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1. INTRODUCTION 

Ar t i f i ce s  to  e x t e n d  t h e  m a x i m u m  a v a i l a b l e  p r e c i s i o n  h a v e  b e e n  w i d e l y  a n a l y z e d .  
I n  such  m e t h o d s ,  if  t h e y  a r e  c o m p u t e r  i n d e p e n d e n t ,  t h e  f ac t  t h a t  two  n u m b e r s  
can  a l w a y s  b e  s u b t r a c t e d  f r o m  e a c h  o t h e r  exac t ly ,  w i t h  no  r o u n d i n g  e r rors ,  if  
t h e y  a r e  a l m o s t  equa l ,  is used .  I t  h a s  b e e n  s h o w n  t h a t  t h e  s u m  a n d  d i f f e rence  of  
two  n u m b e r s  of  m a x i m u m  a v a i l a b l e  p r e c i s i o n  c a n  eas i ly  be  c o m p u t e d  in  a v e r y  
wide  v a r i e t y  o f  a r i t h m e t i c s  [2-10] .  T h e  r e s u l t  is r e p r e s e n t e d  as  a d o u b l e  n u m b e r ,  
t h a t  is, two  f l o a t i n g - p o i n t  n u m b e r s  w h o s e  s u m  is t h e  a c t u a l  r esu l t .  I n  fact ,  if  t h e  
l i m i t a t i o n s  of  t h e  e x p o n e n t  r a n g e  a r e  neg l ec t ed ,  a r b i t r a r y - p r e c i s i o n  a d d i t i o n  a n d  
s u b t r a c t i o n  can  be  i m p l e m e n t e d  c o m p u t e r  i n d e p e n d e n t l y ,  u s ing  a h igh - l e ve l  
l a n g u a g e  [10]. A s  m a n y  f l o a t i n g - p o i n t  n u m b e r s  as  r e q u i r e d  a r e  t h e n  u s e d  to  
r e p r e s e n t  e a c h  m u l t i p l e - p r e c i s i o n  n u m b e r .  

T h e  o n l y  w e l l - k n o w n  c o m p u t e r - i n d e p e n d e n t  m e t h o d s  to  d o u b l e  t h e  a v a i l a b l e  
p r e c i s i o n  in  m u l t i p l i c a t i o n  a n d  d iv i s ion  as  well  h a v e  b e e n  p r e s e n t e d  b y  T . J .  
D e k k e r  [2]. O b v i o u s l y  d o u b l i n g  t h e  p r e c i s i o n  of  m u l t i p l i c a t i o n  m e a n s  t h a t  t h e  
r e s u l t  is a l w a y s  exact .  D e k k e r ' s  m u l t i p l i c a t i o n  m e t h o d  is r e s t r i c t e d  to  a r i t h m e t i c s  
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where addition and subtract ion are correct ly rounding, tha t  is, where the roundoff  
error  is never  more than  half  unit  in the last remaining position. Another  
restr ict ion is tha t  the precision of the ar i thmetic  must  be even in o ther  than  
binary arithmetics.  In the present  paper  a modification of Dekker ' s  me thod  is 
proposed whereby both restrictions have been removed.  

Dekker  also presented algorithms for operations between two double numbers,  
when the result  is also wanted as a double number.  These  algorithms utilize the 
exact multiplication method.  This  paper  presents  modifications of these algo- 
r i thms which differ from those described by Dekker,  if one or more  extra digits 
beyond the normal maximum precision are available in restr icted use, as proposed 
in [1]. 

2 DEFINITIONS AND NOTATIONS 

Below, the base of the ari thmetic is denoted by fl and the normal  maximum 
precision by p. A number  is said to be an i-digit number, if it can be represented 
in the form f × ilk, where f a n d  k are integers and If[ < fl'. If  x is an expression, 
then  fl, (x) means tha t  the result  of each operat ion included in x is rounded to an 
,-digit number  using the current  rounding rule. Especially if i =p ,  shor ter  nota t ion 
fl(x) will be used instead of tip(x). 

Let  a be an arbi t rary  nonzero real number  and x and y be two consecutive 
/-digit numbers  with the same sign as a, such tha t  [ x [ ___ [ a [ < [ y [. T h e  ar i thme- 
tic having precision , is called correctly rounding  if fl, (a) -- x when [ x - a [ < 
] y - a I, fl, (a) = y when ] x - a ] > I Y - a ], and fl, (a) is equal to e i ther  x or y when 
[ x - a [ = [y - a [. The  ar i thmetic  is called, respectively, correctly chopping if 
fl, (a) = x, and fai thful  if fl, (a) is equal to x when a = x and equal to e i ther  x or 
y when a ~ x. The  exponent  range is assumed to be unlimited, tha t  is, no 
underflows or overflows are considered. However,  some discussion of their  effects 
is given in Section 6. 

