AMERICAN

OURNAL
ﬁ;(srmnl (}J!. PHYS]CS
 ———— e T

Chaos at the amusement park: Dynamics of the TiltAWhirl
R. L. Kautz and Bret M. Huggard

Citation: American Journal of Physics 62, 59 (1994); doi: 10.1119/1.17742

View online: http://dx.doi.org/10.1119/1.17742

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/62/1?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Accelerometer Measurements in the amusement park
Phys. Teach. 33, 382 (1995); 10.1119/1.2344246

Amusement park physics
Phys. Teach. 28, 446 (1990); 10.1119/1.2343106

Amusement park physics
Phys. Teach. 26, 555 (1988); 10.1119/1.2342622

Final exam in an amusement park
Phys. Teach. 23, 228 (1985); 10.1119/1.2341790

Physics and the amusement park
Phys. Teach. 13, 327 (1975); 10.1119/1.2339173

FH‘ISICS‘MIB’CI


http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1967379597/x01/AIP/2015WinterMeeting_AAPTCovAd_1640Banner_09_2014/2015WinterMeeting_sandiego_1640x440.jpg/4f6b43656e314e392f6534414369774f?x
http://scitation.aip.org/search?value1=R.+L.+Kautz&option1=author
http://scitation.aip.org/search?value1=Bret+M.+Huggard&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.17742
http://scitation.aip.org/content/aapt/journal/ajp/62/1?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/33/6/10.1119/1.2344246?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/28/7/10.1119/1.2343106?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/26/9/10.1119/1.2342622?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/23/4/10.1119/1.2341790?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/tpt/13/6/10.1119/1.2339173?ver=pdfcov

frequency interval (0.98 < £ <1.06 Hz) even three differ-
ent modes can be observed with one driving frequency: We
get tristability. The dotted parts of the tuning curve again
are unstable branches which cannot be observed as stable
modes of oscillation. To achieve the oscillations corre-
sponding to the third branch—the upper one—we release
the pendulum from a displacement of about 150° antiphase
to the driving torque. Since the oscillations are approxi-
mately in phase with frequencies below the natural fre-
quency and approximately antiphase with frequencies
above it there exist two modes with antiphase. If two pen-
dula are arranged it is fascinating to observe two oscilla-
tions with nearly the same phase and two extremely differ-
ent amplitudes resulting from the same driving torque.

D. Transition to chaotic behavior

With both forms of the restoring torque the transition
into chaotic behavior can be demonstrated if the drive
torque is increased further (crank arm >6 cm). We rec-
ommend starting the experiment with a frequency well be-
low or well above the natural one. In both cases we get
regular oscillations. If we change the frequency and ap-
proximate the region of the natural frequency, the ampli-
tude increases. If, finally, the displacement exceeds 180°,
we get a turnover which initiates chaotic and irregular
movements. If, as recommended before, two identical pen-
dula are used it is most impressive to observe the transition
from regular identical movements of both pendula to irreg-
ular and noncorrelated movements. In all former experi-
ments regular behavior prevailed—the pendula behaved
similarly or in a well-defined relation regarding phase and
amplitude. In the chaotic state there is no simple relation
and no predictability.

The experiments described above can also be mapped in
phase space. To do this Esperidiao et al.” manipulated a
beam of light with the axle of the pendulum. By means of
a thread wound around the axle a card was moved up and
down thus regulating the quantity of light passing. The
light beam was registered by a photoresistor and trans-
formed into electrical values which allowed one to register
position and velocity simultaneously and to show the
movements in phase space on an oscilloscope.

III. CONCLUSION

A simple mechanical driven oscillator (with a softening
and a hardening restoring torque) is described which can
be used to demonstrate a variety of nonlinear effects: the
bent tuning curve with bistability and the jump effect; a
double bent tuning curve with tristability; finally the tran-
sition from regular oscillations to chaotic movements. The
experiments can be well observed by a large audience but
may also be used as individual lab experiments.
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Analysis of the dynamics of an amusement-park ride reveals that the passengers experience

chaotic motion.

L. INTRODUCTION

During the past decade, chaotic behavior has been dis-
covered in a wide range of dynamlcal systems governed by
simple deterministic equations.”> Chaotic motion is now
understood to explain a vanety of apparently random phe-
nomena from drlpplng faucets® to the irregular rotation of
a moon of Saturn.* Chaos is also found occasionally in
commercial products. In particular, certain toys derive
their fascination from the unpredictable nature of chaotic
motion. Although the designers probably employed chaos
unwittingly, mathematical analysis of two such toys reveals
the presence of genuine chaotic behavior.> For the physics
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lecturer, these toys provide readily available examples of
chaotic motion suitable for classroom demonstrations.

