
Software for Doubled-Precision
Floating-Point Computations

SEPPO LINNAINMAA
Lappeenranta University of Technology

A method for exact multiplication of two maxLmum-preclsion numbers, so that the result is represented
usmg two such numbers, was proposed by T.J Dekker a decade ago. A modffication of Dekker's
method Is presented and is proved to be valid in most existing arithmetics, while the original method
is valid only in a qmte restricted class of anthmetms. The new method is computer independent, can
be written using a high-level language, and still makes it possible to double quite econommally the
"maximum available" precismn of a computer during crltwal phases of computatmns. Corresponding
methods for doubling the preclsmn are presented and also analyzed for addition, subtraction, and
diwsmn

Key Words and Phrases floating-point arithmetic, exact multiplication, rounding errors, software
portability
CR Categories 4.22, 5.11, 6.32

1. INTRODUCTION

Ar t i f i ce s to e x t e n d t h e m a x i m u m a v a i l a b l e p r e c i s i o n h a v e b e e n w i d e l y a n a l y z e d .
I n such m e t h o d s , if t h e y a r e c o m p u t e r i n d e p e n d e n t , t h e f ac t t h a t two n u m b e r s
can a l w a y s b e s u b t r a c t e d f r o m e a c h o t h e r exac t ly , w i t h no r o u n d i n g e r rors , if
t h e y a r e a l m o s t equa l , is used . I t h a s b e e n s h o w n t h a t t h e s u m a n d d i f f e rence of
two n u m b e r s of m a x i m u m a v a i l a b l e p r e c i s i o n c a n eas i ly be c o m p u t e d in a v e r y
wide v a r i e t y o f a r i t h m e t i c s [2-10] . T h e r e s u l t is r e p r e s e n t e d as a d o u b l e n u m b e r ,
t h a t is, two f l o a t i n g - p o i n t n u m b e r s w h o s e s u m is t h e a c t u a l r esu l t . I n fact , if t h e
l i m i t a t i o n s of t h e e x p o n e n t r a n g e a r e neg l ec t ed , a r b i t r a r y - p r e c i s i o n a d d i t i o n a n d
s u b t r a c t i o n can be i m p l e m e n t e d c o m p u t e r i n d e p e n d e n t l y , u s ing a h igh - l e ve l
l a n g u a g e [10]. A s m a n y f l o a t i n g - p o i n t n u m b e r s as r e q u i r e d a r e t h e n u s e d to
r e p r e s e n t e a c h m u l t i p l e - p r e c i s i o n n u m b e r .

T h e o n l y w e l l - k n o w n c o m p u t e r - i n d e p e n d e n t m e t h o d s to d o u b l e t h e a v a i l a b l e
p r e c i s i o n in m u l t i p l i c a t i o n a n d d iv i s ion as well h a v e b e e n p r e s e n t e d b y T . J .
D e k k e r [2]. O b v i o u s l y d o u b l i n g t h e p r e c i s i o n of m u l t i p l i c a t i o n m e a n s t h a t t h e
r e s u l t is a l w a y s exact . D e k k e r ' s m u l t i p l i c a t i o n m e t h o d is r e s t r i c t e d to a r i t h m e t i c s

Permission to copy without fee all or part of this materml is granted provided that the copies are not
made or dlstmbuted for direct commercial advantage, the ACM copyright notme and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to repubhsh, requires a fee and/or specific
perrmsslon
This research was supported by a Herman Rosenberg grant from the Umversity of Helsmkl, Finland,
and was done while the author was a visiting scholar at the University of Califorma, Berkeley.
Author's address' Lappeenranta Umvermty of Technology, Box 20, SF-53851 Lappeenranta 85,
Finland
© 1981 ACM 0098-3500/81/0900-0272 $00.75

ACM Transactions on Mathematmal Software, Vol 7, No 3, September 1981, Pages 272-283

Software for Doubled-Precmlon Floating-Point Computations - 273

where addition and subtract ion are correct ly rounding, tha t is, where the roundoff
error is never more than half unit in the last remaining position. Another
restr ict ion is tha t the precision of the ar i thmetic must be even in o ther than
binary arithmetics. In the present paper a modification of Dekker ' s me thod is
proposed whereby both restrictions have been removed.

Dekker also presented algorithms for operations between two double numbers,
when the result is also wanted as a double number. These algorithms utilize the
exact multiplication method. This paper presents modifications of these algo-
r i thms which differ from those described by Dekker, if one or more extra digits
beyond the normal maximum precision are available in restr icted use, as proposed
in [1].

2 DEFINITIONS AND NOTATIONS

Below, the base of the ari thmetic is denoted by fl and the normal maximum
precision by p. A number is said to be an i-digit number, if it can be represented
in the form f × ilk, where f a n d k are integers and If[< fl'. If x is an expression,
then fl, (x) means tha t the result of each operat ion included in x is rounded to an
,-digit number using the current rounding rule. Especially if i =p , shor ter nota t ion
fl(x) will be used instead of tip(x).