For  an arbi t rary  nonzero real number  a, notat ions F(a) ,  L(a) ,  and W(a)  are 
used for the unit  of leading ( that  is, first nonzero) digit of a, for the unit  of the 
last nonzero digit of a and for the width of a, respectively. T h e n  fiR(a) <_ [ a [ < 
flF(,)+l, a mod  /~L(.)+I 5~ 0, but  a rood •L(a) ~- 0 and W(a)  = F(a )  - L(a)  + 1. 
For completeness,  define F(0) = -0% L(0) = 0% and W(0) = 0. Obviously a is 
an ,-digit number  if and only if W(a)  <_ i. 

Two numbers  a and b are called nonoverlapping if e i ther  L(a)  > F(b )  or F(a)  
< L(b).  A double number  a + b is a combinat ion of two nonoverlapping p-digit  
numbers  a and b, for which a -- fl(a + b). 

3. SPLITTING OF FLOATING-POINT NUMBERS 

The  exact multiplication methods  are based on splitting p-digit  operands into 
smaller units. This  splitting is done by adding a properly chosen mask to the 
number  to be split, causing the trailing par t  of the number  to be rounded off. 
Then  the mask is subtracted in hope tha t  the remaining number  is the  leading 
par t  of the original number.  Theo rem 1 below shows tha t  a proper  mask can 
easily be found for any floating-point number  in a fairly general class of arith- 
metics, using a computer - independent  high-level language. The  mask used in 
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T h e o r e m  1 is equal  to  the  m a s k  used by  D e k k e r  [2], bu t  the  spl i t t ing is s h o w n  to 
be successful  essent ia l ly  m o r e  genera l ly  t h a n  he  s tated.  

THEOREM 1 (DEKKER'S SPLITTING METHOD). I r A  is a p - d i g i t  n u m b e r  a n d  k 
is such  in teger  t h a t  1 <_ k < p ,  t h e n  the  n u m b e r s  a a n d  a p r o d u c e d  by opera t ions  

t ~-- f l ( ( f l  n-k + 1) × A ) ,  

a ~ - - - f l ( t -  ( t - A ) ) ,  

w ( - - f l ( A  - a) 

are  such  t h a t  a + a = A ,  a is a k -d ig i t  numbe r ,  a is a ( p  - k ) -d ig i t  number ,  a n d  
a a n d  a are  nonover lapp ing ,  p r o v i d e d  t h a t  the  a r i t hme t i c  is f a i th fu l  a n d  t h a t  
for  any  in tegers  z a n d  d, 0 < d < fl, e i ther  o f  the  f o l l o w i n g  is true. 

(i) the  p r o d u c t  o f  the  n u m b e r s  (f ln-k + 1) a n d  (fl '  - dfl  '-~) is chopped ,  or 

(iD the  d~fference o f  the  n u m b e r s  (fl,+p-k + fl ,)  a n d  (fl '  - dfl  `-p) is correct ly  
r o u n d e d  (~.e., c h o p p e d )  to fl,+p-k 

PROOF. T h e  asser t ion  is tr ivial  for  A = 0. T o  prove  o the r  cases, for  s impl ic i ty  
a s sume  t h a t  ilk-1 < A < ilk, t h a t  is, t h a t  A is a posi t ive  n u m b e r  whose  in teger  
p a r t  is k digits wide. Obvious ly  this  is no  ac tua l  restr ic t ion.  I t  is easy  to  see t h a t  
if fin-~ _< t - A < fin, t h e n  a is the  abso lu te  value  o f  A r o u n d e d  to  k digits 
fai thfully,  t he  m a g n i t u d e  of  a being equal  to  the  m a g n i t u d e  of  the  r o u n d o f f  e r ro r  
o f  this  rounding .  So the  va l id i ty  of  the  t h e o r e m  is obv ious  in this  case. O t h e r  
possible cases are  cons idered  below where  (flp-k + 1) × A is d e n o t e d  by  T, so 
t h a t  t is the  value  of  T r o u n d e d  to p digits. 

I f  t - A < tiP-1, cer ta in ly  T < tiP, a nd  thus  the  abso lu te  value  o f  the  r o u n d o f f  
e r ro r  t - T i s  less t h a n  1. So fin-1 > t - A _> (T  - 1) - A = fiP-~A - 1, and  hence  
A < flk-~ + flk-p. Then ,  because  A is a f loa t ing-poin t  number ,  it follows t h a t  
A = ilk-1. B u t  t - A = t iP- l ;  so t - A < fin-1 is impossible.  