In this paper, we investigate another commercial appli-
cation of chaos that allows the pseudorandom motion of a
deterministic system to be experienced directly. Specifi-
cally, we analyze the dynamics of an amusement-park ride
called the Tilt-A-Whirl. A passenger on the Tilt-A-Whirl
rides in one of seven identical cars, each of which is free to
pivot about the center of its own circular platform. The
platforms move along a hilly circular track that tilts the
platforms in all possible directions. Although the transla-
tion and tilting of the platforms are completely regular, the
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Fig. 1. Plan view of the idealized Tilt-A-Whirl.

cars whirl around in an independent and apparently irreg-
ular manner. The ride is fun because you never know ex-
actly what will happen. As your car rides up and down the
next hill, it may spin clockwise, counterclockwise, or hes-
itate without spinning at all.

Is the motion of a Tilt-A-Whirl car another example of
deterministic chaos? To answer this question, we have de-
veloped a mathematical model for the Tilt-A-Whirl and
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Fig. 2. (a) Perspective view of the Tilt-A-Whirl showing the track and a
single platform. (b) Vertical cross section of the Tilt-A-Whirl taken
through points C and P. (c) Vertical cross section of the Tilt-A-Whirl
taken through point P and tangent to the circular track. In part (c),
one-third of the track is shown unrolled in the tangent plane. In all parts
of the figure, vertical dimensions are exaggerated by a factor of 2.
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simulated its motion on a computer. The equation of mo-
tion for a single car, derived from Lagrange’s equation, is
that of a damped pendulum with a periodically rotating
equilibrium angle. When this equation is integrated numer-
ically, we find steady-state motion in which the car moves
with the same irregular, apparently unpredictable whirling
as the actual ride. Thus, the pseudorandom motion of the
Tilt-A-Whirl and the surprises that make the ride exciting
are almost certainly a direct product of deterministic
chaos. Given this fact, a ride on the Tilt-A-Whirl can pro-
vide students of physics with a new appreciation for cha-
otic behavior.

The Tilt-A-Whirl was invented by Herbert W. Sellner in
1926 and first operated at an amusement park in White
Bear Lake, MN. Because the possibility of deterministic
chaos was not widely understood at that time (although
Poincaré had established the fundamentals before the turn
of the century),’ it is safe to assume that Sellner discovered
the surprising dynamics of his machine by building one,
rather than by mathematical analysis. However, the geom-
etry of the Tilt-A-Whirl is sufficiently simple that we can
easily derive an approximate equation of motion. As a first
step in this derivation, we describe a geometric idealization
of the Tilt-A-Whirl mechanism.

IL. IDEALIZED GEOMETRY

A plan view of the idealized Tilt-A-Whirl is shown in
Fig. 1. The machine includes seven circular platforms that
are driven at a uniform speed along a circular track which
includes three identical hills. Each platform is rigidly at-
tached to a beam connected to the center C of the machine
through a ball joint. The distance from C to the center P of
a platform is r;, and we assume that the track is of the
same radius. On each platform, a wheeled car is attached at
point P, which acts as a pivot point about which the car is
free to rotate. Because the center of mass of the car is offset
from the pivot point, a car is represented in Fig. 1 as a
pendulum with a moment arm of length r,. Since the
wheels of a car are always in contact with the platform, the
pendulum is confined to the plane of the platform.

In deriving an equation of motion, we represent the car
by a point mass located at its center of gravity. To apply
Lagrange’s equation, we must first determine the coordi-
nates (x,y,z) of this point mass in terms of the angle 0
which defines the location of the platform and the angle ¢
which defines the location of the mass on the platform. The
relevant three-dimensional geometry is illustrated in Fig.
2(a) which shows the Tilt-A-Whirl track and one platform
in perspective. In our idealized geometry, the platform is
tangent to the track at point P, and the height of point P
varies sinusoidally as the platform moves around the track.
Due to constraints imposed by the beam and the track, the
location and tilt of the platform are completely determined
by the angle 6.

To aid in the analysis, we introduce a coordinate system
(x',y’) attached to the platform and define angles o and 8
to describe the tilt of the platform. The origin of the (x’,y")
coordinate system is the pivot point P and the x’ axis is
taken to be an extension of the line from C to P. As shown
in Figs. 2(b) and 2(c), a and B are the angles of the x’ and
y’ axes with respect to the x-y plane. In the (x’,y’) coor-
dinate system, the position of the point mass representing
the car is
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x'=rycos ¢, (1)

y'=rysing, (2)

as shown in Fig. 1. In the (x,p,z) coordinate system, the
location of point P is given by

Xp=r{ cOS a cos 6, 3)
yp=r cos a sin 6, (4)
Zp=2zc+r; sin a, (5)

where z. is the height of point C. Finally, the position of
the car in the (x,y,z) system can be written as

x=xp+x' cos a cos 06—y’
P

X (cos B sin 6+sin a sin 8 cos 6), (6)
y=yp+x’ cos a sin 0+’

X (cos B cos 8—sin a sin B sin ), (7)
z=zp+Xx' sin a+y’ cos a sin B. (8)

Taken together, Eqs. (1)-(8) specify the position of the
car’s center of mass in terms of a, S, 6, and ¢.

