q(a, y, z), Q(y, b, c) unify and give a unifier.

Since y in Q(a, y, z) is a different variable than y in Q(y, b, c), rename y in the second formula to
y1. So we have Q(a, y, z), Q(y1, b, c).

Consider the instantiation y := b, z := c for Q(a, y, z) and y1 := a for Q(y1, b, c).

Theorem 7.4. A set S of clauses in first-order logic is not satisfiable iff there is a resolution
derivation of the empty clause from S.

28

CS 245 Fall 2023

8 Computation and logic

8.1 Automatic theorem proving and verification

A theorem is a logical statement, with several premises and a conclusion.

To automatically prove that a theorem is valid, preprocess the formulas and use resolution.

Because statements of a formal theory (e.g. mathematics) are written in symbolic form, it is possible
to verify mechanically that a formal proof of a statement, from a finite set of hypotheses, is valid.

This task is known as automatic proof verification, and is closely related to automatic theorem
proving.

Automatic/manual theorem provers include: Isabelle, Coq, E, SPASS, Vampire.

CASC is a yearly competition of fully automatic theorem provers for classical first-order logic.

8.2 Algorithm

The basic resolution procedure is not an algorithm. We have not specified how to make choices
(what clauses to unify/resolve), nor have a point we can conclude “satisfiable”.

Definition 8.1 (Algorithm). Informally, an algorithm is a finite sequence of well-defined,
computer-implementable instructions, typically to solve a class of problems or perform a
computation.

All of these are equivalent:

• Programs written in C, Java, Python, etc.

• High level pseudo-code

• Turing machines

An algorithm solves a problem if, for every input, the algorithm produces the correct output.

8.3 Halting Problem

There are problems that cannot be solved by computer programs, even assuming infinite time and
space.

Does there exist an algorithm that operates as:

• Input: program P , input I

• Output: “yes” if program P halts on input I, and “no” otherwise.

This is described as the Halting Problem.

Theorem 8.1. The Halting Problem is unsolvable.

29

CS 245 Fall 2023

Proof. By contradiction, assume there is a solution to the Halting Problem H(P, I) that can deter-
mine whether or not a program halts, defined as

• Input: program P , input I

• Output: “halt” (yes) if P halts on input I, and “loops forever” (no) if P never stops on input
I.

Note that we can represent a program P itself as an input.

Construct program K(P) such that:

• If H(P, P) outputs “halt”, then K(P) loops forever.

• If H(P, P) outputs “loops forever”, then K(P) halts.

Consider K(K). If K(K) halts, then by definition H(K,K) output “halt”. So, K(K) loops forever.
This is a contradiction.

Otherwise, if K(K) loops forever, then by definition, H(K,K) loops forever. So, K(K) halts. This
is a contradiction.

In al cases, there is a contradiction. Thus, the halting algorithm H(P, I) does not exist.

8.4 Turing machine

A Turing machine is a simple mathematical model for algorithms and computation.

Definition 8.2 (Turing machine). A Turing machine T = (S, I, f, s0) consists of:
• S, a finite set of states
• I, an input alphabet (finite set of symbols/letters) containing the blank symbol B
• s0 ∈ S, the start state
• f : S × I → S × I × {L,R}, a partial function called the transition function, where
L,R standard for direction “left”, “right”

Consider a control unit and an infinite tape divided into cells with a finite number of non-blank
symbols at any time.

At the beginning, T is in the initial state s0, and is positioned at the initial position, the leftmost
non-blank symbol on the tape.

For each step, the Turing machine reads to current tape symbol x.

If the control unit is in state s and the function f is defined by f(s, x) = (s′, x′, d), then the control
unit enters state s′, writes x′, then moves left/right depending on d.

The tuple (s, x, s′, x′, d) is the transition rule of the Turing machine.

If f is undefined for some pair (s, x), then T halts.

30

CS 245 Fall 2023

8.5 Languages

Definition 8.3 (Alphabet). An alphabet Σ is a finite non-empty set of symbols (letters).

For example, Σ = {0, 1} is an alphabet.

