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PREFACE

This is the second

Of a series

Of little books

On modern mathematics.

The first is on

Non-Euclidean geometry.

The kind of reception which

It received,

Is responsible for the appearance
Of this second one.




INTRODUCTION

It is well-known that
Scientific knowledge

Is increasing all the time,
That science is a

Living, growing subject.

But one generally thinks of
Mathematics as being

So old and so "'finished",

That it cannot grow any more.

Indeed

The mathematics

(Arithmetic, algebra, geometry)
Taught in the schools

Was known

CENTURIES AGO;

And even the

Usual COLLEGE course

Dates back

THREE HUNDRED YEARS,
For analytics was created by Descartes
And calculus by Newton,

Both in the 17th century.

And yet the fact is

That mathematics,

EVEN TO A GREATER EXTENT THAN SCIENCE,
Has moved steadily forward

Since that time.

What are some of these

More recent ideas in mathematics?

Are they so abstract

That the young people of this generation
May not even hear them mentioned,
Although many of them were created

By very YOUNG mathematical geniuses?
Are they so hopelessly remote




From ordinary ways of thinking

That the layman may not get

ANY use or pleasure from them?
That even

Most teachers of mathematics

May not have the opportunity

Of becoming acquainted with them?

BY NO MEANS!

The truth is that

These recent developments

In mathematics

Are not only

Of interest to mathematicians,

But are as great a help

To the SCIENTIST

As ever calculus was;

The PHILOSOPHER finds

That modern mathematics

Has a direct bearing

On fundamental ideas

Of the universe.

The PSYCHOLOGIST will see

In modern mathematics

A great instrument

For freeing the mind from prejudices,
And for building

New and powerful structures

Upon the ruins of these old prejudices
(As in the creation of Non-Euclidean geometry).
Indeed EVERYONE can appreciate
The remarkable

ORIGINALITY and FERTILITY

Of modern mathematics.

This little book is intended to serve

As an introduction to one branch of

Modern mathematics,

That it may make further reading on the subject
Easier and pleasanter.
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EVARISTE GALOIS

The particular branch
Of modern mathematics
Treai'ed in this little book

Is

The Theory of Groups,
Developed and applied by
Evariste Galois.

. Galois died,

Just one hundred years ago,

Before he reached the age of
Twenty-one!

In his short and tragic life

He developed

This branch of mathematics,

Which is of the greatest importance
To-day.

He is ranked among the
Twenty-five greatest mathematicians

That EVER lived.*

Outside of his tremendous success
In his mathematical work,

His life was a series of
Frustrations.

He was anxious to enter

L'Ecole Polytechnique in Paris,

But failed in the entrance examination;
He tried again a year later,

But was failed again!

1 G. A. Miller in Science, Jan. 22, 1932.




He sent a résumé of his work

To Cauchy and Fourier,

Two outstanding mathematicians
Of that time,

But neither one

Paid any attention to him,

And both lost his manuscripts!

Some of his teachers said of him:

""He knows absolutely nothing."

"He has very little intelligence,

Or else he has so successfully hidden it
That it has been

Impossible for me to discover it."

He was expelled from his school.
He was imprisoned for being
A Revolutionist.

He was "framed"
To fight a duel
In which he was killed.

Peace to his spirit.

On the night before the duel,

Having a presentiment that he would be killed,

He hurriedly wrote out

Some of his mathematical ideas

And sent them fo a friend.

(See the biography of Galois

By M. P. Dupuy

In the

Annales de I'Ecole Normale Superieure, 1896.
See also the very interesting

""Source Book in Mathematics"

By David Eugene Smith.)

I. THE IMPORTANCE OF GROUPS.

Before discussing the theory itself,
It will be interesting to give

One of the many reasons

Why it is so important.

It is common knowledge that
One of the important functions
Of mathematics
Is
To solve equations.
Algebraic equations' may be classified
According to their degree.
An equation of the
FIRST DEGREE
ax +-b=0
Can be solved®
By any child who has had
A first course in algebra.’
The solution here is
x = —b/a.

1The term "algebraic equation”
Has a very SPECIFIC meaning.
It means an equation of the form
ax" 4+ a,x"t - + a, =20
Where n is a positive integer only.
2 Except only when a=10 and b £ 0.
3 Equations of the first degree
Were solved as far back as 1700 B. C.
This is the date of

One of the earliest known mathematical documents,

"Ahmes Papyrus';

It has recently been published

Under the auspices of the
Mathematical Association of America.




The solution of an equation of the
SECOND DEGREE
ax* +-bx+c¢=0
Is also generally included
In such an elementary course.
The solution is
e o (l-——bi\/ b*—4ac)/2a.
The ancient Babylonians® were able to solve
Equations of this type
Many centuries B.C.

The solution of the
THIRD DEGREE equation
ax’+ bx*4- ex 4+ d =0,

And that of the
FOURTH DEGREE

ax*+ bx*+ cx* - dx + e =0,
Were much more difficult
Than those of the
First and second degrees
And were not obtained until
The 16th century.
These solutions
May be found in
Any book on the
Theory of Equations.

And so,

As the degree increased,

The solution became

Rapidly more difficult,

And although

Mathematicians could not solve
General equations of degree

HIGHER THAN FOUR

1See the article on
"The Oldest Extant Mathematics"
By G. A. Miller
In ""School and Society"
June 18, 1932, p. 833.
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Still they* believed
That such equations
Could be solved
And eventually would be.
And it was not until
The 19th century
That this was shown,
By means of the
Theory of Groups,
To be

IMPOSSIBLE.

It is important

To make clear at this point
Just what is meant by
"IMPOSSIBLE".

Whether a problem
Can or cannot be solved
Depends upon the
Conditions imposed upon the solution.
Thus,
x4+ 5=3
CAN be solved IF
Negative numbers are permitted,
But CANNOT be solved IF
Negative numbers are NOT permitted.

Similarly,

2x +3=10
CAN be solved IF
X represents a number of dollars,
But CANNOT be solved IF
X represents a number of people,
Since x =3l/.

An angle CANNOT, in general,

1 Even Euler,
The leading mathematician
Of the 18th century.




Be trisected

IF RULER AND COMPASSES ONLY
Are to be used,

But CAN be trisected IF

OTHER INSTRUMENTS are permitted.

An algebraic expression may be
REDUCIBLE (that is, FACTORABLE)
Or IRREDUCIBLE (NOT FACTORABLE)
Depending upon the
FIELD* in which
The factoring is to be done.
Thus,
x4+ 1
Is irreducible in the
Field.of REAL numbers,
But REDUCIBLE in the
FIELD OF COMPLEX NUMBERS,
Since the factors of x* +- |
Are x - iand x—i,
Where i=1V — I.
In other words,
I is meaningless to say

1 A FIELD is a set of numbers
Such that
The sum, difference, product and quotient
(Division by zero being ruled out)
Of any two of them
Are also included in the set.
Thus all complex numbers form a field;
The real numbers alone also form a field;
The rational numbers alone form a field;
But the integers alone do NOT form a field,
Since the QUOTIENT of two integers
Is not necessarily an integer.
A splendid presentation of
Various kinds of interesting "fields"
(Or "realms", as they are sometimes called)
May be found in
"The Theory of Algebraic Numbers™
By L. W. Reid,
A delightful book to read.
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That an expression
CAN or CANNOT be factored
Without specifying the FIELD.

