CS 245

Notes

Author
Steven Cao

University of Waterloo
Fall 2023

CS 240 Winter 2024

Contents
[1 Asymptotic Analysis| 4
(1.1 ~Algorithm design| 4
(.2 Pseudocodel 4
[1.3 Measuring efficiency| 5
(1.4 Asymptotic analysis|. 6
(1.5 Analysis of algorithms|o oo 9
(1.6 Analysis of recursive algorithms| 9
(1.7 Best, worst, average case| 10
2 Priority Queue| 11
[2.1 Abstract Data Typeso 11
2.2 Priority queue ADT} oo 12
2.3 Binary heap| 13
[3 Sorting, average-case, randomization| 14
[3.1 Sorting permutations| 14
[3.2 Randomized algorithms|. o000 14
[3.3 QuickSelect] 15
[3.4 QuickSort| 16
[3.5 Comparison-based sorting| 17
[3.6 Non-comparison-based sorting| 18
4 Dictionaries 19
4.1 Binary search tree|. 19
42 AVL treel. 19
4.3 Skip list| 20
4.4 Biased search requests| oL 22
[> Dictionary for special keys| 22
[>.1 Interpolation search|. 22
B2 T . . o o 23
[>.3 Irie compression| 23
6 Dictionaries by hashing) 24
6.1 Hashing| 24
[6.2 Hashing with chainingl 24
[6.3 Open addressing] 25
6.4 Hash functionl 25
[Range search dictionary] 26
(7.1 Rangesearchl 26
[7.2 Quadtree|. 26
T3 kdtred 27
[7.4 Rangetree|. 27

CS 240

Winter 2024

[8 String matching|

8.1 Karp-Rabin|
82 KMPI.

Data compression|

[9.1 Single-character encodings|

9.4 Lempel-Ziv-Welch (LZW

(10 External memory|

[10.1 Stream-based algorithm|
[10.2 External dictionary|

9.3 Run-length encoding (RLE)|

CS 240 Winter 2024

1 Asymptotic Analysis

1.1 Algorithm design

Definition 1.1 (Problem). A problem is a description of input and require output.

For example, given an input array, rearrange elements in non-decreasing order.

Definition 1.2 (Problem instance). A problem instance is one possible input of a
specified problem.

A problem instance for sorting is [= [5,2,1,8,2].

Definition 1.3 (Size of problem instance). The size of problem instance I, Size(I),
is a positive integer measuring size of problem instance I wrt some attribute of input.

\.

If the input is an array, the instance size can be the size of the array.

Definition 1.4 (Algorithm). An algorithm is a finite step-by-step process for carrying
out a series of computations, given an arbitrary instance I.

Definition 1.5 (Solving a problem). Algorithm A solves problem II if for every
instance I of Pi, A computes a valid output for I in finite time.

Definition 1.6 (Program). A program is an implementation of an algorithm using
a specified langauge.

To go from problem II to a program that solves it, we need to take these steps:
1. Algorithm design: design algorithms that solve II
2. Algorithm analysis: determine correctness and efficiency of algorithms

3. Implementation: implement the best algorithm (correct and efficient)

1.2 Pseudocode

~

Definition 1.7 (Pseudocode). Pseudocode is a method of communicating algorithms
to a human.

Pseudocode uses natural language descriptions and omits some unnecessary technical
details (e.g. initialization).

Use indentation to depict scope instead of braces.

CS 240 Winter 2024

[Example 1.1. Write pseudocode for insertion sort.]

Algorithm 1 Insertion sort
Require: A, n
fori<1ton—1do
J 41
while j > 0 and A[j] < A[j — 1] do
L swap A[j] and A[j — 1]
Ji—1

1.3 Measuring efficiency

There are two types of efficiency.

Definition 1.8 (Running time). Running time is the amount of time it takes for the
program to run.

Definition 1.9 (Auxiliary space). Auxiliary space is the amount of additional
memory the program requires.

. J

Efficiency is a function of input. We can depict this as T'(I), where I is a problem instance.

To derive T'(I), we group all instances of size n into set I,,. Then, we measure over I,,. We
can take either the average case, the best case, or the worst case. In any case, T'(I) usually
depends on instance size and instance composition.

One way to measure running time is to use experimental studies. That is, run the program
implementing the algorithm with inputs of varying size and composition. We can plot the
results in a graph wrt size.

However, this method requires implementing the algorithm and depends on software /hardware
factors. To determine running time more concretely, we need a theoretical framework for
algorithm analysis.

We first need an idealized memory model.

Definition 1.10 (RAM model). In the Random Access Memory (RAM) model:
e There is a set of memory cells, each storing a data item.
e Any primitive operation (memory access, variable assignment, arithmetic
operators, method return, etc.) takes the same constant time c.

We only need the pseudocode of the algorithm to analyze the algorithm under the RAM
model. To find time efficiency, count the number of primitive operations. To find space
efficiency, count the number of memory cells in use.

CS 240 Winter 2024

[Example 1.2. Determine the running time of the following algorithm.]

Algorithm 2 ArraySum
Require: A, n
sum < A[0]
fori<1ton—1do
- sum + sum + Ali

Count the number of primitive operations for each statement and find the sum (depending
on n). Focus on the growth rate of n, ignoring constant factors and lower order terms.

1.4 Asymptotic analysis

Asymptotic analysis (order notation) gives us tools to formally depict growth rate.

Definition 1.11 (O-notation). f(n) € O(g(n)) if there exist constants ¢ > 0, ny > 0
such that

[f(n)| < ¢lg(n)]
for all n > ng. That is, f(n) is asymptotically (eventually) bounded from above by
g(n).