Σ∗ denotes the set of all possible strings written with letters in Σ, including empty string (λ).

Definition 8.4 (Language). A language L over Σ is a subset of L∗.

For example, we can define a language L over {0, 1}:

L =
{
w ∈ {0, 1}∗ : w contains an equal number of 0, 1

}
Turing machines can be used to accept or recognize languages. To do this, we need to have a final
state.

Definition 8.5 (Final state). A final state of a Turing machine T = (S, I, f, s0) is any state
sf ∈ S that is not the first state in any five-tuple in the description of T using five-tuples.

Definition 8.6 (Accepts). Let V ⊆ I. A Turing machine T = (S, I, f, s0) accepts a string
x ∈ V ∗ iff T , starting in the initial position when x is written on the tape, halts in a final
state.
T accepts a language L ⊆ V ∗ if x is accepted by T iff x ∈ L.

To accept a subset L ⊆ V ∗, we can use symbols not in V . This means I may include symbols not
in V . These symbols are often used as markers.

A string s ∈ V ∗ ⊆ I∗ is not accepted if, when started in the initial condition with x written on the
tape, either:

• T does not halt

• T halts in a non-final state

There are also other ways to recognize langauges using a Turing machine; this is just one possible
way.

A Turing machine can be represented by a transition diagram, where:

• Each state is represented by a node.

• The initial state is specified with an incoming arrow.

• The final state is specified with a double circle.

• A transition rule (s, x, s′, x′, d) is symbolized by an arrow between nodes s, s′, and labelled
with triplet x/x′, d.

31

CS 245 Fall 2023

8.6 Decision problems

A Turing machine can be compute a partial function.

Suppose T , when given string x, halts at string y. We can define T (x) = y.

The domain of T is the set of strings for which T halts. T (x) is undefined if T does not halt with
x as input.

Turing machines can compute functions f : Z → Z if we specify an encoding for integers in unary
notation.

Definition 8.7 (Decider). A decider or total Turing machine is a Turing machine that
never halts.

The total Turing machine is the formalization of a terminating algorithm.

It is possible to construct an universal Turing machine that can simulate the computations of
every Turing machine when given an encoding of the Turing machine and its input. The universal
Turing machine is the formalization of a computer: it can do whatever a computer can do.

The Church-Turing thesis states that: “any problem that can be solved with an algorithm can
be solved by a Turing machine”.

A Turing machine is equivalent in computing power to all the most general mathematical notions
of computation (e.g. lambda calculus).

The Church-Turing thesis can be used to prove if a problem is solvable by a computer or not.

Definition 8.8 (Decision problem). A decision problem is a yes/no question on an infinite
set of inputs. Each input is an instance of the problem.

Satisfiability in first-order logic is a decision problem, where:

• Input: a formula A ∈ Form(L)

• Output: “yes” if A is satisfiable, and “no” otherwise.

Definition 8.9 (Decidable). A decision problem is decidable (solvable) if there exists
a terminating algorithm that solves it. Otherwise, the decision problem is undecidable
(unsolvable).

Definition 8.10 (Computable). A function is computable if it can be computed by a
Turing machine. Otherwise, the function is uncomputable.

Many decision problems can be stated in terms of if a natural number is in a subset of natural
numbers.

32

CS 245 Fall 2023

Definition 8.11 (S-membership). Let S ⊆ N. The S-membership problem asks: “for
any x ∈ N, is x ∈ S?”

Definition 8.12 (S-membership decidability). A set S ∈ N is decidable if the S-membership
problem is decidable.

Example 8.1. Suppose S ⊆ N is decidable. Prove that its complement Sc = N \ S is
decidable.

Proof. Define an algorithm such that:

Let x be given. If x ∈ S, then return “no”. If x /∈ S, then return “yes”.

There is no algorithm for:

• Checking if a set of first-order logic clauses is satisfiable.

• Checking if a formula in first-order logic is valid.

hencce these problems are undecidable.

To show that a problem is undecidable, we can use reductions.

