Software for Doubled-Precision
Floating-Point Computations

SEPPO LINNAINMAA
Lappeenranta University of Technology

A method for exact multiplication of two maximum-precision numbers, so that the result is represented
using two such numbers, was proposed by T.J Dekker a decade ago. A modification of Dekker’s
method 1s presented and is proved to be valid in most existing arithmetics, while the original method
is valid only in a quite restricted class of arithmetics. The new method is computer mmdependent, can
be written using a high-level language, and still makes it possible to double quite economically the
“maximum available” precision of a computer during critical phases of computations. Corresponding
methods for doubling the precision are presented and also analyzed for addition, subtraction, and
division

Key Words and Phrases floating-point arithmetic, exact multiplication, rounding errors, software
portability
CR Categones 4.22, 5.11, 6.32

1. INTRODUCTION

Artifices to extend the maximum available precision have been widely analyzed.
In such methods, if they are computer independent, the fact that two numbers
can always be subtracted from each other exactly, with no rounding errors, if
they are almost equal, is used. It has been shown that the sum and difference of
two numbers of maximum available precision can easily be computed in a very
wide variety of arithmetics [2-10]. The result is represented as a double number,
that is, two floating-point numbers whose sum is the actual result. In fact, if the
limitations of the exponent range are neglected, arbitrary-precision addition and
subtraction can be implemented computer independently, using a high-level
language [10]. As many floating-point numbers as required are then used to
represent each multiple-precision number.

The only well-known computer-independent methods to double the available
precision in multiplication and division as well have been presented by T.J.
Dekker [2]. Obviously doubling the precision of multiplication means that the
result is always exact. Dekker’s multiplication method is restricted to arithmetics

Permussion to copy without fee all or part of this material 1s granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to repubhsh, requires a fee and/or specific
permission

Thus research was supported by a Herman Rosenberg grant from the Umversity of Helsinki, Finland,
and was done while the author was a visiting scholar at the University of California, Berkeley.
Author’s address' Lappeenranta Umversity of Technology, Box 20, SF-53851 Lappeenranta 85,
Filand

© 1981 ACM 0098-3500,/81/0900-0272 $00.75

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981, Pages 272-283



Software for Doubled-Precision Floating-Point Computations . 273

where addition and subtraction are correctly rounding, that is, where the roundoff
error is never more than half unit in the last remaining position. Another
restriction is that the precision of the arithmetic must be even in other than
binary arithmetics. In the present paper a modification of Dekker’s method is
proposed whereby both restrictions have been removed.

Dekker also presented algorithms for operations between two double numbers,
when the result is also wanted as a double number. These algorithms utilize the
exact multiplication method. This paper presents modifications of these algo-
rithms which differ from those described by Dekker, if one or more extra digits
beyond the normal maximum precision are available in restricted use, as proposed
in [1].

2 DEFINITIONS AND NOTATIONS

Below, the base of the arithmetic is denoted by 8 and the normal maximum
precision by p. A number is said to be an i-digit number, if it can be represented
in the form f X B* where f and & are integers and | f| < B*. If x is an expression,
then fl, (x) means that the result of each operation included in x is rounded to an
i-digit number using the current rounding rule. Especially if i = p, shorter notation
fl(x) will be used instead of fl, (x).

Let a be an arbitrary nonzero real number and x and y be two consecutive
i-digit numbers with the same sign as a, such that | x| < | a| <|y|. The arithme-
tic having precision t is called correctly rounding if fl,(a) = x when |x — a| <
|y —a),fl.(a) = ywhen |x — a] > |y — a|, and fl.(a) is equal to either x or y when
|x — @] = |y = a|. The arithmetic is called, respectively, correctly chopping if
fl.(@) = x, and faithful if fl,(a) is equal to x when a = x and equal to either x or
y when a # x. The exponent range is assumed to be unlimited, that is, no
underflows or overflows are considered. However, some discussion of their effects
is given in Section 6.