Example 1.3. Given f(n) = 75n + 500, g(n) = 5n?, show that f(n) € O(g(n)).

First set f(n) = g(n) and solve the equation. We get n = 82. Take ¢ =1, ng = 82.

Alternatively, notice for all n > 1, we have
75n < 75n?

500 < 500n2

Therefore,
75n 4+ 500 < 7512 + 500n? = 575n>

Take ¢ = 575, ng = 1. This gives a tighter bound than before.

What if we want an asymptotic notation that guarantees a tight bound? We also need a
lower bound.

Definition 1.12 (Q-notation). f(n) € Q(g(n)) if there exists constants ¢ > 0, ng > 0
such that
[f(n)] = clg(n)]

for all n > ng. That is, f(n) is asymptotically bounded from below by g(n).

CS 240 Winter 2024

Definition 1.13 (O-notation). f(n) € ©(g(n)) if there exists constants c;,co > 0,
ng > 0 such that

c1lg(n)| < [f(n)] < c2lg(n)]
for all n > ng. That is, f(n), g(n) have equal growth rates.

Theorem 1.1 (Tight bound). f(n) € ©(g(n)) iff f(n) € O(g(n)) and f(n) € Q(g(n)).

Ideally, © should be used to depict growth rate of algorithms. This is sometimes hard, so big
O is used.

Growth rate Name Effect when problem size doubles

O(1) constant Tn)=c = T(2n)=c

O(logn) logarithmic T'(n) =clogn = T(2n) =T(n) +c
©(n) linear T(n)=cn = T(2n) =2T(n)

O(nlogn) linearithmic 7T'(n) = cnlogn = T'(2n) = 2T(n) + 2cn
O(nlog*n) quasi-linear

O(n?) quadratic T(n) =cn* = T(2n) =4T(n)

O(n?) cubic T(n) =cn® = T(2n) = 8T (n)

0(27) exponential T'(n) = 2" = T(2n) = ¢ 'T%*(n)

Table 1: Common growth rates, in increasing order

There are also strict asymptotic bounds.

Definition 1.14 (o-notation). f(n) € o(g(n)) if for all ¢ > 0, there exists ny > 0 such
that

[f(n)] < ¢lg(n)]

for all n > ng.

Definition 1.15 (w-notation). f(n) € w(g(n)) if for all ¢ > 0, there exists ng > 0 such
that

[f(n)] = clg(n)]

for all n > ng.

Winter 2024

CS 240
Theorem 1.2 (Relationships between order notations).
f(n) € ©(g(n)) = g(n) € O(f(n))
f(n) € Og(n)) <= g(n) € Q(f(n))
f(n) € o(g(n)) <= g(n) € w(f(n))
f(n) € o(g(n)) = f(n) € O(g(n))
f(n) € o(g(n)) = f(n) & Qg(n))
f(n) € w(g(n)) == f(n) € Qg(n))
f(n) e w(g(n)) = f(n) & Og(n))

We can perform algebra on order notation.

Theorem 1.3 (Identity of order notation).
f(n) € ©(f(n))

Order notation is transitive, similar to comparison operators.

Theorem 1.4 (Transitivity of order notation).

f(n) € O(g(n)) A g(n) € O(h(n)) = f(n) €
f(n) € Qg(n)) Ag(n) € Qh(n)) = f(n) €
f(n) € O(g(n)) A g(n) € o(h(n)) = f(n) €

When adding multiple functions, take the max of all functions when analyzing.

Theorem 1.5 (Maximum rules of order notation). Suppose f(n) > 0, g(n) > 0 for all
n > ng. Then,

f(n) +g(n) € Qmax{f(n),g(n)})
f(n) +g(n) € O(max {f(n),g(n)})

Theorem 1.6 (Limit theorem for order notation). Suppose for all n > ng, f(n) > 0,

g(n) >0, L =lim, % Then,

CS 240 Winter 2024

1.5 Analysis of algorithms
The goal is to use asymptotic analysis to simplify run-time analysis.
We can identify primitive operations, which take constant time.

The complexity of a loop can be expressed as the sum of the complexities of each iteration.
Nested summation may be needed for nested loops.

There are two general strategies:

1. Use ©-bounds throughout the analysis and obtain the ©-bound for the complexity of
the algorithm.

2. Prove O-bound and 2-bound separately.

Definition 1.16 (Worst-case time complexity).

Tworst(n) = max(T'(I))

Iel,

For insertion sort, the worst case running time is O(n?).

Definition 1.17 (Best-case time complexity).

Thest(n) =min I € 1,(T(1))

For insertion sort, the best case running time is ©(n).

Definition 1.18 (Best-case time complexity).

Tpog(n) = ﬁ S T()

Iel,

Do not compare algorithms based on solely O-notation. ©-notation should be used to compare
algorithms.

Algorithms with the same runtime efficiency may not have the same speed. Further, algorithms
with worse runtime efficiency may be faster than algorithms with better time efficiency for

small inputs.

To find the space used by an algorithm, count total number of memory cells accessed wrt n.
We are mostly interested in auxiliary space, the space used in addition to input.

1.6 Analysis of recursive algorithms

Consider merge sort, a recursive algorithm.

CS 240 Winter 2024

Algorithm 3 MergeSort
Anl«0,r<n—-15«10
if S is empty then
_ initialize as array S[0..n — 1]
if r <! then
‘ return
else

m < [(r+1)/2]
MergeSort(A, n,l,m,S)
MergeSort(A, n,m + 1,7,.5)
Merge(A, I, m,r,S)

For each step, merge sort divides the array into two halves, sorts both recursively, then
merges the two arrays. Merge is ©(n) for merging n elements.