It remains to express @ and £ in terms of 8. To obtain
simple expressions for @ and B, we note that, because nei-
ther angle exceeds 10°, the small-angle approximations
sin a= tan a=a and sin B= tan =B can be applied
without significant error. In this case, the height of the
track is approximately zp=2z.+ra, and the required sinu-
soidal variation in zp is obtained by choosing

a=ay,—a, cos 36, (9)

where a; and a, are constants. Equation (9) specifies the
shape of the idealized track, including three identical hills,
as shown in Fig. 2(a). From Fig. 2(c) it can be seen that
B=(1/ry)dzp/d6, so that

B=3a, sin 36. (10)

Thus, the tilt angles a and B both oscillate sinusoidally
with 6 and complete three oscillations as the platform
makes one circuit of the track.

HI1. EQUATION OF MOTION

Equations (1)-(10) provide all of the geometric infor-
mation required to derive an equation of motion for the
Tilt-A-Whirl. These equations allow the coordinates
(x,0,z) of the point mass representing the car to be ex-
pressed in terms of & and ¢. The final information required
is the kinematic relation

0=wt, (11)

which states that the position angle of the platform ad-
vances uniformly in time. Using Egs. (1)-(11), we can
express (x,y,z) in terms of ¢ and r. Thus, the Tilt-A-Whirl
is a time-dependent dynamical system with a single degree
of freedom, the position angle ¢ of the car. The equation of
motion to be derived specifies how ¢ changes with time.
The form of Lagrange’s equation appropriate to the Tilt-
A-Whirl is
d (dT\ oT av
dt ( 3¢ ) 6 3’

where T is the kinetic energy of the car

(12)
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T4 =5 (P47 +7), (13)

and V is the gravitational potential energy of the car
V(d,t) =mgz. (14)

In these equations, m is the mass of the car, g is the accel-
eration of gravity, and dots have been used to denote the
time derivatives of x, y, z, and ¢.

In principle, Egs. (1)-(14) might be combined without
further approximation to derive an equation of motion for
¢. In order to obtain a reasonably simple result, however,
we again use the fact that the angles a and B are small.
When we omit all terms of quadratic or higher order in «
and B, Eq. (12) reduces to

2

mr; 71;?-*- mrryw® sin ¢=mgr,(a sin $—p cos ¢).
(15)

The terms in this equation of motion are easily identified.
The first term on the left is the moment of inertia of the car
times its angular acceleration. The second term on the left
is the torque on the car due to the centrifugal force gener-
ated by the rotation of the platform about the center of the
machine. The term on the right is the gravitational torque
on the car due to the tilt of the platform.

‘While Eq. (15) represents a good approximate equation
for the Tilt-A-Whirl in the absence of friction, the actual
machine is far from frictionless. To account for losses, we
introduce a torque proportional to dé/dt that represents
the effect of viscous damping on the car. With this term
included, the equation of motion becomes

d d
mr% E?_*. p £+ mriry’ sin ¢ —mgr,

X (a sin ¢—B cos ¢) =0, (16)

where p is the damping coefficient. This equation com-
bined with Egs. (9)-(11) defines the motion of the ideal-
ized Tilt-A-Whirl to be studied here. Because a and 8 vary
sinusoidally with time and the sin ¢ and cos ¢ terms are
nonlinear, Eq. (16) can be classified as a time-dependent
nonlinear ordinary differential equation. The nonlinearity
of Eq. (16) is essential to the present problem, since the

~chaotic motion that makes the Tilt-A-Whirl interesting can

only occur in a nonlinear system.

As Egs. (9)-(11) and (16) reveal, the dynamics of the
Tilt-A-Whirl is determined by six parameters: 7, r,, &,
a,, o, and p/m. Four of these parameters, r,, a,, ;, and
o, are easy to measure accurately. For the machines now in
operation, 7,=4.3 m, @y=0.036 rad, a;=0.058 rad, and
©/27=6.5 rpm. However, the moment arm », depends on
the mass distribution of the car and riders, which is poorly
known. The nominal value of 0.8 m adopted here for 7, is
thus only an estimate. The ratio p/m is also difficult to
determine accurately but, as we show in the next section,
an estimate can be obtained from the quality factor of the
car’s natural oscillations.