I f  t - A _> fin, the  r o u n d o f f  e r ror  of  the  mul t ip l ica t ion  is less t h a n  fl, s ince 
obvious ly  T is never  _> flp+l. So fin <_ t - A < T + fl - A = f lP-kA + fl, and  t h u s  
A > flk _ ilk-p+1. Because  A is a f loa t ing-poin t  number ,  A =- flk _ dflk-p, where  
d is an  integer,  0 < d < ft. T h e n  T = tiP(1 + flk-p _ dfl-p _ d t ~ k - 2 p ) .  I f  t --< T, t h e n  
t - A <- T - A = flP-kA < tiP. B u t  we a s s u m e d  t - A _ fin, so necessar i ly  t > T in 
the  p re sen t  case. I t  follows t h a t  if a s s u m p t i o n  (i) is true,  t h e n  t - A _ tip is 
imposs ible  and  the  p r o o f  is comple ted .  Otherwise  a s s u m p t i o n  (ii) m u s t  be true. 
T h e n ,  if t > T, it follows t h a t  t = tiP(1 + ilk-p) _ fin + ilk, and  hence  t - A is, 
accord ing  to  a s s u m p t i o n  (ii), r o u n d e d  to  tiP. T h e r e f o r e  a = t - tip = fl* and  a = 
A - flk = _df lk -p ,  b o t h  being one-digi t  numbers .  [ ]  

Obvious ly  condi t ion  (i) or  (ii) is val id  w h e n  cor rec t  r o u n d i n g  or  cor rec t  
chopp ing  a r i thmet i c  is used.  T o  check  the  val id i ty  in o the r  fa i thful  a r i thmet ics ,  
no te  t h a t  t he  exac t  va lue  of  the  p r o d u c t  m e n t i o n e d  in a s s u m p t i o n  (i) is 100 • • • 
Omm . . .  m d " m m  . . .  rod'  × fl'-P, where  m = fi - 1, d '  =- fl - d, d "  = d '  - 1, and  
the  l eng ths  o f  the  0, m, and  m p a t t e r n s  are  p - k, k - 1, and  p - k - 1, 
respect ively .  So the  first digit  to  be r o u n d e d  off  is d" ,  preceded  by  0 w h e n  k = 1, 
and  b y  m otherwise.  Cor responding ly ,  t he  exact  va lue  of  the  difference m e n t i o n e d  
in a s s u m p t i o n  (ii) is 100 . . .  0d  × fl '-P, wi th  2p - k - 1 zeros. 
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I f  a r i thmet i c  is fai thful  bu t  bo th  a s sumpt ions  fail, spl i t t ing fails for  n u m b e r s  
wi th  f rac t ion  par t s  m m  . . .  m d  (and only  for them).  As  an  example,  let  fl =- 10, 
p = 6, k = 3, and  A = 999993. T h e n  t = fl(1000992993) = 1001000000 (because  (i) 
fails), so fl(t - A)  = fl(1000000007) = 1000010000 {because (ii) fails), a = 990000, 
and  a = 9993. T h u s  a has  4 > 3 = p - k digits. 

T h e  value  of  the  base n u m b e r  fl is a s s umed  to be k n o w n  in the  m e t h o d  
cons idered  in T h e o r e m  1. Wel l -known a lgor i thms  t h a t  de t e rmine  the  base  n u m b e r  
of  the  c o m p u t e r  exist and  can be wr i t t en  c o m p u t e r  independen t ly ,  so this  
a s sumpt ion  does no t  des t roy  the  c o m p u t e r  i n d e p e n d e n c y  of  the  spli t t ing me thod .  
One ve ry  effective such  a lgor i thm,  which  requi res  no loops and  is due  to W. 
K a h a n  [5], is s t a t ed  in T h e o r e m  2 below. 

THEOREM 2 (BASE AND PRECISION DETERMINATION). I f  the  base  n u m b e r  is 
even  a n d  no t  d iv i s ib le  by 3, a n d  the  a r i t h m e t i c  ts fa i th fu l ,  t hen  the  f o l l o w i n g  
opera t i ons  p r o d u c e  the  va lues  o f  base  n u m b e r  fl a n d  prec t s ton  p: 

1), 
R # O then  U ~ R,  

U ( - -  

R e - -  

if 

u < - -  

r ( - - -  

if 

05) 05)1 
05) 

r # O then  u * - - r ,  

p ~-- e n u e r  \ , t ~  "lo--~) I- 0.5 . 

PROOF. Le t  t, = fl(4/3). A p p a r e n t l y  then  tl = 4 /3  + elBa-P/3, where  e~ is e i ther  
- 2 ,  - 1 ,  +1,  or  +2. Af te r  that ,  while c o m p u t i n g  the  value o f  U, each  in t e rmed ia t e  
resul t  x is such  t h a t  F ( x )  <_ 0 and  L ( x )  >_ I - p,  so W ( x )  <_ p.  T h u s  no  m o r e  
r o u n d i n g  er rors  occur,  and  so U = ] 3 × (tl - 1) - 11 = 136 - 41 = ] el I fl ~-p. 

I f  I e~l = 2, t h e n  R is necessar i ly  c o m p u t e d  exactly,  and  t h u s  R = U / 2  --- f i~-v 
I f  l e ,  I = 1, t h e n  U / 2  + 1 = 1 + ½ B ~-v is r o u n d e d  to  e i ther  1 or  1 + fl~-P. In  all 
these  cases, t he  final va lue  of  U is obvious ly  B ~-p. 