This produces the recurrence relation:

T(n) = {TU%D +7([5])+en n>1

c n=1

First consider the sloppy recurrence with floors and ceilings removed:

T(n):{2T(g>+cn n>1

c n=1

This resolves to T'(n) € O(nlogn).

Recursion Resolves to Example
T(n) <T(n/2)+ O(1) T(n) € O(logn) Binary search

T(n) <2T(n/2) + O(n) T(n) € O(nlogn) Merge sort
T(n) <2T(n/2)+ O(logn) T(n) € O(n) Heapify
Tn)<cI'(n—1)+0(1),c<1l T(n)eO(1) Average-case analysis
T(n) <2T(n/4) + O(1) T(n) € O(yv/n) Range search
T(n) <T(yvn)+ O(y/n) T(n) € O(y/n) Interpolation search
T(n) <T(yv/n)+ O(1) T(n) € O(loglogn) Interpolation search

Table 2: Common recurrence relations

1.7 Best, worst, average case

Algorithms can have two different running times on two instances with equal size.

10

CS 240 Winter 2024

Definition 1.19 (Worst-case time complexity).

Tworst(n) = max{T'(I)}

Iel,

where I, is the set of all instances with size n.

Definition 1.20 (Best-case time complexity).

Thest(n) =min I € I, {T(I)}

For insertion-sort, the best instance is a sorted array, so best case time complexity is ©(n).
The worst case time complexity is ©(n?).

Definition 1.21 (Average-case time complexity).

Tavg(”) - ﬁ Z {T(I)}

mrer,

2 Priority Queue

2.1 Abstract Data Types

Definition 2.1 (ADT). An abstract data type (ADT) is a description of informa-
tion and a collection of operations on the information.

ADTs merely provides an interface to access the information. ADTs do not describe how the
information is stored.

There can be multiple ways to implement the same ADT. Information is realized as data
structures, and operations are realized as algorithms.

Here are some common ADTs:

11

CS 240 Winter 2024

Definition 2.2 (Stack). Stack is an ADT for a collection of items in LIFO order.
Operations:

e push: insert an item.

e pop: remove and return the most recently inserted item.
Optional operations:

® size

e isEmpty

e top
Possible implementations:

e Array

e Linked List

. J

Stacks are used to store information in procedure/function calls.

Definition 2.3 (Queue). Queue is an ADT for a collections of items in FIFO order.
Operations:

e enqueue: insert an item.

e dequeue: remove and return the least recently inserted item.
Optional operations:

® size

e isEmpty

o peek
Possible implementations:

e Circular array

e Linked list

2.2 Priority queue ADT

Definition 2.4 (Priority queue). Priority queue is a collection of items in some order
(priority).
Operations:

e insert: insert an item.

e deleteMax: remove and return the item with the highest priority.

We can use a priority queue to perform sorting.
This has time complexity O(initialization + n - insert + n - deleteMazx)
Some ways to implement priority queues:
1. Unsorted arrays
e insert: O(1)
e deleteMaz: O(n)

12

CS 240 Winter 2024

e pg-sort: O(n?)
2. Sorted arrays

e insert: O(n)

o deleteMaz: O(1)

e pg-sort: O(n?)

2.3 Binary heap

Definition 2.5 (Binary tree). A binary tree is either:
e Empty
e Node, left subtree, right subtree

Theorem 2.1 (Binary tree minimum height). Consider a binary tree with n nodes
and height h. Then,
h € Q(logn)

The lower bound arises from a full binary tree, in which level ¢ < h has 2¢ nodes, and level h
has between 1 to 2" nodes.

Definition 2.6 (Heap). A max-oriented binary heap is a binary tree with the
following properties:
1. Structural property:
e All levels of the heap are full except possibly level h.
e The last level is left-justified.
2. Heap-order property:
e For any node i, key[parent(i)] > keyli].

Heaps are ideal for implementing priority queues.

Theorem 2.2 (Heap height). Given a heap with n nodes and height h,

h € ©(logn)

This comes from that heaps are “almost full” binary trees.
Since heaps are left-justified, we can store them in arrays in the following way:
e Store root in A[0].
e Store subsequent levels one after the other, each level from left to right.
Then,
e Root is 0.

13

CS 240 Winter 2024

e Last node is n — 1.
e Left child is 27 + 1.
e Right child is 27 + 2.
e Parent is |(i —1)/2]

To perform insertion, first place the new key at the first free leaf, or the end of the array.
Heap property may have been violated, so we need to perform a fix-up.

The time complexity is O(h) = O(logn)

Heap sort is done by modifying pg-sort for heaps so that it is in-place (build heap on input
array).

We can use heapify to build a heap from an array of known size.

This has complexity ©(n). A heap can be build in linear time if we know all items in advance.

3 Sorting, average-case, randomization
For some algorithms, the best case and worst case differ too significantly, so average-case

time complexity is most useful. Average-case analysis paints a more accurate picture of how
an algorithm performs, given that all instances are equally likely.

3.1 Sorting permutations

Definition 3.1 (Sorting permutation). The sorting permutation of array 7 is the
array containing the index of each element when the array is sorted.

Arrays with the same relative order have the same sorting permutations.

There are n! sorting permutations of an array with distinct numbers of size n. Thus, we can
define average cost through permutations:

1
Tog(n) = — > T(m)
WGHn
where II,, is the set of all sorting permutations of size n.

We can group together instances with the same runtime to find the average runtime.

