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The coulomb wavefunctions, originally constructed for real p > 0, real q and integer 2 > 0, 
are delined for p, n, and 1 all complex. We examine the complex continuation of a variety of 
series and continued-fraction expansions for the Coulomb functions and their logarithmic 
derivatives, and then see how these expansions may be selectively combined to calculate both 
the regular and irregular functions and their derivatives. The resulting algorithm [46] is a 
complex generalisation of Steed’s method [6,7] as it appears in the real procedure COULFG 
[lo]. Complex Whittaker, confluent hypergeometric and Bessel functions can also be 
calculated. c 1986 Academic Press, Inc. 

1. INTRODUCTION 

The Coulomb wavefunctions F>.(q, p) and Gn(q, p) are the two linearly indepen- 
dent solutions of the differential equation 

f”(P)+(l-WP-4~+ lYP’Md=o (1.1) 

that are defined by the boundary conditions 

F,(rl, P = 0) = 0 (regular solution) 

and 
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where en = p - r] In 2p - 27112 + an(q), and all variables are complex unless otherwise 
stated. The quantity o1 is the Coulomb phase shift, constructed so that for real 
p, q, and i, the functions FA and Gn are all real; the formula for o1 will be given 
below. The combinations H$ = Gn + iFA are defined, and become e * iel as IpI + 00 
asymptotically. 

The real functions FL, GA, F”, and Gi (where the prime indicates d/dp) have been 
extensively studied and two main methods of calculation have been developed. The 
approach exemplified by the reviews of Froberg [ 11 and of Hull and Breit [2], and 
the programs of Bardin et al. [3] and of Strecok and Gregory [4], is to divide the 
p, v] plane into regions in which suitable transformations of Eq. (1) yield convergent 
series or integrals. Results for different (integer) I are obtained by downward (FA) 
and upward (G,) recurrence, terminating always at I = 0. The approach of 
Gautschi [S] and of Barnett et al. [f&8] makes use of continued fractions and a 
normalising condition; Gautschi’s method yields the regular solution from some ,J 
to A = 0 whereas Barnett adopted Steed’s more general technique to calculate the 
regular and irregular functions (with their derivatives) for any specified (real) 1 [9] 
or for a range of integer-spaced A-values [lo]. It is this method which is generalised 
in the present paper, for it has the remarkable property that no knowledge of the 
form of the singularity of Gj, at the origin is required. 

It is worth emphasising that, due to the normalisations chosen, only Steed’s 
method is suitable for real values of 1 as opposed to integer values, and indeed for a 
single real value (i.e., obtained without recursion). Such a program is KLEIN [9] 
which is thus suitable for precise calculations involving the Klein-Gordon equation, 
the Dirac equation [ 11, 133 and the Fourier-Bessel equation [ 131 and many 
others, e.g., cylindrical and spherical Bessel functions of real order. The present 
paper is concerned with the extension of not only 1* to the complex plane but of the 
arguments p and 9 as well. 

Froberg’s review [l] in 1955 and the monumental survey article by Hull and 
Breit [2] treat the repulsive potential, real p and integer il values, while that of 
Curtis [14] in 1964 dealt with the attractive potential, both real and imaginary p 
(positive and negative energies) and gave tables for A= 0, 1, 2. Tabular results and a 
summary of formulae are given by Abramowitz in two articles [ 171. A survey paper 
by Kolbig [15] in 1972 drew attention to the method and program (for repulsive 
potentials and real p) of Gautschi [S] which calculates both Fn and F’ for integer 
1, while Fullerton’s bibliography [ 161 of the recent literature appeared in 1980. The 
most recent review, covering real arguments and hence both attractive (Re q < 0) 
and repulsive potentials (Re r] > 0), is that of Barnett [8] in 1982; it summarizes 
and evaluates Steed’s continued-fraction method and it provides a detailed com- 
parison between the methods of Gautschi and Steed. 

There are relatively few computations and programs available for complex values 
of the arguments, and these often deal with limited ranges of parameter values. For 
purely imaginary p and q (= ik), Whittaker functions were tabulated by Hebbard 
and Robson [18] for the repulsive potential (when k ~0) and by Curtis [14] 
(when k>O). Two recent programs, designed for electron scattering calculations, 
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are those of Bell and Scott [ 191 and of Seaton [20]. Bell and Scott compute Whit- 
taker functions by a combination of an asymptotic expansion and one about the 
origin; Seaton uses an expansion about the origin and deals with real p and with 
imaginary p; and both are limited to relatively few integer i values (1~ 10). The 
recent program of Noble and Thompson [21] extends this L range and makes use 
of Pade acceleration methods to improve the convergence of the asymptotic form; 
both attractive and repulsive fields are solved. Two further programs based on 
asymptotic expansions for repulsive potentials are those of Tamura and Rybicki 
[22] for complex p (complex energy) and of Takemasa et al. [23] for complex I 
but real p. 

Studies in pion scattering and in pionic and kaonic atom energy levels at times 
require results for complex p and complex 1. The papers of Atarashi et al. [24], 
Cooper et al. [25], and Rawitsher [26] illustrate different approaches to the 
question of obtaining sufficient accuracy. 