Le t  t2 = fl(2/3). A p p a r e n t l y  t h e n  t2 = 2 /3  + e2fl-P/3, where  again  I e21 is e i ther  
1 or  2. Af te r  tha t ,  while c o m p u t i n g  u, each  in t e rmed ia t e  resul t  x is such  t h a t  
F ( x )  ~ - 1 and  L(x )  >>_ - p; the re fore  W(x)  ~ p.  T h u s  no m o r e  round ing  er rors  
occur,  and  so u = 13 × (tz - 0.5) - 0.51 = 13t2 - 21 = I e21fl -v. W h e n  the  value o f  
¢ is c o m p u t e d  and  tested,  the  final value of  u is necessar i ly  B-P, wh ich  can  be seen 
using s imilar  reasoning  as above  for U. 
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Now U / u  = fl~-n/fl-n ffi fi and log(u)/ log(f l )  ffi logz(u) = - p ;  therefore,  the 
validity of the theorem is obvious with any reasonable implementat ion of the log 
function. [] 

4. EXACT MULTIPLICATION 

After successful splitting, the exact  multiplication, producing a double number,  is 
ra ther  straightforward. Dekker  [2] described two quite similar methods  for this 
purpose, one being his own and the o ther  due to G. W. Veltkamp. Dekker  s ta ted 
tha t  bo th  work correct ly provided tha t  addition and subtract ion are correct ly 
rounding and multiplication is faithful. Dekker  proved tha t  his own version works 
in binary arithmetic,  and stated tha t  the results can be generalized to o ther  bases. 
This  is t rue with the restrict ion tha t  precision p must  be an even number  in the 
methods  tha t  he describes, if base fl > 2. In T h e o r e m  3 below a proof  is given tha t  
a modification of the version due to Vel tkamp requires only faithfulness of the 
ari thmetic,  provided tha t  the splitting can be made  successfully. No practical  
l imitations to the base number  or precision are needed. 

Both  base fl and precision p are implicitly assumed to be known before the 
me thod  described in T h e o r e m  3 can be implemented.  Both  of them can be 
computed  computer  independently,  as shown in T h e o r e m  2; so the me thod  as a 
whole can be t rea ted  as computer  independent .  

THEOREM 3 (ExAcT MULTIPLICATION). L e t  A a n d  C be two p - d i g i t  n u m b e r s  
a n d  let k be such  in teger  t h a t  k >_ 2 a n d  p / 3  <_ k <_ p / 2 .  F u r t h e r  let  

A = a + a, C = c + ~,, a n d  T = K + 

w h e r e  a, c, a n d  • are  k -d tg i t  a p p r o x i m a t i o n s  o f  A ,  C, a n d  ~,, respect ively ,  each  
be ing  n o n o v e r l a p p i n g  w i th  the  c o r r e s p o n d i n g  ( p  - k ) -digi t  r e m a i n i n g  par t .  
T h e n  the  doub le  n u m b e r  X + x p r o d u c e d  by the  opera t ions  

X *-- f / (AC),  

x ( - - f l ( ( ( ( ( a c  - X )  + ay)  + ca) + Ka) + ca) 

is such  t h a t  X + x = A C ,  p r o v i d e d  t h a t  the  a r i t hme t i c  is fa i th fu l .  

PROOF. If  A or C or bo th  are equal to zero, the assertion is trivial. To  prove the 
assertion in o ther  cases, assume for simplicity tha t  fin-1 <_ A < fin and fin-1 _< C 
< tin, tha t  is, tha t  they  both  are positive p-digit  integers, which is no actual 
restriction. Obviously W ( a c )  <_ k + k <_p, W ( a ~ )  <_ k + (p  - k )  = p ,  W ( c a )  < k 
+ { p -  k )  = p ,  W(~a)  "< k + ( p -  k )  = p ,  and W(ea) <_ ( p -  2k) + ( p -  k) _<p; 
so all these multiplications can be done wi thout  rounding errors. I f  A C  - X is 
denoted by E, then  obviously ] E ] < fl~, W ( E )  <_ p ,  and X and E are nonoverlap- 
ping numbers.  

Let  t~ = a c -  X.  T h e n  ]tl] = [ ( A C -  a C -  ay )  - ( A C -  E )  I = I a C  + a T -  E I . 
Suppose first tha t  A C  ~_ fl2n-~. T h e n  I t~ I < fl2n-k+fl2p-k + fin < fl2n-k+2, and thus 
F{t~) _ 2p - k + 1. On the o ther  hand, L(ac)  >_ p and L (X) >_ p in this case; so 
L(t l )  >-p and thus W ( t l )  <_ (2p - k + 1) - p  + 1 = p  - k + 2 <_p. I f A C  < fl2n-~, 
then, due to the assumed limitations for A and C, necessarily A + C < fin + fln-~. 
Thus  It~l = l ac  - X I  < I (A + f ln-k)(C + fin-k) _ A C J + I E I  < (A  + C) fl~-~ + 
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fi2~-2k + tip-1 < fl2p-k + fl2.-h-1 + fl2p-2k + flp-~ < fl2~-~+1; so F ( 6 )  <- 2p - k. Since  
in this  case L ( X )  >_p - 1, W(t~) < (2p - k)  - (p  - 1) + 1 = p  - k + 2 ~ p .  
Hence ,  in any  case, tl can  be c o m p u t e d  exactly,  wi th  no r o u n d o f f  errors.  