3.2 Randomized algorithms

Instances in the real world are often not random. In some cases the worst-case behavior can
be consistently triggered, such as reversed arrays for insertion sort.

Randomization improves runtime in practice when instances are not equally likely. It makes
sense to randomize algorithms which have better average-case than worst-case runtime.

14

CS 240 Winter 2024

Definition 3.2 (Randomized algorithm). A randomized algorithm is an algorithm
that relies on some random numbers in addition to input.
The runtime is dependent on both input I and random numbers R.

Definition 3.3 (Expected runtime).

Texp(I) = E[T([v R)] = Z T(Iv R)P<R>
VR

Definition 3.4 (Worst-case expected runtime).

Tvexp(n) = max Texp (1)

3.3 QuickSelect

The selection problem is as follows: given array A of n numbers and k € [0,n — 1], find
element that would be at index k if A is sorted.

A special case is median finding, which is equivalent to select(|n/2]).
Selection problem can be done in O(n) average time using QuickSelect.
QuickSelect requires two subroutines:

1. ChoosePivot: select p € [0,n — 1]

2. Partition: rearrange A such that everything before A[p] is less than Alp|, and everything
after A[p| is greater than A[p|.

ChoosePivot can be done by selecting the rightmost element of the array (n — 1).

Algorithm 4 StandardPartition
Require: A,p
S,E, L <[]
v < Alp]
for z € A do
if x < v then S.append(x)
else if x > v then L.append(z)
else F.append(z)
A0...|S]=1]« S
AllS|..|S|+|E| -1« FE
AllS|+|E]...n—1] « L

Partitioning can also be done in-place, by continuously swapping outermost wrongly-positioned
pairs.

15

CS 240 Winter 2024

Algorithm 5 HoarePartition

Require: A, p
Aln — 1] + Alp]
14 —1
j+n—1
v Aln—1]
loop

while Ali] <vdoi<+i+1
while j > i ANA[j] >vdoj+ j—1
if 1 > j then break
else A[i] <> A[j]
Aln — 1] < Al

Algorithm 6 QuickSelect
Require: Ak
p < ChoosePivot(A)
i < Partition(A, p)
if i = k then return A[i]
else if ¢ > k then return QuickSelect(A[0...i — 1], k)
else if i < k then return QuickSelect(Ali +1...n — 1], k)

QuickSelect has ©(n) best case and ©(n?) worst case. The best case happens when the first
chosen pivot has pivot index k. The worst case happens when the pivot value is always
wrongly chosen.

We can show that the average runtime of QuickSelect is ©(n).

To avoid bad instances, we can implementation a randomized version of QuickSelect:
e Shuffle the input A at the start
e Randomly select the pivot

Either method leads to ©(n) expected time.

3.4 QuickSort

QuickSort is another algorithm developed by Hoare. It uses pivot and partitioning to sort an
array.

Worse case is ©(n?), best case is ©(nlogn).
By randomizing the pivot, the expected runtime is O(nlogn).
QuickSort can be improved in several ways:

1. Switch to insertion sort when n is small. This reduces worst case space to O(logn).

16

CS 240 Winter 2024

Algorithm 7 QuickSort
Require: A, n
if n <1 then return
p < ChoosePivot(A)
i < Partition(A, p)
QuickSort(A[0...i —1])
QuickSort(A[i +1...n —1])

2. Switch to HeapSort when recursion depth is high. This reduces worst case time to
O©(nlogn).

3.5 Comparison-based sorting

Definition 3.5 (Comparison model). In the comparison model, data can be accessed
in two ways:

1. Compare two elements

2. Move elements around

The lower bound for comparison-based sorting is ©(nlogn).

Using a decision tree, we can describe all decisions taken during the execution of an
algorithm. The height of the tree (longest path to a leaf) represent the worst case of the
algorithm.

Theorem 3.1. Comparison-based sorting algorithms require Q(nlogn) comparisons.

Proof. Let SortAlg be a comparison-based sorting algorithm. Then, SortAlg has a decision
tree where each leaf is a sorting permutation. This means given that the input array is of
length n, the tree has n! leaves.

17

CS 240 Winter 2024

Since a binary tree of height h has up to 2" leaves, we get that

2 > pl
h > log(n!)

€ Q(nlogn)

3.6 Non-comparison-based sorting
Array of integers, strings can be sorted using non-comparison-based sorting.

Bucket sort is an example of a non-comparison-based sorting algorithm.

Algorithm 8 BucketSort
Require: A

B «+ empty array of lists of size R
for e € A do
. B[bucket of e].push(e)
140
for b € B do
for e € b do
L L Ali] + e

1+ 1+1

Bucket sort is stable and has ©(n + R) time and ©(n + R) space, where R is the number of
buckets (radix).

We can use multiple stages of bucket sort to sort numbers by going to each digit.
MSD radix sort has ©(mnR) time and ©(m +n + R) space, where m is the number of digits.

LSD radix sort takes advantage of stability of bucket sort. It has ©(m(n + R)) time and
O(n + R) space.

18

CS 240 Winter 2024

Algorithm 9 MSDRadixSort
Require: A,l < 0,7 < n — 1,d + leading digit index
if [> r then return
BucketSortDigit(A[l...7],d)
if there are no more digits then return
I'«1
while I’ < r do
L 7’ <— max value such that A[l’...r'] has the same d-th digit

MSDRadixSort(A, ', r',d + 1)
U'«—7r+1

Algorithm 10 LSDRadixSort
Require: A

for d € [digit index from least significant to most significant] do
 BucketSort(A4, d)

4 Dictionaries

4.1 Binary search tree

Definition 4.1 (Binary search tree). A binary search tree (BST) is a binary tree
where each node is either:

1. Empty

2. Contains a KVP and two subtrees
A BST node has the property that every key to its left is smaller and every key to its
right is bigger.

