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Hall conductivity oxy is studied in various approximations. Charac-
teristics of oxy are obtained for the case of both short- and long-ranged
scatterers in the self-consistent Born approximation, which is the
simplest one free from the difficulty of divergence. In case of short-
ranged scatterers, a relation is shown to hold between oxy and oxx
within this approximation, if one uses a relaxation time under magnetic
fields. Under strong magnetic fields, effects of higher Born scattering
become important in low-lying Landau levels. They depend on the
sign of scatterers and strongly on their concentrations. Effects of sim-
ultaneous scattering from many scatterers are calculated to the lowest

order.

Introduction

§1.
When a strong magnetic field is applied per-
pendicularly to a two-dimensional electron sys-
tem such as inversion layers on semi-conductor
surfaces, the energy spectrum becomes discrete
because of the complete quantization of the
orbital motion. Such a singular system provides
an ideal tool for studying the quantum trans-
port phenomena. In a series of previous
papers,'™® which are referred to as I, II, III
and IV in what follows, the transverse conduc-
tivity oxx was studied systematically. The pre-
sent paper is concerned with another important
quantity—the Hall conductivity oxy.

In order to see characteristics of oyxy, we first
employ the self-consistent Born approximation
(SCBA) which is the simplest one free from the
difficulty of divergence caused by the singular
nature of our system.” One takes into account
effects of scattering from an impurity in the
lowest Born approximation, while the collision
broadening is included in a self-consistent
manner.

According to a simple phenomenological argu-
ment, the Hall conductivity ¢y becomes

nec w,t?
Oxy—— 0 55
2,
H 1+
nec 1 ner 1

-_ ’
H or m 1+’

1.1)

where n is the total number of electrons in a
unit area, o, is the cyclotron frequency given

* Present address: Physik-Department der Tech-
nischen Universitdit Miinchen, 8046 Garching b.
Miinchen, Fed. Rep. Germany.

by w.=eH|/mc, and r is the relaxation time.
The above equation can be written as

oxy=— "o+ doxs (1.2)
with
1
dogy = —_TUXX . (1-3)

In the SCBA such kind of relationship between
dogy and oxy holds in case of short-ranged
scatterers if a relaxation time under the mag-
netic field is used in eq. (1.3). In contrast to
the case of ogx, however, contributions from
higher order approximations are relatively im-
portant and can be crucial especially under
extremely strong magnetic fields. Those higher
order corrections are also investigated.

In §2, starting from the center migration
theory of Kubo et al.>.® and using the technique
of Green’s function, we obtain necessary equa-
tions of dogy. In §3, oxy is explicitly calcu-
lated in the SCBA under strong magnetic fields
and characteristics in case of short- and long-
ranged scatterers are obtained. Assuming scat-
terers with a short-ranged potential, we calculate
the oscillatory oxy under magnetic fields of
arbitrary strength and show that eq. (1.3) holds.
In the first part of §4, we investigate effects
of higher Born scattering and show that they
are important in low-lying Landau levels espe-
cially when the concentration of scatterers is
not so large. Effects of simultaneous scattering
from more than two scatterers are also investi-
gated and are shown to be relatively important
in low-lying Landau levels. Some discussions
on the obtained results are given in § 5.
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§2. Hall Conductivity oy
We consider a two-dimensional system described by the Hamiltonian

He 5 (p+ S A)+ 3 Do@0—R. Z) @1
2m 7R

where bold-faced letters represent two-dimensional vectors in the xy-plane, A=(—Hy/2, Hx/2), and

v (r—R,, Z;) is effective two-dimensional potential of a scatterer located at (R;, Z;). The potential

is assumed to be cylindrically symmetric for simplicity. It can be written in a mixed represen-

tation?.®

H= Z Eyay yay x+ Z Z 2 Z Z 27Tl2¢N+mX(Rz)

i NX N'X

X@N'+mx’(Ri)(lev(/‘)(Z)INIm)aTv xQyrxr s (2.2)

where Ey=(N+1/2)lw,, I*=chleH, a}; » is the creation operator of an electron in the N-th Landau
level having a center coordinate X, ¢y,(r) is its wave function, and (Nm|v*(Z)|N'm) is a matrix
element of a potential between states with an angular momentum m around the position of a
scatterer.