Le t  t2 = t~ + a~,. T h e n  Itel = laC - E I ~ (flp-k _ 1 ) ( • p  _ 1) + tip = fl2~-k _ 
fip-k + 1 < fle~-k; SO F(t2) _< 2p - k - 1. On  the  o the r  hand,  L( t l )  >-p and  L ( a y )  
_>p - k; so L(t2) > p  - k. But  then  W(t2) <_ (2p - k - 1) - ( p -  k)  + 1 = p ;  so 
t~ can  be c o m p u t e d  exact ly,  too. 

Let  t3 = t2 -4- c a .  T h e n  ] t3 I ----- I a T  - -  E [  < fl2p--2k + t i p  ~ :  2 f i2p-2k ,  SO F(ta) <- 2p 
- 2k. L(t3) >-p - k; so W(t3) <_ (2p - 2k) - (p  - k)  + 1 = p  - k + 1 < p ,  and  thus  
t.3 can also be c o m p u t e d  exactly.  

Le t  t4 = t3 + ~a. T h e n  ] t4 [ = [Ea - E I < flp-k fl~-2k + fin < 2tip, and  hence  F(t4) 
_ p .  Since L(t4) >_ min(L(t3) ,  L(K) + L(a))  >_p - 2k, W(t4) _ p  - ( p  - 2k)  + 1 
= 2k + 1. I f p  is odd, k <_p/2 implies k _< (p  - 1)/2 and  thus  W(t4) -<p .  I f p  is 
even and  k < p/2 ,  W(t4) _< p - 1. I f p  is even and  k = p /2 ,  t h e n  ¢ = 0 and  thus  
I t41 = I E I- So in all cases, t4 can  be c o m p u t e d  exact ly.  

N o w  x = t4 + ea = E,  which  comple tes  the  proof.  []  

I f  k = p /2 ,  t hen  e = 0; so there  is no  need  to split  ~,, and  the  addi t ion  o f  the  t e r m  
ea can  be omit ted .  K is obvious ly  rep laced  b y  , / i n  the  r emain ing  fo rmula  for  x. 
T h e n  the  original  m e t h o d  due  to V e l t k a m p  [2] results.  

I t  can  also be easily found  t h a t  e = 0 w h e n  the  a r i thmet i c  is b ina ry  and  cor rec t ly  
rounding ,  p is odd, k = (p  - 1)/2,  and  the  spli t t ing is done  using D e k k e r ' s  spl i t t ing 
me thod .  So the  simplified fo rmula  can  be used in this  s i tuat ion,  too. 

T h e  simplified fo rmula  is obvious ly  also appl icable  for  a n y  p ,  if k = ent ier (p /2)  
and  the  p r o d u c t  ,/a is no t  r o u n d e d  to a p-digi t  number ,  bu t  r a t h e r  to  a (p  + h )- 
digit n u m b e r  for some integer  h > 0. T h e  avai labi l i ty  o f  such  a r i thmet i c  is 
p roposed ,  for  example,  in [1]. 

T h e  corol la ry  below summar izes  the  possibilities to use the  simplif ied formula .  

COROLLARY (ExAcT M U L T I P L I C A T I O N ) .  Let  A a n d  C be two p-d ig i t  numbers ,  
p >_ 4, k = ent ier (p /2)  a n d  h >_ O. Fur ther  let 

A = a + a  a n d  C = c + y  

where a a n d  c are k-digi t  approx imat ions  o f  A a n d  C, respectively, both being 
nonover lapptng  wt th  the corresponding (p - k }-digit r emain ing  part .  Then  the 
double number  X + x p roduced  by the operat ions 

X ~-- f l (AC) ;  

x ~-- f / ( ( ( ( ( ac  - X )  + ay )  + ca) + flp+h(ya)) 

is such that  X + x = A C, p rov ided  that  the ar i thmet ic  is fa i th fu l  a n d  ei ther  

(i) p is an even integer, 
(iD binary correctly rounding  ar i thmet ic  is used, or 

(iii) h > O. [] 

W h e n  the  above  corol la ry  is appl ied in the  case in which  h > O, obviously,  if 
preferred,  o the r  in t e rmed ia t e  resul ts  m a y  also be r o u n d e d  to  p + h ins tead  o f  p 
digits, and  no t  on ly  ,/a, w h e n  the  value o f  x is computed .  
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5. ALGORITHMS FOR DOUBLED-PRECISION OPERATIONS 