The methods detailed in the present paper will allow the accurate calculations of 
complex Coulomb functions for every one of the above cases as well as for complex 
Bessel functions. A detailed survey of comparative calculations is given in a related 
paper [27] by the authors which serves as a verification of the accuracy claims for 
the quoted parameter ranges and which demonstrates the comprehensiveness and 
power of the current approach. 

2. DEFINITIONS AND ANALYTIC CONTINUATION OF THE COULOMB FUNCTIONS 

Although originally defined for the scattering of charged particles in quantum 
mechanics, the Coulomb functions F, G, H+, and H- can be used to give two 
linearly independent solutions of any second-order differential equation of the form 
f”+ g(p).f(p)=O where g(p) has pp2, p-l, and pa terms. If q = 0, for example, 
they are simply related to the cylindrical Bessel functions J, Y, H(l), H(2), Z, K, 
and also to the spherical Bessel functions j, y, h(l), and h(2), by 

J,(P) = Wd’*Fv- 1,2@, P) (2.la) 

Y,(P) = - Wv)“*G~- 1,264 P) (2.lb) 

.L(P) = P - ‘FAO, P 1 (2.lc) 

YJP) = - P ~ ‘GAO> ~1. (2.ld) 
For integer v these are standard definitions, given in [17a, Eqs. 14.6.61. 

In order to make the analytic continuation of the F and H” ( = H’ ) Coulomb 
wavefunctions to each complex plane, with cuts (if present) along the negative real 
p axis, we start [17a, Eqs. 14.1.3 and 14.591 with the following hypergeometric 
series expansions 

F,dv, P) = P A+‘e’“‘PCl(tj) lF,(a; b; z) (2.2a) 

Hy( q, p) = eroeA 2Fo( 1 + a - b, a;; - l/z) (2.2b) 

= ioeizaU(u, 6, z) e (2.2c) 
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where a = 1 + 3, + iwq, b = 21+ 2, z = - 2iop and where w = + 1 or - 1. iF,(a; b; c) 
is alternatively written M(a, b, z). In (2.2a) either o( f 1) may be chosen (Kum- 
mer’s transformation) for the best numerical convergence and C,(q) is given by 
(2.3b). The *FO(a, b;; u) function has a cut along the real axis from u = 1 to u = co, 
so (2.2b) can only be used for -n/2 < 0. arg(p) < rc. 

For r] and 3, complex in general, the Coulomb functions are related to the Whit- 
taker functions W,,,(z), which provide another general characterisation [32] of the 
solutions to (1.1) as W,,,(z) and I+-,,,( -z). The relation is given through (2.2~) 
and (13.1.33) of [17a]. Any one of the Coulomb, Whittaker, or hypergeometric 
pairs of functions could be used as a numerical basis for calculating whichever form 
may be required. With o such that 1 H”l is the smaller of lH+ 1 and 1 H- 1 we have 
chosen to use the Coulomb functions F and H” as a basis for the following reasons: 

1. The Coulomb functions have unit Wronskian F’H- H’F= 1, so that F and 
H will neven both become vanishingly small. This is in contrast to the 
hypergeometric Wronskian 

M’U- j-y&f= -L&y-r. 
a z 

2. The value of o is chosen so that the basis pair (F, H”) always includes the 
function in the set (F, G, H+, and H- ) with the smallest modulus (i.e., H” when 
IL1 is small and F when IL1 is large). This is necessary as that member cannot be 
accurately calculated by any difference formula. Using Whittaker functions would 
prevent accurate calculation of F for large 111, since 1 FAj becomes small and both 
the Whittaker functions have large modulus. 

3. F and H’“’ satisfy the same recurrence relations, so that the stability when 
recurring in a certain direction can be monitored, as any error introduced will 
behave in proportion to the other solution. This means that recurrence will be 
stable provided the wanted solution is not decreasing monotonically. This is in con- 
trast to W,,,(z) and I+_,,,( -z), which satisfy diffirent recurrence relations, and for 
which such a simple guide to stability is not available. 

4. It is only a minor disadvantage that the requirement of a unit Wronskian 
leads to additional square roots in the Coulomb phase shifts and Gamow factors 
(see below), and that these factors may have poles and zeros for various L and r] 
combinations (and hence for all p for these combinations). The square root 
ambiguities may be simply resolved by using an analytic log-gamma function with a 
well-defined cut. It is also easy to return the next-order coefficients of the functions 
around the poles and zeros to enable, e.g., Whittaker functions to be everywhere 
reconstructed to full accuracy. 

