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The subject of elliptic curves is one of the jewels of nineteenth-century mathe-
matics, originated by Abel, Gauss, Jacobi, and Legendre. This book presents an
introductory account of the subject in the style of the original discoverers, with
references to and comments about more recent and modern developments. The
treatment combines three of the fundamental themes of mathematics: complex
function theory, geometry, and arithmetic.

After an informal preparatory chapter on rational functions, Riemann sur-
faces, and the like, the book follows a historical path, beginning with practical
examples of elliptic integrals and the discovery of Abel and Gauss that the
inversion of such an integral yields an elliptic function. This is followed by
chapters on Jacobi’s theta functions, modular groups and modular functions,
Abel’s and Hermite’s work on the quintic, Kronecker and Weber’s imaginary
quadratic field, and the Mordell–Weil theorem on the rational points of elliptic
curves.

Requiring only a first acquaintance with complex function theory, this book
is an ideal introduction to the subject for students of mathematics and physics.
The many exercises with hints scattered throughout the text give the reader a
glimpse of further developments.
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I have always an idea in my mind, a certain confused picture, which shows me,
as in a dream, a better form than I have used; but I cannot grasp it and develop
it. And even this idea is only on a middling plane. From this I conclude that
the works of those rich and great minds of ancient days are very far beyond the
utmost stretch of my hopes and imagination. Their writings not only satisfy me
to the full, but astound me and strike me with wonder. I appreciate their beauty;
I see, if not the whole, at least so much that I cannot possibly aspire to equal it.
Whatever I undertake, I owe a sacrifice to the Graces, to obtain their favor. . . .
But they always leave me in the lurch. With me everything is rough; there is a
lack of grace, charm, and beauty. I am incapable of making things show for all
that they are; my style adds nothing to the matter. That is why my subject must
be a solid one, with plenty to grip, and one that shines with its own lustre.

Montaigne, On Presumption
Book 2, Chapter 17, Essays, trans. J. M. Cohen,
Penguin Classics, New York, 1958.



Contents

Preface page xi

1. First Ideas: Complex Manifolds, Riemann Surfaces, and
Projective Curves 1

1.1 The Riemann Sphere 1
1.2 Complex Manifolds 3
1.3 Rational Functions 7
1.4 Luroth’s Theorem 8
1.5 Automorphisms of P1 12
1.6 Spherical Geometry 14
1.7 Finite Subgroups and the Platonic Solids 16
1.8 Automorphisms of the Half-Plane 24
1.9 Hyperbolic Geometry 25
1.10 Projective Curves 27
1.11 Covering Surfaces 30
1.12 Scissors and Paste 33
1.13 Algebraic Functions 41
1.14 Examples 46
1.15 More on Uniformization 51
1.16 Compact Manifolds as Curves: Finale 52

2. Elliptic Integrals and Functions 54

2.1 Elliptic Integrals: Where They Come From 55
2.2 The Incomplete Integrals Reduced to Normal Form 62
2.3 The Complete Integrals: Landen, Gauss, and the

Arithmetic–Geometric Mean 65
2.4 The Complete Elliptic Integrals: Legendre’s Relation 68

vii



viii Contents

2.5 The Discovery of Gauss and Abel 71
2.6 Periods in General 77
2.7 Elliptic Functions in General 81
2.8 The ℘-Function 84
2.9 Elliptic Integrals, Complete and Incomplete 87
2.10 Two Mechanical Applications 89
2.11 The Projective Cubic 92
2.12 The Problem of Inversion 93
2.13 The Function Field 95
2.14 Addition on the Cubic 98
2.15 Abel’s Theorem 104
2.16 Jacobian Functions: Reprise 109
2.17 Covering Tori 113
2.18 Finale: Higher Genus 118

3. Theta Functions 125

3.1 Jacobi’s Theta Functions 125
3.2 Some Identities 127
3.3 The Jacobi and Weierstrass Connections 131
3.4 Projective Embedding of Tori 133
3.5 Products 135
3.6 Sums of Two Squares 140
3.7 Sums of Four Squares 142
3.8 Euler’s Identities: Partitio Numerorum 143
3.9 Jacobi’s and Higher Substitutions 147
3.10 Quadratic Reciprocity 150
3.11 Ramanujan’s Continued Fractions 154

4. Modular Groups and Modular Functions 159

4.1 The Modular Group of First Level 159
4.2 The Modular Group of Second Level 160
4.3 Fundamental Cells 162
4.4 Generating the Groups 166
4.5 Gauss on Quadratic Forms 167
4.6 The Group of Anharmonic Ratios 169
4.7 Modular Forms 172
4.8 Eisenstein Sums 176
4.9 Absolute Invariants 177
4.10 Triangle Functions 183



Contents ix

4.11 The Modular Equation of Level 2 185
4.12 Landen’s Transformation 187
4.13 Modular Equations of Higher Level 189
4.14 Jacobi’s Modular Equation 192
4.15 Jacobi and Legendre’s Derivation: Level 5 198
4.16 Arithmetic Subgroups: Overview 200

5. Ikosaeder and the Quintic 206

5.1 Solvability of Equations of Degree ≤ 4 206
5.2 Galois Groups Revisited 207
5.3 The Galois Group of Level 5 209
5.4 An Element of Degree 5 212
5.5 Hermite on the Depressed Equation 214
5.6 Hermite on the Quintic 216
5.7 A Geometric View 217

6. Imaginary Quadratic Number Fields 224

6.1 Algebraic Numbers 225
6.2 Primes and Ideal Numbers 227
6.3 Class Invariants and Kronecker’s Jugendtraum 235
6.4 Application of the Modular Equation 237
6.5 The Class Polynomial 239
6.6 Class Invariants at a Prime Level 243
6.7 Irreducibility of the Class Polynomial 248
6.8 Class Field and Galois Group 249
6.9 Computation of the Class Invariants 250

7. Arithmetic of Elliptic Curves 252

7.1 Arithmetic of the Projective Line 252
7.2 Cubics: The Mordell–Weil Theorem 253
7.3 Examples 255
7.4 Proof of the Mordell–Weil Theorem 259

References 265
Index 278





Preface

The subject of elliptic curves such as y2 = (1− x2)(1−k2x2), with k2 �= 0, 1,
and of the corresponding elliptic integrals

∫ x
0 y−1dx and the elliptic functions

which invert them, is one of the jewels of nineteenth-century mathematics.
Abel, Gauss, Jacobi, and Legendre are the masters here. It is a subject that
combines in the most attractive way three of the fundamental themes of math-
ematics: complex function theory, geometry, and arithmetic. Naturally, it is
possible to emphasize just one of these, but that we think is to miss the point,
and so we have tried to keep a fair balance among them.

Chapter 1 is preparatory: It deals with rational functions, fractional linear
substitutions, projective curves, Riemann surfaces, coverings, and the like,
emphasizing low genus 0 or 1, but with glimpses of the higher genera g = 2 or
more. The presentation is often informal, but what is not actually proved is made
plausible, and we thought it better to give a bird’s-eye view of the fundamental
facts than to get too much involved in the necessary technicalities.

Chapter 2 begins with practical examples of elliptic integrals and the discov-
ery of Abel and Gauss that the inversion of such an integral yields an elliptic
function, that is, a function of rational character on a complex torus produced
by taking the complex plane C modulo a lattice L = Zω1 ⊕ Zω2. The re-
markable geometric fact emerges that the class of elliptic curves X, such as
y2 = (1 − x2)(1 − k2x2), and the class of complex tori are one and the same;
in particular, X carries a law of addition of rational character. The general
discussion is mostly in the style of Weierstrass, though Jacobi’s viewpoint is
also explained and that of Legendre is sometimes preferred. The development
is illustrated by occasional mechanical and other applications.

Chapter 3 is occupied by Jacobi’s theta functions. These are not functions on
the complex torus X = C/L but rather on its universal cover C, obeying simple
transformation rules: ϑ(x + 1) = ϑ(x), ϑ(x + ω) = f ϑ(x) with a factor
f = ea+bx . The subject is developed only so far as to permit several striking

xi



xii Preface

geometric and arithmetic applications, such as the projective embedding of
complex tori, counting the number of representations of a whole number as the
sum of two squares, and the spectacular continued fractions of Ramanujan.

Chapter 4 is devoted to the modular group �1 = P SL(2, Z) and some of its
simpler arithmetic subgroups, and to the fundamental cells and absolute invari-
ants attached to them. Quick explanations: Two complex tori are conformally
equivalent if and only if their period ratios ω = ω2/ω1 are related by the action
ω �→ (aω + b)(cω + d)−1 of a 2 × 2 integer matrix [ab/cd] of determinant
1.These substitutions form the group �1. The period ratio ω is taken in the
upper half-plane, so the quotient of the latter by �1 is a list of conformally
inequivalent tori. Dedekind’s absolute invariant of �1 supplies numbers: It
is a function j of rational character in the period ratio ω of X, distinguished
by the fact that two such curves X are conformally equivalent if and only if
their absolute invariants match. The Jacobi modulus k2, viewed as a function
of the period ratio, fills the same office of absolute invariant for the modular
group �2 of second level comprised of modular substitutions congruent to the
identity modulo 2. The highpoint is the modular equation relating the absolute
invariants of two elliptic curves one of which covers the other. This part stems
from Abel, Gauss, and Jacobi and has extraordinary arithmetic applications.

Abel proved that the general quintic is not solvable by radicals. Hermite dis-
covered that the extra ingredient required is, so to speak, a single new “radical,”
namely, the eighth root of the Jacobi modulus k2, in terms of which the roots
of the modular equation of level 5 may be expressed. Chapter 5 explains this
tour de force.

Chapter 6 tells the even more remarkable story, due to Kronecker and Weber,
of the class field of the imaginary quadratic field Q(

√
D) for a square-free

whole number D < 0. The class field is the biggest (unramified) extension
of Q(

√
D) with commutative Galois group and is produced from Q(

√
D) in

the most surprising manner: by the adjunction of certain class invariants j(ω)
attached to the integral ideals of Q(

√
D). The modular equation plays a central

role in this development, too.
Chapter 7 provides a glimpse of the arithmetic of elliptic curves per se; it is

devoted to the theorem of Mordell and Weil stating that the rational points of
such curves form a module of finite rank over Z.

Prerequisites. Not much is needed besides a first acquaintance with complex
function theory: primarily, Cauchy’s theorem, Liouville’s theorem, power se-
ries, residues, and such. Copson [1935], Hurwitz and Courant [1964], or
Ahlfors [1979] would be fine; each of these contains, as well, a nice pre-
sentation of elliptic functions from the viewpoint of complex function theory,
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covering part of Chapters 2 and 3. A first acquaintance with the topology of
curves and surfaces and with algebraic number fields and Galois theory would
be helpful, but is not really necessary. What is needed is reviewed on the spot
and you can either believe it or look it up.

Exercises with occasional hints are placed throughout the text. Please take
them as an important part of the discussion and do them faithfully. It will pay
off.

Acknowledgments. It is a pleasure to thank the audiences at MIT (1958–66),
Rockefeller University (1966–9), NYU (1969–82) [H. McKean], and Tulane
[V. Moll] (1986,1994) who have listened patiently while we learned the sub-
ject. Now one cannot remember who objected to this or clarified that, but any
teacher will know how much we owe to them. It is an additional and very
particular pleasure to thank P. Sarnak who has kindly read the whole book, with
particular attention to the arithmetic parts, and corrected a number of mistakes
and misapprehensions. The text owes its elegant appearance to the expertise
of Meredith Mickel and the superb copyediting by G. M. Schreiber. The par-
tial support of the National Science Foundation (summers 1981,1994 under
grant nos. NSF-MCS 7900813 [H. McKean] and LEQSF(1991–4)-RD-A-31
[V. Moll] is gratefully acknowledged, too.

So. Landaff and New York Henry McKean
New Orleans Victor Moll





1

First Ideas: Complex Manifolds, Riemann
Surfaces, and Projective Curves

This chapter presents some elementary (and not so elementary) ideas in con-
tinual use throughout the book. For more details and further information see,
for example, Ahlfors [1979], Bliss [1933], Clemens [1980], Farkas and Kra
[1992], Hurwitz and Courant [1964], Kirwan [1992], Reyssat [1989], Springer
[1981], and/or Weyl [1955]. These are all perfectly accessible to beginners;
further references will be given as we go along.

1.1 The Riemann Sphere

Let R3 be the 3-dimensional (real) space of points x = (x1, x2, x3) and let
|x | =

√
x2

1 + x2
2 + x2

3 be the distance from x to the origin o = (0, 0, 0). M is
the unit sphere |x | = 1 and C is its equatorial plane x3 = 0, identified as the
complex numbers via the map (x1, x2, 0) �→ x1 + √−1x2. M is temporarily
punctured at the north pole n = (0, 0, 1) and the rest (x3 < 1) is mapped 1:1
onto C by the projection p depicted in profile in Fig. 1.1. The rule is: Sight
from n through the point x ∈ M, the projection p(x) being the intersection of
this line of sight with C. Obviously, p(x) and x1 + √−1x2 lie on the same ray
of C; also the triangles n, o, p(x) and n, q = (0, 0, x3), x are similar, so

|p(x)| = distance[o, p(x)]

distance[o, n]
= distance[q, x]

distance[q, n]
=

√
x2

1 + x2
2

1 − x3
.

In short,

p(x) = x1 + √−1x2

1 − x3
.

1



2 1 First Ideas

C
o

n

p

xq

Figure 1.1. The Riemann sphere.

This is the stereographic projection of the cartographers. Denote it by p+ to
distinguish it from the analogous projection

p−(x) = x1 + √−1x2

1 + x3

of M ∩ (x3 > −1) produced by sighting from the south pole (0, 0, −1). Now,
for −1 < x3 < 1, both maps are available and

[p−(x)]−1 = 1 + x3

x1 + √−1x2
= 1 + x3

x2
1 + x2

2 (= 1 − x2
3 )

× (x1 − √−1x2)

= x1 − √−1x2

1 − x3
= [p+(x)]∗,

the star being complex conjugation, so the two images are anticonformally
related. Replacing p−(x) by [p−(x)]∗ produces the following situation: M is
covered by two open patches U+ = M ∩ (x3 < 1) and U− = M ∩ (x3 >

−1), each provided with a local coordinate: z+ = p+(x) for U+ and z− =
[p−(x)]∗ for U−. Most points of M lie in the overlap U− ∩ U+, and for
them the two competing coordinates are conformally related: z− = 1/z+. This
object [M+ patches + projections] is the Riemann sphere, alias the extended
plane C + ∞, the so-called point at infinity being identified with the north
pole n = (0, 0, 1).

Exercise 1. Prove that p+ maps spherical circles into plane circles or lines and
vice versa. Hints: x • e = cos θ marks off a spherical circle for any unit vector
e and any angle 0 < θ ≤ π/2. Check that p+(x) = a + √−1b satisfies
(1 − x3)(ae1 + be2) + x3e3 = cos θ and a2 + b2 = (1 − x3)−1(1 + x3). Then
eliminate x3.
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Exercise 2. Prove that the map p+:M → C is conformal, that is, angle pre-
serving, spherical angles being measured in the natural way.

1.2 Complex Manifolds

A 2-dimensional manifold or surface M is a geometrical figure that looks in
the small like an (open) disk. To be precise, this means three things: (1) M
is a topological space covered by a countable number of open patches U . (2)
The typical patch U is equipped with a patch map p → x(p) of points p ∈ U
to the open unit disk D = {(x1, x2): x2

1 + x2
2 < 1} ⊂ R2. This map is 1:1,

continuous, and onto; it provides U with local coordinates x = x(p). (3) An
ambiguity arises if the point p ∈ M lies in the overlap U− ∩U+ of two patches
so that two competing coordinates x−(p) and x+(p) are available; in this case,
the composite map x−(p) → p → x+(p), and likewise its inverse, is required
to be continuous; see Fig. 1.2.

U− U+

D

x−(p) x+(p)

p

Figure 1.2. Local coordinates on M.

Examples. The plane; the (open) half-plane, disk, or annulus; the sphere or the
cylinder; the surface of a doughnut (torus) or a pretzel; the Möbius strip.

• M is connected if it comes in one piece, that is, if any two of its points
can be joined by a nice curve; this feature is assumed from now on without
further comment.
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• M is simply connected if it has no punctures, holes, or handles, that is, if
every closed curve (loop) can be shrunk to a point in M. This is so for the
disk, half-plane, and sphere, but not for the annulus, cylinder, torus, or pretzel.

• M is compact if every cover of it by open sets admits a finite subcover. In
this case it is possible to pick a number 0 < r < 1 so that the images of the
closed disk of radius r under a finite number of the patch maps already cover
M. This is so for the sphere, torus, and pretzel, but not for the disk, plane,
or cylinder.

• M is orientable if the relation between patch maps preserves the sense
of (say, counterclockwise) rotation. This is so for the Riemann sphere of
Section 1, but is not possible on a Möbius band.

• M is smooth if competing local coordinates x− and x+ on overlaps U− ∩U+
are smoothly related, that is, if x−(p) is an infinitely differentiable function of
x+(p) and vice versa. Then you may speak of smooth functions f :M → R,
of which you ask that f (p) be a smooth function of the local coordinate
x(p) on any patch. Plainly, there can be no competition in this regard: On
overlaps, f (p) is a smooth function of both x−(p) and x+(p) or of neither.

• M acquires the more subtle structure of a complex manifold or Riemann
surface if the complex local coordinates or parameters z(p) = x1(p) +√−1x2(p) are conformally related on overlaps; orientability is necessary for
this. Then it makes sense to speak of the class K(M) of functions f :M →
C + ∞ of rational character defined by the requirement that in the vicinity
of any point p0, f (p) have an expansion wd [c0 + c1w + c2w

2 + · · ·](d >

−∞, c0 
= 0) in powers of w = z(p) − z(p0). Naturally the expansion
changes if the local parameter is changed, but the number d does not, so it
is permissible to speak of a root of multiplicity d if d > 0 and of a pole of
multiplicity −d if d < 0; d is the degree of f at p0.

Exercise 1. K(M) is a field.

Exercise 2. Check the statement that the degree d is independent of the local
parameter.

Now for some easy examples.

Example 1. It is needless to pause over the complex structure of the plane C

except to note that it has a global parameter z(p) = x1 +√−1x2. This example
is too simple, as is the disk, half-plane, or annulus, or any other open part of C

which obtains a complex structure by mere inheritance.
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Example 2. The cylinder is the quotient of C by its (arithmetic) subgroup Z,
so it, too, obtains a complex structure by inheritance, and likewise the (square)
torus, which is the quotient of C by the lattice Z ⊕ √−1Z; see Fig. 1.3.

Figure 1.3. Complex structures on the cylinder and the torus.

Example 3. The sphere is more interesting. The stereographic projections of
Section 1 provide it with a complex structure after self-evident adjustments; for
instance, z+(U+) = C is not the unit disk, but no matter.

Example 4. The projective line P1 is the family of all complex lines in the
2-dimensional complex space C2: In detail, C2 is punctured at the origin and
two of its points are identified if they lie on the same (complex) line, that is,
(a, b) is identified with (a′, b′) if a′ = ca and b′ = cb for some nonvanishing
complex number c. P1 is covered by two patches U+ = C×1 and U− = 1×C,
provided with self-evident local parameters: z+(p) = z for p = (z, 1) ∈ U+
and z−(p) = z for p = (1, z) ∈ U−; on the overlap U− ∩ U+ = {(a, b) ∈
C2: ab 
= 0}, you have the identifications (a/b, 1) ≡ (a, b) ≡ (1, b/a) and so
also the relation of local parameters: z+(p) = [z−(p)]−1. This is the same rule
as for the Riemann sphere of Section 1. In short, the projective line and the
Riemann sphere are identical (as complex manifolds).
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Exercise 3. P1 is compact. That is obvious from its identification with the
sphere, but do it from scratch, from the original definition of compactness.

A Little Topology. Let M be any compact surface, with complex structure or
not, and let it be triangulated by cutting it up into little (topological) triangles
having (in sum) c corners, e edges, and f faces (triangles). Reyssat [1989]
has a nice proof that this is always possible. Then (remarkable fact!) the
Euler number χ = c − e + f is always the same: 2 for the sphere, 0 for the
torus, −2 for the pretzel, and so forth, that is, it depends only upon the surface
and not upon the particular triangulation in hand. This number determines the
topology of M completely. In fact, M is necessarily a handlebody, that is,
a (topological) sphere with g = 1 − (1/2)χ (M) handles attached: 0 for the
sphere, 1 for the torus, 2 for the pretzel, and so on; this number is the genus of
M. Hurwitz and Courant [1964: 497–534] present an elementary proof; see
also Coxeter [1980] for more information and Euler [1752] who started it all.
The next items are illustrative.

Example. The spherical triangulation seen in Fig. 1.4 has 6 corners (the black
spots), 12 edges, and 8 faces for an Euler number of 6 − 12 + 8 = 2.

Figure 1.4. Triangulation of the sphere: c = 6, e = 12, f = 8.

Exercise 4. Check by hand that the Euler number and so also the genus of the
sphere does not depend upon the triangulation. Hint: The sphere can be laid
out flat on the plane by cutting all edges that meet at some particular corner.
Now count.

Exercise 5. Repeat for higher handlebodies: torus, pretzel, and so on; espe-
cially, check that the genus 1 − (1/2)χ (M) really is the handle number.
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Preview. It is a fact that any handlebody can be provided with a complex
structure, as was already seen for sphere and torus and will appear for the
pretzel in Section 12. This can be done in one and only one way for the sphere,
but already the torus admits infinitely many (conformally) distinct complex
structures; see Section 2.6. It is this unobvious fact that prompted the adjective
subtle in first speaking of complex manifolds.

1.3 Rational Functions

The function field K = K(P1) of the projective line is easy to compute: It is
just the field C(z) of rational functions of z = p+(x).

Proof. f ∈ K is a function of rational character of z+ = p+(x) on the patch
x3 < 1, and likewise of z− = [p−(x)]∗ on x3 > −1. It follows that f has, in the
first patch, a finite number of poles pi (1 ≤ i ≤ m), repeated according to their
multiplicity, and the possibility of an extra pole of multiplicity n at ∞ = the
north pole for a total count of n +m = d . View f (p) as a function of z = p+(x)
and let z1, . . . , zm be the projections of p1, . . . , pm . Then the product Q(z) of
f (p) and P(z) = (z − z1) × · · · × (z − zm) is pole-free in C and of limited
growth at ∞: |Q(z)| ≤ a constant multiple of |z|d far out. Now use Cauchy’s
formula for a big circle of radius R:

D p Q(0)

p!
= 1

2π
√−1

∮
Q(z)dz

z p+1

to check that

|D p Q(0)| ≤ a constant multiple of Rd × R−p−1 × 2π R = o(1)

for R → ∞ if p > d . The upshot is that Q is a polynomial of degree ≤ d and
f is a ratio Q/P , as advertised.

Exercise 1. Check the estimate of Q at ∞.

The degree of f ∈ K is the total number of its poles, counted according to
multiplicity, ∞ included, that is, deg f = d = n + m, and it is plain from its
representation as rational function that f has the same number of roots, counted
likewise, according to multiplicity. But also f − c ∈ K has the same number
of poles as f for any complex number c, so f takes on every complex value, ∞
included, d times. In short, d is also the topological degree of f as a map of
P1 to itself, taking f (p) = ∞ at poles. This is a general principle for functions
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of rational character on compact Riemann surfaces M: As maps of M to P1,
they take on every value the same number of times; see Section 16.

Exercise 2. Clarify the statement: f ∈ K(P1) is an analytic map of P1 to itself.

Exercise 3. Check that the roots and poles of f ∈ K(P1) can be placed any way
you like, provided only that they are the same in number. This is not the case
for any other compact Riemann surface: It is already false for the torus; see
Section 2.7, item 4.

Exercise 4. Let p1, . . . , pn be any collection of points on P1, repetition permit-
ted, and let L be the space of functions f ∈ K(P1) having these poles or softer;
for example, f is permitted a pole at p1, of degree no more than the number of
its repetitions. L is a vector space over C. Prove that its (complex) dimension
is n + 1.

Besides its functions of rational character, P1 also carries differentials of ra-
tional character. These are the objects ω expressible patchwise as c(z)dz with
coefficients c of rational character in the local parameter z = z(p). If the pa-
rameter is changed from z+ = z to z− = w on the overlap U− ∩ U+, then the
coefficient changes in the natural way, from c to c × (dz/dw). The differential
ω has a root or pole of degree d at the point p0 if its coefficient does so. The
residue of ω at p0 is the integral (2π

√−1)−1
∮

ω taken about a small circle en-
closing p0. ω is a differential of the first kind if it is pole-free, of the second
kind if it has poles but only vanishing residues, and of the third kind otherwise.

Exercise 5. dz is a differential of the second kind on P1: It has 2 poles at ∞.
d f = f ′(z)dz is likewise of the second kind for any f ∈ K(P1). z−1dz is
different, being of the third kind, in agreement with the fact that the logarithm
is not single-valued. Check all that.

Exercise 6. P1 has no differentials of the first kind besides ω = 0.

Exercise 7. Check that the total degree (roots − poles) of a differential of
rational character on P1 is necessarily −2.

1.4 Luroth’s Theorem∗

The star means that you may skip this section, but do note the following fact
which will be useful later: Any subfield of K = K(P1) containing more than
the constant field C is isomorphic to K itself. This is Luroth’s theorem [1876].
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Example. The subfield K0 of functions f ∈ K invariant under the involution
z �→ 1/z is the field C(w) of rational functions of w = z + 1/z. The latter
is viewed as a map from one projective line (the cover) to a second projective
line (the base); it is of degree 2. The field K of the cover is likewise of degree
2 over the field K0 of the base in view of z = [w ± √

w2 − 4]/2. It is this type
of counting that is the key to the present proof. It is not the usual proof in that
it mixes standard field theory with nonstandard geometric considerations. It is
precisely this type of mixture that we want to emphasize in this book. Van der
Waerden [1970] presents the standard proof; see also Hartshorne [1977].

A Little Algebra. Not much is needed. The letter K denotes a field over the
rational numbers Q. The degree of a big field K (the extension) over a smaller
field K0 (the ground field) is the dimension of K as a vector space over K0,
denoted by [K: K0] ≤ ∞. If the degree is not infinite, then the powers yn, n ≥ 0,
of an element y ∈ K cannot be independent over K0, so y is a root of some
polynomial P(x) = xn + c1xn−1 + · · · + cn with coefficients from K0, and
y is algebraic over K0. K0[x] is the ring of such polynomials. The field
polynomial of y over K0 is the irreducible polynomial P(x) = xd + cd−1

1 +· · ·
of class K0[x] that it satisfies. The extended field K1 = K0(y) of rational
functions of y with coefficients from K0, obtained by adjunction of y to K0, is
spanned by the d powers 1, y, . . . , yd−1; in particular, [K1: K0] = d. The roots
x1 = y, x2, . . . , xd of P(x) = 0 are necessarily simple. They are adjoined
to the ground field K0 to produce the splitting field K2 = K0(x1, . . . , xd ) of
P(x). This is the smallest extension of K0 in which P(x) splits into factors of
degree 1: P(x) = (x − x1) · · · (x − xd ); it can be realized as the quotient field
K0[x] modulo P(x). The simplicity of the roots implies that the discriminant
� = ∏

i< j (xi − x j )2 does not vanish. This quantity, together with any other
symmetric polynomial in the roots, belongs to the ground field K0. The only
other fact that will be needed is that if the extended field K is obtained from
the ground field by the adjunction of n such algebraic elements yi (1 ≤ i ≤ n),
then there is a single primitive element y0 that does the job at one stroke:
K = K0(y0). Artin [1953], Lang [1984], Pollard [1950], and/or Stillwell
[1994] are recommended as refreshers and for more information.

Exercise 1. Prove directly that the discriminant � is, itself, a polynomial in the
so-called elementary symmetric functions

σ1 =
∑

xi , σ2 =
∑

i< j

xi x j , . . . , σd = x1 · · · xd .

Exercise 2. Deduce � ∈ K0.
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Exercise 3. What is the discriminant of the general cubic x3 + ax2 + bx + c?

Aside. Luroth’s theorem illustrates, in the simplest circumstances, an important
theme of complex geometry: The complex structure of a compact Riemann
surface M is determined by the algebraic structure of its function field K(M);
see Section 15 under rational curves for more information and also Section 2.13
for the case of the torus. The characteristic feature of the rational function field
K = C(z) is that it is of infinite degree over the ground field C and isomorphic
to any proper intermediate field. As to the geometry of P1, if M is a compact
complex manifold and if K = K(M) is a copy of C(z) then K = C( f ) for
some distinguished f ∈ K. Now view f as a map of M to P1: It has a degree
d just like an ordinary rational function as expounded in Section 3. Besides, it
is a fact that K separates points of M, so d = 1 and f maps M 1:1 onto P1.
In short, as a complex manifold, M is P1.

Proof of Luroth’s theorem. The first item of business is to check that if f0

is any nonconstant rational function, then the algebraic degree of K = C(z)
over K0 = C( f0) is the same as the topological degree d0 of f0. The first
degree is finite because f0 = a0/b0 with coprime a0, b0 ∈ C[z] and P(x) =
a0(x) − f0b0(x) ∈ K0[x] has x = z as a root; moreover,

d = [K: K0] ≤ deg P = the larger of the degrees of a0 and b0

= deg f0 = d0.

Now let P0 = xd + s1xd−1 + · · · + sd ∈ K0[x] be the field polynomial of z
over K0 and observe that for most values c of f0 three things happen: (1) c is
not a pole of any coefficient sn(n ≤ d); (2) f0(z) = c has d0 simple roots in
C; (3) zd + s1(c)zd−1 + · · · + sd (c) vanishes at each of these. But that makes
d0 ≤ d and equality prevails: d0 = d .

Now comes the proof of Luroth’s theorem itself; compare Fig. 1.5. Let
the intermediate field K1 lie properly above the constant field C so that n =
[K: K1] ≤ min {deg f0: f0 ∈ K1} < ∞ and let P1(x) = xn+r1xn−1+· · ·+rn ∈
K1[x] be the field polynomial of z over K1. Then r1 (or some other of its
coefficients) is not constant, z being of infinite degree over C. It is to be proved
that K1 = C(r1), producing the whole of that field by its adjunction to C. Now
write r1 = a1/b1 with a1, b1 ∈ C[z], and so on, and clear denominators in
P1(x) to produce P2(x) = c0xn + c1xn−1 + · · · + cn ∈ C[z][x]. This divides
P3(x) = a1(x)b1(z) − a1(z)b1(x) ∈ C[z][x] and comparison of degrees with
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deg f

z

0

f0

K1

n

C

C

C

(

(

)

)

∞

Figure 1.5. The extensions.

regard to z produces

deg P3 = the larger of the degrees of a1 and b1

= deg r1

≤ the larger of the degrees of c0 and c1

≤ deg P2,

whereupon the divisibility of P3 by P2 implies P3 = P2 × P4 with P4 ∈ C[x]
independent of z. But P4(x) divides P3 only if it divides both a1(x) and b1(x),
and as these are coprime, so P4 must be constant, whereupon comparison of
degrees with regard to x produces

[K: C(r1)] = deg r1 (by the first item of business)

= deg P3

= deg P2

= [K: K1].

The proof is finished: The degrees of K over K1 and over C(r1) ⊂ K1 match
only if C(r1) = K1.

Exercise 4. Check that r1 is of minimal positive degree in K1. Hint: Any other
such primitive element of K1 must be of the same degree n.
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1.5 Automorphisms of P1

An automorphism of a complex manifold M is a 1:1 analytic map of M onto
itself. The inverse of such a map is likewise analytic, so the automorphisms
form a group �(M). �(M) is easily identified for M = P1: It comprises all
the rational functions of degree 1, alias the fractional linear substitutions or
Möbius transformations, of the form

z → az + b

cz + d
with a, b, c, d ∈ C and ad − bc 
= 0.

Exercise 1. Explain the proviso ad − bc 
= 0.

The numbers a, b, c, d can be scaled to make ad − bc = 1 without changing
the map, so you may associate to each automorphism the 2 × 2 complex matrix
[ab/cd] of determinant 1. This effects an isomorphism between �(P1) and the
special linear group SL(2, C) of all such matrices. Actually, that is not quite
right: The map is unaffected by the substitution a, b, c, d �→ −a, −b, −c, −d,
so what you really have is an isomorphism with the projective special linear
group P SL(2, C) which is the quotient of SL(2, C) by its center (±1)× the
identity. The symbol [ab/cd] signifies either the 2 × 2 matrix or the associated
map, as the context requires, [ab/cd] and its negative being identified until
further notice.

Exercise 2. Check all that. Chiefly it is required to prove that the association
of �(P1) to P SL(2, C) respects the group operations.

Exercise 3. What is �(C)?

Exercise 4. �(P1) is generated by (1) translations z �→ z + a, (2) magnifica-
tions (including rotations) z �→ bz, and (3) the inversion z �→ −1/z. Check it.

Exercise 5. Deduce that �(P1) preserves the class of circles and lines.

Exercise 6. SO(3) is the group of proper (i.e., orientation-preserving) rotations
of R3, realized as (real) 3 × 3 orthogonal matrices of determinant +1. Prove
that every such rotation is an automorphism of P1.

�(P1) moves any three distinct points to any other three points, as you will check:
For example, z �→ [(b−a)/(c−b)]× [(c− z)/(z −a)] moves a, b, c to ∞, 1, 0
with the natural interpretation of the map if one of the points is at infinity.

Exercise 7. The action of an automorphism on three distinct points specifies it
completely; especially, it is the identity if it fixes three points. Why?
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The (one and only) automorphism z �→ w that moves z1, z2, z3 to w1, w2, w3

can be expressed as

z1 − z2

z2 − z3

z3 − z

z − z1
= w1 − w2

w2 − w3

w3 − w

w − w1
.

It moves the additional point z4 to w4 if and only if the zs and ws have the same
cross ratio:

z1 − z2

z2 − z3

z3 − z4

z4 − z1
= w1 − w2

w2 − w3

w3 − w4

w4 − w1
,

with the natural interpretation if any point is at infinity.

Exercise 8. Check that �(P1) preserves cross ratios.

The cross ratio is changed under the action of the symmetric group S4 of
permutations of the four “letters” 1, 2, 3, 4. It is invariant under the subgroup1

K (1234) = id, (2143), (3412), (4321),

so to understand the action, it is permissible to place z4 at infinity and to study
the action of S4/K ∼ S3(= the symmetric group on three letters) on the reduced
ratio x = (z1 − z2)/(z3 − z2). This is seen in Table 1.5.1.

Table 1.5.1. Action of S3 on the reduced cross ratio

(123) (321) (132) (231) (312) (213)

x 1/x 1 − x 1/(1 − x) (x − 1)/x x/(x − 1)

Exercise 9. x 
= 0, 1, ∞. Why?

Exercise 10. Check the table.

The substitutions x �→ x, 1/x, 1− x, 1/(1− x), (x −1)/x, x/(x −1) comprise
the group of anharmonic ratios H, which is isomorphic to S3. Harmonic
ratios arise when two anharmonic ratios of x coincide; the nomenclature goes
back to Chasles (1852). The group will play a small but important role later;
see Section 7 under Platonic solids and also Chapter 4.

Exercise 11. The harmonic ratios are of two kinds: x = −1, 1/2, 2 is the
harmonic proportion of nineteenth-century projective geometry; it corresponds,

1 (2143) stands for the permutation 1234 → 2143, not the cycle 2 → 1 → 4 → 3 → 2.
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for example, to the four points 0, 2/3, 1, 2. Otherwise, x2 − x +1 = 0, x being
a primitive root of −1 such as ω = eπ

√−1/3; the points may now be taken to
form an equilateral triangle 1, ω, 0 (and ∞). Check that no other harmonic
ratios exist.

Exercise 12. Check that the Schwarzian derivative ( f ′)−2[ f ′ f ′′′−(3/2)( f ′′)2]
commutes with the action of �(P1) = P SL(2, C) on the independent variable;
see Ford [1972: 98–101] for more information and for applications of this
intriguing object.

1.6 Spherical Geometry

The sphere inherits from the ambient space R3 its customary (round) geometry,
and it is easy to see that the shortest path (geodesic) joining two points is an arc
of a great circle. Introduce spherical polar coordinates: x1 = sin ϕ cos θ, x2 =
sin ϕ sin θ, x3 = cos ϕ in which 0 ≤ ϕ ≤ π is the colatitude measured from
the north pole and 0 ≤ θ < 2π is longitude. The line element (of arc length)
is ds =

√
(dϕ)2 + sin2 ϕ(dθ )2. The rotation group SO(3) acts in a distance-

preserving way, so you may as well take the first point to be the north pole
n = (1, 0, 0). The second point lies on a great circle passing through n, as seen
in Fig. 1.6. Plainly, any longitudinal deviation from the great-circle path makes
the journey longer.

n

Figure 1.6. Geodesic path on P1.

Exercise 1. Write this up carefully and find a nice expression for the (shortest)
distance.
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Exercise 2. Express the spherical distance between two points in the language
of the stereographic projection. Hint: The line element is 2(1 + r2)−1|dz| with
r = |z|.

Exercise 3. A pair of great circles cuts the spherical surface into two pairs of
congruent lunes. Check that a lune of angle θ has area 2θ .

Exercise 4. A spherical triangle � is formed by joining three points by pieces
of great circles. Gauss [1827] found that the area of � is the sum of its three
interior angles diminished by π . Check this. Hint: Each interior angle is
marked off by two great circles, determining a lune; see Fig. 1.7.

αβ

γ

Figure 1.7. Geodesic triangles on P1.

Exercise 5. Find all the coverings or tessellations of the spherical surface by
f congruent equilateral triangles, e triangles meeting at each corner. Hint:
4/ f = 6/e − 1, the only solutions being (e, f ) = (3, 4), (4, 8), (5, 20). To
what Platonic solids do these correspond? Compare Section 7.

Exercise 6. Prove that the area of a spherical disk of (geodesic) radius r satisfies

A(r ) = πr2 × [1 − r2/12 + O(r4)].

The number

k = lim
r↓0

12

π
r−4[πr2 − A(r )] = +1

measures the deviation of the (round) geometry of the sphere from the (flat)
geometry of the plane. It is the Gaussian curvature of the sphere; obviously,
the plane has curvature k = 0; compare Section 9 for the (hyperbolic) geometry
of the half-plane with curvature k = −1.
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1.7 Finite Subgroups and the Platonic Solids

The finite subgroups of � = �(P1) were already known to Kepler [1596]
through their connection with the five Platonic solids of antiquity. This will be
explained in a moment. The present section serves also as a prototype for the
considerations of Chapter 4 about arithmetic subgroups of P SL(2, R); compare
Ford [1972: 127–36] and Coxeter [1963].

Let �0 be such a subgroup of order d < ∞ and suppose (what is no loss) that
no element of �0 fixes ∞, the identity excepted, of course. This can always
be achieved by preliminary conjugation of �0 in the ambient group: In fact,
the nontrivial elements of �0 have (in sum) at most 2d − 2 fixed points and
almost any conjugation will move them all away from ∞. Let c ∈ P1 − ∞ be
distinct from any of these fixed points. Then the orbit �0c = {gc: g ∈ �0} is
simple, that is, it is comprised of d distinct points. Pick two such finite points
a and b with different orbits. The product j(z) of (gz − a)(gz − b)−1, taken
over the substitutions g ∈ �0, is a rational function of z, of degree d, with three
properties. (1) It is invariant under the action of �0. (2) It separates orbits;
especially, it has d simple roots and/or poles at the orbit of a/b. (3) Any other
(rational) invariant function of �0 is a rational function of j . In short, the field
of invariant functions of �0 is C( j); for this reason, j is called the absolute
invariant of �0.

Proof of (1). This is self-evident.

Proof of (2). The rational function j is of degree d as it has (simple) poles at
the orbit of b and no others. The rest follows from the fact that j takes each
value d times and so takes distinct values at distinct orbits of �0.

Proof of (3). Let K0 = K(�0) be the field of invariant functions. It is a subfield
of K = C(z), properly including the constant field C because j is in it. By
Luroth’s theorem, K0 = C( j0) for some j0 ∈ K0 of minimal degree d0. But this
function takes the same value d times on any simple orbit, so d0 ≥ d = deg j .
In short, j is of minimal degree and j0 is a rational function of it, of degree 1.

Exercise 1. The derivative j ′ of j is of degree 2d. Why? Note that its roots
come from exceptional (nonsimple) orbits.

The next step in the classification of the subgroups of �0 is to describe the
family of points fixed by some nontrivial element of �0. It is divided into
h < ∞ classes k according to the action of �0; n(k) < ∞ is the number of
points in the class. The function j is invariant, so it takes the same value j(k) at
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Table 1.7.1. Multiplicities

m(k1) m(k2) m(k3) d

2 2 m 2m

2 3 3 12

2 3 4 24

2 3 5 60

each point of k, the latter being a full orbit of �0; moreover, this value is taken
each time with the same multiplicity m(k).

Exercise 2. Check that.

The aim of the next few lines is to recompute the degree 2d of j ′ with the
aid of these numbers n(k) and m(k) so as to obtain a relation between them.
d = n(k) × m(k) is plain, j being of degree d . The situation at ∞ has now to
be clarified: ∞ is not a pole of j by choice of b, so you have an expansion in
powers of the local parameter 1/z: j(z) = c0 + c1z−1 + · · · in which c1 
= 0
because the orbit of ∞ is simple. This means that j ′ has a double root at ∞ for
a new count of its degree as per its roots:

2d = deg j ′ = 2 +
∑

k

n(k)[m(k) − 1],

which is to say

h − 2 + 2

d
=

∑

k

1

m(k)
,

as you will check using d = n ×m. This relation gives rise to a complete list of
the possible values of d, h, n, and m. The fact is that either d ≥ 2 is arbitrary,
h = 2, and m(k) = d , or else h = 3 and the numbers m fall into one of the
four patterns of Table 1.7.1.

Proof. m(k) ≥ 2 (why?) so h −2+2/d ≤ h/2, and this is contradictory unless
h ≤ 3, that is, h = 2 or 3, h = 1 being the case d = 1, which is trivial. (Why
is that?)

Case 1. h = 2. There are two classes and [m(k1)]−1 + [m(k2)]−1 = 2/d. Now
m ≤ d divides d, and if m < d , then it is ≤ d/2 already and the identity cannot
balance. In short, m = d for both classes and each comprises just one point.



18 1 First Ideas

Table 1.7.2. Platonic solids

Solid Faces Edges Corners m

tetrahedron 4 triangles 6 4 3

cube 6 squares 12 8 3

dodecahedron 12 pentagons 30 20 5

octahedron 8 triangles 12 6 4

icosahedron 20 triangles 30 12 3

Case 2. h = 3. Now [m(k1)]−1 + [m(k2)]−1 + [m(k3)]−1 = 1 + 2/d and if all
three multiplicities were three or more, you would have 1 + 2/d ≤ 1, so that
is out, and some class, say the first, has multiplicity two: m(k1) = 2. m(k2) ≤
m(k3) can also be assumed, and you have [m(k2)]−1 + [m(k3)]−1 = 1/2+2/d.

Case 2−. m(k2) = 2. Then d = 2m(k3), which is line 1 of Table 1.7.1.

Case 2+. m(k2) ≥ 3. m(k2) = 4 or more is contradictory in view of [m(k2)]−1+
[m(k3)]−1 ≤ 1/2 < 1/2+2/d , so you have m(k2) = 3 and [m(k3)]−1 = 1/6+
2/d. It follows that m(k3) = 3, 4, or 5 producing lines 2, 3, 4 of Table 1.7.1
with d = 12, 24, 60. The proof is finished.

Table 1.7.1 displays the possibilities. Now they must be realized concretely.
The role of absolute invariant may be played by (aj+b)(cj+d)−1 for any substi-
tution [ab/cd] of � = P SL(2, C), so you may assign the values j(k) = 0, 1, ∞
(or 0, ∞) to the h = 3 (or 2) classes; also, �0 can be conjugated in �, permitting
you to distribute all (or two) of the points 0, 1, ∞ among the distinct classes
as you will. This freedom permits the group and its absolute invariant to be
brought to standard form, with the final result that each pattern of multiplici-
ties is realized by just one subgroup �0 ⊂ �, up to conjugation; in particular,
lines 2–4 of Table 1.7.1 are realized by the proper (= orientation-preserving)
symmetries of the five Platonic solids of antiquity listed in Table 1.7.2; compare
Fig. 1.8. The idea will now be illustrated in the two simplest cases.

Example 1. h = 2, m(k) = d . The two classes k1 and k2 are single points at
which j takes its value d-fold; they may be placed at 0 and ∞ and assigned the
values j(k1) = 0 and j(k2) = ∞. Then you may take j(z) = zd (how come?),
and the substitutions of �0 fixing, as they do, both 0 and ∞, must be of the
form g: z �→ ωz, ω being a dth root of unity because of the invariance of j , and
every one of these roots must be employed, �0 having d elements. In short, �0

is the cyclic group of rotations about the north pole by the dth roots of unity.
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Cube Octahedron

Tetrahedron

Dodecahedron Icosahedron

Figure 1.8. The five Platonic solids.

Example 2. h = 3, m(k1) = 2, m(k2) = 2, m(k3) = m, d = 2m. This is line
1 of Table 1.7.1. Let j(k1) = 0, j(k2) = 1, and j(k3) = ∞ and let k3, which
has just 2 = d/m points, be the pair 0, ∞, so that j has m poles at each of these
points. �0 contains a substitution g 
= the identity fixing ∞, and this must also
fix 0, k3 being an orbit of the group. Then g is of the form z �→ ωz, and ω can
only be an mth root of unity, the invariant function j having m poles at ∞. Any
substitution of �0 not of this type still preserves k3 and so must exchange 0 and
∞, that is, it is of the form z �→ ω/z. Then j(z) = z−m

∏
(z − a)2, up to a

constant multiplier, the product being taken over a ∈ k1, and ω can only be an
mth root of

∏
a2, by the invariance of j . But now d = 2m forces every mth root

of unity to appear in the first round, and placing 1 in the class k1, as you may,
requires that k1, itself, is just the mth roots of unity; that

∏
a2 = 1; that every ω

in the second round is an mth root of unity, too; and that each of these must also
appear. In short, �0 is the so-called dihedral group comprised of the north-pole
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rotations by mth roots of unity, with the involution z �→ 1/z adjoined; it is the
symmetry group of a degenerate polyhedron formed by pasting together two
copies of the regular m-sided polygon, each divided into m slices of the pie.

Exercise 3. Check that the absolute invariant is j(z) = zm + z−m, up to trivi-
alities.

Exercise 4. The group H of anharmonic ratios x, 1/x, 1 − x, 1/(1 − x),
(x − 1)/x, x/(x − 1) of Section 5 illustrates the case d = 6. Use Luroth’s
theorem to check that

j6(x) = 4

27

(x2 − x + 1)3

x2(1 − x)2

is an absolute invariant and reduce it to (x3 + x−3 + 2)/4 by conjugation. The
function j6, harmless as it may look, plays an important role in several subjects
discussed later; see especially, ex. 2.12.3 on the classification of complex tori
and Section 4.6 on automorphic functions of P SL(2, Z). Quite a big role for
such a little function; compare Ford [1972: 127–36] and also Klein [1884].

Example 3: The Platonic solids. A regular polyhedron in 3-dimensional space
has f faces, say, and if each face has n sides and if m faces meet at each corner,
then it has e = n f/2 edges and c = n f/m corners for an Euler number of
2 = f − e + c = f × (1 − n/2 + n/m).

Exercise 5. Check that n ≤ 5; after all, for n = 6, you have the hexagonal
tessellation of the plane and do not get a 3-dimensional object at all.

Case 1. n = 3. 4m = f (6 − m) so 3 ≤ m ≤ 5, and these choices are all
permitted: m = 3 with f = 4 (for the tetrahedron), m = 4 with f = 8
(octahedron), and m = 5 with f = 20 (icosahedron).

Case 2. n = 4. 2m = f (4 − m), the only possibility being m = 3 with f = 6,
that is, a cube.

Case 3. n = 5. 4m = f (10 − 3m) and only m = 3 with f = 12 will do
(dodecahedron).

Coxeter [1963] presents a beautiful discussion of these issues. Now come the
symmetry groups of the solids. Let Sn be the symmetric group of permutations
of n letters {1, 2, 3, . . . , n} and An the alternating group of permutations of
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parity +1, preserving the sign of the square root of the discriminant
√

� =∏
i< j (xi − x j ). Line 2 of Table 1.7.2 is realized by the tetrahedral group A4,

line 3 by the group S4 of the cube or of its dual the octahedron, and line 4 by
the icosahedral group A5 which is also the group of the (dual) dodecahedron.
Here duality is effected by placing a corner at the center of each face of the
original solid.

Exercise 6. Make yourself a cardboard icosahedron and check its group A5 by
hand.

The orders of the groups are easy to compute. If the solid has f faces and
each face has e edges, then you can map face 1 to any other and rotate the
displaced face in e different ways for a total count of e • f = 3 • 4 = 12 for the
tetrahedron, 6 • 4 = 24 for the cube, and 5 • 12 = 60 for the icosahedron. The
tetrahedron has four corners which any symmetry permutes; odd permutations
such as (2134) are improper, so the group can only be A4. The cube has 24
symmetries. These can be enumerated as follows: Corner 1 can be sent to its
own (front) face or to the back, and to the bottom or to the top, for a count of
four; there are three further possibilities for corner 2 and two for corner 3, for
a total count of 4 • 3 • 2 = 24. This mode of counting identifies the group as S4.
The dodecahedron is a bit more complicated. There are 20 corners which may
be divided into four families of five, each family belonging to a single face and
labeled 12345. A symmetry maps corner 1 of family 1 to one of the other four
families and ascribes to it a new label; this can be done in 4 • 5 = 20 ways. The
two corners of family 1 adjacent to corner 1 can then be placed in three ways
for a total count of 60. It follows that the group is part of S5; it can only be A5.

Exercise 7. Why?

Now imagine such a Platonic solid inscribed in a sphere and project its edges
outward, from the center to the surface, to obtain a tessellation of the sphere.
Its symmetries appear as elements of � = P SL(2, C), so these Platonic groups
appear among the subgroups �0; indeed, you now see that these exhaust the
possibilities.

Proof for line 2 of Table 1.7.1. n(k3) = 4 and �0 permutes these four points, its
action being determined by what it does to any three of them. �0 ⊂ S4 follows
and d = 12 identifies it as A4, S4 having no other subgroup of index 2.

Proof for line 3. This is the same, only now d = 24 is the order of S4.
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Proof for line 4. This is the same as for line 2, only now with A5 ⊂ S5.

Klein [1884: 110–43] computed the absolute invariants for the most symmet-
rical disposition of the solids:

j2(z) = (z4 − 2
√−3z2 + 1)3

(z4 + 2
√−3z2 + 1)3

for the tetrahedron,

j3(z) = (z8 + 14 z4 + 1)3

108 z4(z4 − 1)4
for the cube,

j4(z) = (−z20 + 228 z15 − 494 z10 − 228 z5 − 1)3

1728 z5(z10 + 11 z5 − 1)5
for the dodecahedron.

The phrase symmetrical disposition is explained for the dodecahedron: j4 takes
the value 1 with multiplicity 2 at the 30 midpoints of the edges, 0 with multi-
plicity 3 at the 20 corners, and ∞ with multiplicity 5 at the midpoints of the
12 faces, in accord with line 4 of Table 1.7.1. The claim is that line 4 can be
realized only in this way, up to conjugation.

Proof for the tetrahedron. The class k1 contains six points, of multiplicity 2
each, with assigned value j(k1) = 1. Let 0, 1, ∞ be placed in k1. Then �0

contains a nontrivial substitution z �→ a+bz fixing ∞, and you must have b2 =
1 to fix the form of j(z) = 1+c/z2+· · ·. The possibility b = +1 is excluded by
the fact that the substitution is of order at most 12, so b = −1, and conjugation
of �0 by the substitution z �→ z − a/z reduces a to 0, with the result that j is
invariant under the substitution z �→ −z and so a function of z2. Now �0 also
contains a substitution z �→ a + b/z that sends 0 ∈ k1 to ∞. This means that,
besides 0 and ∞, k1 also contains the six points ±a, ±(a+b/a), and ±(a−b/a)
for a total count of eight, which would be too many if they were distinct. Take
a 
= 0. Then 0 = a ± b/a is one possible conjunction, in which case b = ±a2,
and the class-preserving substitution z �→ a + b/(±z) = a + a2/z sends a to
a × 2, 3/2, 5/3, 8/5, 3/8, 21/13, . . . , which is too many points. Otherwise,
a = −(a ± b/a), in which case b = ±2a2, and z �→ a + b/(±z) = a + 2a2/z
sends a to a × 3, 5/3, 11/5, 21/4, 43/21, 85/43, . . . , which is also wrong, so
a = 0 and a further conjugation of �0 reduces b to +1, with the result that
j(z) = j(1/z). Now assign the values j(k2) = 0 and j(k3) = ∞ and reflect
that each of these classes contains four points of multiplicity 3, whence j(z)
is of the form (z4 + 2αz2 + 1)3/(z4 + 2βz2 + 1)3. It remains to pin down the
numbers α and β. Let z �→ (z + a)(z + b)−1 be a substitution of �0 mapping
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∞ to 1 ∈ k1. Then a/b ∈ k1 and of the eight points 0, ∞, ±1, ±a/b, ±b/a
not more than six can be distinct.

Case 0. ab = 0. Then �0 contains a substitution of the form z �→ 1 + cz, the
number c being a primitive nth root of unity, and this leads to a contradiction
in every case n = 2, 3, 4, 6 (n divides 12).

n = 2: c = −1 and that is impossible since, together with z �→ 1 − z,
z �→ −z �→ 1 + z also belongs to �0.

n = 3 produces, from ±1, four additional points ±(1 + c), ±(1 − c), and
this is too many.

n = 4: c = ±√−1 and z �→ ±z �→ 1 + √−1z produces, from ±1, the
distinct points ±1 ± √−1.

n = 6 produces, from 1, five additional distinct points 1+c+· · ·+cm(m ≤ 5).

Case 1. 1 = a/b is not possible, but 1 = −a/b is, in which case the substitu-
tions known to date produce new points ±(1+a)(1−a)−1 and ±(1−a)(1+a)−1

of k1 which cannot be distinct. This forces a2 = −1 so, besides 0, ∞, and ±1,
k1 also contains ±(1 + √−1)(1 − √−1)−1 = ±√−1.

Case 2. 1 
= −a/b. Then a/b = ±b/a implies a = ±√−1b, and the same
result is obtained: k1 contains a/b = ±√−1.

It follows that

1 = j(±1) =
(

1 + α

1 + β

)3

and 1 = j(±√−1) =
(

1 − α

1 − β

)3

from which follow α2 = β2 and 3α + α3 = 3β + β3. But α 
= β since j 
≡ 1,
so α = −β and α2 = −3, that is, α = ±√−3 and β = ∓√−3, as per the
formula for j = j2 previously displayed.

Proof for the dodecahedron. The values j(k1) = 1, j(k2) = 0, and j(k3) =
∞ are assigned and the point ∞ is placed in the class k3. �0 contains a
nontrivial substitution A fixing ∞. This must be of the form z �→ a + bz with
b5 = 1 to fix the pole of j(z) = cz5 + · · · . Now A is of finite order n and
Anz = a(1 + b + · · · + bn−1) + bnz so b 
= 1 can only be a primitive fifth
root of unity, b = ω = e2π

√−1/5, say, and you can conjugate the group by
z �→ z − a(1 − ω)−1 to bring A to its simplest form: z �→ ωz. Then j is a
function of z5. Now place the point 0 in the class k3. The group �0 contains a
substitution B: z �→ a +b/z mapping 0 to ∞. If a 
= 0, B will map ∞ to a new
point a of k3. Then a, ωa, . . . , ω4a belong to k3, and new applications of the
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substitutions A and B produce further points of k3: ωi a+ω j b/a(0 ≤ i, j < 5).
But k3 contains just 12 points, including ∞, so at most 11 of these new points
are distinct, and a picture will convince you that this is not possible. The upshot
is that a = 0 and a further conjugation reduces b to 1 and j to the form

(z10 − az5 + b + a/z5 + 1/z10)3

f (z5 + c − 1/z5)5
= (z20 − az15 + bz10 + az5 + 1)3

f z5(z10 + cz5 − 1)5

with undetermined constants a, b, c, and f , in which the top accounts for the 20
points of the class k2 together with the pole at ∞, and the bottom for k3 − ∞.
The final step is to require that j take the value 1 with multiplicity 2 at each
of the 30 points of the class k1. Now the derived function j ′ is of degree 70,
having four poles at ∞ and six more at each of the other points of k3; it vanishes
40-fold on class k2, so the condition to be imposed is that the square of j ′, with
its poles and its roots of the class k2 removed, should be a constant multiple of

(z20 − az15 + bz10 + az5 + 1)3 − f z5(z10 + cz5 − 1)5.

The rest of the computation elicits the values a = 228, b = 494, c = 11,
f = −1728. This is omitted, as there seems to be no slick way to do it.

1.8 Automorphisms of the Half-Plane

The group �(H) of automorphisms of the open upper half-plane H = {z =
x1 + √−1x2: x2 > 0} may be identified with the real special linear group
P SL(2, R).

Proof. Let g be an automorphism of H mapping
√−1 to a + √−1b (b > 0)

and observe that g1 = b−1(g − a) fixes
√−1. Let h be the standard map

z �→ (z − √−1)(z + √−1)−1 of H to the disk |h| < 1. Then g2 = h ◦ g1 ◦ h−1

is an automorphism of the disk fixing the origin and |g2(z)/z| ≤ 1 by application
of the maximum modulus principle on the perimeter. The same idea applies to
the inverse map g−1

2 , so the reciprocal modulus |z/g2(z)| = |g−1
2 (z′)/z′| with

z′ = g2(z) is likewise ≤ 1. The upshot is that g2(z)/z is of modulus ≡ 1 and
so must be constant. This pretty trick is due to H. A. Schwartz. The rest is
computation if you like. A better way is to note that g = [ba/01]◦h−1 ◦g2 ◦h is
a fractional linear substitution preserving the completed line R + ∞ bordering
H and to deduce that it belongs to P SL(2, R).

Exercise 1. Do it.
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Exercise 2. Check that a nontrivial element [ab/cd] of �(H) = P SL(2, R) is
conjugate to (1) a magnification (d = 1/a, b = c = 0, a > 0), (2) a translation
(a = d = 1, c = 0, b ∈ R), or (3) a rotation (a = d = cos θ, −b = c =
sin θ, θ 
= 0, π ) according as the absolute value of its trace is > 2, = 2, or < 2.

Exercise 3. Use ex. 2 to prove that any subgroup of P SL(2, R) isomorphic to
Z2 comes as close to the identity as you like. Hint: What commutes with a
translation is a translation.

Exercise 4. Show that � = P SL(2, R) will move one point of H to
√−1 and

any second point to some position on the imaginary half-line.

1.9 Hyperbolic Geometry

This is a model of the non-Euclidean geometry discovered by Bolyai, Lo-
batchevsky, and Gauss about 1820; it is connected in a beautiful way to
P SL(2, R) and H. The latter can be equipped with the hyperbolic line
element ds = x−1

2

√
dx2

1 + dx2
2 of Liouville and Beltrami (1868) and Klein

(1870), which was rediscovered by Poincaré [1882] and usually called by his
name, relative to which the vicinity of each point looks like a mountain pass or
saddle point: two ridges rising, one on either hand, two valleys falling away.
The geodesics of this geometry are semicircles with centers on the bordering
line x2 = 0 and/or vertical lines, and �(H) = P SL(2, R) is its group of proper
(= orientation-preserving) rigid motions, playing the same role as the rotation
group SO(3) for the (round) spherical geometry of Section 6 or the Euclidean
motion group (translations and rotations) for the (flat) geometry of R2. See
Milnor [1982] for historical remarks, Pogorelov [1967] and Beardon [1983] for
further information, and Section 4.9 for a deep connection to complex function
theory.

Exercise 1. Check that the hyperbolic line element is invariant under the action
of �(H).

Now let
√−1a and

√−1b (0 < a < b) be two points of the imaginary half-
line. Inspection of the line element shows that any deviation from the vertical
path joining them makes the journey longer, so that is the geodesic, and a
self-evident application of ex. 8.4 confirms the statement made before that the
general geodesic is either a semicircular arc meeting R at 90◦ or else a vertical
line. The identification of �(H) as the rigid motions is a by-product.
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Exercise 2. The hyperbolic distance from
√−1a to

√−1b is
∫ b

a x−1
2 dx2 =

log(b/a). Confirm the general formula for the distance between any two points
of H: cosh(d(p, q)) = 1 + (1/2)× the flat distance between p and q, squared,
divided by the product of their heights. Hint: The right-hand side had better be
invariant under the action of �(H).

Exercise 3. Prove that, for fixed θ , the point

x = x1 + √−1x2 =
√−1er cos θ − sin θ√−1er sin θ + cos θ

traverses a geodesic issuing from
√−1 as r runs from −∞ to ∞, and that, for

fixed r > 0, it passes (twice) about the geodesic circle with center at
√−1 and

(hyperbolic) radius r as θ runs from 0 to 2π . The latter is also a flat circle of
radius sinh r centered at

√−1 cosh r , as you will check.

Exercise 4. Deduce that the line element (x2)−1
√

(dx1)2 + (dx2)2 can be ex-
pressed as

√
(dr )2 + (sinh r )2(dθ )2 and use it to evaluate a) the area A(r ) =

2π (cosh r − 1) of the hyperbolic circle of radius r and b) the curvature k =
limr↓0

12
π

r−4[πr2 − A(r )] = −1; compare ex. 6.6.

A down-to-earth picture of curvature k = −1 is obtained from the simple surface
of revolution y = h(x) seen in Fig. 1.9. The so-called principal curvatures are

x

y

Figure 1.9. A surface with curvature −1.

k1 = −h′′[1 + (h′)2]−3/2 in the plane of the paper and k2 = 1/h
√

1 + (h′)2

in the plane perpendicular to the paper and the surface. Their product is the
Gaussian curvature k, so the condition k = −1 becomes h′′ = h[1 + (h′)2]2,
producing a convex function starting at h(0) = 1 and vanishing at ∞, expressed



1.10 Projective Curves 27

explicitly as

x =
√

1 − h2 + log
1 − √

1 − h2

h
. (1)

Exercise 5. Check this.

Exercise 6. Compute the hyperbolic area of a geodesic triangle with interior
angles α, β, γ .

Pogorelov [1967: 127–67] is recommended as an introduction to this circle of
ideas; see also Stillwell [1992] which is nice and elementary.

1.10 Projective Curves

Clemens [1980] presents a splendid account of this subject; Kirwan [1992] is
fine, too. The projective line P1 you know. The projective plane P2 is similarly
defined: It is the space of complex lines in C3 obtained by identifying two
points of C3 − 0 that differ by a nonvanishing complex multiplier. It is covered
by three patches U1 = C×C× 1, U2 = C× 1 ×C, and U3 = 1 ×C×C, and,
with a self-evident extension of the terminology of Section 2, it is a compact
manifold of (complex) dimension 2. The higher projective spaces Pd (d ≥ 3)
follow the same pattern.

Exercise 1. A line in P2 is determined by the vanishing of a linear form ax +
by + cz = 0 with fixed (a, b, c) ∈ C3 − 0. Check that it is nothing but a copy
of the projective line P1.

To explain projective curves, think first of the real quadratic curves (conic
sections) of the schoolroom. They come in three varieties: circle, hyperbola,
and parabola, typified by x2 + y2 = 1, xy = 1, and x2 = y; see Fig. 1.10. A
different and, in many respects, a superior picture is obtained by complexifying
x and y; it is even better to compactify everything, by taking a projective
standpoint in P2, so as to take into account what is happening at infinity. The
idea is due to Bezout [1779]. The case of the circle will convey the idea. The
old curve x2 + y2 = 1 in R2 is replaced by the locus x2 + y2 + z2 = 0 in
C3 − 0. This makes projective sense, each term being of the same degree, and
so defines a projective curve in P2 of 1 complex (= 2 real) dimension. The
old curve (and more) is seen in the patch C2 ×√−1 = C2 ×1, projectively, but
now you pick up two new (compactifying) points “at infinity”: (1, ±√−1, 0)
in (1 × C2) ∩ (C × 1 × C). The same recipe applies to the projective hyperbola
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Figure 1.10. Quadratic curves.

xy − z2 = 0 and to the parabola x2 − yz = 0, which are evidently the same in
P2. In fact, all three types of curves fall together into a single projective class.
The (1:1 projective) substitution

x �→ x + √−1y, y �→ x − √−1y, z �→ √−1z

converts xy = z2 into x2 + y2 + z2 = 0. In short, up to such substitutions, the
conic sections are indistinguishable in P2. But what does the circle C: x2 + y2 +
z2 = 0 really look like in P2? The pretty answer is: the projective line. The
proof is easy. P1 is viewed as C+∞ and provided with the parameter w. Then
x = (1/2)(w+1/w) and y = (1/2

√−1)(w−1/w) solve x2 + y2 = 1 provided
w 
= 0, ∞. This presents, in a 1:1 manner, the finite part of C that lies in the
patch C2×√−1: in fact, w = x+√−1y. To cope with the points at ∞, the cor-
respondence [x, y, z] = [(w + 1/w)/2,

√−1(w − 1/w)/2,
√−1] is expressed

in the projectively equivalent forms [(1+1/w2)/2, (1−1/w2)/2
√−1,

√−1/w]
and [(w2 + 1)/2, (w2 − 1)/2

√−1,
√−1w]: The first places the north pole

w = ∞ in correspondence with [1/2, 1/2
√−1, 0] = [1, −√−1, 0] projec-

tively; the second places the south pole w = 0 in correspondence with the
second point at infinity [1,

√−1, 0].

Moral. The recipe places the whole projective circle in faithful (rational) cor-
respondence with the projective line; in particular, the totality of real solutions
of x2 + y2 = 1 is obtained by numerical specialization of the rational functions
x = 1

2 (w + 1/w) and y = 1
2
√−1

(w − 1/w). Do you recognize them?

More generally, any irreducible polynomial P ∈ C[x, y] defines, by its vanish-
ing, a projective curve X in P2: The individual terms xm yn of P are brought up
to a common (minimal) degree d by powers of a new variable z. Then the van-
ishing of P makes projective sense, and the rest is as before; in particular, the
original curve X0 = C2 ∩{P(x, y) = 0} is seen in the patch C2 ×1. P2 is com-
pact and X inherits that; it is also connected, automatically, but that lies deeper.
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Amplification 1. X need not be a projective line; that is the exception, not the
rule. For example, if e1, e2, e3 are distinct complex numbers, then the cubic
y2 = (x − e1)(x − e2)(x − e3) is a torus in P2 and cannot be identified with
P1 for topological reasons; see Section 1.12 for pictures and Section 2.11 for a
full explanation of this striking geometric fact.