Thus mathematicians have learned
The importance of

Specifying the ENVIRONMENT
In which

A statement is TRUE or FALSE
Or perhaps entirely meaningless

And hence NEITHER TRUE NOR FALSE!

Now, then,

In what sense

Has it been proved impossible

To solve the general equation

Of degree higher than four?

The answer is

That it is impossible

To solve it by radicals.

This means that

The unknown CANNOT be expressed

In terms of the coefficients

By the use of

Rational operations

(Namely, addition, subtraction, multiplication and
division)

And extraction of roots

ONLY,*

A finite number of times.

1 The rational operations
And extraction of roots
Were the only algebraic operations known
At the time when the
Third and fourth degree equations
Were successfully solved,
And therefore
Attempts to solve
Equations of higher degrees
Were limited to these elementary operations.

To illustrate,
In the first degree equation
ax + b=0,
We have x —=—b/a;
That is,
X CAN be found
By dividing (which is a rational operation)
The constant term b
By the coefficient a.
In the second degree equation

ax’*+ bx + ¢=0
We have W

x = [—b = \/b>—4ac)/2a
Which again is found
From the coefficients
By using
ONLY
THE RATIONAL OPERATIONS
AND EXTRACTION OF A ROOT.

Similarly,

In the solution of the general equations
Of the third and fourth degrees,

« is found in terms of the coefficients
By using these operations only,

A finite number of times.

In other words,

They are SOLVABLE BY RADICALS.

But when we come to

Equations of degree higher than four,
This is no longer true.

This refers, of course,

To the GENERAL equation

Of degree higher than four;

Certain SPECIFIC ones

CAN be solved by radicals.

We shall see
How it was proved

By means of GROUP THEC:RY.




That the GENERAL equation
Of degree higher than four
CANNOT be solved by radicals.!

We shall also see
How simplz and elegantly
It can be shown

BZ GROUP THEORY,
]

at an angle cannot, in general,
Be trisected by ruler and compasses only,
As well as the bearing of
Group theory
Upon other famous problems.

* For the solution of equations
Of degree higher than four,
Without this limitation,
See L. E. Dickson: Modern Algebraic Theories
And the further references which he gives
(This, of course, does not refer
To approximate solutions,
Which may sometimes be obtained
By graphs, Horner's method, etc.,
And which are of interest in

APPLIED MATHEMATICS.)
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Il. WHAT IS A GROUP?

The essentials
Of a mathematical machine or "'system"
Are

1) the elements

2) an operation.

For example,

(a) (1) The elements may be the integers
(Positive, negative and zero)
(2) The operation may be addition.

Or
(b) (1) The elements may be the rational numbers
(except zero)
(2) The operation may be multiplication.
Or
(c) (1) The elements may be
Substitutions of
A given number of letters,
Say X, Xz, Xs.
(2) The operation may be
Following one of these substitutions
By another,
As will be illustrated later.

1 A rational number is one which

Can be expressed as

The ratio of two integers:

Thus 3/5 is a rational number,

But /2 is not rational,

Since it cannot be expressed

In the form a/b,

Where a and b are integers:

For the proof of this

See p. 23 in

Rietz and Crathorne: College Algebra.
8




Or

(d) (1) The elements may be
The rotations of the figure:

AVA
[/

Through an angle of 60°,
Or multiples of 60°.

(2) And the operation, as in (c),
Following one of these rotations

By another.

And so on,

It might seem

That not much could be done
With so humble a start.

But the power of it

Is amazing,

As will appear soon.

In order that such a system

May be a "Group",

It must have

The following FOUR qualifications:

I. If two elements®
Are combined by the given operation
The result must itself be
An element of the system.

For instance,
In (a) above,

If one INTEGER

1 Whether the two elements are distinct
Or the same one taken twice.

9

Is ADDED to another INTEGER,
The result is an INTEGER.

In (b),

If two RATIONAL NUMBERS
Are MULTIPLIED,

The result is

A RATIONAL NUMBER.

In (c),
If the SUBSTITUTION
Xz fOr X1, Xs for Xz, X: for Xs
Is made in

X1 X2 Xs
Obtaining

X2 X3 X1
And this SUBSTITUTION
FOLLOWED BY
The SUBSTITUTION
X3 'FOI' X2, X1 'FOI‘ X3, X2 'FOI' X1,
Obtaining

X3 X1 X2
The result is
The SUBSTITUTION
X3 for X1, X1 'For Xz, X2 for Xs
In the original given expression.

In (d),

If the ROTATION of the figure

Through 60° (counter-clockwise)

Is FOLLOWED BY

The ROTATION 120° (counter-clockwise)

The result is
The ROTATION 180° (counter-clockwise).

2. The system must contain
The IDENTITY ELEMENT

Which when combined
With any other element
Leaves this other element unchanged.




Thus in (a),

The IDENTITY ELEMENT is
The NUMBER ZERO,
Since

When ZERO is ADDED

To any INTEGER,

It leaves that integer

UNCHANGED.

In (b),
The IDENTITY ELEMENT is
The NUMBER ONE,
Since,
When ONE is MULTIPLIED
By any RATIONAL NUMBER,

It leaves that rational number

UNCHANGED.

In (),
The IDENTITY ELEMENT is
The SUBSTITUTION

x: for xi, X2 for xz, xs for xs,
Since,

When this SUBSTITUTION
Is FOLLOWED BY

Any other SUBSTITUTION,
The result is equivalent to
The latter substitution alone.

In (d),

The IDENTITY ELEMENT is

The ROTATION 360°,

Since,

If this ROTATION

Is FOLLOWED BY

Any other ROTATION in the system,
The result is

That second rotation alone.

3. Each element must have

An INVERSE ELEMENT,
Il

Such that

If an ELEMENT is

Combined with its INVERSE,

By means of the given OPERATION,

The result is
The IDENTITY ELEMENT.

Thus in (a),

The INVERSE of 3 is —3,
Since 3 ADDED to —3
Gives ZERO.

In (b),

The INVERSE of a/b is b/a,
Since

a/b MULTIPLIED by b/a

Gives |.

In (),

The INVERSE of

x: for xi, xs for X2, x: for xs,

Is

x: for xz, x= for xs, xs for xi,
Since,

If one of these SUBSTITUTIONS
Is FOLLOWED BY the other,
The result is

The SUBSTITUTION

xz for xz, xs for xs, x: for xi,
Which is

The IDENTITY SUBSTITUTION.

In (d),

The INVERSE of
A ROTATION of 60° (counter-clockwise)
Is a ROTATION of—60° (clockwise),
Since one of these

FOLLOWED BY the other

Is equivalent to

The IDENTITY ELEMENT.
12




4. The ASSOCIATIVE LAW must hold.*

Since a GROUP* must satisfy
These FOUR REQUIREMENTS,
It is obvious that

If ZERO were excluded from (a),
The system would

No longer be a group

Since there would be

No identity element.

Also

The INTEGERS

(Positive, negative and zero)
Would NOT form

A GROUP

Under MULTIPLICATION,
Since

The inverse of 3, for example,
Being 1/3,

Does not exist in this system.