The usual formulae [2] for the Coulomb phase shift Ok and Gamow factors 
C,(q) are given (for integer 1= L) in [17a, (14.5.6) and (14.1.7), respectively], but 

581/64/2-I5 
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these must be analytically continued [28,29] to the case when 1 and r] are com- 
plex. We use instead 

o,(q) = [ln r( 1 + II + iv) - In Z( 1 + 1- iq)]/(2i) (2.3a) 

and 

C,(rj)=2”exp{-rc~/2+[lnT(l+~+irl) 

+lnZJl+1-i~)]/2-ln~(21+2)} (2.3b) 

Consistent procedures must be given to determine the multiple of 27rci in the com- 
plex logarithms. Following Kolbig [ 15, 301, we define an analytic log-gamma 
procedure In T(w) with its cut along the negative real w-axis. This function is 
therefore single-valued for all w not on the cut (where it changes discontinuously by 
a multiple of 27~). The above aA and C,(q) are thus well defined everywhere 
except on the cut, and are mutually consistent according to 

C,(q) = 2”exp( -7V//2 - iO0,) T(a)/T(b). (2.4) 

This consistency procedure means that even if a ( = 1 + 1+ oiq) is on its cut (i.e., 
is non-positive real), the uncertainty of 2ni in the In r function only changes the 
sign of all the C,, e’“l, F, and H” simultaneously, so that formulae (2.2) for the 
hypergeometric and Whittaker functions still hold. The M, U, and W functions are 
all continuous in the neighbourhood of the cuts. 

3. EXPANSIONS SUITABLE FOR NUMERICAL CALCULATION 

The F and H” basis functions are defined, (2.2), through the hypergeometric 
series expansions 

a(a+ l)z2 
,F,(a;b;z)=l+=+~- 

hl! h(b+l)2!+ ... 
with z = - 2iop (3.1) 

and 

abu 
,F,(u; b;; u) = 1 + Ir + 

u(u + 1) b(b + 1) U* 
2! 

+ ‘.’ with u = w/(2@) = - l/z 

(3.2) 

which can be used directly only for small 1 pi and large 1 p(, respectively, so there is 
an intermediate range where neither is adequate on its own. In this middle region 
round-off errors in the partial sums of the ,F, series are large fractions of the final 
value, and with the *F,, asymptotic expansion the terms start increasing again 
before sufficient accuracy has been obtained. As it is absolutely convergent, the 
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accuracy of the rF1 series can be improved by selective extended-precision 
arithmetic, but there are still intermediate regions requiring different treatments. 

These are problems which faced the authors of programs exploiting these for- 
mulae; for example, Towner and Hardy [12] in an unpublished program to 
evaluate U and M and hence /?-decay integrals in nuclear physics and Moon [ 3 1 ] 
in a program to calculate Airy functions [A = - l/6, q = 0, complex p]. 

There are three principal means of improving the range of allowable arguments: 

(1) using recurrence relations, 
(2) calculating logarithmic derivatives F/F and H,‘/H,, 

(3) using Padt acceleration via continued fractions. 

These extensions may be verified either by (3.1), (3.2), or by comparison with the 
integral representations (14.3.1) and (14.3.3) for the irregular solution of [ 17aJ We 
used the adaptive integrator DOlAKF from the NAG library, choosing that integral 
which was calculated most accurately. Such verifications were necessary because no 
previously published procedure finds the Coulomb functions when p, ye, and II are 
all complex. 

3.1. Recurrence Relations 

The F, G, and H” functions all satisfy the same three-term relation 

alternative forms of which are 

(3.3) 

R,U,p,= U:.+S>UA 

and 

where 

and 

RA = W+ 1) C,(v)lC,- I(V) (so R; = 1 + ?‘,‘A’) (3.4) 

for Un = FA, GA, H: , or HF. These can be rearranged for upward recurrences, i.e., 
increasing n E Re( 1). 

Calculation by recurrence is numerically stable provided the desired function is 
not monotonically decreasing. This simple criterion for determining the stable direc- 
tion relies on the wanted and unwanted solutions having a Wronskian independent 
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of 1. This is not the case for direct recursion of the Whittaker functions, for 
although W,,,(z) and We,,, (-z) have A-independent Wronskians, they recur using 
different relations. Thus the unwanted solution in the recursion of, say, W+, is not 
W- but some other function whose Wronskian with Wf does depend on i,, and 
examples exist of W+ recurrences being unstable even though it monotonically 
increases. Consider the behaviour for the case p = 37.5i, 9 = 6.671’ for il increasing 
from O-15 as is given in Bell and Scott [19]. The errors here grow by 10 orders of 
magnitude as [27] demonstrates. 

In order to determine the directions of stable recurrence of a particular Coulomb 
function, we need only see where the modulus of that function either oscillates or 
increases monotonically. We retain the nomenclature used when 2 is real, i.e., 
upward recurrence implies n increases in integer steps and downward recurrences 
implies /1 decreases in integer steps. 

For large /1 the regular solution FL is the only minimal function [S] 

( lim FL/Hi. = 0 for any H1 not linearly dependent on FL) 
A-m 

so downward recurrence of Fi from large n is stable down to some turnover point 
after which 1 FA;il may decrease. Indeed for FL the stronger condition 

lim Fi =0 
A-cc 

holds. Conversely, the H” and G all have mixtures of the irregular solution, so their 
upward recurrence is stable for ,4 above the same turnover point. 

For 1 near zero, the H” solutions behave as eiwoi, so when 0A has a significant 
imaginary component, one of the 1 H”I will be small and HP”, F and G will all have 
large modulus. As H” is small for small A, and (from the above) large as ,4 + co, 
upward recurrence of H” will be stable-provided we check that it does not 
decrease for a while before increasing asymptotically. 