Assume P1 is undecidable. If there is a terminating algorithm that converts any instance of P1 to
an instance of P2 with the same answer, then P1 is reducible to P2.

Theorem 8.2. If P1 is reducible to P2 and P1 is undecidable, then P2 is undecidable.

8.7 Computation

A Turing machine computation consists of successive applications of transition rules to the tape
content.

One computation step (transition) is the application of one transition rule.

Example 8.2. Define a Turing machine that changes the first pair of consecutive 1s on the
tape to 0s and the halts.

Define T1 = (S, I, f, s0) with states S = {s0, s1, s2, s3}, alphabet I = {0, 1, B}, and transition
function f with transition rules:

1. (s0, 0, s0, 0, R)

2. (s0, 1, s1, 1, R)

3. (s0, B, s3, B,R)

33

CS 245 Fall 2023

4. (s1, 0, s0, 0, R)

5. (s1, 1, s2, 0, L)

6. (s1, B, s3, B,R)

7. (s2, 1, s3, 0, R)

We can write a Turing machine computation in another way.

Definition 8.13 (Configuration). A configuration of a Turing machine T = (S, I, f, s0)
is denoted as α1sα2, where s ∈ S is the current state, and α1, α2 is the string on I∗ that
consists of the current contents of the tape from the leftmost non-blank symbol to the
rightmost non-blank symbol.

A computation of the Turing machine consistents of a succession of configurations, each obtained
by one transition rule to the previous configuration.

→ denotes the application of one transition rule, and →∗ denotes zero or more applications.

Example 8.3. Write a computation of T1 with input 010110.

s0010110 → 0s010110 → 01s10110 → 010s0110 → 0101s110 → 010s2100 → 0100s300

We can also represent a Turing machine graphically.

State are represented by nodes in a transition diagram.

The starting state s0 is depicted with an incoming arrow.

The final state is depicted with a double circle.

A transition rule (si, a, sj , b,D) is represented by an arrow from si to sj , labelled by a; b;D.

A computation corresponds to a path in the graph, beginning at the starting state.

Example 8.4. Construct a Turing machine T2 that recognizes the set of strings in {0, 1}∗
that have a 1 as their second bit.

We want a Turing machine that determines if the 2nd symbol is a 1.

For the first symbol, we can define five-tuples that move right, increment the state, and leave the
cell as is:

If the 2nd symbol is a 1, T2 should move into a final state and halt. Otherwise, the Turing machine
should halt in a non-final state.

So, we have

1. (s0, 0, s1, 0, R)

34

CS 245 Fall 2023

2. (s0, 1, s1, 1, R)

3. (s0, B, s2, 0, R)

4. (s1, 0, s2, 0, R)

5. (s1, 1, s3, 1, R)

6. (s1, B, s2, 0, R)

where s3 is the final state.

T2 will terminal in the finite state iff the input string has at least 2 bits, and the 2nd bit is a 1.

Example 8.5. Construct a Turing machine that recognizes the set {0n1n : n ≥ 1}

Let V = {0, 1}, I = {0, 1,M,B} where M is used as a marker.

T successively replaces a 0 at the leftmost position with an M, then replaces a 1 at the rightmost
position with an M. T terminates in a final state iff the string consists of a block of 0s followed by
a block of the same number of 1s.

1. (s0, 0, s1,M,R)

2. (s1, 0, s1, 0, R)

3. (s1, 1, s1, 1, R)

4. (s1,M, s2,M,L)

5. (s1, B, s2, B, L)

6. (s2, 1, s3,M,L)

7. (s3, 1, s3, 1, L)

8. (s3, 0, s4, 0, L)

9. (s3,M, s5,M,R)

10. (s4, 0, s4, 0, L)

11. (s4,M, s0,M,R)

12. (s5,M, s6,M,R)

where s6 is the final state.

To use a Turing machine to compute number-theoretic functions, we can represent the number with
unary representation.

Definition 8.14 (Unary representation). A natural number n in unary representation is
represented as a string of (n+ 1) 1s.

To represent multiple numbers, we can separate them using an asterisk.