Operations search, insert, delete all have ©(h) time, where h is the height of the BST. In the
worst case, h = n which leads to ©(n) time for these operations. In the best case, the tree is
balanced which leads to ©(logn) time.

Definition 4.2 (Height of tree node). The height of node v is the height of the subtree
rooted at v.

4.2 AVL tree

Definition 4.3. AVL tree An AVL tree is a BST with height-balance property: for
any node v, the height of its left and right subtree differ by at most 1. The height or
the difference in balance is stored for each node.

Theorem 4.1. An AVL tree of n nodes has ©(logn) height.

19

CS 240 Winter 2024

Insertion and deletion may cause an AVL tree to become unbalanced. In that case, we can
rotate the tree to restore balance.

Algorithm 11 RotateRight
Require: z

y < z.left
zleft <— y.right
y.right < 2
return y

Algorithm 12 RotateLeft
Require: z

y < z.right
z.right < y.left
y.left < z
return y

Algorithm 13 Restructure
Require: z

y < child of z with greatest height
x < child of y with greatest height
if x <y < z then

 return RotateRight(z)

else if y <z < z then

z.left «— RotateLeft(y)

return RotateRight(z)

else if z <z < y then

z.right <— RotateRight(y)
return RotateLeft(2)

else if z < y < z then

. return RotateLeft(z)

When an AVL tree is modified, call Restructure on the inserted/replaced node.

4.3 Skip list

Definition 4.4 (Skip list). A skip list is a hierarchy of linked lists. The lists are
collected in layers. Each layer starts with a left sentinel (—oo) and ends with a right
sentienl (0co0). A layer is half as dense as the layer below it. The bottom (base) layer is
a linked list that contains every KVP. Each node may have a node (1/2 probability) in
its layer above with the same key pointing to the node below and the next node in
that layer.

20

CS 240 Winter 2024

To search through a skip list, we can take advantage of the sparser upper layers to skip over
large chunks of list. Then, traverse through lower layers to narrow down the search.

Algorithm 14 getPredecessors
Require: k

P < root
P + empty stack of nodes
while p.below exists do
p < p.below
while p.after.k < k do
. p <« p.after
P.push(p)

The getPredecessors function can be used in skip list search, insert, delete.

Algorithm 15 SkipList search
Require: k
P + getPredecessors(k)
q < P.top
if g.after.k = k then return q.after
else return not found

To insert into a skip list, we need to randomly generate the height of the node stack for the
inserted key. The height is determined by flipping a coin until a tail is flipped, and counting
the number of heads.

To delete from a skip list, link the predecessors of the node stack to node after for each level.
In both insert and delete operations, the number of levels needs to be adjusted so that the
top layer is the only layer which contains only the two sentinels.

Let X} be the height of a tower. Then, X} ~ Geometric(p = 1/2). And,

P(X, > i) = (%)

X} is independent between towers.
Let S; be the list of keys in layer i. We can determine expected length of .S; to be
n
15) = 5

And,
E(h) =2+ logn

For search, insert, delete, the expected time determined by number of scan-forward operations
is O(logn).

21

CS 240 Winter 2024

4.4 Biased search requests

Unordered lists/arrays can be made more efficient by using an optimal ordering if some items
are accessed more frequently than others.

Definition 4.5 (Optimal static ordering). An array in optimal static ordering is
ordered by frequency of access known beforehand.

Sometimes the frequencies are not known beforehand.

Definition 4.6 (Move-to-front heuristic). After search, move the accessed item to the
front /back.

MTF is 2-competitive, meaning it is at most twice as expensive than optimal static
ordering.

There is also transpose heuristic and frequency-count heuristic.

5 Dictionary for special keys

5.1 Interpolation search

There is a lower bound to comparison-based search.

Theorem 5.1. Q(logn) comparisons are required for search in comparison-based model.

When keys are close to evenly distributed, search can be done more optimally.

Algorithm 16 InterpolationSearch

Require: Ak
[0
r<—mn-—1

while [<r do
if k < A[l] or k > Ar] then return not found
if k = A[r] then return Ar]

m U+ | A2 o - 0|

if k = A[m] then return A[m)]
else if A[m| < k then [+ m+1
else rm — 1

Interpolation search has O(loglogn) average time.

22

CS 240 Winter 2024

5.2 Trie

In some cases we want to store words in a dictionary, where a word is a sequence of characters
over alphabet X.

Definition 5.1 (Trie). A trie (radix tree) is a tree where each edge correspond to a
character in a string or the end of string ($). Words are stored in leave nodes.

Algorithm 17 getPathTo
Require: w

Z <= root
P+ []
d<0
while d < |w| do
if z[wld]] exists then
2+ z[wld]]
d<d+1
P.push(z)
else break

Algorithm 18 Trie search
Require: w
P + getPathTo(w)
z < P.top
if z is not a leaf then return not found
return z

For each node, a reference to the leaf containing the longest word in the subtree can be stored
to speed up prefix search.

Search, prefix search, insert, delete all take ©(|w|) time, independent of n.

5.3 Trie compression

Definition 5.2 (Pruned trie). A pruned trie is a trie where subtrees with one key
are represented as a single node.

Pruned trie saves space when there are few long strings. However, it can be compressed
further by contracting chains in internal nodes.

Theorem 5.2 (Tree with no chains). Let T" be a tree with m leaves. If every internal
node has at least 2 children, then the tree has at most m — 1 internal nodes.