IV. FIXED-PLATFORM DYNAMICS

Before discussing the chaotic motion of the driven Tilt-
A-Whirl, we explore the dynamics of the car when the
platform on which it rolls is stationary. An examination of
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Fig. 3. Car equilibrium angle as a function of platform position. This
function is defined by Egs. (9), (10), and (19) with a;=0.036 rad and
a;=0.058 rad.

this case provides further insight into the dynamical prop-
erties of the Tilt-A-Whirl. When the drive is turned off, the
angle 6 is fixed, and the motion of a car is described by the
equation

mrzd2¢+ ff—m r)(a sin ¢—pf cos ¢) =0 (17
2 TP g —menlas 0s ¢) =0,

where a and § are fixed angles determined by Egs. (9) and
(10). This equation can also be written in the form

&y df : '
mr, —5+p -+ mgr, o+ sin(¢—g0) =0,  (18)
where ¢, is defined by

sin ¢o= —pB/ \/a7+Bi, cos go=—a/ \/a2+Bf. (19)

Equation (18) describes the motion of a car as it comes
to rest after the platform stops. This equation is equivalent
to that of a commonly studied system: the damped pendu-
lum. Given this equivalence, we expect the car to display
damped oscillations as it approaches its equilibrium posi-
tion. In this case, the equilibrium angle is ¢y. Considering
small displacements from ¢,, it can be shown that the
natural oscillation frequency of a car is

wo= g/ (a?+pH "4, (20)

Thus, the natural frequency depends on the tilt of the plat-
form as defined by a and 8. While this formula is not valid
for large values of tilt, we note that \/é/—rz is the natural
frequency of a pendulum with a horizontal axis of rotation.
For the nominal values of a, and a; given in Sec. III, the
factor (a®+pB%)Y* varies between 0.148 and 0.422. Thus,
the oscillation period 27/w, of the car can be anything
from about 4 to 12 s, depending on the tilt of the platform.

The damping of a pendulum is often expressed in terms
of the quality factor Q, defined as the ratio of the energy
stored in the pendulum to the energy dissipated during one
oscillation. For the pendulum described by Eq. (18), the
quality factor is

Q=0y(a*+B4)"4, (21)
where the parameter Q, is defined as
Qo=(m/p) \g75. (22)
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For @>0.5 the oscillations are underdamped, and for
0<0.5, the oscillations are overdamped. Observation of
the Tilt-A-Whirl reveals that the car is underdamped but
its oscillations decay rapidly, which suggests that the
damping corresgonds roughly to Q,=20. Allowing for the
variation of (a?+B%)"* in Eq. (21), Qy=20 implies a
range of Q between about 3.0 and 8.4, depending on the tilt
of the platform. Because p/m is related to Qy and r, by Eq.
(22), specifying Q,=20 fixes p/m, the final Tilt-A-Whirl
parameter to be determined.

V., CHAOTIC DYNAMICS

Suppose now that the platform moves very slowly along
the track so that the centrifugal force on the car is negli-
gible. In this case, the car will remain near its equilibrium
position ¢, and rotate slowly as the tilt of the platform
changes. How does ¢, vary with 87 Combining Eqs. (9),
(10), and (19), we plot ¢, as a function of @ in Fig. 3. At
6=A0, the platform is located at the bottom of a valley and
tilts away from the center of the machine. Thus, as Fig.
2(a) suggests, ¢o=0 at =0, and the equilibrium position
coincides with the x’ axis. As @ increases and the platform
begins to climb the first hill, the equilibrium point rotates
toward the negative ' axis, and ¢, becomes negative.
When the platform reaches the top of the hill at =7/3, it
tilts toward the center of the machine and ¢,= — . As the
platform moves down the far side of the hill, the equilib-
rium angle swings toward the positive y’ axis, and ¢, con-
tinues to rotate in the negative ¢ direction until it reaches
¢o=—2m at the bottom of the valley. Thus, the equilib-
rium angle completes exactly one backward revolution as
the platform moves from the bottom of one valley to the
bottom of the next. When ® is small and the platform
moves slowly, the car will follow the same motion, rotating
backward by one revolution as it passes over each hill.

In the limit of large w, on the other hand, the centrifugal
term dominates the gravitational term, and the car is
forced to the outer edge of the platform. In this case, the
position of the car is always near ¢=0 and there is no
rotation with respect to the (x’,p’) coordinate system.
Mathematically, this situation is approximated by neglect-
ing the gravitational term in Eq. (16), and the dynamics
are roughly described by

d di
mr; 75?+p £+mr1r2a>2 sin ¢=0. (23)
Again, we find an equation equivalent to that of a damped
pendulum but in this case the equilibrium angle is ¢=0.
Thus, as expected intuitively, the car is forced to the outer
edge of the platform and remains there indefinitely when o
is large.