1 This means that
If three elements a, b, and ¢,
Are given, .
And the operation is denoted by o,
Then,
If the associative law holds,
(aob)oc should give
The same result as
ao(boc).
Thus in (a),
34 (U+5=[B+4+5
ince
31 9—75.
That is, T
The associative law does hold in (a).
It can readily be seen that
It also holds
In (b), (c), and (d) above.
2 For other simple and interesting
Examples of groups,
See L. C. Mathewson:
Elementary Theory of Finite Groups.

I3

Thus,

Whether or not a system is a group,
Depends upon

THE ELEMENTS IN IT,

THE OPERATION TO BE USED,
And

HOW THESE ELEMENTS BEHAVE
UNDER THIS OPERATION.

It should be noted that:

(1) The elements are
NOT NECESSARILY NUMBERS,
But may be
MOTIONS, as in (d),

Or

ACTS, as in (c),

Etc., Etc.,

Thus widening the

SCOPE OF MATHEMATICS,

By freeing it from
ITS SUBJECTION TO NUMBER ONLY.

(2) The operation is
NOT NECESSARILY
Addition or multiplication,
Or any of the other processes
Which we generally call operations
In arithmetic or algebra,
But may be merely the
Operation of FOLLOWING
(One act by another)

As in (c) and (d).

It is customary,
No matter what the operation,
To
CALL IT "MULTIPLICATION".
Thus we say in (c),
One SUBSTITUTION
IS MULTIPLIED BY another,
14




Instead of

IS FOLLOWED BY another.
But of course

This use of the word
"MULTIPLICATION"
Should not be confused with
The multiplication

In arithmetic and algebra.
For this more general
MULTIPLICATION

May have

Quite DIFFERENT PROPERTIES

From ordinary multiplication.

For example,
In ordinary multiplication,

2 3 2
And therefore we say that
Multiplication is
COMMUTATIVE,
That is,
The same result is obtained
If the factors are reversed.

But if we

"MULTIPLY", in (c),

One substitution by another,
We may NOT get

The same result

If the two substitutions

Are reversed.

Thus in the expression

X1X2 + Xs
Apply the substitution
xs for xi1, x: for xs, and x: for x:,
Which gives
X3X2 + X1
And "MULTIPLY" IT BY
The substitution

xz for xi, xs for xz, and x: for xs,
Thus obtaining

XiXs - Xz
As the final result.

If we now reverse the substitutions,
And take the substitution
X for xi, xs for xz, and x: for xs first,
We get first

B L%
Now, "MULTIPLYING" this substitution
By the substitution
xs for xi, x: for xs, and x: for x.,
We get

X2X1 + X3
As the final result,
Which is
DIFFERENT FROM

XiXz Xz,
The final result previously obtained.

Hence,

This kind of
"MULTIPLICATION"

IS NOT COMMUTATIVE.
And it is therefore of

GREAT IMPORTANCE

To indicate

The sequence intended,

And to carry out the operation
In that order.

In the next chapter

We shall indicate

Some interesting facts

In connection with
SUBSTITUTION GROUPS,
For it is this type of group
Which Galois used

In the solution of equations.
16




But before that, May be writt
It would be well to S (2e3nl)

Show how the In which, each number
Notation Is changed into :
Can be simplified, The number that follows it,
For a simple notation | And the last number, I,
Is vital Is changed into the first number, 2,
To the progress Thus completing the cycle.
Of a subject.’
Take for example In like manner,
The substitution (132)
x: for xi, xs for xz, and x: for x. Means the substitution
Instead of writing it in this way, x: for x:, x. for xs, x. for x:,
We may omit the x's entirely, And
And use only the subscripts, (13) (2),
Thus, Or simply (13),
(123). Represents the substitution
This means that xs for xi, x: for xs, and x. for x..
| is changed to 2 Thus the first
2 is changed to 3 PRODUCT
And 3 is changed to I. Mentioned on page 15
In other words, Can be written
x: is changed to x. {E3)(123] —{23]
x: is changed to xs And the reverse product, on page 16,
And x is changed to x.. Is
Or, as we said at first, (E23] {13} — (12),
We substitute Thus showing that
xz for xi, xs for xz, and x. for x.. MULTIPLICATION
IS NOT COMMUTATIVE.
That is,
The results of
* It is easy to understand why ‘ Multiplying a given element
The solution of equations ' ON THE RIGHT or

Did not progress rapidly ON THE LEFT
So long as the equation was written X Are DIFFERENT!

Similarly,
xs for xz, x: for xs, and x. for xi,

In WORDS,

Instead of in SYMBOLS!

(See the "Ahmes Papyrus"

Published under the auspices of

The Mathematical Association of America.)
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lll. SOME IMPORTANT FACTS ABOUT GROUPS.

Sometimes it happens that
Some of the elements

Of a group

Form a group among themselves,
Called a

SUB-GROUP.

For example,
Consider the group (a)
In the previous chapter.
If we take
ONLY THE EVEN INTEGERS
(Positive and negative and zero)
And keep addition as the operation,
Then these alone will satisfy
The FOUR REQUIREMENTS
For a group,
Since,
I. The sum of
Any two EVEN INTEGERS
Is an EVEN INTEGER.
. ZERO is the IDENTITY ELEMENT.
. The INVERSE of
Any POSITIVE EVEN INTEGER
Is the
Corresponding NEGATIVE EVEN INTEGER
(And vice versa),
Because
The sum of two such integers
Is the identity element,
ZERO.
4. The associative law holds. (See p. 13.)

Hence,

The EVEN INTEGERS alone
Form a SUB-GROUP

Of the group of ALL integers
Under ADDITION. #




Similarly,

A group whose elements are
SUBSTITUTIONS,

That is,

A SUBSTITUTION GROUP,
May also have

A SUB-GROUP.

For example,

Take the six
SUBSTITUTIONS:*

1, (12), (123), (132), (13), (23),

Where | represents

The IDENTITY SUBSTITUTION (see p. 11).

These constitute a group,

Since they satisfy

The FOUR requirements,

Namely,

I. The product of any two of them
Gives a third one of the set,
Thus,® for example,

(12) (123) =(13)
(123) (132) = |
Ao, (13) (23) = (123).
The product of

1 See p. 17 for an explanation
Of the notation.

2 The result (13) is obtained as follows:
Since in (12), | is to be replaced by 2,
And in (123), 2 is to be replaced by 3,
The result is that 1 is replaced by 3.
Further in (12), 2 is to be replaced by I,
And in (123), | is fo be replaced by 2,
The result is that 2 remains unchanged.
And finally,

Since in (12), 3 is not mentioned
And therefore not to be changed,
But in (123), 3 is to be changed to I,

" The result is that 3 IS changed to I.
All these results
Are completely accounted for in (13).

20

Any one of them by ITSELF
Likewise gives another one of the set,
Thus,
(123) (123) = (132)
And so on for all the rest.
2. There is the identity element, 1.
3. Every element has an INVERSE:
Thus the inverse of (123)
Is (132),
Since their product is I.
Similarly,
The inverse of (12) is (12),
And so on.
4. The associative law holds.

Now of these six substitutions (p. 20)
Consider the two, | and (12).

These two alone form a group,
Satisfying the FOUR requirements.
Hence the group consisting of

I and (12)

Is a SUB-GROUP

Of the given group.