23

CS 240 Winter 2024

Definition 5.3 (Compressed trie). A compressed trie (Patricia trie) is a trie where
each node stores the index of the next character to check during a search. A compressed
trie with n keys always has n — 1 internal nodes.

A compressed trie uses O(n) space.

6 Dictionaries by hashing

6.1 Hashing

Definition 6.1 (Direct addressing). If every key k is an integer and k € [0, M — 1],
with direct addressing, the key is stored in the corresponding k-th slot in the table.

Search, insert and delete are done by directly accessing A[k]. The drawback is that M needs
to be sufficiently large which wastes space, and keys needs to be integers.

Definition 6.2 (Hash function). A hash function is a function i : U — [0, M — 1],
used to determine the slot to store a KVP in a hash table.
h(k) is the hash value of k.

Hash functions should be fast to compute (O(1)). If a hash function is not injective, collisions
may occur. There are many strategies to handle collisions.

6.2 Hashing with chaining

Definition 6.3 (Hash chaining). With chaining, multiple items are allowed in each
slot, and are generally stored in linked lists.

Search looks for key k in the list at the slot h(k). MTF heuristic can be applied. Insert adds
the KVP to the front of the list at the slot.

Insert takes O(1) time. However, search and delete can take up to ©(n) time if all items hash
to the same slot.

Definition 6.4 (Load factor). Load factor represents the ratio of number of items to
the number of slots in a hash table:

n
o= —
M

Definition 6.5 (Uniform hashing assumption). Uniform hashing assumption
(UHA) assumes any possible hash function is equally likely to be chosen.

24

CS 240 Winter 2024

UHA is used to make average-case analysis possible for hash tables. With UHA, each item is
equally likely to hash into any slot. That is,

M
for any key k and slot .

[Theorem 6.1. For any key k the expected size of the bucket at h(k) is at most 1 + .]

When o become high enough, set M <+ 2M and perform a rehash to reduce collisions.

6.3 Open addressing

There are ways to resolve coliisions within the table without using additional space. Insert
can be modified to follow a sequence of possible locations until an empty slot is found.

Definition 6.6 (Linear probing). If A(k) is occupied, place at the next available
location. The probe sequence is h(k,i) = h(k) +i (mod M)

Delete requires the slot to be marked as deleted without clearing it, so that search can still
find subsequent slots.

Linear probing may cause entries to be clustered into regions, which causes many probes to
be needed for the operations. To avoid consecutive locations, a separate hash function can
be used to determine the step size on probe collsion.

Definition 6.7 (Double hashing). Open addressing with probe sequence h(k,i) =
(ho(k) +ih1(k)) (mod M)

ho, hy should be independent.

Definition 6.8 (Cuckoo hashing). Use 2 tables Ty, T} with different hash functions
ho, hi. A key k is at either Ty[ho(k)], T1[h1 (k)]

If there is a collision during insertion, move the existing key into the other table determined
by the other hash function. Repeat until the slow to be inserted is empty. If there is an
infinite loop, perform a rehash.

6.4 Hash function

We want a hash function that is easy to compute and aims for ﬁ probability of collision
between two keys. Examples include:

e h(k) =k (mod M) for some prime M.
o h(k)=|M(kA—-|kA])|,Ae€[0,1] CR. A=y is good.

25

CS 240 Winter 2024

7 Range search dictionary

7.1 Range search

Range search looks for all items in a given interval. This is simple for single dimensional
data, which can be done in O(logn + s) time using sorted array of balanced BST. However,
for multi-dimensional data, this is more difficult as the previous data structures can only sort
the keys for one dimension.

7.2 Quadtree

Definition 7.1 (Quadtree). A quadtree is a tree which recursively divides a 2D region.
The root node represents a bounding box of size 2¥ x z*. Each internal node contains
4 children, splitting up the space into 4 regions. Points are stored in the leaves, which
contains up to one point.

\.

Quadtrees are similar to pruned tries in its operations.

Definition 7.2 (Spread factor). The spread factor of a quadtree is defined by

L

p(S) = .

where L is the side length of the quadtree, and d,,;, is the smallest distance between
any two points in S.

In the worst case, h € (log p(5)).

Algorithm 19 Quadtree RangeSearch
Require: r : node, @) : query rectangle
R + r.region
if R C @ then return all points below r
if RNQ = () then return empty
if r is a leaf then
p 4 r.point
if p # null and p ¢ @ then return p
else return empty
S|
for v € r.children do
 S.append(RangeSearch(v, Q))
return S

Quad tree range search has ©(nh) worst case time.

Quadtrees are efficient when points are close to evenly distributed. Quadtrees generalize to
higher dimensions, such as octrees for 3 dimensions.

26

CS 240 Winter 2024

7.3 kd-tree

Definition 7.3 (kd-tree). A kd-tree is a binary tree which recursively splits points
into two equal regions, alternating between vertical and horizontal.

To build a kd-tree, recursively split the nodes along the median. This can be done using
QuickSelect (partition).

Range search with kd-tree is similar to quadtree.

Algorithm 20 kd-tree RangeSearch
Require: r : node, () : query rectangle
R < r.region
if R C @ then return all points below r
if RNQ = then return empty
if r is a leaf then
p < r.point
if p € @ then return p
else return empty
S
for v € r.children do
 S.append(RangeSearch(v, Q))
return S

Range search for kd-tree has O(s + /n) time.

At higher dimensions, range search can be done in O (s + n1’§> time. Other operations can

be done in the same time independent of d.