Let a be an arbi t rary nonzero real number and x and y be two consecutive
/-digit numbers with the same sign as a, such tha t [x [___ [a [< [y [. T h e ar i thme-
tic having precision , is called correctly rounding if fl, (a) -- x when [x - a [<
] y - a I, fl, (a) = y when] x - a] > I Y - a], and fl, (a) is equal to e i ther x or y when
[x - a [= [y - a [. The ar i thmetic is called, respectively, correctly chopping if
fl, (a) = x, and fai thful if fl, (a) is equal to x when a = x and equal to e i ther x or
y when a ~ x. The exponent range is assumed to be unlimited, tha t is, no
underflows or overflows are considered. However, some discussion of their effects
is given in Section 6.

For an arbi t rary nonzero real number a, notat ions F(a) , L(a) , and W(a) are
used for the unit of leading (that is, first nonzero) digit of a, for the unit of the
last nonzero digit of a and for the width of a, respectively. T h e n fiR(a) <_ [a [<
flF(,)+l, a mod /~L(.)+I 5~ 0, but a rood •L(a) ~- 0 and W(a) = F(a) - L(a) + 1.
For completeness, define F(0) = -0% L(0) = 0% and W(0) = 0. Obviously a is
an ,-digit number if and only if W(a) <_ i.

Two numbers a and b are called nonoverlapping if e i ther L(a) > F(b) or F(a)
< L(b). A double number a + b is a combinat ion of two nonoverlapping p-digit
numbers a and b, for which a -- fl(a + b).

3. SPLITTING OF FLOATING-POINT NUMBERS

The exact multiplication methods are based on splitting p-digit operands into
smaller units. This splitting is done by adding a properly chosen mask to the
number to be split, causing the trailing par t of the number to be rounded off.
Then the mask is subtracted in hope tha t the remaining number is the leading
par t of the original number. Theo rem 1 below shows tha t a proper mask can
easily be found for any floating-point number in a fairly general class of arith-
metics, using a computer - independent high-level language. The mask used in

ACM TransacUons on Mathematmal Software, Vol. 7, No 3, September 1981

274 Seppo Lmnammaa

T h e o r e m 1 is equal to the m a s k used by D e k k e r [2], bu t the spl i t t ing is s h o w n to
be successful essent ia l ly m o r e genera l ly t h a n he s tated.

THEOREM 1 (DEKKER'S SPLITTING METHOD). I r A is a p - d i g i t n u m b e r a n d k
is such in teger t h a t 1 <_ k < p , t h e n the n u m b e r s a a n d a p r o d u c e d by opera t ions

t ~-- f l ((f l n-k + 1) × A) ,

a ~ - - - f l (t - (t - A)) ,

w (- - f l (A - a)

are such t h a t a + a = A , a is a k -d ig i t numbe r , a is a (p - k) -d ig i t number , a n d
a a n d a are nonover lapp ing , p r o v i d e d t h a t the a r i t hme t i c is f a i th fu l a n d t h a t
for any in tegers z a n d d, 0 < d < fl, e i ther o f the f o l l o w i n g is true.

(i) the p r o d u c t o f the n u m b e r s (f ln-k + 1) a n d (fl ' - dfl '-~) is chopped , or

(iD the d~fference o f the n u m b e r s (fl,+p-k + fl ,) a n d (fl ' - dfl `-p) is correct ly
r o u n d e d (~.e., c h o p p e d) to fl,+p-k

PROOF. T h e asser t ion is tr ivial for A = 0. T o prove o the r cases, for s impl ic i ty
a s sume t h a t ilk-1 < A < ilk, t h a t is, t h a t A is a posi t ive n u m b e r whose in teger
p a r t is k digits wide. Obvious ly this is no ac tua l restr ic t ion. I t is easy to see t h a t
if fin-~ _< t - A < fin, t h e n a is the abso lu te value o f A r o u n d e d to k digits
fai thfully, t he m a g n i t u d e of a being equal to the m a g n i t u d e of the r o u n d o f f e r ro r
o f this rounding . So the va l id i ty of the t h e o r e m is obv ious in this case. O t h e r
possible cases are cons idered below where (flp-k + 1) × A is d e n o t e d by T, so
t h a t t is the value of T r o u n d e d to p digits.

I f t - A < tiP-1, cer ta in ly T < tiP, a nd thus the abso lu te value o f the r o u n d o f f
e r ro r t - T i s less t h a n 1. So fin-1 > t - A _> (T - 1) - A = fiP-~A - 1, and hence
A < flk-~ + flk-p. Then , because A is a f loa t ing-poin t number , it follows t h a t
A = ilk-1. B u t t - A = t iP- l ; so t - A < fin-1 is impossible.