Amplification 2. X inherits from P2 the structure of a complex manifold, with
exceptions at a few places. Let P ∈ C[x, y, z] be the homogeneous polynomial
that defines X by its vanishing. Then, with the notation P1 = ∂P/∂x , and so
forth, the form P1dx + P2dy + P3dz vanishes on X, so if, for example, you
place yourself in the patch C2 × 1 and if (P1, P2) does not vanish, then you
can get rid of dz (z = 1) and use the implicit function theorem in the small to
solve for y in terms of x (or vice versa), placing a whole patch of neighboring
points p = (x, y) ∈ X in faithful correspondence with a little disk by means
of the local parameter x = x(p); see Section 13 for more details from another
point of view. The exceptions alluded to are the singular points of X at which
the gradient (P1, P2, P3) vanishes. If the gradient never vanishes the curve is
termed nonsingular.

Exercise 2. Check that the circle x2 + y2 + z2 = 0 is nonsingular.

Exercise 3. The cubic X: y2 = x2 + x3 has just one singular point: (0, 0, 1), as
you will check.

This example is more typical. At x = 0, the two analytic branches y =
±x

√
1 + x of X cross, accidentally so to speak, so, in the small, the curve

looks like two complex lines touching at one point and not like a disk; see
Fig. 1.11. This can be cured. The branches are distinguished at x = 0 by their
slopes y′ = ±1, which suggests a new attitude toward X, described afresh as
the common roots (in P3) of the two relations xz = y and z2 = 1 + x ; in fact,
z = y/x takes distinct values ±1 at x = 0, depending on the branch, so the old
point (0, 0) splits into two separate points (0, 0 ± 1). The present discussion is
just to whet the appetite; it is continued in Section 11, and also in Section 13. For
further information, Bliss [1933], Walker [1978], Kirwan [1992], Shafarevich
[1977], and Mumford [1976] are recommended, in order of sophistication.

1.11 Covering Surfaces

We review a few topological facts needed for the further study of projective
curves and/or Riemann surfaces. The ideas go back to Poincaré. Ahlfors [1973],
Forster [1981], and Massey [1991] are recommended for more information.
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Figure 1.11. Crossing of branches.

Covering Spaces. Let M and K be surfaces, that is, topological manifolds of
real dimension 2. K is an (unramified) cover of M if it admits a projection
p onto M with the characteristic feature that every point p ∈ M has an open
neighborhood U such that p−1(U ) breaks up into disjoint open pieces V of
K, finite or countable in number, the restrictions p: V → U being homeomor-
phisms; see Fig. 1.12. The cardinality of the fiber p−1(p) is independent of the
point p ∈ M; it is the degree or sheet number of the cover.

Exercise 1. Check that p(z) = zk(k ∈ N) is a projection from C − 0 to itself.
What happens if 0 is included?

Exercise 2. Check that the exponential exp: C → C − 0 is a projection.

Exercise 3. Let ω be a complex number of positive imaginary part and let L be
the lattice Z ⊕ ωZ. The map p: C → X = C/L, reducing the plane modulo
the lattice L, induces a topology on the torus X. Check that p is a projection.

Universal Cover. Among all the surfaces that cover M, there is a largest one.
This is its universal cover K, distinguished by the property that if K0 is any
other cover of M, then K covers K0. K is unique up to homeomorphisms
and simply connected, that is, any closed loop in K can be shrunk to a point.
This feature, too, distinguishes the universal cover among its competitors. K is
formed by a) fixing a base point o ∈ M; b) stacking up, over the general point
p ∈ M, covering points q, one to each deformation class of curves leading
from o to p in M; and c) lifting up to q the topology in the vicinity of p, as
indicated in Fig. 1.12. The projection is p : q → p.
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Figure 1.12. The universal cover.

Exercise 4. The universal cover of the torus X = C/L is the plane C, by
ex. 3. What is the universal cover of the disk, annulus, sphere, cylinder, or the
once-punctured plane?

Lifting and Covering Maps. The universal cover K is provided with a group
�(K) of covering maps. These are homeomorphisms of K that commute with
the projection p:K → M; in particular, covering maps preserve fibers. Let
o be a point of M, fix a point o1 of K covering it, and select a loop in the
base starting and ending at o, as in Fig. 1.13. The beginning of the loop lifts
unambiguously to a patch about o1 via the inverse projection, and this lifting
can be continued without obstruction until the moving base point returns to o.
The lifted loop ends at a point o2 covering o and the map o1 �→ o2 may be
extended to a covering map of the whole of K by a self-evident continuation.
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K

M

p

o

o

1

o2

Figure 1.13. Lifting of loops.

Exercise 5. Check all that by means of pictures. Think of an example in which
the lifted curve is not closed.

Exercise 6. Prove that every covering map arises in this way.

Exercise 7. Prove that covering maps have no fixed points, the identity excepted.

Fundamental Group. The loops of M, starting and ending at o, fall into
deformation classes; and it is easy to see that these classes form a group: The
formation of classes respects the composition of loops effected by passing first
about loop 1 and then about loop 2; the identity is the class of the trivial loop =
the point o itself; the inverse is the class of the loop run backward; and so on.
This is the fundamental group π1(M) of the surface.

Exercise 8. What is the fundamental group of the annulus, sphere, torus, once-
punctured plane, or twice-punctured plane? Answer: Z, id, Z2, Z, the free
group on two generators.

Exercise 9. The covering map attached to a loop depends only upon the class
of the latter. Why? Deduce that the group �(K) of the cover is isomorphic to
the fundamental group of the base.

More Structure. K may be equipped with any extra structure, smooth or com-
plex, that M enjoys: Just lift it up via the inverse projection. Then the covering
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maps appear as diffeomorphisms of K if M is smooth, and as conformal auto-
morphisms if M is a complex manifold.

Exercise 10. Give all the necessary details in the complex case.

Monodromy. The universal cover leads to a simple proof of the monodromy
theorem of classical function theory. Let f0 be a function element, that is, a
convergent power series in the local parameter of a small patch of a complex
manifold X, and suppose its continuation along paths of X is unobstructed.
This leads to a cover K0 of X whose points are pairs comprising a point p of
X and a function element f at p obtained by continuation of f0. Now let X be
simply connected, so that it is its own universal cover. Then X = K0, which
is to say that the process of continuation of f0 leads to a single-valued function
on X. This is the monodromy theorem. The more conventional proof is to note
that a function element produced by continuation is insensitive to small (and so
also to large) deformations of the path as long as the endpoints of the latter are
fixed.

Exercise 11. Why?

1.12 Scissors and Paste

The most general compact orientable surface is a sphere with handles, as noted
in Section 2. The number of handles is the genus g: 0 for the sphere, 1 for
the torus, 2 for the pretzel, and so on. It is a fact that each of these can be
equipped with a complex structure, and that in many distinct ways if g ≥ 1.
This will now be made plausible by the familiar informal method of scissors
and paste.

Take the simple two-valued function
√

z. It is desired to make a 2-sheeted
Riemann surface S on which it can live comfortably as a single-valued function.
Let P1 be the projective line with parameter z. The radical branches at z = 0
and at z = ∞, but may be made single-valued by cutting P1 from 0 to ∞ in
view of the fact that a circuit enclosing both 0 and ∞ produces two changes of
sign and so no change at all. It has, however, different signs at the two banks of
the cut, the endpoints 0 and ∞ excepted, and now it is clear what to do. Take
two copies of the severed P1 with the cuts opened up to make holes and paste
them together as in Fig. 1.14, matching the banks of the cuts according to the
sign of the radical to produce a copy S of P1. The two original copies of P1

are the sheets of S; naturally, upon erasing the cuts, it will not be clear where
one sheet ends and the other begins. The discussion is sloppy: For example,
careless pasting could leave a crease in S; presumably, it can be ironed out, but
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Figure 1.14. The Riemann surface for
√

z.

the more subtle (because less visible) complex structure of S is best treated from
another standpoint. Now look at the function z2 as a 2:1 map of one copy of P1

to another, with exceptions at 0 and ∞ where it is 1:1 (but still of degree 2 in that
0 is a double root and ∞ a double pole). The map is seen in Fig. 1.15. The great
circle seen in the upper sphere represents the inverse stereographic projection
of R ⊂ C, cutting P1 into two hemispheres, labeled + and −, and z2 opens up
each of these into a full copy of P1. The inverse map is

√
z whose Riemann

surface S, seen in Fig. 1.14, may now be identified with the covering projective
line of Fig. 1.15. The complex structure of S is clarified thereby: Plainly, it is
compatible with that of the base except over 0 and ∞ where the branching of
the radical takes place. There the cover is ramified over the base, its two sheets
touching as in Fig. 1.16, or, more realistically, as in Fig. 1.17, in which you see
that one revolution about 0 carries you from sheet 1 to sheet 2, and a second
revolution (not shown) brings you back to sheet 1. Figures 1.16 and 1.17 hint
that the complex structure of the cover goes bad at the ramifications, but this is
not so: Both cover and base are complex manifolds in themselves; it is just that
their complex structures are not the same: At 0, z is local parameter downstairs
and

√
z is local parameter upstairs; at ∞, you must use 1/z downstairs and

1/
√

z upstairs. Forster [1981] and Springer [1981] provide more details.
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Figure 1.15. The maps z �→ z2 and z �→ √
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Figure 1.16. The two sheets touch at certain points.
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Figure 1.17. The two sheets.

Exercise 1. Give a parallel discussion of the Riemann surface for d
√

z as a d-fold
ramified cover of P1 for d ≥ 3.

Handlebodies. The same idea applies to the radical
√

(z − e1) · · · (z − en) with
distinct branch points ei (i ≤ n). For n = 2, nothing changes; it is only that e1

and e2 play the roles of 0 and ∞. For n = 3, the radical branches at e1, e2, e3,
and ∞ since a loop enclosing e1, e2, and e3 produces 3(= 1) changes of sign.
To make the radical single-valued on P1 requires two cuts, one from e1 to e2,
say, and one from e3 to ∞, as in Fig. 1.18. Two copies of this cut P1 are now
pasted together in the manner of Fig. 1.14, but with the very different outcome
seen in Fig. 1.18. The complex structure of the torus so produced may be
clarified as in Fig. 1.16; for example,

√
z − e1 is local parameter over e1 and

so on. For n = 4, you get the same figure with e4 in place of ∞, but for n = 5
or 6 a pretzel appears, and for general n = 2g + 1 or 2g + 2, a handlebody
of genus (= handle number) g. The moral is that every handlebody appears
as a Riemann surface; in particular, they all admit a complex structure. More
complicated examples abound. The projective curve y3 = x − 1/x is pretty
typical: y branches triply over x = 0, ∞, and over the roots ±1 of x2 = 1, as
in Fig. 1.19; in detail

y = x1/3
[
1 + powers of 1/x

]
at x = ∞

= x−1/3
[−1 + powers of x

]
at x = 0

= 3
√

x − e
[

3
√

2 + powers of x − e
]

at x = e = ±1,

so a little counterclockwise circuit about x = ∞, 0, −1, or +1 multiplies y
by e−2π

√−1/3 for x = ∞ or 0 and by e2π
√−1/3 for x = ±1. Otherwise, y has
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Figure 1.18. The Riemann surface for
√

(z − e1)(z − e2)(z − e3).

∞ 1− 0 1+

Figure 1.19. The projective curve y3 = x − 1/x .

three distinct values over every value of x ∈ P1. Now take three copies of the
projective line cut from ∞ to −1 and from 0 to 1 so as to account for the three
different determinations of y = 3

√
x − 1/x . These are seen in Fig. 1.20I. They

must be pasted by the numbers. A preliminary pasting of 3 to 3 and 4 to 4
produces Fig. 1.20II; the final handlebody (III) is of genus 2.

Exercise 2. Check the numbering of Fig. 1.20. Hint: As you pass just below
the real line from −∞ to 1 and just above it to −∞, y changes by the factor
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Figure 1.20. Cutting and pasting for y3 = x − 1/x .

ω = eπ
√−1/3 at −1, ω2 at 0, and ω2 at 1, and again, on the return trip, by ω2 at

0 and ω at −1, for a net change of ω8 = ω2.

Exercise 3. Check that the Riemann surface of y3 = x2 − x−2 has genus 4.

The Helix. The Riemann surface of the logarithm should also be mentioned.
The function w = ez maps each horizontal strip R+ 2π

√−1 × [n, n + 1) of C

faithfully onto the punctured plane C−0, as in Fig. 1.21, so the inverse function
z = log w, defined on the base C − 0, has the covering plane C as its Riemann
surface, each strip constituting a sheet of the latter. A counterclockwise circuit
about the puncture downstairs raises the covering point to the next sheet up, by
addition of 2π

√−1, suggesting that the cover is better viewed as the infinite
helix, with log z itself filling the office of global parameter, opening up the punc-
tured disk 0 < r < 1 downstairs into the half-plane (−∞, 0)×√−1R upstairs.

Ramified Covers. The Riemann surface of z1/3 provides an example of a rami-
fied cover: It is a copy of P1 covering the projective line three-fold, except over
0 and ∞ which are covered once; compare Fig. 1.22. The anomalous covering
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Figure 1.21. The exponential and logarithm.

points are the ramifications. More generally, a cover is ramified if d ≥ 2 sheets
meet at a point in the manner of the Riemann surface z1/d , |z| < 1. The idea
of a cover is now widened to admit such ramifications; it is even convenient
to admit infinite ramifications as in the Riemann surface of the logarithm. The
index of a ramification is 1 less than the degree, that is, 1 less than the number
of adjacent sheets.

Riemann–Hurwitz Formula. Let K be a compact orientable manifold (= a
handlebody) covering the projective line P1 with total ramification index r , d
sheets, and g handles. Then r = 2(d + g − 1). This is the Riemann–Hurwitz
formula.

Example 1. The formula precludes unramified covers unless d = 1 and g = 0
(K = P1).
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Figure 1.22. Ramified covers.

Example 2. The Riemann surface of y3 = x − x−1 seen in Fig. 1.19, viewed
as a ramified cover of the projective line with parameter x , has 4 ramifications
of degree 3 apiece for a total index of 4(3 − 1) = 8, 3 sheets, and 2 handles:
8 = 2(3 + 2 − 1).

Proof of the Riemann–Hurwitz formula. The compactness of K implies that
both the ramification index and the sheet number d are finite. Let the base
be provided with a fine triangulation in which the projections of the ramified
points of the cover appear as corners, and lift it up by the inverse projection to
obtain a triangulation of K. The alternating sum: corners − edges + faces is
the Euler number: Upstairs its value is 2−2g; downstairs its value is 2(g = 0).
Now the Euler number of the cover should be 2 − 2g = 2d because everything
downstairs appears d-fold upstairs, but not quite: A base point that lifts to one
or more ramified points of K, of total index m, is covered only d − m times,
so there is an imbalance of − ∑

m = −r to the right, the true relation being
2 − 2g = 2d − r . This is the formula.

Exercise 4. Extend the Riemann–Hurwitz formula to the case of a ramified
cover of a general compact complex manifold.
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1.13 Algebraic Functions

The idea of a Riemann surface applies to the projective curves of Section 10.
Let P(x, y) be an irreducible polynomial in y with coefficients from C[x]. The
roots y of P(x, y) = 0 are viewed temporarily as elements of the splitting field
of P over the ground field C(x). They are simple, so their discriminant is a
nonvanishing element of C(x); see Section 4. The totality of these roots is
an algebraic function y of the indeterminate x. Riemann’s idea provides a
geometrical picture of this, as will now be explained in stages.

The Covering. Fix a point x0 of the projective line P1 punctured at ∞ and at
the points where either the discriminant or the top coefficient of P(x, y) =
c0(x)yd + c1(x)yd−1 + · · · vanishes. Near x0, you have d distinct numerical
roots y1, . . . , yd , each of which is capable of being expanded in powers of
z = x − x0: y = k0 + k1z +· · · . The resulting pairs p = (x, y) with x = x0 and
y = y1, . . . , yd are displayed in Fig. 1.23 stacked up over x0. The latter is the

p0

K

M
x0

p1

p2

Figure 1.23. Function elements.

base point; y is a function element; the map p0 �→ x0 is the projection. Now
any such function element y0 can be reexpanded about any center x close to
x0. This produces a patch of points p = (x, y) about p0 = (x0, y0), and as this
patch is faithfully mirrored by the projection x = x(p), so it may be equipped
with a complex structure by use of the local parameter z(p) = x(p) − x0. This
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makes the totality of points p into a complex manifoldK covering the punctured
base P1.

Connectivity. The possible disconnectivity of the cover is easily disproved.
Any function element y0 can be continued without obstruction over the punc-
tured base, producing a subfamily y1, . . . , yn of the function elements over each
base point x, of fixed cardinality n ≤ d . The coefficients of the polynomial
P1(y) = (y − y1) · · · (y − yn) are single-valued functions of x. These must be
rational since any function element obeys an estimate |y| ≤ C1 ×|x − x0|−m at
a finite puncture or |y| ≤ C2 × |x|m at ∞. It follows that P1(y) divides P(x, y)
over C(x), violating the irreducibility of the latter unless n = d; in short, con-
tinuation of y0 produces the full family of function elements over every base
point, which is to say that K is connected.

The Punctures Filled In. This is a pretty application of the monodromy the-
orem of Section 11. Fix a puncture x = 0, say, and let 0 < |x| < r0 be
puncture-free. The left half-plane H of the Riemann surface of log x covers
this punctured disk, and any function element y over a point of the latter can be
lifted to the former and continued there without obstruction. This produces a
single-valued function of the logarithm because H is simply connected. Now
each of the points log x + 2π

√−1Z covers x and each of the associated func-
tion elements is a root of P(x, y) = 0. It follows that only a finite number
of different function elements appear at log x + 2π

√−1Z and that the origi-
nal branch repeats itself after a continuation upward by 2π

√−1n units with
minimal n ≤ d independent of x, the intervening branches being distinct. This
means that the continued function element y may be viewed as a single-valued
function of x1/n; it is even of rational character in this parameter at x = 0 in
view of the estimate |y| ≤ C1 × |x|−m used before. The upshot is that the
totality of function elements so produced can be obtained from a single frac-
tional expansion y0 = c−kx−k/n +· · ·+ c0 + c1x1/n +· · · by reexpansion about
centers 0 < |x| < r0. K is now completed at punctures by the insertion of
points of this new type p0 = (0, y0), and the complex structure is extended by
attributing the local parameter z(p) = [x(p)]1/n to an ambient patch. The new
points have the (ramified) aspect of Fig. 1.24, and the completed surface K is a
compact ramified cover of the unpunctured base P1 with a full complex struc-
ture: It is the Riemann surface of the algebraic function y. Bliss [1933] and
Springer [1981] present more details and additional information. Weyl [1955]
and Narasimhan [1992] are recommended for a more sophisticated view. K is
a nonsingular model of the projective curve defined by P(x, y) = 0; compare
amplification 2 in Section 10. The present desingularization is an overkill as it
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Figure 1.24. The ramified cover.

is realized only in the infinite-dimensional space of points p = (x, y). Actually,
a nonsingular model of any projective curve can always be accommodated in
P3; see Shafarevich [1977].

Uniformization. The universal coverK of a complex manifold can be equipped
with the natural complex structure lifted up from the base; it is also simply con-
nected. What are the possibilities? The answer is contained in the celebrated
theorem of Klein [1882], Poincaré [1907], and Koebe [1909–14]: Up to con-
formal equivalence, K is either the sphere P1, the plane C, or else the disk
D: |x | < 1. Note that P1 is inequivalent to C or D on topological grounds
already and that C is inequivalent to D because an analytic map of C to D has
a one-point image, by Liouville’s theorem: In short, sphere, plane, and disk
are genuinely different. The statement includes the earlier Riemann mapping
theorem [1851]: A simply connected region of the sphere omitting two or more
points is conformally equivalent to a disk. It is important to understand what
is involved in the general statement, though the proof is not so simple and we
refer you to Ahlfors [1973], Springer [1981], or Weyl [1955] for full details.
Poincaré himself did not find a fully successful proof. The following informal
discussion may be helpful.
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Some Hydrodynamics. A pretty hydrodynamical picture was introduced by
Klein in his Cambridge lectures [1893]. Let U be a patch of K equipped
with a local parameter z(p) = x1(p) + √−1x2(p). A steady irrotational flow
of an incompressible fluid is specified by a velocity field v(p) = (v1, v2)
subject to (1) div(v) = ∂v1/∂x1 + ∂v2/∂x2 = 0 for the incompressibility
and (2) curl(v) = ∂v2/∂x1 − ∂v1/∂x2 = 0 for the irrotational character.
(2) implies the existence of a potential function p, producing the velocity
field v = gradp, subject to (3) �p = 0 in place of (1), and conversely, if
�p = 0 in U , then v = grad p is the velocity field of a steady irrotational
flow of an incompressible fluid: x

�

(p) = v(p) with x(p) = (x1(p), x2(p)). Let
z′(p) = x ′

1(p) + √−1x ′
2(p) be a new local parameter. The new velocity field is

also incompressible and irrotational, and the new flow appears in the old coor-
dinates as x

� = J J †∂p/∂x = cv with Jacobian J = ∂x/∂x′, its transpose J †,
and the positive factor c = |detJ |2 = |dz/dz′|2, as you will check by means of
the Cauchy–Riemann equations ∂x1/∂x ′

1 = ∂x2/∂x ′
2, ∂x1/∂x ′

2 = −∂x2/∂x ′
1.

The new streamlines are the same as the old; it is only the speed that is changed.
This ambiguity of speeds is unavoidable: K has only a conformal structure, so
there is no preferred local parameter on any patch.

Exercise 1. Check the new flow.

A Global Flow. K is equipped with the streamlines of a steady incompressible
irrotational flow produced by a single source at a point o, with the understanding
that ifK is compact, it will be necessary to destroy fluid at a complementary sink
o′. The source is modeled by the potential function p = log |z(p)| with local
parameter z(p) vanishing at p = o, but care is needed: If the local parameter
is poorly chosen, it may not be possible to extend the flow patchwise over
the whole of K without unpleasant singularities besides the necessary sink in
the compact case. What is needed, and this is the hard part of the proof, is
the existence of a global function p with �p = 0 at ordinary points of K, the
singularity log |z(p)| at the source, and in the compact case, a second singularity
− log |z′(p)| at the sink, z′(p) being a local parameter there. This defines a flow
over the whole of K with velocities v = (v1, v2) = grad p . The conjugate flow
with velocities (v2, −v1) is at right angles; it has a (local) potential function
q determined up to an additive constant. The associated circulation = ∮

dq
taken about any of the (closed) level lines of p is independent of the particular
level line, by Stokes’s theorem, and may be evaluated as 2π by shrinking the
level line to o. The new parameter z(p) = exp

[
p(p) + √−1q(p)

]
is now seen

to be a single-valued function of rational character on K with a simple root at
the source and, in the compact case, a simple pole at the sink. This function
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Figure 1.25. Global parameters.

is 1:1 as is plain from the picture (Fig. 1.25) but not so easy to prove: The
streamlines issuing from o cover the punctured surface simply, except that they
come together again at the sink in the compact case; p serves as coordinate
along the streamline and q tells which streamline it is. Three cases are now
distinguished according as K is compact or not and, in the noncompact case,
according as p is bounded or not.

Case 1. K is compact. Then it is a topological sphere and z:K → P1 is a
conformal equivalence between K and the projective line.

Case 2. K is noncompact and p is unbounded. Then z:K → C is a conformal
equivalence between K and the whole complex plane.

Case 3. K is noncompact and p tends to the finite number p(∞). Then z maps
K 1:1 onto a disk of radius r = exp [p(∞)]. This is Riemann’s case.

Idea of the proof. Springer [1981] explains the actual construction of p: Let
∧1 be the class of smooth 1-forms ω = ω1dx1 + ω2dx2 on K and let ∗ω =
−ω2dx1 +ω1dx2. Weyl [1955] proved that ∧1 splits into three pieces, mutually
perpendicular relative to the natural quadratic form

∫
ω∧∗ ω̄,2 of which the first

is differentials of smooth functions (ω = d f = (∂ f/∂x1)dx1 + (∂ f/∂x2)dx2),

2 ω̄ is the complex conjugate of ω.
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the second is codifferentials (ω = ∗d f ), and the third is the harmonic differen-
tials which are simultaneously closed (dω = (∂ω2/∂x1−∂ω1/∂x2)dx1∧dx2 =
0), like differentials of functions, and also coclosed (d ∗ ω), like codiffer-
entials. Now place yourself in the noncompact case and cook up a smooth
exact differential ω that imitates dlogz(p) near p = o and vanishes at a lit-
tle distance from it. Then ω − √−1 ∗ ω̄ vanishes near 0 and ∞ and, being
smooth, may be split into its three parts: d f1 +∗d f2 +ω3. The new differential
ω − d f1 = √−1 ∗ ω + ∗d f2 + ω3 is plainly smooth, exact, and coclosed away
from o, and its real part is the differential of a single-valued harmonic function
p on K − o having the required singularity log|z(p)| at p = o. The simple
connectivity of K is now used to confirm that dq = ∗dp is also exact modulo
2π so z(p) = exp

[
p(p) + √−1q(p)

]
is single-valued too. The final point is

that z:K → C is 1:1. This is more subtle, so we stop here.

Exercise 2. The map of K to a sphere, plane, or disk (= half-plane) may be
standardized by fixing its values at any three points as you will. Why?

1.14 Examples

The deep content of the Koebe–Poincaré theorem is plain from elementary
examples.

Spheres. This is already instructive. The statement is that a complex structure
on a topological sphere can be described by a global parameter z:K → P1.
This is what is meant by saying that the sphere has just one complex structure.

Annuli. The sphere is peculiar in this respect; for instance, two annuli equipped
with the natural complex structure they inherit from C are conformally equiv-
alent if and only if they have the same ratio r of inner to outer radii. In short,
the inequivalent complex structures of a topological annulus are in faithful
correspondence with the numbers 0 < r < ∞.

Exercise 1. Why? Hint: A map of annuli extends by circular reflection to a
map of punctured planes.

Punctured Spheres. The once-punctured sphere is the plane, so the twice-
punctured sphere is a punctured plane, and its universal cover K may be viewed
as the Riemann surface of the logarithm; in short, K is a plane. The thrice-
punctured sphere (= the doubly punctured plane) is different: Its universal
cover is the disk.
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Proof. The cover is not compact (why?), so only K = C needs to be ruled
out. But if K = C, then the covering group is populated by substitutions of
P SL(2, C) fixing ∞; see Section 5. These are of the form z �→ az + b and
have fixed points if a �= 1, whereas covering maps do not; see ex. 11.7. It
follows that the covering group is commutative, contradicting the fact that the
fundamental group of the twice-punctured plane is not. A very different proof
will be found in Section 4.9.

Picard’s Little Theorem [1879]. A very pretty bonus is a proof of the fact that
a nonconstant integral function takes on every complex value with at most one
exception. The exception is real: the exponential does not vanish.

Proof. Let the integral function f omit the values a and b. Then (b−a)−1( f −a)
omits 0 and 1, so it is permissible to take a = 0 and b = 1. Now use f to map
a small disk into the punctured plane C − 0 − 1, lift the map to the (universal)
covering half-plane via any branch of the inverse projection, and map the lift
into the unit disk. The composite map C → C − 0 − 1 → H → D may be
continued without obstruction along paths of the plane. This produces a single-
valued function in that plane by the monodromy theorem of Section 11, and as
its values are confined to the disk, so it must be constant. But the projection is
not constant nor is the map from the half-plane to the disk. The only way out
is for f to be constant.

Ahlfors [1973: 19–21] presents a beautiful elementary proof, not employing
such transcendental aids; see also Nevanlinna [1970: 248–9] for a thorough
geometric discussion and Section 4.9 for a reprise.

Hyperbolic Geometry. Another amusing consequence is that the thrice-punc-
tured sphere admits a geometry of constant curvature −1. The cusps of this
horned sphere are modeled in ex. 9.5; see Fig. 1.26. The point is that the
covering group of the punctured sphere is realized by substitutions of P SL(2, R)
acting upon the covering half-plane, and as these are rigid motions of the
cover, so this geometry drops down to the punctured sphere; see Section 8 and
Pogorelov [1967: 166–7] for such matters. It is not possible to do this for the
unpunctured sphere. The obstacle is expressed by the Gauss–Bonnet formula
which states that if a handlebody X of genus g is equipped with a geometry
with (possibly variable) curvature κ and surface element dσ , then the value of
the curvatura integra

∫
X κdσ is 2π times the Euler number 2 − 2g of X; for

example, it is +4π for the sphere. Pogorelov [1967: 164–6] explains this well.
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Figure 1.26. The horned sphere.

Higher Handlebodies. The idea behind the horned sphere applies, as well, to
higher handlebodies of genus 2 or more: Their universal covers are always
half-planes so the covering maps appear as substitutions of P SL(2, R) and the
geometry of curvature −1 drops down. Note, also, that the covering group must
be noncommutative.

Exercise 2. Check this. Hint: Two handles produce a nontrivial commutator
aba−1b−1 in the fundamental group; see Fig. 1.27.

Poincaré [1898] had the attractive idea of producing the universal cover of a
higher handlebody by endowing the body with a geometry of curvature −1,
lifting this geometry to the cover, and identifying the latter with the hyperbolic
half-plane; see Kazdan [1985] for such matters.

Tori. These are different; for example, the curvatura integra vanishes, so a
geometry of constant curvature ±1 is not possible. Let ω be a complex number
of positive imaginary part and let L be the lattice Z ⊕ ωZ. The torus X = C/L

inherits the complex structure of C and has this plane as its universal cover.
The latter divides naturally into cells as in Fig. 1.28. The fundamental cell is
shaded. The projection C → X is identification modulo L and the covering
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Figure 1.27. Handles produce noncommutativity.
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Figure 1.28. The lattice.

group is a copy of the fundamental group Z2 = Z ⊕ Z, as it had to be. The fact
is that, up to conformal equivalence, every complex torus arises in this way.

Proof. The universal cover of the torus is the plane; intuitively, it is just the
torus rolled out vertically and horizontally. Now the covering maps are fixed-
point-free conformal self-maps of C, that is, translations z �→ z + c, as noted
under the heading “punctured spheres.” The numbers c form a sublattice L of
C, isomorphic to Z2 and so of the form ω1Z⊕ω2Z with noncollinear ω1 and ω2,
as will be verified in Section 2.6. X is now identified with the quotient C/L. A
trivial map z �→ z/ω1 and, if need be, a change of sign of the ratio ω = ω2/ω1

brings L to the standard form Z ⊕ ωZ with ω of positive imaginary part.

The identification X = C/L leads to a simple proof of the fact that, unlike the
unpunctured sphere, but like the annulus of ex. 1, the topological torus has many
inequivalent conformal structures. The same is true of the higher handlebodies.
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Proof. Let X1 = C/L1 and X2 = C/L2 be complex tori with a conformal map
between them and lift this map up to a self-map of their common universal
cover C; see Fig. 1.29. The lifted map is single-valued by the monodromy
theorem, the continuation being unobstructed; moreover, it is of linear growth
at ∞ since a closed path that goes around or through the hole of X1 leads from
a point in one cell of the cover to a new point in an adjacent cell. But then the
lifted map is a linear function az + b of the parameter z of K1 = C, and as it
commutes with projections, so you must have b ∈ L2 and aL1 ⊂ L2; indeed,

X1 = C/ L1 X2 = C/L2

Figure 1.29. Conformal maps between tori.

aL1 = L2 by consideration of the inverse map. The moral is that the tori cannot
be conformally equivalent otherwise. For example, the period ratios ω = √−1
and ω = (1 + √−3)/2 produce inequivalent tori.

Geometric Explanation. The fact that tori admit many different complex struc-
tures is the subject of Section 2.6 and of the first part of Chapter 4. A geometric
explanation can be given right now. Let the fundamental cell be

F = {x = x1 + sx2 + √−1x2 : 0 ≤ x1 < 1, 0 ≤ x2 < h}

with fixed base [0, 1). This standardization does not affect the number of
complex structures. There are two degrees of freedom left: the slant s and
the height h > 0. The corresponding torus is made in two steps from the
rectangular cell of height h(s = 0): First paste together the vertical sides to
make a right cylinder; then twist the upper circle by sh and paste it to the bottom.
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This produces a shear in the amount sx2 at level 0 ≤ x2 < h and changes the
complex structure; a change of height usually changes the structure, too.

Example. Let h = 1 and let the two slants s1 and s2 produce equivalent tori.
The corresponding lattices L = ⊕ (s + √−1)Z are related by a multiplication
aL1 = L2, as you know, and |a| = 1 by comparison of areas of fundamental
cells. But then a ×1 = i + j(s2 +√−1) with i, j ∈ Z and 1 = (i + js2)2 + j2,
so either j = 0, a = i = ±1, and L�� = L�=, or else j = ±1, s2 = ∓i , and
a = ±√−1. Now note that s2 may be reduced modulo the period 1 so as to
lie in [0,1), the moral being that, with this adjustment, the conformal structure
determines the slant.

Exercise 3. Does the conformal structure determines the height if the slant is
0? If not, how far does it go?

1.15 More on Uniformization

The statement of Koebe–Poincaré is called the uniformization theorem in
the older literature. The name refers to the nineteenth-century usage uni-
form = one-valued. To clarify matters let X be a projective curve defined
by the vanishing of an irreducible polynomial: P(x, y) = 0. Its points are
triples (x, y, z) ∈ C3 − 0 with projective identifications, so x = x/z and
y = y/z make projective sense; in fact, they are functions of rational character
on X, and the vanishing of P expresses a relation between them, specify-
ing y as a many-valued function of x and vice versa. These functions may
be promoted to the universal cover K of X where they appear as functions
x, y of rational character, invariant under the action of the covering group.
In this way, X is uniformized by K in that the totality of points X is dis-
played by means of single-valued functions on K(= sphere, plane, or half-
plane).

Genus 0. If X has no handles, then it is a projective line P1 and is its own
universal cover, so x and y appear as rational functions of the parameter w of
P1 and the map w �→ (x, y) is a conformal equivalence between P1 and X. The
simplest nontrivial example is provided by the projective circle X: x2 + y2 = 1
of Section 10 and its uniformization by

x = 1

2
(w + w−1), y = 1

2
√−1

(w − w−1).

Rational Curves. Here is a deeper fact: If X is a rational curve in the sense
that there exists a nonconstant map of rational character of P1 into X, then
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X is of genus 0 already and so itself a projective line, as before; compare
Section 14. The idea will be plain from a picture: P1 is simply connected,
so a map of rational character of P1 into X lifts to a map of P1 into K, by a
self-evident application of the monodromy theorem. This is impossible if K
is not a projective line since nonconstant rational functions take all complex
values, ∞ included.

Tori. The complex torus X cannot be uniformized by rational functions since
its universal cover K is not a projective line; see ex. 2.11.3. Indeed, K = C, X
is its quotient by the lattice L as in Section 14, and x = x/z and y = y/z may be
promoted to functions of rational character on C having every complex number
ω ∈ L as a period. These functions uniformize X in the former style, but are
not rational. The whole of Chapter 2 is devoted to such elliptic functions.

Higher Handlebodies. K is a half-plane by Section 14. Now the uniformizing
functions x and y, promoted toK, are invariant under a subgroup of P SL(2, R):
the so-called automorphic functions. The subject lies mostly outside the scope
of this book, but see Ford [1972] and Terras [1985] for more information,
and Chapters 4 and 5 for a number of special instances and some general
information.

1.16 Compact Manifolds as Curves: Finale

The methods sketched in Section 14 can be used to prove the existence of
nonconstant functions of rational character on any compact complex manifold
M; see, for example, Hurwitz and Courant [1964], Springer [1981], or Weyl
[1955]. Let x be such a function: It has a finite number of poles and an equal
number of roots, as may be seen by integrating (2π

√−1)−1d log[x(p)] about
the edges of a triangulation of M, every edge being traversed twice, in opposite
directions. This number is its degree d . It follows that x takes on every complex
value d times, so M appears as a d-fold ramified covering of P1 with projection
p �→ x(p). Now two cases arise according as d = 1 or d ≥ 2.

Case 1. If d = 1, then the projection is a conformal equivalence of M to P1;
indeed, x fills the office of global parameter on M.

Case 2. If d ≥ 2, a further construction is necessary to produce a function y
of rational character taking d distinct numerical values y = y1, . . . , yd at the
d points of the fiber x = x(p), for most values of the base point x ∈ P1. Then
it is easy to see that (y − y0) · · · (y − yd ) is of rational character in x and so
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represents a polynomial P ∈ C(x)[y] satisfied by x and y; moreover, P is nec-
essarily irreducible over the ground field C(x), as you will see by continuation
of the identity P(x, y) = 0 over the necessarily connected manifold M. Now
comes the punch line: The vanishing of P(x, y) defines a nonsingular projec-
tive curve X, as in Section 10, and the map p �→ (x, y) of M to X is a conformal
equivalence; in short, every compact complex manifold is a projective curve.
The discussion has come full circle.



2

Elliptic Integrals and Functions

The purpose of this chapter is to study the field K of functions of rational
character on the complex torus X = C/L. These are the elliptic functions and
one could begin with them, but we prefer a more historical approach starting
from the elliptic integrals. The incomplete elliptic integral of the first kind of
Jacobi [1829] is typical. It is

∫ x

0
[(1 − x2)(1 − k2x2)]−1/2dx .

Gauss [1797] and Abel [1827] made the remarkable discovery that the inverse
function of such an integral belongs to an elliptic function field. The idea of
investigating the integral with modulus k2 = −1 occurred to Gauss on Jan.
8, 1797, in connection with the rectification of the lemniscate.1 This circle of
ideas is one strand of the story. A second strand, intimately entwined with the
first, is the fact that the class of complex tori C/L is the same as the class of
projective quartics y2 = (1 − x2)(1 − k2x2) with complex moduli k2 different
from 0 or 1. The third strand reflects the second: Every (nonsingular) projective
quartic (or cubic) may be equipped with a commutative law of addition. Thus,
three strands are interwoven – function theory, geometry, and arithmetic – in
the most beautiful creation of nineteenth-century mathematics. The viewpoint
adopted in the rest of the present chapter is mainly that of Weierstrass (1870),
as recorded in the Berlin lecture notes of H. A. Schwarz [1893]. Jacobi’s
viewpoint [1829] was different; it is explained episodically here, and at length
in Chapter 3. Ahlfors [1979], Copson [1935], and/or Whittaker and Watson
[1963] may be consulted for the elementary part. Hurwitz and Courant [1964]
and Siegel [1969–73] take the matter further. Lang [1987] may be preferred by
the more algebraically inclined. The splendid classical accounts of the subject

1 Gauss [1870–1929 (10): 483–574].

54
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such as Fricke [1916, 1922] and Weber [1891] are recommended too; see also
Houzel [1978] and Weil [1975] for historical information, and Bateman [1953:
295–322] and Gradshteyn and Ryzhik [1994] for a very complete collection of
formulas.

2.1 Elliptic Integrals: Where They Come From

The integral
∫ 1

0
(1 − x2)−1/2dx =

∫ π/2

0
(1 − sin2 θ )−1/2 cos θdθ = π/2

is elementary, but the equally innocent-looking lemniscatic integral of Gauss
∫ 1

0
(1 − x4)−1/2dx

is not. The latter is a (complete) elliptic integral, meaning that it is the integral
of a rational function of x and y in which y2 is a polynomial in x , of degree
3 or 4, having simple roots. Most integrals of this type are not elementary.
Legendre [1811, 1825], Gauss [1797], Abel [1827], and Jacobi [1829] studied
them exhaustively. The next examples illustrate how they come up in practice.
Greenhill [1892] and Lawden [1989] have good collections of other interesting
examples.

Example 1: Mapping the half-plane to a rectangle. This example is central to
our version of the story, so don’t miss it even if you skip the rest. Let 0 < k < 1
be fixed and consider the map f of the upper half-plane defined by Jacobi’s
(incomplete) elliptic integral of the first kind:

x �−→
∫ x

0
[(1 − x2)(1 − k2x2)]−1/2dx .

The radical is taken to be real and positive for −1 < x < 1 and extended by con-
tinuation to the closed upper half-plane, avoiding the branch points ±1, ±1/k
by infinitesimal semicircles as in Fig. 2.1. The integrand turns by a factor of√−1 as you pass 1 and 1/k from left to right, so as x runs from 0 to ∞, its
image moves, first from 0 to

K =
∫ 1

0
[(1 − x2)(1 − k2x2)]−1/2dx ;

then it turns 90◦ and moves up to K + √−1K ′ with

K ′ =
∫ 1/k

1
[(x2 − 1)(1 − k2x2)]−1/2dx ;
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−K + √−1K′ K + √−1K′

−K K

− 1/k + 1/k− 1 + 1

0

√−1 K ′

Figure 2.1. Map of the upper half-plane by the incomplete integral.

finally, it makes another 90◦ turn and moves back to the left, as in Fig. 2.1. The
image of the left half-line is just the reflection in the vertical of the image of
[0, ∞). The nice thing is that the top closes up precisely at x = ± ∞, so the
image of the whole line is the complete perimeter of a rectangle. To spell it
out, the leftward-moving image of x > 1/k fills out a line segment of length

∫ ∞

1/k
[(x2 − 1)(k2x2 − 1)]−1/2dx,

and this is just K = half the length of the bottom, as you can see by means of
the substitution x �→ 1/kx :

∫ ∞

1/k
[(x2 − 1)(k2x2 − 1)]−1/2dx

=
∫ 1

0

[(
1

k2x2
− 1

)(
1

x2
− 1

)]−1/2 dx

kx2
= K ,

or, better still, by observing that the integral of [(1−x2)(1−k2x2)]−1/2dx about
a big semicircle of radius R is small like R−2 × π R, so

∫ ∞

−∞
[(1 − x2)(1 − k2x2)]−1/2dx

vanishes. The fact that the line is mapped 1:1 onto the perimeter of the rectangle
implies that the whole of the (open) upper half-plane is mapped 1:1 onto the
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inside. K is Jacobi’s complete elliptic integral of the first kind, so-called, of
modulus k. K ′ is the complementary integral of the first kind formed with
the complementary modulus k ′ = √

1 − k2:

K ′ =
∫ 1/k

1
[(x2 − 1)(1 − k2x2)]−1/2dx =

∫ 1

0
[(1 − x2)(1 − (k ′)2x2)]−1/2dx .

Exercise 1. Check the reduction by use of the substitution x �→ [1−(k ′)2x2]−1/2.

Exercise 2. Show that rectangles of any proportion, length to width, are ob-
tained, that is, K : K ′ takes all values between 0 and ∞.

Exercise 3. For k = 0+, K = π/2, K ′ = ∞, and the map is just the elementary
sin−1(x) = ∫ x

0 (1 − x2)−1/2dx taking the closed half-plane to the strip |x1| ≤
π/2, 0 ≤ x2 < ∞. Think it over.

Exercise 4. Discuss the mode of divergence of K (k) at k = 1−. Hint: For
k ↓ 0,

K (k ′) =
∫ 1/k

1

(
1√

x2 − 1
− 1

x

)
dx√

1 − k2x2

+
∫ 1

k

(
1√

1 − x2
− 1

)
dx

x
+

∫ 1

k

dx

x
.

Check that the first two integrals contribute log 2 apiece plus o(1); the third
integral is just − log k, so

K (k) = 2 log 2 − log
√

1 − k2 + o(1) for k ↑ 1.

Example 2: Rectification of the lemniscate. The lemniscate is realized when
the product of the distances of a moving point Q = (x1, x2) from two fixed
points P− and P+ is constant: d− × d+ = d . Take P± = ±(1/

√
2, 0) and

d = 1/2. Then
√

(x1 + 1/
√

2)2 + x2
2 ×

√
(x1 − 1/

√
2)2 + x2

2 = 1/2, so

x2
1 = (1/2)(r2 + r4) and x2

2 = (1/2)(r2 − r4) with r2 = x2
1 + x2

2 , as you will
check; see Fig. 2.2. The length of the lemniscate is 4× Gauss’s lemniscatic
integral:

∫ 1

0

√
(dx1)2 + (dx2)2 =

∫ 1

0

dr√
1 − r4

.

This is Jacobi’s complete elliptic integral of the first kind with the special
modulus k = √−1.
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Figure 2.2. The lemniscate.

Exercise 5. Check the computation.

Example 3: Rectification of the ellipse. An ellipse is realized when the sum
d− + d+ is constant (= d), as for E: x2

1/a2 + x2
2/b2 = 1(a > b); the fixed

points are now the foci ± f = (±√
a2 − b2, 0), and d = 2a. The length of E

is 4 times

∫ a

0

√
1 + [x ′

2(x1)]2dx1 = a ×
∫ 1

0

√
1 − k2x2

1 − x2
dx

with k2 = 1 − b2/a2 between 0 and 1, in which you see Jacobi’s complete
elliptic integral of the second kind:2

E(k) =
∫ 1

0

√
1 − k2x2

1 − x2
dx .

This explains the name elliptic integral.

Exercise 6. What is the surface area of the 3-dimensional ellipsoid E: x2
1/a2 +

x2
2/b2 + x2

3/c2 = 1?

Example 4: The simple pendulum. Classical mechanics provides many elegant
instances of elliptic integrals. A simple pendulum is depicted in Fig. 2.3. L is
its length, m is the mass of the bob, G is the gravitational constant. The vertical
force MG has only a tangential effect, of magnitude MG sin θ ; this comes with

2 Don’t panic: There are only three kinds.
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L

G

θ

M

Figure 2.3. The simple pendulum.

a negative sign. The corresponding acceleration is Lθ
� �

,3 so Newton’s law (force
= mass × acceleration) provides the equation of motion θ

� � + (G/L) sin θ = 0.
Let L = G for simplicity. Then a first integral is I = cos θ − (1/2)(θ

�

)2,
cos−1 I < 180◦ being the angle of highest elevation. The substitution x =√

2/(1 − I ) × sin(θ/2) converts this identity into x
� = ±

√
(1 − x2)(1 − k2x2)

with k2 = (1 − I )/2 between 0 and 1, expressing the fact that the time t , in its
dependence upon x , is an incomplete elliptic integral of the first kind:

t =
∫ x

0

[
(1 − y2)(1 − k2 y2)

]−1/2
dy;

it is understood that the sign of the radical flips when the highest elevation
(x = ±1) is reached. In particular, the period of motion is 4 times the complete
integral: T = 4K (k).

Exercise 7. Carry out the substitution.

Example 5: Capacitance of an ellipsoid. The electrostatic capacitance of the
3-dimensional ellipsoid

E: x2
1/a2 + x2

2/b2 + x2
3/c2 = 1 (a > b > c)

is determined by solving Laplace’s equation

�p = ∂2 p

∂x2
1

+ ∂2 p

∂x2
2

+ ∂2 p

∂x2
3

= 0

3 The dot signifies differentiation by time.
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outside E, subject to p = 1 on the surface and p = 0 at ∞. The function
p(x) is the (equilibrium) electrostatic potential of E. The name will now be
explained. E is an electrical conductor. A charge placed on E distributes itself
in a natural way in accord with Coulomb’s law of mutual repulsion of like
charges: force = product of charges divided by the distance squared.4 For
example, on a sphere the charge distribution is uniform, whereas in Montana, it
likes the plains but not the mountains. The quantity p(x) is the work required to
bring a unit charge from ∞ to x in the face of the electrostatic field produced by
the charge on E; it is independent of the path and constant on E. Keep loading
charge up on E until the potential of the surface reaches the value p = 1. This
is the equilibrium distribution; its total charge is the capacitance C(E) of the
ellipsoid. Coulomb’s law states that the potential produced by the point charge
Q at distance D is Q/D. Now reflect that E looks like a point from far away,
so p(x) 
 C(E) × |x |−1 near ∞. The capacitance is read off from that. But
what is p? The fact is �p vanishes outside E, this quantity being proportional
to charge, by Gauss’s divergence theorem suitably applied, so you have to solve
�p = 0 with p = 1 on E and p = 0 at ∞. The computation is facilitated by
ellipsoidal coordinates, a favorite trick of Jacobi [1866]. A point x outside E
determines the parameter 0 ≤ r = r (x) < ∞ by means of

x2
1

a2 + r
+ x2

2

b2 + r
+ x2

3

c2 + r
= 1.

Now look at

p(x) = 1

2

∫ ∞

r (x)

[
(a2 + r )(b2 + r )(c2 + r )

]−1/2
dr

outside E. It vanishes at ∞, by inspection; it is constant on E (r = 0); and
�p = 0, by elementary but tiresome computation. Also r (x) ∼ |x |2 far out
and p(x) 
 1

2

∫ ∞
r r−3/2dr = r−1/2 = |x |−1, so the capacitance of the ellipsoid

is the reciprocal of the complete elliptical integral

C−1(E) = 1

2

∫ ∞

0

[
(a2 + r )(b2 + r )(c2 + r )

]
dr.

Exercise 8. Check that �p = 0. Hint: �p(r ) is proportional to

p′′(r ) + (1/2)
[
(a2 + r )−1 + (b2 + r )−1 + (c2 + r )−1

]
p′(r ).

Example 6: Random walk in 2 and 3 dimensions. Let xn(n = 0, 1, 2, . . .) be
the nth position of a random walker starting at the origin of the 2-dimensional

4 Irrelevant physical constants are left out.
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lattice Z2. The rule is that at the next step, he is equally likely to move to any
of the four neighbors of his present position. The probability that the walker
returns to the origin in n steps vanishes if n is odd, while if n is even (n = 2m),
a return requires an even number 2l (2m − 2l) of vertical (horizontal) steps of
which half must be up (left) and half down (right): In other words,5, 6

P[xn = 0] =
m∑

l=0

(
2m
2l

) (
2l
l

) (
2m − 2l

m − l

)
4−2m

= 4−2m

(
2m
m

) m∑
l=0

(
m
l

)2

=
[

(2m − 1) · · · 3 • 1

2m(2m − 2) · · · 4 • 2

]2

.

It follows that

∞∑
n=0

P[xn = 0]kn = 2

π

∫ π/2

0
[1 − k2 sin2 θ ]−1/2dθ,

this being the trigonometric form of the integral of the first kind K (k). The
formula can then be checked by expanding K in a power series in the disk
|k| < 1:7

K (k) =
∞∑
0

(−1/2

n

)
(−k2)n

∫ π/2

0
sin2n θ dθ.

and doing the integrals by hand.

Exercise 9. Do that.

Now for k ↑ 1, the integral, and so also the left-hand sum, is +∞. The
latter is recognized as the expected time spent at the origin. Let p be the
probability to come back to the origin some time. Then pn is the probability of
n returns, so ∞ = 1 + p + p2 + · · · and p = 1, a fact due to Pólya [1921].
The 3-dimensional walk on Z3 is similarly defined, only now a point has six
neighbors and the behavior of the walk is quite different; in particular, p < 1

5 P(E) is the probability of the event E .
(

n
m

)
is “n choose m,” that is, n!/m!(n − m)!.

6
∑m

l=0

(
m
l

)2 =
(

2m
m

)
. Why?

7
(−1/2

n

)
= (−1)n •(2n−1)···3 • 1

n! .
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and the sum may be expressed as

(1 − p)−1 =
∫ 1

0

∫ 1

0

∫ 1

0
[1 − {3[cos(2πx1) + cos(2πx2) + cos(2πx3)]}−1]dx1dx2dx3.

This is also due to Pólya [1921]. Watson [1939] evaluated the integral in terms
of the complete elliptic integral K (k) of modulus k2 = (2 − √

3)(
√

3 − √
2):

(1 − p)−1 = 12

π2

(
18 + 12

√
2 − 10

√
3 −

√
6
)

K 2

(just the numbers that would spring to your mind!), with the result that p = .344,
that is, a little more than 1/3, so the mean number of returns to the origin is
about 3/2.

2.2 The Incomplete Integrals Reduced to Normal Form

This was done first by Legendre [1811]. Here, Jacobi’s format is preferred.
Bateman [1953: 295–322] is recommended for more information; see also
Byrd and Friedman [1954] for a big table of integrals, both complete and
incomplete.

Let Q ∈ C[x] be of degree d ≤ 4 and let F(x, y) be rational in x and
y = √

Q(x). Then the incomplete integral
∫

F(x, y)dx is either elementary, or
else it is an elliptic integral, by definition. The integral is visibly elementary
if F does not depend upon y; also, if d = 1, so y2 = ax + b, it yields to the
substitution x �→ a−1(x2 − b), whereas if d = 2, so y2 = c(x − a)(x − b), it
yields to the substitution x �→ a − (1/4)(b − a)(x − 1/x)2; the integral is also
elementary if d = 3 or 4 but Q(x) = 0 has repeated roots. In all these cases it
can be expressed by elementary functions: rational, trigonometric, exponential,
or logarithmic. Now let Q be of degree 3 or 4, having only simple roots. Powers
of y can be reduced modulo y2 = Q, leaving for serious consideration only the
integrals

∫
F(x)y−1dx with F ∈ C(x). The rest of the reduction is carried out

in easy steps.

Step 1 disposes of the case d = 3. Let Q(x) = (x − e0)(x − e1)(x − e2) with
distinct roots e0, e1, e2. The substitution x �→ x2 + e0 converts the differential
dx/y into 2dx/

√
(x2 + e0 − e1)(x2 + e0 − e2). Now the radicand has four

simple roots ±√
e1 − e0 and ±√

e2 − e0. In short, it is no loss to take d = 4.

Step 2 reduces Q to Jacobi’s standard form (1 − x2)(1 − k2x2) with a suit-
able modulus k2 
= 0, 1. Map the (distinct) roots e1, e2, e3, e4 of Q into 1,
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−1, 1/k, −1/k by means of a fractional linear substitution g = [ab/cd]. As
you know from Section 1.5, this can be done if and only if the cross ratios
match:

e1 − e2

e2 − e3

•
e3 − e4

e4 − e1
= 2

−1 − 1/k
•

2/k

−1/k − 1
= 4k

(1 + k)2
.

This determines one or two possible values of k, and this number cannot be 0
or ±1 since the cross ratio is neither 0, 1, nor ∞.

Exercise 1. There are, in fact, two possible choices for k2 except for the har-
monic ratio r = 2, this being the lemniscatic case k = ±√−1.

Now the inverse substitution x �→ g−1x takes the factor x − e into

g−1x − e = dx − b

−cx + a
− e = (ce + d)x − (ae + b)

−cx + a
= x − ge

(−cx + a)(ce + d)−1
,

and this does not disturb the rational character of F . The rest will be plain.

Step 3 splits F(x) according to parity into F1(x2) + x F2(x2). The contribution
of the second piece is elementary:

∫
x F2(x2)y−1dx = 1

2

∫
F2(x2)

[
(1 − x2)(1 − k2x2)

]−1/2
dx2,

which is back to the case d = 2. This leaves only
∫

F1(x2)y−1dx , which may
be reduced, by means of the identities

x2 − a2

x2 − b2
= 1 + b2 − a2

x2 − b2

and

1

(x2 − a2)(x2 − b2)
= (x2 − a2)−1 − (x2 − b2)−1

a2 − b2
,

to two families of integrals:

In =
∫

x2n y−1dx (n ≥ 0), I ′
n =

∫
(x2 − c2)n y−1dx (n < 0).

Step 4 reduces the first family to I0 and I1. The derivative, with respect to x2,
of x2n y is

y−1 ×
[

nx2n−2(1 − x2)(1 − k2x2) + x2n

(
k2x2 − 1 + k2

2

)]
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and, integrating back, you find

nIn−1 − n(1 + k2)In + (n + 1)k2 In+1 − 1
2 (1 + k2)In = x2n y + a constant,

so In (n ≥ 2) may be determined from the values of I0 and I1.

Step 5 is to apply the same trick to the second family. The derivative, with
respect to x2, of (x2 − c2)n y is

y−1 ×
[

n(x2 − c2)n−1(1 − x2)(1 − k2x2) + 1

2
(x2 − c2)n

[
2k2x2 − 1 − k2

]]
.

Now express the bracket solely in powers of x2 − c2 and integrate back to
conclude that I ′

n−1 can be determined from I ′
n and I ′

n+1 as long as n(1− c2)(1−
k2c2) does not vanish, as is the case for most values of c2, provided n < 0; in
detail, if I ′

−1 is known, then I ′
−2 can be found from I ′

−1 and I ′
0 = I0, and so on

down the line.

Moral. The irreducible (incomplete) integrals are those of the first, second, and
third kinds:

I0 =
∫

dx√
(1 − x2)(1 − k2x2)

, I0 − k2 I1 =
∫ √

1 − k2x2

1 − x2
dx,

and

I ′
−1 =

∫
dx

(x2 − c2)
√

(1 − x2)(1 − k2x2)
.

Exercise 2. Check that the substitution x �→ 1 + √
3(1 − x)(1 + x)−1 brings

the integral
∫ ∞

1 (x3 − 1)−1/2dx into standard form and evaluate it as

2(3 + 2
√

3)−1/2 K
[√−1(2 −

√
3)

]
.

Exercise 3. (Math. Tripos 1911) Use the reduction of step 2 to evaluate∫ 2
0

[
(2x − x2)(4x2 + 9)

]−1/2
dx as 2K (1/

√
5)/

√
15.

Exercise 4. The incomplete integral
∫

[P5(x)]−1/2 dx with P5 ∈ C[x] of degree
5 is not an elliptic integral, but may be reduced to such in special cases; for exam-
ple, Jacobi [1832] found that

∫
[x(1 − x)(1 + ax)(1 + bx)(1 − abx)]−1/2 dx is

reducible to a sum of two integrals of the form
∫

[P3(x)]−1/2 dx . Check that the
substitution x �→ (ab)−1[x +√

x2 − ab] does the trick. Hint: −√
2x−3/2dx �→

[(x + √
ab)−1/2 − (x − √

ab)−1/2] dx is the key.
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The next two exercises explain the geometric background to ex. 4.

Exercise 5. The substitutions x �→ k(x − 1)(x + 1)−1 and y �→ y(x + 1)−3

convert the quintic y2 = x(x − e0)(x − e1)(x − e2)(x − e3) into y2 = (x2 −
1)(x − f0)(x − f1)(x − f2)(x − f3) with f/e0 = (k + e)(k − e)−1, up to
an irrelevant constant multiplier. Check this. Now observe that f0 = − f3

forces k = √
e0e3, so if e0 = 1 and if also f1 = − f2, then e1e2 = e3. This

is Jacobi’s case: e0 = 1, e1 = −a, e2 = −b, e3 = ab. The final curve
X : y2 = (x2 − 1)(x2 − f 2

0 )(x2 − f 2
1 ) is of genus 2. It is a two-sheeted cover of

the obvious elliptic curve, with projection (x, y) �→ (x2, y).

This is the geometric reason behind the reduction in ex. 4; see Picard [1882],
Belokolos et al. [1994], and Belokolos and Enol’skii [1994] for more details.

2.3 The Complete Integrals: Landen, Gauss, and the
Arithmetic–Geometric Mean

The simple transformation

K (
√−1k) = 1√

1 + k2
K

(
k√

1 + k2

)

is obtained by making the substitution x �→ x/
√

1 + k2(1 − x2) in the left-hand
integral.

Exercise 1. Check it.

This is the first of many more or less deep transformations of the complete
elliptic integrals. Landen’s transformation [1775]:

K (k) = 1

1 + k
K

(
2
√

k

1 + k

)

is the most famous. A variety of proofs of it are presented in what follows; see
Sections 17 and 4.12 for proofs in a completely different style. Almkvist and
Berndt [1988] and Watson [1933] have brief accounts of Landen’s life. The
former also cites the interesting proof of Ivory [1796].

Exercise 2. Express Landen’s transformation in the form

K (k) = (1 + k1)K (k1)
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with k1 = (1 − k ′)/(1 + k ′), k ′ being the complementary modulus
√

1 − k2.
(k �→ k1 does it.) Iterate and discuss convergence; in particular, show that
k1 > k2(= k ′

1) > k3(= k ′
2), and so on. Deduce that K (k) = π

2 × ∏
(1 + kn).

Legendre’s proof [1811]. This employs the substitution

x �→ y(x) = (1 + k ′)x
√

1 − x2/
√

1 − k2x2

with the complementary modulus k ′ = √
1 − k2. The function y vanishes at

x = 0 and at x = 1: It has peak value 1 at x0 = (1 + k ′)−1/2, and
[
(1 − y2)(1 − k2

1 y2)
]−1/2

dy = ±(1 + k ′)
[
(1 − x2)(1 − k2x2)

]−1/2
dx

with k1 = (1 − k ′)/(1 + k ′) as in ex. 2, as you will verify (with tears). The
upshot is

K (k1) = 1 + k ′

2
K (k)

which you should recognize as Landen’s transformation in the form of ex. 2.
Hint: 1 + k ′ = 2(1 + k1)−1. Cayley [1895: 180–1] discusses this and related
substitutions; they go back to Euler [1760].

Exercise 3. Do the computation.

Gauss and the Arithmetic–Geometric Mean. Gauss [1799] found a highly
efficient recipe for computing the complete integrals K for moduli 0 < k < 1.
The substitution x = cos θ converts the latter into its trigonometric form,
expressed here as

G = G(a, b) = K (k)/a =
∫ π/2

0

[
a2 cos2 θ + b2 sin2 θ

]−1/2
dθ

with k2 = 1 − b2/a2 and 1 > a > b > 0. Gauss hit upon the surprising
fact that the integral is unchanged if a is replaced by the arithmetic mean
a1 = (a + b)/2 and b by the (smaller) geometric mean b1 = √

ab. This is
equivalent to Landen’s transformation. Now the substitution a, b �→ a1, b1

can be repeated, the successive terms having a common limit M(a, b) = the
arithmetic–geometric mean of a and b; plainly, G = π/2M . By May 30,
1799, Gauss had observed that 1/M(1,

√
2) and (2/π ) × ∫ 1

0 (1 − x4)−1/2dx
agree to 11 places. His diary for that day states that this result “will surely open
up a whole new field of analysis.” By that date, Gauss had also recognized that
the incomplete integral

∫
(1 − x4)−1/2dx is the inverse of an (elliptic) function

with two independent complex periods, but more on that later.
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Exercise 4. Check that Gauss’s rule is really Landen’s transformation in
disguise.

Exercise 5. Discuss the speed of convergence of the successive means to their
final value M : an − bn < 2−n is plain from a1 − b1 = 1

2 (
√

a − √
b)2. Sharpen

this to an − bn < 8
3 exp

[−(3 log 2) × 2n
]

for 1/3 < b < a < 2/3, say.

Exercise 6. Compute Gauss’s integral G by his recipe for a = 2/3 and b = 1/3
to three places. Answer: 3.235.

Gauss’s proof will now be described in brief:

M(a, b) = M

(
a + b

2
,
√

ab

)
= a + b

2
M

(
1,

2
√

ab

a + b

)
,

which is to say that M(1 + k, 1 − k) = (1 + k)M(1 + k∗, 1 − k∗) with k∗ =
2
√

k/(1 + k). Gauss deduced the power series

1

M(1 + k, 1 − k)
= 1

M(1,
√

1 − k2)
=

∞∑
n=0

[
(2n − 1) · · · 5 • 3

(2n) · · · 4 • 2

]2

k2n

and matched it, up to the factor π/2, to the series for the complete elliptic
integral of the first kind noted in example 1.6. This is a real tour de force.

Exercise 7. Newman [1985] found a very clever proof of the invariance of
G(a, b). The substitution x = b tan θ converts 2G(a, b) into

∫ ∞

−∞

[
(a2 + x2)(b2 + x2)

]−1/2
dx .

Now make the substitution x �→ x + √
x2 + ab.

Exercise 8. The substitution x �→ (1 + k)x(1 + kx2)−1 changes K (k∗) into
(1 + k)K (k). This is Gauss’s second proof of Landen’s transformation; see
Hancock [1958] for this and related substitutions.

Almkvist and Berndt [1988: esp. 593], Borwein and Borwein [1987], and Cox
[1984] have further information about the arithmetic–geometric mean and its
uses.
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2.4 The Complete Elliptic Integrals: Legendre’s Relation

Legendre [1825] found an elegant relation between the complete integrals of
the first and second kinds. The complementary integral of the first kind is

K ′(k) =
∫ 1/k

1

[
(x2 − 1)(1 − k2x2)

]−1/2
dx

=
∫ 1

0

[
(1 − x2)(1 − (k ′)2x2)

]−1/2
dx = K (k ′)

with k ′ = √
1 − k2; compare example 1.1. The complementary integral of the

second kind is a bit more complicated:

∫ 1/k

1

√
1 − k2x2

x2 − 1
dx = K (k ′) −

∫ 1

0

√
1 − (k ′)2x2

1 − x2
dx ;

it is the final integral E(k ′) that is complementary to the integral of second kind

E(k) =
∫ 1

0

√
1 − k2x2

1 − x2
dx .

Exercise 1. Check this rule by the substitution x �→ k−1
√

1 − (k ′)2x2.

Differential Equations. The complete integrals solve a variety of differential
equations; for example, k−1 Dk(1 − k2)DK = K with D = d/dk. To begin
with, k DE = E − K and k−1 DK = ∫ 1

0 (1 − x2)−1/2(1 − k2x2)−3/2x2dx . The
latter is simplified by integrating

d

dx

x
√

1 − x2
√

1 − (k ′)2x2
= 1 − x2

√
(1 − x2)(1 − k2x2)

− (1 − k2)x2

√
(1 − x2)(1 − k2x2)3

from x = 0 to x = 1 to obtain k(k ′)2 DK = E − (k ′)2 K . Now differentiate
with respect to k once more.

Exercise 2. Prove that the differential operator H = k−1 Dk(k ′)2 D commutes
with the substitution k �→ k ′ = √

1 − k2. Conclude that f = aK + bK ′ is the
general solution of H f = f .

Exercise 3. Legendre proved

∫ 1

0

dx√
(1 − x2)(1 − k2x2)3

= 1

1 − k2

∫ 1

0

√
1 − k2x2

1 − x2
dx .
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Check this. Hint: y = x
√

1 − x2/
√

1 − k2x2 vanishes at x = 0 and at x = 1
so

∫ 1
0 dy = 0.

Exercise 4. Prove that K E ′ + E K ′ − K K ′ is the product of k(k ′)2 and the
Wronskian K DK ′ − K ′ DK . Now use ex. 2 to conclude that this object is
independent of k.