The adopted procedure is therefore to recur FA downward and Hy upward, 
calculating HA-O and G, from them at each Iz, but reversing both these directions if, 
for a range at low IAl-values, I FAI increases and 1 HyI decreases with increasing 121. 
This reversal occurs, for example, for bound states in attractive Coulomb potentials 
for 1 from 0 up to fi. 

Note that when recurring in the region n d -1 the regular and irregular 
solutions are remixed, and the increasing and decreasing behaviour of the moduli 
can become quite complicated. A much more reliable way of finding the functions 
for /1 negative is to express them in terms of the functions for 1’ = -A- 1. This is 
because for 1 and 1’ the values of A(1 + 1) are equal, and the functions satisfy the 
same differential equation and differ only in their boundary conditions. The 
Coulomb phase shifts (TV and a; are known by (2.3a), so 

HX = H; exp( iox) (3.5a) 
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where 

(3.5b) 

3.2. Logarithmic Derivatives 

In principle it should be easier to calculate the ratios F/F and H”“/Hw than the 
functions F and H” themselves because divergences in the function evaluations only 
affect the ratios in second order. The most important advantages however, are that 
for these ratios there exist continued-fraction expansions with coefficients given by 
simple algebraic expressions, and that there exist several methods (see Appendix) 
for the progressive evaluation of the continued fractions to the required accuracies. 

3.2.1. Continued Fraction CFl for the Regular Solution 

The first continued fraction, CFl, calculates the logarithmic derivative at the 
regular solution F,(q, p) as 

and is essentially [8] the recursive evaluation of (3.3) in the form 

up to a large /i = M, say. 
CFl is therefore accurate to the required tolerance E if and only if Miller’s 

downward recurrence from F,,, is sufficiently stable (m = M+ i Im A), and by Sec- 
tion 3.1 this depends on IFA/ not decreasing monotonically in any significant region 
from LI = M towards to the desired 1. This is not always true, as sometimes 1 FL1 
increases with increasing /i before decreasing asymptoticaly as n + co, so CFl will 
not always be accurate. This is the same anomalous case that was noted in Sec- 
tion 3.1. Indeed, if IFAl increases by more than E-“~ then CFl will pick up the 
decreasing H” solution, and may give the wrong sign for the logarithmic derivative. 
CFl is also unstable for 2 near to a negative integer, but the reflection rules could 
well be used in these cases. 

3.2.2. Continued Fractions CF2(0) for the Irregular Solutions 

The second continued fraction calculates the logarithmic derivative of H: or Hy 
as, 

CFZ(m)=~=ico(l -q/p)+E. 
ac (a+ l)(c+ 1) 

1 p 2(p-q+io)+ 2(p-q+2io)+ ... 
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where a=l+L+ioq and c= -;1+iwq=l+a-6, and is based [6,8] on the 
recursive evaluation of the inverse of the ratio 

,Fo(a; c;; u) =l-(a+c+l)u-242(a+l)(c+l) 
zF()(a + 2, c + 2;; u) 

,F,(a + 1, c + 1;; U) ,F,(a + 1, c + 1;; U) 

(it is equivalently the odd contraction of Gauss’ continued fraction for *FO 
[33, 341). Although the 2F0 series is only asymptotically convergent, this ratio has a 
very strong convergence property, and the continued fraction is convergent 
throughout the complex u-plane exterior to the 2F0 cut along the real axis from 
u = 1 to u = co. The CF2(o) is therefore convergent except when p approaches the 
line joining the origin to u = -iw/2, where it changes discontinuously, and thus is 
convergent everywhere on the side of real p axis, where H” tends to be exponen- 
tially decreasing. In contrast to the evaluation of CFl, no instabilities have been 
detected, and for 1 p] > lop3 the CF2 is found to be numerically accurate to within 
several digits of machine accuracy even though the number of terms required for 
convergence rises approximately as 1 p] -“.75 as I p] -+ 0. For I p] 3 1, the methods of 
Section 3.2.5 are more efficient. 

On the side of the real axis opposite to the cut, i.e., for Im(p) < 0 for CF2+ as 
shown in Fig. 1, the CF2 only gives Hw’/Hw correctly for Re(p) > 0. This is because 
H” changes discontinuously on its cut placed on the negative p axis by definition, 
but CF2 does not suddenly change there. Therefore, even though the CF2(w) are 
convergent in all quadrants, they can only be used for -rc/2 < o arg(p) < rc, and in 
the remaining quadrant different methods must be used. 

3.2.3. Asymptotic Expansions for the Regular Function 

An asymptotic expression exists for the logarithmic derivative F)jF,, which we 
call CFlA as it is based on the asymptotic expansions for H+ and H-: 

CFlA = (H+’ - H-‘)/(H+ -H-) = lim h, (3.8) N-rm 

(b) CC) 

FIG. 1. Analytic ranges and cut positions of the logarithmic derivatives of H* and the continued 
fractions CF2+ and CF2-. In the dashed quadrants, CF2’ do not equal the logarithmic derivatives 
of H’. 
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where 

h,= f (g,*COS8j.+f,*SiB8,) f (g,cos8,+f,sin8,). 
k=l k=l 

The coefficients gz , fz, gk, and fk obey the recurrence relations given in [17a 
(14.5.8)]. 