I f t - A _> fin, the r o u n d o f f e r ror of the mul t ip l ica t ion is less t h a n fl, s ince
obvious ly T is never _> flp+l. So fin <_ t - A < T + fl - A = f lP-kA + fl, and t h u s
A > flk _ ilk-p+1. Because A is a f loa t ing-poin t number , A =- flk _ dflk-p, where
d is an integer, 0 < d < ft. T h e n T = tiP(1 + flk-p _ dfl-p _ d t ~ k - 2 p) . I f t --< T, t h e n
t - A <- T - A = flP-kA < tiP. B u t we a s s u m e d t - A _ fin, so necessar i ly t > T in
the p re sen t case. I t follows t h a t if a s s u m p t i o n (i) is true, t h e n t - A _ tip is
imposs ible and the p r o o f is comple ted . Otherwise a s s u m p t i o n (ii) m u s t be true.
T h e n , if t > T, it follows t h a t t = tiP(1 + ilk-p) _ fin + ilk, and hence t - A is,
accord ing to a s s u m p t i o n (ii), r o u n d e d to tiP. T h e r e f o r e a = t - tip = fl* and a =
A - flk = _df lk -p , b o t h being one-digi t numbers . []

Obvious ly condi t ion (i) or (ii) is val id w h e n cor rec t r o u n d i n g or cor rec t
chopp ing a r i thmet i c is used. T o check the val id i ty in o the r fa i thful a r i thmet ics ,
no te t h a t t he exac t va lue of the p r o d u c t m e n t i o n e d in a s s u m p t i o n (i) is 100 • • •
Omm . . . m d " m m . . . rod' × fl'-P, where m = fi - 1, d ' =- fl - d, d " = d ' - 1, and
the l eng ths o f the 0, m, and m p a t t e r n s are p - k, k - 1, and p - k - 1,
respect ively . So the first digit to be r o u n d e d off is d" , preceded by 0 w h e n k = 1,
and b y m otherwise. Cor responding ly , t he exact va lue of the difference m e n t i o n e d
in a s s u m p t i o n (ii) is 100 . . . 0d × fl '-P, wi th 2p - k - 1 zeros.

ACM Transact ions on Mathemat ica l Software, Vol 7, No 3, September 1981

Software for Doubled-Precis,on Floatmg-Pomt Computations 275

I f a r i thmet i c is fai thful bu t bo th a s sumpt ions fail, spl i t t ing fails for n u m b e r s
wi th f rac t ion par t s m m . . . m d (and only for them). As an example, let fl =- 10,
p = 6, k = 3, and A = 999993. T h e n t = fl(1000992993) = 1001000000 (because (i)
fails), so fl(t - A) = fl(1000000007) = 1000010000 {because (ii) fails), a = 990000,
and a = 9993. T h u s a has 4 > 3 = p - k digits.

T h e value of the base n u m b e r fl is a s s umed to be k n o w n in the m e t h o d
cons idered in T h e o r e m 1. Wel l -known a lgor i thms t h a t de t e rmine the base n u m b e r
of the c o m p u t e r exist and can be wr i t t en c o m p u t e r independen t ly , so this
a s sumpt ion does no t des t roy the c o m p u t e r i n d e p e n d e n c y of the spli t t ing me thod .
One ve ry effective such a lgor i thm, which requi res no loops and is due to W.
K a h a n [5], is s t a t ed in T h e o r e m 2 below.

THEOREM 2 (BASE AND PRECISION DETERMINATION). I f the base n u m b e r is
even a n d no t d iv i s ib le by 3, a n d the a r i t h m e t i c ts fa i th fu l , t hen the f o l l o w i n g
opera t i ons p r o d u c e the va lues o f base n u m b e r fl a n d prec t s ton p:

1),
R # O then U ~ R,

U (- -

R e - -

if

u < - -

r (- - -

if

05) 05)1
05)

r # O then u * - - r ,

p ~-- e n u e r \ , t ~ "lo--~) I- 0.5 .

PROOF. Le t t, = fl(4/3). A p p a r e n t l y then tl = 4 /3 + elBa-P/3, where e~ is e i ther
- 2 , - 1 , +1, or +2. Af te r that , while c o m p u t i n g the value o f U, each in t e rmed ia t e
resul t x is such t h a t F (x) <_ 0 and L (x) >_ I - p, so W (x) <_ p. T h u s no m o r e
r o u n d i n g er rors occur, and so U =] 3 × (tl - 1) - 11 = 136 - 41 =] el I fl ~-p.

I f I e~l = 2, t h e n R is necessar i ly c o m p u t e d exactly, and t h u s R = U / 2 --- f i~-v
I f l e , I = 1, t h e n U / 2 + 1 = 1 + ½ B ~-v is r o u n d e d to e i ther 1 or 1 + fl~-P. In all
these cases, t he final va lue of U is obvious ly B ~-p.