At this point, it is natural to ask what happens at inter-
mediate values of w. That is, what motion does the car
assume in the transition region between low speeds, where
it rotates one revolution backward in going over each hill,
and high speeds, where it is locked at the outer edge of the
platform? To answer this question, we turn to numerical
simulations and introduce for this purpose a dimensionless
form of the equation of motion. If we define the dimen-
sionless parameters 7, ¥, and € by

r=3wt, (24)
v=(1/3w) \/g/rz, (25)
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Fig. 4. (a) Scatter plot of the net rotation A¢ per tilt cycle as a function
of platform speed for r;=4.3 m, r,=0.8 m, &, =0.036 rad, a,=0.058 rad,
and Q,=20. At each speed, the equation of motion is integrated for 1000
tilt cycles to eliminate transients and then a dot is plotted for each A¢
recorded during the next 100 tilt cycles. (b) Maximum Liapunov expo-
nent as a function of platform speed for the same parameters as in part
(a). Exponents were calculated over an interval of 1000 tilt cycles after
transients were eliminated.

€=r1/9"2, (26)
then Eq. (16) becomes
P4 d¢ |
2T (v/Qo) 7t (e—P?a)sin ¢+ 2B cos $=0,
(27)
where
2 ] ~ — r
&
3 -
4
8
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Pt
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-2 . ] | 1 |
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Fig. 5. Net rotation A¢ per tilt cycle as a function of cycle number for the
same paramters as in Fig. 4 with o/27=5.9 rpm. -
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v(0)

INITIAL VELOCITY

INITIAL ANGLE  (0)

Fig. 6. Poincaré section of a chaotic trajectory for the same parameters as
in Fig. 4 with /27 =5.9 rpm. A single point is plotted to mark the angle
¢ and angular velocity v of the car at the beginning of each of 100 000
successive tilt cycles. The Poincaré section is plotted over a 4 interval in
¢ to reveal its cyclic nature,

a=ay—a,; cos 7, (28)

(29)

In this equation, the parameter 7 is the time normalized to
1/3w, and the platform advances over one hill as 7 in-
creases by 27. Because the time-dependent coefficients in
Eq. (27) both have a period of Ar=2, this period is more
relevant to the motion of the car than the time required to
complete a circuit of the track. Thus, in the following anal-
ysis, we focus on what happens to the car each time the
platform advances from the bottom of one valley to the
bottom of the next.

Since the tilt of the platform cycles through the same
values each time it traverses a hill, we expect that the
steady-state motion of the car will typically assume the
same periodicity. That is, we expect to find solutions for
which

$(T+2m) =$(r) +2mn (30)

for all 7, where 7 is an integer. For such solutions, the car
advances by » revolutions during each tilt cycle. The as-
ymptotic solutions for both small and large w fall into this
category. For small o the car rotates backward one revo-
lution during each tilt cycle and = — 1, while for large o
there is no rotation and n=0. To describe more general
solutions, we define the car rotation on the mth tilt cycle by

Ap(m)=¢(2mm) —¢[2a(m~1)]. (31)

For solutions that satisfy Eq. (30), the rotation is the same
during every tilt cycle. For chaotic solutions, on the other
hand, we expect A¢ to vary from cycle to cycle in an
irregular and apparently unpredictable way.

Using the car rotation per tilt cycle as a guide, we now
investigate the behavior of the Tilt-A-Whirl at intermedi-
ate values of . Figure 4(a) is a scatter plot of A as a
function of the platform speed. For each » considered in
this figure, the equation of motion was integrated for 1000
tilt cycles to eliminate transients and then the next 100
values of A¢ were plotted as discrete points. The values of
rotation plotted in Fig. 4(a) thus characterize the steady-
state solution at each platform speed. At small @, the
steady-state rotation is identically — 27, as expected on the

B=3a, sin .

R. L. Kautz and B. M. Huggard 63



basis of our quasistatic analysis. Similarly, at large o, the
rotation is identically O because the car is locked at the
outer edge of the platform. However, at various speeds
between about 1.5 and 7 rpm, the rotation varies from
cycle to cycle, even after transients are eliminated. At such
speeds, Fig. 4(a) reveals A¢ values scattered between
roughly — 37 and 3. This scatter represents the kind of
chaotic motion that makes the Tilt-A-Whirl fun to ride.