For an arbitrary nonzero real number a, notations F(a), L(a), and W(a) are
used for the unit of leading (that is, first nonzero) digit of a, for the unit of the
last nonzero digit of a and for the width of a, respectively. Then 87 < |a| <
BF@* a mod BH®*! 5 0, but @ mod BX® = 0 and W(a) = F(a) — L(a) + 1.
For completeness, define F'(0) = ~w, L(0) = «, and W(0) = 0. Obviously «a is
an i-digit number if and only if W(a) < i.

Two numbers a and b are called nonoverlapping if either L(a) > F(b) or F(a)
< L(b). A double number a + b is a combination of two nonoverlapping p-digit
numbers a and b, for which a = fl(a + b).

3. SPLITTING OF FLOATING-POINT NUMBERS

The exact multiplication methods are based on splitting p-digit operands into
smaller units. This splitting is done by adding a properly chosen mask to the
number to be split, causing the trailing part of the number to be rounded off.
Then the mask is subtracted in hope that the remaining number is the leading
part of the original number. Theorem 1 below shows that a proper mask can
easily be found for any floating-point number in a fairly general class of arith-
metics, using a computer-independent high-level language. The mask used in

ACM Transactions on Mathematical Software, Vol. 7, No 3, September 1981



274 . Seppo Linnainmaa

Theorem 1 is equal to the mask used by Dekker [2], but the splitting is shown to
be successful essentially more generally than he stated.

THEOREM 1 (DEKKER’S SPLITTING METHOD). If A is a p-digit number and k
is such integer that 1 < k < p, then the numbers a and a produced by operations

t B + 1) X A),
a<—flit—(t-A))),
a—fllA-a

are such that a + a = A, a is a k-digit number, o s a (p — k)-digit number, and
a and a are nonoverlapping, provided that the arithmetic is faithful and that
for any integers 1 and d, 0 < d < B, either of the following is true.

(i) the product of the numbers (8% + 1) and (8° — dB*™") is chopped, or

(ir) the difference of the numbers (8'**~% + B*) and (B' — dB*?) is correctly
rounded (1.e., chopped) to B**~*

Proor. The assertion is trivial for A = 0. To prove other cases, for simplicity
assume that 8*7! < A < g% that is, that A is a positive number whose integer
part is k digits wide. Obviously this is no actual restriction. It is easy to see that
if 7' =t — A < 87, then a is the absolute value of A rounded to % digits
faithfully, the magnitude of a being equal to the magnitude of the roundoff error
of this rounding. So the validity of the theorem is obvious in this case. Other
possible cases are considered below where (877* + 1) X A is denoted by T, so
that ¢ is the value of T rounded to p digits.

If t — A < 8777, certainly T < 8%, and thus the absolute value of the roundoff
error £ — Tislessthan 1.So B~ !>t —A=(T—-1) — A= B°*A — 1, and hence
A < 8% ' + B*P. Then, because A is a floating-point number, it follows that
A=pB*"Butt—A=p8";s0t— A< "' is impossible.

If t — A = B7, the roundoff error of the multiplication is less than f, since
obviously T'is never = B?*'. So fP <t — A< T+ B - A= B"*A + B, and thus
A > 8% — g*P*! Because A is a floating-point number, A = 8* — dB* 7, where
d is an integer, 0 < d < 8. Then T = BP(1 + B*7 — dB* — dp"* ). If t < T, then
t—A=<T-A=p""A<p" But we assumed £ — A = 87, so necessarily ¢ > T in
the present case. It follows that if assumption (i) is true, then ¢t — A = 87 is
impossible and the proof is completed. Otherwise assumption (ii) must be true.
Then, if ¢ > T, it follows that ¢ = 87(1 + B*?) = B + B* and hence ¢t — A is,
according to assumption (ii), rounded to B”. Therefore a = £t — 87 = f* and « =
A — B* = —dB*”, both being one-digit numbers. [