The numerators and denominators are themselves asymptotic expansions for FL 
and FA given by Froberg [l] and in [17, Eq. 14.51. They both converge most 
quickly for large IpI, but their ratio converges more quickly than the separate 
expansions. 

To use CFlA for still smaller values of lpi, we must calculate the coefficients of 
the corresponding continued fraction, and evaluate that continued fraction. This is 
equivalent to PadC acceleration of the sequence h,, and is discussed further in Sec- 
tion 3.3. 

The validity of CFlA in the complex p-plane depends on the *F, asymptotic 
expansions for H+ and HP both being accurate. The expansions for H” are valid 
just where CF2” are valid, and their regions of validity overlap only for Re(p) > 0 
except where Re(p) = 0 and IIm(p)l <t. To extend to the negative Re(p) half-plane, 
the reflection formula 

fdrl? PI’ -“a-5 -PI (3.9) 

where fL = FA,/FA;, can be used since the logarithmic derivative of just the regular 
solution is being calculated. 

3.2.4. Continued Fraction CFI’ for the Regular Solution 

Two more expressions for F/F exist in continued-fraction form, called CFl’(w) 
for o = + 1 as they are similar to CFl, but derived more directly from the defining 
equation (2.2a) for FA. Using one of the continued fractions (66) in the useful 
catalogues of Wynn 1341, i.e., 

,F,(a+l;b+l;z) b (a+l)z (a+2)z =- 
Jl(a; b; z) b-z+ b-z+l+ b-z+2... 

it follows that 

CFl’(o)=-- - 1+1 io+ 
2ioa 2iop(a + 1) 2iwp(a + 2) 

P b-z+ b-z+l+ b-z+2+ ... 
(3.10) 

with a, b, z as in (2.2). 
For small values of Ip( compared with 1~11~ + 111, CFl’(o) both converge rapidly 

to the correct result. For larger values of Re p, however, CFl’(w) both suffer from 
“false convergence” as first pointed out by Gautschi [35]. That is, the differences 
between successive convergents of CFl’ become small, seeming to indicate con- 
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vergence, but then increase again by many orders of magnitude before finally con- 
verging. This is exactly analogous behaviour to the CFl instabilities discussed in 
Section 3.2.1, but now occurs for p, q, and 1 all real. This in itself is not a serious 
defect for CFl’-the problem is to determine when it occurs, and to decide which 
choice of w value (if either) gives a correct result. The CFl behaviour is understood 
as it depends on the recurrence behaviour of F,(q, p) values for integer-spaced k 
values with q and p constant. The CFl’(o) behaviour, by contrast, depends on the 
stability of recurring Fn + k(q + iok, p) values downward from a large k to k = 0 in 
steps of 4, and as FJq, p) values for differing q parameters are not usually com- 
pared, the general behaviour of CFl’ is an open question. 

3.2.5. Expansions of the Irregular Solution about the Origin p = 0 

The simplest expansion of GA(r], p) as an expansion about p = 0 uses (3.5) to give 

GArl, P) = [J’Av, P) ~0s x - FAv, p)l/sin x (3.11) 

where ,I’= -R - 1, and FL and FL, are given by the usual 1F, series (2.2a). This is 
analogous to (13.1.3) of [17a] and is suitable for non-integral 1. 

For 2 = 0 (i.e., integer A) (3.11) becomes indeterminate, but its limiting value as 
x = 0 may be determined by L’HBpital’s rule. In these cases the irregular solution 
has a logarithmic singularity at the origin, as shown in (13.1.6) of [17a]. 

These two expansions of the irregular solution in terms of the regular solutions of 
positive and negative orders (or the limit of this is 22 is integral), are often used to 
define formally the whole irregular solution. These have been suggested as a 
numerical method [48,49], especially after expanding the pj, in terms of FA + k for 
k > 0, but they are only practical for I pi < 1. For larger 1 pi there are prohibitive 
cancellation errors [SO]. For lpi < t,, however, they usefully supplement CF2, and 
have the advantage that their cuts can be set correctly on the negative real p axis. 

3.3. Pade’ Acceleration via Continued Fractions 

When a power series in z for a function f(z) diverges because singularities for 
small z define a small radius of convergence, it would be reasonable to expect 
rational approximations to the function to be useful for analytic continuation to 
larger IzI values. Pade methods (see, e.g., [33, 36, 37, 381 can be used to construct 
these rational approximations. The best-converged members of the Padt table P,,, 
are usually the diagonal (N= M) and near-diagonal ones, and these members are 
precisely [33, p. 3801 the values of successive convergents of the continued fraction 
constructed to “correspond” to the original power series, by requiring their coef- 
ficients to agree up to a certain power z~+~ but not above. 

For practical calculations there is therefore a wide variety of equivalent methods. 
The coefficients of the numerator and denominator polynomials may be found 
explicitly by solving a set of linear equations [37, p. 91 or by the more compact 
algorithm DFRACT of [39, 551, or their numerical ratios PN.M in the Padt table 
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may be sequentially evaluated using Wynn’s NEWS algorithm, or his s-algorithm 
[40,41]. Alternatively, the diagonal Pade members may be evaluated by means of 
the corresponding continued fraction, whose coefficients may be found by the QD- 
algorithm [42], the PD-algorithm [43], or the P-algorithm [44,45]. These 
methods all require working arrays of (in total) 4N numbers to calculate a fraction 
of N terms, and take a time rising as N2. 