35

CS 245 Fall 2023

Definition 8.15. Construct a Turing machine that adds two natural numbers.

The Turing machine computes the function f(n1, n2) = n1 + n2.

The pair (n1, n2) is represented in unary represntation separated by an asterisk. So, the Turing
machine takes this as input and produces an output of (n1 + n2 + 1) 1s.

1. (s0, 1, s1, B,R)

2. (s1, ∗, s3, B,R)

3. (s1, 1, s2, B,R)

4. (s2, 1, s2, 1, R)

5. (s2, ∗, s3, 1, R)

where s3 is the final state.

For more complex functions, we can use multi-tape Turing machines that uses more than one
tape simulataneously.

Multi-tape Turing machines and other variations has the same computation power as a regular
Turing machine.

The Busy Beaver problem is the problem of determining B(n), the maximum number of 1s a
non-halting Turing machine with n states with alphabet {1, B} can print on a tape that is initially
blank.

The Busy Beaver function B(n) is uncomputable.

8.8 Complexity

Among decidable problems, we can rank the problems by “difficulty” in terms of how efficiently
they can be solved.

Definition 8.16 (Computational complexity). The computational complexity (time
complexity) of an algorithm is the number of operations used by the algorithm, in terms of
input size.

The computational complexity of a problem is the computational complexity of the most efficient
algorithm that solves it.

Polynomial time is reasonably fast/tractable, and exponential time is too slow/intractable.

Definition 8.17 (Non-deterministic Turing machine). In a non-deterministic Turing
machine (NDTM), the allowed steps are defined as a relation consisting of five-tuples,
rather than functions.

At each step of computation, a NDTM can pick any of the different choices of the transition rules
that match the current state and tape symbol.

36

CS 245 Fall 2023

Definition 8.18 (Polynomial time problems). A decision problem is in P , the class of
polynomial time problems, if it can be solved (halt in final state) by a DTM in no more
than p(n) transitions, where p is a polynomial and n is the input length.

Definition 8.19 (Non-deterministic polynomial time problems). A decision problem is in
NP , the class of non-deterministic polynomial time problems, if it can be solved by a
NDTM in no more than p(n) transitions, where p is a polynomial and n is the input length.

Alternatively, NP is the set of decision problems for which the problem instances where the answer
is “yes” have proofs verifiable in polynomial time by a DTM.

Clearly, P ⊆ NP as a problem solvable in polynomial time can be verified in polynomial time with
the solution.

Problems in P are tractable and problems not in P are intractable.

Definition 8.20 (NP -complete). A problem inNP isNP -complete if every other problem
in NP can be reduced to it in polynomial time.

Finding a polynomial time algorithm for any one of the NP -complete problems would prove that
P = NP .

For SAT (Boolean satisfiability problem), the current best algorithm for solving it has a 2n time
complexity. However, verifying a solution takes only polynomial time.

SAT is NP -complete.

9 Peano Arithmetic and Gödel’s Incompleteness Theorem

We first prove the basic properties of equality: reflexivity, symmetry, transitivity.

Example 9.1. Prove the reflexivity of equality,

∅ ⊢ ∀x(x = x)

Proof.

∅ ⊢ u = u (=+)

∅ ⊢ ∀x(x = x) (∀+)

37

CS 245 Fall 2023

Example 9.2. Prove the symmetry of equality,

∅ ⊢ ∀x∀y((x = y) → (y = x))

Proof.

u = v ⊢ u = v (∈)
∅ ⊢ u = u (=+)

u = v ⊢ u = u (+)

u = v ⊢ v = u (=−)

∅ ⊢ (u = v) → (v = u) (→+)

∅ ⊢ ∀y((u = y) → (y = u)) (∀+)

∅ ⊢ ∀x∀y((x = y) → (y = x)) (∀+)

Example 9.3. Prove the transitivity of equality,

∅ ⊢ ∀x∀y∀z((x = y) ∧ (y = z) → (x = z))

Proof.

u = v ∧ v = w ⊢ u = v ∧ v = w (+)

u = v ∧ v = w ⊢ u = v (∧−)

u = v ∧ v = w ⊢ v = w (∧−)

u = v ∧ v = w ⊢ v = w (∧−)

∅ ⊢ (u = v ∧ v = w) → (v = w) (=−)

∅ ⊢ ∀x∀y∀z(x = y ∧ y = z) → (x = z) (∀+)

First-order logic is often used to describe specialized domains. In each case, we use a set of
domain axioms, which are formulas assumed to be true in that domain.