Obviously condition (i) or (i) is valid when correct rounding or correct
chopping arithmetic is used. To check the validity in other faithful arithmetics,
note that the exact value of the product mentioned in assumption (i) is 100 - . .
Omm ...md"mm -.-.-.md’' X877, wherem=8—-1,d' =8—-d,d”"=d’— 1, and
the lengths of the 0, m, and m patterns are p — &k, k — 1, and p — & — 1,
respectively. So the first digit to be rounded off is d”, preceded by 0 when & = 1,
and by m otherwise. Correspondingly, the exact value of the difference mentioned
in assumption (ii) is 100 ... 0d X B*7?, with 2p — k — 1 zeros.

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981



Software for Doubled-Precision Floating-Point Computations . 278

If arithmetic is faithful but both assumptions fail, splitting fails for numbers
with fraction parts mm ... md (and only for them). As an example, let 8 = 10,
p=06k=3 and A = 999993. Then ¢ = {1(1000992993) = 1001000000 {(because (i)
fails), so fi(z — A) = f1(1000000007) = 1000010000 (because (ii) fails), ¢ = 990000,
and a = 9993. Thus a has 4 > 3 = p — & digits.

The value of the base number £ is assumed to be known in the method
considered in Theorem 1. Well-known algorithms that determine the base number
of the computer exist and can be written computer independently, so this
assumption does not destroy the computer independency of the splitting method.
One very effective such algorithm, which requires no loops and is due to W.
Kahan [5], is stated in Theorem 2 below.

THEOREM 2 (BASE AND PRECISION DETERMINATION). If the base number is
even and not divisible by 3, and the arithmetic 1s faithful, then the following
operations produce the values of base number 3 and precision p:

o-or 49|
(1)),

if R#0 then U<R,

L)
re ﬂ<<g + 0.5) - 0.5> ,

if r#0 then uer,

B ﬂ(-l—]) ,
172

. - log(u)
D < entier (fl(—l—ongB—)—— + 05)) .

ProOF. Let t, = f1(4/3). Apparently then £, = 4/3 + e;87?/3, where e is either
—2, —1, +1, or +2. After that, while computing the value of U, each intermediate
result x is such that F(x) <= 0 and L(x) =1 — p, so W(x) < p. Thus no more
rounding errors occur, and so U= |3 X (t; — 1) — 1]|= |3t — 4| = | e | B'7".

If | e} = 2, then R is necessarily computed exactly, and thus R = U/2 = Be,
If |e;| = 1, then U/2 + 1 =1+ 4 B is rounded to either 1 or 1 + 8'*. In all
these cases, the final value of U is obviously 8' .

Let ¢, = f1(2/3). Apparently then £, = 2/3 + e;87°/3, where again | ez | is either
1 or 2. After that, while computing u, each intermediate result x is such that
F(x) = — 1 and L(x) = — p; therefore W(x) =< p. Thus no more rounding errors
occur, and so u = |3 X (£t — 0.5) — 0.5| = | 3tz — 2| = | e2| B77. When the value of
7 is computed and tested, the final value of u is necessarily 87, which can be seen
using similar reasoning as above for U.

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981



276 . Seppo Linnainmaa

Now U/u = B'7/B™® = B and log(u)/log(B) = logs(u) = —p; therefore, the
validity of the theorem is obvious with any reasonable implementation of the log
function. O

4. EXACT MULTIPLICATION

After successful splitting, the exact multiplication, producing a double number, is
rather straightforward. Dekker [2] described two quite similar methods for this
purpose, one being his own and the other due to G. W. Veltkamp. Dekker stated
that both work correctly provided that addition and subtraction are correctly
rounding and multiplication is faithful. Dekker proved that his own version works
in binary arithmetic, and stated that the results can be generalized to other bases.
This is true with the restriction that precision p must be an even number in the
methods that he describes, if base 8 > 2. In Theorem 3 below a proof is given that
a modification of the version due to Veltkamp requires only faithfulness of the
arithmetic, provided that the splitting can be made successfully. No practical
limitations to the base number or precision are needed.