Legendre [1825] proved that K E ′ + E K ′ − K K ′ = π/2; in extenso,

π

2
=

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

×
∫ 1

0

√
1 − (k ′)2x2

1 − x2
dx

+
∫ 1

0

dx√
(1 − x2)(1 − (k ′)2x2)

×
∫ 1

0

√
1 − k2x2

1 − x2
dx

−
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

×
∫ 1

0

dx√
(1 − x2)(1 − (k ′)2x2)

.

Euler [1782] verified the lemniscatic identity
∫ 1

0

dx√
1 − x4

×
∫ 1

0

x2dx√
1 − x4

= π

4

by the clever manipulations of series of which he was so fond. This is Legendre’s
relation in the self-complementary case k = k ′ = 1/

√
2.

Special Values. The value π/2 in Legendre’s relation is elicited from special
values of the complete integral. The modulus k = 1/

√
2 is best since it is its

own complement. K (1/
√

2) = √
2K (

√−1) by the transformation at the start
of Section 3, and

K (
√−1) =

∫ 1

0

dx√
1 − x4

= 1

4

∫ 1

0
x−3/4(1 − x)−1/2dx

= 1

4

�(1/4)�(1/2)

�(3/4)
= 2−5/2π−1/2 [�(1/4)]2 .

The integral of the second kind is a little different:
√

2E(1/
√

2) = E(
√−1),

and

E(
√−1) =

∫ 1

0

1 + x2

√
1 − x4

dx = K (
√−1) + 1

4

∫ 1

0
x−1/4(1 − x)−1/2dx

= K (
√−1) + 21/2π3/2 [�(1/4)]−2 .
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The upshot is

(2E − K )K at modulus 1/
√

2 = 2(E − K ) at modulus
√−1

= 2 × 21/2π5/2 × 2−5/2π−1/2 = π/2,

as advertised. Cayley [1895] provides lots of special values of this kind; see
also Section 17 for more recondite ones.

Exercise 5. Give a second proof using ex. 1.4.

A third proof produces Legendre’s relation in an unconventional form as

∫ 1

0

√
1 − k2x2

1 − x2
dx ×

∫ 1/k

1

dx√
(1 − x2)(1 − k2x2)

−
∫ 1/k

1

√
1 − k2x2

1 − x2
dx ×

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

= π

2
.

Let I be the incomplete integral of the second kind

∫ x

0

√
1 − k2x2

1 − x2
dx

and form the differential I y−1dx with y2 = (1 − x2)(1 − k2x2). I is single-
valued in the plane cut from −∞ to −1 and from +1 to +∞. The integral
of I y−1dx about a big circle is now computed in two different ways: At ∞,
I y−1dx looks like x−1dx so the integral is 2π

√−1, more or less. Legendre’s
relation is produced by deforming the two semicircles into the upper and lower
banks of the cut, as in Fig. 2.4. The two determinations of y agree on the upper
and lower banks, except in 1 < |x | < 1/k, where they differ in sign; likewise
the two determinations of I agree for |x | < 1, sum up to

2
∫ 1

0

√
1 − k2x2

1 − x2
dx

for 1 < |x | < 1/k, and differ by

2
∫ 1/k

1

√
1 − k2x2

x2 − 1
dx

for |x | > 1/k. Now reevaluate the integral about the big circle as

2
∫ 1

0

√
1 − k2x2

1 − x2
dx × 2

∫ 1/k

1

dx√
(1 − x2)(1 − k2x2)
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− 1/k + 1/k− 1 + 1

Figure 2.4. The contour.

− 2
∫ 1/k

1

√
1 − k2x2

1 − x2
dx ×

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

.

The original form of Legendre’s relation comes from the identification of the
third integral as K ′ − E ′, as noted at the start of this section.

Exercise 6. Think it through, keeping careful track of the phase of I y−1dx .

2.5 The Discovery of Gauss and Abel

The map of the half-plane to a rectangle was presented in example 1.1. A whole
new world opens up if you look instead at the inverse map. But first, here is a
simpler example to get warmed up.

A Trigonometric Integral. The elementary integral

sin−1 x =
∫ x

0
(1 − y2)−1/2dy

maps the upper half-plane 1:1 onto the shaded strip of Fig. 2.5; indeed, by
reflection in the punctured plane C− (±1), it produces a full tiling of the target
plane by congruent, nonoverlapping images of the upper (+) and lower (−)
half-planes. The viewpoint emphasized here is that the integral is inverted by
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− 1 0 + 1

− −

++

− 0π
2

π
2

−1sin

−

+

Figure 2.5. The map y = sin−1 x .

a function sinus = sin x , which is (1) of rational character, and (2) of period

2π = 4 × the complete integral
∫ 1

0

dy√
1 − y2

,

permitting you to view it as a function on the complex cylinder X = C/L with
L = 2πZ:

x =
∫ sin x

0
(1 − y2)−1/2dy up to periods.

Exercise 1. Think this through from the figure.

Exercise 2. The sinus may be viewed as the Riemann map of the strip |x | <

π/2, y > 0 to the upper half-plane, standardized by the values 0, 1, ∞ at
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0, π/2,
√−1∞, and subsequently extended to the whole plane by reflection.

Think this through too.

Jacobi’s Integral of the First Kind. It is a remarkable fact that a similar thing
happens for the incomplete integral of the first kind:

x �→
∫ x

0

[
(1 − y2)(1 − k2 y2)

]−1/2
dy.

k = 0 is the trigonometric case just discussed. The novel point for k2 
= 0, 1
is that the inversion of the integral now leads to an elliptic function, that is,
to a (single-valued) function of rational character having not just one but two
independent complex periods; this is the fundamental discovery of Gauss [1799]
and Abel [1827]. Indeed, by May 1799, Gauss already knew that the incomplete
lemniscatic integral

∫
(1 − y4)−1/2dy has such an inverse function; it is the

original elliptic function.8

Discussion. The direct map indicated in Fig. 2.6 is modified by detouring about

− 1/k 1/k− 1 + 1

−K
√−1 K ′ K + √−1 K ′

−K K

0

Figure 2.6. Mapping of sin amp. The direct map.

the branch points ±1 and ±1/k in different ways; for example, if you pass under
them via infinitesimal semicircles in the lower half-plane, you will obtain the
congruent rectangle immediately below the original, double-hatched rectangle
of the figure, and the lower half-plane will be mapped 1:1 onto the inside. The
recipe can be varied by winding about the branch points by any integral multiple
of 180◦. This produces adjacent rectangles forming a paving or tessellation

8 Gauss [1870–1929 (10, Abh. 2): 62–84].
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1/k

1/k

−1

−1 −1

/k −1/k

−1/k

∞

∞ ∞

∞

−1/k

1 00

+−

+ −

Figure 2.7. Mapping of sin amp. The four rectangles.

of the whole plane. Now consider the inverse map. Jacobi [1829] called it
the sinus amplitudinus; it is denoted, variously, by snx or by sn(x, k) if the
modulus k requires to be emphasized:

x =
∫ sn(x,k)

0

[
(1 − y2)(1 − k2 y2)

]−1/2
dy up to periods.

A fourfold copy of the original rectangle of Fig. 2.6 is shaded in Fig. 2.7; the
labels 0, ±1, ±1/k, ∞ refer to preimages. The function sin amp maps it 2:1
onto C+∞, alias the projective line P1; elsewhere, it repeats itself in congruent
blocks of four rectangles and so is invariant under translation by ω1 = 4K (k)
and by ω2 = 2

√−1K ′(k). Here K and K ′ are the complete elliptic integrals
of the first kind of Section 1. This is the same as saying that sin amp has two
independent complex periods ω1 and ω2 and so can be viewed as a function of
rational character on the torus X = C/L obtained as the quotient of C by the
period lattice L = Zω1 ⊕ Zω2; compare Fig. 2.8 and also Fig. 2.9 in which X
appears as a two-sheeted cover of the projective line P1, ramified over the four
points ±1, ±1/k of the latter where the radical

√
(1 − x2)(1 − k2x2) vanishes.

It maybe worth while to recapitulate. There is quite a lot going on here and
it needs to be digested. With a change of notation, let x ∈ C and let y be the
radical

√
(1 − x)(1 − k2x2), viewed as a single-valued function on the torus X

of Fig. 2.9. Fix the base point o = (x = o, y = +1) ∈ X and let p = (x, y) be a
variable point of X. The integral z = ∫ p

o
y−1 dx is ambiguous in that it depends

on the path joining o to p: it takes the same value on paths belonging to the
same deformation class; other classes produce other values differing by periods
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− 1/k

−1 +1

∞

1/k

Figure 2.8. X as a ramified cover of P1.

4K n1 + 2
√−1K ′n2, the number 4K , respectively 2

√−1K ′, being the integral
of y−1 dx around, respectively through, the hole of X. You may think of z as a
single-valued function on the universal cover C of X: in fact, z sweeps out the
whole of this cover in a simple fashion, and you have two projections x → z
mod L, alias p = (x, y), from C to X, and p → x from X to the projective line.
Compare Fig. 2.9.

Note that there is a general principle here: A function of rational character on the
complex torus X = C/L can be viewed as a doubly periodic function on the uni-
versal cover C of X, and vice versa. X is a so-called elliptic curve; in fact, it may
be identified with the nonsingular projective quartic y2 = (1−x2)(1−k2x2) via
the substitution snx �→ x, sn′x �→ y, as will be further explained in Section 11.
The striking geometric fact, that the quartic, in turn, may be identified with a
torus, has also a geometric and an algebraic proof; compare Section 16.

Exercise 3. The direct map x �→ ∫ x
0

[
(1 − y2)(1 − k2 y2)

]−1/2
dy is of rational

character, including at ∞, except perhaps at the branch points ±1, ±1/k where
the radical vanishes, so the inverse map x �→ snx is automatically of rational
character except perhaps at their images ±K + L and ±K + √−1K ′ + L.
Check that snx is perfectly well behaved at these places, too.
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quotient
by L

x �→
∫x

0

y√

ramified
2:1 cover

P
1

multivalued !

d

sin amp

(1_ _y ) )(1 k y2 22

X

Figure 2.9. Mapping of sin amp.

Exercise 4. The complete integral of [(1−x2)(1−k2x2)]−1/2 taken between any
two of the branch points ±1, ±1/k is a half-period of sin amp. Prove that the
integral of [(x − e1) · · · (x − en)]−1/2 taken between any pair of distinct branch
points ei (i ≤ n) is a half-period of the inverse function of the incomplete integral

∫ x

0
[(y − e1) · · · (y − en)]−1/2 dy.

Deduce that the inverse of such an integral cannot be single-valued if n ≥ 5.
Hint: The inverse function satisfies ( f ′)2 = ( f − e1) · · · ( f − en). What kind
of poles could it have? How big is it at ∞? What then?

Exercise 5. Redo ex. 2 for sin amp, that is, think of it as the Riemann map of the
double-hatched rectangle of Fig. 2.6 to the upper half-plane H, standardized by
the values 0, 1, ∞ at 0, K (k), and

√−1K ′(k) and extended to the whole plane
by reflection.
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Exercise 6. Use the current Jacobi language to express the motion of the simple
pendulum of example 1.4 in the form sin(θ/2) = k sn(t, k) with k2 = 1

2 (1 − I ).
What happens at k = 0+? At k = 1−? Draw the phase diagram of the motion.

Mechanical aside. The equation of motion of the simple pendulum is in New-
ton’s form: force = mass × acceleration. Now the acceleration is the second
time derivative of position, so the substitution t �→ √−1t is equivalent to re-
versing the gravitational force and leads, on self-evident mechanical grounds,
to a complementary periodic motion of the pendulum. The moral is that the
solution of the problem with downward-directed gravity has not only its obvi-
ous real temporal period, but a purely imaginary temporal period as well. This
remark constitutes a mechanical proof of the double-periodicity of Jacobi’s
sinus amplitudinus, originating with Appell (1870); see Whittaker [1937:73].9

Exercise 7. The conduction of the nervous impulse in, for example, the op-
tic nerve of a squid is caricatured by the equation of Nagumo, Arimoto, and
Yoshizawa [1962]: ∂e/∂t = ∂2e/∂x2 + e(1 − e)(e − a), 0 < a < 1/2, in
which e(t, x) is the voltage viewed as a function of the time t and the distance x
along the nerve. Hodgkin [1971] discusses a more realistic model and its phys-
iological background; see also McKean [1970] for pictures. A traveling wave
is a solution of the form e = e(x − ct). Describe the waves of speed 0. Hint:
e′′ = e(e − 1)(e − a) implies (e′)2 = (1/2)e4 − (2/3)(1 + a)e3 + ae2 − b =
P4(e) with a constant of integration b. Check that the roots of P4(e) satisfy
e1 < 0 < e2 < a < e3 < 1 < e4 if a3(2 − a) > 6b > 0. Then express the
solution in the form

e2 − e1

e3 − e2

•
e3 − e(x)

e(x) − e1
= 2

1 + k

k f (x) − 1

f (x) − 1

with f (x) = sn
[
2−3/2

√
k
√

(e1 − e2)(e3 − e4)x, k
]

and 4k(1 + k)−2 = the

cross ratio of e1, e2, e3, e4. Hint: See step 2 of Section 2 for help.

2.6 Periods in General

Jacobi’s sinus amplitudinus illustrates the possibility that a function of rational
character on the plane can have two (or more) complex periods. Let f be such a
(nonconstant, single-valued) function with periods ω: f (x +ω) = f (x). These
form a module L over Z, that is, any integer combination of periods n1ω1+n2ω2

is also a period. L can be trivial (≡ 0) as for most functions, or of rank 1 as for
sin (L = 2πZ), or of rank 2 as for sin amp (L = 4KZ ⊕ 2

√−1K ′Z).

9 I owe my own appreciation of this pretty device to M. Kac. [H. McKean]



78 2 Elliptic Integrals and Functions
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ω1
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Figure 2.10. The shaded strip.

Period Lattices. Jacobi [1829] proved that there are no further possibilities:
Either L = 0 or else it is of rank r = 1 or 2 over Z; in the third case, L is a
period lattice and f is an elliptic function.

Proof. L cannot contain infinitesimal (= arbitrarily small) periods since f is
not constant, and as L is obviously closed, it contains a nonvanishing period ω1

closest to the origin. L ⊇ ω1Z and r = 1 if L = ω1Z. In any case, there are no
other periods on the line ω1R: Such a period, reduced mod ω1, would be too near
the origin. Now if L is more extensive than ω1Z, then any new period ω2 can be
brought into the shaded strip of Fig. 2.10 by reduction mod ω1. The fact that L is
closed is invoked a second time to make the distance between ω1R and ω1R+ω2

as small as possible. The lattice L′ = ω1Z ⊕ ω2Z ⊂ L is depicted in Fig. 2.11.
It is the whole of L since any other period, reduced mod L′, would have the
form αω1 + βω2 with 0 ≤ α, β < 1, and either β > 0, violating the choice of
ω2, or β = 0 and α > 0, violating the choice of ω1. The proof is finished.

The Modular Group. The lattice L = ω1Z ⊕ ω2Z can be provided with many
pairs of primitive periods; for example, ω1 and 5ω1 + ω2 will do just as well
as ω1 and ω2. The question is: What are all the possible pairs of primitive
periods for a fixed lattice L? Let ω′

1 and ω′
2 be such a pair. Then

ω′
2 = iω2 + jω1,

ω′
1 = kω2 + lω1
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− ω2
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Figure 2.11. The lattice.

with i, j, k, l ∈ Z and vice versa:

ω2 = i ′ω′
2 + j ′ω′

1,

ω1 = k ′ω′
2 + l ′ω′

1

with i ′, j ′, k ′, l ′ ∈ Z. Now any pair of primitive periods represents two in-
dependent directions in the plane. It follows that the 2 × 2 integral matrices
[i j/kl] and [i ′ j ′/k ′l ′] are inverse to each other; in particular, the product of
their (integral) determinants is unity and so must have the common value +1 or
−1. The value +1 is enforced by the rule, imposed from now on without further
comment, that the period ratio ω = ω2/ω1 have positive imaginary part. The
moral is that two pairs of primitive periods are related by a linear substitution
[i j/kl] from the special linear group SL(2, R) of 2 × 2 integral matrices of
determinant +1, and conversely, any such substitution produces new primitive
periods from old. The corresponding period ratios ω = ω2/ω1 are related by
the associated fractional linear substitution ω �→ (iω + j)( jω + l)−1 from the
projective group PSL(2, Z) = SL(2, Z)/(±1). The latter is the modular group
of first level �1; its elements are modular substitutions; see Chapter 4 for
more on this subject.

Torus with Complex Structure. The quotient X = C/L of the plane by a
lattice L = ω1Z⊕ω2Z is a complex manifold with complex structure inherited
from C. These are all the complex tori, as noted in Section 1.14. Now the
question before you is: When are two such tori conformally equivalent, that
is, when is there a 1:1 analytic map between them? Let F be the fundamental
cell {x = αω1 + βω2: 0 ≤ α, β < 1} of the complex torus X = C/L seen in
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ω2

ω10

Figure 2.12. Fundamental cell of the torus.

Fig. 2.12; the top and the right sides are omitted since they are identified with the
bottom and the left sides when the cell is folded up to make the torus. Now any
1:1 conformal map f of X to a second torus X′ may be lifted to a map f of their
universal covering planes C as in Section 1.11: With a preliminary translation
x �→ x + c of X, f can be viewed as a map of fundamental cells F �→ F′

fixing the origin and then extended, periodically, to a map of tessellations
C = F ⊕ L �→ C = F′ ⊕ L′ preserving the period lattices L and L′. The
lifted map is an automorphism of C, of the form x �→ ax + b, f (0) = 0
kills b, and you have aL = L′, from which you learn that two complex tori
are conformally equivalent if (and only if) their period ratios are related by a
modular substitution ω′ = (iω + j)(kω + l)−1.

Moral. The family of orbits of the modular group �1, acting on the (open) upper
half-plane H, where period ratios live, can be viewed as a list of all the possible
complex structures on the topological torus; compare Section 4.3 where this
list is identified with the fundamental region of the modular group �1; compare
also Section 1.14 on the conformal structure of annuli.

Complex Multiplication. Let f (not the identity) be a conformal self-map of the
torus C = X/L of any degree, that is, not necessarily 1:1. After a preliminary
adjustment, it can be lifted, as before, to an automorphism x �→ cx of the cover
C. Then cL ⊂ L and the inclusion is (mostly) proper; for example, the self-map
x �→ nx is always available. X is said to admit complex multiplication if it
has such a self-map x �→ cx with c 
∈ Z, in which case

cω2 = iω2 + jω1,

cω1 = kω2 + lω1

with i, j, k, l ∈ Z, and the period ratio ω is a fixed point of the substitution
[i j/kl]; as such, it is, as you will check, a quadratic irrationality from the field

Q

[√
(i + l)2 − 4(il − jk)

]
.

Exercise 1. The matter simplifies if the self-map is 1:1. Then L = cL and c is
of modulus 1 (why?) and also a root of unity (why is this?). The possibilities
are c = 1,

√−1, and e±2π
√−1/3, up to sign, so the only interesting lattices of
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Figure 2.13. The square lattice ω = √−1.
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Figure 2.14. The triangular lattice ω = (1 + √−3)/2.

this type are square (ω = √−1), as in Fig. 2.13, or triangular (ω = e2π
√−1/3 =

(1 + √−3)/2), as in Fig. 2.14. Check it.

Exercise 2. X = C/L always admits, as automorphisms, translations x �→ x+c
and reflection x �→ −x . Prove that addition of half-periods and reflection are
the only involutions of X.

2.7 Elliptic Functions in General

An elliptic function field is the class K = K(X) of functions of rational
character on a complex torus X. The identification of X as the quotient C/L

of C by the (period) lattice L = ω1Z ⊕ ω2Z permits the identification of K
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with doubly periodic functions on the (universal) cover C of X. The primitive
periods ω1 and ω2 are taken as before, so that the period ratio ω = ω2/ω1 has
positive imaginary part. The parallelogram they span is the fundamental cell
F, the top and right sides being omitted, as before. Note that K is a differential
field: The global coordinate x of the cover C gives f ′ = d f/dx an unambiguous
meaning and f ′ belongs to K if f does.

Now the source of all good things in this subject is the

Fundamental Lemma. The integral of any function f ∈ K, taken about the
perimeter of the fundamental cell, vanishes.

Amplification. f ∈ K is a function of the point p ∈ X; it is also a (periodic)
function of x on the universal cover C. The map of x ∈ C to F by reduction
modulo L is the covering map. dx(p) is the differential of the first kind on X,
and f (p)dx(p) is to be integrated; see ex. 9.1.

Exercise 1. Think it over; compare ex. 1.3.6.

Proof. The path of integration is indented, as in Fig. 2.15, to avoid any poles of
f on the perimeter, in such a way as to keep just one copy of each pole inside
the modified path. These are finite in number (why?) so there is no difficulty.

ω1

ω2

0

∞ ∞

Figure 2.15. The indented path of integration.

Now the function repeats its values on the top and bottom of the cell, and as
these are tranversed in opposite directions, so their contributions to the integral
cancel, and likewise for the sides.

This simple lemma has very important consequences. The next few items
illustrate its content.

Item 1 A function f ∈ K has a finite number of poles per cell. This number
is its degree d. It has the same number of roots per cell, as you will check by
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integrating (2π
√−1)−1 f ′/ f ∈ K about the perimeter. More generally, it takes

on every complex value d times per cell, just like a function f in K(P1): f − c
has the same number of poles as f and so, also, the same number of roots;
compare Sections 1.3 and 1.16.

Item 2 The only functions f ∈ K of degree d = 0 are the constants; indeed,
such a function is bounded in the cell and so, also, in the whole of C, by
periodicity.

Item 3 K has no functions of degree 1; such a function would have a single
pole with residue (2π

√−1)−1
∮

f dx = 0, by the lemma. Here you see the
simplest function-theoretic distinction between X and the projective line P1:
K(P1) contains functions of any degree you like.

Item 4 The roots and poles of a function f ∈ K(P1) can be placed on the sphere
as you will; see ex. 1.3.3. This is not so for K = K(X)! Let p1, . . . , pd be the
poles and q1, . . . , qd the roots of f ∈ K and integrate 2π

√−1x(p)×d log f (p)
around the perimeter of the cell. The integrand x f ′/ f is not a member of K so
the fundamental lemma does not apply, but the same reasoning produces

∑
poles

x(p) −
∑
roots

x(q) = 1

2π
√−1

∮
xd log f

= 1

2π
√−1

∫

bottom
[x − (x + ω2)] d log f

+ 1

2π
√−1

∫

right side
[x − (x − ω1)] d log f

= −ω2 × 1

2π
√−1

∫

bottom
d log f

− ω1 × 1

2π
√−1

∫

right side
d log f

= n1ω1 + n2ω2,

in which the first line is the evaluation of the second by residues, and the last
line reflects the fact that f takes the same value at all the four corners of the
cell. In short, pole sum − root sum = a period. Abel [1827] proved that this
necessary condition, that the ps be the poles and the qs the roots of a function
f ∈ K, is also sufficient; see Section 15 for the proof.
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Exercise 2. The function f ∈ K is viewed as a projection of X onto P1, so
X appears as a ramified cover of P1 to which the Riemann–Hurwitz formula
r = 2(d + g − 1) of Section 1.12 applies: d is the sheet number, alias the
degree of f , and g = 1 is the genus of X so r = 2d. The ramifications of the
cover of index m are the points of X where the function takes its value with
multiplicity m + 1 ≥ 2. Confirm the evaluation r = 2d by the fundamental
lemma. Hint: d = ∑

f =0(m + 1) = ∑
f =∞(m + 1). Now evaluate the degree

of f ′ as
∑

f =∞(m + 2) = ∑
f �=∞ m.

2.8 The ℘-Function

The degree d of a nonconstant function f ∈ K is at least 2 (see item 7.3), so
the simplest possibilities are: two simple poles or one double pole. Jacobi’s
function sinus amplitudinus exemplifies the first possibility for tori with period
ratio

√−1K ′/2K , but at this point it is not clear that every period ratio can
be so replicated by choice of the modulus k2 �= 0 or 1. The fact is that it
can (see Section 16), but for now it is simpler to follow Weierstrass (1850)
in constructing a function with a single double pole. This is the celebrated
℘-function. The idea is simple: The pole is placed at the origin so it appears
as x−2, plain, and the function is made periodic by summing its translates
over the period lattice. The attempt is naive, the sum being divergent like∑

Z2 (n2 + m2)−1 ∼ 2π
∫ ∞

1 r−2 × rdr , but the idea is salvaged by taking

℘(x) = x−2 +
∑

ω∈L2−0

[
(x − ω)−2 − ω−2

]
.

Now the general summand is comparable to ω−3 and
∑

L−0 |ω|−3 converges like∫ ∞
1 r−3×rdr , so the divergence is cured at the price of obscuring the periodicity

of the function. This will be dealt with in a moment. Note first that ℘ is an even
function of x in view of L = −L. Now the derivative ℘ ′ = −2

∑
L(x −ω)−3 is

kosher: The sum converges fine. It is also periodic, by inspection, so ℘(x+ω)−
℘(x) is constant in x for any ω ∈ L, and the constant is seen to vanish by evalu-
ation at the half-period −ω/2: ℘(ω/2)−℘(−ω/2) = 0, by the symmetry of ℘.

Moral. ℘ ∈ K(X) is an even function of degree 2 with a double pole at x = 0
and no others in the cell.

Exercise 1. Show that ℘(cx |cL) = c−2℘(x |L) for any complex number c �= 0.

Now look at the derivative ℘ ′(x): In the cell, it has just one (triple) pole at
x = 0, so it is of degree 3 and, as such, has three (and only three) roots per
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cell. It is also odd and so vanishes at half-periods: ℘ ′(ω/2) = ℘ ′(ω/2 − ω) =
℘ ′(−ω/2) = −℘ ′(ω/2). There are three such (inequivalent) half-periods per
cell, so ℘ ′(x) = 0 has no further roots and these are simple. The corresponding
values e1 = ℘(ω1/2), e2 = ℘(ω1/2 + ω2/2), e3 = ℘(ω2/2) of ℘(x) play an
important role in the sequel; see Fig. 2.16.

℘ =∞ ℘ = e1

= e2℘= e3℘

Figure 2.16. The values at half-periods.

Exercise 2. The numbers e1, e2, e3 are distinct. Why?

Exercise 3. The map ℘: X → P1 exhibits the torus as a 2:1 cover of the projec-
tive line, ramified over the four distinct points e1, e2, e3, ∞, as in Fig. 2.17. The
ramification indices are all 1 in agreement with the Riemann–Hurwitz formula:

4 = ramification index = 2 × (sheets + genus − 1) = 2 × (2 + 1 − 1).

Think it over.

Exercise 4. What happens if one or both of the primitive periods of ℘ is taken
to ∞? Answer: ℘(x) → (π/ω1)2 × [

sin−2(πx/ω1) − 1/3
]

for ω2 = ∞ and
℘(x) → 1/x2 if ω1 is taken to ∞ as well.

Exercise 5. The map j : x 	→ −x of ex. 6.2 is the only interesting involution of
the torus. Identify the quotient X/j as the projective line and the quotient map
X 	→ X/j as the ℘-function.

The Differential Equation. The subject of elliptic functions is full of extraor-
dinary identities proved by a clever stroke or two. This provides much of its
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Figure 2.17. The torus as a ramified cover of P1.

charm. The simplest example is the differential equation for the ℘-function:

(℘ ′)2 = 4(℘ − e1)(℘ − e2)(℘ − e3).

Exercise 6. Try (for a few minutes) to check this directly from the sums. There
is a prize of 25 cents. i.

Now try this: ℘ − e1 has a double root at the half-period x = ω1/2, as does
(℘ ′)2, and likewise at the other two half-periods; also, (℘ −e1)(℘ −e2)(℘ −e3)
has a pole of degree 6 at x = 0. (℘ ′)2 imitates this feature, too, so the ratio
4(℘ − e1)(℘ − e2)(℘ − e3)/(℘ ′)2 ∈ K is constant (= 1) as it is pole-free in the
cell and looks like 4(x−2)3(−2x−3)−2 = 1 at x = 0.

A second form of the differential equation is often preferred: In the vicinity
of x = 0, ℘(x) = x−2 + 0 • x0 + ax2 + bx4 + · · · with10 a = 3

∑ ′ω−4 and
b = 5

∑ ′ω−6, by inspection of the sum for ℘, so ℘ ′(x) = −2x−3 + 2ax +

10 The prime signifies that only the nonvanishing periods enter into the sum.
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4bx3 + · · · and

1

4

[
℘ ′(x)

]2 = x−6 − 2ax−2 − 4b + · · ·
= [℘(x) − e1] [℘(x) − e2] [℘(x) − e3]

= ℘3(x) − σ1℘
2(x) + σ2℘(x) − σ3

= x−6 + 3ax−2 + 3b − σ1(x−4 + 2a) + σ2x−2 − σ3 + · · · ,
with

σ1 = e1 + e2 + e3 = 0,

σ2 = e1e2 + e2e3 + e3e1 = −5a = −15
∑ ′ω−4,

σ3 = e1e2e3 = 7b = 35
∑ ′ω−6.

The differential equation is now written (℘ ′)2 = 4℘3 − g2℘ − g3 with

g2 = 60
∑ ′ω−4 and g3 = 140

∑ ′ω−6.

The numbers g2 and g3 are the invariants of the cubic; they depend on the
lattice in an interesting way to be studied in Chapter 4.

Exercise 7. It is to be proved that, in the full expansion ℘(x) = x−2 + ax2 +
bx4 + · · ·, the higher coefficients are (universal) polynomials in a and b. Write
out a few of them. Hint: 2x4℘ ′′(x) + g2x4 = 3[x2℘ ′(x)]2.

Exercise 8. Reduce the equation of motion of the simple pendulum of example
1.4 from its Jacobian form (x

�

)2 = (1 − x2)(1 − k2x2) to its (more or less)
Weierstrassian form (y

�

)2 = 1
2 (1 − k2)y3 + (1 + k2)y2 + 1

2 y by the substitution
y = (1 − x)/(1 + x). What are the numbers e1, e2, e3? Express the motion
explicitly in terms of the ℘-function.

2.9 Elliptic Integrals, Complete and Incomplete

The differential equation states that dx = d℘/℘ ′ = 1
2 [(℘ − e1)(℘ − e2)

(℘ − e3)]−1/2 d℘, so ℘ inverts the incomplete integral

1

2

∫ ℘

∞
[(y − e1)(y − e2)(y − e3)]−1/2 dy.

More precisely,

x = 1

2

∫ ℘(x)

∞
[(y − e1)(y − e2)(y − e3)]−1/2 dy up to periods;
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in particular, the primitive periods of L are expressed by the complete integrals

ω1 =
∫ e1

∞
[(y − e1)(y − e2)(y − e3)]−1/2 dy,

ω2 =
∫ e2

e1

[(y − e1)(y − e2)(y − e3)]−1/2 dy

with the proper determination of the radicals; compare example 1.1 and Sec-
tion 5.

Exercise 1. Check that, up to constant multiples, dx = d℘/℘ ′ is the only
differential of the first kind on X; see Section 1.3 for terminology and ex. 1.3.6
for the fact that the projective line does not carry such an object.

The next examples and exercises relate to specific lattices and cubics.

Example 1. The cubic X1: y2 = x3 − x has its roots at −1, 0, 1; it corresponds
to a square lattice in view of

ω1 =
∫ 1

0
(x − x3)−1/2dx =

∫ ∞

1
(x3 − x)−1/2dx = ω2/

√−1,

which you will check by the substitution x 	→ 1/x .

Exercise 2. X1 admits the involution (x, y) 	→ (−1/x, y/x2). It is not the
involution j : (x, y) 	→ (x, −y) so it comes from addition of some half-period;
see ex. 6.2. What is that half-period?

Exercise 3. Prove that e1, e2, e3 are real if and only if ω1 is real and ω2 is purely
imaginary. Check that in this case e1 > e2 > e3 and that, in the fundamental
cell, ℘(x = a + √−1b) is real only on the lines a = 0 or ω1/2 and b = 0 or
ω2/2.

Exercise 4. Check that if e1 > e2 > e3 are real as in example 1, then 1
2

∫ x
∞

[(y − e1)(y − e2)(y − e3)]−1/2 dy maps the upper half-plane 1:1 onto the fun-
damental cell, as in ex. 3.

Example 2. This has to do with the triangular lattice of period ratio ω =
e2π

√−1/3 of ex. 6.1. It is taken from Baker [1911: 321]. The lattice is highly
symmetrical in that it admits complex multiplication (by ω). The ℘-function
obeys the rule ℘(ωx) = ω−2℘(x), so the numbers e1, e2, e3 stand in the propor-
tion 1, ω2, ω; also g2 = 0, g3 = 4e3

1 > 0, ω1 = ∫ ∞
1 (x3 − 1)−1/2dx if e1 = 1;
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and with this choice of e1, the curve is y2 = 4(x3 −1). Figure 2.18 displays the
locus of real and imaginary values of ℘ ′ by dark and light lines, respectively.

∞∞

∞ ∞

0

0 0

0

0

Figure 2.18. Real and imaginary values.

Exercise 5. Check Fig. 2.18 with the help of ℘ ′(ω1/2x) = −℘ ′(x) and the fact
that ℘ ′ is of degree 3. Conclude that ℘ ′ maps the shaded triangle onto the right
half-plane x = a + √−1b, a > 0, and identify this map with the inversion of
the incomplete integral

∫ x
0 21/33−1(x2 + 4)−2/3dx .

Exercise 6. (Trinity College 1905) Prove that, with e1 = −a, e2 = 1
2 (a + b),

and e3 = 1
2 (a −b), ℘ ′/2(℘+a) inverts the incomplete integral

∫ x
∞(x4 +6ax2 +

b2)−1/2dx .

2.10 Two Mechanical Applications

Wonderful examples from classical mechanics abound. C. Neumann’s con-
strained harmonic oscillators [1859] and the long-wave shallow-water equation
of Korteweg–de Vries [1895] are treated here; see also Section 15 for a third
illustration; others can be found in Jacobi [1866] and Whittaker [1937].

Example 1. C. Neumann [1859] studied the motion of a pair of uncoupled
oscillators, x

� �

1 + ω2
1x1 = 0 and x

� �

2 + ω2
2x2 = 0, with distinct frequencies

0 < ω1 < ω2, the joint motion x = (x1, x2) being constrained to move on
the circle x2

1 + x2
2 = 1 by the imposition of an external force − f (x). A sim-

ple calculation shows f = 2H − 2(ω2
1x2

1 + ω2
2x2

2 ), H being the total energy
(1/2)

[
(x
�

1)2 + ω2
1x2

1 + (x
�

2)2 + ω2
2x2

2

]
of the unconstrained oscillators, and it is

easy to see that H is still a constant of motion of the constrained system

x
� �

1 + ω2
1x1 = − f x1, x

� �

2 + ω2
2x2 = − f x2.

Exercise 1. Check it.

The integration of the constrained system is effected by means of ellipsoidal
coordinates, Jacobi’s trick [1866: 198–206]. Fix (x1, x2) and introduce the
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function

R(a) = x2
1

ω2
1 − a

+ x2
2

ω2
2 − a

= b − a

(ω2
1 − a)(ω2

2 − a)

seen in Fig. 2.19. R is a rational function of degree 2 with one root at b =

ω
2
1 b ω

2
2

Figure 2.19. The rational function R.

x2
1ω

2
2 + x2

2ω
2
1, located between ω2

1 and ω2
2, and one root at ∞; also,

x1 =
√

b − ω2
1

ω2
2 − ω2

1

, x2 =
√

ω2
2 − b

ω2
2 − ω2

1

with the proper determination of the radicals. Now compute x
�

1 and x
�

2 in terms
of b

�

and substitute into H to obtain

(b
�

)2 = 4(ω2
2 − b)(b − ω2

1)
[
b − (ω2

1 + ω2
2 − 2H )

]
.

This permits a further integration in terms of a suitable ℘-function, b being
expressed as ℘(

√−1t + A) + B, assuming the content of Section 12 that every
cubic y2 = 4(x − e1)(x − e2)(x − e3) is realized by the ℘-function of some
lattice.

Exercise 2. Supply the details; especially find the value of the shift A.

Actually, Neumann treated three oscillators. This leads to the inversion of
(sums of) hyperelliptic integrals of the form

∫ x
∞ [(x − e1) · · · (x − e5)]−1/2 dx ;

compare Section 18 under the addition theorem. The same can be done for
any number of oscillators; see Moser [1980] for this and connections with other
beautiful mechanical problems such as Jacobi’s integration of the geodesic flow
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on the ellipsoid [1866: 212–14], Kovalevskaya’s integration of the top [1889],
and more modern examples.

Example 2. Korteweg and de Vries [1895] described the motion of long water
waves in a shallow canal by means of the so-called KdV equation:

(KdV)
∂ Q

∂t
= 3Q

∂ Q

∂x
− 1

2

∂3 Q

∂x3
.

Exercise 3. Check that, if ω1 is real and positive and ω2 is purely imaginary,
then Q = 2k2℘ [k(x − ct) + (1/2)ω2] − c/3 solves KdV for any choice of k
and c; it is real and smooth if k and c are real. What is the most general such
(real, smooth) traveling wave for KdV? What happens if you take ω1 to +∞
and adjust the wave speed so that Q dies out at x = ±∞? Hint: See ex. 8.4
and ex. 9.3. Answer: Q = −c × cosh−2

[√
c/2(x − ct)

]
with speed c > 0.

This is the celebrated soliton; see Drazin and Johnson [1989] for details.

Airault, McKean, and Moser [1977] proved that if, for each value of t ,
Q(t, x) belongs to one and the same elliptic function field K(X), then it must
have the form Q = +2

∑n
1 ℘(x − xi (t)) + c with moving poles and con-

stant c. Let the primitive periods of X = C/L be one real (ω1 = 1, say)
and one purely imaginary, for reasons of reality (compare ex. 9.3), and let
Q(t, x) = a(x − x0)−m + b(x − x0)−m+1 + · · ·, with time dependent a �= 0, b,

and x0, be the expression at an isolated (moving) pole of Q, persisting in some
small interval of time. To balance (∂ Q/∂t) = 3Q Q′ − 1

2 Q′′′ in the vicinity of
x = x0(t), you need

3ma2

(x − x0)2m+1
+ 3ab(2m + 1)

(x − x0)2m
− 1

2

am(m + 1)(m + 2)

(x − x0)m+3
− 1

2

b(m − 1)m(m + 1)

(x − x0)m+2

to vanish, and that is not possible unless (1) 2m + 1 = m + 3, which is to
say m = 2, (2) 12a = 6a2, which is to say a = 2, and (3) b = 0. Now let
xi (t)(i ≤ n) be the poles of Q(t, •). Then c ≡ Q(t, x) − 2

∑n
1 ℘[x − xi (t)]

is pole-free and so constant (in x). But
∫ 1

0 Qdx is also a constant of motion,

as you will check, and
∫ 1

0 ℘(x − x0)dx is independent of x0 (why?), the up-
shot being that c is constant, not only in x but in t as well. The poles must
be n = (1/2)m(m + 1)(= 1, 3, 6, 10, etc.) in number for deeper reasons and
move in intricate ways; see Krichever [1980] and Treibich and Verdier [1990]
for more (geometric) information about that. The fact is that the most general
solution Q(t, x), of spatial period 1, say, comes from a (nonclassical) curve
y2 = ∏2g

0 (x − en), mostly of genus g = ∞; see Novikoff et al. [1984] and,
for an overview, McKean [1978].
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2.11 The Projective Cubic

The differential equation (℘ ′)2 = 4(℘−e1)(℘−e2)(℘−e3) has a geometrically
striking interpretation: The torus X = C/L is the same, complex structure and
all, as the projective cubic y2 = 4(x −e1)(x −e2)(x −e3), and conversely, every
smooth projective cubic arises in this way. The second statement embodies
Abel’s problem of inversion [1827]; it occupies the next section.

Cubics. A preliminary review of projective cubics is required; see Section 1.10
for background. For the general cubic, the defining relation is

P(x, y, z) = 4(x − e1z)(x − e2z)(x − e3z) − y2z

= 4x3 − g2xz2 − g3z3 − y2z = 0

under the harmless assumption that e1 + e2 + e3 = 0. The original curve is
seen in the patch C2 × 1, and there is the single point (0, 1, 0) at infinity. The
curve is smooth, that is, it fits into P2 without singularities, which is to say that
the gradient of the defining relation P = 0 does not vanish any place on the
curve. That is the content of the next two exercises.

Exercise 1. Check that g3
2 − 27g2

3 is 16× the discriminant (e1 − e2)2(e3 −
e2)2(e3 − e1)2 of the cubic x3 − (g2/4)x − (g3/4).

Exercise 2. Show that the only point on the curve that might be singular is
(
√

g2, 0, 2
√

3), and then only if g3
2 − 27g2

3 could vanish.

The Correspondence. If x �= 0, then the differential equation states that (x =
℘(x), y = ℘ ′(x), z = 1) ∈ C2 × 1 is a point of the cubic. This accounts for all
such points in a 1:1 manner. Indeed, ℘(x) takes every value x ∈ C−(e1, e2, e3)
twice, at x and −x , and the two values y = ±℘ ′(x) discriminate between them,
as the two copies of P1 seen in Fig. 1.18 are meant to suggest; as to x = e1, e2, e3,
y is not needed, the value itself being distinctive already. The correspondence is
completed by associating x = 0 to the point at infinity (0, 1, 0) of the cubic, in
accord with the fact that x/y = ℘(x)/℘ ′(x) vanishes there. Now the projective
cubic has its own complex structure, as expounded in Section 1.10. What it
amounts to is that x serves as a local parameter at most places on the curve,
the exceptions being (x = e, y = 0, z = 1) with e = e1, e2, e3, where you
must use

√
x − e instead, and (x = ∞, y = ∞, z = 1) or, more correctly, the

infinite point (0, 1, 0), where it is 1/
√

x instead. As to the torus, the covering
coordinate x(p) serves as local parameter everywhere and now you have only
to match these parameters up. In detail,
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• at most places, ℘ ′(x) �= 0, so x = ℘(x) is an invertible function of x , in
the small;

• in the vicinity of e = e1, e2, or e3, ℘(x) = e + 1
2℘ ′′(e)(x − e)2 + · · · and

℘ ′′(e) �= 0, ℘ being of degree 2, so
√

x − e = √
℘ ′′(e)/2 × (x − e) is an

invertible function of x ;
• in the vicinity of x = 0, ℘(x) = x−2 + · · ·, so 1/

√
x = x + · · · is likewise

invertible.

Moral. X = C/L and the projective cubic are one and the same, complex
structure and all.

Exercise 3. In the terminology of Section 1.15, the map (℘(x), ℘ ′(x)) 	→
(x, y, z) uniformizes the cubic by means of elliptic functions; this jibes with the
standard nomenclature elliptic curve. Carry out the following informal proof
that, unlike the conics of Section 1.10, the cubic is not a rational curve, that is,
it cannot be uniformized by functions from K(P1). If it were, then P1 would
be a (ramified) cover of the torus (and more besides), and that is already out of
the question for topological reasons; compare Clemens [1980: 75].

Exercise 4. The standard cubic y2 = 4(x − e1)(x − e2)(x − e3) looks more
special than

X: c30x3 + c21x2 y + c12xy2 + c03 y3 + c20x2 + · · · + c00 = 0.

Prove that this is only apparent: More precisely, check that X is projectively
the same as the standard cubic except if it degenerates into one, two, or three
copies of the projective line. Samples: x3 = y3 represents three copies of the
projective line; x3 + y3 = 1 reduces to y2 = 4x3 − 1/27 via the substitutions
x 	→ (1 + 3y)/(6x), y 	→ (1 − 3y)/(6x). What happens if the degree is raised
from 3 to 4? Hint: What is the handle number of y4 = (x − e1)(x − e2) or
y4 = (x − e1)(x − e2)(x − e3)? Help with this will be found in Section 1.12;
compare Nagell [1964] and Chapter 7 for number-theoretic connections.

Exercise 5. Check that the quartic y2 = x4 − 1 is equivalent to the cubic
y2 = x3 + 4x via the substitution x 	→ 1 + 4(x − 2)−1, y 	→ −4y(x − 2)−2.

2.12 The Problem of Inversion

The identification of C/L with the projective y2 = 4x3 − g2x − g3 raises the
problem of inversion of Abel [1827]: Does every such cubic arise in this way?
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That is, does every pair of numbers (g2, g3) ∈ C2 − 0 with � = g3
2 − 27g2

3 �= 0
arise from some lattice L via the formulas of Section 8:

g2 = 60
∑ ′ω−4, g3 = 140

∑ ′ω−6?

The point may be settled affirmatively in two very different ways.

Method 1 The functions x/z and y/z introduced in Section 11, make projective
sense on the cubic, as does the differential of the first kind dx/y, and you may
define a covering parameter x by integrating this differential along paths on
the cubic that start at ∞, avoiding the three special points (e, 0, 1) at which
y vanishes. Then you can show, much as in Section 9, that x/z = ℘(x) and
y/z = ℘ ′(x) are doubly periodic functions of x ∈ C with primitive periods

ω1 = 2
∫ e1

∞
y−1dx and ω2 = 2

∫ e2

e1

y−1dx

and identify the cubic with the quotient of C by the corresponding lattice L.
This would be the preferred geometric method. Notice that x/z and y/z are in-
troduced purely algebraically – it is only their relation to the covering coordinate
x that is transcendental; compare Section 1.15.

Method 2 The numbers g2 and g3 cannot both vanish since � = g3
2 −27g2

3 �= 0;
also, the multiplication L 	→ cL changes g2 into c−4g2 and g3 into c−6g3. Now
suppose that the quantity j = g3

2/� assumes all possible complex values as
L runs through the family of possible period lattices. The value 0 requires the
vanishing of g2. Then g3 �= 0 can be adjusted at will by multiplication of the
lattice, so any pair (0, g3) with g3 �= 0 can be obtained. To obtain the other
pairs (g2, g3) ∈ C2 − 0, pick

a = g2
3

g3
2

= 1

27

(
1 − 1

j

)
�= 1

27

at will and multiply the lattice by c to produce

g′
2 = c−4g2 = b and g′

3 = c−6g3 = a1/2b3/2.

The number b �= 0 is arbitrary and the restriction a �= 1/27 is equivalent to the
nonvanishing of c−12� = b3(1−27a). In this way, every pair (g2, g3) ∈ C2 −0
with � �= 0 is obtained, up to the sign of g3, and that can be adjusted by
multiplication of the lattice by

√−1. The problem of inversion is now reduced
to proving that the so-called absolute invariant j = g3

2/� takes all possible
values; see Section 4.9 in which this version of the question is resolved.
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Exercise 1. The absolute invariant is a function only of the period ratio ω =
ω2/ω1, as you will see by inspection of the sums. Prove that it is unchanged
by the action of the modular group �1 = PSL(2, Z) of Section 6. This will
explain the name invariant. The adjective absolute receives its full explanation
in Sections 4.9 and 4.16: Any other suitably restricted invariant function of �1

is a rational function of j ; compare Section 1.7 on the Platonic solids.

Exercise 2. For cubics with real roots, the problem of inversion is to show that
any e1 > 0 and any real e2 between e1 and −e1/2 can be obtained by adjusting
the positive numbers

ω1 =
∫ ∞

e1

[(x − e1)(x − e2)(x + e1 + e2)]−1/2dx,

ω2√−1
=

∫ e3

e2

[(e1 − x)(x − e2)(x + e1 + e2)]−1/2dx .

Prove that this is so. Hint: The correspondence

a′ =
∫ ∞

1
[x(x − 1)(ax + b)]−1/2dx, b′ =

∫ 1

0
[x(x − 1)(ax + b)]−1/2dx

effects a 1:1 self-map of the quadrant a > 0, b > 0. Why? Now identify a as
e1 − e2 and b as e1 + 2e2.

Exercise 3. Let k2 = (e2−e3)/(e1−e3); it is different from 0, 1, ∞, the numbers
e being distinct. Check that j = g3

2/� = (4/27)(k4 − k2 + 1)3/[k4(1 − k2)2];
compare ex. 1.7.4, where this rational function with x in place of k2 appears
as the absolute invariant of the group of anharmonic ratios. The functions j
and k2 have leading roles to play in much of Chapters 4 and 5. k2 is nothing
but Jacobi’s modulus, considered as a function of the period ratio, in an easily
penetrable Weierstrassian disguise; see Section 17.

2.13 The Function Field

The algebraic structure of the (elliptic) function field K(X) is easily described:

K = C(℘)[℘ ′] = C(℘)
[√

(℘ − e1)(℘ − e2)(℘ − e3)
]
,

that is, K is the field of rational functions of ℘ with the quadratic irrationality
℘ ′ = 2

√
(℘ − e1)(℘ − e2)(℘ − e3) adjoined, for an extension of degree 2.

Notice that the subfield K0 = C(℘) of even functions is not isomorphic to
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K(X), in contrast to the rule for the field K(P1); see Section 1.4 on Luroth’s
theorem.

Proof. ℘ ′ f ∈ K is even if f ∈ K is odd, so it suffices to deal with even f ∈ K.
Now the product of f with an appropriate factor ℘−℘(x0) lowers the degree of
any pole of f not at x0 = 0, so the product of f and an appropriate polynomial
a ∈ C[℘] is a function of K with poles only at x = 0. The product is even,
f being such, and now subtraction of a second polynomial b ∈ C[℘] kills
the pole. Then a(℘) f − b(℘) ∈ K is pole-free and so constant (= c), and
f = [b(℘) + c]/a(℘) belongs to C(℘). The proof is finished.

Algebraic Relations. It is an important general principle that any two functions
from the same elliptic function field K(X) satisfy an irreducible polynomial in
two variables, that is, the first is an algebraic function of the second (and vice
versa). It is a special case that any function f ∈ K satisfies an (algebraic)
differential equation, that is, f ′ ∈ K is algebraic over C( f ). The cubic y2 =
4(x − e1)(x − e2)(x − e3) relating y = ℘ ′ to x = ℘ is the simplest illustration.

Proof. f ∈ K is of the form [a(℘) + b(℘)℘ ′]/c(℘) with a, b, c ∈ C[℘], so

[ f × c(x) − a(x)]2 − b2(x) × 4(x − e1)(x − e2)(x − e3) ∈ C[x, f ]

has the root x = ℘; in particular, ℘ is algebraic over C( f ), as is ℘ ′, and
[K: C( f )] < ∞. The general principle follows from that.

Isomorphism of Fields. It is plain that conformally equivalent curves have
algebraically isomorphic function fields. It is a deeper general principle of
geometry that the converse is also valid: An isomorphism of the function fields
fixing the constant field C requires conformality of the underlying curves; see
Shafarevich [1977] for more information on such matters.

Proof for tori. Let K and K∗ be elliptic function fields with an isomorphism
I between them. The key to the proof is the fact that the topological degree
d of a function f ∈ K, considered as a map of X = C/L onto the projective
line P1, is also the algebraic degree of K over its subfield K0 = C( f ). This
may be seen much as in Section 1.11: The lower extension of Fig. 2.20 has
degree m, while the upper has degree n = 1 or 2. Now ℘ is of degree 2, so
the map ℘: X = C/L 	→ P1 is mostly 2:1, and the two points of X lying
over a fixed value of ℘(±x) may be distinguished by the sign of the radical
℘ ′(x) = 2

√
(℘ − e1)(℘ − e2)(℘ − e3); in short, the pair p = (℘, ℘ ′) represents

an unequivocal point of X, as already noted in Section 11. It follows from the
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K0 (℘ [ ]
√

(℘ − e1)(℘ − e2)(℘ − e3) = K

K0 (℘)

K0 = C( f )

degree = 1 or 2

degree = m

)

Figure 2.20. Comparing degrees.

meaning of degree that d = mn = [K: K0]; indeed, x = ℘ is of algebraic
degree m over f = f , so over most numerical values f of f lie m distinct values
of x = ℘. Similarly, y = ℘ ′ is of algebraic degree n over K0(x) = C(f, x)
and either n = 1 and the value of ℘ ′ is fixed by knowledge of f = f and
℘, or else n = 2 and ℘ ′ = 2

√
(℘ − e1)(℘ − e2)(℘ − e3) takes (mostly) two

distinct values. The upshot is that over most numerical values of f lie mn
distinct numerical pairs (℘, ℘ ′). This number is just the degree d = mn =
[K: K0].

The rest of the proof is easy. The image I [℘] of ℘ ∈ K is of topological
degree 2, this being the algebraic degree [K∗: C(℘∗] = [K: C(℘)], and has one
double pole rather than two simple poles since the image of (℘ ′)2 = 4(℘ −
e1)(℘ − e2)(℘ − e3) is a square; in short, I [℘] = a℘∗(x − b) + c, ℘∗ being the
℘-function of K∗.

Exercise 1. Check it.

Now the scaling ℘(c−1x |c−1L) = c2℘(x |L) of ex. 8.1 shows that I [℘] may
be identified with ℘∗ itself after a preliminary (conformal) translation and
magnification of the second torus. In detail, I [℘] = a℘∗(x − b) + c is reduced
to ℘∗ + c by the substitution x 	→ a−1/2x + b, and c is seen to vanish by
inspection of

I [℘ ′]2 = 4(℘∗ + c − e1)(℘∗ + c − e2)(℘∗ + c − e3);

in fact, the presence of the left-hand square permits the identification of e1 −
c, e2 − c, e3 − c with e∗

1, e∗
2, e∗

3 in some order, and the vanishing of e1 + e2 + e3

and e∗
1 + e∗

2 + e∗
3 does the rest. The identification of lattices L = L∗ follows
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from

ω1

2
=

∫ e1

∞
[(x − e1)(x − e2)(x − e3)]−1/2dx,

ω2

2
=

∫ e2

e1

[(x − e1)(x − e2)(x − e3)]−1/2dx .

The proof is finished.

Exercise 2. Check the identification of e∗
1, e∗

2, e∗
3.

2.14 Addition on the Cubic

To the beginner, it will come as something unforeseen that the cubic X: y2 =
4x3 − g2x − g3 has a (commutative) law of addition, but the identification of
X with the torus C/L says it must be so. Write x for a point of the cover C and
p = (x, y) for the corresponding point of the cubic determined by x = ℘(x)
and y = ℘ ′(x). Then, with a self-evident notation, p1 and p2 determine x1

and x2, separately, and also their sum x3 = x1 + x2 ∈ C/L, which in turn,
determines a third point p0 = (x0, y0) = the sum p1 + p2. That is the law
of addition of the cubic; it is even rationally expressible in that x0 and y0

belong to the field C(x1, y1, x2, y2). The explicit expression of x0 and y0 as
rational functions in these four variables is postponed in favor of the very pretty
geometric interpretation of the addition. To fix ideas, take ω1 real and ω2 purely
imaginary so that e1 > e2 > e3 are real; see ex. 9.3. Then X has two real ovals,
seen in Fig. 2.21, one over the interval e3 ≤ x ≤ e2, the other over the interval
e1 ≤ x ≤ ∞. Let p1 and p2 lie on the first oval, extend the line joining them
until it cuts the second one at p3 = (x3, y3), and then drop straight down to the
involute (x3, −y3); that is the sum p0 = (x0, y0) of p1 and p2! Abel’s [1827]
proof is followed as it has the preferred mixture of geometry and analysis,
but see Shafarevich [1977: 148–50] for a purely algebraic proof avoiding the
(transcendental) parameter x of the universal cover.

Abel’s Proof. This has to do with the movement of the three intersections
of the line y = ax + b and the cubic y2 = 4x3 − g2x − g3 in response to
infinitesimal changes a

�

and b
�

of a and b. p is a point of intersection if and only
if F(x) = 4x3 − g2x − g3 − (ax + b)2 vanishes, as it must threefold being of
degree 3; it is assumed, for the moment, that these three roots are distinct, as
for most values of a and b. Then F ′(x)x

� − 2(ax + b)(a
�

x + b
�

) = 0 implies
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e3 e2 e1

p1+ p2

p2

p1

Figure 2.21. Addition on the cubic.

x
�

/y = 2(a
�

x + b
�

)/F ′(x) at each of the three intersections; in particular,

x
�

1

y1
+ x

�

2

y2
+ x

�

3

y3
= 2 × 1

2π
√−1

∮
a
�

x + b
�

F(x)
dx.

The integral is taken about a big circle enclosing the roots of F(x) = 0; it
vanishes in view of F(x) 
 4x3 at ∞. Now let x = x1, x2, x3 ∈ C cover the
three intersections. Then x = ℘(x) implies x

�

/y = x
�

at each of these places
and x

�

1 + x
�

2 + x
�

3 = 0, at which point you should notice that the outcome does
not really depend on the simplicity of the roots of F(x) = 0. But now you see
that x1 + x2 + x3 does not depend upon the line at all and so may be evaluated
(as a lattice point) by moving the line to ∞; for example, if a = 0 and b is
large, then the roots x = ℘(x) of F(x) = 0 are also large and that happens
only if x is close to 0 mod L. The upshot is that x1 + x2 = −x3 in C/L,
which is to say that the sum p0 of p1 and p2 is the involute of the third point of
intersection of the cubic with the line that passes through them. Naturally, if
p1 = p2, it is the line tangent to X at that place which is to be employed. Note
also that the point p∞ corresponding to x = 0, which was ignored for reasons
of simplicity, acts as the additive identity: The sum of p∞ and any other p ∈ X
is p itself.
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Exercise 1. To be candid, the proof is skimpy. To do it right is to do it projec-
tively. Check first that any projective line ax+by+cz = 0 with a, b, c ∈ C3−0
cuts the projective cubic y2z − 4x3 + g2xz2 + g3z3 = 0 three times, counting
multiplicities. Carry out the rest of the proof in this projective style.

The result of the addition will now be spelled out in three different ways, ex-
pressing the output p0 = (x0, y0) rationally in terms of the input x1, y1, x2, y2.
The subsequent exercises provide a sample of the bewildering number of iden-
tities that the ℘-function satisfies.

Version 1 x1 + x2 + x3 = a2/4 by the form of F(x), and a is the slope of the
line, so for distinct x1, x2, and x3 you have

a = y2 − y1

x2 − x1
= y3 − y2

x3 − x2
= y1 − y3

x1 − x3
,

and, by a little rearrangement,

x(p1 + p2) = x3 = −x1 − x2 + 1

4

(
y2 − y1

x2 − x1

)2

,

y(p1 + p2) = y3 = −y2(x1 − x3) + y1(x3 − x2)

x2 − x1
.

This is the rational expression of the law of addition. The supplementary rule

x(2p) = −2x(p) + y−2(p)
[
3x2(p) + e1e2 + e2e3 + e3e1

]2

y(2p) = −y(p) + 2y−1(p) [x(2p) − x(p)] × [
3x2(p) + e1e2 + e2e3 + e3e1

]

covers the exceptional case p1 = p2; see ex. 4 to follow.

Version 2 The formula for x3 leads to an irreducible polynomial in three vari-
ables satisfied by x1, x2, and x3 after elimination of y = ℘ ′(x) by means of the
cubic. This is the addition theorem of the ℘-function; it shows that x3 is of
degree 2 over the field C(x1, x2).

Version 3 y = ax + b at the three intersections, so the determinant vanishes.
∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣
= 2 ×

∣∣∣∣∣∣∣∣

1 x1
√

(x1 − e1)(x1 − e2)(x1 − e3)

1 x2
√

(x2 − e1)(x2 − e2)(x2 − e3)

1 x3
√

(x3 − e1)(x3 − e2)(x3 − e3)

∣∣∣∣∣∣∣∣
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Exercise 2. Check that in the presence of the cubic, version 3 and version 1 are
the same despite appearances.

Exercise 3. Version 1 is commonly stated in the language of the ℘-function:

℘(x1 + x2) = −℘(x1) − ℘(x2) + 1

4

[
℘ ′(x2) − ℘ ′(x1)

℘(x2) − ℘(x1)

]2

,

℘ ′(x1 + x2) = ℘ ′(x1) [℘(x3) − ℘(x2)] + ℘ ′(x2) [℘(x1) − ℘(x3]

℘(x2) − ℘(x1)
.

Check the first line by chasing roots and poles. Hint: For variable x1 and fixed
x2 �∈ L, the difference of left and right sides is pole-free, vanishes at x1 = 0,
and so must vanish identically.

Exercise 4. The duplication formula

℘(2x) = −2℘(x) + [
℘ ′(x)

]−2 [
3℘2(x) + e1e2 + e2e3 + e3e1

]

follows. Use it to confirm the supplementary rules stated under version 1.

Exercise 5. Use ex. 4 to write the duplication formula as

4℘(2x) = ℘(x)

+ (e1 − e2)(e1 − e3)

℘(x) − e1
+ (e2 − e3)(e2 − e1)

℘(x) − e2
+ (e3 − e1)(e3 − e2)

℘(x) − e3
.

Exercise 6. ℘(x+ω1/2) = e1+(e1−e2)(e1−e3) [℘(x) − e1]−1 comes from the
addition theorem. Use it to obtain ℘(ω1/4) = e1 + √

(e1 − e2)(e1 − e3). Find
similar expressions for the value of ℘ at the other quarter-periods (ω1 + ω2)/4
and ω2/4.

Exercise 7. Check that 4 × ℘(2x) is the sum of ℘(x + ω/2) as ω runs through
the periods 0, ω1, ω1 + ω2, and ω2. What is the corresponding product? See
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ex. 6 for help. Answer:
[
℘ ′(x)

]2 ×16(e1 −e2)2(e2 −e3)2(e3 −e1)2. The second
factor is, of course, the familiar discriminant �.

Exercise 8. Check that ℘ ′(x1 + x2) = 3
2 a [℘(x1) + ℘(x2)] − 1

4 a3 − 1
2

[
℘ ′(x1)

+℘ ′(x2)
]

with a = [
℘ ′(x1) − ℘ ′(x2)

]
[℘(x1) − ℘(x2)]−1 as in version 1.

Exercise 9. Prove that ℘(x1 − x2) −℘(x1 + x2) = [℘(x1) − ℘(x2)]−2 ×℘ ′(x1)
℘ ′(x2).

Exercise 10. Prove that every function f ∈ K(X) has an addition theorem in
the sense of version 2: If x1 and x2 are independent variables on the covering
plane C, then f3 = f (x1 + x2) is algebraic over f1 = f (x1) and f2 = f (x2).
Hint: K = C(℘)[℘ ′].

Exercise 11. Prove the converse:11 If f3 is algebraic over C(f1, f2), then either
f is rational, or it is a rational function of a single exponential such as sin x =
(2

√−1)−1[e
√−1x − e−√−1x ], or else it is an elliptic function. Hints: The

irreducible polynomial satisfied by f1, f2, f3 is of degree d < ∞ in f3, so f has
a nonvanishing period if it takes on the value f (x) = c at more than d places x .
Why? Now let the number of roots of f (x) = c be ≤ d for every c ∈ C + ∞.
Then f is rational: In fact, near x = ∞ it must omit a little disk of values
f = c. Why? What then? It remains to check that f is of rational character in
the parameter exp

[
2π

√−1x/ω
]

if it has just one primitive period ω. Do it.

An Algebraic Illustration. Tartaglia [1546] expressed the roots of the general
quartic P4(x) = x4 +ax2 +bx + c ∈ C[x] in terms of a, b, c, by the extraction
of roots; see Section 5.1 for a refresher on such matters. The present article
exhibits them in a different way, based upon the addition theorem: x1, x2, x3

are the roots of

F(x) = 4x3 − g2x − g3 − (ax + b)2,

so

4(x1 − x2)(x1 − x3) = F ′(x1) = 12x2
1 − g2 − 2a(ax1 + b)

(1) = 12x2
1 − g2 − 2ay1,

(2) (x2 − x1) + (x3 − x1) = x1 + x2 + x3 − 3x1 = a2/4 − 3x1,

11 Weierstrass [1870]. See Schwarz [1893].
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and

(2)4 − (1) = (x3 − x2)2 = (a2/4 − 3x1)2 − 12x2
1 + g2 + 2y1a

= (a/2)2 − 6x1(a/2)2 + 4y1(a/2) − 3x2
1 + g2.

This is spelled out with

X = a

2
= 1

2

y2 − y1

x2 − x1
= 1

2

℘ ′(x2) − ℘ ′(x1)

℘(x2) − ℘(x1)
,

Y = x3 − x2 = ℘(x1 + x2) − ℘(x2)

as

Y 2 = X4 − 6℘(x1)X2 + 4℘ ′(x1)X − 3℘2(x1) + g2 ≡ P4(X ),

and the following conclusion is drawn: For fixed x1 and variable x2, P4(X ) = 0
only if Y = 0. This happens for x2 = −x1/2, to which may be added one of the
3 half-periods, producing four roots of P4(x) = 0, and these must be distinct:”
In fact, X taken with x2 = −x1/2 + x is nothing but

Z (x) = ℘ ′(x1/2) [℘(x1/2) − ℘(x)]−1 ,

up to an additive constant c, and takes these values doubly.

Exercise 12. Check the display by chasing roots and poles.

Moral 1. Z (ω/2) + c runs through the roots of P4(X ) = 0 as ω runs through
the periods 0, ω1, ω1 + ω2, ω2.

This is interesting: It represents a uniformization of the correspondence be-
tween the coefficients of P4(X ) = X4 + aX2 + bX + c ∈ C[x] and its roots
in which (1) a = −6℘(x1), (2) b = 4℘ ′(x1), (3) c = −3℘2(x1) + g2. But how
general is P4? The resolution of the problem of inversion provides the answer:
For most values of a, b, c, (1), (2), (3) can be solved (in the opposite order)
keeping � = g3

2 − 27g2
3 �= 0. (3) determines g2 = a2/12 + c; (2) determines

g3 = −a3/216 − b2/16 + ac/6; and for most values of a, b, c (2) and (1)
together determine the point p = [℘(x1), ℘ ′(x1)] of the associated cubic. In
short, a, b, c produce a marked point on a special cubic. Then Z produces the
roots.

Exercise 13. Check that P4(X ) = X4 + aX2 + bX + c has distinct roots if and
only if � = g3

2 −27g2
3 �= 0. Hint: This can be done by a fatiguing computation

of the discriminant of P4, but don’t. Think.
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Moral 2. The recipe is valid for any quartic P4 ∈ C[x] with simple roots.