Although the equation of motion used here is only ap-
proximate and some Tilt-A-Whirl parameters are not
known with certainty, we note that Fig. 4(a) does indicate
the presence of chaotic motion at 6.5 rpm, the actual speed
of the Tilt-A-Whirl. Thus, in spite of its limitations, our
idealized model seems to capture the essence of this ride.
At 6.5 rpm, however, the calculated values of car rotation
tend to cluster around 0, as Fig. 4(a) suggests. Because the
simulation yields more widely scattered values of rotation
at 5.9 rpm, we adopt this speed as a more accurate reflec-
tion of the machine’s actual performance.

Figure 5 plots a typical sequence of car rotations over a
period of 100 tilt cycles at 5.9 rpm. Given that a tilt cycle
takes only about 3 s, it is not hard to imagine that the
apparently random sequence of rotations shown here
makes an exciting amusement-park ride. While A¢ is con-
fined to a range of values between roughly — 37 and 27 at
5.9 rpm, a passenger can never be certain what will happen
next. Frequent but irregular alternations between positive
and negative rotation make the Tilt-A-Whirl very lively.

The jumbled mixture of rotations shown in Fig. 5 is
entirely characteristic of the steady-state motion. The ap-
parent random element of the motion is not simply a com-
plex initial transient but persists indefinitely. Although
there are similarities in the pattern of rotation from time to
time, the motion never repeats itself exactly, even over
periods greater than 10° tilt cycles. At the same time, the
apparently random sequence in Fig. 5 is completely pre-
dictable in principle because the equation of motion is de-
terministic. A sequence of this type is often described as
pseudorandom to indicate that it includes an element that
is random according to statistical tests but has an under-
lying order that is difficult to perceive. Pseudorandom be-
havior is one of the identifying characteristics of determin-
istic chaos.

The ordered aspect of the chaotic motion at 5.9 rpm is
suggested by a plot called a Poincaré section, shown in Fig.
6. Because Eq. (27) is second order, a solution is uniquely
determined by specifying the initial angle ¢ and angular
velocity v=d¢/dr at 7=0. However, the periodicity of the
coefficients in Eq. (27) implies the equivalence of all times
for which 7=0 modulo 27. We can thus conveniently track
the state of the car by recording ¢ and v at the beginning of
successive tilt cycles. In Fig. 6, we use ¢(0) and v(0) to
denote the values of ¢ and v at any time r=0 modulo 27
and plot points [¢(0),v(0)] corresponding to 100 000 suc-
cessive tilt cycles of the chaotic solution. The variables
#(0) and v(0) are state variables defined on a discrete time
grid and a point [¢(0),v(0)] marks the location of the car
in state space.

The Poincaré section of a periodic solution having the
form given by Eq. (30) consists of a single point, since ¢
and v are the same at the beginning of every tilt cycle. In
contrast, the Poincaré section of a chaotic solution includes
an infinite number of points. As Fig. 6 shows, these points
are not scattered randomly in state space but form a dis-
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tinctive swirl confined to a small part of the ¢(0)-v(0)
plane. Thus, while the chaotic state allows a wide range of
variation in motion from cycle to cycle, the possibilities are
constrained by the dynamical properties of the system.
Moreover, the constraint represented by this swirl of points
does not depend on initial conditions. If the system is ini-
tialized at a point [¢(0),v(0)] far from the points plotted
in Fig. 6, the trajectory converges to the swirl within a few
tilt cycles and is thereafter confined to this region. For this
reason, the swirl is called a chaotic attractor.

V1. LIAPUNOV EXPONENTS

Given the highly structured character of the chaotic at-
tractor, it may seem surprising that motion within the at-
tractor is irregular. After all, the current values of ¢(0)
and v(0) completely determine what the next values will
be, so the system must hop from one part of the attractor
to another in a predictable way. To understand why this
determinism does not lead to regular motion, we now con-
sider how the Tilt-A-Whirl reacts to small perturbations.
Our analysis of perturbations will also explain why aficio-
nados of the ride refuse to sit still in their seats.

Suppose we have computed a solution ¢(7) and wish to
know how this solution is affected by an infinitesimal per-
turbation occurring at 7=0. The perturbed solution ¢’ (1)
can be written as

¢’ (1) =¢(7)+6(7), (32)

where () is the difference between the perturbed solution
and the original solution. An equation of motion for § can
be derived using the fact that both ¢ and ¢’ satisfy Eq.
(27) for 7> 0. Because 6 is infinitesimal, the equation can
be linearized to yield

d*s dé .

72+ (r/Q0) 7+ [(e—Ya)cos §—yB sin $]6=0,

(33)

where a, B, and ¢ are known functions of 7.