I can easily be shown® that

The order of any sub-group
(That is, the number of elements in it)
Is a factor

Of the order of the given group.
A very important

Kind of sub-group

Is

An INVARIANT SUB-GROUP.
In order to explain this,

It is necessary first

To explain

What is meant by

The TRANSFORM of

1 See inside front cover.




One element by another.

Take, for example,

The element (12),

And MULTIPLY it

ON THE RIGHT by (123)

And ON THE LEFT by (132).
NOTE THAT (123) and (132) are

INVERSES OF EACH OTHER (see p. 21).

We thus obtain
(132) (12) (123)
Which equals (23).
This result, (23), is called
The TRANSFORM of (12) by (123).

Thus,

If a given element of a group

Is multiplied on the right

By another element,

And on the left 4

By the inverse of that other element,
The result is called

The TRANSFORM of the given element
By that other element.

Now,

A sub-group is called
INVARIANT

If it remains unchanged®
When all of its elements are
TRANSFORMED

By all the elements

Of the original group.

* Unchanged does NOT necessarily mean
That each element of the sub-group
Remains unchanged,

But that each element becomes

Some element of the sub-group,

So that the sub-group, AS A WHOLE,
Is unchanged.

INVARIANT SUB-GROUPS

Are very important,

As we shall soon see.

Particularly important among them
Is a

MAXIMAL INVARIANT PROPER" SUB-GROUP.

I+ is one which is
NOT CONTAINED in a LARGER

Invariant proper sub-group.

Now if G is a given group,
AndifHisa
Maximal invariant proper sub-group of G,

K a maximal invariant proper sub-group of H,

Elc.

Then if the order of G

(That is, the number of elements in it)
Is divided by the order of H,

And the order of H divided by

The order of K,

Efc..

The numbers so obtained are called
The COMPOSITION-FACTORS
Of the group G.

And if these are all PRIME NUMBERS,
G is called a SOLVABLE group.”

(The significance of the term

 In general,
A groug may be considered

As a sub-group of itself,

But a PROPER sub-group

Is always less than the group itself.
Thus the word "PROPER"
Emphasizes the SUB in SUB-GROUP.

2 | is important to note that
A group G may, in some cases, be subdivided
Into a series oz
Maximal invariant proper sub-groups
IN MORE THAN ONE WAY
(See inside back cover),
But still
23




"Solvable"
Will appear later.)

Just one more detour:

It sometimes happens that

A group is such

That all of its elements

Are powers of some one element
Other than the Identity.

For example,

Consider the group
1, {123), (132).
Here (123)(123) =(132)
Or {[123)=1{132};
Also (123f=1.
Thus all the elements
May be obtained from (123),
By raising this element
To various powers.
Such a group is called "cyclic".

Further,

If a group is such that
Each letter is changed
Into every other letter
(Including itself)

Once and only once,

It is a "regular" group.
In the above illustration,
This is the case,

Since

Its composition-factors
Are the same numbers
Though perhaps obtained in a
Different sequence.
This important point
Is illustrated
On the inside back cover.
24

x: is changed to x: in |,

x: is changed to x. in (123),

x: is changed to xs in (132).
Similarly

x: is changed to x:, xs, x:

In 1, (123), and (132), respectively.
And likewise for x..

Hence this group is a

REGULAR CYCLIC GROUP,
Which type of group is essential in
The solution of equations,

As we shall see in a later chapter.




IV. THE GROUP OF AN EQUATION.

Every equation has

A definite group associated with it
For a given field,

As we shall now show.

Suppose we have ag equation

ax® xX*+cx+d=0
Of the third de;'_ee. e
Having three distinct roots, X1, X2, Xs.
And suppose we take some function
Of the roots,
As, for example,

X1X2 + X3,
If we replace these x's by each other
In this function,
In various ways,
How many such substitutions are possible?

Obviously we can make some substitutions

Of the form (12),
In which only two of the x's
Are interchanged,
Obtaining in this case

X2X1 + X3
Similarly the substitution (13)
Would give

X3X2 + X1,

And so on.

Then there would be

Substitutions of the form (123),

In which three of the x's are interchanged:

Thus (123) applied to the given function
X1X2 '+- X3

Would change it to

X2X3 + X1y
And so on.

If we consider all possible
Replacements of these three x's,
Two at a time and three at a time,
And not forgetting
The Identity substitution
Which replaces
x: by xi, x: by x2, and x; by xs,
There would obviously be
Six possible substitutions in all,
Namely,
1, (12), (13), (23), (123), (132).

at is,
For three x's
There are 3! substitutions' possible.

Similarly

If there had been 4 x's,

The number of possible substitution
Would be 4!

And in general,

For n x's

There would be

n! possible substitutions.

It is important to note that

When a substitution is applied

To a function,

It may or may not

ALTER THE VALUE of the function.
For instance,

The substitution (12)

1 |t will be recalled
That the symbol 3! is read
"Three factorial”,
And means 3x2xl.
Similarly n! means
nn—1) (—2) . ....... s
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Applied to the function

X1 + X2
Obviously does NOT alter its value,
But if (12) is applied to
L= G
It DOES" alter it,
Since it changes x: — x: to x. — xu.
Now suppose we have
An equation of degree n,
Having n distinct roots,

It can be shown that

In the function

Vi =—mx + MzXe + MsXs “I—
(Sometimes called the Galois function)
The m's can be so chosen that

Every possible substitution of the x's
DOES ALTER this function,

And hence

This function can have

n! different values

When the x's are interchanged

In all possible ways.

Representing these n! different values
By V1. Vz. Vs.
And forming the expression

Ply)=(y—Vi) [y—V:)

here y is a variable,

* Unless x, — x, happens to equal zero,
Which implies that x, = x,,
That is, the roots are not "distinct".
If the roots of an equation f(x) =0
Are not distinct,
We can always get rid of
Such multiple roots by
Dividing the equation through
By the greatest common divisor
Of f(x) and its first derivative.
Hence we need only consider
Equations whose roots ARE distinct.
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Consider the following:

If P(y) is multiplied out,

The resulting polynomial in Z

May or may not be factorable (reducible)
Depending upon the FIELD

In which the factoring is to be done (see p. 4).

Suppose, for example, that

For a GIVEN FIELD

Ply) is factored so

That the part containing V.

Which is not further reducible in that field
Is (y—V:) (y—Ve) or y* —{Va+Vz)y + ViV-.
Note that in this case

The only V's involved are V. and V:;

Now,

The Identity substitution

And that substitution of the x's

Which changes these V's into each other,
Can be shown to form a group,

And it is this group

That is called

THE GROUP

OF THE GIVEN EQUATION

FOR THE GIVEN FIELD.

Obviously,

The function y>—(Vi-V:)y+V:V:
REMAINS UNCHANGED

By all the substitutions of this group,
Since

Changing V. into V: and V: into Vi,
And the Identity substitution,
Evidently leave this function unaltered.
Similarly

If the irreducible part of P(y)

Had contained besides the Vi,

Also V: and V;,

The group would then consist of

All those substitutions 58




Which would leave
THIS irreducible part UNALTERED.

In general, then,

The group of an equation for a given field
Is determined by

That part of P(y) which is

Irreducible in the given field

And contains V..