We find [21] that the Padt acceleration of the asymptotic expansion (3.2) 
extends the convergence to larger z = l/(2@), subject only to exponent overflow 
and to N being sufficiently large. This improvement is more marked than with the 
power series (3.1), for which Pade acceleration reduces [55] the cancellation errors 
in the partial sums, but does not significantly extend the radius of convergence. 

Because in a practical computation, e.g. [46], the working arrays have a 
predefined size (in FORTRAN), and because failure to converge in this space con- 
sumes considerable effort, it is important to estimate as accurately as possible 
beforehand whether or not to attempt Pade acceleration of a given series. If the 
continued fraction CF2(w) for the logarithmic derivative H”‘/H” has already been 
evaluated, then we can use the emperical relation observed in Fig. 2, which plots 
the correlations between the number of iterations “NPQ” required for CF2(o) and 
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FIG. 2. Correlation of the number of iterations required for CF2 and HO. 
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the number “N20” of iterations for a continued-fraction acceleration of the *F, 
series for H” itself. We observe that at least for NPQ < 15, the N20 values are 
bounded by approximately 3.0 x NPQ. See Case 4, Section 4.2. 

3.4. Temme’s Algorithm for the Irregular Solution 

Temme’s algorithm [Sl ] yields the absolute normalisation of the irregular 
solution by means of a sum rule for a sequence of function values evaluated for iv 
differing by unity, all with the same i value. Recurrence relations connect members 
of this sequence just as they connect sequences of the same q and differing L. The 
sequence for the Temme algorithm can be given as Hy(q - ikw, p) for k integral, or 
equivalently (by 2.2b) as Qk = zFo(a + k, c + k;; u). The @)k satisfy the recurrence 
relation 

@k- I= @k&/t2p) + a/c+ lAk+ ,/(4P2) 

where Ak+l = (a + k)(c + k) and B, = 2(p -v + iok). 
From (3.12) one has the continued fraction 

(3.12) 

2~ A2 
@,pBo=--- 

II,+ B,+ ... 

from which CF2 (3.7) can be immediately derived. Temme shows furthermore than 
the @k are normalised by 

f Ck@k=l 
k=O 

(3.13) 

where Co = 1 and Ck = icoCk-, A,/(2pk). This sum, and the continued fraction, are 
both convergent because (as proved in [ 511) Qk is the minimal solution as k + co. 
This means that Miller’s backward-recurrence method [56] can be used to con- 
struct the @k (and hence the ratio @#Do) to any required accuracy provided the 
downward recurrence is started at a sufficiently large k value. 

Campell [52, 533 and Amos [54] use this algorithm for Bessel functions (9 = 0) 
and use precalculated approximations for the necessary starting orders for Miller’s 
method to reach sufficient accuracy. For a given accuracy approximately 3.5 times 
as many terms are needed for the sum (3.13) compared with those sufficient for just 
the (continued fraction) ratio @&Do. Methods are available, see Appendix, to 
evaluate the continued fraction forward to any required accuracy, and can be 
modified [47] to also calculate the sum (3.13) (relative to Qo), so avoiding 
precalculated limitations on accuracy. 

Temme’s algorithm is formally correct for each of the (p, q, 2) complex planes 
(with the cuts as for CF2; see Fig. l), but for general ‘I, 2 there are often severe can- 
cellations in the sum (3.13). It is only suff%ziently accurate however, if [Sl] b is 
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restricted to be real and in [0, 11, and a to positive real values. In practice, we find 
it only useful for II + $1 and IRe( both less than unity. 

Temme’s algorithm appears most suited for purely imaginary q values and for 
Bessel functions (q = 0) of real order 1 and complex p (as in [53, 54, and 471). For 
real orders, upward recurrence is always possible from lo satisfying I& + $1 Q 4 to 
any required 2. In these restricted regions, Temme’s algorithm would be a fast and 
simple replacement for Padt acceleration of the $,, series. For complex Coulomb 
functions, however, the Pade method gives nearly full machine accuracy in those 
cases where Temme’s approach suffers from cancellation errors. 

4. COMBINATIONS OF METHODS ACCORDING TO THE (p,q,l) REGION 

We now outline suitable choices of the algorithms of Section 3 in order to 
calculate the complex Coulomb functions for given p, q, J values and which are 
embodied in the FORTRAN progam COULCC [46]. In general, accuracies within 
a few decimals of machine accuracy are possible. 