Le t t2 = fl(2/3). A p p a r e n t l y t h e n t2 = 2 /3 + e2fl-P/3, where again I e21 is e i ther
1 or 2. Af te r tha t , while c o m p u t i n g u, each in t e rmed ia t e resul t x is such t h a t
F (x) ~ - 1 and L(x) >>_ - p; the re fore W(x) ~ p. T h u s no m o r e round ing er rors
occur, and so u = 13 × (tz - 0.5) - 0.51 = 13t2 - 21 = I e21fl -v. W h e n the value o f
¢ is c o m p u t e d and tested, the final value of u is necessar i ly B-P, wh ich can be seen
using s imilar reasoning as above for U.

A C M Transac t ions on Ma thema tma l Software, Vol 7, No 3, Sep t ember 1981

:J ~ ~ : . ~ ~ _ ~ .~ •¸4-.,¸

276 Seppo Lmnammaa

Now U / u = fl~-n/fl-n ffi fi and log(u)/ log(f l) ffi logz(u) = - p ; therefore, the
validity of the theorem is obvious with any reasonable implementat ion of the log
function. []

4. EXACT MULTIPLICATION

After successful splitting, the exact multiplication, producing a double number, is
ra ther straightforward. Dekker [2] described two quite similar methods for this
purpose, one being his own and the o ther due to G. W. Veltkamp. Dekker s ta ted
tha t bo th work correct ly provided tha t addition and subtract ion are correct ly
rounding and multiplication is faithful. Dekker proved tha t his own version works
in binary arithmetic, and stated tha t the results can be generalized to o ther bases.
This is t rue with the restrict ion tha t precision p must be an even number in the
methods tha t he describes, if base fl > 2. In T h e o r e m 3 below a proof is given tha t
a modification of the version due to Vel tkamp requires only faithfulness of the
ari thmetic, provided tha t the splitting can be made successfully. No practical
l imitations to the base number or precision are needed.

Both base fl and precision p are implicitly assumed to be known before the
me thod described in T h e o r e m 3 can be implemented. Both of them can be
computed computer independently, as shown in T h e o r e m 2; so the me thod as a
whole can be t rea ted as computer independent .

THEOREM 3 (ExAcT MULTIPLICATION). L e t A a n d C be two p - d i g i t n u m b e r s
a n d let k be such in teger t h a t k >_ 2 a n d p / 3 <_ k <_ p / 2 . F u r t h e r let

A = a + a, C = c + ~,, a n d T = K +

w h e r e a, c, a n d • are k -d tg i t a p p r o x i m a t i o n s o f A , C, a n d ~,, respect ively , each
be ing n o n o v e r l a p p i n g w i th the c o r r e s p o n d i n g (p - k) -digi t r e m a i n i n g par t .
T h e n the doub le n u m b e r X + x p r o d u c e d by the opera t ions

X *-- f / (AC),

x (- - f l (((((a c - X) + ay) + ca) + Ka) + ca)

is such t h a t X + x = A C , p r o v i d e d t h a t the a r i t hme t i c is fa i th fu l .

PROOF. If A or C or bo th are equal to zero, the assertion is trivial. To prove the
assertion in o ther cases, assume for simplicity tha t fin-1 <_ A < fin and fin-1 _< C
< tin, tha t is, tha t they both are positive p-digit integers, which is no actual
restriction. Obviously W (a c) <_ k + k <_p, W (a ~) <_ k + (p - k) = p , W (c a) < k
+ { p - k) = p , W(~a) "< k + (p - k) = p , and W(ea) <_ (p - 2k) + (p - k) _<p;
so all these multiplications can be done wi thout rounding errors. I f A C - X is
denoted by E, then obviously] E] < fl~, W (E) <_ p , and X and E are nonoverlap-
ping numbers.

Let t~ = a c - X. T h e n]tl] = [(A C - a C - ay) - (A C - E) I = I a C + a T - E I .
Suppose first tha t A C ~_ fl2n-~. T h e n I t~ I < fl2n-k+fl2p-k + fin < fl2n-k+2, and thus
F{t~) _ 2p - k + 1. On the o ther hand, L(ac) >_ p and L (X) >_ p in this case; so
L(t l) >-p and thus W (t l) <_ (2p - k + 1) - p + 1 = p - k + 2 <_p. I f A C < fl2n-~,
then, due to the assumed limitations for A and C, necessarily A + C < fin + fln-~.
Thus It~l = l ac - X I < I (A + f ln-k)(C + fin-k) _ A C J + I E I < (A + C) fl~-~ +

ACM Transac tmns on Mathemat ica l Software, Vol 7, No 3, September 1981

Software for Doubled-Prects,on FloatmgoPoint Computations 277

fi2~-2k + tip-1 < fl2p-k + fl2.-h-1 + fl2p-2k + flp-~ < fl2~-~+1; so F (6) <- 2p - k. Since
in this case L (X) >_p - 1, W(t~) < (2p - k) - (p - 1) + 1 = p - k + 2 ~ p .
Hence , in any case, tl can be c o m p u t e d exactly, wi th no r o u n d o f f errors.