Effect ive a lgori thms for doubled-precision operat ions  tha t  utilize the exact  mul- 
t iplication me thod  can be constructed.  Such a lgor i thms for multiplication,  divi- 
sion, and addit ion are given below as por table  PASCAL procedures.  T h e  first 
p rocedure  implements  the exact  mult ipl icat ion me thod  of T h e o r e m  3. I t  is valid 
when  ei ther  of the  conditions of T h e o r e m  1 is valid. I t  is especially valid in 
correct ly  rounding and correct ly  chopping ar i thmet ics  with no fur ther  restrictions. 

procedure e x a c t m u l  (a, c : r e a l : v a r  x, xx : rea l ) ;  
(this procedure implements x + x x  (-- a*c. 
c o n s t a n t  is assumed to be a global variable whose 
value is flp-e,t,er(p/2) + 1 where fl is the base and 
p is the precision of real numbers} 
v a r  al ,  a2, cl, c2, c21, c22, t :real;  

begin 
t :-- a ' c o n s t a n t ;  a l  "= (a - t) + t; a2 :-- a - al;  
t := c ' c o n s t a n t ;  c l  := (c - t) + t; c2 :-- c - cl; 
t "= c2*cons tant ;  c21 := (c2 - t) + t; c22 := c2 - c21; 
X : ~  a'c;  
x x  .= ((((al*cl - x) + a1"c2) + c1"a2) + c21"a2) + c22"a2 

end; 

As s ta ted  in the Corol lary of  T h e o r e m  3, procedure  e x a c t m u l  can be replaced 
by  the following s impler  procedure  e x a c t m u l  2 when, in addit ion to the conditions 
for the validi ty of  e x a c t m u l ,  one of the following condit ions is fulfilled: 

(i) the  n u m b e r  of digits in each r e a l - t y p e  f loat ing-point  fract ion is even, 
(ii) b inary  correct ly  rounded ar i thmet ic  is used, or  

(iii) a t  least  the  p roduc t  c2 * a2 is rounded  to an extended n u m b e r  (having at  
least  one more  digit t han  real  numbers)  instead of a real  n u m b e r  when  
comput ing  x x .  

procedure  e x a c t m u l 2  (a, c:real;  v a r  x, x x ' r e a l ) ;  
v a r  al ,  a2, cl, c2, t : real ,  

begin  
t :-- a ' c o n s t a n t ;  a l  :-- (a - t) + t; a2 := a - al;  
t := c ' c o n s t a n t ;  c l  :~ (c - t)  + t; c2 :-- c - cl, 
x := a ' c ;  
x x  := (((al*cl - x) + al*c2) + cl*a2) + c2"a2 

end; 

T h e  a logr i thms for doubled-precis ion opera t ions  given below are modif icat ions 
of the a lgor i thms presented  by  Dekke r  [2]. T h e y  serve an obvious i m p r o v e m e n t  
in accuracy,  if such extended precision is available as suggested in [1]. A few 
extra  bits guarantee  full precision for doubled-precis ion operat ions,  as can be 
concluded f rom the resul ts  presented  below. This  fact  is a s t rong suppor t  for 
construct ing hardware  containing such extended precision. T h e  procedures  will 
reduce  to the original procedures  of  Dekke r  if no such extended precision is 
available.  

In the procedures  below variable  z z  is declared as e x t e n d e d ,  meaning  tha t  it 
has  h _ 0 extra  digits in its f ract ion part ,  compared  with r e a l  numbers .  I t  is 
assumed tha t  all the  operat ions  in the  expression whose value will be assigned to 
z z  a r e  compu ted  using this kind of  ex tended ar i thmetic .  I t  shall  be no ted  tha t  in 
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the theoretical  si tuation h = 0¢ all the algorithms for doubled-precision operations 
below produce numbers  z and z z  such tha t  z + z z  is the exact result  of the 
corresponding operation. The  original algorithms of Dekker  do not  have this 
property.  Finally, z + z z  is rounded to double number  x + x x .  In computing x x ,  

the  difference z - x can be rounded to extended, as well as to usual real, precision. 
Note  tha t  extended ar i thmetic  must  not  be used when computing a l  or c l  in 

the above procedures.  I f  one wants to use extended ar i thmetic  there  also, tha t  is, 
in each ar i thmetic  operat ion excluding the ones whose result  will be assigned to 
a r e a l  variable immediately,  then the value of c o n s t a n t  must  be changed to 
~p+h--entter(p/2) ÷ 1. 