A Final Illustration. The ubiquity of the ℘-function is truly remarkable. ℘(nx)
∈ K(X) is even, so it can be expressed as a rational function of ℘(x): ℘(nx) =
fn[℘(x)]. Obviously, fn ◦ fm = fn • m = fm ◦ fn , so these are commuting
(rational) maps of the projective line to itself. The extraordinary fact, due to
Ritt [1923], is that, up to trivialities, these are all such commuting self-maps of
the projective line.12

2.15 Abel’s Theorem

A function f ∈ K(X) has the same number of roots q and poles p. This is
its degree d and, in the field K(P1), that is the only restriction: that the roots
and poles be equal in number. The field K(X) is different, as noted in Section
7, item 4: Now you must also match root sum

∑
x(q) and pole sum

∑
x(p)

modulo the lattice, x(℘) being the covering parameter. This is the cheap half
of Abel’s theorem [1827]. The other half states that no further restriction is
needed: If the qs and ps are equal in number and if root sum and pole sum
match mod L, then there is a function from K having these roots and poles, and
no others.

Proof in the style of Jacobi [1838]. Take ω1 = 1 for simplicity, as can be
arranged by a harmless modification of the lattice L 	→ L/ω1, inducing a
conformal map of tori. The period ratio ω = ω2 has positive imaginary part,
so the sum

ϑ(x) =
∑
n∈Z

(−1)n exp
[
2π

√−1nx + π
√−1n(n + 1)ω

]

converges fast to an entire function of x ∈ C, of period 1. This is Jacobi’s
theta-function, the subject of Chapter 3.

Exercise 1. ϑ is not constant so it cannot belong to K (being entire), but it is do-
ing its best: ϑ(x +1) = ϑ(x) and ϑ(x +ω) = − exp

[−2π
√−1(x + ω)

]
ϑ(x).

Prove this. Hint: The substitution n 	→ n − 1 is carried out in the sum.

Exercise 2. Check that ϑ(0) = 0. Hint: ϑ(−x) = − exp(−2π
√−1x)ϑ(x).

Exercise 3. Show that the integral of (2π
√−1)−1dlogϑ(x) about the perimeter

of the fundamental cell is +1. Why? Hint: See ex. 1.

12 A. Veselov pointed out this reference.
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The moral of exs. 1–3 is that ϑ(x) = 0 has a simple root at x = 0 and no
others in the cell. Now pick the covering parameters of the supposed roots and
poles so that

∑
x(qi ) =

∑
x(pi )

without any additive periods. Then the product

ϑ(x − x(q1))

ϑ(x − x(p1))
× · · · × ϑ(x − x(qn))

ϑ(x − x(pn))

belongs to the function field K since it is of period ω1 = 1 and changes, under
the substitution x 	→ x + ω, by the factor

exp
(

2π
√−1[root sum − pole sum]

)
= 1.

The proof is finished by noting that the function so defined has the right roots
and poles.

Exercise 4. Prove that

℘(x) = −
[

ϑ ′(0)

ϑ(x0)

]2
ϑ(x − x0)ϑ(x + x0)

ϑ2(x)
× e−2π

√−1x0 ,

where x0 is a root of ℘(x) = 0 in the fundamental cell.

Amplification. There seems to be no simple way to express the roots ±x0 of
℘(x) = 0. Eichler and Zagier [1982] showed that

x0 = m + 1

2
+ nω

±
[

log(5 + 2
√

6)

2π
√−1

+ 512

9
π10

√−1
∫ ∞

ω

(ω′ − ω)�g−3/2
3 dω′

]
.

The integral is taken on the vertical line Re (ω′) = Re (ω). A remarkable
formula!

A Mechanical Illustration. Fix a > b > 0 and consider the family of confocal
ellipses

Ec:
x2

1

a2 − c2
+ x2

2

b2 − c2
= 1 (0 < c < b)

with common foci (±√
a2 − b2, 0). The straight-line motion inside the big

ellipse E0, with perfect reflection at the perimeter, is intimately connected to
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the confocal family: If a trajectory does not pass between the foci, then each
straight piece of it is tangent to one and the same ellipse E = Ec, as you may
verify (with tears). Poncelet [1822] proved that for a fixed 0 < c < b either
each trajectory grazing E closes after a fixed number of reflections or else none
of them closes at all. The following proof of this pretty mechanical fact is based
upon Abel’s theorem. The idea goes back to Jacobi [1881–91 (1): 278–93].
Griffiths [1976: 345–8] puts the whole matter in historical perspective; see Bos
et al. [1987] for more details.

Proof. Any segment of a trajectory is specified by its initial point x ∈ E0 and
its point of tangency y ∈ E, this being subject to the incidence relation

0 = (y1 − x1)
y1

a2 − c2
+ (y2 − x2)

y2

b2 − c2
= 1 − x1 y1

a2 − c2
− x2 y2

b2 − c2
,

expressing the perpendicularity of tangent to normal at the point of contact; see
Fig. 2.22. The proof exploits the fact that the three relations x ∈ E0, y ∈ E,

P4

P1 Q3

Q1
Q4

Q2

P5

P3

P2

Figure 2.22. Poncelet’s trajectories.

and incidence together determine an elliptic curve X. To see this, it is simplest
to uniformize E0 and E in the manner of Section 1.10 so that they appear as
projective lines with parameters X and Y :

E0: x1 = a
X2 − 1

X2 + 1
, x2 = b

2X

X2 + 1
,

E: y1 =
√

a2 − c2
Y 2 − 1

Y 2 + 1
, y2 = √

b2 − c2
2Y

Y 2 + 1
.

Then the incidence relation takes the form

P(X, Y ) = a√
a2 − c2

(X2 − 1)(Y 2 − 1)

+ 4b√
b2 − c2

XY − (X2 + 1)(Y 2 + 1) = 0.
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This defines a curve X0 in P2 with coordinates (X, Y, Z ) ∈ C3 − 0, subject to
the usual projective identifications. A simple computation reveals the presence
of two singular points (1, 0, 0) and (0, 1, 0) at infinity (and only these) at which
X0 crosses itself in the simple manner of Fig. 2.23, together with four ramifi-
cations over the 2:1 projection of X0 to P1 via X/Z . X0 is desingularized as in

d2
q

p2

p1

d1

Figure 2.23. X0 and the step from p1 to p2.

Section 1.10. Then the Riemann–Hurwitz count is 4 = 2(2sheets+genus−1);
in short, the desingularized curve X is of genus 1, that is, it is an elliptic curve.
Now the first segment of the trajectory corresponds to a point p1 = (X1, Y1, 1)
of X0 from which you may determine (1) the second root X2 of P(•, Y1) = 0
and (2) the second root Y2 of P(X2, •) = 0, P being quadratic both in X
and in Y . The point p2 = (X2, Y2, 1) corresponds to the second segment
of the trajectory, and it is clear that the line joining p1 = (X1, Y1, 1) to
q = (X2, Y1, 1) cuts X0 twice more at the infinite point d1 = (1, 0, 0); like-
wise, the line joining q = (X2, Y1, 1) to p2 = (X2, Y2, 1) cuts it twice at the
other infinite point d2 = (0, 1, 0); see Fig. 2.23 in which p1, p2, and the in-
tervening q. Let f1 = Y − Y1 Z and f2 = X − X2 Z describe these lines by
their vanishing. Then f = f1/ f2 is a function of rational character on X0

with simple root p1, double root d1, simple pole p2, and double pole d2, and
Abel’s theorem applied to the desingularized curve X asserts that, up to periods,
x(p1) + 2x(d1) = x(p2) + 2x(d2), in which x is the parameter of the universal
cover C of X and 2x(d) is the sum of the covering coordinates of the two points
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of X into which d ∈ X0 splits. In short,

x(p2) − x(p1) = −2x(d2) + 2x(d1) mod L.

Now it is clear that every trajectory closes after the same number of reflections,
or that none of them ever closes, according as 2x(d1) − 2x(d2) is or is not a
fractional period of X. This is Poncelet’s theorem.

The result can be spelled out by means of the Jacobian form of X; compare
Section 16. The torus is now identified with the (projective) quartic y2 =
(1 − x2)(1 − k2x2) with

x = 1√
k

X

Z
,

y =
[

a

c
(X2 − Z2) −

√
a2 − c2

c
(X2 + Z2)

]
Y

Z3
+ 2b

c

√
a2 − c2

√
b2 − c2

X

Z
,

and, modulo 0 < k2 < 1,

k = −d + √
d2 − 1 < 0, d = (2a2 − b2 − c2)(b2 − c2)−1 > 1.

X0 is desingularized by this substitution; in fact, d1 = (1, 0, 0) splits into the
two distinct poles of x = sin amp while d2 = (0, 1, 0) splits into the two points

(x, y) = ±
(

a −
√

a2 − c2
)−1

×
⎛
⎝ c√

k
, −2b

√
a2 − c2

b2 − c2

⎞
⎠ .

The closing of trajectories is now expressed by the condition that the number

2x(d1) − 2x(d2) = 2
∫ √−1∞

√−1r0

[(1 − r2)(1 − k2r2)]−1/2dr,

with r0 = (a − √
a2 − c2)−1c/

√
k, stand in a rational relation to the imaginary

period

ω2 = 2
√−1K ′(k) = 2

√−1
∫ 1/k

1
[(r2 − 1)(1 − k2r2)]−1/2dr.

It follows that the values of c producing closed trajectories are densely dis-
tributed between 0 and b: If not, 2x(d1) − 2x(d2) would be a constant multiple
m of ω2 for 0 < c < b, and this is ruled out by considering the extreme values
c = 0 + (m = 0) and c = b − (m = 1/2).

Exercise 5. Give all the details necessary to the discussion.
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Cayley [1853,1861]13 found an elegant criterion to decide if the trajectory
closes or not. Let A and B be two conics (e.g., ellipses) viewed in the real
projective space RP2,14 the second inside the first, and let them be described
by the vanishing of quadratic forms x • Ax and x • Bx with 3 × 3 real matrices
A and B. The expansion

√
det(A + Bx) =

√
detA

[
1 + c1x + c2x2 + · · ·]

tells the story: Trajectories reflecting at A and grazing B close in n steps if
and only if det

[
c4i+ j : 0 ≤ i, j ≤ n − 1

] = 0 for odd n, or det[c3i+ j : 0 ≤ i ,
j ≤ n − 2] = 0 for even n; see Griffiths and Harris [1978a] for the geometric
explanation of this remarkable fact.

Exercise 6. Check that, in Poncelet’s case, y2 = det(A + Bx) is nothing but
the elliptic curve in disguise.

2.16 Jacobian Functions: Reprise

The whole story of the function field K(X) could have been told from the
Jacobian viewpoint, starting with the inversion of the incomplete integral∫ x

0

[
(1 − x2) (1 − k2x2)

]−1/2
dx , as in Section 15. The Weierstrassian view-

point adopted in Sections 6–14 is more direct in some respects, but it is important
to understand them both.

Equivalence of Quartics and Cubics. This was discussed episodically in Sec-
tion 2 and ex. 11.5. To put it in a clean form, note first that the general quartic
y2 = (x − e0)(x − e1)(x − e2)(x − e3) with distinct roots reduces to the cubic
y2 = (x − e′

1)(x − e′
2)(x − e′

3) via the substitutions x 	→ e0 + (x − a)−1 and
y 	→ by(x − a)−2 with b2 = (1/4)(e0 − e1)(e0 − e2)(e2 − e3) and new roots
e′ = a + (e − e0)−1; the latter can be made to satisfy e′

1 + e′
2 + e′

3 = 0 by choice
of a = −(1/3)

[
(e1 − e0)−1 + (e2 − e0)−1 + (e3 − e0)−1

]
. Naturally, the cubic

can be converted back into the quartic. The correspondence is conformal. This
identifies the nonsingular quartic with a torus, as promised in Section 5.

Exercise 1. Check the substitution and the conformality, including at infinity,
that is, in the projective style of Section 11.

13 A. Veselov kindly contributed this reference.

14 RP2 is the space R3 − 0 subject to the (real) projective identification of points x = (x1, x2, x3).
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The reduction of the quartic to Jacobian form y2 = (1 − x2)(1 − k2x2) with
k2 �= 0, 1 was explained in step 2 of Section 2; it is effected by a substitution

x 	→ ax + b

cx + d
, y 	→ y

(cx + d)2

plus a minor adjustment: The new roots are e′ = (de−a)(−ce+a)−1 and can be
matched with 1, −1, 1/k, −1/k by choice of a, b, c, d ∈ C with ad − bc = 1
provided k is chosen so that

e1 − e2

e2 − e3

•
e3 − e4

e4 − e1
= 4k

(1 + k)2
.

Function Field. The identity of projective cubics and quartics means that after
a (conformal) magnification, any complex torus X = C/L carries the function
sn produced by inversion of Jacobi’s incomplete elliptic integral, as in Section 5;
in particular, any period ratio can be obtained as the quotient

√−1K ′/2K of
complete Jacobian integrals by choice of the complex modulus k2 ∈ C − 0 − 1,
and conversely every such modulus arises in this way. This resolves the Jacobian
form of the problem of inversion. The upshot is that the whole story of K(X)
could have been told from the Jacobian viewpoint, especially

K(X) = C(x)
[√

(1 − x2)(1 − k2x2)
]

with an indeterminate x (= sin amp) and a suitable modulus k2 �= 0, 1; in
particular, it must be possible to express the ℘-function in terms of sn.

Explicitly,

sn(K − x, k) = ℘(x ′) − a

℘(x ′) − b
,

with a = ℘(ω1/4), b = ℘(ω1/4+ω2/2), x ′ = cx/2, c =
√

2(1 − k2)/(a − b),
2K = ω1/c, and

√−1K ′ = ω2/c. Begin with f = sn(K − x, k) on X =
C modulo the lattice L = 4KZ⊕2

√−1K ′Z. What does ( f ′)2 = (1− f 2)(1−
k2 f 2) say about the (for the moment unknown) function ℘(x ′) defined by the
last display? An easy computation produces

(℘ ′)2 = 4

(
℘ − a + b

2

)(
℘ − b − ak

1 − k

) (
℘ − b + ak

1 + k

)
,

and the requirement that
(

e1 = a + b

2

)
+

(
e2 = b − ak

1 − k

)
+

(
e3 = b + ak

1 + k

)
= 0
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forces k2 = (a+5b)/(5a+b). It also identifies ℘ as the Weierstrassian function
of X′ = C/L′, with L′ = ω1Z⊕ω2Z, in view of the fact that its only pole in the
cell is located where sn(K −x, k) = 1, that is, at x ′ = 0; the pole must be double
since sn = 1 is a double root, its form can only be d(x ′)−2 + 0 • (x ′)−1 + · · ·,
and d = 1 is not hard to come by.

Exercise 2. Check the identity between sn and ℘ directly, by chasing roots and
poles.

The Addition Theorem. The Jacobian form of the addition theorem is

x3 = x1y2 + x2y1

1 − k2x2
1x2

2

= x1

√
(1 − x2

2)(1 − k2x2
2) + x2

√
(1 − x2

1)(1 − k2x2
1)

1 − k2x2
1x2

2

,

in which x1 = sn(x1, k), x2 = sn(x2, k), x3 = sn(x1 + x2, k). It shows that x3

is of degree 4 over C(x1, x2). The supplementary rule

y3 = y1y2 + x2[−(1 + k2)x1 + 2k2x3
1]

1 − k2x2
1x2

2

+ x3
2k2x1y1x2

2

1 − k2x2
1x2

2

is easily deduced.

Exercise 3. Do it. Confirm, also, that y3 is symmetric in p1 = (x1, y1) and
p2 = (x2, y2) despite appearances.

Exercise 4. dx1/y1 + dx2/y2 = dx3/y3 may be verified with tears. Deduce
the addition theorem from that. This is Euler’s proof [1760].15 Do it first for
k = 0 so that x3 = x1

√
1 − x2

2 + x2

√
1 − x2

1. What is that? Akhiezer [1970]
helps if you get stuck.

Amplification. The incomplete integral of [(1 − x2)(1 − k2x2)]−1/2 takes every
complex value, so it is obvious that

∫ a

0

dx√
(1 − x2)(1 − k2x2)

+
∫ b

0

dx√
(1 − x2)(1 − k2x2)

=
∫ c

0

dx√
(1 − x2)(1 − k2x2)

for any a, b with the proper choice of c and of the paths of integration. What
is not obvious is that a, b, c are algebraically related:

c = a
√

(1 − b2)(1 − k2b2) + b
√

(1 − a2)(1 − k2a2)

1 − k2a2b2
.

15 Euler [1911–76 (20): 235–55].
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This is the content of the addition theorem from Euler’s point of view. Lagrange
(1770) studied special cases in connection with gravitational attraction by two
fixed bodies;16 see Jacobi [1866: 221–31] and Arnold [1978: 261–5] for more
on that subject.

Doubling the Lemniscate. The earliest instance of the addition theorem is due
to the Italian count Fagnano [1750]; it is the case a = b of the lemniscatic
addition theorem with k2 = −1:

2
∫ a

0

dx√
1 − x4

=
∫ c

0

dx√
1 − x4

in which

c = 2a
√

1 − a4

1 + a4
.

This has an amusing geometric content: It tells how to double the length of the
lemniscatic arc; in particular, it shows that the doubled arc can be constructed
from the original by the extraction of square roots, that is, by ruler and compass.
This was Fagnano’s discovery. Ayoub [1984] gives a pleasant account of all
this; complete details may be found in Siegel [1969].

Exercise 5. The quantity y = √
1 − x2 with x = sn(x, k) obeys the rule

[
(1 − x2)(1 − k2x2)

]−1/2
dx + [

(1 − y2)(1 − k2y2)
]−1/2

dy = 0.

This is the function cosinus amplitudinus cn(x, k) of Jacobi [1827]; it in-
verts the incomplete integral

∫ 1
r [(1 − r2)(1 − k2 − k2r2)]−1/2dr . The function

dn(x, k) = √
1 − k2x2 inverts

∫ 1
r [(1 + r2)(1 − k2 + r2)]−1/2dr . Prove that

x = sn, y = cn, and z = dn are characterized by x′ = yz, y′ = −xz, and
z′ = −k2xy, subject to x = 0, y = 1, and z = 1 at x = 0. The addition
theorem may now be expressed as

sn(x1 + x2) = sn x1 cn x2 dn x2 + sn x2 cn x1 dn x1

1 − k2 sn2 x1 sn2 x2
.

Exercise 6. Jacobi’s imaginary transformation is expressed as sn(
√−1x, k)=√−1sn(x, k ′)/cn(x, k ′). Check it. What does it say about K ?

16 Lagrange [1868: 67–121].
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Exercise 7. The identity

sn

[
(1 + k)x,

2
√

k

1 + k

]
= (1 + k)sn(x, k) × [

1 + k2sn2(x, k)
]−1

is to be checked. What does that say about K ?

Exercise 8. This outlines a proof of the addition theorem in the style of Section
14: The (projective) quartic y2 = (1 − x2)(1 − k2x2) has four intersections
with the quadratic y = 1 + ax + bx2. One is located at (x, y) = (0, 1). Let
the other three have covering parameters x1, x2, x3. Check that their sum is
independent of a and b and identify it, mod L, as either 0 or 2K . Now compute
x1 + x2 + x3 = 2ab/c and x1x2x3 = 2a/c with c = k2 − b2 and conclude that
x1y2 + x2y1 = ±x3(1 − k2x2

1x2
2). What is the ambiguous sign doing here and

what is its value?

2.17 Covering Tori

It is a common and interesting situation that one torus covers another. This
means that there is a (conformal) projection from the cover onto the base, of
degree d, say. The case d = 2 is of special importance: It leads to a new
relation between Jacobian and Weierstrassian functions quite different from
that of Section 16; see especially ex. 16.2.

Exercise 1. Check that such a projection of tori X1 = C/L1 	→ X2 = C/L2

lifts to an automorphism of C in its role as (common) universal cover. Deduce
that L2 ⊂ L1. Check that the degree d is (1) the index of L2 in L1, (2) the
ratio of the areas of the fundamental cells, and (3) the quotient of the period
ratios.

Double Covers. The story of the double covers begins with the torus X = C/L

and the radical ℘1(x) = √
℘(x) − e1. This function has a single-valued branch

in the vicinity of x = ω1/2, ℘(ω1/2) = e1 being taken on twice, but cannot
belong to K as it has only one pole per cell and K contains no functions of
degree 1. The fact is that its continuation is an elliptic function with primitive
periods ω1 and 2ω2; as such, it belongs to a double cover of X.

Proof. The radical is single-valued near x = 0 as well, so the continuation is
unobstructed in the plane and leads to a single-valued function ℘1 = √

℘ − e1,
by the monodromy theorem of Section 1.11. It has simple poles at L and
may be standardized by fixing the residue at the origin as +1; also, it is odd
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and ℘1(x + ω) = ±℘1(x) for ω ∈ L, so from the fact that ℘1(−ω2/2) =
−℘1(ω2/2) does not vanish (e3 �= e1), ω2 is seen to be a half-period of ℘1, that
is, ℘1(x + ω2) = −℘(x). The final point is that ω1 is a full period of ℘1; if
not, you would have ℘1(x + ω1) = −℘1(x), and evaluation at x = ω/2 with
ω = ω1 + ω2 is contradictory:

℘1(ω/2) = −℘1(ω/2 − ω1) = +℘1(ω/2 − ω1 − ω2) = ℘1(−ω/2),

violating the oddness of ℘1 and the fact that ℘1(ω/2) does not vanish.

Exercise 2. Check that ℘2 = √
℘ − e2 has periods 2ω1 and 2ω2; similarly,

℘3 = √
℘ − e3 has periods 2ω1 and ω2.

Relating ℘ to sn. This is easy. The ratio f = √
e1 − e3/℘3(x) is viewed as

a function of x ′ = x
√

e1 − e3, the radical being chosen so that f (x ′) = +1 at
x = ω1/2. Now

( f ′)2 = (℘ − e1)(℘ − e2)(℘ − e3)

(℘ − e3)2
=

(
1 − e1 − e3

℘ − e3

) (
1 − e2 − e3

℘ − e3

)

= (1 − f 2)(1 − k2 f 2)

with k2 = (e2 − e3)/(e1 − e3), and since f takes the values 0, 1, 1/k, ∞ as in
Fig. 2.7 in Section 2.5 for sn, so the identification

sn(x ′, k2) =
√

e1 − e3

℘(x) − e3

follows from the identification of periods:

ω1

2

√
e1 − e3 =

∫ 1

0

[
(1 − f 2)(1 − k2 f 2)

]−1/2
d f = K (k),

ω2

2

√
e1 − e3 =

∫ 1/k

1

[
(1 − f 2)(1 − k2 f 2)

]−1/2
d f = √−1K ′(k).

Exercise 3. The substitution x �→ e3 + (e1 − e3)/x2 converts the incomplete
integral

∫
[4(x − e1)(x − e2)(x − e3)]−1/2 dx

into

−(e1 − e3)−1/2
∫ [

(1 − x2)(1 − k2x2)
]−1/2

dx
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with k2 = (e2 − e3)/(e1 − e3) as before. Deduce

℘(x) = e3 + (e1 − e3)sn−2(x
√

e1 − e3, k2).

This provides a second proof. Give a third proof by matching roots and poles.

Warning. k2 = (e2−e3)/(e1−e3) exhibits k2 as a function of the Weierstrassian
period ratio ω = √−1K ′/K , by inspection of the sums defining e = e1, e2, e3.
This is not the corresponding Jacobian period ratio

√−1K ′/2K = ω/2. Keep
this in mind; it can be confusing and lead to tears.

Exercise 4. Check that k2 is a function of the period ratio, directly from the
complete integrals K and K ′ for 0 < k < 1.

Landen’s Transformation. This was the subject of Section 3. The present
proof is in a very different style, with the help of double covers. Fix L =
ω1Z⊕ω2Z and let L∗ be the lattice formed with the primitive periods ω1/2 and
ω2, having double the period ratio of L, so that X∗ = C/L∗ is a double cover
of X = C/L. Now the function ℘∗(x) = ℘(x) +℘(x +ω1/2) − e1 is of period
ω∗

1 = ω1/2 and also of period ω∗
2 = ω2, with one pole per cell of L∗, located

at x = 0, and having an expansion of the form x−2 + 0 • x−1 + 0 • x0 + · · ·, as
you will check. In short, it is the ℘-function of X∗, as its name suggests, and it
is easy to determine the roots of the associated cubic:

e∗
1 = e1 + 2

√
(e1 − e2)(e1 − e3),

e∗
2 = e1 − 2

√
(e1 − e2)(e1 − e3),

e∗
3 = −2e1.

Exercise 5. Check these values. Hint:

℘(ω1/4) = e1 +
√

(e1 − e2)(e1 − e3)

producing e∗
1; see ex. 14.6.

The change in Jacobi’s modulus k2 is computed from these values. Starting
with k2 = (e3 − e2)(e3 − e1)−1, as in ex. 16.2, you find

(k∗)2 = e∗
2 − e∗

3

e∗
1 − e∗

3
= e∗

2 + (e∗
1 + e∗

2)

e∗
1 + (e∗

1 + e∗
2)

= 3e1 − 2
√

(e1 − e2)(e1 − e3)

3e1 + 2
√

(e1 − e2)(e1 − e3)
,
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or, in terms of the complementary modulus (k ′)2 = 1−k2 = (e1−e2)(e1−e3)−1,

(k∗)2 = e1 − e3 + e1 − e2 − 2
√

(e1 − e2)(e1 − e3)

e1 − e3 + e1 − e2 + 2
√

(e1 − e2)(e1 − e3)
=

(
1 − k ′

1 + k ′

)2

,

as you will check. Landen’s transformation in the form

K (k∗) = 1
2 (1 + k ′)K (k)

is immediate: K (k) = (ω1/2)
√

e1 − e3 and K (k∗) = (ω1/4)
√

e∗
1 − e∗

3, so

1 + k ′

2
•

K (k)

K ∗(k)
=

(
1 +

√
e1 − e2

e1 − e3

) √
e1 − e2

e∗
1 − e∗

3

=
√

e1 − e3 + √
e1 − e2

[e1 − e3 + 2
√

(e1 − e3)(e1 − e2) + e1 − e2]1/2

= 1.

Amplification. The identity k∗ = (1 − k ′)(1 + k ′)−1 is an algebraic relation
between k∗ = k(2ω) and the original modulus k(ω) itself:

k(2ω) =
[
1 −

√
1 − k2(ω)

] [
1 +

√
1 − k2(ω)

]−1
.

It is the so-called modular equation of level 2; modular equations of higher
level, relating k(nω) to k(ω) for n ≥ 3, will be studied in Chapter 4 and applied to
Hermite’s solution of the quintic [1859] in Chapter 5 and to imaginary quadratic
number fields in Chapter 6. This is the general question of division of periods,
initiated by Gauss (1800),17 Legendre (1797),18 and Abel [1827].

Some particular moduli are computed for entertainment.

Example 1: Square lattice. The associated cubic y2 = x3 − x was noted in
example 9.1. Its roots are 1, 0, −1, so k2(

√−1) = (0−(−1))/(1−(−1)) = 1/2.

The further value k(2
√−1)(

√
2 − 1)(

√
2 + 1)

−1 = 3 − 2
√

2 comes from the
modular equation; it is the modulus of the Jacobian square lattice. The value
k2(

√−1) = 1/2 can also be elicited in this way: 1/
√

2 is its own complement,
so ω = √−1K ′/K = √−1, that is, k(

√−1) = 1/
√

2. Now let e1, e2, e3 be the
roots of the cubic that produces, not just the period ratio

√−1, but the particular
periods ω1 = 1 and ω2 = √−1. The lattice admits complex multiplication by
c = √−1 and ℘(cx) = c−2℘(x) = −℘(x), so e3 = −e1, e2 = −e1 − e3 = 0,

17 Gauss [1870–1929 (10): 160–6].

18 Legendre [1825 (1): 262].



2.17 Covering Tori 117

g2 = 4e2
1, and g3 = 0, with the result that K (1/

√
2) = (1/2)

√
e1 − e3 =√

e1/2. Besides,

ω1 = 1 =
∫ ∞

e1

dx√
x3 − e2

1x
= 1√

e1

∫ ∞

1

dx√
x3 − x

,

so

K (1/
√

2) = 1√
2

∫ ∞

1

dx√
x3 − x

= 2−3/2
∫ 1

0
x−3/4(1 − x)−1/2dx

= 2−3/2 �(1/4)�(1/2)

�(3/4)
,

in conformity with the values found in Section 4.

Example 2. k = √
2 − 1 is fixed under k ′ �→ k∗ so, by period doubling,

2
K ′

K
(k) = K ′

K
(k∗) = K

K ′ (k),

that is,

K ′

K
(k) = 1√

2
,

which is to say that the period ratio is 1/
√

2; in short,

k2(1/
√

2) = 1 − (
√

2 − 1)2 = 2(
√

2 − 1).

Example 3: Triangular lattice. The discussion is similar to example 1. The
period ratio is ω = e2π

√−1/3 = (1/2)(−1 + √−3), and the associated cubic
y2 = 4(x3 − 1) of example 9.2 has roots e = 1, ω, ω2, so

k2

(
−1 + √−3

2

)
= ω2 − ω

1 − ω
= −ω = e−√−1π/3 = 1 − √−3

2
.

Exercise 6. Compute the associated complete integral K (k) in the style of
example 1 using the complex multiplication by ω. Answer:

6K (k) =
√

(1/2)[3 − √−3] × �(1/6)�(1/2)/�(2/3).

Ramanujan’s Example. The special moduli of examples 1–3 are specimens
of a wider class. Let k(ω/n) = k ′(ω) for some integral n = 2, 3, . . . Then

ω

n
= √−1

K ′

K
taken at k(ω/n) = √−1

K

K ′ taken at k(ω) = −1/ω,
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so ω = √−n is a quadratic irrationality. Abel [1827] proved that, in such
a case, the modulus k can be expressed by radicals over the ground field of
rational numbers. Hardy [1940] quotes a spectacular example from a letter of
Ramanujan: If n = 210 = 2 × 3 × 5 × 7, then

√
k = (1 −

√
2)2(2 −

√
3)(3 −

√
10)2(4 −

√
15)2(6 −

√
35)

×(8 − 3
√

7)(
√

7 −
√

6)2(
√

15 −
√

14).

Amplification. Siegel [1949] proved that if ω is not a quadratic irrationality,
then k(ω) is transcendental; see Baker [1975] for such matters.

2.18 Finale: Higher Genus

The present section provides a glimpse of curves X of higher genus g ≥ 2.
Bliss [1933], Clemens [1980], Kirwan [1992], Shafarevich [1977: 411–23],
Siegel [1971], and Weyl [1955] are recommended for additional information.

Dissection. X is a sphere with g handles. To clarify its topology, let ai and
bi (1 ≤ i ≤ g) be closed cycles of X passing through a common point o: ai runs
once about the i th hole and bi runs once about the i th handle, as in Fig. 2.24

a2 a1

b2 b1

o

Figure 2.24. The closed cycles.

(g = 2). Cuts along a1 and b1 permit the curve to be opened up as in Fig. 2.25,
and further cuts along a2 and b2 permit the curve to be laid out flat on the plane
as in Fig. 2.26. This figure is the dissection of the curve. It follows that the
fundamental group � of X is a free group on 2g letters with the single relation

a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1.
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a 2

b2

b− 1
1

a 1

a− 1
1

b1

o

Figure 2.25. The first cut.

a 2 b− 1
1

b− 1
2

a− 1
1

a− 1
2

b2

a1

b1

Figure 2.26. The dissection of the curve.

Universal Cover. This is the upper half-plane H. The fundamental group �

is now interpreted as the group of covering maps of Section 1.11. These are
conformal automorphisms of the half-plane (= rigid hyperbolic motions), so �

appears as a subgroup of PSL(2,R); in particular, the quotient H/� is a copy
of X. More concretely, � has a fundamental cell F in the form of a 2g-sided
hyperbolic polygon as in Fig. 2.26; with suitable conventions at its sides, every
orbit of � cuts F just once, so X is just the cell with sides identified. The
images of F under the action of � tessellate H, that is, they cover it simply; see
Section 4.3 for similar pictures.

Function Field. The function field K(X) is the splitting field over C(x) of
the (irreducible) polynomial P(x, y) ∈ C[x, y] whose vanishing defines the
curve. It can also be viewed as the class of functions of rational character on
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the universal cover that are invariant ( = automorphic) under the action of �.
The second viewpoint goes back to Klein [1882] and Poincaré (1880).19 Ford
[1972] is the best introduction, though it needs to be supplemented.

Differentials of the First Kind. X has g independent differentials of the first
kind (DFK). Klein explained this in his Cambridge lectures [1893] by means
of a hydrodynamical picture; compare Section 1.13. For g = 1, X = C/L

admits one conjugate20 pair of steady, irrotational, incompressible flows, as in
Fig. 2.27. They are described by a conjugate pair of real harmonic differentials

Figure 2.27. The hydrodynamical picture.

da and db, dx = da + √−1db being the complex differential of the first kind
associated with the parameter x = x(p) of the universal cover. The same idea
works for higher genus: A pair of conjugate flows for genus 2 are depicted in
Fig. 2.28; each pair produces one differential of the first kind, and there are as
many pairs as handles.21

19 See Poincaré [1985].

20 The adjective conjugate signifies that the streamlines of one flow are the lines of constant
potential of the other.

21 The black spots on the rim of the second hole are stagnation points. The flow of Fig. 2.27 moves
in the same direction underneath, that of Fig. 2.28 in the opposite direction.
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Figure 2.28. The case of genus 2.

Exercise 1. Let X be the hyperelliptic curve

y2 = (x − e0)(x − e1) · · · (x − e2g)

of genus g ≥ 1. Check that ωk = xk−1 y−1dx is a differential of the first kind
for 1 ≤ k ≤ g. Do not forget the point at infinity. Prove by hand that these
span DFK.

Riemann–Roch. A function f ∈ K(X) has an equal number of roots and poles;
this is its degree. The theorem of Riemann [1857] and Roch [1865] states (in
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part) that if pi (1 ≤ i ≤ n) are points of X, if L is the class of functions from K
with these poles or softer (that is, the multiplicity at the pole is not greater than
the number of repetitions of the latter), and if D is the class of differentials of
the first kind with these roots or harder, then

dim L = n + 1 − g − dim D.

Exercise 2. What does Riemann–Roch say for g = 0? For g = 1? Compare ex.
1.3.4. Hints for g = 1: C ⊂ L so the dimension of L is at least 1. If n = 3, then
f ∈ L is of degree 0, 2, or 3: No poles means that f is constant; two poles gives
two extra dimensions since, for each pair from p1, p2, p3, there is a function f
with simple poles at those places and residues ±1, but f12 + f23 + f31 = 0
with a self-evident notation; three poles contributes nothing new, so the total
dimension is 3, as Riemann–Roch predicts.

Jacobi Variety. Let ωk(1 ≤ k ≤ g) be a basis of differentials of the first kind,
let ω stand for the vector (ω1, . . . , ωg), and fix a point o of X. The map of the
divisor P = (p1, . . . , pg) of variable points of X to the sum

∫ P

O

ω =
g∑

i=1

∫ pi

o

ω = x(P)

covers Cg; naturally, the map is equivocal in that the paths of integration are
unspecified. The periods of X are the points x ∈ Cg produced by the choice,
in each summand, of some closed path starting and ending at the base point o.
These form a lattice L ⊂ Cg . The map of divisors is rendered unambiguous
by viewing the image of x(P) as a point of the quotient Cg/L. The latter is the
Jacobi variety J of X; it is a complex torus of dimension g, and more: It is an
(irreducible) algebraic variety, as the name suggests. Shafarevich [1977: 155]
explains such matters. For g = 1, it is a copy of the curve. For g ≥ 2, it is a more
or less faithful copy of the g-fold symmetric product of the curve with itself,
but only in the top dimension; the correspondence goes bad in codimension 1,
as it must on topological grounds.

Abel’s theorem. This states that the divisors P = (p1, . . . , pn) and Q =
(q1, . . . , qn) of X are the poles and roots of a function in K if and only if

∫ P

Q

ω =
n∑

i=1

∫ pi

qi

ω

vanishes modulo L for every differential ω of the first kind. For g = 1, ω is
the differential dx of the covering coordinate, and the statement reduces to that
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of Section 15. The cheap half of the full statement is proved by integration of∫ p

o
ω×d log f (p) about the boundary of a dissection of the curve and comparison

with the sum of residues inside.

Riemann’s Theta Function. Let the loops ai , bi (1 ≤ i ≤ g) be placed as in
Fig. 2.24, and let the basis ω j (1 ≤ j ≤ g) of differentials of the first kind be
taken so that ai (ω j ) = 1 or 0 according as i = j or not. Then the period matrix
B = [

bi (ω j ): 1 ≤ i, j ≤ g
]

is (real) symmetric and has positive imaginary part;
it is the counterpart of the period ratio. Riemann [1857] introduced the theta
function ϑ(x) formed by summing exp[2π

√−1n • x + π
√−1B(n)] over the

points n of the g-dimensional integral lattice Zg . Here, B(n) is the quadratic
form n • Bn and x is a point of Cg . Riemann [1857] located the roots of ϑ(x) = 0
(the vanishing theorem) and used this for the proof of the hard half of Abel’s
theorem. Lefschetz [1921] used ϑ to embed the Jacobian variety J in a high-
dimensional projective space. The embedding displays the fact that J really is
a variety; compare Section 3.4 for g = 1. See Narasimhan [1992] for a modern
description of these matters.

The Addition Theorem. As before let P, P′, and P′′ denote divisors of X
comprising g points apiece. The sums

∫ P

O
ω cover Cg so the sum of any two is

a third:
∫ P′

O

ω +
∫ P′′

O

ω =
∫ P

O

ω.

The content of the addition theorem is that the upper limit P of the third inte-
gral is rationally expressible in terms of the upper limits P′ and P′′; compare
Section 16. Jacobi [1866:231–7] gave a remarkable mechanical proof of part
of the statement in the special case of hyperelliptic curves: Straight-line mo-
tion at constant speed in Rg+1 is expressed in ellipsoidal coordinates and then
integrated via the Hamilton–Jacobi equation of classical mechanics. Compare
the first mechanical illustration of Section 10; see Arnold [1978] for details of
this and Siegel [1971] for a more general case.

Conformal Structures. The existence of many different complex structures for
higher handlebodies can be illustrated, much as in Sections 1.12 and 1.14, by the
fact that the tubes extending from the several cut copies of P1 seen in Fig. 1.20
can be twisted before being pasted to their associates. Actually, the matter is
more subtle than that; indeed, Riemann [1857] found that the conformal struc-
ture of a topological handlebody of genus g ≥ 2 depends upon 3g −3 complex
parameters (= moduli), as opposed to a single such modulus (= the period
ratio) for g = 1 and a single complex structure for g = 0 (see Section 1.14).
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Imayoshi and Taniguchi [1992] provide a nice introduction to these ideas. It is
a by-product that the higher handlebodies have many geometries of curvature
−1. This may be contrasted to the extraordinary fact that in R3 a compact
3-dimensional manifold of constant curvature −1 is completely specified by its
fundamental group! This is Mostow’s celebrated rigidity theorem [1966].
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Theta Functions

Theta functions appear in Bernoulli’s Ars Conjectandi [1713] and in the number-
theoretic investigations of Euler [1773: 71–84] and Gauss [1801], but come into
full flower only in Jacobi’s Fundamenta Nova [1829]. They have marvelous
properties. The whole story of elliptic curves can be based upon them, but that
road is not taken here; rather, they will be developed only to such a point that
their connection to the Weierstrassian and Jacobian functions of Chapter 2 can
be made and a few of their arithmetic and geometric applications are accessible.
The whole chapter is an interlude, really. Mumford [1983], Krazer [1903], and
Lawden [1989] are recommended for fuller information.

3.1 Jacobi’s Theta Functions

Jacobi [1829] introduced four functions of the variables p = eπ
√−1x and q =

eπ
√−1ω, x being the usual covering coordinate of the curve X = C/L and ω

its period ratio, with the familiar standardization that the imaginary part of ω is
positive. L is taken to be Z ⊕ ωZ for simplicity. Jacobi’s theta functions are
as follows:

ϑ1(x) = ϑ1(x | ω) = √−1
∑

(−1)n p2n−1q (n−1/2)2
,

ϑ2(x) = ϑ2(x | ω) =
∑

p2n−1q (n−1/2)2
,

ϑ3(x) = ϑ3(x | ω) =
∑

p2nqn2
,

ϑ4(x) = ϑ4(x | ω) =
∑

(−1)n p2nqn2
.

The sums are taken over n ∈ Z; their rapid convergence is assured by |q| =
exp(−π × Im ω) < 1. Obviously, they are entire functions of x ∈ C, so they
cannot have two independent periods, being pole-free and not constant, but
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Table 3.1.1. Addition of half-periods

x + 1
2 x + ω

2 x + 1
2 + ω

2 x + 1 x + ω x + 1 + ω

ϑ1 ϑ2

√−1aϑ4 aϑ3 −ϑ1 −bϑ1 bϑ1

ϑ2 −ϑ1 aϑ3 −√−1aϑ4 −ϑ2 bϑ2 −bϑ2

ϑ3 ϑ4 aϑ2

√−1aϑ1 ϑ3 bϑ3 bϑ3

ϑ4 ϑ3

√−1aϑ1 aϑ2 ϑ4 −bϑ4 −bϑ4

they are doing their best in that they transform simply under the addition of
periods. ϑ1 is the basic function; the other ones are produced by addition of
half-periods. ϑ = −√−1aϑ1 is the function of Section 2.15. The facts are
recorded in Table 3.1.1 with the abbreviations a = p−1q−1/4 and b = p−2q−1.

Sample proof.

ϑ3(x + ω/2) =
∑

[eπ
√−1(x+ω/2)]2n • [eπ

√−1ω]n2

= e−π
√−1ω/4

∑
e2π

√−1nx • eπ
√−1ω(n+1/2)2

= e−π
√−1(x+ω/4)

∑
p2n−1q (n−1/2)2

= aϑ2(x),

the shift n �→ n − 1 being used in line 3.

Exercise 1. Check the rest of Table 3.1.1.

Exercise 2. ϑ1, ϑ2, ϑ3, ϑ4 all obey ϑ(x + 2) = ϑ(x) and ϑ(x + 2ω) = (pq)−4

ϑ(x), as you will check. Discuss the general solution of the two identities (a)
f (x +2) = f (x) and (b) f (x +2ω) = eax+b f (x). Hint: Expand f in a Fourier
series

∑
f̂ (n)pn and use (b) to pin down f̂ (n). You will see thetas coming out.

The (simple) roots of the theta functions are easily located; for example, ϑ1 is
odd about x = 0, as in ex. 2.15.2, and the integral of (2π

√−1)−1d log ϑ1 about
the perimeter of the fundamental cell is +1, as in ex. 2.15.3, so this function
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Table 3.1.2. Location of the zeros

ϑ1(x) = 0 ϑ2(x) = 0 ϑ3(x) = 0 ϑ4(x) = 0

x ∈ L x ∈ L + 1/2 x ∈ L + 1/2 + ω/2 x ∈ L + ω/2

has a simple root at x = 0 and no others in the cell. Now look at Table 3.1.1 to
confirm the root patterns displayed in Table 3.1.2.

Exercise 3. ϑ1 is odd about x = 0, as noted. Check that ϑ2, ϑ3, ϑ4 are even
about x = 0.

Exercise 4. Prove that c1ϑ1(x) + c2ϑ2(x) + c3ϑ3(x) + c4ϑ4(x) vanishes iden-
tically only if c1 = c2 = c3 = c4 = 0 and has, otherwise, just four roots in the
fundamental cell of the doubled lattice 2L. Hints: Use Table 3.1.1 for the first
part, and ex. 2.15.3 as a model for the second part.

3.2 Some Identities

Theta functions obey a bewildering number and variety of identities. Mumford
[1983: 20–3] and Krazer [1903] are recommended for the full treatment. What
will be needed here is simpler; it is all due to Jacobi [1829].

Identity 1. ϑ2
2 (0)ϑ2

2 (x) + ϑ2
4 (0)ϑ2

4 (x) = ϑ2
3 (0)ϑ2

3 (x).

Proof. [ϑ4(0)ϑ4(x)]−2 × [
ϑ2

3 (0)ϑ2
3 (x) − ϑ2

2 (0)ϑ2
2 (x)

]
is periodic relative to L

(see Table 3.1.1) and has just one (simple) pole per cell, of degree ≤ 2, located
at the root x = ω/2 of ϑ4(x) = 0 (see Table 3.1.2). But ϑ3(ω/2) = aϑ2(0)
and similarly ϑ2(ω/2) = aϑ3(0), so the numerator vanishes, the degree of the
pole is ≤ 1, and the function is constant in view of its periodicity. Now take
x = 1/2 and use Table 3.1.1 once more to elicit its value (= 1).

Exercise 1.

ϑ2
2 (0)ϑ2

1 (x) + ϑ2
4 (0)ϑ2

3 (x) = ϑ2
3 (0)ϑ2

4 (x),

ϑ2
4 (0)ϑ2

1 (x) + ϑ2
3 (0)ϑ2

2 (x) = ϑ2
2 (0)ϑ2

3 (x),

ϑ2
3 (0)ϑ2

1 (x) + ϑ2
4 (0)ϑ2

2 (x) = ϑ2
2 (0)ϑ2

4 (x)

can be proved in the same style, but use Table 3.1.1 instead.
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Aside 1. Identity 1 specialized to x = 0 states that ϑ4
2 (0) + ϑ4

4 (0) = ϑ4
3 (0),

which is to say

[∑
Z

q (n−1/2)2

]4

+
[∑

Z

(−1)nqn2

]4

=
[∑

Z

qn2

]4

,

or, what is the same,
∑
Z4

q (n−1/2)2 +
∑
Z4

(−1)n • 1qn2 =
∑
Z4

qn2
,

in which n = (n1, n2, n3, n4) ∈ Z4, n2 = n2
1 + n2

2 + n2
3 + n2

4, 1 = (1, 1, 1, 1),
and similarly for 1/2. Move the second sum to the right. Now the identity reads

∑
Z4

q (n−1/2)2 = 2
∑

n ∈ Z4

n • 1 odd

qn2
,

and in this form it can be checked by hand. The orthogonal matrix

A = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠

maps the sublattice {n • 1 even} ⊂ Z4 1:1 onto itself and carries 1/2 to (1, 0, 0, 0),
so with the notation n �→ n∗ for its action, you find

∑
n • 1 even

q (n−1/2)2 =
∑

n • 1 even

q (n∗−1/2∗)2

=
∑

n • 1 even

q (n1−1)2+n2
2+n2

3+n2
4

=
∑

n • 1 odd

qn2
.

But also

(n − 1/2)2 = (n • 1)2 − n • 1 + 1 + (the coprojection of n and 1)2

so
∑

n • 1 odd

q (n−1/2)2 =
∑

n • 1 even

q (n−1/2)2 =
∑

n • 1 even

qn2 =
∑

n • 1 odd

qn2
.

Now add the two displays.
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Identity 2. The so-called null values ϑ ′
1(0), ϑ2(0), ϑ3(0), ϑ4(0) play a consid-

erable role in what follows. Jacobi [1829] discovered the remarkable identity

ϑ ′
1(0) = πϑ2(0)ϑ3(0)ϑ4(0).

Proof. 1 [ϑ1(2x)ϑ2(0)ϑ3(0)ϑ4(0)]−1 × 2ϑ1(x)ϑ2(x)ϑ3(x)ϑ4(x) is periodic rel-
ative to L (see Table 3.1.1) and pole-free (see Table 3.1.2), so it is constant
(= 1), as you can see by taking x = 0. This proves the duplication formula

ϑ1(2x) = 2
ϑ1(x)ϑ2(x)ϑ3(x)ϑ4(x)

ϑ2(0)ϑ3(0)ϑ4(0)
.

Next, take logarithms, differentiate twice by x , and put x = 0 to obtain

ϑ ′′′
1 (0)

ϑ ′
1(0)

= ϑ ′′
2 (0)

ϑ2(0)
+ ϑ ′′

3 (0)

ϑ3(0)
+ ϑ ′′

4 (0)

ϑ4(0)
.

The computation is elementary but tiresome; it is left to you as ex. 2 to follow.
Now each ϑ solves the heat equation 4π

√−1∂ϑ/∂ω = ∂2ϑ/∂x2, as you can
see from the sums, so the preceding display states that ϑ2(0)ϑ3(0)ϑ4(0)/ϑ ′

1(0)
is independent of ω. The value π is now obtained by looking at ω = √−1∞,
alias q = 0: To leading order,

ϑ ′
1(0) = 2πq1/4, ϑ2(0) = 2q1/4, ϑ3(0) = 1, and ϑ4(0) = 1,

by inspection of sums. The proof is finished.

Exercise 2. Check the computation of ϑ ′′′
1 (0)/ϑ ′

1(0). Hint: ϑ ′′
1 (0), ϑ ′

2(0), ϑ ′
3(0),

and ϑ ′
4(0) vanish. Why?

Aside 2. The present identity seems incapable of direct proof in the style of 1;
it states that

∑
Z1

(−1)n(2n − 1)qn2−n = −
∑
Z3

(−1)n3 qn2
1−n1+n2

2+n2
3 ,

which does not even look plausible.

Addition-Like Identities. Theta functions are not rational in x , or in a single
exponential, nor do they belong to any elliptic function field and so cannot have
addition theorems, properly speaking, in view of ex. 2.14.10, but they do obey

1 Whittaker and Watson [1963: 490].
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similar identities; for example,

ϑ1(x1 − x2)ϑ2(x1 + x2) + ϑ1(x1 + x2)ϑ2(x1 − x2)

= ϑ1(x1)ϑ1(2x2)ϑ2(x1)ϑ2(0)

ϑ1(x2)ϑ2(x2)
.

Exercise 3. Check this in the style used for identity 1.

Watson’s Identities. Watson [1929] found a pretty variant with the doubled
period ratio in it:

ϑ1(x1 | ω)ϑ1(x2 | ω) = ϑ3(x1 + x2 | 2ω)ϑ2(x1 − x2 | 2ω)

− ϑ2(x1 + x2 | 2ω)ϑ3(x1 − x2 | 2ω).

Proof. Write out the left side as a sum over n ∈ Z4 (line 1); make the substitution
n1 + n2 = n′

1, n1 − n2 = n′
2, recognizing that n′

1 and n′
2 are now of like

parity (lines 2 and 3); and split the sum so produced according to that parity
(line 4):

∑
Z2

(−1)n1+n2 p(2n1−1)x1+(2n2−1)x2 q (n1−1/2)2+(n2−1/2)2

= −
∑

n′
1 ≡ n′

2(mod 2)

(−1)n′
1 p(n′

1+n′
2−1)x1+(n′

1−n′
2−1)x2 q (1/4)[(n′

1+n′
2−1)2+(n′

1−n′
2−1)2]

= −
∑

n1 ≡ n2(mod 2)

(−1)n1 p(n1−1)(x1+x2)q
1
2 (n1−1)2 × pn2(x1−x2)q

1
2 n2

2

= +
∑

Z

p2n(x1+x2)q2n2 ×
∑

Z

p(2n−1)(x1−x2)q2(n−1/2)2

−
∑

Z

p(2n−1)(x1+x2)q2(n−1/2)2 ×
∑

Z

p2n(x1−x2)q2n2
.

Now read it off.

Exercise 4.

(a) ϑ1(x1 | ω)ϑ2(x2 | ω) = ϑ4(x1 + x2 | 2ω)ϑ1(x1 − x2 | ω)

+ ϑ1(x1 + x2 | 2ω)ϑ4(x1 − x2 | ω),
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(b) ϑ2(x1 | ω)ϑ2(x2 | ω) = ϑ3(x1 + x2 | 2ω)ϑ2(x1 − x2 | ω)

+ ϑ2(x1 + x2 | 2ω)ϑ3(x1 − x2 | ω),

(c) ϑ3(x1 | ω)ϑ4(x2 | ω) = ϑ4(x1 + x2 | 2ω)ϑ4(x1 − x2 | ω)

+ ϑ1(x1 + x2 | 2ω)ϑ1(x1 − x2 | ω)

can be proved in the same way, but use Table 3.1.1 instead.

Exercise 5. Differentiate (a) by x1 and put x1 = x2 = 0, evaluate (b) and
(c) at the same place, and combine to confirm that ϑ2(0)ϑ3(0)ϑ4(0)/ϑ ′

1(0) is
unchanged by doubling the period ratio. Now iterate. This is Watson’s [1929]
pretty proof of identity 2.

3.3 The Jacobi and Weierstrass Connections

The purpose of this section is to express all the important Jacobian and Weier-
strassian quantities by means of theta functions.

The Jacobi Connection. The function f (x) = ϑ1(x)/ϑ4(x) is periodic relative
to the lattice L∗ = 2Z ⊕ ωZ (see Table 3.1.1) with simple roots at x = 0
and x = 1, simple poles at x = ω/2 and x = ω/2 + 1, and no others in
the fundamental cell (see Table 3.1.2). It is a candidate for sin amp. Now
f ′(x) = πϑ2

4 (0)ϑ2(x)ϑ3(x)ϑ−2
4 (x), as you will check in ex. 1, to follow, and it

follows from ex. 2.1 that

( f ′)2 = [
ϑ2

2 (0) − ϑ2
3 (0) f 2

] [
ϑ2

3 (0) − ϑ2
2 (0) f 2

]
,

which confirms the idea; in fact, you have the identities:

sn(x, k) = ϑ3(0)

ϑ2(0)

ϑ1

ϑ4

(
x ′ | ω)

with x ′ = x/πϑ2
3 (0),

k2 = ϑ4
2 (0)

ϑ4
3 (0)

,

(k ′)2 = ϑ4
4 (0)

ϑ4
3 (0)

,

K (k) = π

2
ϑ2

3 (0),

√−1K ′(k) = π

2
ϑ2

3 (0) × ω.
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Exercise 1. Check the details. Hints: Exs. 1.3 and 2.1 are helpful. For example,
to verify f ′(x) = πϑ2

4 (0)ϑ2(x)ϑ3(x)ϑ−2
4 (x), you will want to know that ϑ ′

1ϑ4 −
ϑ1ϑ

′
4 vanishes at the roots of ϑ2ϑ3 = 0; this follows from ex. 1.3 and Table 3.1.2.

Exercise 2. The arithmetic–geometric mean M(a, b) of Section 2.3 is to be
expressed by null values. Answer: M

(
ϑ2

4 (0)/ϑ2
3 (0), 1

) = ϑ−2
3 (0). Hint: See

identity 2.1.

This finishes the Jacobian part of the story.

The Weierstrass Connection. ϑ1 vanishes simply on the lattice L, so−(log ϑ1)′′

has at x = 0 a pole with principal part x−2 + 0 • x−1; it is also periodic with
respect to L since (log b)′′ = 0 (see Table 1.1). In short, it is the ℘-function of
X = C/L, up to an additive constant.

Exercise 3. Confirm ℘(x) = −[log ϑ1(x)]′′ + e1 + [log ϑ1]′′(1/2).

This is one type of connection. The following connections are of more interest:

℘(x) = e1 +
[

ϑ ′
1(0)

ϑ1(x)
•
ϑ2(x)

ϑ2(0)

]2

= e2 +
[

ϑ ′
1(0)

ϑ1(x)
•
ϑ3(x)

ϑ3(0)

]2

= e3 +
[

ϑ ′
1(0)

ϑ1(x)
•
ϑ4(x)

ϑ4(0)

]2

.

Sample proof. ϑ2
2 (x)/ϑ2

1 (x) is periodic relative to L (see Table 3.1.1), it has a
pole of degree 2 at x = 0 and no others in the fundamental cell (see Table 3.1.2),
and it is even. The rest will be plain from the fact that ϑ2(1/2) = 0.

Null Values. The null values ϑ ′
1(0), ϑ2(0), ϑ3(0), ϑ4(0) are related to the roots

e1, e2, e3, to the discriminant � = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2, and to the
absolute invariant j = g3

2/� by a series of pretty identities:

√
e1 − e2 = ϑ ′

1(0)ϑ4(0)

ϑ2(0)ϑ3(0)
= πϑ2

4 (0),

√
e1 − e3 = ϑ ′

1(0)ϑ3(0)

ϑ2(0)ϑ4(0)
= πϑ2

3 (0),

√
e2 − e3 = ϑ ′

1(0)ϑ2(0)

ϑ3(0)ϑ4(0)
= πϑ2

2 (0),
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e1 = 1

3
π2[ϑ4

3 (0) + ϑ4
4 (0)],

e2 = 1

3
π2[ϑ4

2 (0) − ϑ4
4 (0)],

e3 = −1

3
π2[ϑ4

2 (0) + ϑ4
3 (0)],

� = 16π12[ϑ2(0)ϑ3(0)ϑ4(0)]8 = 16π4[ϑ ′
1(0)]8,

j = g3
2

�
= 1

54
× [ϑ8

2 (0) + ϑ8
3 (0) + ϑ8

4 (0)]3

ϑ8
2 (0)ϑ8

3 (0)ϑ8
4 (0)

.

Sample proof. The second presentation of the ℘-function is used at x = 1/2
to obtain

√
e1 − e2 = ϑ ′

1(0)

ϑ1(1/2)

ϑ3(1/2)

ϑ3(0)
= ϑ ′

1(0)ϑ4(0)

ϑ2(0)ϑ3(0)

with the help of Table 3.1.1. The alternative form πϑ2
4 (0) comes from identity

2.2. The next set of formulas follows from identity 2.1 taken at x = 0 to
produce ϑ4

2 (0) + ϑ4
4 (0) = ϑ4

3 (0). The expression for the discriminant � =
g3

2 − 27g2
3 = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2 will be obvious.

Exercise 4. Check that g2 = 2(e2
1+e2

2+e2
3) = (2/3)π4

[
ϑ8

2 (0) + ϑ8
3 (0)+ϑ8

4 (0)
]
.

The expression for the absolute invariant is immediate from that. Now the
Weierstrassian part of the story is finished, too.

3.4 Projective Embedding of Tori

Theta functions provide an alternative proof of the fact that a complex torus is
an algebraic variety. This was the content of Section 2.11. The new proof is
outlined in a series of easy steps.

Step 1. Take X = C/L with L = Z ⊕ ωZ. The map

J : x ∈ C/L → [ϑ1(2x), ϑ2(2x), ϑ3(2x), ϑ4(2x)]

is of period 1; it is also of period ω up to the (nonvanishing) multiplicative factor
b4, by Table 3.1.1; finally, the four theta functions involved have no common
roots, by Table 3.1.2, so J can be construed as a map of X = C/L into the
3-dimensional projective space P3.
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Step 2. The map is 1:1. If not, you could find distinct points x1 and x ′
1 in

the fundamental cell of L with J (x1) = J (x ′
1) and, by Table 3.1.1, you could

produce a second such pair x2, x ′
2 from the first by addition of some half-period,

keeping the four points x1, x ′
1, x2, x ′

2 distinct in C/L. Clearly, J (x2) = J (x ′
2)

by columns 4 and 5 of Table 3.1.1. Now fix a fifth point x3 distinct from
x1, x ′

1, x2, x ′
2 mod L and choose constants c1, c2, c3, c4, not all vanishing, so

as to make ϑ = c1ϑ1 + c2ϑ2 + c3ϑ3 + c4ϑ4 vanish at x = 2x1, 2x2, and 2x3.
This can be done because there are three equations in four unknowns, but is
contradictory. ϑ vanishes at the five distinct points 2x1, 2x ′

1, 2x2, 2x ′
2, and 2x3

of the fundamental cell of the doubled lattice 2L and that is too many, as only
four are permitted by ex. 1.4.

Step 3. Let xn = ϑn(2x), for n = 1, 2, 3, 4, and recall identity 1 from Section 2
and its companions from ex. 2.1. They state that the image of X = C/L in P3

lies in the intersection V of the two quadrics

x2
3ϑ

2
3 (0) − x2

2ϑ
2
2 (0) = x2

4ϑ
2
4 (0),

x2
3ϑ

2
2 (0) − x2

2ϑ
2
3 (0) = x2

1ϑ
2
4 (0).

Step 4 confirms that the image is precisely V , that is, J (X) = V ⊂ P3.

Proof. The equation c1ϑ1(2x) + c2ϑ2(2x) + c3ϑ3(2x) + c4ϑ4(2x) = 0 has
precisely four roots in the fundamental cell of 2L, by ex. 1.4. This means that
the projective plane

c1x1 + c2x2 + c3x3 + c4x4 = 0

intersects the image of X in precisely four points. The proof is now finished by
invoking an elementary fact of geometry: A plane meets a pair of quadrics in
P3 in at most four points. This forces the image to fill up V . Why?

Exercise 1. The rule of intersections in P3 is an instance of Bezout’s theorem.
Shafarevich [1977: 198] or Kirwan [1992] can be consulted for the general
statement. Give a proof for the present purpose along the following lines: First
change coordinates so that the plane is x4 = 0. This reduces the problem
to checking that two quadrics in P2 have at most four intersections. Next
reduce one quartic to the projective circle x2

1 + x2
2 + x2

3 = 0 and uniformize
it by a projective line P1 via the substitution x1 = (1/2)(x + x−1), x2 =
(
√−1/2)(x − x−1), and x3 = √−1 of Section 1.10. The second quadric is

now expressed by the vanishing of a rational function of degree at most 4 on
P1. The rest will be plain.
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Exercise 2. Check the conformality of the correspondence between the torus
X and the intersection V of the two quadrics.

Punch Line. X = C/L is presented as the locus, in P3, of the common roots of
two homogeneus polynomials of degree 2, that is, it is an algebraic variety.

3.5 Products

The next item of business is Jacobi’s [1829] expression of the ϑ-functions as
infinite products; these will be applied to number-theoretic questions presently.
The formulas are reminiscent of Euler’s [1743] product

sin πx = πx
∞∏

n=1

(1 − x2/n2)

Exercise 1. Prove that in the following style: (1−x2/n2) = (1−x/n)(1+x/n),
so the product P(x) satisfies P(x + 1) = −P(x). Q(x) = sin πx/P(x) is now
seen to be a pole-free function of z = exp(2π

√−1x). Q(x) = o(z) at z = ∞.
What about z = 0? What then?

Jacobi’s products are now displayed with p = eπ
√−1x and q = eπ

√−1ω, as

before, and C =
∞∏

n=1
(1 − q2n):

√−1ϑ1(x) = Cq1/4(p − p−1)
∞∏

n=1

(1 − q2n p2)(1 − q2n p−2),

ϑ2(x) = Cq1/4(p + p−1)
∞∏

n=1

(1 + q2n p2)(1 + q2n p−2),

ϑ3(x) = C
∞∏

n=1

(1 + q2n−1 p2)(1 + q2n−1 p−2),

ϑ4(x) = C
∞∏

n=1

(1 − q2n−1 p2)(1 − q2n−1 p−2);

evaluating at x = 0 supplies products for the null values:

π−1ϑ ′
1(0) = 2Cq1/4

∞∏
n=1

(1 − q2n)2,
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ϑ2(0) = 2Cq1/4
∞∏

n=1

(1 + q2n)2,

ϑ3(0) = C
∞∏

n=1

(1 + q2n−1)2,

ϑ4(0) = C
∞∏

n=1

(1 − q2n−1)2.

Proof. ϑ3(x) = 0 has simple roots at the shifted lattice L + 1/2 + ω/2 (see
Table 3.1.2), that is, when p2 = −q2n+1 or p2 = −1/q2n+1. Now |q| < 1, so
the product f (p) = ∏

(1 + q2n+1 p2)(1 + q2n+1 p−2) converges fine, it has the
same roots as ϑ3, it is of period 1 since p2 = e2π

√−1x is such, and it reacts to
the shift x �→ x + ω (p �→ pq) as

f (p) �→ f (pq) =
∏

(1 + q2n+3 p2)(1 + q2n−1 p−2)

= 1 + q−1 p−2

1 + qp2
f (p) = q−1 p−2 f (p).

ϑ3 transforms in the same way (see Table 3.1.1) so the ratio ϑ3/ f is a pole-free
elliptic function, which is to say it is a constant C . The other three products,
with the same constant C , are deduced from columns 1 and 2 of Table 3.1.1.
The value of C is easily determined from identity 2.2, the products for the null
values, and the evaluation

∞∏
n=1

(1 + q2n)(1 − q2(2n−1)) ≡ P(q) = 1.

Exercise 2. Prove that P(q) = ∏
(1+qn)(1−q2n−1). Deduce P(q) = P(q2) =

P(q4), and so on, and so confirm that P(q) = 1.

Now, by identity 2.2 and the products for null values,

1 = ϑ2(0)ϑ3(0)ϑ4(0)

π−1ϑ ′
1(0)

= C2
∞∏

n=1

(1 + q2n)2(1 + q2n−1)2(1 − q2n−1)2(1 − q2n)−2

= C2
∞∏

n=1

(1 + q2n)2(1 − q2(2n−1))2(1 − q2n)−2

= C2
∞∏

n=1

(1 − q2n)−2,
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so C = ± ∏
(1 − q2n), and the correct sign is found to be +1 upon evaluation

of ϑ3(0) at ω = √−1∞ (q = 0). The proof is finished.
The sum for ϑ3 is written out in all its glory as Jacobi’s triple product:

ϑ3(x) =
∑

Z

p2nqn =
∞∏

n=1

(1 − q2n)(1 + q2n−1 p2)(1 + q2n−1 p−2).

Exercise 3. ϑ1(x)[sin(πx)]−1 is an entire function F(x). Check that F ′′(0)/
F(0) = 8π2 ∑

q2n(1 − q2n)−2.

Exercise 4. Check the identity

∞∑
n=0

(−1)n(2n + 1)qn(n+1)/2 =
∞∏

n=1

(1 − qn)3.

Hint: Jacobi’s triple product is multiplied by p and differentiated with regard
to that variable at p = √−q .

Exercise 5. The Fermat curve x3
0 + x3

1 + x3
2 = 0 is of genus 1. Prove

that; compare ex. 2.11.4. Now uniformize it by means of x0 = P(q), x1 =
ρ1/3 P(ρq), x2 = ρ2/3 P(ρ2q) with ρ = e2π

√−1/3 and P(q) = ∏
(1 − qn), this

being the cube root of the product of ex. 4. Hint: n(n + 1)/2 ≡ 0 or 1 (but
not 2) mod 3, so the sum of ex. 4 satisfies S(q) + ρS(ρq) + ρ2S(ρ2q) = 0.
This clever proof is due to Garvan [1995]. The fact appears for the first time in
Farkas and Kra [1993]. It seems remarkable that it was not known before.

A whole series of pretty expressions for Weierstrassian and Jacobian quantities
can be obtained from the ϑ-products via the identities of Section 3. Jacobi
[1829] produced a vast number of these; a few samples are presented here.