If this irreducible part

Is denoted by Gfy),

Then G(y) =0 is called

A Galois resolvent.

It is obvious that
Enlarging the field
MAY make it possible
To continue the factoring further’,
And hence

Enlarging the field
MAY result

In diminishing the group
Of an equation.

We shall return to

This important point
Later on.

For the general equation of degree n,
P(y) may be completely irreducible

In a field containing the coefficients,
And consequently

Its group contains

1 Thus, in (x2 1efx2 — 3) {x2 — 1),
Th: Jparf((xz_l:l— I)) ((x2 —3 i(s ;

Irreducible in the field of
Rational numbers,
But if the field is enlarged
To include all real numbers,
Then the only irreducible part
Is (x2 4 1).
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ALL the possible substitutions
On its roots,
Namely, n! substitutions.

Now, FORTUNATELY,

It can be proved that

If the value of ANY function

Of the roots of an equation

Is IN a given FIELD,

Then this function must remain

UNALTERED IN VYALUE

By ALL the substitutions

Of the group of this equation

For the given field.*

And FURTHERMORE,

If the value of a function

Is NOT in the field,

There must be some substitution in the group
Which DOES alter the value of the function.

| say "fortunately"

Because these important
Characteristic properties

Of the group of an equation

Enable us to find this group

For a given field

Without actually going to the trouble
Of finding a Galois resolvent.

An illustration will make this clear:
Consider the quadratic equation

-+ 3x 4 1 =0,
Having two roots, x. and x..
Since there are only two roots,
The only possible substitutions

1 For the proof see dp 165 in

L. E. Dickson: Modern Algebraic Theories.
The function must be a rational function
With coefficients in the given field,
And the coefficients of the given equation
Must also be in that field.
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Are | and (12).

Therefore the group of this equation
Must contain either both of these
Or | alone,

And that depends upon

The FIELD we choose,

As we shall now see:

Take the function of the roots
Ri —— X

It is easy to show,

BZ elementary algebra,

That

X1-XzIVb2—4C

For any quadratic of the form
x* + bx 4+ ¢ =0.

Since in the equation given above
b=3 and c=1,

Hence x; — x. = /5.

Now, if the field chosen is

The field of rational numbers,
Then the value of this function
Is NOT in our field,

And therefore

There must be some substitution
In the group

Which DOES alter this function.
Obviously (12) does alter it,

For it changes x: — x: to x: — x..
Consequently

(12) must be in the group,

And the group therefore contains
Both | and (12).

If, on the other hand,

We choose the field of REAL numbers,

Then the value \/5
IS IN THE FIELD,

EEREEEREEEERENEREN

And therefore x; — x.

Must remain UNALTERED

By ALL the substitutions of the group;
Hence the group cannot contain (12)
Since this substitution alters x; — x..
Consequently,

The group of this equation

For the field of REAL numbers
Contains only 1.

Let us take another illustration:
Consider the equation
x*—3x -+ 1 =0.
It has three roots, xi, xz, Xs.
The maximum number
Of possible substitutions
Of these three roots
Is SIX:
Namely,
1, (12), (13), (23), (123), (132).
If we choose the field of
RATIONAL numbers,
What is the group of this equation?

Suppose we use the function® of the roots

(X1 S X2) (Xl b Xs) (X2 e Xa).
Its value in terms of the coefficients
Is = \/—4c® — 27d°
For a cubic lacking the x* term:

xX*+cx4+d=0.

* This type of function
(Namely, the product of the differences
Of all possible pairs of the roots)
Is often very useful in helping
To find the group of an equation.
Other functions are also used,
But it is a comforting thought
That the group of an equation
For a given field
IS UNIQUE
No matter how it has been obtained.
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In this particular case
c=—3andd=1,
Hence

(Xi—xs) [Xi—%s) (xe—xs)= £/ 108—27==1/81==9.

Since = 9 is rational
And is therefore in our field,
This function must remain unaltered by
ALL the substitutions of the group.
Now, of the six possible substitutions
Mentioned above,
Only three leave this function unaltered,*
Namely, I, (123), (132).
Hence the group of this particular cubic,
For the rational field,
Contains either these three substitutions,
Or only I.
Thus the examination of the function

(X1 = X2) (X1 e Xa) (Xz — Xs)

Has not yet determined the group exactly.
Let us therefore examine another function,

Namely, the function

X1.
If the group contained only 1,
Then the value of this function,
Being unchanged by I,

1 This should be verified by the reader.
Note that for a particular
Designation of the roots
By x,, X, X, respectively,

TZe value of this function is
EITHER -9 or —9, BUT NOT BOTH:
If it is -9, then it remains 49
Under the three substitutions
I, (123), (132),
But becomes changed to —9
Under the remaining substitutions,
Namely, (12), (13), (23).
And similarly, if its value is —9,
It will remain —9 under I, (123), (132),
But is changed to 9 under
(12), (13), and (23).
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Would have to be in the field.
In other words,

The root x: of the cubic
Would be a rational root;
And similarly for x. and x..

But this cubic HAS NO RATIONAL ROOTS:.
Hence the group of this cubic,

For the rational field,

Cannot be | alone,

But contains I, (123), and (132).

Thus a consideration of both functions,
(X1 e — Xz) (Xl — Xa) (X2 —— Xs) and X1,

Has led to a definite knowledge

Of the group of this equation

For the given field.

This cubic is OF SPECIAL INTEREST
Because it is this equation

Which determines the possibility
Of trisecting an angle, in general,

By means of ruler and compasses only.
We shall study it further in Chapter VI.

The reader may be interested to show
That the group of

x*—2=0,
For the rational field,
Contains SIX substitutions.
This equation obviously represents
The old problem of

* For, any rational root
Of an equation with integral coefficients,
Whose leading coefficient is |,
Must be an integer and
A factor of the constant term.
But here the only factors of | are + 1,
Neither of which
Satisfies the equation.
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The duplication of the cube.!

It will be seen in Chapter VI that
This problem also

Cannot be solved by means of
Ruler and compasses only.

We now see

WHAT IS MEANT BY

The GROUP of an EQUATION for a given FIELD,
And HOW TO FIND IT.

Let us now see
What use we can make of it.

1 That is,
If a unit cube is given,
x® = 2 represents
A cube whose volume is
Twice the given cube;
The problem is
To find the length of a side x,
By means of
Ruler and compasses only.

V. THE GALOIS CRITERION OF SOLVABILITY.

Galois showed that

An equation is

SOLVABLE BY RADICALS IF AND ONLY IF

ITS GROUP,

FOR A FIELD CONTAINING ITS COEFFICIENTS,
IS A SOLVABLE GROUP.!

In Chapter VIl we shall show
In some detail

' Why it is that

A solvable group makes the equation solvable
With respect to the given field.

For the present let us merely examine

The groups of several equations

For a field containing the coefficients,

And apply the Galois criterion

To determine

Which of them

Are solvable by radicals.