Both base § and precision p are implicitly assumed to be known before the
method described in Theorem 3 can be implemented. Both of them can be
computed computer independently, as shown in Theorem 2; so the method as a
whole can be treated as computer independent.

THEOREM 3 (ExacT MULTIPLICATION). Let A and C be two p-digit numbers
and let k be such integer that k = 2 and p/3 < k < p/2. Further let

A=a+a, C=c+y, and y=xk+e¢€

where a, ¢, and « are k-digit approximations of A, C, and v, respectively, each
being nonoverlapping with the corresponding (p — k)-digit remaining part.
Then the double number X + x produced by the operations

X < fl(AC),
x — fl((({ae = X) + ay) + ca) + ka) + €a)
is such that X + x = AC, provided that the arithmetic is faithful.

PRroOF. If A or C or both are equal to zero, the assertion is trivial. To prove the
assertion in other cases, assume for simplicity that 87 ' = A <P and B ' = C
< B?, that is, that they both are positive p-digit integers, which is no actual
restriction. Obviously W(ac) <k + k=p, W(ay) <k + (p— k) =p, W(ca) <k
+(p—k)=p,Wka)<k+(p—Fk)=p,and W(ea) = (p~2k)+ (p— k) =p;
so all these multiplications can be done without rounding errors. If AC — X is
denoted by E, then obviously | E| < 82, W(E) =< p, and X and E are nonoverlap-
ping numbers.

Let ti =ac— X. Then |t|=|(AC—aC —ay) = (AC—-E)|=|aC+ay—E|.
Suppose first that AC = %" Then | ;| < B¥*+B%7* + p? < f#7**2 and thus
F(t;) = 2p — k + 1. On the other hand, L(ac) = p and L (X) = p in this case; so
Lt)zpandthus W(t)) < (2p—k+1)—p+1=p—-k+2=p IfAC<B¥,
then, due to the assumed limitations for A and C, necessarily A + C < 8* + 77"
Thus |t ]| =|ac - X| =< |(A + B7*C + P — AC}+|E| < (A + C) B** +

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981



Software for Doubled-Precision Floating-Point Computations . 277

B 4 Bt < PR g BIRL g Rk ppl o 2kl oo B(4) < 2 — F. Since
inthiscase LX) 2zp—-1, Wt)=@~k)—-(p-1)+1=p-Lk+2=p.
Hence, in any case, t; can be computed exactly, with no roundoff errors.

Let to = t, + ay. Then | &) = |aC — E| = (87" = 1)(B? — 1) + gF = g¥* -
B7* + 1< B¥7* s0 F(t;) < 2p — k — 1. On the other hand, L(t,) = p and L (ay)
=p—rksoL(t)=p—k Butthen W(t) = 2p—-k—-1)—-(p—k)+1=p;so
t, can be computed exactly, too.

Let &= t: + ca. Then |t3| = |ay — E| < B% % + B < 28% 50 F(t:) < 2p
~2k. Ltz zp—hsoW(ts)<(2p—-2k)—(p—-k)+1=p—k+1<p,and thus
t3 can also be computed exactly.

Let #s = t; + ka. Then |t | = |ea — E| < 8°7* B7~* + B” < 2%, and hence F(t)
< p. Since L(ty) = min(L(¢3), L) + L{a)) =p — 2k, W(ts) =p—(p—2k) + 1
=2k + 1. If pisodd, 2 < p/2 implies £ = (p — 1)/2 and thus W(t) =p. If pis
evenand 2 < p/2, W(ts) =p ~ 1. If pis even and & = p/2, then ¢ = 0 and thus
{ts] = | E|. So in all cases, ¢, can be computed exactly.