A set of domain axioms, a system of formal deduction, and all theorems that can be formally proved
from the domain axioms is a theory.

There are some requirements for the domain axioms. Let A be the set of domain axioms. Then,

• A should be decidable. There should exist a terminating algorith mto decide if a given
formula is a domain axiom.

• A should be consistent (wrt ⊢).

• A should be syntactically complete. For any formula F describable in the language of the
system, either F or ¬F should be provable from A.

38

CS 245 Fall 2023

9.1 Peano Arithmetic

Definition 9.1 (Peano Arithmetic). Peano Arithmetic is defined with:
• Individuals: 0
• Functions: s (successor), + (addition), · (multiplication)
• Relations: equality
• Axioms: definitions for the functions, induction

The set PA of axiom in Peano Arithmetic contains:

∀x¬(s(x) = 0) (PA1)

∀x((s(x) = s(y)) → (x = y)) (PA2)

∀x(x+ 0 = x) (PA3)

∀x∀y(x+ s(y) = s(x+ y)) (PA4)

∀x(x · 0 = 0) (PA5)

∀x∀y(x · s(y) = x · y + x) (PA6)

(A(0) ∧ ∀x(A(x) → A(s(x)))) → ∀xA(x) (PA7)

In a Peano Arithmetic proof, the set PA is implicitly considered to be part of the set of premises
of any theorem we wish to prove. We can show this with the notation

Σ ⊢PA C

9.2 Gödel’s Incompleteness Theorem

10 Program verification

We want to verify a program for its correctness: does a given program satisfy its specification?

Techniques for showing program correctness:

• Inspection: walk through code

• Testing: develop tests for code

• Formal program verification: use a formal proof system to prove correctness

Testing is similar to checking that a propositional formula is a theorem by trying some truth
valuations. Testing is not enough to prove correctness.

Steps for formal verification:

1. Convert the informal description R of requirements for an application to an “equivalent”
formula ϕR of some symbolic logic.

2. Write a program P that realizes ϕR in some environment.

3. Prove that P satisfies the formula ϕR.

39

CS 245 Fall 2023

Example 10.1. List the states of the following code that computes the factorial of input x
and stores in y:

y = 1;

z = 0;

while (z != x) {

z = z + 1;

y = y * z;

}

State at the while test:

• s0: z = 0, y = 1

• s1: z = 1, y = 1

• s2: z = 2, y = 2

• s3: z = 3, y = 6

• s4: z = 4, y = 24

• . . .

Definition 10.1 (Hoare triple). A Hoare triple is an assertion of form (|P |)C(|Q|), where
P is the precondition, C is the program, Q is the postcondition.

Definition 10.2 (Partial correctness). A Hoare triple (|P |)C(|Q|) is satisfied under partial
correctness, denoted as

|=par (|P |)C(|Q|)

iff for every state s that satisfies condition P , if the execution of program C starting from
state s terminates in state s′, then state s′ satisfies condition Q.

Definition 10.3 (Specification). A specification of program C is a Hoare triple (|P |)C(|Q|)
with the program C as the second component.

Example 10.2. Write the specification of the requirement: “if the input x is a positive
number, compute a number whose square is less than x”.

This can be expressed as the Hoare triple

(|x > 0|)C(|y · y < x|)

Note that specification is not behavior.

40

CS 245 Fall 2023

The program

while true { x = 0; }

satisfies all specifications under partial correctness. This is because the program never terminates,
so partial correctness is vacuously satisfied.