Take first the general quadratic
ax* -+ bx -+ ¢ =0;
Since it has two roots, x: and x:,
Its group, G,
For a field containing its coefficients,
Consists® of the substitutions | and (12).
lts only
Maximal invariant proper sub-group
Is obviously I,
Hence its only composition-factor is

Y ==,

1 In fact this is the reason
For calling the group "solvable" (see p. 23).
2 See p. 30.
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Since this is PRIME,

Then, according to the Galois criterion,
Every quadratic is solvable by radicals.
To be sure this fact was known

Long before Galois,

But it is interesting to see

How simply and elegantly

This conclusion is reached

By means of the Galois theory.

Take next the general cubic

ax* 4+ bx* 4 ex + d=0.
Since it has three roots, x:, Xz, Xs,
Its group, G,
For a field containing its coefficients,
Conf‘lairislz;hf si)x (subsﬁfuﬁons

SR 214138) 1233 L1 23] (432 )
All the possible subsfi’r(uﬁoZ\s( )
Of the three roots, xi, x2, Xs.
Its only maximal invariant proper sub-group, H,
Contains 1, (123), (132);
And the only
IMalximal invariant proper sub-group of H
51
Hence the composition-factors are
6/3—2 and 3/1 =3,

Both PRIME numbers.
Therefore, by group theory,
The general cubic also
Is EASILY shown to be
Solvable by radicals.

Next let us consider the

General equation of the fourth degree
ax* + bx* 4+ ex* 4+ dx + e=0.

Its group,

For a field containing its coefficients,

Is of order 4! or 24.

A series of

1See p. 30.

Maximal invariant proper sub-groups

Contain® 12, 4, 2 and | substitutions,

Respectively.

Hence the composition-factors are
2. 3. 2and 2.

Therefore

The general equation of degree four

Is also solvable by radicals,

Since these composition-factors

Are again PRIME numbers.

For the general equation of degree 5,
G contains 5! substitutions,

H contains 51/2 substitutions,

And the

ONLY? INVARIANT PROPER SUB-GROUP OF H

Is 1.
Hence the composition-factors are

2 and 51/2;
Obviously the latter is NOT PRIME,
And therefore
The GENERAL equation of degree FIVE
Is NOT solvable by radicals.

In fact this is true for
The general equation of degree n

For ANY value of n GREATER THAN FOUR?,

Since the composition-factors are
2 and nl/2,
And the latter is NOT PRIME.

We have thus seen that
The THEORY OF GROUPS

Furnishes an

ELEGANT and POWERFUL METHOD

1 See Miller, Blichfeldt and Dickson:
Theory and Applications of Finite Groups.

2 For the proof of this
See L. E. Dickson: Modern Algebraic Theories,
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Of determining whether
An algebraic equation is
Solvable by radicals.

Furthermore,

In the next chapter

We shall show

HOW TO SOLVE AN EQUATION
BY GROUP THEORY,

And the bearing that this method has
Upon some old construction problems,
Like that of the trisection of an angle.
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VI. CONSTRUCTIONS WITH RULER
AND COMPASSES.

Having found a method for determining
Whether an equation is solvable by radicals,
Galois then showed that

An equation which is solvable by radicals
Can be solved by means of a set of
AUXILIARY EQUATIONS,

Whose degrees are the
Composition-factors defined on p. 23.

The following is a sketch of the procedure:
The roots of the FIRST auxiliary equation
Are adjoined to the field, F.

I will be remembered" that

Enlarging the field may result in

Increasing the possibilities of factoring P(y)
Thus diminishing the irreducible part* of P(y)
And consequently

Decreasing the group of the equation.
Obviously this will happen only

If the enlargement of the field

Is such that

Further factoring of P(y)

Is rendered possible.

Now, in particular,

If the field is enlarged

By the adjoining’ of the roots
Of the first auxiliary equation,
As mentioned above,

1See p. 30.

2 See p. 30.

% The reader should clearly understand
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Then such further factoring

IS possible,

And the fact is that

The group drops to H?,

For the new enlarged field, F..

If, further,

The roots of the

SECOND auxiliary equation

Are also adjoined,

Then the group drops to K*,

And so on,

Until

Finally the group becomes |

For the final enlarged field, Fu.
When the group has become 1,

It is obvious that

The function x,

Being unaltered by

ALL the substitutions in the group,
Namely, by I,

Must be in the field Fx".

And similarly for all the other roots.

In this manner,
By examining the group of an equation,

That if, for example,

\/2 is adjoined to the rational field,

Then the new field will contain

All quantities of the form a - by/2,

Where a and b are rational numbers,

But will NOT contain /3

Or other irrational numbers.

In other words,

The introduction of /2

Does not enlarge the field so as

To become the field of all real numbers.

Thus an enlargement of a field :

Usually means the adjoining

Of certain SPECIFIC quantities only.
1See p. 23.

2See p. 31. '
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And determining its composition-factors,
We can tell the degrees

Of the auxiliary equations,

And hence we can tell

What sort of quantities

Must be adjoined to the original field

To drop the group to I;

And thus tell in what field

The roots of the equation exist.

An example will make this clearer:
Take the equation
X —3x4+ 1=0.
We found that
lts group for the rational field*
Contains I, (123), (132);
Obyviously the only
Invariant proper sub-group of this group
Is 1.
Hence its only composition-factor
15 3.
Therefore
Its only auxiliary equation
Is of the THIRD® degree
And the solution of this auxiliary equation
Involves a cube root.

Consequently

This cube root must be adjoined

To the field

To drop the group to I,

And then the roots of the given equation

1 See p. 35.
2 |t may seem strange
That the auxiliary equation should be
Of the same degree as the original equation,
BUT, this auxiliary equation
Is of the form 22 =g,
Which is easily solvable.
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May be obtained in terms of
Quantities in the original field
AND THIS cube root,

By rational operations only.

Let us now see

The connection between this discussion
And the possibility of trisecting an angle
With ruler and compasses only.

In the first place,

What can we do with

Only a ruler and compasses?

Obviously we can only make

Straight lines and circles.

These are represented algebraically

By first and second degree equations,
Respectively.

Hence to get the point of intersection,
We need only solve, at most, a quadratic,
And the coordinates of the solution

Will therefore be expressed

In terms of the coefficients

Combined only by the rational operations
AND a SQUARE root.

That is,

WHATEVER WE CAN DRAW WITH
RULER AND COMPASSES ONLY

CAN BE REPRESENTED ALGEBRAICALLY BY
A FINITE NUMBER OF

ADDITIONS, SUBTRACTIONS, MULTIPLICATIONS,

AND SQUARE ROOTS; DIVISIONS,

Furthermore we know from elementary geometr
[T T IHI I RS CONVERSE s clo frie: :
That is, if two lines, a and b,
And the length of the unit,
Are given,
We can construct with ruler and compasses
Their sum, a -+ b, their difference, a — b,
Their product, ab, their quotient, a/b,
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And the square root of any of these

Or of the given quantities,

As, for example, \/ab or \/b

(By the usual mean proportional construction).
And of course

These operations may be

Repeatedly performed upon

Any lines previously obtained.

If we are asked then

Whether a certain construction

Can be done with ruler and compasses only,
We must set up an algebraic equation

- That expresses the problem:

If this equation can be factored into
Expressions of the first and second degrees only,
In the given field,

Then all the real roots are obviously constructible
With ruler and compasses;

But even if the equation is

NOT factorable in the way mentioned above,
We MAY still be able o make

The construction with ruler and compasses
PROVIDED THAT

This equation can be solved

SO THAT

The real values of x are expressible

In terms of the given geometric quantities

By means of the rational operations

And square roots,

Applied a finite number of times, only.