To calculate the basis functions I;;. and Hy it is sufficient to have their 
logarithmic derivatives together with some means of absolute normalisation. 
Recurrence relations can also be used to link 2 values with real parts /1 which differ 
by integers; therefore in the range from ~min to E,,,, = ;Imin + k, for integral k 2 0, 
the imaginary part of I remains constant and the case of a single complex A value 
(k = 0) is included. If such a range of i-values is required the numerical stability of 
the recurrence relations demands that the logarithmic derivative of each function 
should be evaluated at that end of the A range from which the function does not 
then monotonically decrease in modulus. The regular (minimal) solution is 
therefore usually recurred with /1 decreasing and the irregular solution with /1 
increasing. For a given range of stable recurrences (A,,,, A,) the structure of 
algorithm COULCC is shown in Fig. 3 and is similar to that of the algorithms for 
real arguments [7, lo]. 

We now describe how to make the choices 

(1) between CFlA and CFl to compute the logarithmic derivative of the 
regular solution at II,; and, 

(2) between the Cases l-6 of methods for finding the absolute normalisations 
(using appropriate versions of the Wronskian). 

4.1. Choice of Continued Fraction to Compute F/F 

Usually the asymptotic form CFlA is simply a quicker method of calculating 
FA/F, for large IpI % 1~1~ + 1A1, as CFl takes at least IpI iterations for convergence. 
Procedure COULCC chooses CFlA if Ipl > ASYM . C,A where C,A is a number 
describing the difficulty for CFlA: 

C,A = (IRe( + Im(A)2 + (Re(B)I + Im(B)2)/2 (4.1) 
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FIG. 3. Flow diagram for the evaluation of the complex Coulomb functions for the i. range I, to 1, 

with A = 1 + II + iv and B = 1 + ,I - iv and the parameter ASYM = 3.0. Sometimes 
however, when CFl is unstable or 1 is near a negative integer then CFlA must be 
used even if it does not fully converge. 

4.2. Cases of Absolute Normalisation 

For all p, 9, and 1, the regular logarithmic derivative F/F is available (from 
above), and also for Ip( > 0.5 the irregular H”‘/H” derivative from CF2(w). The 
“o” value has been chosen to minimise the cancellation on the left-hand side of the 
Wronskian 

F/F- Hw’/Hw = l/(F. H”) 
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so the product F. H” can be found close to machine accuracy. To find all of F, F, 
H”‘, and H”‘, however, a fourth input is required: either the CF2( -0) derivative, 
an explicit F or H” evaluation, or, when p, v], and 1 are on their real axes, the 
method of [8, 10) which is Case 3, below. This latter (using the notation f= F/F 
and p + iwq = H”‘/H”) gives 

and 

F= + Cd{(P-f)2+q211”2 (4.2) 

H”=F[(f-p)/q+io]. (4.3) 

The six cases in the code COULCC [46] cover the six different possibilities: 

Case 1. F from 1F1 series (3.1). 

Case 2. p - ioq = H-“‘/HP” from CF2 ( - 0). 

Case 3. p - iwq from (p + iwq)* (when p and q real). 

Case 4. H” from *F. expansion (3.2). 

Case 5. H” from FA and Fe>,_ i (3.11) with F from ,F, series, and not CF2(w). 

Case 6. H” from logarithmic expression (see Sect. 3.2.5) with F from ,F, series, 
and not CF2(o). 

To decide which case to employ, we use the following considerations: 

Case 1. A direct series evaluation which is used as a last resort. 

Cases 2 and 3. If p - iwq is to be useful, thenf, p + ioq and p - ioq must all be 
different, so the Wronskians W(F, H”), W(F, HP”), and W(H”, HP”) may all be 
used without significant cancellation errors. This occurs for p, q, and 2 near their 
real axes, with Re(p) > (piI (pi is the “turning point” q + (q’ + a(1 + l))), as then 
F, H”, and HP” are all oscillatory with moduli around unity. If p, ‘1, and 1 are on 
their real axes, p and q are real, and Case 3 is most efficient, using (4.2), (4.3) (the 
method of [lo]). 

Case 4. The 2Fo expansion, with Pade acceleration, is only useful if it converges 
in the working space available. We use the empirical criterion described in Sec- 
tion 3.3, which is generally satisfied for 1 pi 9 1~1 2 + 1 Jbl. 

Cases 5 and 6. If (pi < 0.5, then CF2(w) converges too slowly, so the four inputs 
are F/F, F from the ,F, series, the Wronskian W(F, H”), and H” from Sec- 
tion 3.2.5. 

Case 1 is important for moderate Ipl “inside” the turning point 1~~1, and for 2 
with a large imaginary part. The ,F, series is now evaluated in extended precision 
to improve the handling of these difficult cases (see Sect. 5). 