Le t t2 = t~ + a~,. T h e n Itel = laC - E I ~ (flp-k _ 1) (• p _ 1) + tip = fl2~-k _
fip-k + 1 < fle~-k; SO F(t2) _< 2p - k - 1. On the o the r hand, L(t l) >-p and L (a y)
>p - k; so L(t2) > p - k. But then W(t2) < (2p - k - 1) - (p - k) + 1 = p ; so
t~ can be c o m p u t e d exact ly, too.

Let t3 = t2 -4- c a . T h e n] t3 I ----- I a T - - E [< fl2p--2k + t i p ~ : 2 f i2p-2k , SO F(ta) <- 2p
- 2k. L(t3) >-p - k; so W(t3) <_ (2p - 2k) - (p - k) + 1 = p - k + 1 < p , and thus
t.3 can also be c o m p u t e d exactly.

Le t t4 = t3 + ~a. T h e n] t4 [= [Ea - E I < flp-k fl~-2k + fin < 2tip, and hence F(t4)
_ p . Since L(t4) >_ min(L(t3) , L(K) + L(a)) >_p - 2k, W(t4) _ p - (p - 2k) + 1
= 2k + 1. I f p is odd, k <_p/2 implies k _< (p - 1)/2 and thus W(t4) -<p . I f p is
even and k < p/2 , W(t4) _< p - 1. I f p is even and k = p /2 , t h e n ¢ = 0 and thus
I t41 = I E I- So in all cases, t4 can be c o m p u t e d exact ly.

N o w x = t4 + ea = E, which comple tes the proof. []

I f k = p /2 , t hen e = 0; so there is no need to split ~,, and the addi t ion o f the t e r m
ea can be omit ted . K is obvious ly rep laced b y , / i n the r emain ing fo rmula for x.
T h e n the original m e t h o d due to V e l t k a m p [2] results.

I t can also be easily found t h a t e = 0 w h e n the a r i thmet i c is b ina ry and cor rec t ly
rounding , p is odd, k = (p - 1)/2, and the spli t t ing is done using D e k k e r ' s spl i t t ing
me thod . So the simplified fo rmula can be used in this s i tuat ion, too.

T h e simplified fo rmula is obvious ly also appl icable for a n y p , if k = ent ier (p /2)
and the p r o d u c t ,/a is no t r o u n d e d to a p-digi t number , bu t r a t h e r to a (p + h)-
digit n u m b e r for some integer h > 0. T h e avai labi l i ty o f such a r i thmet i c is
p roposed , for example, in [1].

T h e corol la ry below summar izes the possibilities to use the simplif ied formula .

COROLLARY (ExAcT M U L T I P L I C A T I O N) . Let A a n d C be two p-d ig i t numbers ,
p >_ 4, k = ent ier (p /2) a n d h >_ O. Fur ther let

A = a + a a n d C = c + y

where a a n d c are k-digi t approx imat ions o f A a n d C, respectively, both being
nonover lapptng wt th the corresponding (p - k }-digit r emain ing part . Then the
double number X + x p roduced by the operat ions

X ~-- f l (AC) ;

x ~-- f / (((((ac - X) + ay) + ca) + flp+h(ya))

is such that X + x = A C, p rov ided that the ar i thmet ic is fa i th fu l a n d ei ther

(i) p is an even integer,
(iD binary correctly rounding ar i thmet ic is used, or

(iii) h > O. []

W h e n the above corol la ry is appl ied in the case in which h > O, obviously, if
preferred, o the r in t e rmed ia t e resul ts m a y also be r o u n d e d to p + h ins tead o f p
digits, and no t on ly ,/a, w h e n the value o f x is computed .

ACM Transactmns on Mathematmal Software, Vol 7, No 3, September 1981

278 Seppo Lmnamrnaa

5. ALGORITHMS FOR DOUBLED-PRECISION OPERATIONS

Effect ive a lgori thms for doubled-precision operat ions tha t utilize the exact mul-
t iplication me thod can be constructed. Such a lgor i thms for multiplication, divi-
sion, and addit ion are given below as por table PASCAL procedures. T h e first
p rocedure implements the exact mult ipl icat ion me thod of T h e o r e m 3. I t is valid
when ei ther of the conditions of T h e o r e m 1 is valid. I t is especially valid in
correct ly rounding and correct ly chopping ar i thmet ics with no fur ther restrictions.

procedure e x a c t m u l (a, c : r e a l : v a r x, xx : rea l) ;
(this procedure implements x + x x (-- a*c.
c o n s t a n t is assumed to be a global variable whose
value is flp-e,t,er(p/2) + 1 where fl is the base and
p is the precision of real numbers}
v a r al , a2, cl, c2, c21, c22, t :real;

begin
t :-- a ' c o n s t a n t ; a l "= (a - t) + t; a2 :-- a - al;
t := c ' c o n s t a n t ; c l := (c - t) + t; c2 :-- c - cl;
t "= c2*cons tant ; c21 := (c2 - t) + t; c22 := c2 - c21;
X : ~ a'c;
x x .= ((((al*cl - x) + a1"c2) + c1"a2) + c21"a2) + c22"a2

end;