Definition 10.4 (Total correctness). A Hoare triple (|P |)C(|Q|) is satisfied under total
correctness, denoted as

|=tot (|P |)C(|Q|)

iff for every state s that satisfies condition P , execution of program C from state s terminates
and the resulting state s′ satisfies Q.

Total correctness is partial correctness with termination.

We can write preconditions and postconditions for partial and total correctness in first-order logic:

• Domain: programs, program states, conditions

• Relation State(s): s is a program state

• Relation Condit(P): P is a condition

• Relation Code(C): C is a program

• Relation Satisfies(s, P): state s satisfies condition P

• Relation Terminates(C, s): program C terminates when execution begins in state s

• Function result(C, s): the state that results from executing code C beginning in state s, if C
terminates.

Both partial and total correctness is undecidable (halting problem), so proofs will need to be done
on a case by case basis.

We can apply inference rules to each statement to prove partial correctness for an entire program.

The result is an annotated program, with one or more conditions before and after each program
statement. Each statement, together with the preceding and following condition, forms a Hoare
triple that justifies the correctness of each statement.

Auxiliary variables can be introduced if the conditions require additional variables that do not
appear in the program.

11 Review

All rules of formal deduction:

1. (Ref) A ⊢ A.

2. (+) If Σ ⊢ A then Σ,Σ′ ⊢ A.

3. (¬−) If Σ,¬A ⊢ B and Σ,¬A ⊢ ¬B then Σ ⊢ A.

41

CS 245 Fall 2023

4. (→−) If Σ ⊢ A → B and Σ ⊢ A then Σ ⊢ B.

5. (→+) If Σ, A ⊢ B then Σ, A → B

6. (∧−) If Σ ⊢ A ∧B then Σ ⊢ A and Σ ⊢ B

7. (∧+) If Σ ⊢ A and Σ ⊢ B then Σ ⊢ A ∧B

8. (∨−) If Σ, A ⊢ C and Σ, B ⊢ C then Σ, A ∨B ⊢ C

9. (∨+) If Σ ⊢ A then Σ ⊢ A ∨B and Σ ⊢ B ∨A

10. (↔−) If Σ ⊢ A ↔ B and Σ ⊢ A then Σ ⊢ B

11. (↔+) If Σ, A ⊢ B and Σ, B ⊢ A then Σ ⊢ A ↔ B

12. (∀−) If Σ ⊢ ∀xA(x) then Σ ⊢ A(t)

13. (∀+) If Σ ⊢ A(u) and u does not occur in Σ then Σ ⊢ ∀xA(x)

14. (∃−) If Σ, A(u) ⊢ B and u does not occur in Σ or in B then Σ,∃xA(x) ⊢ B

15. (∃+) If Σ ⊢ A(t) then Σ ⊢ ∃xA(x) (only some t needs to be replaced with x in A(x))

16. (≈−) If Σ ⊢ A(t1) and Σ ⊢ t1 ≈ t2 then Σ ⊢ A(t2)

17. (≈+) ∅ ⊢ u ≈ u

42

	Introduction
	Aristotelian logic
	Propositional logic

	Propositional language
	Parsing
	Semantics

	Propositional calculus
	Laws of propositional calculus
	Normal forms (DNF, CNF)
	Connectives
	Boolean algebra
	Transistor
	Basic logic gates
	Adders

	Formal deduction
	Formal deducibility
	Proofs
	Syntactic equivalence
	Soundness and completeness of formal deduction

	Formal deduction systems
	Proving argument validity with resolution
	Set of support strategy
	Davis-Putnam procedure (DPP)

	First-order logic
	Elements of first-order logic
	Quantifiers
	Syntax
	Terms
	Formulas
	Semantics
	Logical consequence in FoL

	Formal deduction in first-order logic
	Resolution in first-order logic

	Computation and logic
	Automatic theorem proving and verification
	Algorithm
	Halting Problem
	Turing machine
	Languages
	Decision problems
	Computation
	Complexity

	Peano Arithmetic and Gödel's Incompleteness Theorem
	Peano Arithmetic
	Gödel's Incompleteness Theorem

	Program verification
	Review