506 THOMPSON AND BARNETT 

5. REMAINING REGIONS OF DIFFICULTY 

For large q or for large Im(n), there remain problems as the ,F, series may have 
large rounding errors even in extended precision and the ,FO expansion may not 
converge even when PadC accelerated. In these cases it is usually difficult to 
establish the overall normalisation of all the Coulomb functions calculated, but 
sometimes the problem is more severe because of greater recurrence instabilities for 
large ‘I. For p = 200i and q = 75i, for example, Fl increases by 24 orders of 
magnitude from A= 0 to A= 90, and so CFl evaluated at 1. < 60 will give the 
logarithmic derivative of H not F. The difficulty is that downward recurrence 
starting from this (wrong) logarithmic derivative will be stable, so the COULCC 
procedure will not even detect the fact that the near-minimal solution it is 
calculating is not the regular solution. The CFlA expansion should be used 
therefore if instabilities are even suspected, but if q and I are too large compared 
with p, then the CFlA will not converge to any useful accuracy, and COULCC 
must fail. If calculations in such regions are desired, therefore, additional large-q 
expansions must be employed. Complex generalisations of the Bessel function or 
Airy-function expansions of [17a], Eqs. 14.4.1-14.4.10 may be useful, along the 
lines suggested in [29]. These however are most efficient in the Igl$ IpI limit, but 
the above problems occur for 1~1 z Ip(. They are also less efficient in general, as the 
calculation of the Bessel or Airy basis functions requires the calculation of special 
cases of the Coulomb functions themselves such as by [47, 52, or 541 and the full 
Coulomb functions might have been calculated without much more effort. 

6. CONCLUSIONS 

The considerations described in Section 4 have been used to construct a FOR- 
TRAN routine COULCC, and this program is being published concurrently [46]. 
It is designed to use the most accurate of Cases 1 to 6 to calculate the regular 
solution FL(q, p), one of the irregular solutions G, H+, or H-, and their derivatives 
for a range of complex orders 1 with integer-spaced real parts, A. Except for the 
limitations described in Section 5, the results are accurate to within 2 or 3 decimals 
of machine accuracy. This performance has been verified for Bessel functions by 
comparisons [47] with other Bessel codes [53, 541. Only a few other codes 
[ 10, 19,211 attain similar accuracy for Coulomb functions, while those in [3, 5, 20, 
22, or 231 have noticeable accuracy limitations. An error estimate is produced 
within COULCC by examining cancellations at selected stages of the calculation; 
the accuracy of this estimate has been also tested (cf. [57]) by the comparison with 
an extended-precision version of itself. 

These routines can optionally produce the Bessel functions J, Y, H, Z, or K as 
they can set q = 0 and rescale the solutions by (2.1). A simplified Bessel version 
BESSCC [27] is also being constructed, specialised to real orders ,? > - $, to avoid 
not only the square roots in (3.4) but also the recurrence instabilities of Section 5. 
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Both COULCC and BESSCC avoid precalculated starting orders for Miller’s 
algorithm [S, 53, 54, 561 by the use of the modified Lentz’s method (Appendix III) 
for the forward evaluation of continued fractions to near machine accuracy. This 
feature improves the portability of the new codes. 

APPENDIX: THE FORWARD EVALUATION OF CONTINUED FRACTIONS 

The problem is to evaluate the convergents 

h,=bo f u1 a2 . . a,-l afl 
b,+ b,+ b,-,+ b, 

for IZ = 1, 2,... successively. 

(I) The simplest method evaluates h, = A./B,, where A,, and B, are 
found from the recurrence relations 

A,,=An-, b,+A.-2a, 

B,=B,-l bn+L2an 

starting with the initial conditions ApI = 1, A, = bo, B- 1 = 0, B, = 1. However, the 
A,, and B, tend to grow exponentially with n, and usually need to be tested for 
overflow and renormalised when necessary. 

(II) Steed’s method [6] does not use A, and B, explicitly but only the 
ratio D, = B n- ,/B,. It calculates D, and Ah, = h, -h, ~ I recursively using D, = 
l/(D, _ 1 a, + b,) and Ah, = (b, D, - 1) Ah, _, . However, it can occasionally happen 
that D,-,a,+b n z 0, so that D, and Ah, will be very large. The next Ah, + I will 
typically cancel this large change, but only with some loss of accuracy in the 
numerical running sum h,, 1 = C Ah,. This failure occurs, for example, when 
calculating CFl for 1= q = 0 and p = fi. 

(III) Lentz’s method [58] uses both the ratios D, = B,-,/B, and C, = 
An/A,_, , and it calculates the ratio A,, = h,/h, _ 1 of successive convergents. This 
allows h, to be large in the above cases, but enables h, + I = A, + , h, to be calculated 
without further loss of accuracy. It is now only necessary to avoid divisors being 
exactly zero (i.e., less than machine precision), by shifting them to, e.g., lo-” if 
necessary. We therefore recommend Lentz’s method (modified to include these zero 
shifts) as both avoiding exponent overflows and yielding results of uniform 
accuracy. In full, the method for the evaluation of h = lim, _ o3 h,, to accuracy eps 
is: 
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ho := bO; if (h, = 0) ho := small 
Do := 0; Co := h, 
for n = 1, limit do begin 

D, :=b,+a;D,_,; if (D,=O) D, :=small 
C, :=b,+a,/CnP,; if (C,=O) C, :=small 
D, := l/D, 
A,:=D;C,; h,:=h,-,A, 
if ([A,- 11 <eps) exit 
end 

Note. 1. The parameter small should be some non-zero number less than 
typical values of eps* lb,/, e.g., 10m5’. 

2. It is necessary in a robust algorithm, as is also pointed out in [59], to 
monitor both the numerator and denominator ratios for approaches to zero. Our 
modification involves minimal change to the algorithm, whereas [59, (8)] proposes 
an altered recurrence relation after the denominator zero (in addition to Lentz’s 
[58] treatment of numerator zeros). 
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