If the equation can be so solved,

Then the construction CAN be done

With ruler and compasses,

Otherwise, not.

Let us therefore find an equation

That will represent the problem

Of trisecting an angle.

Obviously if we can show for a
45

PARTICULAR angle,

That the construction CANNOT be made
With ruler and compasses,

We shall have proved

That an angle cannot, IN GENERAL,
Be so trisected.

Take therefore an angle of 120°:
Suppose it to be drawn

At the center of a circle of unit radius.
Then if we could construct cos 40°,
We would lay off OA equal to cos 40°;

a would then be equal to 40°,
And the required trisection of 120°
Would be accomplished.
Using the trigonometric identity
2cos3a = 8cos’a — bcosa,
And writing x for 2cosq,
We get
2cos3a — x* —3x.
Now, since 3a = 120°, cos3a = —I/5;
Hence the equation becomes
x*—3x -+ 1 =0,
The very equation we have been discussing.
If now we are given

ONLY the length of a UNIT,

We can draw the circle shown above,
Then make OB — 1/2,

Thus obtaining angle AOC = 120°.
Since the only thing given is

The UNIT,

Our field is limited to the
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Rational numbers’.

We now know that

A CUBE ROOT must be adjoined’
To the rational field

In order to solve our equation.

BUT

A CUBE root cannot be constructed
With ruler and compasses;

Hence,

We can see that

The solution of the problem
Of the trisection of an angle
With ruler and compasses

Is EASILY shown to be
IMPOSSIBLE.

By similar considerations
The reader can also easily show
That the solution of the problem of
The duplication of the cube
By means of ruler and compasses
Is also impossible.
The equation here is
Xo—— 2%
And the field is the rational field;
Its group for this field
Contains six substitutions (see p. 35).
Show that both
A SQUARE ROOT AND A CUBE ROOT
Must be added to the field
Before the group drops to .
Hence,
Since a cube root cannot be constructed

1 If we start with unity,

We can, by using only the

Four rational operations,

Build up all the rational numbers,

That is, the "rational field".

(See the definition of "field" on p. 4.)
2 See p. 43.
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With ruler and compasses,
This problem cannot be solved by
THESE MEANS.

In like manner,

We can study the problems

Concerning the construction of

Regular polygons of various numbers of sides,
By Group Theory.*

1 See Chapter XI. in
L. E. Dickson: Modern Algebraic Theories.




V. WHY IS THE GALOIS CRITERION TRUE?

We shall now show
Just why it is

That an equation

Is solvable b?l radicals

If it has a solvable group’.

Everyone has probably had the experience,
In his early youth,
Of trying to use the relationship
Between the roots and the coefficients
Of an equation,
To solve the equation.
For example,
In the quadratic
x* + bx 4 ¢ =0,
Knowing that
X1 + x2=—b (I)

And Xiei=—1, (2)
Why not solve this pair of equations
For x; and x.?
Of course one quickly discovers that
This method does not work
Because,
If the value of x, from (1)
Is substituted in (2),
We get

x: + bx: 4+ ¢=0,

Which is of exactly the same form
As the original quadratic,

 We shall not prove the converse here;
For that, see p. 198 in
L. E. Dickson: Modern Algebraic Theories.
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And hence

This method has only led us back

To the starting point.

But if it were possible to obtain

A pair of equations

BOTH of which are LINEAR,

Then we really COULD*

Find the values of x; and x. from them.

Now,

In the special case

When the group of an equation is a
REGULAR CYCLIC GROUP OF PRIME ORDER,
This can actually be done

As we shall presently see,

And we shall then realize

WHY such an equation

Is SOLVABLE BY RADICALS.
Furthermore,

We shall also see

What bearing this special case has
Upon the more general case of

An equation that has

A SOLVABLE GROUP.

Consider first

The special case of an equation
Hx)—10,

Having n distinct roots,

And having a

Regular cyclic group of prime order

For the field® determined

1 Provided the determinant of the coefficients is not zero.

2 Observe that this field,
As well as ANY field whatsoever,
Necessarily contains
ALL THE RATIONAL NUMBERS,
Because
If we take any quantity in a field
(Say, one of the coefficients of the given equation)
And divide it by itself,
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By its coefficients
AND the n nth roots of unity.

Let us first recall what is meant by
The n nth roots of unity.

It will be remembered that

The number | has

THREE CUBE ROOTS®
Namely I, —% 4+ $/—3, and —} —3\/—3,
(Usually denoted by I, v, w?*);
Similarly, in general,
| has n nth roots,
Which we shall denote by
L e 0% o
Further,
These n nth roots involve,
Just as in the case of the
Three cube roots given above,
Only rational numbers and
Roots of rational numbers.
Hence their introduction into the field
In no way affects the statement
That the equation is
"Solvable by radicals".

Now since the group of our equation
Is assumed to be a

Regular cyclic group of prime order,
Its elements are

All the powers of the substitution

We get |,

And from I, by repeatedly applying
The four rational operations

We get all the rational numbers.
Thus the rational numbers

Are always contained

In EVERY field.
1 Since x® = | may be written
xX*— 1 =0orx—1)(x*+x-+1)=0,
From which we get the 3 roots given above.

51

EEEEEEREEEREREERERNR

From | ton,
The nth power being equal' to the Identity.

Let us now take
The set of linear equations
X: + "% + o™ 4
Where k varies from 0 to n-1I.
Observe that this notation
Enables us to write
A whole set of equations
In a single line:
Thus when k=0,
Equation (3) becomes
X1 + X2 + Xs +
For k=1, it becomes
X: -+ exe -+ o°%s +
And so on,
Giving n equations in all.

_|_ p(n-1)k Yo — Ik (3)

Now since the sum of the roots
Of any algebraic equation
Is equal to the coefficient of the second term
With the sign changed,
We therefore get the value of ro
Directly from the given equation.
Let us now see
What kind of quantities
The other r's are:
If we apply the substitution
(123

To the left-hand member of equation (3)
It becomes

x: + "% + o™ 4
But this same result
Might also have been obtained
By multiplying it by ¢,
Since ¢f — |.
(e being an nth root of unity),
Consequently the substitution

1 See p. 24.
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n
Changes the value of r, ’Zo R
Buk [0 —{o"r.)" since ¢" — 1,
In other words,
The substitution (123
Leaves the value of r.”
UNALTERED;
And similarly for
All the other substitutions
Of the group’ of the given equation.
Therefore ()",
Being UNALTERED by
ALL the substitutions
Of the group for the given field,
Must have a value which
Is IN this FIELD,?
And therefore,
r, itself may be obtained
By taking the nth root
Of a quantity in the field;
That is to say,
ALL THE r's CAN BE OBTAINED
BY RADICALS
WITH REFERENCE TO THE GIVEN FIELD,
So that the set of equations (3)
Being solvable for the x's
In terms of ¢ and the r's,
Is therefore solvable by radicals;
But the x's are the roots

1 Being a cyclic group,
All the elements are powers of (123 . ... n);
And applying (123 .. . n)? for example,
Only means to apply (123 ... n) twice in succession,
And if applying it the first time
Has produced no change,
Then obviously,
Applying it a second time
WiflJ still leave the value unaltered,
Ete.
2 See p. 31.
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Of the given equation f(x) = 0;

We have thus shown that

If the group of an equation

For a given field

Is a

REGULAR CYCLIC GROUP OF PRIME ORDER,
It is

SOLVABLE BY RADICALS.