Now x = t; + ea = E, which completes the proof. []

If £ = p/2, then € = 0; so there is no need to split v, and the addition of the term
ea can be omitted. « is obviously replaced by y in the remaining formula for x.
Then the original method due to Veltkamp [2] results.

It can also be easily found that € = 0 when the arithmetic is binary and correctly
rounding, p is odd, £ = (p — 1)/2, and the splitting is done using Dekker’s splitting
method. So the simplified formula can be used in this situation, t0o.

The simplified formula is obviously also applicable for any p, if & = entier(p/2)
and the product ya is not rounded to a p-digit number, but rather to a (p + h)-
digit number for some integer A > 0. The availability of such arithmetic is
proposed, for example, in [1].

The corollary below summarizes the possibilities to use the simplified formula.

CoROLLARY (Exact MULTIPLICATION). Let A and C be two p-digit numbers,
p =4, k = entier(p/2) and h = 0. Further let
A=a+a and C=c+y

where a and ¢ are k-digit approximations of A and C, respectively, both being
nonoverlapping with the corresponding (p — k)-digit remaining part. Then the
double number X + x produced by the operations

X « fl(AC);
x « fl({({ac = X) + ay) + ca) + flpir(ya))
ts such that X + x = AC, provided that the arithmetic is faithful and either

() p is an even integer,
(i1) binary correctly rounding arithmetic is used, or
(@)r>0. O
When the above corollary is applied in the case in which A > 0, obviously, if
preferred, other intermediate results may also be rounded to p + A instead of p
digits, and not only y«, when the value of x is computed.
ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981



278 . Seppo Linnainmaa

5. ALGORITHMS FOR DOUBLED-PRECISION OPERATIONS

Effective algorithms for doubled-precision operations that utilize the exact mul-
tiplication method can be constructed. Such algorithms for multiplication, divi-
sion, and addition are given below as portable PASCAL procedures. The first
procedure implements the exact multiplication method of Theorem 3. It is valid
when either of the conditions of Theorem 1 is valid. It is especially valid in
correctly rounding and correctly chopping arithmetics with no further restrictions.

procedure exactmul (a, c:real:var x, xx:real);
{this procedure implements x + xx « a*c.
constant 1s assumed to be a global variable whose
value is B77<?/2 1+ 1 where 8 is the base and
p is the precision of real numbers}
var al, a2, cl, ¢2, c21, c22, t:real;
begin
t := a*constant;al == (a —t) + t, a2 := a — al;
t:= c*constant; cl:= (¢~ t) + t; c2 := ¢ — cl;
t ‘= c2*constant; c21 ;= (c2 ~ t) + t; ¢22 := ¢2 — ¢21;

x:=a*c
xx .= ((((al*cl — x) + al*c2) + c1*a2) + c21*a2) + c22*a2
end;

As stated in the Corollary of Theorem 3, procedure exactmul can be replaced
by the following simpler procedure exactmul 2 when, in addition to the conditions
for the validity of exactmul, one of the following conditions is fulfilled:

(1) the number of digits in each real-type floating-point fraction is even,
(i) binary correctly rounded arithmetic is used, or
(iii) at least the product c2*a2 is rounded to an extended number (having at
least one more digit than real numbers) instead of a real number when
computing xx.

procedure exactmul2 (a, c:real; var x, xx'real);
var al, a2, cl, 2, t:real,

begin
t:= a*constant; al .= (a — t) + t; a2 :=a — al;
t .= c*constant; cl ;= (c—t) + £ c2:=c—cl,

x = a*c
xx = (((al*cl — x) + al*c2) + c1*a2) + c2*a2
end;

The alogrithms for doubled-precision operations given below are modifications
of the algorithms presented by Dekker [2]). They serve an obvious improvement
in accuracy, if sach extended precision is available as suggested in [1]. A few
extra bits guarantee full precision for doubled-precision operations, as can be
concluded from the results presented below. This fact is a strong support for
constructing hardware containing such extended precision. The procedures will
reduce to the original procedures of Dekker if no such extended precision is
available.