If  especially h = O, tha t  is, no extended precision is available, then  in procedure  
l o n g m u l  below fl(a + a a )  = a and thus obviously (a  + a a )  can be replaced by 
simple a. Correspondingly (c + cc )  can be replaced by c in procedure  l o n g d w  

when h = O. These  reduced forms of the procedures are identical to the original 
procedures of Dekker.  

procedure l ongmul (a ,  aa,  c, cc:real;  var  x, xx : rea l ) ;  
{this procedure implements x + x x  *-- (a + aa)*(c  + cc)} 
var  z, qq:rea l ;  z z : e x t e n d e d ;  

begin 
exac tmu l (a ,  c, z, qq); 
z z ' = ( ( a  + aa)*cc  + aa*c)  + qq; 
X: = Z + ZZ; 

x x : = ( z -  x) + z z  
end; 
procedure l ongd iv (a ,  aa,  c, cc:real;  va t  x, xx : rea l ) ;  

{this procedure nnplements x + x x  ~-- (a + a a ) / ( c  + cc)) 
var z,  q, qq : rea l ,  z z : e x t e n d e d ;  

begin 
z:= a/c;  
exac tmu l (c ,  z, q, qq); 
z z . = ( ( ( ( a  - q)  - qq )  + aa)  - z*cc ) / ( c  + cc); 
X : ~ Z  + ZZ; 

x x : =  (z - x) + z z  
end; 
procedure l o n g a d d ( a ,  aa,  c, cc:real;  var  x, xx : rea l ) ;  

{this procedure implements x + x x  ~-- (a + aa)  + (c + cc)} 
var z, q:real;  z z : e x t e n d e d ;  

begin 
z : = a  + c; 
q : = a  -- z; 
z z : = ( ( ( q  + c) + (a - (q  + z))) + aa) + cc; 
X : = Z  + ZZ, 

x x : =  (z - x) + z z  
end; 

Obviously procedure l o n g a d d  can be used as well for subtract ion by  changing 
the signs of c and cc. If preferred, procedure l o n g a d d 2  below can be used instead 
of procedure  l o n g a d d ,  if at  least one of the following conditions is fulfilled [7]: 

(i) binary correct ly rounding ari thmetic is used, 
(ii) correct ly chopping ar i thmetic  is used, or 

(iii) a correctly rounding ar i thmetic  with h > 0 is used. 
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Table I Theoretical Upper Bounds of the Relative Errors of 
Doubled-Precismn Operatmns" 

Procedure  Correct ly rounding  b A n y  fai thful  

longmul  ½B -b + 2fl l-h 1 + 8fl l-h 
l o n g d w  ½fl-b + 3•l-h 1 + 12fl l-h 
l ongadd  c ½fl-b + f l l -h 1 + 5fl l-h 

All entr ies  are mul t ip l ied by fl2p-~. 
h T h e  value  of b is I for b inary  and  0 for o ther  a r i thmet ics  Especial ly 
i f h  = 0, t hen  the  t e rm  ½fl-b can be omit ted.  
c T h e  s u m m a n d s  are  a s s u m e d  to have  equal  signs. 

The accuracy of the result can be expected to remain similar, when l o n g a d d  is 
replaced by l o n g a d d 2 .  

procedure longadd2(a,  aa, c, cc:real; v a r  x, xx:real);  

var z, q:real; zz :ex tended;  
begin 

z : = a  + c; 
z z : = i f  abs(a) >_ abs(c) then(((a - z) + c) + aa) + cc 

else  ( ( (c  - z )  + a)  + cc) + aa; 
X : ~ Z  + ZZ; 
xx  :--- (z - x) + zz  

end; 

In Table I the approximate upper bounds for the rounding errors are given for 
the results of the above procedures. They  are calculated using the first-order 
approximation of the accumulated error in terms of relative local errors. It is 
noticed that X + x is a rounded (2p + b)-digit approximation of Z + z, where 
b ffi 1 for binary correctly rounding arithmetic and 0 for other arithmetics. 
Especially if h = 0, then X + x = Z + z in correctly rounding arithmetic [7]. It is 
noted also that  the expression (a  - q )  - q q  can always be calculated exactly in 
procedure l o n g d i v  provided that  the arithmetic is faithful. Recall for comparison 
that in "conventional" double precision all the table entries would be ½ for 
correctly rounding and 1 for any faithful arithmetic. 

Also Dekker gave bounds for correctly rounding binary arithmetic [2]. His 
bounds agree with the corresponding bounds above. Only the bound for a product 
is slightly better above because Dekker was not able to assume z = fl(z + q q ) .  

If the summands have different signs, then cancellation may occur, and this 
yields worse bounds for relative errors than were found in connection with 
multiplication and division. But in these cases, efforts for obtaining as good 
bounds would be of no use, since the summands cannot be assumed to have more 
than about 2p correct digits. One way to compare addition with other operations 
is to divide the absolute error by the larger summand instead of the result, if the 
two numbers to be added have different signs. Using this approach the entries for 
l o n g a d d  in Table I would be ½fl-b + 5fl 1-h/4 for correctly rounding and 1 + 6fl 1-h 
for any faithful arithmetic. 