We now wish to determine whether the effect of the
perturbation grows or decays in time. Because Eq. (33) is
a second-order linear equation, all possibilities are included
if we compute two linearly independent solutions 8, and
5, In particular, we choose solutions with the initial con-
ditions

[84(0),6,(0)]1=(1,0), (34)

[65(0),8,(0)1=(0,1), (35)

where §=d8/dr. Information about the growth or decay
of 6, and §, is included in the Jacobian matrix J defined by

84(7)  &y(7)
o ) (36)
O4(1)  6y(7)

This information is reduced to its essentials by computing
the Liapunov characteristic exponents®

J(T)=(

A;=1lim 7~ 'In [ith eigenvalue of J()|. 37
T—

Because J is a two-dimensional matrix, it has two eigen-

values, and there are two characteristic exponents A, and

A,. As Eq. (37) suggests, the Liapunov exponents measure

the average rate at which 8 grows, assuming this growth is

exponential. Different components of the perturbation
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grow or decay as exp(A;7) and exp(4,7) in the limit of
large time. If A; and A, are both negative, then the pertur-
bation decays and the system quickly returns to its original
trajectory. If either exponent is positive, however, then one
component of the perturbation grows, and the perturbed
solution diverges from the original solution at an exponen-
tial rate.

The characteristic exponents of a system are generally
constrained by a sum rule.® In the present instance, this
sum rule is

A+, =—v/Q.

Thus, knowing the larger of the two characteristic expo-
nents, A, =max(4,,4,), also defines the smaller expo-
nent A, =min(A,,4,). According to Eq. (38), Ap,, can
never be less than —y/2Q,, which results when A,=4,.

Numerically computed values of the maximum Li-
apunov exponent are plotted as a function of platform
speed in Fig. 4(b). In regions where the solution is peri-
odic and the rotation is either 0 or —2 on every tilt cycle,
Amax 18 Negative and the car quickly returns to its original
trajectory after a perturbation. Indeed, for periodic solu-
tions, A, often assumes its minimum possible value of
—¥/2Q,, which corresponds to 3wA .= —0.0875 s~ in
the present case. This minimum of A, is obtained when
the eigenvalues of J are complex conjugates of one another
and their magnitudes are equal. For platform speeds at
which the motion is chaotic, in contrast, A, is positive
and a perturbation causes the car to diverge from its orig-
inal trajectory at an exponential rate.

The association of a positive Liapunov exponent with
chaotic behavior is in fact fundamental. A positive Li-
apunov exponent implies that two solutions beginning at
nearly the same point on the chaotic attractor will diverge
exponentially with the passage of time. Both trajectories
remain on the attractor but quickly move to well-separated
regions of state space. This phenomena, often described as
“extreme sensitivity to initial conditions,” is a hallmark of
chaotic behavior, and a positive exponent is often accepted
as proof that the motion is chaotic. A positive exponent
also helps to explain the apparent randomness of chaotic
motion. That is, even though the passage of one tilt cycle
necessarily maps a given point [¢(0),0(0)] on the chaotic
attractor into a specific new point [¢;(0),v,(0)], a positive
exponent implies that points relatively close to [¢(0),v(0)]
may not map into points near [¢,(0),v,(0)]. Thus, extreme
sensitivity to initial conditions makes chaotic motion un-
predictable to the casual observer, giving it a pseudoran-
dom quality.

The complex structure of the chaotic attractor is another
aspect of chaotic motion related to the positive sign of the
Liapunov exponent. In general, chaotic attractors like that
shown in Fig. 6 are classified as fractals: intricate geomet-
ric objects described by a noninteger dimensionality. While
the dimension D of a fractal can be defined in a number of
ways, the Liapunov dimension is given by the formula’

D=1+Amax/liminl’ (39)

which is applicable to the Poincaré section of a chaotic
Tilt-A-Whirl trajectory. For the chaotic attractor shown in
Fig. 6, we have A_,,=0.113, 1,;,,=—0.207, and D=1.55.
Thus, in the limit that the number of points plotted in Fig.
6 approaches infinity, we obtain a geometric object having
a dimension between that of a line and that of an area. The

(38)
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fractal nature of the chaotic attractor reflects the fact that
the steady-state trajectory never repeats and must occupy a
sizeable region of state space.