In the procedures below variable zz is declared as extended, meaning that it
has h = 0 extra digits in its fraction part, compared with real numbers. It is
assumed that all the operations in the expression whose value will be assigned to
zz are computed using this kind of extended arithmetic. It shall be noted that in

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981



Software for Doubled-Preciston Floating-Point Computations . 279

the theoretical situation A = « all the algorithms for doubled-precision operations
below produce numbers z and 2z such that z + zz is the exact result of the
corresponding operation. The original algorithms of Dekker do not have this
property. Finally, z + 2z is rounded to double number x + xx. In computing xx,
the difference z — x can be rounded to extended, as well as to usual real, precision.

Note that extended arithmetic must not be used when computing al or ¢l in
the above procedures. If one wants to use extended arithmetic there also, that is,
in each arithmetic operation excluding the ones whose result will be assigned to
a real variable immediately, then the value of constant must be changed to
Bp+h—entter(p/2) + 1.

If especially h = 0, that is, no extended precision is available, then in procedure
longmul below fl{a + aa) = a and thus obviously (a + aa) can be replaced by
simple a. Correspondingly (¢ + cc¢) can be replaced by ¢ in procedure longdw
when h = 0. These reduced forms of the procedures are identical to the original
procedures of Dekker.

procedure longmul(a, aqa, ¢, cc:real; var x, xx:.real);
{this procedure implements x + xx « (a + aa)*(c + cc)}
var z, qq:real; zz:extended;
begin
exactmul(a, ¢, z, qq),
zz'=({a + aa)*cc + aa*c) + qq;

xX:=2z+ zz
xx:=(z — x) + 2z
end;

procedure longdiv(a, aa, c, cc:real;, var x, xx:real);
{this procedure implements x + xx « (a + aa)/(c + cc)}
var z, q, qq:real, zz:extended,
begin
z:=afc;
exactmul(c, z, q, qq);
zz.=(({{a — q) — qq) + aa) — z*cc)/(c + cc);

x:i=z + zz;
xx:=(z—x) + zz
end;

procedure longadd(a, aa, c, cc:real; var x, xx:real);
{this procedure implements x + xx « (a + aa) + (¢ + cc)}
var z, q:real; zz:extended,

begin
z2:=a + ¢
g=a-— 2z
zz=(((q + ¢c) + (a — (g + 2))) + aa) + cc;
x=z + 2z,
xx:=(z—x) + 2z
end;

Obviously procedure longadd can be used as well for subtraction by changing
the signs of ¢ and cc. If preferred, procedure longadd2 below can be used instead
of procedure longadd, if at least one of the following conditions is fulfilled [7]:

(i) binary correctly rounding arithmetic is used,
(i) correctly chopping arithmetic is used, or
{iil) a correctly rounding arithmetic with A > 0 is used.

ACM Transactions on Mathematical Software, Vol 7, No. 3, September 1981



280 . Seppo Linnainmaa

Table I Theoretical Upper Bounds of the Relative Errors of
Doubled-Precision Operations®

Procedure Correctly rounding® Any faithful
longmul RBP4+ 281 1+488"*
longdw 1B+ 3R 1+ 128"
longadd® B+ B 1458

* All entries are multiplied by 8%~

® The value of b1s 1 for binary and 0 for other arithmetics Especially
if A = 0, then the term 487" can be omitted.

¢ The summands are assumed to have equal signs.