As s ta ted in the Corol lary of T h e o r e m 3, procedure e x a c t m u l can be replaced
by the following s impler procedure e x a c t m u l 2 when, in addit ion to the conditions
for the validi ty of e x a c t m u l , one of the following condit ions is fulfilled:

(i) the n u m b e r of digits in each r e a l - t y p e f loat ing-point fract ion is even,
(ii) b inary correct ly rounded ar i thmet ic is used, or

(iii) a t least the p roduc t c2 * a2 is rounded to an extended n u m b e r (having at
least one more digit t han real numbers) instead of a real n u m b e r when
comput ing x x .

procedure e x a c t m u l 2 (a, c:real; v a r x, x x ' r e a l) ;
v a r al , a2, cl, c2, t : real ,

begin
t :-- a ' c o n s t a n t ; a l :-- (a - t) + t; a2 := a - al;
t := c ' c o n s t a n t ; c l :~ (c - t) + t; c2 :-- c - cl,
x := a ' c ;
x x := (((al*cl - x) + al*c2) + cl*a2) + c2"a2

end;

T h e a logr i thms for doubled-precis ion opera t ions given below are modif icat ions
of the a lgor i thms presented by Dekke r [2]. T h e y serve an obvious i m p r o v e m e n t
in accuracy, if such extended precision is available as suggested in [1]. A few
extra bits guarantee full precision for doubled-precis ion operat ions, as can be
concluded f rom the resul ts presented below. This fact is a s t rong suppor t for
construct ing hardware containing such extended precision. T h e procedures will
reduce to the original procedures of Dekke r if no such extended precision is
available.

In the procedures below variable z z is declared as e x t e n d e d , meaning tha t it
has h _ 0 extra digits in its f ract ion part , compared with r e a l numbers . I t is
assumed tha t all the operat ions in the expression whose value will be assigned to
z z a r e compu ted using this kind of ex tended ar i thmetic . I t shall be no ted tha t in

ACM TransacUons on Mathematmal Software, Vol 7, No 3, September 1981

Software for Doubled-Prectston Floating-Point Computations ' 279

the theoretical si tuation h = 0¢ all the algorithms for doubled-precision operations
below produce numbers z and z z such tha t z + z z is the exact result of the
corresponding operation. The original algorithms of Dekker do not have this
property. Finally, z + z z is rounded to double number x + x x . In computing x x ,

the difference z - x can be rounded to extended, as well as to usual real, precision.
Note tha t extended ar i thmetic must not be used when computing a l or c l in

the above procedures. I f one wants to use extended ar i thmetic there also, tha t is,
in each ar i thmetic operat ion excluding the ones whose result will be assigned to
a r e a l variable immediately, then the value of c o n s t a n t must be changed to
~p+h--entter(p/2) ÷ 1.

If especially h = O, tha t is, no extended precision is available, then in procedure
l o n g m u l below fl(a + a a) = a and thus obviously (a + a a) can be replaced by
simple a. Correspondingly (c + cc) can be replaced by c in procedure l o n g d w

when h = O. These reduced forms of the procedures are identical to the original
procedures of Dekker.

procedure l ongmul (a , aa, c, cc:real; var x, xx : rea l) ;
{this procedure implements x + x x *-- (a + aa)*(c + cc)}
var z, qq:rea l ; z z : e x t e n d e d ;

begin
exac tmu l (a , c, z, qq);
z z ' = ((a + aa)*cc + aa*c) + qq;
X: = Z + ZZ;

x x : = (z - x) + z z
end;
procedure l ongd iv (a , aa, c, cc:real; va t x, xx : rea l) ;

{this procedure nnplements x + x x ~-- (a + a a) / (c + cc))
var z, q, qq : rea l , z z : e x t e n d e d ;

begin
z:= a/c;
exac tmu l (c , z, q, qq);
z z . = ((((a - q) - qq) + aa) - z*cc) / (c + cc);
X : ~ Z + ZZ;

x x : = (z - x) + z z
end;
procedure l o n g a d d (a , aa, c, cc:real; var x, xx : rea l) ;

{this procedure implements x + x x ~-- (a + aa) + (c + cc)}
var z, q:real; z z : e x t e n d e d ;

begin
z : = a + c;
q : = a -- z;
z z : = (((q + c) + (a - (q + z))) + aa) + cc;
X : = Z + ZZ,

x x : = (z - x) + z z
end;

Obviously procedure l o n g a d d can be used as well for subtract ion by changing
the signs of c and cc. If preferred, procedure l o n g a d d 2 below can be used instead
of procedure l o n g a d d , if at least one of the following conditions is fulfilled [7]:

(i) binary correct ly rounding ari thmetic is used,
(ii) correct ly chopping ar i thmetic is used, or

(iii) a correctly rounding ar i thmetic with h > 0 is used.