Sample 1.

k2 = ϑ4
2 (0)

ϑ4
3 (0)

= 16q
∏(

1 + q2n

1 + q2n−1

)8

and

(k ′)2 = ϑ4
4 (0)

ϑ4
3 (0)

=
∏(

1 − q2n−1

1 + q2n−1

)8

,
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so, with the temporary notation k∗ = k/4
√

q ,

k ′
√

k∗ =
∏(

1 + q2n−1

1 + q2n

)2 (
1 − q2n−1

1 + q2n−1

)4

=
∏

(1 − q2n−1)4(1 + qn)−2

=
∏

(1 − q2n)6,

by ex. 2.

Exercise 6. Check the allied identities:
∏

(1 + q2n−1)6 = 1/
√

k∗k ′,
∏

(1 + q2n)6 = k∗/
√

k ′,
∏

(1 − q2n)6 = 8π−3k∗k ′K 3(k).

Sample 2.

sn (2K (k)x, k) = ϑ3(0)

ϑ2(0)

ϑ1(x)

ϑ4(x)

= 2q1/4 •
sin πx√

k

∏ 1 − 2q2n cos 2πx + q4n

1 − 2q2n−1 cos 2πx + q2(2n−1)
.

Sample 3.

ϑ3(x)

ϑ4(x)
=

∏[
(1 + q2n)/(1 − q2n)

]2 ×
∑

Z

e2π
√−1nx

cosh(nπω)
.

Proof. 2 For simplicity, take ω purely imaginary, so that 0 < q < 1, and view

ϑ3(x)

ϑ4(x)
=

∏ (1 + q2n−1 p2)(1 + q2n−1 p−2)

(1 − q2n−1 p2)(1 − q2n−1 p−2)

as a function F(z) of z = p2. It has a simple pole at z = q, with residue r , and
no others in the annulus q3 < |z| < q−1. Now expand F in q < |z| < q−1 as∑

Z Fnz−n with Fn = (2π
√−1)−1

∮
Fzn−1dz, the integral being taken about

|z| = 1. F(q2z) = −F(z), by Table 3.1.1, so deformation of the contour

2 Schoenberg [1981].
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produces

Fn − r × qn−1 = 1

2π
√−1

∫

|z|=q2
F(z)zn−1dz

= 1

2π
√−1

∫

|z|=1
F(q2z)zn−1dz × q2n

= −q2n

2π
√−1

∫

|z|=1
F(z)zn−1dz

= −q2n Fn,

which is to say Fn = r (1 + q2n)−1qn−1. The evaluation of the residue as
2q

∏
(1 + q2n)2(1 − q2n)−2 completes the proof:

ϑ3(x)

ϑ4(x)
=

∏(
1 + q2n

1 − q2n

)2

×
[∑

Z

2p−2n

qn + q−n
=

∑
Z

e2π
√−1nx

cosh(πnω)

]
.

Sample 4.

� = (2π )4
[
ϑ ′

1(0)
]8 = (2π )12C8q2

∞∏
n=1

(1 − q2n)16 = (2π )12q2
∞∏

n=1

(1 − q2n)24.

The final product may be expanded as (2π )12 ∑∞
1 τ (n)q2n with rational integral

coefficients τ (n). These are the Ramanujan numbers and have marvelous
arithmetic properties. Ramanujan [1916] conjectured and Mordell [1917]
proved that τ (n) is a multiplicative function, that is, τ (mn) = τ (m)τ (n) if
m, n are coprime; see Section 4.8 for more information.

Exercise 7. Compute τ (1) = 1, τ (2) = −24, τ (3) = 252, and τ (4) = −1472.

Exercise 8. Use the product for the discriminant and ex. 2 to check that

�
(ω

2

)
�

(
ω + 1

2

)
�(2ω) = −�3(ω),

�
(ω

3

)
�

(
ω + 1

3

)
�

(
ω + 2

3

)
�(3ω) = �4(ω).

Exercise 9. Prove that

�(ω)1/6�(2ω)1/12�(4ω)1/6 =
∞∏

n=1

(1 − qn)2+2m,
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in which m = 4, 2, or 1 according as 4 divides n, or only 2, or n is odd. Zagier
[1992] presents more formulas of this type.

Sample 5. g2 = (2/3)π4
[
ϑ8

2 (0) + ϑ8
3 (0) + ϑ8

4 (0)
]

by ex. 3.4, so

j = g3
2

�
= (2/3)3π4

[
ϑ8

2 (0) + ϑ8
3 (0) + ϑ8

4 (0)
]3

212q2
∏

(1 − q2k)24

= 24−3q−2
[
28q2

∏
(1 + q2k)16 +

∏
(1 + q2k−1)16 +

∏
(1 − q2k−1)16

]3
.

This may be expanded in the form 1728−1q−2(1 + c(1)q2 + c(2)q4 + · · · .)
with rational integral coefficients, as you will easily check. Zuckerman [1939]
computed the first 24 coefficients and van Wijngaarden [1953] went on to

c100 = 83798831110707476912751950384757452703801918339072000,

but who’s counting? Peterson [1932] obtained the asymptotic law c(n) �
2−1/2n−3/4 exp(4π

√
n). Like Ramanujan numbers, these too have intricate

arithmetic properties; see, for example, Van der Pol [1951] and Atkin and
O’Brien [1967]. What is most startling is their appearance in connection with
the celebrated monster group: They are the dimensions of its irreducible
representations! Conway and Norton [1979] and Thompson [1979] explain
this; see also Koike [1994].

3.6 Sums of Two Squares

The problem of expressing a whole number as sum of perfect squares goes back
to antiquity. Neugebauer [1957] traced it back to Babylonian times. Pythagoras
(520 B.C.) understood the special case a2 + b2 = c2. Fermat (1640) resolved
the question of which primes are sums of two squares, but it was Jacobi [1829]
who produced the most remarkable results via his theta functions, and it is his
method that is followed here. The case of four squares is postponed to the next
section. Grosswald [1984a] gives the full story, including the more difficult
case of sums of three squares. The present story begins with the identity of
Section 3

√
℘(x) − e3 = ϑ ′

1(0)ϑ4(x)

ϑ1(x)ϑ4(0)

and the expansion of this quotient into partial fractions

2π
√−1 ×

[ ∞∑
n=0

qn p−1

1 − q2n p−2
−

∞∑
n=1

qn p

1 − q2n p2

]
.
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This looks more complicated than it is. The quotient is periodic relative to the
lattice 2Z ⊕ ωZ, by Table 3.1.1, as is the sum, by inspection, and they have
common simple roots, at x = 0 and x = 1, with the same residues +1 and
−1, respectively. It follows that they differ only by a constant, which is seen
to vanish by evaluation at the root x = ω/2 of ϑ4(x) = 0. To proceed, take
x = 1/2 and use

qn

1 + q2n
= qn 1 − q2n

1 − q4n
= (qn − q3n)

∞∑
l=0

q4nl

to produce

π−1√e1 − e3 = 1 + 4
∞∑

n=1

qn(1 + q2n)−1

= 1 + 4
∞∑

n=1

∞∑
l=0

qn(4l+1) − 4
∞∑

n=1

∞∑
l=0

qn(4l+3).

Now comes the punch line. By Section 3, you recognize the left-hand side as

ϑ2
3 (0) =

[∑
Z

qn2

]2

=
∑
Z2

qn2
1+n2

2 =
∞∑

m=0

r2(m)qm,

in which r2(m) is the number of representations of the whole number m as a sum
of two squares, whereupon an arithmetic theorem of Jacobi [1829] emerges by
comparison of like powers: r2(m) = 4d1(m) − 4d3(m), which is to say that the
number of representations of a whole number as a sum of two squares is four
times the excess (if any) of its positive divisors d ≡ 1 mod 4 over its positive
divisors d ≡ 3 mod 4. Fermat’s theorem (1640), that odd primes ≡ 1 mod 4
are sums of two squares but primes ≡ 3 mod 4 are not, is a special case.

Exercise 1. Check the details of Fermat’s statement; in particular, show that
r2(p) = 8 for p ≡ 1 mod 4, so the representation p = n2

1 + n2
2 is unique, up to

trivialities.

Exercise 2. Confirm the more general statement that the whole number m
(prime or not) is a sum of two squares if and only if all its prime factors
≡ 3 mod 4 appear in even powers.

Hardy and Wright [1979] and Nagell [1964] provide elementary proofs of these
and many related results.
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3.7 Sums of Four Squares

The investigation is based upon the null value:

ϑ4
3 (0) =

∑
Z4

qn2
1+n2

2+n2
3+n2

4 =
∞∑

m=0

r4(m)qm,

in which r4(m) is now the number of representations of the whole number m as
a sum of four squares.

Step 1. The identity
√

℘(x) − e3 = ϑ ′
1(0)ϑ4(x)/ϑ1(x)ϑ4(0) is used to verify

that e3 is the null value −ϑ ′′
4 (0)/ϑ4(0). This is done by expanding both sides

in the form x−1 + 0 • 1 + c • x , plus terms that it is needless to record, keeping
in mind that ℘(x) = x−2 + 0 • x−1 + 0 • 1 + · · ·, that ϑ1 is odd, and that ϑ4 is
even: Up to terms in x ,

√
℘(x) − e3 = 1

x
− 1

2
e3x

and

ϑ ′
1(0)ϑ4(x)

ϑ1(x)ϑ4(0)
= ϑ ′

1(0)

ϑ4(0)

ϑ4(0) + (x2/2)ϑ ′′
4 (0)

xϑ ′
1(0)

= 1

x
+ 1

2

ϑ ′′
4 (0)

ϑ4(0)
x .

Now compare the coefficients of x on both sides.

Exercise 1. Check that e1 = −ϑ ′′
2 (0)/ϑ2(0) in the same style.

Step 2. The identity ϑ4
3 (0) = π−2(e1 − e3) and the heat equation3 ϑ ′′ =

4π
√−1ϑ

�

figuring in the proof of identity 2.2 now lead to

ϑ4
3 (0) = π−2

[
ϑ ′′

4 (0)

ϑ4(0)
− ϑ ′′

2 (0)

ϑ2(0)

]
= 4

√−1

π

[
ϑ4

�

(0)

ϑ4(0)
− ϑ2

�

(0)

ϑ2(0)

]
,

which can also be expressed as 4q× the logarithmic derivative of ϑ2(0)/ϑ4(0)
with regard to q .

Step 3. Express ϑ2(0)/ϑ4(0) by the products of Section 5 and perform the stated
differentiation:

ϑ2(0)

ϑ4(0)
= 2q1/4

∞∏
n=1

(1 + q2n)2(1 − q2n−1)−2 = 2q1/4
∞∏

n=1

(1 − q4n)2(1 − qn)−2,

3 �

means ∂/∂ω.
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so

ϑ4
3 (0) = 4q × d

dq
log 2q1/4

∞∏
n=1

(1 − q4n)2(1 − qn)−2

= 1 −
∞∑

n=1

32nq4n

1 − q4n
+

∞∑
l=1

8lql

1 − ql

= 1 − 32
∞∑

n=1

n
∞∑

l=1

q4ln + 8
∞∑

n=1

n
∞∑

l=1

qln.

Step 4. Compare the start to the finish, with the result that r4(n) = 8 × the
sum of divisors d of n indivisible by 4. This is due to Jacobi [1829]. For
example, 3 = 02 + (±1)2 + (±1)2 + (±1)2 in various orders, for the total
count of r4(3) = 4 × 23 = 32 = 8 × (1 + 3). Note that d = 1 always
divides n so r4(n) cannot vanish, that is, every whole number is a sum of four
squares. Bachet (1621) and Lagrange (1770) proved this by elementary means;
see Nagell [1964: 191–5]. Jacobi [1829] considered also sums of six and eight
squares; r6(n) is a bit complicated, but r8(n) is 16× the sum of cubes of divisors
d of n if n is odd, and 16× the excess of the even cubes over the odd cubes
if n is even. Eisenstein [1847] found elementary proofs of these remarkable
results. Hirschhorn [1985, 1987] used Jacobi’s product for ϑ3 to give simpler
proofs for sums of two and four squares. Hardy and Wright [1979: 132–60]
has a fascinating essay on the whole subject; see also Roberts [1977: 167–84]
for a simpler account.

3.8 Euler’s Identities: Partitio Numerorum

Euler delighted in the manipulation of series and proved a host of remarkable
identities with deep number-theoretic implications. Here we present a sampling
of these using theta functions for most of the proofs.

Pentagonal Numbers. The product

ϑ3 =
∞∏

n=1

(1 − q2n)(1 + q2n−1 p2)(1 + q2n−1 p−2)

is now employed with
√−1q1/4 in place of p and q3/2 in place of q to produce

Euler’s pentagonal number identity [1748]:

∑
n∈Z

(−1)nqn(3n+1)/2 =
∞∏

n=1

(1 − qn).
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The name will be explained in a moment, but first expand the right-hand product
in powers of q:

∑
n∈Z

(−1)nqn(3n+1)/2 =
∞∏

n=1

(1 − qn)

=
∞∑

d=0

(−1)d
∑

n1, ..., nd≥1

qn1+···+nd

= 1 +
∞∑

m=1

qm
∑

n1+···+nd=m

(−1)d

= 1 +
∞∑

m=1

qm [pe(m) − po(m)] ,

in which pe(m), respectively po(m), is the number of partitions of the whole
number m into an even, or into an odd, number of parts n ≥ 1. This produces
the beautiful result of Euler that pe(m) − po(m) = (−1)m or 0 according as m
is a pentagonal number m = (1/2)n(3n±1) or not; compare Hardy and Wright
[1979: 83–100] for a series of enlightening proofs in different styles and also
Shanks [1951] for a beautiful elementary proof. The adjective pentagonal is
justified by the diagram and the next exercise.

Exercise 1. Check that (1/2)n(3n − 1) is the number of vertices at succes-
sive stages in Fig. 3.1. Hint: The increment (1/2)n(3n − 1) − (1/2)(n − 1)
[3(n − 1) − 1] = 3n − 2 corresponds to the adjunction of 3 new lines, with two
vertices apiece, two of which are shared, whence the −2.

Figure 3.1. Pentagonal numbers.
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Amplification. In the identity

∞∏
n=1

(1 − qn)−1 = 1 +
∞∑

d=1

∑
n1, ..., nd≥1

qn1+···+nd = 1 +
∞∑

n=1

p(n)qn,

the coefficient p(n) is the number of partitions of the whole number n ≥ 1
into positive parts without regard to order; for example, 4 = 4 = 1 + 3 =
2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1, for a total count p(4) = 5. It is of rapid
growth: p(n) � exp(π

√
2n/3)/4n

√
3; see Knopp [1970] for this and Andrews

[1976] for more information. It also has remarkable arithmetic properties such
as p(5n + 4) ≡ 0 mod 5, p(7n + 5) ≡ 0 mod 7, p(11n + 6) ≡ 0 mod 11, for
which see Watson [1938] and, for elementary proofs, Hardy and Wright [1979:
273–97] and Winquist [1969].

Related Identities. Euler proved other beautiful identities between similar
products and sums, such as

∞∏
n=1

(1 + q2n−1) = 1 +
∞∑

n=1

qn2
[(1 − q2)(1 − q4) · · · (1 − q2n)]−1

and

∞∏
n=1

(1 + q2n) = 1 +
∞∑

n=1

qn(n+1)[(1 − q2)(1 − q4) · · · (1 − q2m)]−1.

Proof. F(x) =
∞∏

n=1
(1 + qn x) satisfies (1 + qx)F(qx) = F(x), which serves

to determine the series F(x) = ∑
Fn xn by the rule Fn = qn(1 − qn)−1 Fn−1

(n ≥ 1) with F0 = 1. In short,

∞∏
n=1

(1 + qn x) =
∞∑

n=0

qn(n+1)/2[(1 − q) · · · (1 − qn)]−1xn.

Now replace q by q2 and take x = q−1 or 1.

Exercise 2. Check that

∞∏
n=1

(1 + qn x)−1 =
∞∑

n=0

(−1)nqn[(1 − q) · · · (1 − qn)]−1xn.
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Exercise 3. Use Jacobi’s product for ϑ3 with q5/2 in place of q and p2 = −q3/2

or −q1/2 to obtain

∞∏
n=0

(1 − q5n+1)(1 − q5n+4)(1 − q5n+5) =
∞∑

n=−∞
(−1)nq (5n+3)n/2,

∞∏
n=0

(1 − q5n+2)(1 − q5n+3)(1 − q5n+5) =
∞∑

n=−∞
(−1)nq (5n+1)n/2.

The deeper identities of Rogers [1894] and Ramanujan [1927: no. 6] state that

∞∏
n=0

1

(1 − q5n+1)(1 − q5n+4)
=

∞∑
n=0

qn2 [
(1 − q) · · · (1 − qn)

]−1
,

∞∏
n=0

1

(1 − q5n+2)(1 − q5n+3)
=

∞∑
n=0

qn(n+1)
[
(1 − q) · · · (1 − qn)

]−1
.

Andrews [1989] and Berndt [1991: 77] present the history of these identities
and compare the several known proofs; none of them is simple and they are not
presented here. Hardy [1940: 83–100] discusses the whole circle of ideas and
explains its significance for partitions; see also Rademacher [1973].

Exercise 4. The first Rogers–Ramanujan identity states that the number of
partitions of a whole number m into equal or unequal parts ≡ 1 mod 5 is the
same as the number of its partitions into m equal parts differing by 2 or more.
Prove it. Hints: The first part is self-evident from the product. The second
employs the fact that there is a natural pairing between the partitions of m
into parts not exceeding n and the partitions of m + n2 into parts differing
by at least 2. This will appear from Fig. 3.2 in which m = 16 is partitioned
into 5 + 5 + 3 + 2 + 1, as depicted in the right-hand dotted columns, and
41 = 16 + 52 = 16 + 1 + 3 + 5 + 7 + 9 is partitioned into 3 + 5 + 8 + 11 + 14,
as depicted in the rows.

The number and variety of such identities is endless. Watson’s quintuple
product identity [1929]

∞∏
n=1

(1 − qn)(1 − qn p)(1 − qn−1 p−1)(1 − q2n−1 p2)(1 − q2n−1 p−2)

=
∑

Z

(
p3n − p−3n−1

)
qn(3n+2)/2
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Figure 3.2. Partitions.

will serve as a finale. Watson discovered it in the course of proving certain
statements of Ramanujan; see Carlitz and Subbarao [1972] for an easy proof
and Berndt [1991: 83] for its history.

3.9 Jacobi’s and Higher Substitutions

The dependence of the ϑ-functions upon the period ratio ω has been largely
neglected to date. The rule ϑ3(x | ω + 1) = ϑ4(x | ω) provides the simplest
example.

Exercise 1. Check it.

Jacobi’s substitution. This describes the effect upon ϑ3(x | ω) = ∑
p2nqn2

of
the inversion ω �→ −1/ω:

ϑ3

(
x

ω

∣∣∣ − 1

ω

)
= √

ωe−πω/4eπ
√−1x2/ωϑ3(x | ω).

This is interesting in itself; it is also preparatory to further arithmetic applica-
tions, namely, the law of quadratic reciprocity of Section 10 to follow. The
other ϑ-functions obey similar rules, deducible from Table 3.1.1.
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Proof. Let ϑ∗
3 be the left-hand function in Jacobi’s rule, with its variable re-

versed: ϑ∗
3 (x) = ϑ3(−x/ω | − 1/ω). It vanishes simply on

ω × [Z ⊕ (1/ω)Z + 1/2 + 1/2ω] = Z ⊕ ωZ + 1/2 + ω/2,

as does ϑ3(x | ω) itself (see Table 3.1.2), so e−π
√−1x2/ωϑ∗

3 (x)/ϑ3(x) is a root-
free function of x ∈ C. It is also periodic relative to Z ⊕ ωZ, as you will check
from Table 3.1.1, and so must be constant (= c). Further use of Table 3.1.1
produces similar results for ϑ1, ϑ2, and ϑ4:

cϑ1 = −√−1 f ϑ∗
1 , cϑ2 = f ϑ∗

4 , cϑ3 = f ϑ∗
3 , cϑ4 = f ϑ∗

2

with the same constant c and the common factor f = exp(−π
√−1x2/ω); in

particular, cϑ ′
1(0 | ω) = (

√−1/ω)ϑ ′
1(0 | − 1/ω). Identity 2.2 is now applied to

the starred and unstarred null values:

c3ϑ ′
1(0 | ω) = c3πϑ2(0)ϑ3(0)ϑ4(0)

= πϑ∗
2 (0)ϑ∗

3 (0)ϑ∗
4 (0)

= ϑ ′
1(0 | − 1/ω) = −√−1ωcϑ ′

1(0 | ω);

that is, c2 = −√−1ω, which is to say, c = ±e−π
√−1/4√ω, with the principal

branch of the root. The correct sign (+1) is elicited by evaluation at the fixed
point ω = √−1 of the involution ω �→ −1/ω.

Modular Substitutions in General. Table 3.9.1 shows how the null values
transform under the substitutions ω �→ ω + 1 and ω �→ −1/ω. These
two substitutions generate the modular group P SL(2, Z) discussed in
Chapter 4.

Table 3.9.1. Transformations of null values

ω + 1 −1/ω

ϑ ′
1 eπ

√−1/4ϑ ′
1 ω3/2e−3π

√−1/4ϑ ′
1

ϑ2 eπ
√−1/4ϑ2 ω1/2e−π

√−1/4ϑ4

ϑ3 ϑ4 ω1/2e−π
√−1/4ϑ3

ϑ4 ϑ3 ω1/2e−π
√−1/4ϑ2
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Exercise 2. Check that.

Exercise 3. For the general modular substitution [ab/cd] ∈ P SL(2, Z),

ϑ1

(
x

cω + d

∣∣∣ aω + b

cω + d

)
= (cω + d)1/2 exp

(
π

√−1cx2

cω + d

)
ϑ1(x | ω)

up to an eighth root of unity. The eighth root is a character of the modular
group. Why? Fricke [1928: 483–91] gives its value; it is complicated and will
not be repeated here.

Exercise 4. Jacobi’s substitution applied to the null value ϑ3(0) with positive
imaginary ω = √−1t yields a pretty fact, known earlier to Gauss:

∑
Z

e−πn2t = 1√
t

∑
Z

e−πn2/t .

Check that for t = 0.01, the evaluation of the left-hand side to one significant
figure requires 21 summands whereas one summand of the right-hand side
yields about 130 significant digits! This opens the way to the very effective
computation of theta functions.

Exercise 5. Prove the identity of Landsberg [1893] and Schaar [1890]: For
positive integral p and q ,

1√
p

p−1∑
n=0

e2π
√−1n2q/p = eπ

√−1/4

√
2q

2q−1∑
n=0

e−π
√−1n2 p/2q .

Hint: Use the null value formula of ex. 4 with t −2
√−1q/p in place of t . Then

make t approach 0 via positive values, using the fact that exp(2π
√−1n2q/p)

is of period p as a function of n ∈ Z. This pretty proof is due to Pólya
[1927].

Poisson’s Summation Formula. A very different proof of Jacobi’s substitution
may be obtained from Poisson’s summation formula; see Dym and McKean
[1972] for a brief discussion, and Rademacher [1973] for the full treatment. The
idea is simple. Let f (x) vanish rapidly at infinity and likewise its transform
f̂ (k) = ∫

R
e−2π

√−1kx f (x)dx . Then f1(x) = ∑
Z f (x + m) is of period 1 and

its expansion into a Fourier series
∑

Z cne2π
√−1nx produces Poisson’s formula
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∑

Z f (m) = f1(0) = ∑
Z f̂ (n) upon making the identification

cn =
∫ 1

0
e−2π

√−1nx f1(x)dx =
∑

Z

∫ m+1

m
e−2π

√−1nx f (x)dx = f̂ (n).

The application is to f (x) = eπ
√−1ωx2

with f̂ (k) = [−√−1ω]−1/2e−π
√−1k2/ω.

Jacobi’s substitution drops out.

Exercise 6. Check it.

Landen’s Transformation: Reprise. The rule K (k1) = (1/2)(1 + k ′)K (k)
has to do with doubling the period ratio: if k = k(ω), then k(2ω) = (1 −
k ′)(1 + k ′)−1 ≡ k1; see Sections 2.3 and 2.17. It may be expressed in terms
of null values: k ′ = ϑ2

4 (0)/ϑ2
3 (0) and K (k) = (π/2)ϑ2

3 (0), so ϑ2
3 (0 | 2ω) =

(1/2)
[
ϑ2

3 (0 | ω) + ϑ2
4 (0 | ω)

]
is what you want. The substitution ω �→ 2ω is

the simplest of the so called integral substitutions [ab/cd] of higher level having
determinant 2 or more; see Section 4.13 and also Fricke [1916 (2): 483–91]
for further information about that. Landen’s transformation in its new guise is
a by-product of the identity

ϑ1(2x | 2ω) = ϑ1ϑ2(x | ω)

ϑ4(0 | 2ω)
.

Proof. The quotient of ϑ1(2x | 2ω) by ϑ1ϑ2(x | ω) is periodic relative to the
lattice Z ⊕ ωZ and pole-free, by Tables 3.1.1 and 3.1.2, so it can only be
constant. The rest follows from evaluation at x = 0 and the products for null
values.

Exercise 7. Give details.

Exercise 8. Deduce these formulas for null values:

ϑ2
4 (0 | 2ω) = ϑ3ϑ4(0 | ω) and

ϑ2
3 (0 | 2ω) = 1

2

[
ϑ2

3 (0 | ω) + ϑ2
4 (0 | ω)

]
.

The last is Landen’s transformation in its new form; compare to Gauss’
arithmetic-geometric mean in Section 2.3. Hints on null values: 2ϑ ′

1(0 | ω) =
ϑ ′

1(0 | ω)ϑ2(0 | ω) divided by ϑ4(0 | 2ω). Now use identity 2.2 (once) and iden-
tity 2.1 (twice).

Exercise 9. Check that ϑ1(4x | 4ω) is a constant multiple of ϑ1(x | ω)ϑ1(1/4 −
x | ω)ϑ2(x | ω)ϑ1(1/4 + x | ω). What is the constant?
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3.10 Quadratic Reciprocity

Let p be an odd prime. The integer 0 ≤ k < p is a quadratic residue (k ∈ Q)
if the congruence x2 ≡ k mod p is solvable; otherwise it is a quadratic non-

residue (k ∈ Q′). Define the residue symbol
(

k
p

)
to be +1 or −1 according

as k ∈ Q or not. Gauss’s law of quadratic reciprocity states that if p and q
are odd primes, then

(
p

q

)
•

(
q

p

)
= (−1)

1
2 (p−1) • 1

2 (q−1).

Gauss himself gave eight different proofs. The present one is based upon the
Landsberg–Schaar identity of ex. 9.5; see Roberts [1977: 192–210] and Nagell
[1964: 132–45] for more conventional accounts. Ireland and Rosen [1990]
describe “higher” reciprocity laws obtained by Eisenstein [1847] by means
of elliptic functions. Wyman [1972] presents a simple account of the whole
subject.

The proof of the law of quadratic reciprocity now begins; it is broken into six
easy steps.

Step 1. {12, 22, . . . , (p −1)2} is a two-fold list of Q since j2 ≡ (p − j)2 mod p
and j2 ≡ i2 if and only if j ≡ i or j ≡ −i ≡ p − i mod p. In particular, there
are (1/2)(p − 1) residues and the same number of nonresidues.

Step 2.
(

k
p

)
is a character of the multiplicative group Z×

p of integers modulo p.

Proof. This is the same as saying that (a) Q • Q ⊂ Q, (b) Q • Q′ ⊂ Q′, (c)
Q′ • Q′ ⊂ Q. Item (a) is self-evident. Item (b) follows from the count in step 1
and from the fact that multiplication by 1 ≤ j < p is an automorphism of Z×

p ,
which is to say that, as n runs over a full set of residue classes modulo p, so
does jn. Item (c) is proved the same way.

Step 3. Introduce the Gaussian sum

Gq (e2π
√−1n/q ) =

q−1∑
j=0

e( j2n/q)

with q ≥ 1, prime or not, 1 ≤ n < q , and e(x) = exp(2π
√−1x), and note the
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connection with the residue symbol: For odd prime p and 1 ≤ n < p,

G p(e2π
√−1n/p) =

p−1∑
j=0

e( j2n/p)

= 1 + 2
∑
k∈Q

e(kn/p) −
p−1∑
k=0

e(kn/p)

=
∑
k∈Q

e(kn/p) −
∑
k∈Q′

e(kn/p)

=
p−1∑
k=1

(
k

p

)
e(kn/p)

=
(

n

p

) p−1∑
k=1

(
kn

p

)
e(kn/p)

=
(

n

p

) p−1∑
k=1

(
k

p

)
e(k/p) =

(
n

p

)
G p(e2π

√−1/p),

in which line 2 employs the fact that the second sum vanishes (why?) and line
6 the fact that multiplication by n is an automorphism of Z×

p . In short,

G p(e2π
√−1n/p) =

(
n

p

)
G p(e2π

√−1/p)

for any odd prime p.

Step 4.
(

p
q

)(
q
p

)
= G pq (e2π

√−1/pq )/G p(e2π
√−1/p)Gq (e2π

√−1/q ) for odd

primes p and q.

Proof.
(

p
q

)
is the ratio of G p(e2π

√−1q/p) to G p(e2π
√−1/p), by step 3, so you

have only to check that

G p(e2π
√−1/p)Gq (e2π

√−1/q ) = G pq (e2π
√−1/pq ).

This is easy: As i runs from 0 to p − 1 and j runs from 0 to q − 1, k = i p + jq
runs once over 0 ≤ k < pq , so

G pq (e2π
√−1/pq ) =

pq−1∑
k=0

e(k2/pq)

=
p−1∑
i=0

q−1∑
j=0

e(i2 p/q + 2i j + j2q/p).
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Step 5. Next is the crucial evaluation of the Gaussian sum:

1√
p

G p(e2π
√−1/p) = 1√

2
eπ

√−1/4
(

1 + e−π
√−1p/2

)

for p prime or not.

Proof. Put q = 1 in the Landsberg–Schaar identity of ex. 9.5:

1√
p

p−1∑
n=0

e(n2q/p) = 1√
2q

eπ
√−1/4

2q−1∑
n=0

e(−n2 p/4q).

Step 6. Put this evaluation back into step 4, with the result that

(
p

q

) (
q

p

)
=

√
2e−π

√−1/4 1 + e−π
√−1pq/2

(1 + e−π
√−1p/2)(1 + e−π

√−1q/2)
.

Exercise 1. e−π
√−1n/2 = −√−1 or +√−1 according as n ≡ 1 mod 4 or

n ≡ 3 mod 4. Use this to reduce the display to +1 if either p ≡ 1 mod 4 or
q ≡ 1 mod 4, and to −1 in the opposite case, and check that this is the same as
(−1)(1/2)(p−1)×(1/2)(q−1).

The proof is finished.

Exercise 2. Prove the supplementary laws
(−1

p

)
= (−1)(p−1)/2 and

(
2

p

)
= (−1)(1/8)(p2−1).

Hint for the first:
(

−1
p

)
G p is the complex conjugate of G p. Hint for the second:

Use ex. 9.5 with p = 2.

Example. 666 is a quadratic residue of the prime p = 2137. 666 = 2 • 32 • 37,
so

(
666

2137

)
=

(
2

2137

) (
3

2137

)2 (
37

2137

)
=

(
37

2137

)
,

by the second supplementary law, since 2137 = 4 • 534 + 1 ≡ 1 mod 4 makes
(1/8)(p2 − 1) even. Now 37 is prime and (1/2)(2137 − 1) × (1/2)(37 − 1)
is even, so from 2137 = 57 • 37 + 28, the law of quadratic reciprocity, etc.,
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you find

(
37

2137

)
=

(
2137

37

)
=

(
28

37

)
=

(
2

37

)2 (
7

37

)
=

(
37

7

)
=

(
2

7

)

= (−1)(1/8)(49−1) = +1,

as promised.

Exercise 3. Find a solution of k2 ≡ 666 mod 2137.

3.11 Ramanujan’s Continued Fractions

In a letter of 1913 to Hardy, Ramanujan stated the continued fractions

1

1 + e−2π

1 + e−4π

1 + · · ·

=
⎛
⎝

√
5 + √

5

2
−

√
5 + 1

2

⎞
⎠ e2π/5

and

1

1 + e−π

1 + e−2π

1 + · · ·

=
⎛
⎝

√
5 − √

5

2
−

√
5 − 1

2

⎞
⎠ eπ/5.

Hardy [1937] wrote:

[These formulas] defeated me completely. I had never seen anything in the least like
this before. A single look at them is enough to show that they could only be written
down by a mathematician of the highest class. They must be true because no one would
have the imagination to invent them.

The actual evaluations are mere curiosities, but the beautiful discovery of
Ramanujan upon which they rest is too surprising to omit. It states that the
continued fraction

x = q1/5 ×
(

1

1+
q

1+
q2

1 + . . .

)

is a root of

1

x
− x = 1 + q−1/5

∞∏
n=1

1 − qn/5

1 − q5n
.
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Watson’s [1929] reconstruction of Ramanujan’s line of thought will now be
described; compare Berndt [1991].

Step 1. The sum S(p) = ∑∞
n=0 pnqn2

[(1−q)(1−q2) · · · (1−qn)]−1 converges
for fixed |q| < 1, by inspection. It satisfies S(p) = S(pq) + pq S(pq2), so
Sn = S(qn+1)/S(qn) satisfies Sn = [1 + q/Sn+1]−1, and you have

1

Q(1)
≡ S(q)

S(1)
= 1

1+
q

1+
q2

1 + . . .

in view of Sn = 1 + o(1) for large n. This produces continued fractions of the
desired type.

Step 2. This step employs the Rogers–Ramanujan identities of Section 8 to
express the continued fraction 1/Q as an infinite product:

S(q) = 1 +
∞∑

n=1

qn(n+1)
[
(1 − q) · · · (1 − qn)

]−1 =
∞∏

n=0

1

(1 − q5n+2)(1 − q5n+3)
,

S(1) = 1 +
∞∑

n=1

qn2 [
(1 − q) · · · (1 − qn)

]−1 =
∞∏

n=0

1

(1 − q5n+1)(1 − q5n+4)
,

and so

1

Q
= S(q)

S(1)
=

∞∏
n=0

(1 − q5n+1)(1 − q5n+4)

(1 − q5n+2)(1 − q5n+3)
.

Step 3. The scene now shifts to Euler’s pentagonal identity of Section 8:

∞∏
n=1

(1 − qn) =
∞∑

n=−∞
(−1)nqn(3n+1)/2.

This is applied with q1/5 and q5 in place of q to obtain

∞∏
n=1

(1 − qn/5)

(1 − q5n)
=

∑
(−1)nq (n/10)(3n+1)

∑
(−1)nq (5n/2)(3n+1)

.

The power n(3n+1)/2 ∈ Z is congruent to 0, 2, 2, 0, 1 mod 5 according as n ≡
0, 1, 2, 3, 4 mod 5, so the quotient is expressible in the form A+q1/5 B +q2/5C,

in which A, B, C are sums of whole powers of q . Now A = 1 at q = 0, and
the value B = −1 follows from the fact that (n/2)(3n + 1) ≡ 1 mod 5 if and
only if n = −1 + 5m; in which case (n/10)(3n + 1) = 1/5 + (5m/2)(3m − 1).
This was the goal of step 3. The values of A and C are harder to come by.
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Step 4 is to verify C = −1/A. Start with the identity of ex. 5.4. This is used
with q1/5 and q5 in place of q to produce

(
A − q1/5 + q2/5C

)3 =
∑

(−1)n(2n + 1)q (n/10)(n+1)

∑
(−1)n(2n + 1)q (5n/2)(n+1)

.

Now argue as in step 2: The power n(n + 1)/2 ∈ Z is congruent to 0, 1, 3, 1,

0 mod 5 according as n ≡ 0, 1, 2, 3, 4 mod 5, so the absence of powers ≡ 2/5
mod 5 to the right requires the vanishing of the coefficient 3A(AC + 1) of q2/5

to the left. In short, C = −1/A in view of A(0) = 1.

Step 5 identifies A with Q. The starting point is the identity
(

A − q1/5 − q2/5 A−1
) ∑

(−1)nq (5n/2)(3n+1) =
∑

(−1)nq (n/10)(3n+1),

from which the whole powers of q are to be extracted. On the left, you find

A ×
∑

(−1)nq (5n/2)(3n+1) = A ×
∞∏

n=1

(1 − q5n)

upon reversing the application of Euler’s identity; on the right, whole powers
appear when n(3n + 1)/2 ≡ 0 mod 5, which is to say n ≡ 0 or 3 mod 5, the
upshot being

A ×
∞∏

n=1

(1 − q5n) =
∑

n≡0 or 3(5)

(−1)nq (n/10)(3n+1).

Now introduce the sum

D(p) =
∑

Z

(−1)nq (n/2)(15n+1) p3n +
∑

Z

(−1)nq (5n/2−1)(3n−1) p1−3n

and note that it reduces to the preceding sum at p = 1. The summands of
D cancel in pairs if p = −1/q and, more generally, if p = −q5n−1 or p =
±q5n+3/2 for any n ∈ Z. This suggests comparing D to a product with just
these roots:

P(p) =
∞∏

n=1

(1 + q5n−1 p−1)(1 + q5n−4 p)(1 − q10n−7 p−2)(1 − q10n−3 p2).

The latter is of period 2 in x , as is D, and both are multiplied by −q−8 p−3 if x
is increased by 5ω(p → pq5), so the quotient D/P is pole-free and periodic
relative to 2Z ⊕ 5ωZ; as such, it can only be constant. Its value is obtained by
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inspection at p = q−1:

P(q−1) =
∞∏

n=1

(1 + q5n)(1 + q5n−5)(1 − q10n−5)(1 − q10n−5)

= 2
∞∏

n=1

(1 + q5n)2(1 − q10n−5)2

= 2,

by ex. 5.2, and

D(q−1) = 2
∑

Z

(−1)nq (5n/2)(3n+1) = 2
∞∏

n=1

(1 − q5n),

so D(p) = P(p) × ∏∞
n=1(1 − q5n). Now take p = 1 to obtain A = P(1) and

complete the identification A = Q as follows:

P(1) =
∞∏

n=1

(1 + q5n−1)(1 + q5n−4)(1 − q10n−7)(1 − q10n−3)

=
∞∏

n=1

(1 − q10n−2)

(1 − q5n−1)

(1 − q10n−8)

(1 − q5n−4)
× (1 − q10n−7) (1 − q10n−3)

=
∞∏

n=1

(1 − q5n−2)(1 − q5n−3)

(1 − q5n−1)(1 − q5n−4)

= Q(1).

Step 6. Now invoke the result of step 4 in the form

1 + q−1/5
∞∏
1

1 − qn/5

1 − q5n
= q−1/5 A − q1/5 A−1 = 1

x
− x

with

x = q1/5 A−1 = q1/5 Q−1 = q1/5 ×
(

1

1+
q

1+
q2

1+
q3

1 + · · ·
)

.

This is Ramanujan’s result.

The continued fractions stated at the outset can now be evaluated. The third
identity of ex. 5.6,

q1/2
∏

(1 − q2n)6 = 2π−3kk ′K 3(k),
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is taken with q1/10 and also with q5/2 in place of q to produce

q−1/5
∏ (1 − qn/5)

(1 − q5n)
=

[
kk ′K 3 evaluated at k(ω/10)

kk ′K 3 evaluated at k(5ω/2)

]1/6

.

Now split into cases as follows.

Case 1 q = e−2π . Then ω = 2
√−1, and ω/10 = √−1/5 is related to

5ω/2 = 5
√−1 by the substitution ω �→ −1/ω, so k(ω/10) = k ′(5ω/2) in

view of ω = √−1K ′(k)/K (k) and the fact that k2 is a function of the period
ratio only; compare ex. 2.17.4 and the warning just above. It follows that the
sixth root on the right-hand side of the last display is nothing but

√
K at modulus k ′(5ω/2)

K at modulus k(5ω/2)
=

√
(5/2) × 2

√−1√−1
=

√
5,

permitting you to solve x−1 − x = 1 + √
5 for its (positive) root

x =
√

5 + √
5

2
−

√
5 + 1

2
.

Case 2 q = e−π . The computation is a little modified. The identity of ex. 5.6

q1/5
∏

(1 + q2k−1)6(1 − q2k)6 = 4π−3
√

kk ′K 3(k)

is employed in the same style, with q1/5 and also q5 in place of q, and with
ω = √−1, to obtain x−1 − x = 1 − √

5 and its positive root

x =
√

5 − √
5

2
−

√
5 − 1

2
.

Exercise 1. Do it.

Now everything is verified but how Ramanujan ever discovered it is still obscure.
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Modular Groups and Modular Functions

The modular group of first level �1 = P SL(2, Z) made its debut in Sec-
tion 2.6 in connection with the conformal equivalence of tori: Two such tori
are equivalent if and only if their period ratios are related by a substitution of
this kind. The quotient of the upper half-plane H by the action of �1, and by
the further modular groups to be introduced later in this section, produces a
whole series of interrelated curves whose function fields (modular functions)
have deep arithmetic and geometric applications going back to Abel [1827]
and Jacobi [1829]. The two most striking of these are Hermite’s solution of the
general polynomial equation of degree 5 [1859], explained in Chapter 5, and
Weber’s realization [1891] of Kronecker’s youthful dream (1860) of describing
the absolute class field of the imaginary quadratic field Q(

√−D) for a positive
square-free integer D; see Chapter 6. The present section prepares the way.
Fricke and Klein [1926] and Shimura [1971] are recommended for information
at a more advanced level.

4.1 The Modular Group of First Level

A modular function of first level is a function f of rational character in the
open upper half-plane H that is invariant under the action of �1 = P SL(2, Z),
that is, f ((aω + b)/(cω + d)) = f (ω) for every ω ∈ H and [ab/cd] ∈ �1;
such a function is of period 1 because [11/01]: ω �→ ω + 1 is a modular
substitution, so it is possible to expand it in powers of q = e2π

√−1ω in the
vicinity of ω = √−1∞ (q = 0), as in f (ω) = ∑

Z f̂ (n)qn . The definition of a
modular function is now completed by requiring that it be of rational character
in this parameter, too, which is to say, that the sum breaks off at some power
n = m > −∞.

159
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Exercise 1. Clarify the statement. Hint:

f (x + √−1y) =
∑

Z

e2π
√−1nx

∫ 1

0
e−2π

√−1nx ′
f (x ′ + √−1y)dx ′.

Now check that e2πny× the integral is independent of y > 0.

Warning. The present usage q = e2π
√−1ω conflicts with the q = eπ

√−1ω of
Chapter 3. The warning will be repeated when confusion could arise.

Example. The absolute invariant j = g3
2/� of Section 2.12 is such a modular

function: It is a function of the period ratio only, as noted in ex. 2.12.1; it
is of rational character on H; its invariance under �1 is the further content of
ex. 2.12.1; and the expansion j(q) = (1728q)−1 [1 + c(1)q + · · ·] elicited in
sample 3.5.5 confirms its rational character at

√−1∞.

Exercise 2. Check that, under the modular substitution ω �→ ω′ effected by
[ab/cd], g2 �→ (cω + d)4g2, g3 �→ (cω + d)6g3, and � �→ (cω + d)12�,
substantiating the invariance of j(ω).

The absolute invariant has also this crucial property: that it separates orbits
of �1 in H, i.e., it takes the value j(ω) only on the orbit �1ω. This could be
deduced from Section 2.12; it will be proved in a different style in Section 9.
The map j : H → C, completed to a map from H ∪ √−1∞ to P1 by taking
j(

√−1∞) = ∞, identifies the quotient (H + √−1∞)/�1 with the Riemann
sphere P1 and permits the conclusion that the field K(P1) of modular functions
is nothing but C( j); that is, every modular function is a rational function of j .
This explains the name absolute invariant; see Section 9 for a more leisurely
tour of these ideas; compare also Section 1.7 on the absolute invariants of
the Platonic solids. Dedekind [1877] was the first to introduce the absolute
invariant and to emphasize its importance. This late date is surprising as both
Abel [1827] and Jacobi [1829] were perfectly clear about the significance of
the modulus k2 as absolute invariant for the modular group of second level; that
is the subject of the next section.

4.2 The Modular Group of Second Level

The considerations of Section 1 apply to certain (arithmetic) subgroups of �1.
The modular group �n ⊂ �1, of level n, is defined by the requirement that
[ab/cd] be congruent to the identity [10/01] mod n; obviously, it is an invariant
subgroup of�1. Other, more recondite subgroups will come in later. The present
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section is devoted to the group �2 of second level and to its invariant functions;
the general discussion occupies Section 16.

The key to the story of �2 is the action of �1 on the Jacobi modulus k2 =
(e2 −e3)(e1 −e3)−1, viewed as a function of the period ratio; see Section 2.17. It
turns out that �2 is the stability group of k2(ω) in �1 and that the quotient group
�1/�2 is simply the symmetric group S3 of permutations of the three letters
e1, e2, e3, alias the group of anharmonic ratios of Section 1.5; in particular, �2

is of index 6 in �1. These matters are discussed here.
It is not much of a jump to the notion that k2 is the absolute invariant of �2

or to the certainty that j , as a modular function of �2, must be rational in k2, of
degree 6; compare ex. 2.12.3 and Section 6 below.

To understand the (fractional linear) action of �1 = P SL(2, Z) on k2, it is
necessary to look at the underlying (linear) action of G = SL(2, Z) on the
letters e1, e2, e3. G fixes the lattice L = Z ⊕ ωZ and so also the ℘-function.
What it does do is to change the labeling of the half-periods so that the numbers
e1 = ℘(1/2), e2 = ℘(1/2 + ω/2), e3 = ℘(ω/2) are permuted. For example,
the linear action of [11/−10] sends 1 to −ω and ω to 1 + ω, so

e1 �→ ℘(ω/2) = e3, e2 �→ ℘(1/2) = e1, e3 �→ ℘(1/2 + ω/2) = e2,

that is, it effects the permutation (123) �→ (312); at the same time, the period
ratio changes to 1 − 1/ω, the outcome being

k2(1 − 1/ω) = e1 − e2

e3 − e2
= 1 − e3 − e1

e3 − e2
= 1 − 1/k2(ω).

The general computation is just as easy. Any substitution [ab/cd] of level 2
has only a trivial effect: It sends 1/2 to (c/2)ω + d/2 ≡ 1/2 mod L and ω/2 to
(a/2)ω + (b/2) ≡ ω/2 mod L, so e1, e2, e3 are fixed and vice versa, which is to
say that �2 is the stability group of k2. Now observe that Table 4.2.1 displays
all six possible permutations of e1, e2, e3 with six distinct outcomes for k2. It
follows that �1/�2 is a copy of S3, and more: In the present format, its action
on k2 is nothing but a copy of the group of anharmonic ratios, as is seen from
the table; in particular, the index [�1: �2] is 6.

Exercise 1. Check the table.

Exercise 2. Think over the identification of �1/�2 carefully.

Exercise 3. Column 3 of Table 4.2.1 can also be verified by means of the
formula k2 = ϑ4

2 (0)/ϑ4
3 (0) and the rules of Table 3.1.1 for the transformation

of null-values. Do a sample or two.



162 4 Modular Groups and Modular Functions

Table 4.2.1. Action of �1 on k2

Coset of �2 in �1 Permutation of e1, e2, e3 Action on k2

(
1 0
0 1

)
(123) k2

(
0 −1
1 0

)
(321) 1 − k2

(
1 0

−1 1

)
(213) 1/k2

(
1 −1
0 1

)
(132) k2/(k2 − 1)

(
0 1

−1 1

)
(231) 1/(1 − k2)

(
1 −1
1 0

)
(312) 1 − 1/k2

4.3 Fundamental Cells

A fundamental cell for a subgroup � of the modular group �1 = P SL(2, Z)
is a figure F in the open upper half-plane that meets each orbit of � in a single
point. The word cell is used to convey the idea that F should be geometrically
nice; for instance, it might be a hyperbolic polygon with a finite number of
sides; see Ford [1972], Kra [1972], and Lehner [1964] for general information
about such matters and numerous examples. The present discussion deals with
�1 and �2 only.

First Level. The section F1 of Fig. 4.1 is a fundamental cell for �1, as will be
proved shortly. The heavy part of the boundary is included in the cell; the rest is
not. F1 can be viewed as a complete list of the inequivalent complex structures
on the topological torus since conformal equivalence of tori is determined by
modular equivalence of their period ratios.

Exercise 1. The points on the orbit �1∞ ⊂ (H+√−1∞)+R are called cusps.
Leaving ∞ aside, check that these are nothing but the rational numbers Q ⊂ R.

Exercise 2. What is the hyperbolic area of F1? Answer: π/3; compare ex. 1.9.6.

Second Level. �2 is of index 6 in �1, so a fundamental cell for �2 can be formed
from the six copies of any fundamental cell F1 produced by the action of the six
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 ρ = e2 π√ −1/3

_1 −1/2 0 + 1 /2 +1

1F

√−1

Figure 4.1. Fundamental cell for �1.

substitutions in column 1 of Table 4.2.1. The result of such a construction is
depicted in Fig. 4.2. F1 is first replaced by its right half, plus inversion of its left
half by the substitution ω �→ −1/ω. This figure is labeled 1; it is a perfectly
acceptable fundamental cell for �1. The other labels refer to the nontrivial
cosets of �2 in their order of appearance in Table 4.2.1. The full figure F2

so produced is the part of the half-plane above the two circles of radius 1/2
centered at ±1/2. The heavy part of the boundary is retained, the rest is not;
in particular, the cusps −1, 0, +1, and

√−1∞ are excluded.

Exercise 3. Check the figure.

The picture suggests that �1 maps F1 to the tiles of a tessellation of the half-
plane, covering it without holes or overlaps, as in Fig. 4.3. The labels A, B
refer to the two substitutions A: ω �→ ω+1 and B: ω �→ −1/ω; these generate
the whole group. This is just the geometric version of the fact that F1 is a
fundamental cell. A similar tessellation is obtained by application of �2 to F2;
for variety this is depicted in Fig. 4.4 after a further map to the unit disk D.

The proof that F1 is a fundamental cell of �1 is divided into two parts.
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−1 −1/2 0 +1/2 +1

2 1 64

3 5

3 5

Figure 4.2. Fundamental cell for �2.

A−3 A−2 A−1 1 A A2 A3

A−3B A−2B A−1B B AB A2B A3B
BA ABA A2BA

− 3 − 2 − 1 0 1 2 3

Figure 4.3. Tessellation of H by �1.

Proof that F1 is not too small. This means that every orbit of �1 meets F1.
The key to the proof is that every orbit contains highest points, the height of ω

being its imaginary part. Note first that, for the general modular substitution
ω′ = [ab/cd]ω, the height obeys the rule h(ω′) = |cω + d|−2 × h(ω). It
follows that h(ω′) ≤ c−2/h(ω) ≤ 1/h(ω) unless c = 0, in which case d2 = 1
and h(ω′) ≤ h(ω). In short, the orbit of ω is of limited height. It is also plain that
only limited values of the integers c and d enter into the competition for highest
point(s). The existence of such points is now clear. Let ω, itself, be such a point
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∞

∞

∞

−1

−1

+ 1

1

0

Figure 4.4. Tessellation of the unit disk by �2.

of height h with real part between −1/2 (included) and +1/2 (excluded), as
can be arranged by a (horizontal) translation [1n/01]. Then ω′ = −1/ω is of
height h′ = |ω|−2h ≤ h, so |ω| ≥ 1, and either ω belongs to F1 or else it falls
on the excluded arc π/3 ≤ θ < π/2 of the unit circle and can be exchanged
for its involute −1/ω on the included arc 2π/3 > θ > π/2.

Proof that F1 is not too big. This means that no two points of F1 are equivalent
under �1. Let ω ∈ F1 be of largest possible height h on its orbit and let
ω′ = x1 + √−1x2 be another point of F1 on the same orbit, of height h′. Then
ω arises from ω′ by some substitution [ab/cd] and h′ ≤ h = h′|cω′ + d|−2, so

1 ≥ |cω′ + d|2 = (cx1 + d)2 + c2x2
2

= c2(x2
1 + x2

2 ) + 2cdx1 + d2

≥ c2 − |cd| + d2

≥ (|c| − |d|)2

in view of x2
1 + x2

2 ≥ 1 and −1/2 ≤ x1 < 1/2.
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Case 1. cd 
= 0. The final inequality is strict, so |c| = |d|, and line 3 states
that c2 ≤ 1. Then c2 = d2 = 1, cd = ±1, and line 2 reads 1 ≥ x2

1 + x2
2±

2x1 + 1 ≥ 1, with the result that x2
1 + x2

2 = 1 and x1 = ∓1/2. The only
possibility for ω′ is the corner θ = 2π/3; moreover, |cω′ + d| = 1, so ω is at
height h = h′ = 1/2, and there is no such point in the cell besides the corner.

Case 2. cd = 0. Now c2 +d2 ≤ 1, so either c = d = 0, violating ad −bc = 1,
or c = ±1 and d = 0, or else c = 0 and d = ±1.

Case 2 −. c = ±1, d = 0. The equality x2
1 + x2

2 = 1 forces ω to lie on the
unit circle; also ad − bc = 1 implies b = ∓1, so ω = ±a − 1/ω′. The only
way to keep both points in the cell is to take a = 0 and even that does not help:
Only one of ω and −1/ω belongs to F1 unless ω′ = ω = √−1.

Case 2 +. c = 0, d = ±1. The reasoning is simpler. Now a = ±1, ω = ω′±b,
and the only possibility to keep both points in the cell is to have b = 0.

This completes the proof that F1 is a fundamental cell for �1.

4.4 Generating the Groups

The method of highest points provides easy access to the structure of �1 and
�2. Figure 4.3 suggests that �1 is generated by the substitutions A: ω �→ ω + 1
and B: ω �→ −1/ω; in fact, the argument of Section 3 shows that F1 is a
fundamental cell for the group generated by A and B. That does the trick.

Exercise 1. Why so?

Exercise 2. �2 is generated by X = A2 = [12/01] and Y = B A−2 B = [10/21].
The method of highest points may be used as at level 1, but prove it without
geometric aids, for variety.

�2 is, in fact, the free group generated by X and Y ; that is, a nontrivial word
in these letters is never the identity.

Exercise 3. Prove it. Hints: (1) The whole orbit �2
√−1 is of height ≤ 1. (2)

If m is arbitrary and n 
= 0, then XmY n effects a strict reduction of heights in
(|Re ω| ≥ 1) × (0 < h ≤ 1) and reduces all heights to ≤ 1/3 in (|Re ω| < 1)×
(0 < h ≤ 1). Now think about the shortest word in X and Y that fixes

√−1.
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�2 is a copy of the fundamental group of the thrice-punctured sphere, providing a
topological proof of its free character; see Section 9, below. �1 is also generated
by A−1 B = [11/ − 10] and B = [01/ − 10]. The first substitution fixes the
corner θ = 3π/2 of the fundamental cell F1 and is of period 3; the second fixes√−1 and is of period 2.

Exercise 4. Deduce that �1 can be presented as the free group on two letters X
and Y with two relations X3 = 1 and Y 2 = 1. This means that the substitutions
X �→ A−1 B and Y �→ B map the free group homomorphically onto �1, the
kernel being the subgroup generated by X3 and Y 2. Hint: The image of any
product of factors XY or X2Y cannot fix

√−1: It maps the second quadrant to
itself and diminishes heights.

4.5 Gauss on Quadratic Forms

Gauss [1801] used the fundamental cell F1 for the arithmetic reduction of
quadratic forms. Let Q(x) = Ax2

1 + Bx1x2 + Cx2
2 be a positive quadratic form

in x = (x1, x2) ∈ R2 with coprime whole numbers A > 0, B, C > 0 and fixed
discriminant D = B2 − 4AC < 0. Q is reduced if −A ≤ B < A ≤ C ,
with the proviso that B ≤ 0 if A = C . Note that, for such fixed D, the number
of reduced forms is finite. The form Q is said to represent the whole number
n = 1, 2, 3, . . . with multiplicity m if the equation Q(x) = n has m solutions
x ∈ Z2; for example, the number of representations of a positive number by
Q(x) = x2

1 + x2
2 is the excess (if any) of its positive divisors d ≡ 1 mod 4

over its positive divisors d ≡ 3 mod 4. This is Jacobi’s theorem of Section 3.6.
Dirichlet [1894] is the classical account of this circle of ideas.

Two forms Q and Q′ with the same discriminant D are arithmetically equiv-
alent if they represent the same numbers with the same multiplicities; they are
geometrically equivalent if Q′(x) = Q(x ′), in which x ′ is related to x by a
modular substitution from SL(2, Z). Gauss [1801] proved that the two notions
of equivalence are the same and that every class of equivalent forms contains
just one reduced form.

Proof. Q(x) = x • Qx with positive, symmetric 2 × 2 matrix Q = [ab/cd]
with a = A, b = c = B/2, d = D. Let

√
Q be the positive, symmetric square

root of Q so that Q(x) = |√Qx |2. The whole numbers n represented by Q are
the squares of the lengths of the elements of the lattice L = √

QZ2. Let Q and
Q′ be geometrically equivalent forms. Then Q′(x) = Q(gx) with a substitution
g ∈ SL(2, Z), and Q′(Z2) = Q(gZ2) = Q(Z2), multiplicities and all, in view
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of the fact that g maps Z2 1:1 onto itself. Besides,

−(1/4)D(Q′) = detQ′ = detg∗ Qg = (detg)2detQ = −(1/4)D(Q).

In short, Q and Q′ are arithmetically equivalent. Now start from the arithmeti-
cally equivalent forms Q and Q′. Then the associated lattices L = √

QZ2

and L′ = √
Q′Z2 produce the same lengths with the same multiplicities,

and the areas of the corresponding fundamental cells are the same in view
of (area)2 = detQ = AC − B2/4 = −D/4. It follows that L and L′ differ by
a (possibly improper) plane rotation: First, a proper rotation superimposes the
primitive periods closest to the origin; second, the knowledge of multiplicities
permits you to specify a circle on which the second primitive period must lie;
third, the matching of cell areas means that only an extra reflection may be
required to make the two lattices coincide; see Fig. 4.5. The upshot is that√

Q′ is the same as O
√

Q with a 2 × 2 orthogonal matrix O , up to a possible

0 ω

ω

1

2

Figure 4.5. Lattices and quadratic forms.

substitution g ∈ SL(2, Z) to the right. This is the same as to say Q and Q′ are
geometrically equivalent: With x ′ = gx ,

Q′(x) = |
√

Q′x |2 = |O
√

Qgx |2 = |
√

Qx ′|2 = Q(x ′)

Exercise 1. Think it over.

Exercise 2. Check that the period ratio of L = √
QZ2 is ω = (2A)−1(B+√

D).

The proof that each class of equivalent forms contains just one reduced form
rests upon this fact. Note first that ω determines Q, D being known, and
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that Q is reduced precisely when ω belongs to the fundamental cell F1. Now
the equivalence of Q and Q′ via the linear action of SL(2, Z) is the same
as the equivalence of the corresponding ratios under the fractional action of
P SL(2, Z), as you will check. The rest will be plain.

4.6 The Group of Anharmonic Ratios

�1/�2 is a copy of the symmetric group S3 of permutations of the three letters
e1, e2, e3. It is also a copy of the group H of anharmonic ratios:

x �→ x, 1 − x,
1

x
,

x

x − 1
,

1

1 − x
,

x − 1

x
,

as seen in Table 4.2.1, which records the action of �1 on the modulus k2.
A fundamental cell for H may be constructed as follows. Draw unit cir-
cles centered at 0 and 1 and divide the complex plane into six regions as in
Fig. 4.6. Region 1 is mapped to the other five regions by the nonidentical anhar-
monic substitutions and so may serve, with suitable protocols at its edges, as a

4 5

21

1

2
0

3

−1

eπ −1/3√

6

Figure 4.6. Fundamental cell for H.
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fundamental cell for H: The left-hand arc is included, as is the left half of
0 ≤ x ≤ 1

2 of the base; the rest of the boundary is excluded.

Exercise 1. Check the mapping of region 1 onto regions 2, 3, 4, 5, 6.

The associated absolute invariant h is to be preserved by the action of H

and must separate orbits, just as for j and �1. It was derived in ex. 1.7.4.
A new method is introduced here, for variety and as a model for subsequent
constructions. Divide the fundamental cell in two, as in Fig. 4.7, map the
right half 1:1 onto the upper half-plane by the Riemann map with the indicated

+

+

+

+

+

+
−

−

−

−

−

−
1

0

∞

Figure 4.7. Construction of an absolute invariant for H.

values 0, 1, ∞ at the corners, and extend this function to the whole plane by
reflection. Do this first for the right half-plane and finish the job by a final
reflection in the imaginary axis so as to finesse any question of multiple values.
The extended function h is of rational character, with special features at −1,
0, 1/2, 1, 2, ω = eπ

√−1/3, and ω−1 = e−π
√−1/3: In detail, h is a rational

function of degree d = 6 with triple roots at ω and ω−1, double poles at 0 and
1, and another double pole at ∞, for a total count of six apiece, and takes the
value h = 1 doubly at −1, 1/2, and 2, for a further count of six. The value
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h(2) = 1 pins down the explicit expression

h(x) = 4

27

(x − ω)3(x − ω−1)3

x2(1 − x)2
= 4

27

(x2 − x + 1)3

x2(1 − x)2
.

There are three possible ways to verify that h is invariant under the action of H.

Method 1. A double reflection reproduces the value of h and represents an
anharmonic substitution.

Exercise 2. Check one instance.

Method 2. The substitutions x �→ 1/x and x �→ 1 − x generate H and leave h
invariant; this was the method of ex. 1.7.4.

Method 3. Let h1(x) = x, . . . , h6(x) = (x − 1)/x be the six anharmonic sub-
stitutions. Then h(x, y) = [h1(x) − y][h2 − y] · · · [h6(x) − y] is an invariant
function of H with poles of degree 2 at 0, 1, and ∞ and roots at the six an-
harmonic ratios of y. The function h has the same poles and roots at the six
anharmonic ratios of ω = eπ

√−1/3, so it is a constant multiple of h(x, ω) and
shares the invariance of that function.

The function h may be regarded as a 1:1 map of the fundamental cell to the
projective line P1; its cubic character at ω = eπ

√−1/3 and its quadratic character
at 0 and 1 are necessary to open up the vicinity of such a corner into a little
disk. The plane, completed to a projective line at ∞, now appears as a sixfold
cover of P1, ramified triply over ω and ω−1 and doubly over the anharmonic
ratios ∞, 0, 1 of ∞. Any other invariant function of H of rational character
conforms to the rational character of h: It must be of degree divisible by 3 at ω

and ω−1 and of degree divisible by 2 at the orbit of ∞, as you see from Fig. 4.7.
The conclusion is that any such invariant function is of rational character in
h or, what is the same, the field K(H) of invariant functions of H is one and
the same as C(h). In short, h is the absolute invariant of H. This was already
proved in ex. 1.7.4 by means of Luroth’s theorem.

The isomorphism of H and �1/�2 suggests a relation between the absolute
invariants h, j, and k2: �1 subjects k2 to the six anharmonic substitutions of
H, so h(k2) is an invariant function of �1. What else could it be but j , up to
trivialities. This was already proved in ex. 2.12.3; compare Section 9.
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4.7 Modular Forms

A modular form of weight 2n ∈ N is an analytic function f on the open
half-plane H that transforms under the modular group �1 according to the rule1

f

(
aω + b

cω + d

)
= (cω + d)2n f (ω);

such a form is of period 1 and so can be expanded in whole powers of the
parameter q = e2π

√−1ω in a neighborhood of ω = √−1∞(q = 0), as in ex.
1.1, and it is a further requirement that this expansion contains no negative
powers of q. In short, f is to be pole-free at ∞, too.

Three examples. g2 = 60
∑′(n + mω)−4, g3 = 140

∑′(n + mω)−6, and � =
g3

2 − 27g2
3 are modular forms of weights 4, 6, 12, respectively, by ex. 1.2.

Note that the absolute invariant j = g3
2/� is the ratio of modular forms of the

same weight 12. This exemplifies a general principle exploited by Poincaré
[1882] that invariant functions may be constructed as ratios of functions that
transform in the same way; compare the construction of elliptic functions from
theta functions in Section 2.15.

The letter Mn denotes the class of modular forms of weight 2n; it is a vector
space over C. The key to its structure is contained in the

Fundamental Lemma. Let f be a nonvanishing form of weight 2n and let
mρ, m√−1, and m∞ be the multiplicities with which vanishes at ρ = e2π

√−1ω/3,√−1, and ∞. Then

1

3
mρ + 1

2
m√−1 + m∞ + m = 1

6
n,

m being the number of roots of f (ω) = 0 in the fundamental cell, over and
above such roots as may occur at the special points ρ,

√−1, and ∞.

Proof. The identity is established by integration of (2π
√−1)−1d log f about

the boundary of the fundamental cell, modified as in Fig. 4.8 to avoid ρ,
√−1,

and ∞; further indentations may be required to avoid roots of f = 0 on the
perimeter as for the fundamental lemma of Section 2.7; see Fig. 2.15. The
number of roots inside is

m ′ = 1

2π
√−1

∫
d log f.

1 Some people say f is of weight −2n, while others say n, so watch out if you read other accounts.
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2 3
4

5 6

7

8

e2π
√−1/3 √−1

Figure 4.8. The modified contour.

Now f is of period 1, so the integrals along 1 and 7 cancel and it is easy to see
that the contributions of 2 + 6, 4, and 8 tend to −mρ/3, −m√−1/2, and −m∞
as the indentations at ρ and

√−1 shrink; at the same time m ′ = m for large
heights. A final contribution comes from 3 + 5; this produces n/6 in view of
f (−1/ω) = ω2n f (ω). Now collect the pieces.

The fundamental lemma is now used to determine the structure of Mn .

Step 1. Mn = 0 if n < 0 since n/6 must be ≥ 0.

Step 2. M0 = C: In fact, a nonvanishing form of weight 0 is invariant under �1

and the fundamental lemma shows it to be root-free. Then f − f (
√−1) ∈ M0

stands in violation of the fundamental lemma unless f (ω) ≡ f (
√−1).

Step 3. M1 = 0 since 1/6 is not expressible as the fundamental lemma requires.

Step 4. M2 = Cg2. The fundamental lemma states that 2 = 2mρ + 3m√−1 +
6m∞ + 6m for nonvanishing forms of weight 4, so mρ = 1 while m√−1, m∞,
and m vanish. This means that every such form f has a simple root at ρ and
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no others in the fundamental cell, even at infinity. Now observe that g2 is such
a form and that f/g2 ∈ M0 = C, by step 2.