In the preceding analysis, we have assumed that the pas-
sengers remain fixed within the car and the only time de-
pendence of the system is the regular variation of the tilt
angle of the platform as it moves along the track. As long
as the passengers sit still, the Tilt-A-Whirl is deterministic
and the observed pseudorandom motion can be considered
chaotic. However, many passengers discover that they can
affect the motion of the car by throwing their weight from
one side to the other at crucial moments. Such actions can
change what might have been a tilt cycle with little or no
rotation into one with a good whirl. The effectiveness with
which a passenger can modify his trajectory in this way is
a consequence of the sensitivity of chaotic motion to small
perturbations. As indicated in Fig. 4(b), the Liapunov ex-
ponent at 5.9 rpm is about 3w, =0.21 s~! so that the
deviation caused by a perturbation increases on average by
a factor of e every 4.8 s. (The factor of 3w included here
restores the dimensions of inverse time to the exponent.)
Very probably, perturbations occurring at special times
will grow even faster in the short term, making the conse-
quences of a passenger’s appropriately timed lunge almost
immediate. Thus, it would seem that aficionados of the
Tilt-A-Whirl have known for some time that chaotic sys-
tems can be controlled using small perturbations, a princi-
ple that has recently been applied by scientists to the less
frivolous task of suppressing chaotic behavior.'®

Is the Tilt-A-Whirl unique among amusement-park
rides in exploiting chaos to create an unpredictable and
exciting ride? A walk around an amusement park suggests
that several other common rides display chaotic behavior
similar to that of the Tilt-A-Whirl. Such rides typically
employ a car with a single degree of freedom driven by a
deterministic mechanism. We leave it as a challenge for
students to identify other chaotic rides and analyze their
motion, in the hope that their next visit to an amusement
park will be an educational experience.
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Simple apparatus, suitable for an undergraduate laboratory, allows precise measurements of the
forward characteristics of Si and Ge “transdiodes” at different temperatures in the range 150-
300 K. The experimental results are used to obtain a fairly accurate value of the universal
constant e/k (elementary charge to Boltzmann constant ratio) and of the energy gap of Si and

Ge.

L. INTRODUCTION

A simple experiment on the physics of the PN junction
may be carried out in undergraduate laboratory courses,
providing a determination of both the universal constant
e/k (i.e., elementary charge to Boltzmann constant ratio)

and of the energy gap E, of the semiconductor material the
junction is made of. In the experiment we assume the junc-
tion to be well described by the ideal diode equation

I=1Iy[exp(eV/kT)—-1], (1)

where [ is the current and V is the voltage applied to the
junction, e is the elementary charge, k is the Boltzmann
constant, T is the absolute temperature, and I, is the in-
verse current (i.e., the current extrapolated for large neg-
ative V values), that is strongly dependent on the temper-
ature and on the energy gap E, of the semiconductor
material.

While real diodes only apprommately obey Eq. (1), the
ideal behavior is well followed! by transistors whose col-
lector and base are kept at the same voltage (this config-
uration is commonly named diode connected transistor or
transdiode). Therefore we will use transdiodes as the best
approximation to ideal diodes.

The experiment consists in measuring the forward char-
acteristic of Si and Ge transdiodes, at various constant
temperatures in the range 150 K < T <300 K. At any given
temperature the semilogarithmic plot of the collector cur-
rent I, vs the base-emitter voltage ¥V, for V'>KT, is a
straight line from which we may extract two quantities of
interest: its slope equals e/kT, so that, knowing the work-
ing temperature, we may obtain a value for the universal
constant e/k, and the intercept gives the value of the in-
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verse current I,. The value of the energy gap for the trans-
diode semiconductor material may be derived from the
temperature dependence of 1.

In Sec. II we briefly recall the theoretical model that
justifies Eq. (1), discuss the dependence I,(T,E,) of the
inverse current on the temperature and on Eg, as well as
the temperature dependence of the energy gap E,(T), and
we explain the procedure used to derive the energy gap.

In Sec. II1 we describe the experimental apparatus, and
in Sec., IV we discuss the results obtained using two Si
transistors and one Ge transistor.

II. THEORY

The current-voltage relationship of the ideal PN junc-
tion, originally derived by Shockley,” and described by Eq.
(1), follows from the assumption that the total current is
the sum of two contributions: a forward current I
=I,exp(eV/kT) due to the majority carriers that over-
come the junction potential barrier, and an inverse current
I, due to the minority carriers. If ¥ is the voltage of the
anode (P) with respect to the cathode (N), the barrier
height decreases with positive V' values while it increases
with negative values: this explains the rectifying behavior
of the junction.

The current of majority carriers (electrons from N to P
region, and holes from P to N region) depends exponen-
tially on the voltage ¥ applied to the junction, owing to the
Boltzmann factor that gives the probability for a carrier to
have an energy higher than the effective potential barrier
across the depletion layer.

The inverse current is due to the thermally generated
minority carriers that diffuse into the depletion layer,
where they are accelerated by the local electric field. As
long as ¥ is not too large, I, depends only on the minority
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