ACM Transactions on Mathemahcal Software, Vol 7, No. 3, September 1981

280 Seppo Linnainmaa

Table I Theoretical Upper Bounds of the Relative Errors of
Doubled-Precismn Operatmns"

Procedure Correct ly rounding b A n y fai thful

longmul ½B -b + 2fl l-h 1 + 8fl l-h
l o n g d w ½fl-b + 3•l-h 1 + 12fl l-h
l ongadd c ½fl-b + f l l -h 1 + 5fl l-h

All entr ies are mul t ip l ied by fl2p-~.
h T h e value of b is I for b inary and 0 for o ther a r i thmet ics Especial ly
i f h = 0, t hen the t e rm ½fl-b can be omit ted.
c T h e s u m m a n d s are a s s u m e d to have equal signs.

The accuracy of the result can be expected to remain similar, when l o n g a d d is
replaced by l o n g a d d 2 .

procedure longadd2(a, aa, c, cc:real; v a r x, xx:real);

var z, q:real; zz :ex tended;
begin

z : = a + c;
z z : = i f abs(a) >_ abs(c) then(((a - z) + c) + aa) + cc

else (((c - z) + a) + cc) + aa;
X : ~ Z + ZZ;
xx :--- (z - x) + zz

end;

In Table I the approximate upper bounds for the rounding errors are given for
the results of the above procedures. They are calculated using the first-order
approximation of the accumulated error in terms of relative local errors. It is
noticed that X + x is a rounded (2p + b)-digit approximation of Z + z, where
b ffi 1 for binary correctly rounding arithmetic and 0 for other arithmetics.
Especially if h = 0, then X + x = Z + z in correctly rounding arithmetic [7]. It is
noted also that the expression (a - q) - q q can always be calculated exactly in
procedure l o n g d i v provided that the arithmetic is faithful. Recall for comparison
that in "conventional" double precision all the table entries would be ½ for
correctly rounding and 1 for any faithful arithmetic.

Also Dekker gave bounds for correctly rounding binary arithmetic [2]. His
bounds agree with the corresponding bounds above. Only the bound for a product
is slightly better above because Dekker was not able to assume z = fl(z + q q) .

If the summands have different signs, then cancellation may occur, and this
yields worse bounds for relative errors than were found in connection with
multiplication and division. But in these cases, efforts for obtaining as good
bounds would be of no use, since the summands cannot be assumed to have more
than about 2p correct digits. One way to compare addition with other operations
is to divide the absolute error by the larger summand instead of the result, if the
two numbers to be added have different signs. Using this approach the entries for
l o n g a d d in Table I would be ½fl-b + 5fl 1-h/4 for correctly rounding and 1 + 6fl 1-h
for any faithful arithmetic.

To test the accuracy of procedures l o n g m u l and l o n g d i v , an experiment was
run on a VAX 11/780 computer where 1000 pairs of random numbers were
multiplied and divided using these procedures. Binary and octal correctly round-

ACM Transactions on Mathematmal Software, Vol 7, No. 3, September 1981

Table II.

Software for Doubled-Prectsion Floatmg-Pomt Computations • 281

M a x i m u m Observed and Theore t ica l Re la twe Errors of P roduc t and Quot ien t of Two
Numbers , Produced, Respect ively, By longmul and longdiv ~

Procedure

Rounding Chopping

Binary Octal B inary Octal

Theo- Theo- Theo- Theo-
h Observed retinal Observed retinal Observed retical Observed retical

longmul

longdw

0 1 11 4.00 2.14 16.00 5.32 1700 10.80 6500
1 0.49 2 25 0.49 2.50 2 36 9 00 1.68 9.00
2 0.38 1.25 0 46 0 75 1.46 5.00 0.97 2.00
3 0 32 0.75 0.47 0.53 1.07 3.00 0 93 1.13
4 0 27 0.50 0.46 0 50 0 97 2.00 0.90 1.02
5 0 25 0.38 0.47 0.50 0.93 1 50 0.93 1.00
6 0 24 0 31 0.46 0.50 0 92 1.25 0.90 1.0O

0 1 53 6.00 4.61 24.00 3.31 25 00 13.65 97.00
1 0.67 3.25 0.66 3 50 1.86 13.00 1.02 13.00
2 0 46 1 75 0 44 0.88 1 02 7.00 0.90 2.50
3 0 38 1.00 0.46 0.55 0.95 4.00 0 86 1 19
4 0 28 0 63 0 44 0 51 0.97 2.50 0.98 1.02
5 0 24 0 44 0.45 0.50 0 91 1.75 0 87 1 00
6 0 26 0 34 0 46 0 50 0.95 1.38 0.86 1.00

'~ All values are mul~lphed by fl2p-1

ing and correctly chopping arithmetics were simulated. The maximum errors that
were observed, scaled by fl2p-1, are given in Table II, confirming the theoretical
results.