Step 5. M3 = Cg3. The proof is similar; in particular, g3 has a simple root at√−1 and no others in the cell, even at infinity.

Aside 1. The vanishing of g2(ρ) was already seen in example 2.9.2 (triangular
lattice) and that of g3(

√−1) in example 2.9.1 (square lattice). The values
j(ρ) = 0 and j(

√−1) = 1 follow; see Section 12 for other special values.

Step 6. M4 = Cg2
2 . The fundamental lemma states that 4 = 2mρ + 3m√−1 +

6m∞ + 6m for nonvanishing forms of weight 8, so mρ = 2 while m√−1, m∞,
and m vanish. The form g2

2 fits this bill, with the result that f/g2
2 ∈ M0 is

constant.

Step 7. M5 = Cg2g3 is proved in the same way.

Aside 2. To complete the description of the spaces Mn it is necessary to know
that the forms g2 and g3 are algebraically independent, that is, they do not
satisfy any polynomial in two variables.

Proof. Let the irreducible polynomial P ∈ C[x, y] be satisfied by x = g2(ω)
and y = g3(ω) and apply the modular substitution [ab/cd] ∈ �1 to ω. Then
P((cω + d)4g2, (cω + d)6g3) ≡ 0, independently of c and d, which may
be chosen at will from Z. (Why this freedom?) In particular, P((c

√−1 +
d)4g2(

√−1), 0) = 0, so P(x, 0) ≡ 0 and y divides P(x, y), contradicting the
irreducibility of P .

Step 8. The independent forms ga
2 gb

3 of fixed weight 2n = 4a + 6b span Mn ,
and dim Mn = [n/6] or [n/6] + 1 according as n ≡ 1 mod 6 or not.

Proof. The independence is the content of aside 2. Now � is of weight 12. It
cannot vanish in the open half-plane, the numbers e1, e2, e3 being distinct, so
the fundamental lemma requires it to vanish simply at ∞. This is preparatory
to the remark that

0 → Mn−6 → Mn → C → 0

is an exact sequence, meaning that the image of one arrow is the kernel of the
next. The first arrow is injection, the next is multiplication by �, and the third
is evaluation at ∞. The exactness is obvious: Multiplication by � has trivial
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kernel, and f/� ∈ Mn−6 for forms f ∈ Mn that vanish at ∞. This means that
Mn = �Mn−6 + C× any form of weight 2n not vanishing at ∞, and now you
turn the crank:

M6 = �M0 + Cg2
3 = the span of g3

2 and g2
3, of dimension 2,

M7 = �M1 + Cg3
2 g3 = the span of g3

2 g3, of dimension 1,

M8 = �M2 + Cg4
2 = the span of g4

2 and g2g2
3, of dimension 2,

and so on. The discussion is finished.

Exercise 1. Prove that Mn is the same as the class of all symmetric homoge-
neous polynomials of degree n in e1, e2, e3. Hint: The es behave like forms of
weight 2 except that they permute.

Exercise 2. Table 3.9.1 states that the null values ϑ2(0), ϑ3(0), ϑ4(0) behave as
modular forms of weight 1/2, or very nearly so; in fact, ϑ8

2 (0)ϑ8
3 (0)ϑ8

4 (0) =
2−4π−1/2� is a form of weight 12. Find other combinations of null values that
are honest forms. Sample: What is ϑ8

2 (0) + ϑ8
3 (0) + ϑ8

4 (0)? or ϑ8
2 (0)ϑ4

3 (0) +
ϑ4

2 (0) ϑ8
3 (0) + ϑ8

2 (0) ϑ4
4 (0) + ϑ4

3 (0) ϑ8
4 (0) − ϑ8

3 (0) ϑ4
4 (0) − ϑ4

2 (0)ϑ8
4 (0)?

Mumford [1983] gives a general account of such identities.

Exercise 3. Prove that f = (1/2)(log �)′ solves f ′′′ − 2 f f ′′ + 3( f ′)2 = 0;
see Chazy [1911]. Ablowitz and Clarkson [1991] explain the connection with
solitons; compare ex. 2.10.3. Hint: f ′′′ − 2 f f ′′ + 3( f ′)2 is a modular form of
weight 8. What is its value at ∞?

Exercise 4. Check that the discriminant � satisfies

�3�′′′ − 5(�′)2�′′′ − (3/2)�2(�′′)2 + 12�(�′)2�′′ − (13/2)(�′)4 = 0.

Exercise 5. One final example: The null value ϑ = ϑ3(0|ω) satisfies

(
ϑ2ϑ ′′′ − 15ϑϑ ′ϑ ′′ + 30(ϑ ′)3

)2 + 32
(
ϑϑ ′′ − 3(ϑ ′)2

)3

= ϑ10
(
ϑϑ ′′ − 3(ϑ ′)2

)2
.

Why? Ehrenpreis [1994] explains how Jacobi [1847] discovered this remark-
able fact.
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4.8 Eisenstein Sums

Eisenstein was the favorite pupil of Gauss. He died at age 29. Weil [1975]
gives a delightful account of his work. The nth Eisenstein sum is

En(ω) =
∑
Z2−0

( j + kω)−2n divided by
∑
Z−0

j−2n.

It converges for n ≥ 2 and is a modular form of weight 2n, taking the value 1 at
the cusp

√−1∞. The special sums E2 = (3/4)π−4g2 and E3 = (27/8)π−6g3

are already familiar. The constants may be checked from Table 4.8.1 which
displays the first six Bernoulli numbers Bn = (2n)!/(2π )2n

∑
Z−0 j−2n .

Identities. The finite dimensionality of the spaces Mn (n ≥ 0) necessitates
the existence of numerous identities between Eisenstein sums, much as for
theta null values; indeed, ex. 7.2 points to a common reason. The next item is
preparatory to three samples of this phenomenon.

Exercise 1. Check that ℘(x) = x−2 +∑∞
n=1

∑
Z2−0( j + kω)−2n−2(2n + 1)x2n ,

in which the ℘-function is formed for the lattice L = Z⊕ωZ; compare ex. 2.8.7.

Now feed this expansion into the differential equation for ℘ and compare like
powers of x to produce E4 = E2

2 , E5 = E2 E3, and E6 = (2 • 53/691)E2
3 +

(32 • 72/691)E3
2 , and more.

Exercise 2. Do it with the aid of the table.

Arithmetic Consequences. Both modular forms and null values can be ex-
pressed as sums of whole or half-integer powers of q = e2π

√−1ω, and it is
a well-attested fact that the coefficients of the several powers have number-
theoretic significance; see Koblitz [1993] and Sarnak [1990] for an overview.
The Eisenstein sum is illustrative. To begin with:

En(ω) = 1 + (−1)n4nB−1
n

∞∑
m=1

σ2n−1(m)qm,

Table 4.8.1. Bernoulli numbers

B1 B2 B3 B4 B5 B6

1
6

1
30

1
42

1
30

5
66

691
2730
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in which σp(m) is the sum of the pth powers of the divisors of the whole number
m. This follows from the elementary identity

1

4π2

∑
Z

( j + ω)−2 = [2 sin πω]−2 = −(q1/2 − q−1/2)−2 = −q
d

dq
(1 − q)−1

= −
∞∑

m=1

mqm .

Exercise 3. How? Hint: ( j + ω)−2 is differentiated 2n − 2 times.

The stated identities between Eisenstein sums can now be converted into sur-
prising arithmetic identities.

Sample 1. E4 = E2
2 , E2 = 1+240

∑
σ3(m)qm, E4 = 1+480

∑
σ7(m)qm , so

1 + 480
∞∑

m=1

σ7(m)qm = 1 + 480
∞∑

m=1

σ3(m)qm + 2402
∞∑

m=1

σ3◦σ3(m)qm,

in which σ◦σ (m) is short for
∑m

n=1 σ (m − n)σ (n). This produces σ7 = σ3 +
120σ3◦σ3; in particular, σ7(m) ≡ σ3(m) mod 23 • 3 • 5.

Sample 2. Start with the expansion

� = (1728)−1(2π )12
(

E3
2 − E2

3

) = (2π )12
∞∑

m=1

τ (m)qm,

the coefficients of the sum being the Ramanujan numbers of sample 4 in
Section 3.5. Now E3 = 1 − 504

∑
σ5(m)qm and E6 = 1 + (65520/691)∑

σ11(m)qm produce 65520
∑

σ11(m)qm = 26 • 35 • 72 ∑
τ (m)qm , up to a sum

of whole powers of q with coefficients from 691Z. This is the same as saying
τ (m) ≡ σ11(m) mod 691 in view of 65520 = 691 × 94 + 566 and 26 • 35 • 72 =
691 × 1102 + 566, 566 and 691 being coprime. Is that clever or what? Let’s
try it out: τ (4) = −1472 (see ex. 3.5.5), σ11(4) = 1+211 +222 = 419653, and
419653 + 1472 = 4197825 = 35 • 52 • 691. Swinnerton-Dyer [1988] present
many other congruences satisfied by the Ramanujan numbers.

4.9 Absolute Invariants

The goal of this section is to prove what was promised in Section 1: The absolute
invariant h(= j or k2) for the groups � of levels 1 and 2 merits its name in that
(a) it maps the fundamental cell, completed by adjunction of cusps, 1:1 onto
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the projective line, and (b) the field K(�) of modular functions is one and the
same as C(h).

First Level. Take the (shaded) half of the fundamental cell for �1 = P SL(2, Z)
seen in Fig. 4.9; let f be the Riemann map of this region onto the upper

∞

0
1
1

0

Figure 4.9. The fundamental region.

half-plane H, standardized by f (
√−1∞) = ∞, f (ρ = e2π

√−1/3) = 0, and
f (

√−1) = 1; and extend it by reflection, after the manner of Section 6, to
the whole tessellation of H as depicted in Fig. 4.10. The extended function is
invariant under �1, taking the value 0 sixfold at ω = 0, and the value 1 twice at
ω = √−1. It is of period 1 and so may be expanded in the familiar manner as∑

Z f̂ (n)qn , and from its 1:1 character on F1 you conclude that the sum breaks
off at n = −1, which is to say that f has a simple pole at

√−1∞.

Exercise 1. Check all that. Hint: 1/ f vanishes at q = 0 and is 1:1 in the
punctured disk 0 < |q| < 1.

Now � is a modular form of weight 12 vanishing at ∞. It follows that � f
is also of weight 12; as such, it can be expressed as ag3

2 + b�, M6 being of
dimension 2, and from the vanishing of g2 and f at ρ, you see that b = 0;
similarly, a = 1 follows from g3(

√−1) = 0 and f (
√−1) = 1 in view of
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Figure 4.10. The tessellation.

f �(
√−1) = ag3

2(
√−1) = a�(

√−1) and the fact that �(
√−1) does not

vanish. The upshot is that f is one and the same as the (so-called) absolute
invariant j = g3

2/�; in particular, j takes on every complex value just once in
the fundamental cell F1. This is the justification of method 2 employed for the
problem of inversion in Section 2.12.

Exercise 2. The fact that j takes each complex value c just once in the funda-
mental cell can be proved more directly by integration of (2π

√−1)−1d log( j −
c) about the contour seen in Fig. 4.11. The contributions of 1 and 4 cancel, and
5 produces a contribution of 1 or nearly so. What about 2+3? Give the details.

Now comes the identification K(�1) = C( j), which justifies the name absolute
invariant. j identifies the completed cell F1 +√−1∞ with the projective line.
The map is not conformal at the three points ρ,

√−1, and ∞: At ρ, it behaves
like the cubic parameter qρ(ω) = (ω−ρ)3, opening up the corner into a semicir-
cle; at

√−1, it behaves like 1+ a constant multiple of q√−1(ω) = (ω−√−1)2,
producing a full disk; at the cusp

√−1∞, it behaves like q∞(ω) = (1728q)−1,
so here also you see a full disk after adjunction of

√−1∞ (q = 0). Keeping
this in mind, it is easy to see that any modular function f ∈ K(�1) is of rational
character in j : (1) It is of cubic character at ρ since ω �→ −1 − 1/ω fixes this
point and is of period 3; (2) it is of quadratic character at

√−1 since ω �→ −1/ω

fixes that point and is of period 2; (3) it is of rational character at
√−1∞ since

its expansion
∑

f̂ (n)qn breaks off at some power n = m > −∞. But such
a function may be viewed as a function of rational character on the projective
line P1 = j(F1 + √−1∞), which is to say K(�1) = C( j), as advertised.
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1

2 3

4

5

Figure 4.11. The contour.

Exercise 3. Check the details.

Exercise 4. j ′(ω) behaves like but is not a form of weight 2. Check that � is a
constant multiple of j−4( j − 1)−3( j ′)6. What is the constant?

Second Level. The same considerations apply to the Jacobi modulus k2; it is
the Riemann map of the shaded half of the fundamental cell F2, standardized as
in Fig. 4.12, but let us take a different route, for variety. The absolute invariant
h(x) = (4/27)(x2 − x + 1)3x−2(1 − x)−2 of the group of anharmonic ratios
is recalled from Section 6, and h(k2) is computed by hand with the help of
k2 = (e2 − e3)/(e1 − e3), recapitulating ex. 2.12.3:

h(k2) = 4

27

(k4 − k2 + 1)3

k4(1 − k2)2

= 64

27

(e2
1 + e2

2 + e2
3 − e1e2 − e2e3 − e3e1)3

16(e1 − e2)2(e2 − e3)2(e3 − e1)2

= 64

27

33

43

g3
2

�

= j.
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∞1

2F +

Figure 4.12. The Riemann map for F2.

Now j takes on each complex value once in F1 and so also once in each of the
six copies of F1 that make up F2, as seen in Fig. 4.12. Fix a point ω ∈ F1, let
a = j(ω), and pick b 
= 0, ∞ so that a = h(b). Then k2(ω) takes on the value
of one of the anharmonic ratios of b. It follows that k2 takes on each of those
anharmonic ratios just once in F2 because j takes its values sixfold in F2 and
h is 6:1. The upshot is that k2 maps F2 simply onto the twice-punctured plane
C − 0 − 1. It remains to identify k2 with the Riemann map of Fig. 4.12 and to
discuss its role as absolute invariant of �2. k2 is real for imaginary period ratios;
this propagates to the whole boundary of F2 by the rules of Table 4.2.1. Now

ω =
√−1K ′

2K
=

√−1

2

∫ 1/k
1 [(x2 − 1)(1 − k2x2)]−1/2dx∫ 1

0 [(1 − x2)(1 − k2x2)]−1/2dx

tends to
√−1∞ as k2 ↓ 0 and to 0 as k2 ↑ 1 via real values, so the vertical

line joining
√−1∞ to

√−1 • 0 is mapped to [0, 1], and a further application
of Table 4.2.1 shows that the right-hand semicircle of Fig. 4.12 is mapped to
[1, ∞) while the right-hand vertical line is mapped to (∞, 0]; in short, the
shaded region is mapped (necessarily 1:1) onto the upper half-plane. The
identification is complete.

The modular functions of �2 are required to be of rational character in the
special parameters q0(ω) = e−π

√−1/ω at 0, q1(ω) = eπ
√−1/(1−ω) at 1, and

q∞(ω) = eπ
√−1ω at ∞. It is to be proved that k2 conforms to these rules and

that any other modular function is a rational function of k2. In fact, to leading
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order you find:

at
√−1∞, j = h(k2) = 4/27k−4 in view of k(

√−1∞) = 0, so k4 = 162q2
∞

and k2 = 16q∞, k2 being positive for imaginary ω.
at 0, k2 = 1 − k2(−1/ω) = 1 − 16q0, by Table 4.2.1 and the expansion at√−1∞.
at 1, k2(ω) = k−2(ω/(1 − ω)) = −1/16q1, by similar reasoning.

The rest will be plain: k2 identifies the completed cell F2 +0+1+√−1∞ with
the projective line, and every invariant function of �2, of the proper rational
character at the cusps 0, 1,

√−1∞, is a function of rational character on that
line and so a rational function of its parameter k2. In short, K(�2) = C(k2).

Exercise 5. Get the next term in the expansion of k2 at
√−1∞.

A Topological Bonus. The identification of k2 as a map of the open upper
half-plane onto the punctured plane C − 0 − 1 has an unexpected bonus. The
half-plane is simply connected and so can be viewed as the universal cover of
the punctured plane, as proved in Section 1.14 already, but only by appeal to
the full force of the Koebe–Poincaré theorem. The modulus k2 is the projection
and �2, interpreted as the stabilizer of k2 in �1, is the covering group. The
latter is naturally isomorphic to the fundamental group of the punctured plane
as explained in Section 1.14, and since the fundamental group is free on two
letters, so is �2. This confirms ex. 4.3, the twice-punctured plane and the
thrice-punctured sphere being one and the same thing.

Exercise 6. Check the details.

Picard’s Little Theorem [1879]. A second bonus is the classical proof of the
fact that a nonconstant integral function takes on every complex value c with
at most one exception.

Proof. Let the integral function f omit the values a and b. Then (b−a)−1( f −a)
omits 0 and 1, so it is permissible to take a = 0 and b = 1. Now use f to
map a small disk to the punctured plane C − 0 − 1, lift the map to the half-
plane via any branch of the inverse function of k2, and map the lift into the
unit disk via ω �→ (ω − √−1)/(ω + √−1); see Fig. 4.13. The composite map
may be continued without obstruction along paths in the left-hand plane. This
produces a single-valued function in that plane by the monodromy theorem of
Section 1.11, and as its values are confined to the disk, so it must be constant.
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0 1 0

f

Figure 4.13. Picard’s theorem.

But k2 is not constant, nor is the map from the half-plane to the disk, and the
only way out is for f to be constant.

Here the modulus is merely window dressing: All you need to know is that the
half-plane is the universal cover of the twice-punctured plane, as in Section 1.14.
That seems simpler than using k2, but relies on the deep Koebe–Poincaré the-
orem. Ahlfors [1973] presents a beautiful elementary proof, employing nei-
ther coverings nor transcendental aids such as k2; see also Nevanlinna [1970:
248–9].

The discussion of other arithmetic subgroups of P SL(2, Z) and their absolute
invariants is postponed until Section 16.

4.10 Triangle Functions

This section sketches the pretty discovery of Schwarz [1872] concerning abso-
lute invariants and the hypergeometric equation:

d2 y

dx2
+

[
1 − a

x
+ 1 − b

x − 1

]
dy

dx
+ (1 − a − b)2 − c2

4x(x − 1)
y = 0.

Ford [1972: 289–309] and Sansone and Gerretsen [1969(2): 407–506] are
recommended for details. Let y be the ratio of two independent solutions taken
at the point x 
= 0, 1, ∞ and continued in the punctured plane. Coming back
to the starting point after a circuit about one or more punctures subjects y to a
substitution from P SL(2, C). These form a group �, the monodromy group
of the equation. Now let x be the independent variable viewed as a function
of y; up to trivialities, it is a single-valued function if and only if each of
the numbers a, b, c is the reciprocal of an integer 1, 2, 3, . . . (∞ included), in
which case x is the absolute invariant of the group �. The several branches
of the function y map the upper and lower half-planes 1:1 onto a family of
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Table 4.10.1. Case 1: a + b + c = 1

a 1/3 1/2 1/2 1/2
b 1/3 1/4 1/3 1/2
c 1/3 1/4 1/6 0

nonoverlapping triangular regions, bounded by circular arcs making the internal
angles aπ, bπ, cπ , and any adjacent pair of triangles is mapped by x 1: 1 onto
the plane. That is why x is the absolute invariant. There are three cases,
distinguished by the value of the sum a + b + c.

Case 1. a + b + c = 1. The triangles are straight-sided and cover the whole
plane. The possibilities are displayed in Table 4.10.1. The corresponding
functions x are exemplified by ℘ ′, ℘2, (℘ ′)2, and sin x .

Exercise 1. Check this identification.

Case 2. a+b+c > 1. Now there are only a finite number of triangles covering
the sphere. The groups are those of the Platonic solids discussed in Section 1.7.

Case 3. a + b + c < 1. This time the triangles cover the half-plane H and
there is an infinite number of cases exemplified by the modular groups of first
and second level: For the first level, a = 1/2, b = 1/3, c = 0, and x = j ; for
the second, a = b = c = 0 and x = k2. The case a = 1/2, b = 1/4, c = 1/5
will make an appearance in Section 5.7. Figure 4.14 depicts the situation for
the group of first level with the half-plane replaced by the unit disk.

Figure 4.14. Triangulation by �1.
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4.11 The Modular Equation of Level 2

Think of two tori X = C/L, one a double cover of the other, with period
ratios ω and 2ω. Then the corresponding absolute invariants j(ω) and j(2ω)
satisfy a (universal) irreducible polynomial equation: P( j(ω), j(2ω)) = 0.
This is the modular equation of level 2 to be derived here. More complicated
modular equations, of so-called higher level, relate j(nω) to j(ω) for n ≥ 3;
see Section 13.

Warning. The absolute invariant j is now multiplied by 1728 = 26 • 33 so
that j(ω) = q−1 + · · · at the cusp

√−1∞. This spoils the old normalization
j(

√−1) = 1, but simplifies the present discussion. This convention will be in
force from now on.

The reason that a modular equation must be present at level 2 is simple; its
explicit determination is not. The discussion is divided into five steps.

Step 1. Let ω �→ ω′ = [ab/cd]ω be a modular substitution of level 2. Then

j(2ω′) = j

[
a • 2ω + 2b

(c/2) • 2ω + d

]
= j

[
a′ • 2ω + b′

c′ • 2ω + d ′

]

with a′ = a, b′ = 2b, c′ = c/2, d ′ = d ∈ Z, and a′d ′ − b′c′ = ad − bd = 1
so that [a′b′/c′d ′] is a modular substitution of level 1. This means that the
right-hand side is just j(2ω), that is, this function is invariant under �2. The
same is true of j(ω) itself, so both functions belong to K(�2) = C(k2). The
existence of the modular equation is plain from that: Any two elements of a
rational function field are algebraic, one over the other.

Step 2. Note that j(2ω) is not invariant under �1; indeed, the six cosets of the
quotient �1/�2 listed in Table 4.3.1 act upon it to produce three distinct values:

j ◦ 2[10/01]ω = j(2ω),
j ◦ 2[0 − 1/10]ω = j(−2/ω) = j(ω/2),
j ◦ 2[10/ − 11]ω = j(2ω/(1 − ω)) = j(ω/2 + 1/2),
j ◦ 2[1 − 1/01]ω = j(2ω − 2) = j(2ω),
j ◦ 2[01/ − 11]ω = j(2/(1 − ω)) = j(ω/2 + 1/2),
j ◦ 2[1 − 1/10]ω = j((2ω − 2)/ω) = j(ω/2).

Exercise 1. Why is line 3 true?

Step 3. Introduce the field polynomial of j(2ω) over the ground field K(�1) =
C( j). The action of �1 is to permute the three values j1(ω) = j(2ω),
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j2(ω) = j(ω/2), j3(ω) = j(ω/2 + 1/2), so their elementary symmetric func-
tions

σ1 = j1 + j2 + j3, σ2 = j1 j2 + j2 j3 + j3 j1, and σ3 = j1 j2 j3

are modular functions of �1, and this in the technical sense, that they are of
rational character in the upper half-plane and also at the cusp

√−1∞; for
example,

σ1 = j(2ω) + j(ω/2) + j(ω/2 + 1/2) = q−2 + q−1/2 − q−1/2

to leading order at the cusp, so it must be a polynomial of degree 2 in j with
top coefficient +1.

Exercise 2. Use the same method to check that σ2 and σ3 are polynomials in j
of degree ≤ 2 and = 3, respectively, the top coefficient of σ3 being −1.

The upshot is that the polynomial

F2(x) = [x − j(2ω)][x − j(ω/2)][x − j(ω/2 + 1/2)]

= x3 − σ1x2 + σ2x − σ3

is of class C[ j][x]. It is even irreducible because �1 permutes its roots transi-
tively, so it must be the field polynomial of j(2ω) over the ground field C( j),
alias the modular equation of level 2. To find the explicit form of F2 requires
detailed computations at the cusp. The absolute invariant has the expansion

j(ω) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3

+ 20245856256q4 + · · · ;

see Zuckerman [1939]. From that you may derive, with tears, the full details
of F2(x):

F2(x) = x3 − ( j2 − 24 • 3 • 31 j + 24 • 34 • 53) x2

+ (24 • 3 • 31 j2 + 34 • 53 • 4027 j + 28 • 37 • 56) x

+ ( j3 − 24 • 34 • 53 j2 + 28 • 37 • 56 j − 212 • 39 • 59).

Step 4 determines σ1. To the necessary accuracy at the cusp,

j(2ω)=q−2 + 744, j(ω/2) = q−1/2 + 744, j(ω/2 + 1/2)=−q−1/2 + 744,

so σ1 = q−2 + 3 • 744 and from

j2 = q−2 + 2 • 744 q−1 + (744)2 + 2 • 196884
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you see that

σ1 = j2 − 2 • 744 j + (744)2 − 2 • 196884 + 3 • 744

= j2 − 24 • 3 • 31 j + 24 • 34 • 53,

as advertised.

Step 5. F2 is now written as a polynomial in two variables F2(x, j(ω)). It
vanishes for x = j(2ω), so F2( j(ω), j(ω/2)) ≡ 0 upon division of ω by 2,
that is, j(ω/2) is a root of F2( j(ω), x) = 0. But F2(x, j(ω)) is likewise the
field polynomial of j(ω/2), and since both F2(x, j(ω)) and F2( j(ω), x) have
top coefficient +1, by ex. 2, they must be the same: F2(x, j(ω)) = F2( j(ω), x).
This suffices to determine σ2 and σ3 in part:

σ2 = 24 • 3 • 31 j2 + · · · and σ3 = − j3 + 24 • 34 • 53 j2 + · · · .
The rest of the computation requires more terms in the expansion of j at the
cusp.

Exercise 3. Check the expansion up to three terms using the expression of
j = 1728g3

2/� by means of null values from Section 3.3. Warning: The
present parameter q is the old q2.

Exercise 4. Finish the computation of σ2 and σ3.

4.12 Landen’s Transformation

The modular equation of level 2 between j(2ω) and j(ω) implies the existence
of a similar relation between the Jacobian moduli k2(2ω) and k2(ω). This is
just the Gauss–Landen transformation of Section 2.3:

k(2ω) = 1 − k ′

1 + k ′ = 1 −
√

1 − k2(ω)

1 +
√

1 − k2(ω)
.

The function k2(ω) is different from 0 and 1 in the upper half-plane, so k(ω) and
k ′(ω) =

√
1 − k2(ω) are taken to be single-valued there, though, unlike k2, the

function k(ω) is not a modular function of �2, as is clear on general grounds
and will be confirmed subsequently. Landen’s rule will now be rederived in the
modular style, for variety.

Proof. k2(ω) = 16q1/2 + · · · at the cusp
√−1∞; see Section 9 under second

level, keeping in mind that q1/2 = q∞. A single-valued root is now determined
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by the requirement k(ω) = 4q1/4 + · · ·, which is to say k = ϑ2
2 (0)/ϑ2

3 (0);
similarly, k ′(ω) = ϑ2

4 (0)/ϑ2
3 (0) = 1 − 8q1/2 + · · · at the cusp; and it is easy to

see from Table 4.2.1 that

k(ω + 1) = √−1k(ω)/k ′(ω) and k(−1/ω) = k ′(ω);

in particular,

k ′(ω + 1) =
√

1 + k2(ω)/[k ′(ω)]2 = 1/k ′(ω),

k(ω + 2) = √−1k(ω + 1)/k ′(ω + 1) = −k(ω).

Landen’s rule states that the function

f (ω) = k(2ω)
1 + k ′(ω)

1 − k ′(ω)

is identically 1. The verification is made in three easy steps.

Step 1. f is invariant under the substitution [12/01]: ω �→ ω + 2 and is turned
upside down by the substitution [10/21]: ω �→ ω/(2ω + 1) in view of

k

(
2ω

2ω + 1

)
= k ′(−1 − 1/2ω) = 1/k ′(−1/2ω) = 1/k(2ω)

and

k ′
(

ω

2ω + 1

)
= k(−2 − 1/ω) = −k(−1/ω) = −k ′(ω).

Step 2. f is of rational character at the cusps 0, 1,
√−1∞ of the fundamental

cell F2 relative to the parameters of Section 9; for example, at
√−1∞, the

parameter is q∞ = eπ
√−1ω = q1/2, k(2ω) = 4q∞ + · · ·, and k ′(ω) = 1 −

8q∞ + · · ·, so f (ω) = 4q∞ × 2 × (8q∞)−1 = 1 to leading order.

Exercise 1. Check that f = 1 to leading order at the other two cusps 0 and 1.

Step 3. The modified function f + 1/ f is now seen to be a pole-free modular
function of second level; as such, it can only be constant (= 2). The rest will
be obvious.

Exercise 2. Think over step 3.
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Special values. Landen’s transformation can be expressed in the form of a
modular equation for x = k(2ω) and y = k(ω) with F2(x, y) = (1 + x)2(1 −
y2) − (1 − x)2; its simplicity compared to the modular equation of level 2 for
j , expounded in Section 11, is striking. The same disparity presents itself at
higher levels: The arithmetic character of k2 is simpler than that of j ; see Yui
[1978] and also Kaltofen and Yui [1984]. This has the particular consequence
that to compute special values of j it is often easier to find k2 and then to use
the relation

j =
[

1728 × 4

27
= 28

]
× (k4 − k2 + 1)3/k4(1 − k2)2,

noted in Section 4.9; see Section 6.9 for the computation of j(
√−5) = 26 • 5 ×

(52 • 79+23 • 3 • 7
√

5) in this style. Here are four simpler instances to be checked
by you.

Exercise 3. Use the known value j
(

1
2 (−1 + √−3)

) = 0 to deduce k2
(

1
2 (−1+√−3)

) = 1
2 (1 − √−3), k2(

√−3) = 1
4 (2 − √

3), and j(
√−3) = 24 • 33 • 53 =

54000; compare example 2.17.3.

Exercise 4. k = (
√

2 − 1)/(
√

2 + 1) is the modulus of the square lattice (see
example 2.17.1). Deduce j(2

√−1) = 23 • 33 • 113 = 287496 from that.

Exercise 5. Check that the pairs j(
√−1) = 26 • 33 = 1728, j(2

√−1) =
23 • 33 • 113 and j((−1 + √−3)/2) = 0, j(

√−3) = 24 • 33 • 53 satisfy the
modular equation of level 2.

Exercise 6. j(
√−2) = 26 • 53 is found from k(

√−2) = √
2 − 1; see example

2.17.2. What is j(2
√−2)? Answer: 29(1 − √

2)6.

The number j(ω) has a deep arithmetic significance when, as in the present
examples, ω is a quadratic irrationality. That is the subject of Chapter 6 on
imaginary quadratic number fields.

4.13 Modular Equations of Higher Levels

The same type of thing can be done for any integral substitution [ab/cd] with
fixed nonvanishing determinant ad −bc = n > 0 in place of [20/01]: ω �→ 2ω.
The corresponding absolute invariants x = j(ω′) and y = j(ω) satisfy a
(universal) irreducible polynomial Fn ∈ C[x, y]: Fn( j(ω′), j(ω)) = 0. This is
the modular equation of level n. The geometric background will be treated
first.
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Covering Tori. Let X′ = C/L′ be an n-fold cover of X = C/L with compatible
complex structure. The question is: What is the relation of the corresponding
absolute invariants j(X′) and j(X)? The projection X′ → X lifts to a conformal
map of the universal cover C, as in Section 2.6. Now the lattice L′ appears as
a sublattice of index n in L. The primitive periods of L′ are related to those
of L by

ω′
2 = aω2 + bω1,

ω′
1 = cω2 + dω1

with a, b, c, d ∈ Z and ad − bc = n, this number being the ratio of the areas
of the associated fundamental cells. The presence of a common divisor m in
a, b, c, d indicates the presence of a trivial intermediate cover of X by a con-
formally equivalent torus C/mL with the same absolute invariant as X, so it is
no loss of generality to suppose that a, b, c, d are coprime. The period ratio
ω′ = ω′

2/ω
′
1 is related to the period ratio ω = ω2/ω1 by the (fractional) sub-

stitution [ab/cd], so j(ω′) = j ((aω + b)/(cω + d)) is the absolute invariant
of X′. The modular equation of level n expresses its relation to the absolute
invariant j(ω) of X. The special case ω′ = nω is a variant of the problem of
division of periods mentioned in Section 2.17.

Correspondences. The substitution [ab/cd] ∈ GL(2, Z) with coprime a, b,

c, d ∈ Z and determinant ad − bc = n is a modular correspondence of level
n. The derivation of the modular equation requires a preliminary discussion
of these. �1 acts upon them by left multiplication; in this way, any modular
correspondence may be brought into one of the inequivalent reduced forms
[ab/0d] with coprime a, b, d ∈ Z, ad = n, and 0 ≤ b < d. For example, if
n = p is prime, then the reduced correspondences are p + 1 in number: They
are [p0/01] and [1q/0p] for 0 ≤ q ≤ p.

Proof. The value of c is first reduced to 0 by application of a left-hand modular
substitution: if c = 0, do nothing; if a = 0, apply [01/ − 10] to make c = 0; if
neither a nor c is 0, let q be their highest common divisor and use [i j/kl] with
coprime k = −c/q, l = a/q , and such i, j ∈ Z as make il − jk = 1. Now
c = 0 in every case, ad − bc = n, d > 0 can be insisted upon as it is only ±1
times the substitution that counts, and b may be reduced modulo d to obtain
0 ≤ b < d by use of [1 j/01]. The reduction is finished.

Exercise 1. Check that the reduced forms are inequivalent under the (left) action
of �1.
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�1 also acts upon the modular correspondences from the right producing a
transitive permutation of the reduced forms.

Proof. It is to be shown that the special reduced correspondence [n0/01] can
be brought into coincidence with any other reduced form [ab/0d] by the action
of �1 from both sides. To spell it out,

(
n 0
0 1

)
•

(
i j
k l

)
=

(
ni n j
k l

)

can be made to match
(

i ′ j ′

k ′ l ′

)
•

(
a b
0 d

)
=

(
i ′a i ′b + j ′d
k ′a k ′b + l ′d

)

by choice of the modular substitutions [i j/kl] and [i ′ j ′/k ′l ′]. This requires

i = i ′a
n

= i ′

d
, j = i ′b + j ′d

n
= ib + j ′

a
, k = k ′a, and l = k ′b + l ′d.

Let i be the part of d coprime to a and pick j coprime to i . This determines
i ′ = id and j ′ = −ib + ja, and these are coprime: If not, they have a common
prime p and either p divides i and so also ja (but not j), violating the fact that
i is coprime to a, or else p divides d (but not i) and so also first a and then b,
violating the fact that a, b, d are coprime. But if i ′ and j ′ are coprime, then
i ′l ′ − j ′k ′ = 1 can be achieved by choice of k ′ and l ′. This determines k = k ′a
and l = k ′b + l ′d; in particular,

il − jk = i ′

d
(k ′b + l ′d) − (i ′b + j ′d)

n
k ′a = i ′l ′ − j ′k ′ = 1

at no extra cost. That does the trick.

The Modular Equation. The (fractional) action of �1 on the period ratio is
now seen to permute the reduced invariants j(ω′) = j(d−1(aω + b)) with
coprime a, b, d ∈ Z, ad = n, and 0 ≤ b < d , with the result that the product

Fn(x) =
∏[

x − j

(
aω + b

d

)]
,

taken over the reduced correspondences, is invariant under �1. The fact is that
Fn ∈ C[ j][x] much as for n = 2: Indeed, the coefficients of the several powers
of x are (1) invariant functions of �1, (2) pole-free in the open half-plane, and
(3) of rational character in q = e2π

√−1ω at the cusp
√−1∞, being of rational

character in q1/n and of period 1 in ω: as such, they must be polynomials in
the absolute invariant j itself. Besides, the action of �1 effects a transitive
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permutation of the reduced invariants so Fn is irreducible over the ground field
K(�1) = C( j). Fn is now seen to be the common field polynomial, over
the ground field C( j), of all absolute invariants j(ω′) of level n. In short,
Fn(x, j(ω)) = 0 is the modular equation of level n.

Exercise 2. The degree of Fn is p + 1 if n = p is prime. What is it for general
n? Hint: Do it for a prime power to get the idea. Answer: n�(1 + p−1) with
p running over the prime divisors of n.

Exercise 3. The vanishing of Fn( j(ω′), j(ω)) expresses the fact that j(ω′) is
one of the reduced invariants. Prove that this relation is reciprocal, that is,
Fn( j(ω), j(ω′)) also vanishes. Conclude that Fn(x, y) = Fn(y, x) as for n = 2.
Hint: Fn( j(nω), j(ω)) = 0 holds equally for ω and for ω/n.

Exercise 4. The group �0(n) of modular substitutions [i j/kl] with k divisible
by n is the stabilizer of j(nω) in the full modular group. Check it. What is
the relation of the (left) quotient �0(n)\�1 to the reduced correspondences of
level n?

The explicit computation of F2 was already not simple. The case n ≥ 3 can
only be worse and is not attempted here; but see Fricke [1928 (2): 371–459]
for n = 2, 4, . . . , 32, 3, 9, 27, and more, and Yui [1978] for n = 11. The
coefficients of Fn grow rapidly with n. The biggest of their absolute values is
the height hn of Fn . Cohen [1984] proved that

log hn = 6n
∏
p|n

(
1 + 1

p

)
×

[
log n − 2

∑
p|n

log p

p
+ O(1)

]
;

in particular, log h2n ∼ 9 log 2×n • 2n so the biggest coefficient is comparable
to 29n • 2n

.

4.14 Jacobi’s Modular Equation

Abel [1827] and Jacobi [1829] studied the higher modular equations relating
k2(pω) to k2(ω) for primes p ≥ 3. The case p = 2 is covered by Landen’s
transformation. The special case p = 5 is the key to Hermite’s solution of
the quintic expounded in Chapter 5. Jacobi [1881–91 (1): 29–48] treated
the eighth roots 4

√
k(pω) and 4

√
k(ω) for p = 3, 5. Sohnke [1836] did p =

7, 11, 13, 17, 19. Hannah [1928] presents a list of the modular equations known
up to that time. Berndt [1991] discusses the modular equations that appear in
Ramanujan’s work. The present account, for p ≥ 3, is adapted from Fricke
[1922 (2): 495–502].
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Step 1. k2 does not vanish in the open upper half-plane H and so has a single-
valued eighth root specified by its development at the cusp

√−1∞: 4
√

k(ω) =√
2q1/16 + · · · with q = e2π

√−1ω, as is the custom now. The present task is to
compute its stability group K1 in the modular group of second level �2. It is to
be proved that 4

√
k obeys the rule

4
√

k

(
aω + b

cω + d

)
= (−1) [a2−1+ab]/8 4

√
k(ω).

This permits the identification of K1 as the substitutions of second level with
a2 + ab ≡ 1 mod 16; in particular, K1 contains the group �16 of modular
substitutions congruent to the identity mod 16.

Exercise 1. Check that [ab/cd] �→ (−1)[a2−1+ab]/8 is a character of �2.

Proof of the substitution rule. By ex.1, it suffices to check the rule for the
generators [12/01] and [10/21] of �2. The first fixes the cusp

√−1∞ and
k(ω + 2) = −k(ω), as in Section 12, so 4

√
k(ω + 2) = eπ

√−1/4 4
√

k(ω), in
agreement with a2 − 1 + ab = 2. The second fixes the cusp 0 and so also the
value 4

√
k(0), in agreement with a2 − 1 + ab = 0.

Step 2 determines the stability group Kp ⊂ �2 of 4
√

k(pω). A substitution
[ab/cd] of second level fixes this function if and only if

ω �→ aω + pb

(c/p)ω + d

fixes 4
√

k(ω) itself. This requires c/p ∈ Z and a2 − 1 + abp ≡ 0 mod 16,
which may be reduced to a2 − 1 + ab ≡ 0 mod 16 since, in the presence of the
odd whole number a, either condition implies b ≡ 0 mod 8, p being odd. In
short, Kp is the group �0(p) ∩ K1 of substitutions [ab/cd], with c ≡ 0 mod p,
stabilizing 4

√
k.

Exercise 2. The requirement c/p ∈ Z was passed over rapidly. Think it
through.

Step 3. K1 acts upon
(

2
p

)
4
√

k(pω) to produce the p + 1 distinct forms:

(
2

p

)
4
√

k(pω) and 4
√

k

(
ω + 16q

p

)
for 0 ≤ q < p,

in which
(

2
p

)
= (−1)(p2−1)/8 is the quadratic residue symbol of ex. 3.10.2.
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Proof. Kp reproduces the first form. Now take [ab/cd] belonging to K1 but
not to Kp, that is, with a2 − 1 + ab ≡ 0 mod 16 but c indivisible by p. Then
16c is prime to p so d ≡ 16cq mod p with 0 ≤ q < p; also

p
aω + b

cω + d
=

ap
ω + 16q

p
+ b − 16aq

c
ω + 16q

p
+ d − 16cq

p

= a′ω′ + b′

c′ω′ + d ′

with a self-evident notation, and [a′b′/c′d ′] ∈ �2 by inspection. The upshot is
(

2

p

)
4
√

k

(
p

aω + b

cω + d

)
= (−1)[p2−1+a2 p2−1+abp]/8 4

√
k

(
ω + 16q

p

)
,

and it is easy to see that the power of −1 is trivial: a2 − 1 + abp ≡ 0 mod 16
and p is odd.

Exercise 3. Check that every q = 0, 1, 2, . . . , p − 1 actually occurs.

Step 4. The type of polynomial familiar from Sections 11 and 13 is introduced:

Fp(x) =
[

x −
(

2

p

)
4
√

k(pω)

] ∏
0≤q<p

[
x − 4

√
k

(
ω + 16q

p

)]
.

Naturally, its coefficients are invariant under K1. Now K1 ⊂ �2 is of index 8 in
the latter because �2 stabilizes k2 while K1 stabilizes its eighth root 4

√
k. This

means that �2 acts upon 4
√

k by multiplication by eighth roots of unity, and all
these actually occur since 4

√
k(ω + 2) = eπ

√−1/4 4
√

k(ω). It will be plain that
eight copies of the fundamental cell F2 provide a fundamental cell for K1 and
that 4

√
k takes on every complex value just once in that new cell, cusps included

of course; in particular, 4
√

k is the absolute invariant of K1, with the proper
precautions as to the rational character of invariant functions at the cusps. It
follows, as in Section 11, that the coefficients of Fp are polynomials in 4

√
k since

they are (1) invariant functions of K1, (2) of rational character at the cusps, and
(3) pole-free where 4

√
k is finite. Now (1) is clear. The reasoning involved in

(2) is typified by the discussion of the root sum for p = 5 at the cusp
√−1∞:

σ1(ω) =
(

2

5

)
4
√

k(5ω) + 4
√

k
(ω

5

)
+ · · · + 4

√
k

(
ω + 64

5

)

is of rational character in q1/80 and of period 16 in ω, so it has to be of rational
character in 4

√
k = √

2q1/16 + · · ·. The verification of (3) occupies the next
exercise.
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Exercise 4. k2(ω) = ∞ on the orbit of 1 under �2. Prove that it comprises
all ratios of odd coprime integers and use this fact to finish the proof that the
coefficients of Fp belong to C[ 4

√
k]. Hint: The ratio e/ f of odd coprime integers

can be expressed as (a + b)/(c + d) with [ab/cd] ∈ �2 by choice of a = e − b,
d = f − c, and e f − 1 = b f + ce with b, c ≡ 0 mod 2.

The final point is that Fp is irreducible over the ground field C( 4
√

k) by the
principle employed in Section 11, namely, the stabilizer K1 of 4

√
k effects a

transitive permutation of its roots. In short, Fp is the field polynomial of 4
√

k(pω)
over C( 4

√
k).

Step 5. The more explicit notation Fp(x) = Fp(x,
4
√

k(ω)) is now introduced,
and a number of useful supplementary rules are proved.

Rule 1. Fp

(
x,

(
2
p

)
y
)

=
(

2
p

)
Fp(y, x).

Rule 2. Fp(x, 1) = (x − 1)p+1 or (x − 1)(x + 1)p according as p ≡ ±1 mod 8
or p ≡ ±3 mod 8.

Rule 3. Fp(eπ
√−1p/4x, eπ

√−1/4 y) = eπ
√−1(p+1)/4 Fp(x, y), that is, the term

xa yb figures in Fp if and only if pa + b ≡ p + 1 mod 8.

Proof of rule 1. This could be done as in Section 11 for j , but here another route
is taken, for variety. The substitution [ab/cd] with a = −1, b = −16q, c =
0, d = −1 stabilizes 4

√
k(pω), so

Fp

((
2

p

)
4
√

k(pω − 16q), 4
√

k(ω)

)
= 0,

and this is changed into

Fp

((
2

p

)
4
√

k(ω), 4
√

k

(
ω + 16q

p

))
= 0

by the substitution ω �→ p−1(ω + 16q). The further substitution [ab/cd] with
a = 1, b = 8p, c = 0, d = 1 satisfies a2 − 1 + ab = 8p ≡ 8 mod 16 and flips
the signs of both 4

√
k(ω) and 4

√
k

(
p−1(ω + 16q)

)
, so

Fp

(
4
√

k(ω),

(
2

p

)
4
√

k

(
ω + 16q

p

))
= 0

too, whether
(

2
p

)
= +1 or −1; similarly, the substitution ω �→ pω converts

Fp

(
4
√

k
(

ω
p

)
,

4
√

k(ω)
)

= 0 into Fp

(
4
√

k(ω),
(

2
p

)
×

(
2
p

)
4
√

k(pω)
)

= 0. The
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upshot is that Fp

(
4
√

k,
(

2
p

)
x
)

vanishes at the roots of Fp(x,
4
√

k) = 0, and

as the latter is the field polynomial, so it must divide the former. Now the

degree of Fp

(
4
√

k,
(

2
p

)
x
)

is precisely p +1, as follows by examination of the

coefficient of Fp

(
x,

(
2
p

)
4
√

k
)

of highest degree at the cusp 1:

(
2

p

)
4
√

k(pω) ×
∏

0≤q<p

4
√

k

(
ω + 16q

p

)
=

(
2

p

)
[ 4
√

k(ω)]p+1 + · · · .

This may be checked in two steps. At the cusp 1, each factor to the left blows
up since its argument belongs to the orbit of 1 under �2 (see ex. 4), and the
rule of step 1 together with the expansion −1/16eπ

√−1/(ω−1) + · · · of k2(ω) at
the cusp (see Section 9) confirms that the whole product is of degree p + 1

in 4
√

k. Fp

(
4
√

k,
(

2
p

)
x
)

and Fp

(
x,

4
√

k
)

are now seen to be proportional,

and the numerical factor
(

2
p

)
is elicited by use of the expansion 4

√
k(ω) =

√
2eπ

√−1ω/8 + · · · at the cusp
√−1∞. The upshot is that Fp

(
4
√

k,
(

2
p

)
x
)

is

just
(

2
p

)
× Fp(x,

4
√

k), as stated.

Proof of rule 2. 4
√

k(0) = 1, so Fp(x,
4
√

k) reduces to Fp(x, 1) at ω = 0 and

its roots are
(

2
p

)
and 4

√
k(16q/p) for 0 ≤ q < p. Take [ab/cd] ∈ �2 with

a ≡ p mod 8, b = 16q, c ≡ 0 mod 2, and d = p; this can be done since
p2 ≡ 1 mod 8, as you will check. Then [ab/cd] maps 0 to b/d = 16q/p, and
a2 − 1 + ab ≡ p2 − 1 mod 16, so

4
√

k

(
16q

p

)
= (−1)[p2−1]/8 =

(
2

p

)

by the rule of step 1. The rest will be plain.

Exercise 5. Prove rule 3. Hint: Look at the action of [12/01] and use step 1.

Special Cases. For p = 3, 2 is a quadratic nonresidue, so the residue symbol(
2
3

)
is −1, and F3(y, x) = −F3(x, −y) by rule 1. Now

F3(x, y) = x4 − σ1x3 + σ2x2 − σ3x + σ4

is of degree p + 1 = 4 in x with coefficients of degree ≤ 4 from C[y],
and the requirement of rule 3, that the only permissible terms xa yb satisfy
3a + b ≡ 4 mod 8, already provides a lot of information. For instance, σ1 is a
multiple of y3 since a = 3 and b ≡ −5 ≡ 3 mod 8 requires b (≤ 4) to be 3;
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σ2 = 0 since a = 2 and b ≡ −2 ≡ 6 mod 8 cannot be < 4; σ3 is a multiple of
y since a = 1 and b ≡ 1 mod 8 requires b = 1; finally, σ4 = −y4 by rule 1.
The result is that

F3(x, y) = x4 + ax3 y3 + bxy − y4

with constant a and b. Rule 2 does the rest:

F3(x, 1) = (x − 1)(x + 1)3 = x4 + 2x3 − 2x − 1,

so a = 2 and b = −2, the final result being

F3(x, y) = x4 + 2x3 y3 − 2xy − y4.

Exercise 6. Compute F5 in the same style. Answer:

F5(x, y) = x6 − 4x5 y5 + 5x4 y2 − 5x2 y4 + 4xy − y6.

Exercise 7. Jacobi [1829] and Legendre [1825: 26–7] obtained an alternative
form of the modular equation of third level:

√
k(ω)k(3ω) +

√
k ′(ω)k ′(3ω) = 1.

Check it. Hint: F3(x, y)F3(x, −y) = (1 − x2 y2)4 − (1 − x8)(1 − y8). Do the
same for level 5 to obtain

F5(x, y)F5(x, −y) = (x2 − y2)6 − 16x2 y2(1 − x8)(1 − y8).

Exercise 8. Jacobi and Legendre’s form of the modular equation at level 3 is
equivalent to the identity of null values:

ϑ3(0 | ω)ϑ3(0 | 3ω) = ϑ2(0 | ω)ϑ2(0 | 3ω) + ϑ4(0 | ω)ϑ4(0 | 3ω);

compare Section 3.9 under “Landen’s transformation.” Check that this identity
is the same as

2
∑

qm2+3n2 =
∑

q (a+1/2)2+3(b+1/2)2
,

in which the left sum is taken over (m, n) ∈ Z2 of opposite parity and the right
sum is taken over the whole of Z2. Give a direct proof. Hardy [1940: 218]
explains this and more. Hint: m + n = a + b + 1 and m − n = 2b + 1.
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4.15 Jacobi and Legendre’s Derivation: Level 5

Jacobi [1829] and Legendre [1825] employed a very different derivation of
the modular equation of level 5, based upon Jacobi’s function sin amp. The
procedure is outlined in five steps; compare Cayley [1895: 191–4] for this and
for similar derivations at higher level.

Step 1. Let x = sn(x, k(ω/5)) and y = sn(x, k(ω)). The periods of y are
4K and 2

√−1K ; the argument of x is adjusted so that its periods are 4K and
(1/5)×2

√−1K ′. Then x takes on the value +1 with multiplicity 2 at the points

K + (n/5) 2
√−1K ′ (0 ≤ n < 5)

in the fundamental cell of y; similarly, it takes the value −1 at the points
3K + (n/5) 2

√−1K ′(0 ≤ n < 5). The values of y at these two series of points
are, respectively, +1 and −1 taken with multiplicity 2 for n = 0, ±a taken with
multiplicity 1 for n = 1 and 4, and ±b taken with multiplicity 1 for n = 2 and
3, the numbers 1, a, b being distinct and different from 0. The upshot is that

1 − x
1 + x

= 1 − y
1 + y

× (By2 − Ay + 1)2

(By2 + Ay + 1)2

with A/B = a + b and B = 1/ab; indeed, the quotient of the two expressions
is constant by inspection of roots and poles, and the fact that x = y = ∞ at√−1K ′ forces the constant to be 1. Now, it is easy to check that x = 0 at y = 0
and at the roots of

B2x4 + (A2 + 2AB + 2B)x2 + 1 + 2A = 0 (1)

and that x = ∞ at y = ∞ and at the roots of

(B2 + 2AB)y4 + (A2 + 2A + 2B)y2 + 1 = 0. (2)

Step 2. Translation by
√−1K changes y into −[k(ω)y]−1, as can be seen from

the value distribution of y and the differential equation for sin amp; similarly, x
is changed into a multiple of x−1, so y is a root of (1) if and only if −[k(ω)y]−1

is a root of (2). This provides two identities for k = k(ω) by comparison of
like powers of y:

k2(A2 + 2AB + 2B) = B2(A2 + 2A + 2B) (3)

and

k4(1 + 2A) = B2(B2 + 2AB). (4)
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Step 3. The differential dx = [(1−y2)(1−k2(ω)y2)]−1/2dy of the parameter x
of the universal cover C is proportional to dy = [(1−x2)(1−k2(ω/5)x2)]−1/2dx:
In fact, dx = (1 + 2A)dy by evaluation of x/y at x = y = 0, with the help of
the formula for (1 − x)(1 + x)−1 displayed in step 1. The slope dx/dy can also
be computed from that identity after the extraction of square roots:

dx

(x + 1)
√

1 − x2

=
[

1

(y + 1)
√

1 − y2

By2 − Ay + 1

By2 + Ay + 1
−

√
1 − y
1 + y

2A(By2 − 1)

(By2 + Ay + 1)2

]
dy,

producing the further identity

(1 + 2A)
k(ω/5)

k(ω)
= 1 + 2A

B
, (5)

by comparison of slopes at x = y = ∞.

Step 4. The last two expressions of step 3 are now combined to evaluate A and
B in terms of X = 4

√
k(ω) and Y = 4

√
k(ω/5):

A = 1

2

Y

X
•

Y 4 − X4

Y X3 − 1
, B = Y 5

X
.

Step 5. Insert these values into (3); after some manipulation, it develops that

X6 − 4X5Y 5 + 5X4Y 3 − 5X2Y 4 + 4XY − Y 6 = 0,

which is just the modular equation of level 5.

Exercise 1. Derive the modular equation of level 3 in the same style. Hints:
Form x and y as for level 5 but with the moduli k(ω/3) and k(ω). They are
related by

1 − x
1 + x

= 1 − y
1 + y

•

[
1 − cy
1 + cy

]2

with c 
= 1. Deduce k2(ω) = c3(c + 2)/(2c + 1) and k2(ω/3) = c [(c + 2)/
(2c + 1)]3. Now eliminate c.

Exercise 2. Check the details for level 5. This is instructive but not so easy.
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4.16 Arithmetic Subgroups: Overview

The modular group �1 contains a bewildering variety of subgroups �0, such as
the principal congruence subgroups �n of level n ≥ 2 specified by [ab/cd] ≡
[10/01] mod n, the group �0(n) of ex. 13.4 specified by c ≡ 0 mod n, and so
forth. If �0 is of finite index n in �1, then it has a fundamental cell F0 comprised
of n copies of F1, in the shape of a hyperbolic polygon with corners and/or cusps.
Each of these special points may be equipped with a local parameter that opens
up the neighborhood into a little disk, whereupon the quotient H/�0+cusps
appears as a handlebody X0, and the class of invariant functions of �0 having
the proper rational character at corners and cusps appears as the associated
function field K(X0). An inclusion of subgroups � ⊂ �0 with finite index d
means that the big curve X = H/�+cusps is a d-fold cover of the little curve
X0 = H/�+cusps and that the big field K(X) is an extension of the ground field
K(X0) of degree d . This produces lots of intricate relations between invariant
functions, exemplified by the modular equations for j and k2. The rest of
the section illustrates what happens next; see, for example, Serre [1973] and
Shimura [1971] for more information.

Genus. The computation of the genus of X0 is illustrated by the group �0 =
�0(p) for prime p ≥ 2. It is the stability group of j(pω) in the full modular
group and so of index p + 1 in the latter. For the computation of the genus, it is
simpler to deal with the conjugate group [0 − 1/10]�0(p)[0 − 1/10] specified
by b ≡ 0 mod p. This is denoted by �0 from now on. Now X0 = H/�0+ cusps
may be viewed as the p+1 copies of F1+√−1∞ produced by the substitutions
ω �→ −1/ω and ω �→ ω + q (0 ≤ q < p), with edge identifications provided
by �0. It is ramified over a point of the projective line X1 = H/�1 + √−1∞
if and only if �0 identifies some or more points of the fiber ω∞ = −1/ω, ωq =
ω + q (0 ≤ q < p) over the projection ω ∈ F1 + √−1∞ down below, and a
count of such ramifications permits you to compute the genus of X0 by means of
the Riemann–Hurwitz formula of Section 1.12: ramification index = 2 (sheet
number + genus −1).

Exercise 1. X0 is ramified over ω ∈ F1 + √−1∞ only if ω is fixed by some
modular substitution, that is, only if ω = ∞, ρ = e2πω/3, or

√−1. Why?
Check that

√−1 is fixed only by [0 − 1/10] and ρ only by [11/ − 10] and
[0 − 1/11].

Now for the count.
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Step 1. The fiber over ∞ is −1/∞ = 0 together with p copies of ∞, so it
produces a single ramification of index p − 1.

Step 2. The fiber over
√−1 is ω∞ = −1/

√−1 = √−1 together with ωq =√−1 + q (0 ≤ q < p). Now the identification of ωm and ωn for 0 ≤ m <

n < p requires
(

1 n
0 1

) √−1 =
(

a b
c d

) (
1 m
0 1

) √−1

with [ab/cd] ∈ �0, which is to say that
(

1 −n
0 1

) (
a b
c d

)(
1 m
0 1

)

fixes
√−1 and so coincides with [0 − 1/10]. Then

(
a b
c d

)
=

(
1 n
0 1

) (
0 −1
1 0

) (
1 −m
0 1

)
=

( ∗ −mn − 1
∗ ∗

)
,

so you must have mn ≡ −1 mod p and, in particular, m 
= 0. This shows
that the coincidence ω∞ = ω0 represents a simple ramification of index 1
and that you have as many additional simple ramifications as there are pairs
1 ≤ m < n < p with mn ≡ −1 mod p, that is, (1/2)(p − 1 − n1), n1 being the
number of quadratic residues of −1 mod p, as you will check.

Step 3. The fiber over ρ = e2π
√−1/3 is ω∞ = eπ

√−1/3 together with ωq =
e2π

√−1/3 + q (0 ≤ q < p), and ω∞ coincides with −1/ω0 = ω1. Now the
identification of ωm and ωn for 0 ≤ m < n < p requires that

(
0 −n
0 1

) (
a b
c d

)(
1 m
0 1

)

fixes ρ and so coincides with [11/ − 10] or [0 − 1/11], which is to say, either
mn − m ≡ −1 mod p or mn − n ≡ −1 mod p. The special values m = 0 or 1
produce a triple identification of ω∞, ω0, and ω1, the rest of the fiber breaking
up into singlets or triplets according as q2 −q ≡ −1 mod p or not. The moral is
that the present ramifications are 1 + (1/3)(p − 2 − n2) in number, of common
index 2, n2 being the number of solutions of q2 − q ≡ −1 mod p.

Exercise 2. Check the details.
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Step 4. Now the genus is presented. There are p + 1 sheets, so

g = −p + 1

2
× the ramification index

= −p + 1

2
(p − 1) + 1

2
+ 1

4
(p − 1 − n1) + 1 + 1

3
(p − 2 − n2)

= p + 1

12
− 1

4
n1 − 1

3
n2.

Exercise 3. Check that g = 0 for p = 2, 3, 5, 7, 13, but not for p = 11. What
is it then? What kind of function field is it now?

If X0 has genus 0, then K(X0) is a rational function field, which is to say that
�0 has an absolute invariant. This is not the case for p = 11.

Exercise 4. Prove that the absolute invariant of �0(2) is

j2(ω) = �(2ω)/�(ω) = 2−16k4(1 − k2)−1.

Hint: j2 is of degree 2 in k2 and �2 ⊂ �0(2) is of index 2 in the latter.

Exercise 5. The absolute invariant of �0(7) is

j7(ω) = [�(7ω)/�(ω)]1/6.

Why? What is the general rule for p = 2, 3, 5, 7, 13? Hint: See sample 3.5.4
to understand the role of 24, which the numbers p−1 = 1, 2, 3, 4, 6, 12 divide.
Note that 9 − 1 = 8 and 25 − 1 = 24 also divide 24. What does this do for
�0(9) and �0(25)?

Higher Genus. Fricke [1922: 371–459] worked out numerous examples of
higher genus. The recipe he favors is illustrated by p = 11 for which the
genus is 1; see Fricke [1928: 428–32] for more details and Birch [1973] for an
entertaining supplement.

The story begins with the sum

f1(ω) =
∑
Z2

qm2+mn+3n2

which is of arithmetic interest in that it counts the number of representations of
whole numbers by the quadratic form m2 + mn + 3n2 of discriminant −11. It
obeys the rule

f1

(
aω + b

cω + d

)
=

( a

11

)
(cω + d) f1(ω) for [ab/cd] ∈ �0(11);
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in particular, f1 is an improper form of �0(11) of weight 1/2; the cautionary
adjective improper alludes to a possible change of sign. The full proof of this
rule is complicated, but here is a sample with a = 1, b = 0, c = 11, d = 1.
Let Q(n) be a positive quadratic form in n = (m, n) ∈ Z2, Q−1 the form inverse
to Q, and ϑQ the sum of exp(2π

√−1ωQ(n)) over Z2. The Poisson summation
formula of Section 3.9, properly extended to dimension 2, yields the rule

ϑQ(−1/ω) = (−detQ)−1/2ϑQ−1 (ω).

Now f1 = ϑQ for Q(m, n) = m2 + mn + 3n2, and Q−1 = Q/11, up to an
exchange of variables, so

f1

(
ω

11ω + 1

)
= −11ω + 1

ω
√−11

× f1

(
−11ω + 1

11ω

)

= −11ω + 1

ω
√−11

× f1

( −1

11ω

)

in view of f1(ω + 1) = f1(ω). The proof is finished by a reprise:

f1

( −1

11ω

)
= 11ω√−11

f1(ω) so f1

(
ω

11ω + 1

)
= (11ω + 1) f1(ω),

in conformity with the fact that 1 is a quadratic residue of 11.
Now the same rule applies to the sum

f2(ω) =
∑

Z2, m odd

(−1)nqm2+mn+3n2
,

and it is a fact, of the same variety as the fundamental lemma of Section 7, that
such forms as f1 and f2 vanish to the total degree 1 in any fundamental cell
F0+ cusps of �0(11). It follows that x = f 2

1 / f 2
2 is a single-valued function

in the fundamental cell, of degree 2, having one root of that degree. Now
f3 = 112g2(11ω) − g2(ω) is a proper form of �0(11) of weight 2, and it is an
instance of a general principle that it can be expressed in terms of the proper
forms f 2

1 and f 2
2 of weight 1, much as in Section 7. The result is that f 2

3 is a
constant multiple of

f 2
2 ( f 6

1 − 22 • 5 f 4
1 f 2

2 + 23 • 7 f 2
1 f 4

2 − 22 • 11 f 6
2 ),

whence

y = f3/ f 4
2 =

√
x(x3 − 20x2 + 56x − 44)

is a single-valued function in the fundamental cell, of degree 4. The fact that
x is of degree 2 now implies that the map from the fundamental cell to the
pair p = (x, y) is (mostly) 1:1, permitting the identification of H/�0(11)+
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cusps with the elliptic curve X: y2 = x(x3 − 20x2 + 56x − 44), and of the
field of invariant functions of �0(11) with C(x)[

√
x(x3 − 20x2 + 56x − 44)];

in particular, the absolute invariant j of �1 is rationally expressible (with tears)
in terms of x and y:

j = 4(61x2 − 24 • 23x + 25 • 11 − 22 • 3 • 5y)3

(x3 − 3 • 7x2 + 23 • 11x + xy − 11y)2
.

Singular Values. The formula for j leads to numerical values of the absolute
invariant at the ramifications of X over its projection by x. These so-called
singular values occur at points where y vanishes and have to do with the
imaginary quadratic field Q(

√−11), of which more to come in Section 6.9.
The form f3 vanishes at the points

ω1 =
√−1√

11
, ω2 = −1

2
+

√−1

2
√

11
, ω3 = −1

3
+

√−1

3
√

11
, ω4 = −1

4
+

√−1

4
√

11
,

as you may check by writing

g2(11ω) = (11ω • c + d)−4g2

(
11ω • a + b

11ω • c + d

)

and requiring that (c • 11ω + d)4 = 112 and that [ab/cd] fix ω. �1 carries these
points to inequivalent points of F1:2

√−11,
−1 + √−11

2
,

−1 + √−11

3
,

1 + √−11

3
,

so they are all the more inequivalent under �0(11) and represent all four roots
of f3 = 0 per cell. Now x cannot vanish at ω1 since f1 is real and positive
for purely imaginary ω. To see where x does vanish, note first that f1(ω) and
ω−1 f1(−1/11ω) obey the same transformation rule under �0(11):

(
a
11

) = (
d
11

)
since ad ≡ 1 mod 11, so their ratio is a single-valued function on X, of degree
1, and can only be a (nonvanishing) constant. Now the reality of f1 just cited
requires that its roots be symmetric with regard to the imaginary axis, so if x = 0
at ω3 = −1/3+√−1/3

√
11, then it also vanishes at ω+

3 = +1/3+√−1/3
√

11
and at −1/ω+

3 = ω4, which is impossible because x vanishes at just one place
per cell. The same reasoning excludes ω4, the upshot being that x = 0 only at
ω2, and you obtain the value

j(ω2) = j

(
1

2
(−1 + √−11)

)
= −215

2 − 1
2 +

√−1
2
√

11
= −6

11+√−11
�→ 11+√−11

6 �→ −1+√−11
6 = −2

1+√−11
�→ 1+√−11

2 , for example.
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by inserting y = √−44x and x = 0+ into the expression for j . The other three
roots of f3 = 0 come from x3 − 20x2 + 56x − 44 = 0. The corresponding
absolute invariants

j(
√−11), j

(
1

3
(−1 + √−11)

)
, j

(
1

3
(1 + √−11)

)

are obtained by substituting those roots into the expression for j with y =
0. Fricke, that indefatigable calculator, reports that the results are etwas
umständlich (= a little involved). It would be prudent to believe him.
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Ikosaeder and the Quintic

The title refers to Klein’s little book Ikosaeder [1884] on the extraction of roots
of the general equation of degree 5. Ruffini [1799] had indicated that this
cannot be done by radicals alone, but it was Abel [1826] who found the first
real proof; see Ayoub [1982] for complete details and Rosen [1995] for Abel’s
original proof. Hermite [1859] discovered how it can be done with the help
of Jacobi’s modulus k2 and the modular equation of level 5 relating 4

√
k(5ω)

to 4
√

k(ω). Kronecker [1858] had a variant; see also Brioschi [1858]. The
icosahedral group A5 of Section 1.7 is the Galois group of the general quintic
and plays a central role, whence Ikosaeder. The present chapter tells the story
from the start; compare Briot and Bouquet [1875: 654–60] and, for more
information, see Klein [1884], Cole’s instructive review [1887], and Green’s
modern geometrical account [1978] described in Section 7.