For example,
In the case of the cubic
R T
We have already seen® that
The group of this cubic
For the rational field
Contains 1, [123), (132),
And is therefore a
Regular cyclic group of prime order.
We can therefore solve it
By means of the three equations:
X1 + X2 + % —0

Xi - ux: + WX =r

x: 4 WXe + WXz — 2
Where w is one of the
Imaginary cube roots of unity,
And the values of r; and r,
As we have seen,
Are obtainable by radicals from
Quantities in the given field.
Or, in other words,
If these radicals are adjoined to the field,
Then the x's exist in this enlarged field.

But what if the group is NOT a
Regular cyclic group of prime order?

For the case of a solvable group
The scheme of solution
Was outlined on page 41.

1 See p. 35.
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We saw there that

If the composition-factors are
PRIME,

The equation is still solvable by radicals,
Even though its group is not a
Regular cyclic group of prime order.
This is

BECAUSE IN THAT CASE

EACH AUXILIARY EQUATION
Itself has a group which IS a

Regular cyclic group of prime order
For the field containing

All quantities which have been
Previously adjoined.

Thus,

Since each auxiliary equation has a
Regular cyclic group of prime order,
It is solvable by radicals

AS SHOWN ABOVE,

And consequently,

All the roots of the auxiliary equations
Which have been adjoined

To the original field,

Bring in only radicals of

Quantities which were already in the field.
Hence even in this more general case
The equation is solvable by radicals.

It is interesting to note that the
FIRST auxiliary equation
Can, in general,* be:

y2
In which the right-hand member
Is the product of the squares
Of the differences

Of all possible pairs of the roots.

* The first composition-factor
Being, in general, 2 (see p. 39).
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— (x1 — X2)2 (X1 — Xs)2 S (Xn-l = XD)z.

This right-hand member
Is equal to the discriminant
Of the equation
When the leading coefficient is I:
Thus for the quadratic
x* 4+ bx + ¢=0,
(Xl Sewe X2)2 — (X1 + )(2)2 — 4x.x. — b2 e 4C,
Which is the discriminant of this equation.
And similarly,
For equations of higher degrees,
The discriminant can be found
In terms of the coefficients.
The roots of the first auxiliary equation,
Which are merely
The two square roots of the discriminant
Are now adjoined to the given field,
And the group drops to H
For this new field F..
The process is now repeated
For the other auxiliary equations.

In the case of the general cubic,

After the roots of the

First auxiliary equation

Have been adjoined to the original field,
The group drops to H;

But H is in this case

A regular cyclic group of prime order,
And consequently

We can at once

Solve the original cubic

By means of the set of equations:

X1 + X2 —|— X3 =—b

X1 —|— WXz —[—‘ B0 =— Py

X1 + WXz | WXs == T2

Where the r's are obtainable*

1 The details are given on p. 136 in
L. E. Dickson: Modern Algebraic Theories,
Where he designates r, and r, by ¢ and .
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By radicals

From quantities in the field
Determined by the coefficients

Of the given cubic AND

The roots of the first auxiliary equation
Which have been adjoined.

Or, in other words,

If the values of these r's

Were also adjoined to the field,

Then the group would drop to I,
Which means that

The x's exist in this final field.

We have thus shown

Why it is that

An equation is solvable by radicals

If it has a solvable group

For the field

Determined by its coefficients

And the n nth roots of unity.

Indeed,

If an equation has a solvable group
FOR ANY FIELD containing the coefficients,
It is solvable by radicals

WITH RESPECT TO THAT FIELD.
We hope that

Enough has been given here

To show that even the details

Are intelligible,

And we trust that the reader

Will continue the study of

This fascinating branch of mathematics,
Particularly since

The use of groups to solve equations
Is by no means the only application
Of the wonderful idea of groups.

In fact,

The use of group theory in geometry®

* See "Projective Geometry"
By Veblen and Young.
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Has revolutionized that subject:

Also group theory is fundamental in
The theory of relativity;

Indeed,

As E. T. Bell says™:

"Wherever groups disclosed themselves,
Or could be introduced,

Simplicity and harmony

Crystallized out of comparative chaos.
The idea of a group

Was one of the outstanding additions
To the apparatus of scientific thought
Of the last century."

1See "The Queen of the Sciences",
ByE T Bell.
See also the chapter on
The Group Concept
In C. J. Keyser: Mathematical Philosophy.




THE MORAL.

Contrary to popular belief
Mathematics is not

A hard set of

Definitions and rules.

By rendering the mind FREE from
Its prejudices and old definitions
Modern mathematics has
Opened up new ground

Of tremendous fertility.

(See pages 14-18).

. But this freedom is not anarchy—

On the contrary—

Having broadened the definitions

And chosen the postulates and the field,
One must then abide by the

Limitations imposed by these

And remain LOYAL to them

So long as one is working

In this system.

(See pages 3-5).

. And how shall we determine

What postulates and definitions

And what field

To choose in the first place?

That depends upon the

OBJECTIVE or PURPOSE.

Thus Galois's purpose was

The solution of equations

By certain definite means.

(See pages 1-3).
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4. Having a purpose,
And having chosen
The postulates in accordance with it,
What is then
THE METHOD?
The method is
To vary the thing studied
By a certain definite
GROUP of changes,
And find out
What remains
INVARIANT
Under these changes.
These invariants are then the
Stable, reliable things
In our system,
Independent of the changes
Imposed upon it.
(See page 22.)

. Another important moral
To be learned from
Modern mathematics
Is
The TREMENDOUS EFFECT
That can be produced by
A SMALL CAUSE.
A single match
Can set fire to
A whole city.
A problem may be solvable or not
Depending upon some slight change
In the conditions.
(See page 3.)
This is perhaps best illustrated
From geometry,
Where a slight change
In a single postulate,
Leaving all the other postulates the same,

=SSN M
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Changed Euclidean Geometry
Into Non-Euclidean!"

* See "Non-Euclidean Geometry or
Three Moons in Mathesis",

In this same series of
LitHle books.

|

IMPORTANT TERMS.

Algebraic Equation
Associative law
Composition-factors

Element
Identity element
Inverse element

Galois criterion

Galois resolvent

Substitution group
Sub-group
Invariant sub-group
Maximal invariant proper sub-group
Solvable
Of an equation for a given field
Cyclic
Regular
Multiplication
Rational number
Reducible

Transform




hglrl

modern mathematical series

(1) non-euclidean geometry or three moons
in mathesis (second edition)

(2) galois and the theory of groups
(3) the einstein theory of relativity

(4) others in preparation

drawings by hugh gray lieber
words by lillian r. lieber

price: $1.25 each; 209, discount to teachers
and dealers.

copies may be obtained from

H. G. L. R. LIEBER
258 Clinton Avenue, Brooklyn, N. Y.

-
]
[ea]
gl
L]
[l
B
]
Bl
]
(41
]
4]
[+1




 EEEEEREERE
{ H (