The accuracy of the result can be expected to remain similar, when longadd is
replaced by longadd2.

procedure longadd2(a, aa, ¢, cc:real; var x, xx:real);

var z, q:real; zz:extended,
begin
z:=a+ ¢
zz:=if abs(a) = abs(c) then(((a — z) + ¢) + aa) + cc
else (({(c — 2) + a) + ce) + aq;

x=z + 2z
xx:=(2— x) + zz
end;

In Table I the approximate upper bounds for the rounding errors are given for
the results of the above procedures. They are calculated using the first-order
approximation of the accumulated error in terms of relative local errors. It is
noticed that X + x is a rounded (2p + b)-digit approximation of Z + z, where
b = 1 for binary correctly rounding arithmetic and 0 for other arithmetics.
Especially if 2 = 0, then X + x = Z + z in correctly rounding arithmetic [7]. It is
noted also that the expression (¢ — ¢) — gq¢ can always be calculated exactly in
procedure longdiv provided that the arithmetic is faithful. Recall for comparison
that in “conventional” double precision all the table entries would be % for
correctly rounding and 1 for any faithful arithmetic.

Also Dekker gave bounds for correctly rounding binary arithmetic [2]. His
bounds agree with the corresponding bounds above. Only the bound for a product
is slightly better above because Dekker was not able to assume z = fl(z + ¢q).

If the summands have different signs, then cancellation may occur, and this
yields worse bounds for relative errors than were found in connection with
multiplication and division. But in these cases, efforts for obtaining as good
bounds would be of no use, since the summands cannot be assumed to have more
than about 2p correct digits. One way to compare addition with other operations
is to divide the absolute error by the larger summand instead of the result, if the
two numbers to be added have different signs. Using this approach the entries for
longadd in Table 1 would be 487 + 58" /4 for correctly rounding and 1 + 68"
for any faithful arithmetic.

To test the accuracy of procedures longmul and longdiv, an experiment was
run on a VAX 11/780 computer where 1000 pairs of random numbers were
multiplied and divided using these procedures. Binary and octal correctly round-

ACM Transactions on Mathematical Software, Vol 7, No. 3, September 1981



Software for Doubled-Precision Floating-Point Computations . 281

Table II. Maximum Observed and Theoretical Relative Errors of Product and Quotient of Two
Numbers, Produced, Respectively, By longmul and longdiv®

Rounding Chopping
Binary Octal Binary Octal
Theo- Theo- Theo- Theo-
Procedure h  Observed retical Observed retical Observed retical Observed retical
longmul 0 111 4.00 2.14 16.00 5.32 1700 10.80 65 00
1 0.49 225 0.49 2.50 236 900 1.68 9.00
2 0.38 1.25 046 075 1.46 5.00 0.97 2.00
3 032 0.75 0.47 0.53 1.07 3.00 093 1.13
4 027 0.50 0.46 050 097 2.00 0.90 1.02
5 025 0.38 0.47 0.50 0.93 150 0.93 1.00
6 024 031 0.46 0.50 092 1.25 0.90 1.00
longdw 153 6.00 4.61 24.00 3.31 2500 13.65 97.00

0

1 0.67 3.25 0.66 350 1.86 13.00 1.02 13.00
2 046 175 044 0.88 102 7.00 0.90 2.50
3 038 1.00 0.46 0.55 0.95 4.00 086 119
4 028 063 044 051 0.97 2.50 0.98 1.02
5 024 044 0.45 0.50 091 1.75 087 100
6 026 034 046 050 0.95 1.38 0.86 1.00

* All values are multiplied by 8% ~!

ing and correctly chopping arithmetics were simulated. The maximum errors that
were observed, scaled by 8%, are given in Table 1I, confirming the theoretical
results.

In fact, with an extension of at least five digits, binary correctly rounding
arithmetic produced in both operations an even better approximation for the true
result than the corresponding double-precision approximation in more than 60
percent of the sample cases. These results reflect situations where x alone differs
by less than 1/8 units in the last place from the true result, which allows xx to
catch one extra digit compared with conventional double precision. A worse
approximation was never produced by longmul, and only in 2 percent of the
sample quotients by longdiv. In binary chopping and both octal arithmetics, an
improved result was obtained in about 20 percent of the sample cases, while
worse approximations were never produced by longmul, and in only a few percent
of the sample cases by longdiv.