In fact, with an extension of at least five digits, binary correctly rounding
arithmetic produced in both operations an even better approximation for the true
result than the corresponding double-precision approximation in more than 60
percent of the sample cases. These results reflect situations where x alone differs
by less than 1/fl units in the last place from the true result, which allows xx to
catch one extra digit compared with conventional double precision. A worse
approximation was never produced by longmul, and only in 2 percent of the
sample quotients by longdiv. In binary chopping and both octal arithmetics, an
improved result was obtained in about 20 percent of the sample cases, while
worse approximations were never produced by longmul, and in only a few percent
of the sample cases by longdiv.

6. DISCUSSION

Above, rather simple methods were presented that allow doubling the longest
available precision of any computer with a reasonable arithmetic. So a quadruple
precision is available using this software, if double precision or extended double
precision, as suggested in [1], is implemented in the hardware and fulfills the
conditions for faithfulness. In correctly rounding arithmetic an extension of at
least three digits guarantees that the upper bound of the rounding error is never
worse than the corresponding double- (or quadruple, if the basic arithmetic is
double) precision upper bound for a faithful arithmetic in general. A very

ACM Transactions on Mathematmal Software, Vol. 7, No. 3, September 1981,

282 Seppo Linnammaa

interesting fact is tha t in binary rounding ar i thmetic with an extension of a t least
five bits the theoret ical upper bound of the result is less than the corresponding
double-precision upper bound.

The execution t ime of each operat ion will increase one order of magnitude. So
the proposed methods are considerably slower than the use of a corresponding
precision built into hardware, but the need for such extreme precision is so rare
tha t the existence of software like this probably is a sufficient reason to avoid
ever building such hardware. The full portabil i ty of this software allows its easy
use in any connection.

T he possibility of underflows and overflows was neglected above, bu t is now
discussed briefly to fur ther establish the usability of the methods. It is easy to see
tha t if procedure exac tmul is able to produce the exact product of its input
parameters , no fur ther problems arise, provided the corresponding single-preci-
sion operat ion nei ther overflows nor produces a result adjacent to the overflow
threshold. Bu t the splitting done by exac tmul uses numbers requiring exponents
tha t are about p / 2 units larger than the exponents of the numbers to be split,
where p is the number of digits in the fraction par t of numbers. Thus the available
exponent range is slightly decreased, unless extended numbers with extended
exponent fields are used in splitting.

If the conventional single-precision rest~lt underflows, essentially the same
result is obtained using the above procedures. If the trailing par t of the resulting
double number does not underflow, the procedures work as well as usual. Some
critical si tuations occur if the leading par t does not underflow but the trailing
par t does. If underflowed numbers are replaced by zero, then the result produced
by longmul is at worst the same as the product produced by multiplying the
leading parts of the operands only, tha t is, "half precision". A similar effect is
possible in division, if the dividend is very near underflow threshold. These
inconvenient effects are avoided if gradua l underf low (see, for example, [1]) is
used instead of flushing to zero. When gradual underflow is used, the result can
never be more inaccurate than the corresponding conventional single-precision
result.

ACKNOWLEDGMENTS

I am grateful to Professor William Kahan for suggesting tha t I seek generalizations
of Dekker ' s results.

REFERENCES
1 COONEN, J T An lmplementaUon guide to a proposed standard for floating point anthmetm

Computer 13 (1980), 68-79
2. DEKKER, T J. A floating-point technique for extending the available precision. Numer. Math 18

(1971), 224-242.
3. KAZAN, W. Further remarks on reducing truncation errors. Commun. ACM 8, (1965), 40.
4 KAHAN, W A survey of error analysis. In Proe IFIP Cong 1971, vol 2, C V Freeman (Ed),

North-Holland, Amsterdam, 1972, pp. 1214-1239.
5. KAHAN, W Personal commumcatlon, 1980
6. KNUTH, D.E. The Art of Computer Programming: Sem~numencal Algorzth~ms, vol. 2 Addison-

Wesley, Reading, Mass., 1969.
ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981

Software for Doubled-Prec~mon Floating-Point Computations 283

7 LINNAINMAA, S. Analysis of some known methods of improving the accuracy of floating-point
sums. B I T 14 (1974), 167-202.

8. MOLLER, O. Quasi double precision in floating-point addmon. B I T 5 (1965), 37-50.
9. MOLLER, O Note on quasi double precision B I T 5 {1965), 251-255.

10 VIRKKUNEN, J A umfied approach to floating-point rounding with applications to multiple-
precision summation. Rep A-1980-1. Dep of Comput Sci, Umv of Helsinkl, Helsmkl, Finland,
1980.

Received July 1980; revmed January 1981, accepted February 1981

ACM Transactions on Mathematmal Software, Vo] 7, No 3, September 1981