To test the accuracy of procedures l o n g m u l  and l o n g d i v ,  an experiment was 
run on a VAX 11/780 computer where 1000 pairs of random numbers were 
multiplied and divided using these procedures. Binary and octal correctly round- 
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M a x i m u m  Observed and  Theore t ica l  Re la twe  Errors  of  P roduc t  and  Quot ien t  of  Two 
Numbers ,  Produced,  Respect ively,  By  longmul and  longdiv ~ 

Procedure  

Rounding  Chopping  

Binary  Octal B inary  Octal  

Theo-  Theo-  Theo-  Theo-  
h Observed retinal Observed retinal Observed retical  Observed retical  

longmul 

longdw 

0 1 11 4.00 2.14 16.00 5.32 1700 10.80 6500  
1 0.49 2 25 0.49 2.50 2 36 9 00 1.68 9.00 
2 0.38 1.25 0 46 0 75 1.46 5.00 0.97 2.00 
3 0 32 0.75 0.47 0.53 1.07 3.00 0 93 1.13 
4 0 27 0.50 0.46 0 50 0 97 2.00 0.90 1.02 
5 0 25 0.38 0.47 0.50 0.93 1 50 0.93 1.00 
6 0 24 0 31 0.46 0.50 0 92 1.25 0.90 1.0O 

0 1 53 6.00 4.61 24.00 3.31 25 00 13.65 97.00 
1 0.67 3.25 0.66 3 50 1.86 13.00 1.02 13.00 
2 0 46 1 75 0 44 0.88 1 02 7.00 0.90 2.50 
3 0 38 1.00 0.46 0.55 0.95 4.00 0 86 1 19 
4 0 28 0 63 0 44 0 51 0.97 2.50 0.98 1.02 
5 0 24 0 44 0.45 0.50 0 91 1.75 0 87 1 00 
6 0 26 0 34 0 46 0 50 0.95 1.38 0.86 1.00 

'~ All values  are mul~lphed by fl2p-1 

ing and correctly chopping arithmetics were simulated. The maximum errors that  
were observed, scaled by fl2p-1, are given in Table II, confirming the theoretical 
results. 

In fact, with an extension of at least five digits, binary correctly rounding 
arithmetic produced in both operations an even better approximation for the true 
result than the corresponding double-precision approximation in more than 60 
percent of the sample cases. These results reflect situations where x alone differs 
by less than 1/fl units in the last place from the true result, which allows xx to 
catch one extra digit compared with conventional double precision. A worse 
approximation was never produced by longmul, and only in 2 percent of the 
sample quotients by longdiv. In binary chopping and both octal arithmetics, an 
improved result was obtained in about 20 percent of the sample cases, while 
worse approximations were never produced by longmul, and in only a few percent 
of the sample cases by longdiv. 

6. DISCUSSION 

Above, rather simple methods were presented that  allow doubling the longest 
available precision of any computer with a reasonable arithmetic. So a quadruple 
precision is available using this software, if double precision or extended double 
precision, as suggested in [1], is implemented in the hardware and fulfills the 
conditions for faithfulness. In correctly rounding arithmetic an extension of at 
least three digits guarantees that the upper bound of the rounding error is never 
worse than the corresponding double- (or quadruple, if the basic arithmetic is 
double) precision upper bound for a faithful arithmetic in general. A very 
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interesting fact  is tha t  in binary rounding ar i thmetic  with an extension of a t  least 
five bits the  theoret ical  upper  bound of the result  is less than  the corresponding 
double-precision upper  bound. 

The  execution t ime of each operat ion will increase one order  of  magnitude.  So 
the proposed methods  are considerably slower than  the use of a corresponding 
precision built  into hardware,  but  the need for such extreme precision is so rare 
tha t  the existence of software like this probably is a sufficient reason to avoid 
ever building such hardware.  The  full portabil i ty of  this software allows its easy 
use in any connection. 

T he  possibility of underflows and overflows was neglected above, bu t  is now 
discussed briefly to fur ther  establish the usability of  the methods.  It  is easy to see 
tha t  if procedure  exac tmul  is able to produce the exact product  of its input 
parameters ,  no fur ther  problems arise, provided the corresponding single-preci- 
sion operat ion nei ther  overflows nor  produces a result  adjacent  to the overflow 
threshold.  Bu t  the splitting done by exac tmul  uses numbers  requiring exponents  
tha t  are about  p / 2  units larger than the exponents  of the numbers  to be split, 
where p is the number  of digits in the fraction par t  of numbers.  Thus  the available 
exponent  range is slightly decreased, unless extended numbers  with extended 
exponent  fields are used in splitting. 

If  the conventional  single-precision rest~lt underflows, essentially the same 
result  is obtained using the above procedures.  If the trailing par t  of the resulting 
double number  does not  underflow, the procedures  work as well as usual. Some 
critical si tuations occur if the leading par t  does not  underflow but  the trailing 
par t  does. If  underflowed numbers  are replaced by zero, then  the result  produced 
by longmul  is at worst  the same as the product  produced by multiplying the 
leading parts  of the operands only, tha t  is, "half  precision". A similar effect is 
possible in division, if the dividend is very  near  underflow threshold.  These  
inconvenient  effects are avoided if gradua l  underf low (see, for example, [1]) is 
used instead of flushing to zero. When  gradual underflow is used, the result  can 
never  be more  inaccurate  than  the corresponding conventional  single-precision 
result. 
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