7.4 Range tree

Balanced BST is efficient for one-dimensional dictionaries. Range search can be done in
O(s +logn) time. To range search, find the paths leading to the the boundary nodes P, P;.
Then, report the descendents of all topmost inside nodes.

Definition 7.4 (Range tree). A 2D range tree is a BST sorted by the z-coordinate
key. Each node also contains an associate tree, which is its subtree sorted by the
y-coordinate.

Range search works similarly to a BST. Begin by performing range search on the main tree
by the z-coordinate. For topmost inside nodes, range search their associate tree by the
y-coordinate.

Range trees require O(nlogn) space.

27

CS 240 Winter 2024

Range trees can be generalized to higher dimensions using multiple layers of associate trees. In
this case, range trees use O(n(logn)® ") space, O(nlogn®) time to construct, O(s 4 (logn)?)
time to range search.

Range trees trade space for search and range search efficiency.

8 String matching

Definition 8.1 (String matching). Search for a string (pattern) within a body of text.

A simple string matching algorithm is the brute force algorithm, which checks over all
possible positions of the pattern until a match is found. This has ©(m(n — m)) time, where
m = |P|,n =|T|. For medium sized m, this leads to ©(n?) time.

8.1 Karp-Rabin

Hash values (fingerprints) can be used to eliminate guesses faster. To calculate and update
the hash efficiently, we can implement rolling hash which is updatable in constant time for
the subsequent fingerprint.

Algorithm 21 KarpRabinMatch
Require: T, P
M < some prime number
hy < h(T[0...m — 1))
s+ R™ ! (mod M)
for i € [0,n —m] do
if hy = hp and stremp(T[i...i + m], P) then return i
if i <n —m then
. hy < R((hy) — sT[i]) + T[i + m] (mod M)

return fail

8.2 KMP

KMP (Knuth-Morris-Pratt) algorithm starts similar to brute-force pattern matching. However,
on mismatch, shift the pattern forward such that the longest prefix of the pattern matchs the
longest suffix of the pattern before the mismatch character.

KMP uses a failure array to determine the pattern shift after failure. The failure array maps
the index at failure to the index in pattern to shift to after mismatch.

Outside of computing failure array, KMP has ©(n) time.

Fast computation of failure array can be done in ©(m) time, which is done in a similar way
to KMP itself. The failure array is computed as it is being used.

28

CS 240 Winter 2024

Algorithm 22 KMPMatch
Require: T, P

F <+ FailureArray(P)

140

71+0

while i < n do
if P[j] = T[i] then
if j =m — 1 then
‘ return i —m + 1
else
L i+ 1

j—J+1

else

if 7 > 0 then

C je Fli—1]
else

L i+l
return fail

Algorithm 23 FailureArray
Require: P
F[0] <0
7+ 1
[+ 0
while 7 <m do
if P[j] = P[l] then
[« 1+1
Flj) 1
j+—7+1
else if [> 0 then
L+ Fll—1]
else
L Flj] <0
J4+—7+1

29

CS 240 Winter 2024

Together, KMP has ©(n + m) time.

8.3 Boyer-Moore

Boyer-Moore algorithm provide fastest pattern matching in practice for English text. The
algorithm search the pattern in reverse. When a mismatch occurs, the algorithm uses bad
character heuristic and good suffix heuristic to eliminate unnecessary checks.

For bad character heuristic, first compute the last occurrence array L(c) which maps a
character to the index of last occurrence in P, or —1 if ¢ ¢ P. This can be done in O(m + |X])
time. When a mismatch occurs at character ¢ € T, shift the pattern so that the last occurrence
of the character in text in P lines up with c. If ¢ ¢ P, shift the pattern completely past the
current window. If the shift causes the pattern to move backwards, instead shift the pattern
forward by one character similar to brute-force.

Algorithm 24 BoyerMoore
Require: T, P
L <+ LastOccurrenceArray(P)
je=m-—1
14— m—1
while : <n and 7 > 0 do
if T[i] = P[j] then
141—1
J—g—1
else
L i< i+m—1—min{L(c),j—1}
N J4+—m—1
if j = —1 then
‘ return ¢ 4+ 1
else
 return fail

Good suffix heuristic is similar to KMP failure array, but applied to the suffix. On mismatch,
the pattern is shifted so that the good suffix aligns with the last occurence of the suffix in P.

8.4 Suffix tree

Suffix tree stores all suffixes of 7" in a trie. This can be used for efficient string matching for
multiple patterns on the same text. Suffix tree uses O(n) space if the trie is compressed.

Generally suffix tree can be built in ©(|3|n?) time. Pattern matching uses O(m) time.

Suffix tree is good but is slow to build and takes up a lot of space.

8.5 Suffix array

Suffix array is an alternative to suffix tree. It stores all suffixes of T" in lexicographic order.

30

CS 240 Winter 2024

To build the suffix array, use MSD radix sort on suffixes of 7. This takes ©((n + |X|) logn)
time.

To pattern match, perform binary search on the suffix array. This takes ©(mlogn) time.

9 Data compression

Compression is the process of mapping the source text S to the coded text C. Lossless
compression allows S to be exactly recovered from C' for every input.

We want to minimize the size of C'. This can be quantified using compression ratio.

Definition 9.1 (Compression ratio).

|Cllog |Yc|
|S]log [Xs]

Ideally compression ratio should be below 1.

Theorem 9.1 (Impossibility of compression). No lossless encoding scheme can have
CR < 1 for all input strings.

However, real-life data has patterns that can be compressed. We can design encoding schemes
that work well for frequently occuring patterns.

If S and C' are too large, they must be stored as streams. This means the algorithm has to
process the input one character at a time.