5.1 Solvability of Equations of Degree ≤ 4

The general equation of degree 2 is P2(x) = x2 − c1x + c2 = 0. It is solvable
by radicals as every schoolchild knows: The discriminant is d = c2

1 − 4c2 and
the roots are x = (1/2)(c1 ± √

d). Diophantus (250) knew this, but it was not
until the sixteenth century that the general equation of degree 3 was solved by
Tartaglia [1546] and Cardano [1545]. Ore [1965: 53–108] tells the story of their
disreputable rivalry. The general equation P3(x) = x3 − c1x2 + c2x − c3 = 0
is reduced to P3(x) = x3 + ax + b = 0 by the substitution x �→ x + c1/3 and
the three roots are expressed as

x = ρ
3

√
−b/2 + 2

√
d + ρ2 3

√
−b/2 − 2

√
d

with ρ running over the three cube roots of unity 1, e2π
√−1/3, e4π

√−1/3 and d =
a3/27 + b2/4 = the discriminant of the reduced cubic. Ferrara (1545) solved

206
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the general equation of degree 4: P4(x) = x4 − c1x3 + c2x2 − c3x + c4 = 0.
The reduction to c1 = 0 is achieved by the substitution x �→ x + c1/4. The
reduced equation is equivalent to (x2 + c0)2 = yx2 + c3x + c2

0 − c4 with
c0 = (1/2)(c2 + y) and undetermined y. The discriminant of the right side is
proportional to a cubic in y and can be made to vanish with the help of Cardano’s
rule. Then the right side has a double root x0, and x2 + c0 = ±√

y(x − x0)
may be solved by the extraction of one more square root. Now it stops: It is
impossible to extract the roots of the general equation of degree 5 or more by
radicals alone. The proof will be recalled in a moment.

5.2 Galois Groups Revisited

The principal tool for the study of polynomial equations is the Galois group.
Birkhoff and Maclane [1948: 409–22], Stewart [1973], and Stillwell [1994] are
recommended for proofs and more information; see also Ore [1957], Kollros’s
little biography of Galois [1949], and Bell [1937: 362–77] for historical details.

Galois Groups. Fix a ground field K0 such as the rational numbers Q, or
Q(

√
5), or C( 4

√
k), and let P(x) = xd − c1xd−1 + · · · ± cd ∈ K0[x] be an

irreducible polynomial of degree d with necessarily simple roots x1, . . . , xd .
The enlarged field K = K0(x1, . . . , xd ) obtained by their adjunction to K0 is
the splitting field of P over K0; it is of dimension (degree) d = [K: K0] over
the ground field. The Galois group G of K, or of P , over K0 is the class of
automorphisms of the larger field K fixing the smaller field K0, and it is a fact
that it fixes nothing more: Any element of K that is fixed by G lies in K0. The
old-fashioned hands-on view is that G is the group of permutations of the d
letters x1, . . . , xd distinguished by two competing features: (1) The value of any
rational function r (x1, . . . , xd ) ∈ K0(x1, . . . , xd ) that is fixed by G lies in K0,
and (2) any such function with values in K0 is so fixed. Feature (1) forces G to
be big, (2) forces it to be small, and the two together specify it unambiguously.
The degree [K: K0] = d is likewise the number of substitutions in G; that is,
it is the order |G| of the group. It is a general principle that a faithful pairing
exists between subgroups Gp of G and intermediate fields K0 ⊂ K1 ⊂ K; see
Fig. 5.1. The index [G: G1] of G1 in G is the degree [K1: K0] = d of K1 over
the ground field. K1 is a splitting field over K0 if and only if G1 is an invariant
subgroup of G; in this case, G/G1 is the Galois group of K1 over K0, as the
figure indicates.

Exercise 1. Let �0 ⊂ P SL(2, C) be any of the Platonic groups of Section 1.7
and j its absolute invariant. Check that �0 is the Galois group of the equation
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K
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K0

/

G
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G

1G

Figure 5.1. Intermediate fields.

j(x) − y = 0 over the ground field K0 = C(y). Hint: The totality of roots of
j(x) = y can be (rationally) produced from a single one. How?

Solving by Radicals. Let p be a rational prime and let K0 contain the pth roots
of unity. Then G is cyclic of order p if and only if K is obtained from K0

by the adjunction of a single radical p
√

x0 of an element x0 ∈ K0. This can
be elevated to a general principle over any ground field K0 of this type: The
equation P(x) = 0 is solvable by radicals in the sense that K is produced from
K0 by successive adjunctions of roots n

√
x if and only if G is solvable in the

sense that it contains a descending chain of subgroups G ⊃ G1 ⊃ G2 ⊃ · · ·
terminating at the identity, each invariant in the one before, with cyclic quotient.

The general equation of degree d is

Pd (x) = (x − x1) · · · (x − xd ) = xd − c1xd−1 + c2xd−2 − · · · ± cd = 0

with the independent indeterminates x1, . . . , xd as its roots; naturally, it splits
in K = C(x1, . . . , xd ) but not in the ground field C(c1, . . . , cd ) over which the
game is played, d = 1 excepted. The quantities c1, . . . , cd , exemplified by

c1 = x1 + x2 + x3, c2 = x1x2 + x2x3 + x3x1, c3 = x1x2x3

for d = 3, are the elementary symmetric functions of the roots, and it is a
fact that every symmetric polynomial in the roots is a polynomial in these. It
follows that the Galois group of Pd over K0 is the full symmetric group Sd .
This is solvable if d ≤ 4 but not if d = 5 or more; in fact, S5 contains just
one intermediate invariant subgroup: the icosahedral group A5 of permutations
of parity +1 of Section 1.7, and this is simple, that is, it has no intermediate
invariant subgroups at all, whence the discovery of Abel [1826] that it is impos-
sible to extract the roots of the general equation of degree 5 by radicals alone.
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Naturally, the solvability of special equations is not precluded; for example, if
c1, . . . , c5 take special values in Q, then the Galois group of P5 over that field
can perfectly well be solvable, as for x5 = 1.

Exercise 2. S3 is solvable in two steps with quotients of order 2 and 3. Check it
by means of Cardano’s formula. Hint: The cube roots are determined so their
product is −a/3.

Exercise 3. S4 is solvable in four steps with quotients of order 2, 3, 2, 2. This
means that P4(x) = 0 can be solved by the adjunction of two square roots after
extracting the roots of a cubic. Check it and compare what Ferrara actually did.

Exercise 4. The general cubic can be reduced to 4x3−3x+y = 0 by elementary
substitutions. This is the problem of antiquity of trisection of angles: x =
sin(ω/3), y = sin(ω). It is incapable of solution by ruler and compass. Why?
Note for future reference that the other two roots of the cubic are x2 = sin(ω/3+
2π/3) and x3 = sin(ω/3 + 4π/3).

Exercise 5. Look up the proof that A5 and, indeed, all the higher alternating
groups are simple. Stewart [1973: 129–31] has it.

5.3 The Galois Group of Level 5

The ideas of Section 2 are nicely illustrated by the modular equation of level 5
computed in ex. 4.14.6 and Section 4.15:

F5(x, y) = x6 − y6 + 5x2 y2(x2 − y2) − 4xy(x4 y4 − 1) = 0.

It is to be proved that the Galois group G of F5 over the ground field K0 = C(y)
is just the ubiquitous icosahedral group A5.

Step 1. Let y = 4
√

k(ω) so that the roots of F5(x, y) = 0 can be expressed as
in Section 4.14:

x∞ = − 4
√

k(5ω) and xn = 4
√

k

(
ω

5
+ 16n

5

)
(0 ≤ n < 5).

The group K1 of modular substitutions [ab/cd] of second level with a2 −
1 + ab ≡ 0 mod 16 stabilizes y, while its subgroup K5, distinguished by c ≡
0 mod 5, stabilizes the principal root x∞. The congruence a2 − 1 + ab ≡
0 mod 16 is the same as a2 − 1 + 5ab ≡ 0 mod 16: a being odd, either implies
that 8 divides b. Now the joint stabilizer of x∞, x0, x1, x2, x3, x4 in K1 is easily
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computed: Besides the condition c ≡ 0 mod 5, also b ≡ 0 mod 5 is required
for the stabilization of x0, and d ≡ a ≡ 1 mod 5 for the rest; in short, the joint
stabilizer is just the invariant subgroup K1 ∩ �5 of K1, as you will check.

Step 2. Now the quotient group K1/K1 ∩�5 acts faithfully on the splitting field
K = K0(x∞, x0, . . . , x4) of F5, and the fact that 4

√
k is the absolute invariant

of K1, as explained in Section 4.14, permits you to identify the quotient as the
Galois group G of F5 over K0. The point is that x ∈ K is fixed by K1 if and
only if it is a rational function of 4

√
k = y.

Exercise 1. Check the last statement.

Step 3. A bit of the structure of G is already apparent: K1 ⊃ K5 ⊃ K1 ∩ �5

and [K1: K5] = 6, as noted in Section 4.14, so

|G| = 6 × [K5: K1 ∩ �5]

is 6 × . . . K5. The count of those permutations is done by hand. The substitu-
tion [ab/cd] ∈ K5 sends xm to xn (0 ≤ m < n < 5) if and only if

4
√

k

(
1

5

aω + b

cω + d
+ 16m

5

)
= 4

√
k

(
a′(ω

5 + 16n
5 ) + b′

c′(ω
5 + 16n

5 ) + d ′

)

with [a′b′/c′d ′] ∈ K5. To spell it out,

a′ = a + 16mc ≡ 1 mod 2,

b′ = 1

5
[b + 16md − (a + 16mc)16n],

c′ = 5c ≡ 0 mod 2,

d ′ = d − 16nc ≡ 1 mod 2,

and for the inclusion [a′b′/c′d ′] ∈ �2, you need b′ ≡ 0 mod 2, which is to say
that 5 divides b +16md −16na, seeing as 5 divides c. This can be achieved by
one and only one choice of 0 ≤ n < 5, a being prime to 5 in view of ad−bc = 1
and c ≡ 0 mod 5. Then [a′b′/c′d ′] ∈ �2 as well; in fact a2 −1+ab ≡ 0 mod 16
implies that 8 divides b, a being odd, so b′ ≡ 1

5 [b+16md −16na] ≡ b mod 16,
and (a′)2 − 1 − a′b′ ≡ a2 − 1 + ab ≡ 0 mod 16. The upshot is that the image
of the root xm under [ab/cd] ∈ K5 coincides with the root xn determined by
n = n(ad − bc) ≡ nad ≡ 16nad ≡ bd + 16md2 ≡ bd + md2 mod 5, whence
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the rule of permutation:

m �→ n ≡ bd + md2 mod 5.

Exercise 2. Check that the rule produces just the 10 permutations of parity +1
listed here:

(01234), (12340), (23401), (34012), (40123),

(04321), (43210), (32104), (21043), (10432).

Hint: The first row is produced by [ab/cd] with a = 1, b = 16, c = 0, d = 1,
the second by a = 3, b = −40, c = 10, d = −133, and there are no other
possibilities. Why?

The upshot is that G is of order 6 × 10 = 60. This is enough to identify it as a
copy of A5, as will be seen in one more step.1

Step 4. G ⊂ S6 is automatic and it is plain that either G ⊂ A6 or else it
contains an equal number of elements of parity +1 and −1, 30 of each. Now
the stabilizer G∞ = K5/K1 ∩ �5 of x∞ in G is of order 10 and contains the
substitution e = (∞12340) ∈ A6; see ex. 2. Let f ∈ G move ∞ to 0, say.
Then the six substitutions 1, f, e f, e2 f, e3 f, e4 f map ∞ to ∞, 0, 1, 2, 3, 4 and
so represent the six cosets of G∞ in G, with the contradictory implication that
G contains at least 50 = 5 × |G∞| odd substitutions if f is odd (parity −1).
This confirms G ⊂ A6. Now [A6: G] = 360/60 = 6, and A6 acts upon the six
cosets of G in A6, viewed as six new letters. The simplicity of A6 ensures that
the action is faithful, and G in its role of permuter of the new letters appears as
the stability group of the identity coset. This identifies G as a copy of A5.

Depressing the Degree. The existence of elements of degree 5 in the splitting
field K of F5 over K0 is now apparent. The icosahedral group A5 contains
the tetrahedral group A4, so K contains an intermediate field K1 of degree
[A5: A4] = 60/12 = 5 over K0, and this may be viewed as a simple extension
of K0 produced by the adjunction of a single element x0 of degree 5, by a general
principle of field theory enunciated in Section 1.4.

Exercise 3. K contains the splitting field of x0; in fact, it is the splitting field.
Why?

1 T. Bickel and S. Whiteside helped with this.
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Galois knew this;2 indeed, he proved that the degree of the modular equation
is depressible in this sense not only for p = 5 from 6 to 5, but also for p = 7
from 8 to 7, and for p = 11 from 12 to 11, but not for any larger prime. Galois
identified the group of the modular equation of level n as PGL(2, Fp) = the
group of 2 × 2 invertible matrices with coefficients from the finite field of p
elements. The subgroup PSL(2, Fp) is of index 2 and it contains a subgroup of
order p only for p = 5, 7, and 11. Galois stated, and Betti [1851] proved, that
this is precisely what is needed to depress the degree.

5.4 An Element of Degree 5

The element x0 = (x∞ − x0)(x1 − x4)(x2 − x3)y fulfills the prediction of Galois:
It is of degree 5 over the ground field K0 = C(y), as will be confirmed next.

Exercise 1. The 10 permutations of ex. 3.2 representing the action of K5 on
xm (0 ≤ n < 5) produce four variants of x0:

x1 = (x∞ − x1)(x2 − x0)(x3 − x4)y,

x2 = (x∞ − x2)(x1 − x3)(x0 − x4)y,

x3 = (x∞ − x3)(x2 − x4)(x1 − x0)y,

x4 = (x∞ − x4)(x0 − x3)(x1 − x2)y.

Check this.

Now the point at issue is whether the full action of K1 ⊃ K5 produces further
variants of this quantity. The answer is no. [K1: K5] = 6 so there are six cases
to test.

Sample. [10/21] belongs to K1 but not to K5. It acts upon x∞, x0, . . . , x4 via
the permutation (302∞41) and so maps x0 to x4. First,

x∞ �→ − 4
√

k

(
5ω

2ω + 1

)
= − 4

√
k

(
5(ω/5 + 48/5) − 48

2(ω/5 + 48/5) − 19

)

= 4
√

k

(
ω

5
+ 48

5

)
= x3,

since the substitution [a b/c d] with a = 5, b = −48, c = 2, d = −19
is a modular substitution of second level (−5 • 19+48 • 2 = 1), and 52 − 1 − 5 • 48

2 Galois [1832], Lettre á Auguste Chevalier.
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≡ 8 mod 16 so the rule of Section 4.14, step 1 applies with multiplier −1. Next,

x0 �→ 4
√

k

(
1

5

ω

2ω + 1

)
= 4

√
k

(
ω/5

10(ω/5) + 1

)
= 4

√
k(ω/5) = x0,

since the substitution [a b/c d] with a = 1, b = 0, c = 10, d = 1 is of
second level and 12 − 1 + 0 ≡ 0 mod 16. Third,

x2 �→ 4
√

k

(
1

5

ω

2ω + 1
+ 32

5

)
= 4

√
k

(
13 •(5ω) + 32

2 •(5ω) + 5

)
= − 4

√
k(5ω) = x∞,

since the substitution [a b/c d] with a = 13, b = 32, c = 2, d = 5 is of
second level and 132 − 1 + 13 • 32 ≡ 8 mod 16; similarly, x1, x3, x4 map to
x2, x4, x1 in that order:

x1 �→ 4
√

k

(
1

5

ω

2ω + 1
+ 16

5

)
= 4

√
k

(
33(ω/5 + 32/5) − 208

10(ω/5 + 32/5) − 63

)
= x2,

x3 �→ 4
√

k

(
1

5

ω

2ω + 1
+ 48

5

)
= 4

√
k

(
97(ω/5 + 64/5) − 1232

10(ω/5 + 64/5) − 127

)
= x4,

x4 �→ 4
√

k

(
1

5

ω

2ω + 1
+ 64

5

)
= 4

√
k

(
129(ω/5 + 16/5) − 400

10(ω/5 + 16/5) − 31

)
= x1.

The verification is finished.

Exercise 2. Check that [10/21] and K5 generate K1. Hint: Multiplication to
the left by [a b/c d] with a = 1, b = 0, c = 2n, d = 1 maps K5 into itself
only if n ≡ 0 mod 5; also, [K1: K5] = 6.

This finishes the proof that K1 produces only the four variants of x0 stated in
ex. 1. It follows that F(x) = (x − x0) · · · (x − x4) belongs to K0[x], 4

√
k = y

being the absolute invariant of K1. F(x) = 0 is the depressed equation.

Exercise 3. Use the expansion 4
√

k = √
2q1/8+· · · at the cusp

√−1∞ to deduce
that xn is a fixed multiple of 26/5

√
5y8/5e6π

√−1n/5 + · · · for n = 0, 1, 2, 3, 4.
Here q = eπ

√−1ω. Hint: The number
√

5 appears in the disguise ε(1−ε)2(1+ε)
with ε = e2π

√−1/5.

The exercise shows that the roots x0, . . . , x4 of F(x) = 0 are distinct and, as K1

permutes them transitively, so F is the field polynomial of x0; in particular, x0

is of degree 5 over K0.
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5.5 Hermite on the Depressed Equation

Hermite [1859] computed the field polynomial F of x0 over K0 = C( 4
√

k):

F(x) = x5 − 24 • 53k2(1 − k2)2x − 26 • 55/2k2(1 − k2)2(1 + k2).

The details are spelled out in five steps.

Step 1 employs the modular equation F5(x, y) = 0 to check that the field
polynomial of x∞y−5 belongs to C[y−8][x] and to conclude that the same
is true of x′

0 = x0 y−16, as follows from a look at the elementary symmetric
functions of x′

0 and its variants x′
n (1 ≤ n ≤ 4) formed as in ex. 4.1.

Exercise 1. Do it.

Step 2. It is an advantage of x′
0 over x0 that it is infinite only for y = 0,

that is, only at the cusp
√−1∞, where you have the simple expansion y =√

2q1/8 + · · ·.

Exercise 2. Confirm the statement of step 2 at, for example, ω = 1/5m. Hint:
k2(ω) = 2−4eπ

√−1/(ω−1) + · · · at ω = 1 and [10/41] maps 1 to 1/5.

Step 3 is to write the field polynomial of x′
0 in the form x5 − c1x4 + · · · − c5

with coefficients c1, . . . , c5 from C[y−8] = C[k−2] and use the expansions of
x′

n(0 ≤ n < 5) to show that their degrees do not exceed 1, 3, 5, 7, 9, respectively.

Exercise 3. Do it.

Step 4. The substitution [10/11] changes

x∞, x0, x1, x2, x3, x4 into 1/x1, 1/x0, 1/x3, 1/x4, 1/x2, 1/x∞,

as you may confirm by explicit computation; for example, x∞ is mapped to

− 4
√

k

(
5ω

ω + 1

)
= − 4

√
k

((
5 −16
6 −19

) (
10

−11

) (
ω

5
+ 16

5

))

= 4
√

k

((
10

−11

) (
ω

5
+ 16

5

))

= 1
4
√

k

(
ω

5
+ 16

5

)

= 1/x1,
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112 − 1 + 11 • 16 ≡ 8 mod 16 being employed in line 1 and the anharmonic
ratio k2 ([10/ − 11]ω) = k−2(ω) in line 3. Now x∞x0 · · · x4 = −y6 by the
modular equation. It follows that, under the substitution [10/11], the quantities
x′

n(0 ≤ n < 5) are permuted and multiplied by y24, while y itself is turned
upside down. This is possible only if cn(k−2) = cn(k2)k−6n for 1 ≤ n ≤ 5,
whence

c1 = 0,

c2 = c′
2k−6,

c3 = c′
3(k−8 + k−10),

c4 = c′
4(k−10 + k−14) + c′′

4k−12,

c5 = c′
4(k−10 + k−18) + c′′

5(k−14 + k−16)

with constant primed coefficients, by the restrictions on the degrees of c1, . . . , c5

noted in step 3.

Step 5. Rule 2 of Section 4.14 provides further information: If ω = 0 (y = 1),
then the roots x∞, x0, . . . , x4 of the modular equation are all −1, with one
exception, namely, +1. This means that x′

0, . . . , x
′
4 all vanish and forces

c2 = 0, c3 = 0, c4 = c′
4(k−10 + k−14 − 2k−12),

c5 = c′
5(k−12 + k−18 − k−14 − k−16).

The field polynomial of x0, itself, is now expressed as

F(x) = x5 + c′
4k2(1 − k2)2x + c′

5k2(1 − k2)2(1 + k2),

and c′
5 is evaluated as −26 • 55/2 from the expansion x0 = 26/551/2k2/5 + · · ·

obtained in ex. 4.9.4. Then the value c′
4 = −24 • 53 is obtained from the more

accurate expansion

x0 = 26/551/2k2/5[1 + 2−4/5k2/5] + · · · .

Exercise 4. Check that. Hint: 4
√

k = √
2q1/8(1 − q) + · · · at

√−1∞ with
q = eπ

√−1ω; see Section 4.9 for help.

5.6 Hermite on the Quintic

Jerrard (1834) reduced the general equation of degree 5, from

P5(x) = (x − x1) · · · (x − x5) = x5 − c1x4 + c2x3 − c3x2 + c4x − c5 = 0,
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to the simpler form x5 − x + c = 0 by adjunction of radicals to the ground field
K0 = C(c1, . . . , c5); this reduction can be matched to the depressed equation
of Section 5.5 by the substitutions

x �→ 2 • 53/4
√

k(1 − k2)x, c �→ −2 • 5−5/4(1 + k2)√
k(1 − k2)

.

The modulus k2 is a root of 24(1 + k2)4 = 55c4k2(1 − k2)2, which is of degree
4 in k2 and so can be solved by radicals over the ground field C(c). A root of
x5 − x + c = 0 is now obtained in the form 2 • 53/4

√
k(1 − k2) x0 and is used

to depress the degree of this equation from 5 to 4. The other four roots

2 • 53/4
√

k(1 − k2) xn (n = 1, 2, 3, 4)

may now be extracted by radicals. This is Hermite’s recipe [1859], expressing
the roots of the general equation of degree 5 in terms of the eighth roots of the
moduli

k2(ω), k2(5ω), k2(ω/5 + 16n/5) (0 < n < 5)

after adjunction of the radicals. In this way, the solution of the general equation
of degree 5 is made to depend upon the equations for the division of periods of
the elliptic functions, as they used to say. The recipe is to be compared to the
trigonometric solution of the cubic noted in ex. 2.4.

The present scheme, of adjunction of new radicals formed from the level
2 modular function k2, fails for d ≥ 6, but Jordan [1870: 370–84] showed
that invariant functions of higher arithmetic subgroups will serve; compare
Lindemann [1884, 1892] and also Umemura’s article in Mumford [1984: 261–
72], where the roots are expressed by means of Riemann’s theta function.

Reduced Quintics. Here is what Jerrard did. Let k0, . . . , k4 be new indetermi-
nates and compute the powers xn (0 ≤ n ≤ 5) of x = k0+k1x +· · ·+k4x4, elim-
inating x5 by means of P5(x) = 0. The six reduced powers so introduced are
polynomials in x , of degree ≤ 4, with coefficients from K1 = K0(k0, . . . , k4),
and as the class of such polynomials is of dimension 5 over K1, so x is a root
of a polynomial Q5(x) = x5 − c1x

4 + · · · − c5 from K1[x]; in particular, every
root of P5(x) = 0 produces a distinct root of Q5(x) = 0, and these are all the
roots of the latter. The coefficients

c1 = x1 + · · · + x5 = 5k0 + k1(x1 + · · · + x5) + · · · + k4(x4
1 + · · · + x4

5 ),

c2 = x1x2 + · · · + x4x5, . . . , c5 = x1 · · · x5
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are homogeneous forms in k0, . . . , k4 of degrees 1, 2, . . . , 5 with coefficients
from C[c1, . . . , c5]. The plan is to make c1, c2, and c3 (but not c4 and c5) vanish
by choice of k0, . . . , k4 in a radical extension of K0 = C(c1, . . . , c5).

Step 1 c1 is made to vanish by choice of k0 = −(1/5)[k1(x1 +· · ·+ x5)+· · ·+
k4(x4

1 + · · · + x4
5 )] without extension of K0.

Step 2 c2 is now a form of degree 2 in k1, . . . , k4; as such, it is a sum f 2
1 +

f 2
2 + f 2

3 + f 2
4 of four squares of forms of degree 1 with coefficients in a

radical extension K2 of K0, and is made to vanish by taking f1 = √−1 f2 and
f3 = √−1 f4, at the cost of eliminating two of the indeterminates.

Step 3 c3 is now a cubic form in the two surviving indeterminates and is made
to vanish in a cubic extension K3 of K2 by fixing one of them and solving for the
other in such a way that k1, k2, k3, k4 do not all vanish. Q5(x) is now reduced to
x5 + c4x− c5 with c4, c5 ∈ K3, and the splitting field of P5 over K0 is seen to be
included in the radical extension of the splitting field of Q5 over K3 obtained
by solving x = k0 + · · · + k4x4 for x in terms of x. The elements c4 and c5 do
not vanish since P5(x) is not solvable by radicals. This permits a final reduction
to Q5(x) = x5 − x + c with nonvanishing c in a radical extension of K0.

5.7 A Geometric View

It is instructive to look at the whole matter from a geometric point of view to see
why the roots of the general equation P5(x) = 0 cannot help but be expressible
by means of modular functions. Green’s pretty account [1978] is followed here.
Klein [1884] proceeded differently, via the so-called icosahedral equation, of
which more below.

The Root Curve. The equation is taken in the reduced form P5(x) = x5+c4x −
c5 = 0 with (c4, c5) ∈ C2 −0, so the root vector (x1, . . . , x5) belongs to C5 −0.
The latter is viewed projectively, so that the locus c1 = c2 = c3 = 0 appears as a
projective curve X in P4, equipped with a projection (x1, . . . , x5) �→ c5

4/c4
5 onto

the projective line P1, two families of roots being identified in P4 if and only if
they have the same projection. X is a smooth curve, that is, the gradients of the
defining relations c1 = c2 = c3 = 0 are independent on X: In fact, the gradients
are 1 = (1, . . . , 1), c11 − (x1, . . . , x5), c21 − c1(x1, . . . , x5) + (x2

1 , . . . , x2
5 ),

and a dependence among them implies that the roots x1, . . . , x5 satisfy an
equation of degree 2, which cannot be maintained in the face of c1 = c2 =
c3 = 0 and (c4, c5) ∈ C2 − 0, as you will check. X is the root curve of
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P5(x) = 0; compare Fricke [1928 (2): 121] who alludes to the same object. Now
the symmetric group S5 acts upon X by permutation of the letters x1, . . . , x5.
Indeed, the projection is equivalent to the quotient map X → X/S5, so X is a
5! = 120-sheeted ramified cover of P1, and it is easy to see that it has

24 ramifications of degree 5 over 0,

30 ramifications of degree 4 over ∞,

60 ramifications of degree 2 over − 55/44.

Proof. A ramification occurs if a nontrivial substitution of S5 maps (x1, . . . , x5)
into a multiple of itself. This requires ω4c4 = c4 and ω5c5 = c5, so the multiplier
ω must be a fourth or a fifth root of unity, and three cases present themselves.

Case 1 The multiplier is a fifth but not a fourth root of unity. Then the roots are
proportional to x = ωn (0 ≤ n < 5). These may be permuted in 120 ways and
identified in P4 in families of five by the multipliers 1, ω, ω2, ω3, ω4, leaving
24 ramified points of X, of degree 5 apiece, over the projection c5

4/c4
5 = 0.

Case 2 The multiplier is a fourth but not a fifth root of unity. Then ω = ±√−1
implies that (x1, . . . , x5) is proportional to (0,

√−1, −1, −√−1, +1), up to
permutations. The 120 possible permutations are identified in P4 in families of
four by the action of the multipliers 1,

√−1, −1, −√−1, leaving 30 ramified
points of X, of degree 4 apiece, lying over the projection ∞. The multiplier
could also have been ω = −1, but that leads to the vanishing of all the roots,
which is not permitted.

Case 3 The multiplier is a fourth and a fifth root of unity, that is, ω = 1. Then
P5(x) = x5 + c4x − c5 = 0 has a double root and P ′

5(x) = 5x4 + c4 = 0
requires the projection to be −55/44. The other roots are simple, so there are(5

2

) × 3! = 60 such ramified points of X, of degree 2 apiece, as you will check.
The genus of X is now computed via the Riemann–Hurwitz formula:

ramification index = 24 • 4 + 30 • 3 + 60 = 246 = 2 × (120 sheets + g − 1),

with the result that g = 4; in particular, the universal cover of X is the open
upper half-plane H. This means that the roots x1, . . . , x5 can be expressed,
up to a multiplier, by means of functions on the half-plane invariant under the
covering group of X. It is just this possibility that Hermite exploited.

Exercise 1. Make the same computation for degrees d ≤ 4. The reduced form
is x2 −c1x +c2 for d = 2, x3 +c2x −c3 for d = 3, and x4 −c3x +c4 for d = 4,
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the projections being c2
1/c2, c3

2/c2
3, c4

3/c3
4. X is now a projective line, as you

will verify by counting ramifications, with the implication that genus 0 has to
do with solvability by radicals. Answers: For d = 2, X has 2 ramifications of
degree 2 over 4 and 0; for d = 3, 3 ramifications of degree 2 over −33/22 and 3
more over ∞, plus 2 ramifications of degree 3 over 0; for d = 4, 12 ramifications
of degree 2 over 44/33, 8 of degree 3 over ∞, and 6 of degree 4 over 0.

The Stellated Dodecahedron. Kepler [1596] invented higher non-Platonic
solids incapable of embedding in R3. It comes as an unexpected pleasure
that the curve X is one of these; indeed, wonders never cease. The figure in
question is the stellated dodecahedron, constructed as follows. Begin with the
icosahedron of 20 triangular faces, 30 edges, and 12 corners, described in Sec-
tion 1.7. Each corner has five neighbors which may be spanned by a pentagon;
this done, throw the original icosahedron away. The result is a self-intersecting
polyhedron X0 which may be provided with a complex structure by projecting
its faces onto the circumscribed sphere P1, self-intersections being ignored as
an artifact of the ambient R3. Figure 5.2 depicts a corner of the icosahedron
and its five neighbors. The pentagon spanning 12345 is a face of X0; other
faces span 103, 305, 502, 204, 401 (+ two adjacent corners), and these meet at
0, to produce a ramification of degree 2; moreover X0 covers P1 threefold via
the spherical projection. The genus of X0 is now seen to be 4:

ramification index = 12 = 2 × (3 sheets + g − 1).

A second projection of X0 onto P1 now comes into play. The group of symme-
tries of the icosahedron is the alternating group A5 comprising 60 substitutions:

1

0

3

5

4 2

Figure 5.2. A corner of the icosahedron.
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To wit, besides the identity, (1) 24 = 4 × 6 rotations by multiples of 2π/5
about corners, (2) 20 = 2×10 rotations by multiples of 2π/3 about the centers
of faces, (3) 15 rotations by π about centers of edges, for a total count of
1 + 24 + 20 + 15 = 60. A5 acts upon X0 in a self-evident way. It remains to
identify the quotient X0/A5 as a projective line.

Proof. The appropriate symmetry of type 1 fixes the center of the pentagon
12345; it identifies nearby points in families of five, producing ramifications
of X0 of degree 5 lying over two distinct points of the base X0/A5. There
are 12 points of each kind lying over the same two base points. A symmetry
of type 2 effects a cyclic permutation of the three sheets of X0 lying over the
associated icosahedral face; no ramification is produced. A symmetry of type 3
exchanges two of the sheets over the associated icosahedral edge and fixes the
other. This accounts for 30 more ramifications of degree 2 lying over the third
point of the base. The genus of the base is now computed by a variant of the
Riemann–Hurwitz formula: The Euler characteristic of X0 is 2 − 2 × 4 = −6,
while that of the base is 2 − 2g. The curve X0 covers the base 60 times, so
−6 = 60 × (2 − 2g) − the ramification index as in Section 1.12, with the result
that 120g = 120 + 6 − 24 × 4 − 30 = 0, that is, g = 0; in short, X0/A5 is a
projective line, as advertised.

Now it is easy to see that the root curve X ⊂ P4 of x5 +c4x −c5 = 0 is of the
same character over its quotient by A5 ⊂ S5, to wit, X/A5 is a projective line
and X is ramified over three points e1, e2, e3 of the base, having 12 ramifications
of degree 5 over each of e1 and e2, and 30 more ramifications of degree 2 over
e3. This fact is now used to identify the root curve as a stellated dodecahedron.

Proof. A preliminary step is to make the branch points e1, e2, e3 of the two
curves coincide by application of a self-map of P1. Now fix three loops γ

generating the fundamental group � of the thrice-punctured sphere P1 − e1 −
e2 − e3, as in Fig. 5.3, with γ1γ2γ3 = 1. Any element of � determines a
covering map of X over the punctured sphere, and this map can be identified
with an element of A5, so what you have is a representation π of � in A5.
The ramifications of X are mirrored in π by the fact that the permutations
σ1 = π (γ1), σ2 = π (γ2), and σ3 = π (γ3) have orders 5, 4, 2; conversely, it
is plain that the conformal type of X is specified by π , so the identity of the
two covers comes down to the fact that, up to conjugation inside A5, � has
only one such representation, as will now be confirmed. The fact that σ 2

3 = 1
permits you to take σ3 = (1 3 2 5 4) by labeling of letters, products of 2-cycles
being the only elements of A5 of order 2; similarly, only 5-cycles have degree
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e1

e2

e3

P1

Figure 5.3. Generators of �.

5, so σ−1
1 = σ2σ3 and σ2 are such, and you can relabel the letters so as to

make σ2(1) = 2. Then σ2(2) = 3 implies σ2σ3(3) = σ2(2) = 3, which is
contradictory, as is σ2(2) = 1, so σ2(2) is neither 1, 2, nor 3 and can be taken
as 4 by a further relabeling. This precludes σ2(4) = 5 and, as σ2: 1 �→ 2 �→ 4
cannot now map 4 to any of 1, 2, 4, or 5, so σ2 being a 5-cycle must map
1 �→ 2 �→ 4 �→ 3 �→ 5 �→ 1. The proof is finished.

The Universal Cover. The uniformization theorem of Koebe and Poincaré
being notoriously nonconstructive, Green [1978: 238–9] elaborates upon the
way in which the half-plane H covers the root curve X by means of the triangle
functions of Section 4.10 in the case a + b + c = 1/2 + 1/4 + 1/5 < 1.
This provides a tessellation of H by hyperbolic triangles having interior angles
π/2, π/4, π/5, as seen in Fig. 5.4. The double reflections A, B, C in the sides
12, 23, 31 have periods 2, 4, 5, respectively, and ABC = 1. They generate
a subgroup � of P SL(2, R) preserving the tessellation, for which any two
adjacent triangles form a fundamental cell; in particular, H/� is a copy of P1.

1

2

3

π / 4

π / 2

π / 5

Figure 5.4. The hyperbolic triangle.
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Now the invariant subgroup �0 ⊂ � generated by (AC−2 AC2)2 is of index
120 in the latter; see Coxeter and Moser [1980: 137]. In fact, �/�0 is a
copy of S5, and the projection of H/�0 to P1 = H/� has three branch points
e1, e2, e3 of degrees 2, 4, 5 corresponding to the orders of the cosets of A, B, C
in �/�0. This provides a representation in S5 of the fundamental group of the
punctured base, of the same character as that associated to the root curve X and
its projection to P1 = X/S5 punctured at e1 = −55/44, e2 = ∞, e3 = 0,
and it is easy to see, as for the stellated dodecahedron, that there is, effectively,
only one such representation. In short, H/�0 may be identified with the root
curve. This leads to a more concrete view of the relation of X to H, permitting
the expression of the roots by modular forms of �0 of weight −2; see Green
[1978: 239–41] for details of this and further information.

Klein’s method is described in Fricke [1928 (2): 57–181]. It depends upon
the icosahedral invariant j4 of Section 1.7. This is a map of degree 60 from the
projective line P1 to itself, with covering group A5, the latter being, at one and
the same time, the symmetry group of the icosahedron and the Galois group of
the icosahedral equation j4(x) = y over the ground field K0 = C(y); compare
ex. 2.1. Now A5 contains the tetrahedral group A4, so the splitting field of
j4(x) − y contains an element of degree 5 over the ground field, just as in
Section 4. This means that the roots of P5(x) = 0 can be made to depend upon
those of j4(x) = y. The latter can be expressed by means of modular functions:
If j is the absolute invariant of the modular group �1 and if y = j(ω), then, as
Klein proved,

x = q−3/5 ϑ1(ω|5ω)

ϑ1(2ω|5ω)
= q2/5 ×

∑
Z(−1)nq5n2+3n

∑
Z(−1)nq5n2+n

with q = eπ
√−1ω

is a root of the icosahedral equation; all the other roots may be obtained by
applications to x of the substitutions effecting the icosahedral rotations of P1.
A variant of the geometric picture is now obtained by modeling the covering
projective line by H/�5 and the base by H/�1, the degree of the cover over
the base being the index [�1: �5] = 60.
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Imaginary Quadratic Number Fields

Kronecker (1853) tried to prove, and Weber [1886] succeeded in proving, that
every finite extension of the rational number field Q with commutative Galois
group is a subfield of some cyclotomic field obtained by adjoining to Q a root
of unity; see Greenberg [1974] for a fairly simple proof. Kronecker (1860)
also tried to describe the commutative extensions of the imaginary quadratic
field Q(

√
D), obtained by the adjunction to Q of the square root of a nega-

tive square-free number D, and perceived the relevance of certain “singular”
values of the absolute invariant j . The deep impression this program made
upon nineteenth-century mathematics is reflected in the romantic title by which
it came to be known: Kronecker’s Jugendtraum,1 and Weber’s completion
of it [1891] represents a remarkable feat. But it was objected that such tran-
scendental tools as the absolute invariant were inappropriate; and, indeed, a
purely algebraic understanding was temporarily retarded. Hilbert’s class fields
[1897] met the objection, providing a complete description of commutative
extensions generally, avoiding transcendental elements; see, especially, Hasse
[1980] and Cohn [1985] for more information. The next two articles review
the basic facts about algebraic number fields. The portion of the Jugendtraum
dealt with here is more fully explained in Section 3. The rest of the chapter
is devoted to the proofs, following chiefly Fricke [1922 (2): 292–502] and
Weber [1891: 413–91], with small simplifications made possible by more mod-
est objectives. Deuring [1958] can be consulted for a streamlined account in
the same (transcendental) style; see also Borel et al. [1966], Cox [1989], and,
for a nice old-fashioned account, Matthews [1911]. Vladut [1991] reviews the
whole subject and connects it to current number-theoretic questions.

1 Kronecker [1895–1931(5): 455–7].
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6.1 Algebraic Numbers

The basic facts about algebraic number fields can be found in a convenient form
in Borevich and Shafarevich [1966], Hasse [1980], Pollard [1950], Hardy and
Wright [1979], or Weyl [1940]; see also Stark [1970] for a nice introduction
to the imaginary quadratic field Q(

√
D). This field illustrates all the important

points, so read the examples with care.

Number Fields. Let K be an extension of the ground field Q of degree d =
[K: Q]. K is an algebraic number field if d < α, and it is a fact that such a
field can be obtained from Q by the adjunction of a single element r ∈ K, i.e.,
K = Q(r). The irrationality r is of degree d over Q so every element of K is
of the form x = c0 + c1r + · · · + cd−1rd−1 with c0, . . . , cd−1 ∈ Q.

Example 1. K = Q(
√−3,

√
5) is obtained from Q(

√−3) by adjunction of
√

5;
it consists of all numbers of the form x = c0 + c1

√−3+ c2

√
5+ c3

√−15 with
c0, c1, c2, c3 from Q. It contains r = √−3 + √

5,
√

5 = −(1/16)(r3 − 12r ),
and also

√−3 = (1/16)(4r + r3) in view of r3 = 12
√−3 − 4

√
5, with the

outcome that K = Q(r ). K is of degree 4 over Q: in fact, the field polynomial
of r = √−3 + √

5 is x4 − 4x2 + 64 and K is its splitting field.

Exercise 1. Give details.

Conjugates. The field polynomial of r is of degree d and so has d roots
r1(= r ), r2, . . . , rd . The numbers

xi = c0 + c1ri + · · · + cd−1rd−1
i (i = 1, . . . , d)

are the conjugates of x = x1 ∈ K. They are the roots of the field polynomial
P of x , each repeated m = d/n times, n being the degree of P . The product

x1 · · · xd = NK/Q(x)

is the norm of x ; it is a rational number. The norm is multiplicative: N (xy) =
N (x)N (y).

Example 2. The conjugates of r = √−3 + √
5 in Q(

√−3,
√

5) are r1 =√−3+√
5, r2 = −√−3+√

5, r3 = √−3−√
5, and r4 = −√−3−√

5. The
conjugates of

√−3 are its conjugates in Q(
√−3) repeated twice. This gives

NK/Q(
√−3 + √

5) = 64 and NK/Q(
√−3) = 9.
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Galois Group. K = Q(r ) need not be the splitting field of r but can always be
so enlarged. Then the Galois group G permutes the conjugates of r inside the
bigger field.

Example 3. Q(
√−3,

√
5) is a splitting field with commutative Galois group

G comprised of the four permutations (1234), (2143), (4321), (3412) of the
letters r1, r2, r3, r4 of example 2; it is the product of two cyclic groups of order
2. The Kronecker–Weber theorem is illustrated: Q(

√−3,
√

5) ⊂ Q(ω) with
ω = e2π

√−1/15; in fact,
√−3 = 2ω5 + 1 and

√
5 = 2(ω3 + ω12) − 1.

Exercise 2. Check the Galois group.

The fields Q(
√

p), for prime p, afford further illustrations of the Kronecker–
Weber theorem: ±√

p is the value of a Gauss sum of Section 3.10, so Q(
√

p)
is contained in a cyclotomic field.

Algebraic Integers. The number x ∈ K is an algebraic integer if its field
polynomial has coefficients from Z and top coefficient +1. This class of poly-
nomials is denoted by SZ[x] from now on. The algebraic integers of K form a
ring O(K) just like Z. Naturally, Z = O(Q). These are the rational integers
if the distinction is required. K is the quotient field of O(K).

Example 4. The integers of the imaginary quadratic field Q(
√

D) are m+n
√

D
with m, n ∈ Z if D �≡ 1 mod 4; (1/2)(1+√

D) must be adjoined if D ≡ 1 mod 4,
so the integers are now (1/2)(m + n

√
D) with m, n ∈ Z of like parity.

Proof. The algebraic integer x ∈ Q(
√

D) is of the form a + b
√

D with a, b ∈
Q. The conjugate of x is a − b

√
D, so its integrality requires 2a ∈ Z and

a2 − b2 D ∈ Z.

Case 1. a ∈ Z implies b2 D ∈ Z, and b ∈ Z follows from the fact that D is
square-free.

Case 2. a ∈ Z + 1/2 implies b2 D ∈ Z + 1/4. Let b = i/j with coprime
i, j ∈ Z. Then 4Di2 = 4nj2 + j2 and j2 divides 4i2, D being square-free.
This forces j = 2, i odd, and D ≡ 1 mod 4. The rest will be plain.

Units. The integer x ∈ O(K) is a unit if 1/x is also integral.
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Exercise 3. Check that NK/Q(x) is a rational integer if x ∈ O(K). Conclude
that x is a unit if and only if NK/Q(x) = ±1.

Example 5. The units of the imaginary quadratic field Q(
√

D) are ±1 always,
with the addition of ±√−1 if D = −1, and of (1/2)(±1 ± √−3) if D = −3.

Proof. x = a + b
√

D is a unit if and only if

1

x
= a − b

√
D

a2 − Db2

is also integral. Then

NK/Q

(
1

x

)
= (a2 − Db2)−1

must be a whole number, that is, a2 − Db2 = +1, D being negative, and if
D �≡ 1 mod 4 then a, b ∈ Z and either a = ±1, b = 0, and x = ±1, or else
a = 0, b = ±1, D = −1, and x = ±√−1. Now take D ≡ 1 mod 4 and
half-integral a and b. Then b2 ≥ 1/4 and a2 − b2 D = 1 imply D = −3,
a = ±1/2, b = ±1/2, and x = (−1 ± √−3)/2, as promised.

Discriminant. O(K) has an integral basis. This means that it is possible to
find integers ω1, . . . , ωd ∈ K, d = [K : Q] being the degree of K over Q, so that
every integer ω is uniquely expressible as ω = n1ω1 +· · ·+ndωd with rational
integers n1, . . . , nd . Let ωi j ( j ≤ d) be the conjugates of ωi for i ≤ d. The
square of the determinant [ωi j : 1 ≤ i, j ≤ d] is a nonvanishing rational integer
independent of the choice of the base. It is the discriminant of K over Q.

Example 6. The numbers 1 and (1/2)(1+√
D) form an integral basis of Q(

√
D)

if D ≡ 1 mod 4; otherwise, 1 and
√

D will serve. The discriminant is D in the
first case and 4D otherwise.

6.2 Primes and Ideal Numbers

The idea of a prime integer in Z is plain and the notion extends to the general
field K in a natural way. But is it still true that the integers of K can be uniquely
factored into primes, as for Q? The answer is no!

Example 1. Q(
√−5) does not enjoy this property. The congruence −5 �≡

1 mod 4 implies that the integers are Z ⊕ Z
√−5, and 21 = 3 • 7 = (1 +

2
√−5)(1−2

√−5) are distinct splittings of 21 into prime integers of Q(
√−5),

as you will check.
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Ideals. Gauss [1801] cured this difficulty with the introduction of integral ide-
als: i ⊂ O(K) is an (integral) ideal if it is closed under addition and subtraction
within itself and also under multiplication by integers from the full ring O(K).
The integral multiples ω × O(K) of a fixed integer ω ∈ K form the principal
ideal i = (ω).

A nonprincipal ideal j, if any such exists, can always be expressed as the
intersection of O(K) with the principal ideal i = (ω) of an integer ω in a higher
field containing K: j = O(K)

⋂
(ω). This explains the name, j being, so to say,

the expression inside K of the ideal number ω residing in the higher field.

Example 2. The set2 j = 3Z ⊕ (−1 + √−5)Z is an ideal of Q(
√−5) since

O(Q(
√−5)) = Z ⊕ √−5Z and

√−5[3a + (−1 + √−5)b] = 3(a − 2b) + (−1 + √−5)(3a − b) ∈ j.

This is not a principal ideal since j = (ω) with ω = a + b
√−5 and a, b ∈ Z

requires the existence of x ∈ O(K) such that 3 = xω. But then the norm
N (ω) = |a + b

√−5|2 = a2 + 5b2 would divide the norm 32 = 9 of 3 ∈ j,
and none of the possibilities a2 + 5b2 = 1, 3, 9 pans out: a2 + 5b2 = 1 forces
ω = 1, a2 + 5b2 = 3 is impossible, and a2 + 5b2 = 9 requires either a = ±3
and b = 0 or a = ±2 and b = ±1; so the only chance is ω = 2 ± √−5, and
this is not successful either:

3 = (m + n
√−5)(2 ± √−5) = (2m ∓ 5n) + (2n ± m)

√−5

for some m, n ∈ Z requires m = ∓2n and 3 = ∓9n.

Now the smallest ideal j2 containing all products of elements of j is a principal
ideal:

j2 = (3Z + (−1 + √−5)Z) × (3Z + (−1 + √−5)Z)

= 9Z + (−3 + 3
√−5)Z + (−4 + 2

√−5)Z

= (2 + √−5)(2 − √−5)Z + 3(2 + 2
√−5)Z + 2(2 + √−5)Z

= the principal ideal (2 + √−5).

This prompts the introduction of the ideal integer ω =
√

2 + √−5 from
outside Q(

√−5), with field polynomial P(x) = x4 − 4x2 + 9 = (x2 − 2)2 + 5.

2 The notation is faulty: In this instance, (−1 + √−5) is the number, not the ideal. The context
will remove any ambiguity.
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The principal ideal i = (ω) is formed in the ring of integers of the associated
splitting field. Then i∩O(Q(

√−5)) is an integral ideal of Q(
√−5) containing

√
2 + √−5 ×

√
2 − √−5 = 3

and

(2 + √−5)2 − 3 = 4(−1 + √−5)

and so also the whole ideal j. The fact is that i ∩ O(Q(
√−5)) = j. The proof

is postponed.

Exercise 1. Let ω = c−1(a+b
√

D) ∈ Q(
√

D) with coprime a, b, c ∈ Z. Prove
that L = Z ⊕ ωZ is closed under multiplication by O(K) for D �≡ 1 mod 4 if
and only if b = 1 and a2 ≡ D mod c, and for D ≡ 1 mod 4 if and only if b = 1
and a ≡ 1 mod 2, c ≡ 0 mod 2, and a2 ≡ D mod 2c.

Divisibility of Ideals. The product ij of two ideals is the smallest ideal con-
taining all products ab with a ∈ i and b ∈ j. The ideal j divides another ideal i

if there exists a third ideal k such that i = jk. This occurs if and only if i ⊂ j.
The ideal p is prime if the product of two integers from O(K) belongs to p

only if one factor already belongs to p; equivalently, p is prime if it cannot be
split into the product of two nontrivial ideals of O(K). It is immediate that
every ideal splits into a finite product of primes, but it is not immediate that this
happens in only one way, up to trivialities, as for the decomposition of a whole
number into a product of rational primes. The computation of the prime ideals
in Q(

√
D) is postponed in favor of an illustration.

Example 2 continued. Now the proof that i ∩ O(Q(
√−5)) is the same as the

ideal j = 3Z + (−1 + √−5)Z is easy to finish. i ∩O(Q(
√−5)) includes j and

so divides it. But j is prime since a product of integers

[a + b(−1 + √−5)][c + d(−1 + √−5)]

= (ac − 6bd) + (ad + bc − 2bd)(−1 + √−5)

belongs to j only if 3 divides ac, which is to say that one factor or the other
already belongs to j.

Discriminants Continued. Like the ring O(K), any ideal i of O(K) has an
integral basis ω1, . . . , ωd . The discriminant of i is formed as for O(K); it is a
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nonvanishing rational integer, independent of the choice of the base, and

∣∣∣∣
ideal discriminant

field discriminant

∣∣∣∣
1
2

= the index [O(K): i] of i in O(K).

This number is the norm NK/Q(i) of the ideal. Norms are multiplicative:
N (ij) = N (i)N (j). For principal ideals j = (ω), N (j) is the absolute value
of the norm NK/Q(ω) of the number ω, introduced before. An ideal always
contains its norm, that is, if N (j) = n, then j divides the principal ideal (n).

Example 3. Let i be an ideal of Q(
√−5) with integral basis ω1 = a + b

√−5,
ω2 = c + d

√−5 so that i is the lattice Zω1 ⊕ Zω2. Its discriminant is
∣∣∣∣
a + b

√−5 a − b
√−5

c + d
√−5 c − d

√−5

∣∣∣∣
2

= (ad − bc)2 × (−20).

−20 is the field discriminant and |ad − bc| is the quotient of the area of the
fundamental cell of i by the area of the fundamental cell of Z ⊕ √−5Z. The
connection with the index of i in O(Q(

√−5)) is geometrically plain from that:
The latter is just the number of times the fundamental cell of O(Q(

√−5)) fits
into the larger fundamental cell of i.

Prime Ideals: Finale. A prime ideal p in a general number field K divides
(i.e., contains) just one rational prime p, so a complete list of prime ideals of
O(K) can be obtained by factoring the rational primes p, or more accurately, the
principal ideals (p), into prime ideals in O(K). Naturally, (p) could be prime in
O(K); if not, it splits into two or more prime ideal pieces. The prime number p
is ramified in K if the splitting involves repeated prime ideals. Dedekind [1877]
proved that this takes place if and only if p divides the field discriminant. This
is illustrated in the next example. The same ideas and terminology apply to the
splitting of prime ideals of Q(

√−3), say, in a higher field such as Q(
√−3,

√
5).

Exercise 2. Check that every prime ideal contains a single rational prime.

Example 4. The prime ideals of Q(
√

D) are to be computed according to the
plan just proposed. The quadratic residue symbol of Section 3.10 is used to
distinguish three cases:

(
D
p

) = ±1 or 0, according as D is or is not a quadratic
residue of p, or p divides D.

Let the prime ideal p contain the rational prime p. The notation p = [p,
x + √

D] means that p and x + √
D constitute an integral basis of p; with this
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notation, p̄ is the ideal [p, x −√
D] comprised of the conjugates of the elements

of p. The results are as follows.

Case 1. D �≡ 1 mod 4.

(
D
p

)
= +1: (p) = pp̄, p = [p, x + √

D], x2 ≡ D mod p, 1 ≤ x < p.

p = 2 is exceptional: p = p̄, that is, p is ramified, only in this case.(
D
p

)
= −1: (p) = p, that is, (p) is prime as it stands.(

D
p

)
= 0: (p) = p2, p = [p,

√
D], that is, x = 0 in line 1.

Case 2. D ≡ 1 mod 4.
(

D
p

)
= +1: (p) = pp̄, p = [p, (1/2)(x + √

D)], x2 ≡ D mod p, 1 ≤ x <

p, and x is odd, with one exception: If p = 2 and if D ≡ 5 (mod 8), then
(2) is prime as it stands.(

D
p

)
= −1: (p) = p as before.(

D
p

)
= 0: (p) = p2, p = [p, (p + √

D)/2], that is, x = p in line 1.

Sample proof for D ≡ 1 mod 4,
(

D
p

)
= +1, p �= 2. This is broken into four

little steps.

Step 1. D is a quadratic residue of p so x2 ≡ D mod p can be solved with odd
x < p since x2 ≡ (p − x)2 and x and p − x have opposite parity.

Step 2. p = [p, (1/2)(x + √
D)] is an ideal by ex. 1 applied to the lattice

[1, (1/2p)(x +√
D)]: It is enough to note that x2 ≡ D mod p can be improved

to x2 ≡ D mod 4p in view of D ≡ 1 mod 4 and x ≡ 1 mod 2.

Step 3. p is prime: In fact, if a +b
√

D and c +d
√

D are integers from Q(
√

D)
with a, b, c, d ∈ Z/2 and product

ac + bd D − x(ad + bc) + 2(ad + bc)
x + √

D

2
≡ m + n

x + √
D

2

in p, then m ∈ Z is divisible by p, and the same is true either of a − bx or of
c − dx in view of

(a − bx)(c − dx) = ac + bd D − x(ad + bc) + bd(x2 − D)

= m + bd(x2 − D)
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and the divisibility of x2 − D by 4p used in step 2. But if p divides a − bx ,
say, then

a + b
√

D = a − bx + b(x +
√

D) ∈ Zp ⊕ Z
x + √

D

2
= p.

Step 4 is to check that pp̄ = (p). The product is spanned by rational integral

multiples of p2,
p

2
(x ± √

D), and
1

4
(x2 − D), so, with a self-explanatory

notation,

pp̄ =
[

p2, p
x − √

D

2
, p

x + √
D

2
,

x2 − D

4

]

=
[

p2, px, p
x + √

D

2
,

x2 − D

4

]

=
[

p, p
x + √

D

2
,

x2 − D

4

]
x being coprime to p since x2 ≡ D mod 4p

=
[

p, p
x + √

D

2

]

= p

[
1,

x + √
D

2

]

= p

[
1,

1 + √
D

2

]
because x ≡ 1 mod 2

= p × O(Q(
√

D))

= (p).

Ideal Classes. Two integral ideals i and j of the general number field K belong to
the same class if yi = x j for suitable integers x and y from O(K); in particular,
every principal ideal belongs to the class of (1) = O(K). The formation of
classes is respected by products; also, to each ideal i corresponds a reciprocal
ideal j such that ij belongs to the class of (1). In short, the classes form a
multiplicative group C(K). This is the class group of K; it is of finite order
= the class number h(K). Class number h(K) = 1 is equivalent to saying
that every integral ideal of K is principal or, what is the same, that unique
factorization into prime integers prevails in O(K).

Exercise 3. Prove this statement.



6.2 Primes and Ideal Numbers 233

Example 5. The finiteness of the class number h(D) of Q(
√

D) is easily proved.
The period ratio of any ideal is of the form c−1(a + b

√
D) with a, b ∈ Z and

may be taken in the fundamental cell of P SL(2, Z). Then −1/2 ≤ a/c < 1/2
and c−2(a2 − D) ≥ 1, so a2 ≤ c2/4 and 3c2/4 ≤ −D. This limits the number
of classes.

Example 6. The actual determination of the class number of the imaginary
quadratic field Q(

√
D) is a supremely elusive problem first studied by Gauss

[1801]. For example, it is already a deep fact that h(D) = 1 for D = −1, −2,
−3, −7, −11, −19, −43, −67 and −163; and for no other value of D; see Baker
[1971a,b], Heegner [1952], Stark [1967, 1969], and especially Goldfeld [1985],
where the whole problem is reviewed. The cases D = −1, −2, −3, −7, −11
can be decided by the simple

Criterion. The class number is 1 if, for every element x ∈ K, integral or not,
it is possible to find an integer y ∈ O(K) with NK/Q(x − y) < 1.

Proof. Let x and y be nonvanishing integers of K and pick k = k1 from O(K)
so that N (x/y − k1) < 1. Then x = k1 y + y1 with integral remainder y1

of norm strictly less than N (y). The procedure can be repeated if y1 �= 0 to
produce integral k2 so that y = k2 y1 + y2 with integral remainder y2 of still
smaller norm. The procedure stops when the remainder vanishes: yn−1 = kn yn .
The factor yn is a highest common divisor of x and y. In fact, it is a common
divisor and it divides every other such divisor in O(K); plainly, it is unique up
to units. It follows, just as for Z, that every ideal is principal: The ideal i has
an integral base ω1, ω2 and coincides with the principal ideal generated by the
highest common divisor of these two numbers.

The criterion is geometrically transparent for K = Q(
√

D): It says that, in the
fundamental cell of the lattice O(K), every point is at distance less than 1 from
a corner. If D �≡ 1 mod 4, then O(K) = [1,

√
D], and the criterion requires

(1/2)|1 +
√

D| = (1/2)
√

1 − D < 1,

so D = −1 or −2 is allowed but not D ≥ −3. If D ≡ 1 mod 4, then O(K) =
[1, (1/2)(1 + √

D)], D ≤ −3, and now the criterion requires

1

2

∣∣∣∣1 − 1

2
(1 +

√
D)

∣∣∣∣ = 1

4

√
1 − D < 1

so D = −3, −7, or −11 are permitted but not D ≤ −15.
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Bonus. Let D = −1, −2, −3, −7, or −11. The rational prime p splits into

two ideal factors in Q(
√

D) if
(

D
p

)
= +1 or 0. These factors are principal

ideals, so there is an integer a + b
√

D of Q(
√

D) with norm a2 − b2 D = p.
This produces a number of classical results for odd primes p ≥ 3:

Example 7. D = −1. Then
(

−1
p

)
= (−1)[(p−1)/2]2

by Section 3.10, so
(

−1
p

)
=

+1 if and only if p ≡ 1 mod 4, confirming the theorem of Fermat [1894] that
p is the sum of two squares in just this case; compare Section 3.6 and the
discussion of quadratic forms in Section 4.5.

Example 8. D = −2. Now
(

−2
p

)
=

(
−1
p

)(
2
p

)
= −1, by ex. 3.10.2, so(

−2
p

)
= +1 if and only if p ≡ 1 or 3 mod 8, and p = a2 + 2b2 with a, b ∈ Z

in just this case. This is due to Dirichlet.

Exercise 4. What happens for D = −3, −7, −11? Answer: For D = −3,
a2 + 3b2 represents primes p ≡ 1 mod 3 as well as p = 3; for D = −7,
a2 + 7b2 represents primes p ≡ 1, 2, 4 mod 7 as well as p = 7; for D = −11,
a2 + 11b2 represents primes p ≡ 1, 3, 5, 9 mod 11 as well as p = 11.

The other numbers D = −19, −43, −67, −163 producing class number
h(D) = 1 can also be dealt with in a perfectly elementary manner. The
period ratio of an ideal of Q(

√
D) is of the form c−1(a + √

D) with either
a2 ≡ D mod c or a ≡ 1 mod 2, c ≡ 0 mod 2 and a2 ≡ D mod 2c according
as D �≡ 1 mod 4 or D ≡ 1 mod 4, by ex. 1. The further limitations a2 ≤ c2/4
and 3c2/4 ≤ −D may be imposed by placing the ratio in the fundamental
cell of P SL(2, Z), as noted in example 5. Now D = −19 ≡ 1 mod 4, and
c = 2 and 4 are the only even numbers with c2 ≤ 4 • 19/3: c = 2 permits only
a = −1, −1 being odd and (−1)2 + 19 ≡ 0 mod 4, producing the period ratio
(−1 − √−19)/2, while c = 4 is impossible since it permits only a = ±1 and
(±1)2+19 = 20 �≡ 0 mod 8. This identifies the class number of Q(

√−19) as 1.

Exercise 5. Check that h(D) = 1 for D = −43, −67, −163 in the same style.

Exercise 6. Compute the class number of Q(
√−57). Answer: 3.

More on Class Numbers. Gauss [1801: article 179] expressed the class number
of Q(

√
D) as

h(D) = 2

π

√
|D|

∏[
1 − 1

p

( |D|
p

)]−1

,
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the product being extended over all rational primes p. Dirichlet [1894: 212–
83] found other remarkable expressions for class numbers in terms of quadratic
residues; for example, if −D = p is a prime number of the form 4n + 3 and
if n+ and n− are the numbers of quadratic residues and nonresidues mod p
between 1 and (p − 1)/2, then h = n+ − n− or (1/3)(n+ − n−) according as
p ≡ 7 or p ≡ 3 mod 8. Gauss [1801] conjectured and Siegel [1936] proved
that h(D) = |D|1/2+o(1) for large D. The proof is based upon the beautiful
identity of Dirichlet [1894]

h(D) =
√

|D| 1

π

∞∑
n=1

(
D

n

)
n−1.

Oesterle [1985] has obtained the effective bound

h(D) >
1

7000
(log|D|)

∏(
1 − [2

√
d]

d + 1

)
,

where the product runs over the proper divisors of D. This may be used to
identify all integers D < 0 with a given class number, up to a finite amount
of computation. Cox [1989], Ireland and Rosen [1990], and Zagier [1984]
are recommended for more information about this question; see also Borevich
and Shafarevich [1966] for this and for the class numbers of more general
number fields.

6.3 Class Invariants and Kronecker’s Jugendtraum

Let i be an ideal of the ring of integers O(K) of an imaginary quadratic field
K = Q(

√
D). Then X = C/i is an elliptic curve, and it is plain that two such

curves C/i and C/j are conformally equivalent if and only if the underlying
ideals i and j belong to the same class k.

The common value of the absolute invariants of C/i and C/j is the class
invariant j(k). Distinct classes have distinct class invariants; moreover, the
class invariants of one imaginary quadratic field are distinct from those of any
other.

Exercise 1. Check all that. Hint: D is square-free.

Exercise 2. X = C/L admits nontrivial complex multiplication by m ∈ Z only
if its period ratio belongs to an imaginary quadratic field K = Q(

√
D); compare

Section 2.6. Then the ring of all complex multiplications of X is part of O(K).
Why? It is the full ring O(K) if and only if the absolute invariant of X is a class
invariant of K. Check these statements.
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Kronecker’s Jugendtraum. The class group C(K) of K = Q(
√

D) is com-
prised of h classes k, each with a different class invariant j(k). The chief facts
about these numbers are sufficiently striking to stand without extra comment.

Item 1. The class invariants j(k1), . . . , j(kh) are algebraic integers; in fact,
they comprise the full set of roots of a polynomial of degree h from3 SZ[x]
which is irreducible, not only over Q, but over K = Q(

√
D) as well.

Item 2. The splitting field K1 obtained by the adjunction of the class invariants
to K = Q(

√
D) is commutative, meaning that its Galois group G over the

ground field K is such; in fact, G is a copy of the class group C(K), the
rule associating the class k to the corresponding substitution σk ∈ G being
σk: j(k′) 
→ j(k−1k′).

Item 3. K1 is the absolute class field of K = Q(
√

D), meaning that it is the
biggest commutative extension of the latter in which prime ideals of the little
field do not ramify but merely split into distinct prime factors in the big field.

The rest of the chapter is devoted to items 1 and 2 following Fricke [1928] and
Weber [1908], with simplifications made possible by more modest objectives.
Item 3 is a consequence of the class field theory initiated by Hilbert in his
[1897] report on number theory. This provides an overview of the totality of
commutative extensions of K. It falls outside the scope of the present account,
but see Borel et al. [1966], Cox [1989], and Vladut [1991] for more information,
and also Reid [1970], who tells the story behind this report and some details of
Hilbert’s life. Siegel [1949] found a remarkable supplement to item 1: If ω is an
algebraic number but not a quadratic irrationality, then j(ω) is a transcendental
number; see Baker [1975] for details.

Aside 1. Just as the class field of Q(
√

D) is produced by the adjunction of
singular values of the absolute invariant j(k) taken at suitable quadratic ir-
rationalities, so also the cyclotomic fields of the Kronecker–Weber theorem
are produced by the adjunction to Q of “singular” values of the invariant
j∞(ω) = exp(2π

√−1ω) taken at rational values of ω.

Aside 2. h(D) = 1 if and only if j(k) ∈ Z for every class k; for example,
j(

√−3) = 54000, by ex. 4.12.3, so h(−3) = 1, as in example 2.6.

3 SZ[x] is the class of polynomials Z[x] with the added restriction that the top coefficient be 1.
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6.4 Application of the Modular Equation

The proof that the class invariants are algebraic integers employs the modular
equations Fn(x, j(ω)) = 0 of levels n ≥ 2 discussed in Section 4.13.

Step 1. The class invariant j(k) is a root of the diagonal polynomial Gn(x) =
Fn(x, x) for suitable n.