6. DISCUSSION

Above, rather simple methods were presented that allow doubling the longest
available precision of any computer with a reasonable arithmetic. So a quadruple
precision is available using this software, if double precision or extended double
precision, as suggested in [1}, is implemented in the hardware and fulfills the
conditions for faithfulness. In correctly rounding arithmetic an extension of at
least three digits guarantees that the upper bound of the rounding error is never
worse than the corresponding double- (or quadruple, if the basic arithmetic is
double) precision upper bound for a faithful arithmetic in general. A very

ACM Transactions on Mathematical Software, Vol. 7, No. 3, September 1981,



282 . Seppo Linnainmaa

interesting fact is that in binary rounding arithmetic with an extension of at least
five bits the theoretical upper bound of the result is less than the corresponding
double-precision upper bound.

The execution time of each operation will increase one order of magnitude. So
the proposed methods are considerably slower than the use of a corresponding
precision built into hardware, but the need for such extreme precision is so rare
that the existence of software like this probably is a sufficient reason to avoid
ever building such hardware. The full portability of this software allows its easy
use in any connection.

The possibility of underflows and overflows was neglected above, but is now
discussed briefly to further establish the usability of the methods. It is easy to see
that if procedure exactmul is able to produce the exact product of its input
parameters, no further problems arise, provided the corresponding single-preci-
sion operation neither overflows nor produces a result adjacent to the overflow
threshold. But the splitting done by exactmul uses numbers requiring exponents
that are about p/2 units larger than the exponents of the numbers to be split,
where p is the number of digits in the fraction part of numbers. Thus the available
exponent range is slightly decreased, unless extended numbers with extended
exponent fields are used in splitting.

If the conventional single-precision result underflows, essentially the same
result is obtained using the above procedures. If the trailing part of the resulting
double number does not underflow, the procedures work as well as usual. Some
critical situations occur if the leading part does not underflow but the trailing
part does. If underflowed numbers are replaced by zero, then the result produced
by longmul is at worst the same as the product produced by multiplying the
leading parts of the operands only, that is, “half precision”. A similar effect is
possible in division, if the dividend is very near underflow threshold. These
inconvenient effects are avoided if gradual underflow (see, for example, [1]) is
used instead of flushing to zero. When gradual underflow is used, the result can
never be more inaccurate than the corresponding conventional single-precision
result.

ACKNOWLEDGMENTS

T am grateful to Professor William Kahan for suggesting that I seek generalizations
of Dekker’s results.

REFERENCES

1 CooNEN, J T An implementation gmde to a proposed standard for floating pomt arithmetic
Computer 13 (1980), 68-79

2. DEKKER, T J. A floating-pomt techmque for extending the available precision. Numer. Math 18
(1971), 224-242,

3. Kanan, W, Further remarks on reducing truncation errors. Commun. ACM 8, (1965), 40.

4 KaHAN, W A survey of error analysis. In Proc IFIP Cong 1971, vol 2, CV Freeman (Ed),
North-Holland, Amsterdam, 1972, pp. 1214-1239.

5. KAHAN, W  Personal communication, 1980

6. KnutH, D.E. The Art of Computer Programming: Seminumerical Algorithums, vol. 2 Addison-
Wesley, Reading, Mass., 1969.

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981



Software for Doubled-Precision Floating-Point Computations - 283

LINNAINMAA, S. Analysis of some known methods of improving the accuracy of floating-point
sums. BIT 14 (1974), 167-202.

8. MoLLER, O. Quasi double precision in floating-point addition. BIT 5 (1965), 37-50.
9. MgLLER, O Note on quasi double precision BIT 5 (1965), 251~255.
10 VIRKKUNEN, J A unified approach to floating-point rounding with applications to multiple-

precision summation. Rep A-1980-1. Dep of Comput Sci, Univ of Helsinki, Helsinki, Finland,
1980.

Received July 1980; revised January 1981, accepted February 1981

ACM Transactions on Mathematical Software, Vol 7, No 3, Septernber 1981