9.1 Single-character encodings

Definition 9.2 (Character encoding). Character encoding F maps each character in
the source alphabet to a string in the coded alphabet. That is,

E:%g— 3%

Character encodings can be fixed-length or variable-length. For example, ASCII is fixed-length,
and Morse code is variable-length.

Fixed-length codes do not compress. Variable-length codes can allocate shorter codes for
more frequent characters, which can make the coded text shorter.

The decoding algorithm must uniquely map X7, — Xg. Prefix-free codes can do this without
an end character.

31

CS 240 Winter 2024

9.2 Huffman code
We can build the best trie given 7" in the following way:

1. Create tries with one node for each character in Xg, labelled with the frequency of the
character.

2. Join two least frequent tries into a new tries, using the sum of frequencies of the two
tries as the frequency.

3. Repeat until there is one trie remaining.
A min-heap can be used in this process.

Huffman encode takes O(|¥g]|log|Xs| + |C]) time.

9.3 Run-length encoding (RLE)

RLE is an example of multi-character encoding. It encodes run of single characters into
the length of the run.

Elias gamma code can be used to encode positive integers used for run length prefix-free.
This is done by adding m — 1 zeros before the binary number, where m is the number of
digits.

The best case of RLE is where the entire string is composed of long runs. If S =0...0, then
|Cl = O(logn)

9.4 Lempel-Ziv-Welch (LZW)

Sometimes we cannot determine the frequency substrings in a text beforehand. We can use a
adaptive dictionary, which is a dictionary that is constructed during encoding/decoding.

To encode, start with dictionary D containing all single characters. For each step, find the
longest string in S which is in D. The string is encoded with the corresponding code in D.
Then, the string and the subsequent character is added into D as a new entry.

To decode, the dictionary D is reconstructed in a similar way to encoding. However, D is one
step behind, which is problematic when a code requires the next entry in D which doesn’t
exist yet. In this case, the entry can be reconstructed by Sprev + Sprev[0)]

Encoding and decoding is both O(|S|) time.

9.5 Bzip2

Bzip2 is a compression scheme which uses text transforms. Text transforms map texts to
another text, which may compress better. Bzip2 uses Burrows-Wheeler transoform (BWT),
move-to-front transform, modified (zero-only) RLE, and Huffman coding.

MTF transform begins with an array of all characters L. Upon retrieving a character ¢ from
S, encode it as the index of the character in L and move that character to the front in L.

32

CS 240 Winter 2024

Algorithm 25 LZWEncode

Require: S,C
D < initial dictionary
i < new dictionary entry start (128)
while S is not empty do

v < D.root

while S is not empty and ¢ = v[S.top| exists do
V<4

- S.pop

C.append(v)

if S is not empty then

v[S.top] =i

141+ 1

To decode MTF transform, start with the same L and look up L to determine the original
character.

To encode BWT:

1.
2.
3.

List all cyclic shifts of S.
Sort the array of cyclic shifts lexicographically.

Combine the last character of each array into a single string and return the string.

Sorting can be done efficiently using MSD radix sort, with consideration that anything after
the end character $ does not matter.

To decode BWT:

1.
2.

10

Create the shift array where the last element corresponds to a character in C.

Sort C' in lexicographic order and write the string to the first characters of the shift
array.

Starting from the string with $ at the end, let ¢ be the character in front.
Determine the index i for which ¢ occurs in front out of all strings.

For the i-th occurence of ¢ in the last character of all arrays, place the

External memory

10.1 Stream-based algorithm

Definition 10.1 (External memory model (EMM)). In EMM, there is an unbounded
external memory which stores the input with size n. The algorithm can fetch the
memory one block at a time.

33

CS 240 Winter 2024

For stream-based algorithms, need to process input one block at a time, and push to output
one block at a time. Runtime can be determined based on the number of block transfers.

Generally, % block transfers are required to read input or write output of size n.

Merge sort can be implemented with O (% log n) block transfers.

10.2 External dictionary

Standard BST has poor memory locality. That is, nearby nodes are unlikely to be in the
same block. There are data structures that can improve locality.

2-4 trees are BST where each node can store 1-3 nodes and 2-4 children. Nodes are ordered
such that nodes to the left are smaller than nodes to the right. And, all subtrees are at the
same level.

Searching for 2-4 trees is similar to BST.

To insert, find the path to the node where the key can be inserted. If inserting would cause a
node overflow, split the node and give the parent one additional node.

34

	Asymptotic Analysis
	Algorithm design
	Pseudocode
	Measuring efficiency
	Asymptotic analysis
	Analysis of algorithms
	Analysis of recursive algorithms
	Best, worst, average case

	Priority Queue
	Abstract Data Types
	Priority queue ADT
	Binary heap

	Sorting, average-case, randomization
	Sorting permutations
	Randomized algorithms
	QuickSelect
	QuickSort
	Comparison-based sorting
	Non-comparison-based sorting

	Dictionaries
	Binary search tree
	AVL tree
	Skip list
	Biased search requests

	Dictionary for special keys
	Interpolation search
	Trie
	Trie compression

	Dictionaries by hashing
	Hashing
	Hashing with chaining
	Open addressing
	Hash function

	Range search dictionary
	Range search
	Quadtree
	kd-tree
	Range tree

	String matching
	Karp-Rabin
	KMP
	Boyer-Moore
	Suffix tree
	Suffix array

	Data compression
	Single-character encodings
	Huffman code
	Run-length encoding (RLE)
	Lempel-Ziv-Welch (LZW)
	Bzip2

	External memory
	Stream-based algorithm
	External dictionary