Proof. Fix an ideal i of class k and an integer m ∈ O(K) with square-free norm
n = NK/Q(m) ≥ 2: m = 1+√−1 will do if D = −1 and m = √

D if D ≤ −2,
so that n = −D, with the exception of n = 2 for D = −1. Then m is a complex
multiplier of i viewed as a lattice Zω1 ⊕ Zω2, that is, mω2 = aω2 + bω1 and
mω1 = cω2 + dω1 with a, b, c, d ∈ Z, and n appears as the index |ad − bc| of
mi in i, by comparison of areas of fundamental cells: area(mi) = (mm̄)×area i.
Well and good. Now n is square-free, so the numbers a, b, c, d have highest
common divisor 1; the substitution [ab/cd] is a modular correspondence of
level n in the language of Section 4.13; and since the period ratio ω = ω2/ω1

is a fixed point of that substitution, so the class invariant x = j(k) = j(ω) is a
root of the modular equation Fn(x, y) = 0 with y = j(k).

Step 2. The last statement is not void; in fact, the diagonal polynomial is of
positive degree equal to 2× the sum of the divisors d of n with d >

√
n.

Proof. Fn(x, j(ω)) is the product of x − j(d−1(aω + b)) for [ab/0d] running
over the full family of reduced correspondences with a, b, d coprime, ad = n,
and 0 ≤ b < d. The square-free character of n simplifies life: If d divides n,
then it is already prime to a = n/d and every 0 ≤ b < d is permitted, so

Fn(x, j(ω)) =
∏

0 ≤ b < d
d|n

[
x − j

(
aω + b

d

)]
.

The degree of Gn is now read off with the aid of the expansion j(ω) = q−1 +· · ·
at the cusp ω = √−1∞:4 To leading order,

Gn( j(ω)) =
∏

d|n,0≤b<d

[q−1 − q−a/de−2π
√−1b/d ],

4 Here q = e2π
√−1ω.
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and no factor vanishes since a/d = 1 violates the square-free character of n. It
follows that Gn is of degree

∑
0 ≤ b < d
a/d < 1

1 +
∑

0 ≤ b < d
a/d > 1

a

d
=

∑
d2>n

d +
∑
d2<n

n/d = 2 ×
∑

d>
√

n

d.

Exercise 1. The degree of Fn is the sum of the divisors of n, by ex. 4.13.2 and
a little further thought, taking account of the square-free character of n; for
example, deg F10 = 1 + 2 + 5 + 10 = 18 while deg G10 = 2 × (5 + 10) = 30.

Step 3. The proof that j(k) is an algebraic integer is finished by confirming that
Gn ∈ SZ[x]. The top coefficient is easy: The expansion at the cusp confirms
that its value is

∏
0 ≤ b < d

d2 < n

(−1) × e−2π
√−1b/d =

∏

d2 < n

(−1) × e−π
√−1(d−1) = ±1.

The rest follows from Gn ∈ Z[x], but it is just as easy to prove a little more:
that the full polynomial Fn(x, y) has rational integral coefficients.

Proof. Let y = j(ω) as usual. The elementary symmetric functions of the re-
duced invariants x = j(d−1(aω+b)) are polynomials in y. It is the coefficients
of these polynomials that are in question. The expansion j = q−1 + · · · has
rational integral coefficients, as noted in sample 5 of Section 3.5, so

j

(
aω + b

d

)

= e−2π
√−1b/dq−a/d

[
1 + a sum of whole powers of

e2π
√−1b/dqa/d with rational coefficients

]
.

Let ε = e2π
√−1/n , observe that e2π

√−1b/d = εab is an integer of the field Q(ε),
and let σ be a Galois substitution of Q(ε) over the ground field Q. Then σ (ε)
is a primitive nth root of unity = ε f , say, with f coprime to n, and σ maps
e2π

√−1b/d = εab to ε f ab. This effects a permutation of the numbers e2π
√−1b/d ,

f being coprime to d , and so fixes the coefficients in the expansion at the
cusp of any symmetric function of the reduced invariants. It follows that these
coefficients could only be rational integers. The rest will be plain from the
self-evident principle that if P ∈ C[x] and if the expansion P( j(ω)) in powers
of q has coefficients in Z, then so does P(x).

Exercise 2. Check it, from the top power of P on down.
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6.5 The Class Polynomial

The class invariants j(k) are now known to be roots of the diagonal polynomial
Gn(x) for n = 2 if D = −1 and for n = −D if D ≤ −2. The next task is
to extract from Gn the class polynomial H (x) = ∏

[x − j(k)] corresponding
to the totality of class invariants of K and to prove that it has rational integral
coefficients. The proof of its irreducibility is postponed. The cases D =
−1, −2, and −3 may be excluded since the class numbers are 1 and the class
invariants belong to Z by explicit evaluation:

D = −1: O(K) = [1,
√−1], j(k) = j(

√−1) = 1728 = 26 • 33;

D = −2: O(K) = [1,
√−2], j(k) = j(

√−2) = 26 • 53;

D = −3: O(K) =
[

1,

(
1

2
(−1 + √−3)

)]
j(k) = j

(
1

2
(−1 + √−3)

)
= 0.

The proof for D ≤ −5 relies on the following facts.

Fact 1. If D �≡ 1 mod 4, then the class invariants are the simple roots of
Gn(x) = 0.

Fact 2. If D ≡ 1 mod 4, then the class invariants are still simple roots of
Gn(x) = 0, but not the only ones. Now (n + 1)/4 is a whole number and
the class invariants can be distinguished from the extraneous simple roots of
Gn(x) = 0 by the fact that they are also roots of G(n+1)/4(x) = 0 whereas the
extraneous roots are not.

Unlike n = 2 or −D, the number (n + 1)/4 need not be square-free for
D ≡ 1 mod 4; for example, n = −D = 15 produces (15 + 1)/4 = 22. Luckily
this is irrelevant. The proof of these facts is postponed in favor of the moral,
which is stated in two parts according to the value of D mod 4.

Case 1. D �≡ 1 mod 4. Gn ∈ SZ[x] and the class invariants are its simple roots.
Move up to the splitting field of Gn(x) = 0 over Q and note that the equality
G ′

n(x) = 0 is invariant under its Galois group. It follows that the simple roots of
Gn(x) = 0 are permuted by the group, so the class polynomial ( = the product
of the simple factors of Gn) is fixed thereby and so belongs to SQ[x].5 The
rest is plain from Gauss’s lemma: If a polynomial of class SZ[x] factors in
SQ[x], then each factor belongs to SZ[x] already. Pollard [1950: 27–9] gives
the standard proof.

5 SQ[x] means elements of Q[x] with top coefficient ±1.
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Case 2. D ≡ 1 mod 4. The product of the simple factors of Gn belongs to
SZ[x] as before. Now the class polynomial is the highest common divisor of
this product and G(n+1)/4 ∈ SQ[x]. Gauss’s lemma does the rest.

Now comes the proof of facts 1 and 2 concerning the class invariants and the
roots of Gn and G(n+1)/4.

Step 1. The root x = j(ω) of Gn(x) = 0 is simple or not according as j(ω)
coincides with one or more than one of the roots j(d−1(aω + b)), ad = n,
0 ≤ b < d, of Fn(x, j(ω)) = 0, with the proviso, in the case of one coincidence,
that ω does not belong to Q(

√−1) or Q(
√−3).

Proof. A coincidence is necessary to have a root at all. Let the fixed root x0 =
j(ω) have f such coincidences and let x ′ = j(ω′) be variable. Then Gn(x ′)
contains an equal number of vanishing factors j(ω′)− j((aω′ +b)/(cω′ +d)) in
which [ab/cd] is an unreduced modular correspondence of level n fixing ω. The
other factors of Gn(x ′) do not vanish at x ′ = x . Now, with the fields Q(

√−1)
and Q(

√−3) excluded by the proviso, j(ω′) takes the value j(ω) simply, so to
leading order,

j(ω′) − j

(
aω′ + b

cω′ + d

)
= [ j(ω′) − j(ω)] ×

[
1 − ad − bc

(cω + d)2

]
,

and Gn(x ′) vanishes simply at x ′ = x only if f = 1 and (cω+d)2 �= ad −bc =
n. The proof is finished by noting that cω + d = ±√

n requires c = 0 and
d2 = n, violating the square-free character of n.

Step 2. If D �≡ 1 mod 4, the class invariants of Q(
√

D) are the simple roots of
Gn(x) = 0.

Proof. This is more complicated but be patient. The number x = j(ω) is a root
of Gn(x) = 0 if and only if ω is fixed by a modular correspondence [ab/cd] of
level n, which is to say, cω2 +(d −a)ω−b = 0. Let A, B, C be the quotients of
c, d −a, −b by their highest common divisor l ≥ 1, so that Aω2 + Bω+C = 0
and ω = (2A)−1(−B +√

D′) with D′ = B2 −4AC < 0. A, B, C are specified
by ω up to a common sign; in particular, D′ is unique. What is complicated is
that the correspondence is not unique: If a + d = m, then

a = m − l B

2
, b = −lC, c = l A, d = m + l B

2

and

4n = 4(ad − bc) = (a + d)2 − (a − d)2 − 4bc = m2 − l2 D′,
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so the number of distinct classes of correspondences fixing ω may, and in fact
will, depend upon the number of representations of 4n by the quadratic form
m2 − l2 D′. There are two cases.

Case 1. If 4n can be represented as m2 − l2 D′ with m �= 0, then x = j(ω) is a
multiple root of Gn(x) = 0.

Proof. The reason is that if g = [ab/cd] is a correspondence of level n fixing
ω, then the same is true of ng−1 = [d −b/−ca], and these cannot be equivalent
under the left action of the modular group; indeed, equivalence takes place only
if n−2g2 is a modular substitution, and this requires n to divide the trace

tr(g2) = a2 + 2bc + d2 =
(

m − l B

2

)2

− 2l2 AC +
(

m + l B

2

)2

= 1

2
m2 + 1

2
l2 B2 − 2l2 AC

= 1

2
(m2 + l2 D′)

= m2 − 2n.

But then n divides m2, and this cannot happen unless n = 1, 2, or 3, which was
expressly excluded; in fact, if n divides m2, it must also divide m because it is
square-free, and that is contradictory if n ≥ 5, in view of 4n = n2 − l2 D′ ≥ n2

which entails 4 ≥ m2/n ≥ m ≥ n ≥ 5.

Case 2. If 4n can be represented by m2 − l2 D′ only with m = 0, then the
correspondence [ab/cd] fixing ω is fully specified and x = j(ω) is a simple
root of Gn[x] = 0 provided ω does not belong to Q(

√−1) or Q(
√−3), by step

1. But what, in fact, are these simple roots and do they satisfy the proviso? The
answer is the content of the present step: They are the class invariants and the
proviso is met. The proof is broken into two parts.

Part 1. The class invariant j(k) is a root satisfying the proviso in view of the
exclusion of D = −1 and D = −3; also, the expression ω = (2A)−1(−B +√

D′) implies D′ = f 2 D with f ∈ Z, D being square-free. Now n = −D, so

4n = m2 − l2 D′ = m2 − l2 f 2 D = m2 + l2 f 2n,

l f = 0, 1, or 2, and either l f = 0 and m2 = 4n2, violating the fact that n is
square-free; or l f = 1, 3n = m2, and n = 3, which is excluded; or else l f = 2
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and m = 0, which is what is wanted. In short, case 2 prevails, the proviso is
satisfied, and x = j(k) is a simple root.

Part 2. It remains to prove that every root x = j(ω) that falls under case 2 is
a class invariant j(k). Now you begin from 4n = −l2 D′ and you notice that
either l = 1 and D′ = 4D, or l = 2 and D = D′, or else the square-free
character of n is violated by the fact that l is divisible by either an odd prime
or 4. If l = 1 and D′ = 4D, then B = 2a ≡ 0 mod 2, B2/4 ≡ D mod A in
view of 4D = D′ = B2 − 4AC , and ex. 2.1 guarantees that the lattice [1, ω] =
[1, A−1(−B/2+√

D)] is closed under multiplication by O(K); in particular, ω
is the period ratio of an ideal of O(K) and j(ω) is a class invariant. If l = 2 and
D′ = D, the same conclusion is reached since B2 = D + 4AC ≡ D mod 4A,
as required for the application of ex. 2.1 to [1, ω] = [1, (2A)−1(−B + √

D)].
The proof is finished.

Step 3. If D ≡ 1 mod 4, then the class invariants j(k) of Q(
√

D) are still simple
roots of Gn(x) = 0, but there are more. The class invariants arise, as in part
2 of the preceding step, from l = 2, D′ = D, whereas the extraneous simple
roots arise from l = 1, D′ = 4D.

Proof. D �≡ 1 mod 4 was not used in step 2 until part 2, so the conclusions are
the same up to that point. The possibilities are as before: Either l = 1 and
D′ = 4D or l = 2 and D′ = D; in both cases; ω = (2A)−1(−B + √

D′)
does not belong to Q(

√−1) or to Q(
√−3). Now if l = 2 and D′ = D, then

ω = (2A)−1(−B + √
D), B ≡ 1 mod 2, and B2 ≡ D mod 4A in view of

B2 − 4AC = D and the indivisibility of D by 4, whereupon ex. 2.1 may be
used as before to check that x = j(ω) is a class invariant of Q(

√
D). It remains

to show that x = j(ω) is not a class invariant if l = 1 and D′ = 4D. But in this
case ex. 2.1 states that ω = A−1(−B/2 +√

D) is the period ratio of an ideal of
O(K) only if B/2 ≡ 1 mod 2, A ≡ 0 mod 2, and B2/4 ≡ D mod 2A, in which
case 4AC = B2 − 4D′ = B2 − D ≡ 0 mod 8A and 2 divides C , violating the
coprime character of A, B, C . The proof is finished.

Step 4 is to check that for D ≡ 1 mod 4, the class invariants are roots of
G(n+1)/4(x) = 0.

Proof. n′ = (n + 1)/4 ∈ Z since n = −D ≡ 3 mod 4. Now the class invariant
x = j(ω) is a simple root of Gn(x) = 0, so, in the parlance of step 3, l = 2,
D′ = D, B ≡ 1 mod 2, and 4n′ = 1 + n = 12 − 12 D′. It is immediate that the
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substitution [ab/cd] with a = (1 − B)/2, b = −C , c = A, and d = (AB)/2
is a correspondence of level n′ fixing ω, which is to say Gn′ (x) = 0.

Step 5 is to verify that for D ≡ 1 mod 4, the extraneous simple roots of
Gn(x) = 0 arising from l = 1 and D′ = 4D do not solve G(n+1)/4(x) = 0.

Proof. The point is that 4n′ = n + 1 = (m ′)2 − (l ′)2 D′ = (m ′)2 + 4(l ′)2n is not
solvable in whole numbers: l ′ has to vanish, so any correspondence [ab/cd]
of level n′ fixing ω must have a = m ′/2, b = 0, c = 0, d = m ′/2. This is
not even a correspondence unless m ′ = 2 since a, b, c, d have to be coprime.
But if m ′ = 2 then n + 1 = (m ′)2 = 4 and n has the excluded value 3. The
discussion is finished.

6.6 Class Invariants at a Prime Level

The modular equation Fp(x, j(k)) = 0 at a prime level p provides new infor-
mation about the class invariants j(k), preparatory to the proof that the class
polynomial is irreducible.

Ambiguous Primes. The prime ideals p ⊂ O(K) are detected by factoring
the rational primes p ∈ Z. The main facts are recapitulated from Section 2:

(p) = p is prime as it stands if
(

D
p

)
= −1 or if p = 2 and

(
D
p

)
= +1;

otherwise, (p) = pp−1, p−1 being the ideal p̄ conjugate to p. The new notation
emphasizes the fact that p−1 is reciprocal to p in the class group. The ideal p is
said to be ambiguous if p−1 = p in the class group. The nomenclature derives
from the fact that p is ambiguous if and only if its period ratio, reduced by the

action of �1, falls on the boundary of the fundamental cell.
(

D
p

)
= 0 produces

only ambiguous primes, while
(

D
p

)
= +1 can produce both kinds, as you may

easily check.

Exercise 1. Do that.

Exercise 2. Check that p = [3, 1 + √−53] is an unambiguous prime ideal of
Q(

√−53), whereas q = [31, 3 +√−53] is an ambiguous one. Hint for q: The
period ratio is equivalent to 1 − [(1/31)(3 + √−53)]−1 = (−1/2)(1 + √−53)
under the action of the modular group.

Class Invariants. The principal facts to be elicited can now be stated. Fix an

odd rational prime p with
(

D
p

)
= 0 or +1, so that (p) = p × p−1, and note
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that the class invariants j(pk) and j(p−1k) are distinct from j(k) and coincide
precisely when p is ambiguous.

Fact 1. j(pk) and j(p−1k) are the only class invariants that satisfy Fp(x,

j(k)) = 0.

Fact 2. If p is ambiguous, then j(pk) = j(p−1k) belongs to the field Qk

obtained from Q by adjunction of j(k).

Fact 3. Ifp is unambiguous, then either the distinct invariants j(pk) and j(p−1k)
belong to Qk already or else they are conjugate over Qk and their common
splitting field over the latter is Qk(

√
D) = Q(

√
D) with j(k) adjoined.

Proof of fact 1. Fix an ideal i of class k. Then pi ⊂ i is of index6 NK/Q(p) = p
in the latter. Now i = [ω1, ω2] with integral ω1 and ω2 from O(K), and
pi = [cω2 + dω1, aω2 + bω1] with a, b, c, d ∈ Z and ad − bc = the stated
index p. This means that [ab/cd] is a modular correspondence of level p
mapping the period ratio ω = ω2/ω1 of i to the period ratio ω′ of pi, and it
follows from j(k) = j(ω) that x = j(pi) = j(ω′) is a root of Fp(x, j(k)) = 0;
naturally, the same applies to j(p−1k). The rest of the proof is similar. The
class invariant x = j(k′) = j(ω′) is a root of Fp(x, j(k)) = 0 only if ω′ is the
image of ω under a correspondence [ab/cd] of level p. This means that the
class k′ contains an ideal i′ = [cω2 + dω1, aω2 + bω1] of index p = ad − bc
in the ideal i = [ω1, ω2] ∈ k employed before. Now inclusion of ideals is the
same as divisibility, so i′ is the product of i by some ideal q ⊂ O(K), of norm
NK/Q(q) = p. But then q must be p or p−1, as you can check by splitting q into
prime ideals and using the multiplicative property of the norm; in short, j(k′)
can only be j(pk) or j(p−1k).

Proof of fact 2. This is easy: p is ambiguous, so p = p−1 in the class group
and x = j(pk) = j(p−1k) counted once is the only common root of the class
polynomial and Fp(x, j(k)). Their highest common divisor belongs to Qk[x],
and it is of degree 1, so its only root x = j(pk) lies in Qk.

Proof of fact 3. At first, the argument proceeds just as for fact 2: p is now
unambiguous, the distinct invariants j(pk) and j(p−1k) are the only common
roots of the class polynomial and Fp(x, j(k)), and either they belong to Qk

already, or else they are the roots of an irreducible quadratic polynomial [x −
6 K = Q(

√
D) as usual.
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j(pk)][x − j(p−1k)] of class Qk[x], which is to say that their common splitting
field is of degree 2 over Qk. The rest of the proof deals with the second case.
Its goal is to check that j(pk) and j(p−1k) split precisely in Qk(

√
D), which is

to say that j(pk) − j(p−1k) belongs to that field.

Step 1. The correspondences of level p produce, from any lattice L = [ω1, ω2],
p + 1 distinct lattices

L′ : L∞ = [ω1, pω2], Lq = [pω1, qω1 + pω2] (0 ≤ q < p)

with relative discriminants k ′ = �(L′)/�(L). These depend only upon the
period ratio ω = ω2/ω1, and the action of the modular group permutes them
the same way it permutes the corresponding absolute invariants j ′, alias the
roots of the modular equation Fp(x, j(ω)) = 0; in particular,

k∞
x − j∞

+
∑

0≤q<p

kq

x − jq
≡ N (x, j(ω))

Fp(x, j(ω))

is invariant under the modular group. Here, N (x, j(ω)) ∈ Q[x, j(ω)], as
the notation is meant to convey. This you may check from the expansions
j = q−1 + · · · and � = (2π )12q + · · · at the cusp

√−1∞, which reveal that,
for fixed x, N (x, j(ω)) has no poles except, perhaps, at the cusp. Now take the
residue of the display at x = j∞ to produce

�(L∞)

�(L)
= k∞ = N ( j∞, j(ω))

F ′
p( j∞, j(ω))

.

This was the goal of step 1.

Step 2. In step 1, j is construed as a transcendental element, so F ′
p( j∞, j), as

an element of Q( j∞, j), does not vanish. But step 3 requires the numerical use
of the final formula in case L = i is an ideal of O(K), so you need to know
F ′

p( jω, j), evaluated at the period ratio of such an ideal, does not vanish.

Proof. F ′
p( j∞(ω), j(ω)) vanishes only if j∞(ω) = j(pω) coincides with j(p−1

(ω + q)) for some 0 ≤ q < p, which is to say that the lattices i∞ = [ω1, pω2]
and iq = [pω1, qω1 +ω2] are related by integers α and β of O(K): αi∞ = βiq .
Notice that α and β have equal norm since i∞ and iq have equal index p in
i. Now αpi ⊂ αi∞ = βiq ⊂ βi, and as inclusion of ideals is the same as
divisibility, so αpi = βqi for some ideal q of norm NK/Qq = p2. The prime
factorization of q now reveals that there are only three possibilities: q = p2, or
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q = p−2, or else q = pp−1. These are tested against α(p) = βq and each of
them fails: The unambiguous character of p spoils the first two, and the third
implies that α/β is a unit (±1) of K so i∞ = iq , and this is not possible either
since qω1 + ω2 does not belong to i∞.

Step 3. The formula of step 1 applies not just to i∞ and the corresponding
invariant j∞ but to iq and jq for every 0 ≤ q < p, as well. Now pi is related to
p by a correspondence of level p, as in the proof of fact 1, so

�(pi)

�(i)
= N ( j(pk), j(k))

F ′
p( j(pk), j(k))

,

in which the denominator does not vanish, by step 2. Let e be the order of p

in the class group, so pe is a principal ideal (m) with m ∈ O(K), and apply the
formula with p f i in place of i for 0 ≤ f < e to verify that

m−12 = �(mi)

�(i)
= �(pei)

�(i)
= �(pei)

�(pe−1i)
· · · �(p2i)

�(pi)

�(pi)

�(i)

is a rational function of the class invariants j(p f k), 0 ≤ f < e. This can be
improved: j(p f +1k) + j(p f −1k) belongs to Qk′ with k′ = p f k, so j(p f +1k)
is rationally expressible in terms of j(p f k) and j(p f −1k), with the result that
m−12 is a rational function of j(pk) and j(k) with coefficients from Q:

m−12 = L( j(pk), j(k)).

The same procedure applies with p−1 = p̄ in place of p: The order e is the
same, m is replaced by its conjugate m̄, and m̄−12 is the same rational function
of j(p−1k) and j(k), so that

m−12 − m̄−12 = L( j(pk), j(k)) − L( j(p−1k), j(k)) = c[ j(pk) − j(p−1k)]

with c ∈ Qk, the only nontrivial Galois automorphism of the common splitting
field of j(pk) and j(p−1k) over Qk being the exchange of these two class
invariants. This was the goal of step 3.

Step 4. It remains to prove that the left-hand side of the last display is a non-
vanishing rational multiple of

√
D. Then j(pk) − j(p−1k) is a member of

QK(
√

D). This serves to identify the splitting field as Qk(
√

D). The point is
that the unambiguous character of p requires that common powers of p and of
p−1 = p̄ are different, so (m)12 = p12e and m̄12 = p̄12e cannot agree. The proof
of fact 3 is finished.
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The final piece of information needed from level p is embodied in

Weber’s Congruences. Fp(x, y) ≡ (x p − y)(x − y p) mod pZ[x, y].

Proof. j(ω) is expanded at the cusp in the familiar way: j(ω) = q−1 + · · · .
With a temporary abuse of notation, let Z[q] be the ring of sums

∑
cmqm with

rational integral coefficients vanishing for large n < 0. Now the elementary
congruence n p ≡ n mod p (n ∈ Z) implies7

j∞ = j(pω) = q−p + · · · ≡ [ j(ω)]p mod pZ[q],

and the same idea applies to

j p
0 = [ j(ω/p)]p = [q−1/p + · · ·]p ≡ j(ω) mod pZ[q1/p].

The other roots of Fp(x, j(ω)) = 0 are

jn = j

(
ω + n

p

)
= q−1/pe2π

√−1n/p + · · · (1 ≤ n < p),

and these are congruent to j0 modulo (ε − 1)Zε[q1/p], in which Zε is now the
ring of integers of the cyclotomic field Qε = Q with ε = e2π

√−1/p adjoined.
The upshot is

Fp(x, j(ω)) = (x − j∞)
∏

0≤n<p

(x − jn)

≡ (x − j p)(x − j0)p

≡ (x − j p)(x p − j p
0 )

≡ (x − j p)(x p − j)

modulo (ε − 1)Zε[q1/p], account being taken in line 3 of the footnote (7) and
of the divisibility of p by ε − 1 in Zε seen in

0 =
∑

0≤n<p

εn =
∑

0≤n<p

(1 + ε − 1)n = p mod (ε − 1).

Now, in reality, the discrepancy between Fp(x, j) and (x p − j)(x − j p) is a
polynomial in x and j with rational integral coefficients m. Obviously these
lie in (ε − 1)Zε in view of the last display, so m p−1 = NQε/Q(m) is divisible by
p = NQε/Q(ε − 1), which is to say p divides m. The proof is finished.

7 (x + y)p = x p + y p mod pZ[x, y].
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6.7 Irreducibility of the Class Polynomial

It is to be proved that the class polynomial H (x) is irreducible not only over Q

but over K = Q(
√

D) as well.

Step 1. Let H0(x) = ∏
[x − j(k′)] be some factor of H (x) that is irreducible

over K, let y = j(k) be one of its roots, and fix an unambiguous prime ideal
p ⊂ O(K), not dividing the discriminant d ∈ Z of H (x), if any such ideal
exists. Then x = j(pk) is also a root of H0(x) = 0.

Proof. Let q be a prime ideal of the larger field Qk(
√

D), dividing p but not d.
This must exist, for if each q ⊃ p contains d as well, then p contains a power of
d and, being prime, must contain d itself. Weber’s congruence for the rational
prime p associated to p, is now applied numerically to x = j(pk) and y = j(k)
with the result that

0 = Fp( j(pk), j(k)) = [ j p(pk) − j(k)][ j(pk) − j p(k)] mod q ⊇ p,

since p ∈ q and j(pk) and j(k) are integers of Qk(
√

D). The conclusion is that
either [ j(pk)]p ≡ j(k) mod q or the other way around: j(pk) ≡ [ j(k)]p mod q.
Now H0 is a factor of H ∈ SZ[x] in the ring K[x], so its coefficients c lie in
O(K), by a simple extension of Gauss’s lemma, and these satisfy cp ≡ c mod q

in Qk(
√

D). For example, if D �≡ 1 mod 4, then c = a + b
√

D with a, b ∈
Z, D ≡ x2 mod p with 1 ≤ x < p, and x p−1 ≡ 1 mod p, so (

√
D)p−1 ≡

x p−1 ≡ 1 mod p, p being odd, and cp ≡ a p + bp(
√

D)p ≡ a + b
√

D mod q.
The situation is now as follows: Either [ j(pk)]p ≡ j(k) mod q and

H p
0 ( j(pk)) ≡ H0( j p(pk)) ≡ H0( j(k)) = 0 mod q

or else j(pk) ≡ [ j(k)]p mod q and

H0( j(pk)) ≡ H0( j p(k)) ≡ H p
0 ( j(k)) = 0 mod q.

The upshot is that some factor j(pk) − j(k′) of H0( j(pk)) lies in the ideal q.
But j(pk) is distinct from any other class invariant in the quotient Qk(

√
D)/q

since the discriminant d does not belong to q, so you will have to agree that
j(pk) is not just congruent but equal to some j(k′). The proof is finished.

Step 2. The next step is to understand just how much has been achieved: The
discussion of step 1 excludes p = 2 and also primes that divide the discriminant
d or else are ambiguous, which is to say that they divide D, so the situation
can be summed up as follows: If j(k) is a root of H0(x) = 0, then so is j(pk)
provided p does not divide 2d D. Now the fact is that you may pass from any
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fixed class k to any other class k′ by successive multiplications of k by a series
of nonexceptional prime ideals p not dividing 2d D, so every class invariant
x = j(k′) is a root of H0(x) = 0; in short, the class polynomial is irreducible,
and this not only over Q but over K = Q(

√
D) as well.

Step 3 verifies that such a passage from k to k′ is possible. This can be done in
a perfectly elementary but tiresome way. It is nicer at this juncture to use a big
machine. Dirichlet [1840] proved that the prime ideals are equidistributed over
the classes k in a suitable technical sense; in particular, every class contains
an infinite number of primes, and since the proviso 2d D �∈ p excludes only a
finite number of primes, every class may be represented by a nonexceptional
prime. The possibility of passing from k to k′ in the manner described will now
be plain.

Exercise 1. Look up the proof of Dirichlet’s theorem in, for example, Weyl
[1940].

Exercise 2. Give the kind of elementary proof, hinted at before, that the passage
from k to k′, via nonexceptional primes p, is possible.

6.8 Class Field and Galois Group

The invariants j(pk) and j(p−1k) belong to Qk(
√

D) = Q(
√

D)[ j(k)] and
repetitions with nonexceptional primes show that K1 = Qk(

√
D) is independent

of the class k and contains every one of the class invariants. This was the content
of Sections 4–7, serving to identify K1 as the splitting field of the (irreducible)
class polynomial over the ground field K = Q(

√
D). Now the elements of K1

are uniquely expressible as

c0 + c1 j(k′) + · · · + ch−1 j h−1(k′)

with c0, . . . , ch−1 ∈ Q(
√

D) for any fixed class k′, so each element k of the
class group C(K) induces an automorphism σ of K1 over K mapping the general
invariant j(k′) to σ j(k′) = j(k−1k′). These are distinct and so provide a faithful
copy of C(K). Besides, they fix only the ground field K = Q(

√
D), with the

implication that the Galois group G of K1 over K is a copy of the class group.
This finishes the program outlined in Section 3. The final identification of K1 as
Hilbert’s class field, this being the biggest, unramified, commutative extension
of K, lies outside the scope of the present discussion, but see Vladut [1991] for
a nice account.
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Table 6.9.1. Values of the absolute invariant

D Class Class Class
number invariants field

−1 1 j(
√−1) = 26 • 33 Q(

√−1)

−2 1 j(
√−2) = 26 • 53 Q(

√−1)

−3 1 j
(

1
2 (−1 + √−3)

)
= 0 Q(

√−3)

−5 2 j(
√−5) = 23 • 5

√
5 •(1 + √

5)3(3 + 2
√

5)3 Q(
√−1,

√
5)

j
(

1
2 (−1 + √−5)

)
= 26 • 5

√
5 •(1 − √

5)3(3 − 2
√

5)3

−7 1 j
(

1
2 (−1 + √−7)

)
= −33 • 53 Q(

√−7)

−15 2 j
(

1
2 (−1 + √−15)

)
= −33 • 5

√
5 •

(
1
2 (1 + √

5)
)2

(4 + √
5)3 Q(

√−3,
√

5)

j
(

1
4 (−1 − √−15)

)
= 33 • 5

√
5 •

(
1
2 (1 − √

5)
)2

(4 − √
5)3

−51 2 j
(

1
2 (−1 + √−51)

)
= −211 • 33 •(4 + √

17) Q(
√−3,

√
17)

•(1 + √
17)2 •(3 + √

17)

j
(

1
6 (−3 + √−51)

)
= −211 • 33 •(4 − √

17)

•(1 − √
17)2 •(3 + √

17)

−67 1 j
(

1
2 (−1 + √−67)

)
= −215 • 33 • 53 • 113 Q(

√−67)

6.9 Computation of the Class Invariants

The commutativity of the Galois group of the class polynomial over K =
Q(

√
D) has the arithmetic consequence that the class invariants can be expressed

by radicals. A few samples are tabulated in Table 6.9.1; for more, see Fricke
[1928: 390–502], Weber [1908: 457–99], Cohen [1992], and Husemoller
[1987].

Sample Computations.
D = −1: j(

√−1) = 1728 = 26 • 33; see Section 4.7, aside 1.
D = −2: j(

√−2) = 26 • 53; see ex. 4.12.6.
D = −3: j

(
1
2 (−1 + √−3)

) = 0; see Section 4.7, aside 1.
D = −5: [1,

√−5] and [2, −1 + √−5] are ideals of Q(
√−5) belonging

to different classes: If their period ratios
√−5 and (1/2)(−1 + √−5) were
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related by a modular substitution [ab/cd], as in (1/2)(−1+√−5) = (a
√−5+

b)/(c
√−5 + d), you would have 5c2 + d2 = 2, and that cannot be solved in

whole numbers. For the rest, it suffices to compute j(
√−5) = 844+395

√
5, as

will be done shortly; its value lies in Q(
√

5) so the class field is Q(
√−5) with

√
5

adjoined, the class number is 2, and the other class invariant j
(

1
2 (−1 + √−5)

)
can only be the conjugate of j(

√−5) over Q(
√−5). Now the moduli y4 =

k(−1/
√−5) = k ′(

√−5) and x4 = k(5 × −1/
√−5) = k(

√−5) satisfy x8 +
y8 = 1 as well as Jacobi’s modular equation of level 5 described in ex. 4.14.5:

F5(x, y) = x6 + 4x5 y5 + 5x4 y2 − 5x2 y4 − 4xy − y6 = 0;

in particular, using ex. 4.14.6,

0 = F5(x, y)F5(x, −y) = (x2 − y2)6 − 16x2 y2(1 − x8)(1 − y8)

= (x2 − y2)6 − 16x10 y10,

so (x2 − y2)3 + 4x5 y5 = 0 in view of 0 < x < y. This serves to eliminate
(x2−y2)3 from F5(x, y) = 0, as in ex. 4.14.6, with the result that c = (4x8 y8)1/6

is a root of

c3 + 2c2 − 1 = (c + 1)(c2 + c − 1) = 0.

This yields, in turn, c = (1/2)(−1 + √
5), (xy)8 = 9/4 − √

5, and x8 =
(1/2) −

√√
5 − 2 = k2(

√−5). The class invariant is now obtained from

j(
√−5) = 28 (k4 − k2 + 1)3

k4(1 − k2)2
= 26 •

(4
√

5 − 5)3

(9 − 4
√

5)2
= 844 + 395

√
5.

Exercise 1. Check it and reconcile this value with the table.

Exercise 2. What is the class polynomial of Q(
√−5)? Answer: H (x) =

x2 − 27 • 53 • 331x − 212 • 53 • 113.

Naturally, the complexity of the computation of class invariants increases as you
proceed. Fricke [1928] deals directly with the absolute invariant in the manner
indicated in Section 4.16. Weber [1908] invokes modular functions of higher
level such as the eighth root of the Jacobi modulus k2 employed here. This is
more efficient in special cases, though not so systematic as Fricke’s recipe.
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Arithmetic of Elliptic Curves

The arithmetic of elliptic curves concerns itself with the points of a nonsingular
cubic y2 = x3 + ax + b with coordinates from the field Q of rational numbers
or, more generally, from a fixed algebraic number field. The subject is reviewed
in Cassels [1966] and Silverman [1986,1994] from a sophisticated point of
view; for something accessible to the beginner see Nagell [1964: 188–265],
Skolem [1938: 73–83], and especially the splendid book of Silverman and
Tate [1992].

7.1 Arithmetic of the Projective Line

The question of arithmetic on curves goes back to antiquity. Take the circle
X: x2 + y2 = 1. It is uniformized by the projective line P1 via the substitution
w �→ (x, y) = (w2 + 1)−1(w2 − 1, 2w); plainly, w belongs to Q if and only
if x and y do. Now write w = n/m with coprime n > m ≥ 1. Then
x2 + y2 = 1 is equivalent to a2 + b2 = c2 with coprime whole numbers
a = n2 − m2, b = 2nm, c = n2 + m2; in short, the rational points of the circle
represent the triples of Pythagoras (520 BC), epitomized by 32 + 42 = 52 as
every school child knows.

Exercise 1. Let a and b be coprime whole numbers. Then a2 + b2 is a square
in Q only if a +√−1b is a square in Q(

√−1). Check this and use it to confirm
the recipe for Pythagorean triples. Hint: Q(

√−1) has class number 1 so its
integers may be factored into prime integers in just one way; also, a + √−1b
and a − √−1b are mostly coprime in Q(

√−1).

The arithmetic of the general ellipse X: Ax2 + By2 = C (0 < A, B, C ∈ Z) is
more complicated. If it has at least five rational points, then −D = B/A and
n = C/A may be taken to be square-free integers, and the question takes the

252
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form: Is n the norm x2 − Dy2 of a number x + y
√

D of the imaginary quadratic
field Q(

√−D)? This may or may not happen, as the next exercises show.

Exercise 2. Check that the number 3 is not a norm for Q(
√−1) so x2 + y2 = 3

cannot be solved in Q.

If n is the norm of a number ω ∈ Q(
√

D), then every other such number of
Q(

√
D) is the product of ω by (w2 − D)−1(w2 + D + 2w

√
D) with w ∈ Q,

the upshot being that the rational points of X can be naturally identified with Q

itself, if any such points are present.

Exercise 3. Check it.

Exercise 4. What about hyperbolas?

7.2 Cubics: The Mordell–Weil Theorem

Let X be a nonsingular cubic y2 = (x − e1)(x − e2)(x − e3) = x3 + ax + b
with points p = (x, y). The numbers a and b belong to Q as soon as X has two
rational points with different abscissas and it is no loss of generality to let them
be whole numbers. The customary factor 4 is missing so the addition theorem
of Section 2.14 is a little modified:

x(p1 + p2) = −x(p1) − x(p2) +
[

y(p2) − y(p1)

x(p2) − x(p1)

]2

,

y(p1 + p2) = y(p1)[x(p1 + p2) − x(p2)] − y(p2)[x(p1 + p2)] − x(p1)

x(p2) − x(p1)
.

Rational Points. The formulas make it plain that the rational points X(Q) of X
are closed under the addition of the curve, so they form a module over Z after
adjunction of the identity element o = (∞, ∞); see Fig. 2.21 for the geometric
interpretation of the addition. Now for the projective lines of Section 1.10 either
X(Q) is void as in ex. 2 or else it can be naturally identified with Q as in ex.
3. The facts are quite different for cubics. Poincaré [1901] conjectured and
Mordell [1922] proved that X(Q) is of finite rank over Z. This means that X(Q)
contains a finite number of points p1, p2, . . . , pd from which all others may be
obtained by addition1 p = n1p1 + · · · + ndpd . In more detail, X(Q) is of the
form Zr⊕ a finite commutative group (torsion). The latter possibility is really
present. For example, the half-periods of X are of order 2 under the addition

1 np signifies the sum of n copies of p.
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and may produce rational points as for y2 = x(x2 −1); indeed, they are the only
rational points of this curve, as will be seen in example 3.1. Mazur [1976] has a
complete description of the torsion. The number r is the rank of X(Q), and it is
conjectured that r can be arbitrarily large: 21 is the highest rank known to date;
see Ireland and Rosen [1990], Mestre [1992], and Nagao and Kouya [1994].

Reduction to Standard Form. The same applies to any nonsingular curve
X: y2 = c0x4 + · · · + c4, genuinely of degree 4 or 3, with c0, . . . , c4 ∈ Z.
The fact is that if X has a rational point, then it can be reduced to standard form
X′: y2 = x3 + ax + b so as to make X(Q) and X′(Q) correspond. This is what
is meant by saying that X and X′ are equivalent over Q. The idea is illustrated
by two examples.

Example 1. X: y2 = x4 − 1 is equivalent over Q to y2 = x3 + 4x via the
substitutions

x �→ 1 + 4(x − 2)−1, y �→ −4y(x − 2)−2,

as in ex. 2.11.6.

Example 2. X: y2 = 2x4 − 1 is not so simple. The analogous substitutions

x �→ 2−1/4 + 8 • 2−3/4(x − 4 • 2−1/2)−1, y �→ −8 • 2−3/4 y(x − 4 • 2−1/2)−2

reduce X to the standard form y2 = x3 + 8x , but do not match up the rational
points. The new coordinates are expressed in terms of the old as

x ′ = 4c2(x + c)−1(x − c), y′ = −8c3(x − c)−3 y with c = 2−1/4,

of which the first term represents 4× the ℘-function of X with pole at (c, 0).
The mistake is that the pole is placed at an irrational point. X has the self-
evident rational point (1, −1) and if you will only move the pole to that place,
the difficulty will be overcome. The shift is produced by addition of the point
(1, 1) ∈ X, alias (4c2(1+c)(1−c)−1, −8c3(1−c)−3) ∈ X′, the new coordinates
of X′ being

x ′ = 2(x − 1)−2[2x2 − 1 − y], y′ = 4(x − 1)−3[2x3 − 1 − (2x − 1)y].

Exercise 1. Check the details of example 2, including the matching up of the
rational points by the second recipe.
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7.3 Examples

The splendid proof of Mordell’s theorem sketched in Section 4 is due to Weil
[1930] with improvements by Silverman [1986] and Knapp [1993], but first
some examples. These illustrate the method of infinite descent of Fermat (1645)
which is also the key to Weil’s proof.

Example 1. The curve X: y2 = x3−x comes from the square lattice; see Section
2.9, example 1. It has the four obvious rational points (∞, ∞), (1, 0), (0, 0),
and (−1, 0) produced by the half-periods, and no others.

Proof. 2 Let x = a/b, y = c/d be a rational point of X expressed in lowest
terms (a, b ∈ Z coprime, etc.) and let it be distinct from the half-periods noted
before. Take b, c, d ≥ 1 and use the involution (x, y) �→ (−1/x, y/x2) to
make a ≥ 1, too, if it is not so already. Now b3c2 = d2a(a − b)(a + b) implies
b3 = d2 since b is coprime to a(a − b)(a + b) and d is coprime to c, so b is the
square of a whole number B ≥ 1. Next, a prime of c cannot divide two factors
of a(a − b)(a + b) unless it is the prime 2 and divides both a − b and a + b,
and now it follows, from c2 = a(a − b)(a + b), that a is the square of a whole
number A ≥ 1 and that a2 − b2 = A4 − B4 = c2/a is the square of a whole
number C ≥ 1. The descent consists in producing, from such a pair A, B of
coprime whole numbers with A4 − B4 = C2, a second pair of properly smaller
height H = A, so that repeated descent is contradictory (H ≥ 1).

Case 1. B ≡ 0 mod 2. Then (A2 − C)(A2 + C) = B4 is divisible by 16 while
the left-hand factors have highest common divisor 2, so one of them is divisible
by 2 and the other one by 8. The division makes them coprime, permitting you
to write

A2 ± C = 2a4, A2 − (±C) = 8b4, B = 2ab,

with coprime a, b ≥ 1. Now A2 = a4 + 4b4, by addition; also, (A + a2)(A −
a2) = 4b4, and as the highest common divisor of the left-hand factors is 2, so

A + a2 = 2c2, A − a2 = 2d4, b = cd,

in which c, d ≥ 1 may be taken coprime. The descent is accomplished: In fact,
c4 − d4 = a2 and the height is diminished, from H = A to

c < 2acd = 2ab = B < A.

2 Nagell [1964: 227–9].
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Case 2. B ≡ 1 mod 2. Then (A2 + B2)(A2 − B2) = C2 is even since B2 ≡
1 mod 4 and A2 ≡ 0 or 1 mod 4, so C2 ≡ A4 − 1 is congruent to 0 or to −1
mod 4, and C2 ≡ −1 mod 4 is not possible. As before, the left-hand factors
have highest common divisor 2, so

A2 + B2 = 2a2, A2 − B2 = 2b2, 2C = ab

with coprime a, b ≥ 1, and from A2 = a2 + b2 and B2 = a2 − b2, you obtain
a new solution a4 − b4 = (AB)2 of smaller height

a <
√

a2 + b2 = A = H.

The descent is over.

Exercise 1. X: y2 = x4 − 1 is equivalent over Q to X′: y2 = x3 + 4x , as in
example 2.1. Check that it has just the two rational points (±1, 0). Hint: Use
the recipe for Pythagorean triples of Section 1 and the descent of example 1.

Example 2. Euler (1770) nearly proved that the curve X: y2 = x3 + 1 has only
the six rational points

(∞, ∞), (2, 3), (0, 1), (−1, 0), (0, −1), (2, −3)

produced by the fractional periods kω/6 (0 ≤ k ≤ 5), ω being the real primitive
period 2

∫ ∞
−1(x3 + 1)−1/2dx of the triangular lattice; compare ex. 1 and, for the

proof, see Nagell [1964: 244–6].

Exercise 2. Prove that p = (2, 3) generates the five rational points different
from o = (∞, ∞), to wit, (0, 1) = 2p, (−1, 0) = 3p, and so on, and identify
the period.

Example 3. The curve X: y2 = 2x4−1 is equivalent over Q to X′: y2 = x3+8x ,
as in example 2 of Section 2. Its rational points form a copy of Z ⊕ Z2; in
particular, it is of rank 1.

Proof. 3 As before, the proof is by descent, but with a twist. Let x = a/b, y =
c/d be a rational point in lowest terms, with a, b, c, d ≥ 1. Then (2a4−b4)d2 =
b4c2, and it is easy to see that d = b2, so 2a4 − b4 = c2. Now b and c are of
like parity, a4 = [(b2 + c)/2]2 + [(b2 − c)/2]2, and either a = 1 = b = c = d
and p = (x, y) is the self-evident rational point (1, 1), or else a > 1 and

a2 = A2 + B2, b2 = A2 − B2 + 2AB, ±c = A2 − B2 − 2AB

3 Nagell [1964: 232–5], with a geometric amplification.
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with coprime A, B ≥ 1, by the recipe for Pythagorean triples of Section 1.
Here A = −B is not possible, so A + B ≥ 1 can be assumed. Also, A and B
are of opposite parity, a and b being coprime: in fact, A is odd and B is even
since, in the opposite case, b2 ≡ −1 mod 4 and −1 is not a quadratic residue
of 4. The recipe for Pythagorean triples is now applied to a2 = A2 + B2 to
produce

a = C2 + D2, A = C2 − D2, B = 2C D

with C, D ≥ 1. The identity b2 = A2 − B2 + 2AB produces

(C2 + 2C D − D2)2 − b2 = 8C2 D2

with C2 + 2C D − D2 = A + B ≥ 1, and the left-hand side of the display
factors in a self-evident way into pieces with highest common divisor 2, so one
piece is twice a square, the other is four times a square, and half their sum is
C2 + 2C D − D2 = M2 + 2N 2 with M, N ≥ 1 and M N = C D. This new
identity is recast as

(2 + D2/N 2)

(
N

C

)2

− 2
D

N

N

C
= 1 − N 2/C2 = 1 − D2/N 2

and solved for N/C :

N

C
= DN ± √

2N 4 − D4

2N 2 + D2
= x ± √

2x4 − 1

2x2 + 1
with x = N

D
,

showing that 2x4 − 1 is a square in Q. In fact,

x = N

D
, y = ±

[
N

C
(2x2 + 1) − x

]
> 0

is a new rational point of X descended from the old: If x = N/D is expressed
in lowest terms, then its numerator cannot exceed

N ≤ C D = B/2 < B <
√

A2 + B2 = a.

The reasoning is invalid if a = 1: Then repeated descent ends at the point
(1, 1). The recipe can be reversed to express the higher point in terms of the
lower: The higher abscissa is

a

b
= C2 + D2

M2 − 2N 2
= x2(2x2 + 1)2 + (x ± y)2

(2x2 + 1)2 − 2x2(x ± y)2
,

(x, y = √
2x4 − 1) being the lower point. The descent shows that all rational

points of X are obtained from the single point (1, 1) by application of this
formula and the involutions (x, y) �→ (±x, ±y).
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Exercise 3. One application of the recipe produces the point (13, 239). Check
it. What does the next produce? Answer: (1343)−1 (1525, 2750257).

It remains to understand what all this means geometrically. To do this, use the
addition theorem in its Jacobian form expounded in Section 2.16. The modulus
is k2 = −1, x is identified with 2−1/4× sin amp with its argument multiplied
by

√−1 × 21/4, and the addition theorem states that

x3 = 1√−1

x1 y2 + x2 y1

1 + 2x2
1 x2

2

,

y3 = 1√−1

y1 y2(1 − 2x2
1 x2

2 ) + 4x1x2(x2
1 + x2

2 )

(1 + 2x2
1 x2

2 )2

with a self-evident notation. Now a short computation shows that the abscissa
of the sum of 2p + q with p = (x, y) and q = (1, ±1) is precisely the higher
abscissa a/b already displayed, with an extra minus sign, so the geometric
content of the descent is that any rational point p0 can be expressed as 2p1 + q

with q = (1, ±1) and a new rational point p1.

Exercise 4. Check the computation of 2p + q.

The descent can be repeated (p1 = 2p2 ± q2) unless p1 has abscissa ±1; it ends
at one of the four points (±1, ±1), after a finite number of steps. Now o =
(0,

√−1) is the origin for the addition; also, −(1, 1) = (−1, 1), −(1, −1) =
(−1, −1), and 2(1, 1) + 2(1, −1) = o; and now it appears that X(Q) is
included in

2Z(1, 1) ⊕ ±[(1, 1) + (1, −1)] ⊕ (1, −1),

in which the summand (1, −1) corresponds to the shift of origin employed in
example 2.2. The fact is that this is a faithful representation of X(Q), that is,
the latter is a copy of Z ⊕ Z2, as advertised.

Exercise 5. Check the final statement. Hint: np = (0, ±√−1) only if n is even
and (n/2)p = (0, ±√−1). Descend by this route.

The descent from p0 to p1 epitomizes the main idea of Weil’s proof, which will
now be sketched.
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7.4 Proof of the Mordell–Weil Theorem

The curve is X: y2 = x3 + ax + b = (x − e1)(x − e2)(x − e3) with a, b ∈ Z.
Let also e1, e2, e3 ∈ Z to simplify life. The proof is made in four steps: Step 1
explains what it takes for p2 ∈ X(Q) to be the double 2p1 of some other point
p1 ∈ X(Q). Step 2 introduces the proper height, first in a naive version and
then in an improved absolute version. Step 3 confirms that the quotient of
X(Q) by 2X(Q) is finite. Step 4 finishes the proof by application of heights.

Step 1. p = (x, y) ∈ 2X(Q) if and only if each of the numbers x −e is a rational
square.

Proof. If p = p2 = (x2, y2) is the double of p1 = (x1, y1), and y = mx + n is
the tangent line to X at p1, then

(x − e1)(x − e2)(x − e3) − (mx + n)2 = (x − x1)2(x − x2),

and at each root x = e this reduces to the stated condition: x2 − e = (me +
n)2(e − x1)−2 is a rational square. Now let p2 = (x2, y2) ∈ X(Q) satisfy the
condition that each of the numbers x − e is a rational square. It is convenient,
for the derivation of this step only, to take x2 = 0 at the price of violating the
standard normalization e1 + e2 + e3 = 0. Then −e = f 2 with f ∈ Q for each
of the three numbers e. It is desired to find p1 = (x1, y1) so that

[x3 + ax2 + bx + c = (x − e1)(x − e2)(x − e3)] − (mx + n)2

= x(x − x1)2.

The left-hand side vanishes at x = 0 (c = n2) and division by x produces

x2 + ax + b − m2x − 2mn = (x − x1)2,

which requires the left-hand discriminant to vanish: (m2 − a)2 = 4(b − 2mn).
Now introduce an artificial variable e, via

(m2 − a − 2e)2 = −4em2 − 8mn + 4(e2 + ae + b),

chosen so that the right-hand side has a double root in the variable m. This
requires the vanishing of its discriminant 64n2+64e(e2+ae+b), which is to say
e3 + ae2 + be + (c = n2) = 0, the upshot being e = e1, e2, or e3. Take e = e1,
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say, and recall −e = f 2. Then from −a = (e1+e2+e3), b = e1e2+e2e3+e3e1,

and c = −e1e2e3 = n2 you find

(m2 − e1 + e2 + e3)2 = 4e1m2 − 8
√−e1e2e3m

+4
[
e2

1 − e1(e1 + e2 + e3) + e1e2 + e2e3 + e3e1
]

= 4( f1m − f2 + f3)2,

which is to say, (m2 ∓ f1)2 = ( f2 ∓ f3)2, that is, m = ± f1 ± ( f2 ∓ f3), in
which the third sign conforms to the first. Let m0 be any of these roots. Then
x1 = (1/2)(m2

0 − a) is the (double) root of x2 + ax + b − m2x − 2mn = 0, and
p2 = (x2, y2) is the double of p1 = (x1, m0x1 + n) ∈ X(Q).

Step 2. For p = (x, y) ∈ X(Q) and x = p/q expressed in lowest terms, the
naive height of p is declared to be H0(p) = log m, m being the larger of |p|
and |q|, with the understanding that the origin o = (∞, ∞) is the ground level,
that is, H0(o) = 0. Plainly, there are only a finite number of points of X(Q) of
limited height H0(p) ≤ h < ∞. The chief feature of the height is its behavior
under doubling: H0(2p) − 4H0(p) is bounded above and below, by constants
depending not upon p, but upon X alone.

Proof of the upper bound. The condition e1 +e2 +e3 = 0 is back in force. The
duplication rule

x(2p) = x4 − 2ax2 − 8bx + a2

4(x3 + ax + b)
with x = x(p)

shows that, if x = p/q , then x(2p) = p2/q2 with

p2 = p4 − 2ap2q2 − 8bpq3 + a2q4 ≤ c1(X)m4

and

q2 = 4q(p3 + apq2 + bq3) ≤ c2(X)m4.

Unlike p/q, the new fraction p2/q2 need not be in lowest terms, but it does not
matter: H0(2p) is overestimated by 4 log m = 4H0(p) plus c3(X) = the larger
of log c1(X) and log c2(X).

Proof of the lower bound. This is trickier. The fact is, as you may verify with
tears, that if d is the discriminant −4a3 − 27b2 of the cubic, then

−4dp7 = Ap2 + Bq2
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and

−4dq7 = Cp2 + Dq2

with

A = 4 × [−dp3 − a2bp2q + a(3a3 + 22b2)pq2 + 3b(a3 + 8b2)q3
]
,

B = a2bp3 + a(5a3 + 32b2)p2q + 2b(3a3 + 96b2)pq2 − 3a2(a3 + 8b2)q3,

C = 4 × (3p2q + 4aq2), and D = 3p3 − 5apq2 − 27q3,

not the numbers that would spring to mind! Anyhow, p and q being coprime,
the common divisor of p2 and q2 is seen to divide d and so to be capable of only a
limited number of values. Besides, m7 ≤ c4(X)m3m2, and writing x2 = p2/q2

in lowest terms p3/q3 reveals that

H0(2p) = log m3 ≥ log m2 − c5(d)

≥ 4 log m − c5(d) − log c4(X)

= 4H0(p) − c6(X),

as advertised.

Now it is plain that 4−n H0(2np) tends to a limit H (p) as n → ∞. This is the
absolute height of p ∈ X(Q), obeying the neater duplication rule H (2p) =
4H (p). The rest of the present step elicits the more general rule

H (p1 + p2) + H (p1 − p2) = 2H (p1) + 2H (p2).

Proof. It suffices to check that the left side is smaller than the right: Just apply
that inequality with p1 ± p2 in place of p1 and p2, use the duplication rule, and
divide by 4. In fact, you need only the inequality with an additive constant
c0(X) to the right, and this is proved as follows. Let x1 = x(p1) = p1/q1 in
lowest terms, let m1 be the larger of |p1| and |q1|, and, in the same way, form
m2, m+, and m− for p2, p+ = p1 + p2, and p− = p1 − p2. Then

x+ + x− = 2 × (p1 p2 + aq1q2)(p2q1 + p1q2) + 2bq2
1 q2

2

(p2q1 − p1q2)2
≡ A

C
,

x−x+ = (p1 p2 − aq1q2)2 − 4q1q2b(p2q1 + p1q2)

(p2q1 − p1q2)2
≡ B

C
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with A, B, C ∈ Z and |A| + |B| + |C | ≤ c0(X)m2
1m2

2, and now from x± =
(2C)−1[−A ± √

A2 − 4BC] it appears that both q− and q+ divide 2C , whence

(1) 4C2 = n2q−q+ with n ∈ Z,

(2) 4AC = 4C2 p−q+ + q− p+
q−q+

= n(p−q+ + q− p+),

(3) BC = 4C2 p− p+
q−q+

= np− p+.

But q−q+, p−q+ + q− p+, and p− p+ are coprime, so C divides n, |q−q+| ≤
4|C | by (1), |p−q+ + q− p+| ≤ 4|A| by (2), |p− p+| ≤ 4|B| by (3), and
|p−q+ − q− p+| ≤ |q−q+||x− − x+| ≤ 4|√A2 − 4BC |. Now the end of the
proof is here: m−m+ cannot exceed

4 ×
(
|A| + |B| + |C | + |

√
A2 − 4BC |

)
≤ c0(X)m2

1m2
2,

so

H0(p+) + H0(p−) ≤ 2H0(p1) + 2H0(p2) + log c0(X).

Step 3. This step shows that the quotient X(Q) is finite. Let Q× be the multi-
plicative group of nonvanishing rational numbers. Any number p/q ∈ Q can
also be expressed as P/Q2, whence the quotient

G = Q×/(Q×)2 = {
(±1) × 2n1 • 3n2 • 5n3 · · · with powers ni = 0 or 1

}

is the direct sum of copies of Z2, one for the sign ±1 and one for each prime
p. The discussion is divided into three steps.

Item 1. The map ϕ: X(Q) → Q×/(Q×)2 defined by

ϕ(p) =

⎧
⎪⎨
⎪⎩

(Q×)2 if p = (∞, ∞) = o,

(e1 − e2)(e1 − e3)(Q×)2 if p = (e1, 0),

(x(p) − e1)(Q×)2 otherwise

is a homomorphism.

Proof. It is to be shown that ϕ(p1)ϕ(p2) ⊂ ϕ(p1+p2)(Q×)2. Now x(p) = x(−p)
so ϕ(p) = ϕ(−p) = [ϕ(p)]−1 mod (Q×)2, so what you must prove is that
ϕ(p1)ϕ(p2)ϕ(p3) = (Q×)2 if p1 + p2 + p3 = 0.

Case 0. p1 = o. Then p3 = −p2 and ϕ(p1)ϕ(p2)ϕ(p3) = [ϕ(p2)]2 ∈ (Q×)2.
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Step 3 is to confirm that the quotient X(Q)/2X(Q) is finite. Let Q∗ be the
multiplicative group of rational numbers r �= 0, let Q2

∗ be subgroup of rational
squares r2 : r �= 0, and introduce the quotient � = Q∗/Q2

∗; modulo squares
r �= 0 can be written (±1)× a product of distinct primes, so � is the direct sum
of copies of Z2, one such for the signature and one for each prime 2, 3, 5, etc.
The discussion now centers about the map

Q2
∗ if p = (∞, ∞) = o

ψ(p) = (e1 − e2)(e1 − e3)Q2
∗ if p = (e1, 0)

[x(p) − e1]Q2
∗ otherwise.

This is a homomorphism of X(Q)/2X(Q) into �.

Proof. ψ(p) = ψ(−p) = [ψ(p)]−1 in view of x(p) = x(−p), so what you must
prove first is that ψ(p1)ψ(p2)ψ(p3) = Q2

∗ if p1 + p2 + p3 = 0.

Case 1. p = 0. Then p3 = −p2 and ψ(p1)ψ(p2)ψ(p3) = [ψ(p2)]2 = Q2
∗.

Case 2. p1, p2, p3 are all different from o and from (e1, 0). Let y = mx + n be
the line passing through the three points p. Then

(x − e1)(x − e2)(x − e3) − (mx + n)2 = [x − x(p1)][x − x(p2)][x − x(p3)],

read backwards with x = e1, states that ψ(p1)ψ(p2)ψ(p3) = (me1 + n)3 Q2
∗ =

Q2
∗.

Case 3. p1 = (e1, 0) and p2, p3 �= o. Now p2 and p3 are different from p1,
since 2p1 = o, and the display of case 2 with x(p1) = e1 exhibits the fact that
x − e1 divides mx + n = m(x − e1). Now cancel this factor from the display
to produce

(x − e2)(x − e3) − m2(x − e1) = [x − x(p2)][x − x(p3)],

evaluate at x = e1, and read it off:

[ψ(p1)]−1 = (e1−e2)(e1−e3)Q2
∗ = [x(p2)−e1][x(p3)−e1]Q2

∗ = ψ(p2)ψ(p3).

The proof is finished by noting that the duplication rule ψ(2p) = [ψ(p)]2 = Q2
∗

permits you to drop down from X(Q) to the quotient X(Q)/2X(Q). Now write
ψ = ψ1, from the allied map ψ2 with e2 in place of e1, and let us check that
the product map ψ = ψ1 × ψ2 from X(Q)/2X(Q) into � × � is injective.

Proof. If p is different from o, (e1, 0), and (e2, 0), then ψ(p) is trivial precisely
when x(p) − e1 and x(p) − e2 are rational squares, in which case x(p) − e3 is
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also a square thanks to y2 = (x −e1)(x −e2)(x −e3). Now use step 1 to confirm
p ∈ 2X(Q). The same kind of thing works if, for example, p = (e1, 0). Then
ψ1(p) = (e1 − e2)(e1 − e3)Q2

∗ = Q2
∗ and ψ2(p) = (e1 − e2)Q2

∗ = Q2
∗ make

plain that e1 − e1 = 0, e1 − e2 and e1 − e3 are squares, with the same result as
before.

Now comes the punch line regarding the finiteness of X(Q)/2X(Q): The (faith-
ful) image of this quotient under ψ lies in the finite subgroup of � × � formed
by weeding out those copies of Z2 figuring on � which do not correspond to
primes p dividing the discriminant D = (e1 − e2)2(e2 − e3)2(e1 − e3)2.

Proof. Let p ∈ X(Q) be different from o and make cases according as it is a
half-period or not.

Case 1. p is not a half-period. Let n1, n2, n3 ∈ Z, positive or negative, be the
powers of a fixed prime p appearing in the numbers x(p) − e, and note that
(x − e1)(x − e2)(x − e3) = y2 forces n1 + n2 + n3 ≡ 0 mod 2. Now x(p) ∈ Q
is fixed, independently of e ∈ Z. Write it in lowest terms: x(p) = a/b. Then
a − be1 = b(c/d)pn1 with c and d prime to p, whence p−n1 is the biggest
power of p dividing b if n1 < 0. It follows that n1 = n2 = n3 ≡ 0 mod 2
if any one of them is negative. But also, if n1 > 0, n2 ≥ 0, n3 ≥ 0, and if
p does not divide the discriminant D, then it cannot appear in the numerator
of x(p) − e2 = x(p) − e1 + e1 − e2, so n2 = 0 and likewise n3 = 0, with
the implication that n1 ≡ 0 mod 2, the upshot being that both factors of ψ(p)
belong to the subgroup of � described in the punch line: one copy of Z2 for the
signature plus one copy for each prime of D.

Case 2. p is a half-period. Now x(p) = e1, e2 or e3, ψ1(p)ψ2(p) are formed
from products of e1 − e2, e2 − e3, and/or e3 − e1, and as these contain only
primes of D, the conclusion is the same.
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Briot, C., and Bouquet, J. C. 1875. Théorie des fonctions elliptiques. Gauthier-Villars,
Paris.

Buhler, W. K. 1981. Gauss: A Biographical Study. Springer-Verlag, New York.
Byrd, P., and Friedman, M. 1954. Handbook of Elliptic Integrals for Engineers and

Physicists. Springer, Berlin.
Cardano, G. 1545. Artis Magnae sive de regvlis algebraicis. English translation: The

Great Art, or the Rules of Algebra. Translated and edited by T. R. Witmer. MIT
Press, Cambridge, MA, 1968.

Carlitz, L., and Subbarao, M. 1972. A simple proof of the quintuple product identity.
Proc. AMS 32: 42–4.

Cassels, J. W. S. 1966. Diophantine equations with special reference to elliptic curves.
J. London Math. Soc. 41, 193–291.

Cayley, A. 1853. Note on the porism of the in- and circumscribed polygon.
Philosophical Magazine (4th ser.): 99–103, 376–7. Reprinted in Collected
Papers, vol. 2, 138–44.

Cayley, A. 1859. Sixth memoir upon quantics. Phil. Trans. Roy. Soc. 149: 61–91.
Reprinted in Collected Papers, vol. 2, 561–91.

Cayley, A. 1861. On the porism of the in- and circumscribed polygon. Phil. Trans. Roy.
Soc. 149: 225–39. Reprinted in Collected Papers, vol. 4, 292–308.

Cayley, A. 1895. An Elementary Treatise on Elliptic Functions. Constable, London.
Reprinted by Dover, New York, 1961.

Cayley, A. 1889–97. The Collected Mathematical Papers. 13 vols. Cambridge
University Press, Cambridge.

Chalal, J. S. 1988. Topics in Number Theory. Plenum, New York.
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Paris.
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Pólya, G. 1921. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die
Irrfahrt im Strassennetz. Math. Ann. 84, 149–60. Reprinted in Collected Papers,
vol. 4, 69–80. MIT Press, Cambridge, MA, 1974–84.
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Riemann, B. 1851. Grundlagen für eine allgemeine Theorie der Functionen einer

veränderlichen complexen Grösse. Inaugural dissertation, Göttingen, 1851;
reprinted, Göttingen, 1867. Reprinted in Gesammelte mathematische Werke,
35–80.

Riemann, B. 1857. Theorie der Abel’schen Functionen. J. reine angew. Math.
54: 88–142.

Riemann, B. 1858. Elliptische Funktionen. Teubner, Leipzig.
Riemann, B. 1990. Gesammelte mathematische Werke and wissenschaftlicher

Nachlass. Springer, Berlin.
Ritt, J. F. 1923. Permutable rational functions. Trans. AMS 25: 399–448.
Robert, A. 1973. Elliptic Curves. Springer-Verlag, New York.
Roberts, J. 1977. Elementary Number Theory: A Problem Oriented Approach. MIT

Press, Cambridge, MA.
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Schwarz, H. A. 1872. Über diejenigen Fälle, in welchen die Gaussische
hypergeometrische Reihe eine algebraische Function ihres vierten Elementes
darstellt. J. reine angew. Math. 75: 292–335.

Schwarz, H. A. 1893. Formeln und Lehrsätze zum Gebräuche der elliptischen
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