According to the center migration theory of Kubo et al.®.® one has

9 1 . 1 -

where L? is the area of the system, f(E) is the Fermi distribution function, a trace should be
taken over one-electron states, <---> means an average over all configurations of scatterers, and

19
X ! W |
. )= —R,, Z,
<Y> % ;‘ ; / P vl )
0x
/ (Nm ‘IQ————— N’mil)
=——XX DX
i NX N'X' m =+ ()
BT ——(Nm IM N’mil)
ox
X27l?0% 1 x (RO w1 imz1 2/ (R)AY xQr 27 (2.4)
from those diagrams which can not be cut into
(a) l _gi 18 two parts by cutting two internal electron lines,
v x and the latter 4o%; contributions from other

diagrams. Examples are shown in Fig. 1. As

Q /"’\ will be shown in the following, 46%} and 40%)
Vany N

are different in nature.
Introduce a quantity £%.,,~(E', E) or &%.ii,»
(E',E), which we call gpart. Each &-part is

Fig. 1. Examples of dlagrams of Aa(l) and 45 . /K\
)
(a) 46%% in the SCBzi&, which becomes identic- // \ p— + [
ally zero, (b) 40y in the lowest double-site / \\
approximation (see §4), and (c) examples of T

2) BA.
sl Self-Energy € - Part

We divide doxy into two parts: 4ofy and  Fig. 2. Self-energy in the SCBA and correspond-
46, . The former 4oy} represents contributions ing g-part.
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obtained graphically from self-energy diagrams by replacing one of matrix elements of the poten-
tial v(r, Z) by the corresponding v (r, Z)/dx or ov™(r, Z)dy as is shown in Fig. 2. From
graphical consideration one gets

toR = Sf(E) 4E 3 3 lim Imo Recarss 84 ean,(E )

XGNl(E)GNltl(EI)‘:' N1¢1N1(EI9 E)—(x<p)], : (2.5)
with .
E% iz (B E)=£5 0, (B, E)+ l; Ty wpzing(E s E)Gyyei(BN)Gyo(E)Ef yurn (B, E) ,  (2.6)
2

where 7y, s1n,, wos1n, 1S the proper vertex part defined in I and Gy(E) is average Green’s function

GN(E)=<< 0 0 >> . 2.7

<Nmi1Il%‘N'm):iz(NmilJl%‘N’m), 2.8)

aNx’—l—“ ayx
E—H

Making use of

one can show that
szl\"ilN(E,’E):$i$?\’i1N(EI5E) . (29)
Further, as is easily seen, one has

'SfVilN(E,,E):ngNtl(E’ E,) s } (2.10)
ﬁ*ilN(Ea E):ELIIV:\:IN(E3 E):O )

where £ can be obtained from & by taking the complex conjugate of matrix elements of poten-
tials appearing in £&. By the use of above relations, eq. (2.5) becomes

2
208 =350 (2L VE 5 3 (08B0, E—-i0)
1

X Gy, (E+i0)Gy,oy(E—i0)5% 11y, (E—i0, E-i0) . @.11)

Therefore, 40, is determined only from quantities at the Fermi energy at zero temperature.
Next let us consider the case under strong magnetic fields and assume that the Fermi level lies
in the N-th Landau level. In this case, one has to retain terms with N;=N and N+1 in eq.
(2.11), and further one has 5%.,y=E%.:y and Gy.,=F (fiw,)~*. Therefore, eq. (2.11) is reduced to

2 |
dogy =S S( - %) dE%i—o— % 65 an (B—10, E+i0)E5 1 (E—i0, E+10) Im Gy (B+i0) . (2.12)

§3. Self-Consistent Born Approximation (SCBA)

3.1 Case of strong magnetic fields
In the SCBA, 409, is given by the diagram shown in Fig. 1(a) and becomes

Ta (™ \’

Z
<Nm+l ‘l ”(”)(Z)l Nm) (x<—>y):l Nl(E+;0) _ReG(E+i0), ()

doy =+ 7 Sf(E) dE2zl* 3 Sdz N#(Z) 3

N2mi1>

where N)(Z) is the concentration of scatterers in a unit volume. With the aid of egs. (2.9) of
I and (2.7) of III, one gets '
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éz;;(zvl )<Nm+lllav(m(Z)IN >

der (A , v (r, Z) , v, Z :
527:;2527:121 v g’ )1 v (; )]NzNz(r ,/)JNlNl(,_,/)’ (3.2)

which becomes identically zero because of the cylindrical symmetry of the potential. Therefore,
4o$}, vanishes in the SCBA.
Next let us consider 468 . As the &-part one should include those diagrams shown in Fig. 2(b).

g5 (E, E)=2xl* 3 SdZNU‘)(Z) B3 {(N+1m+1]lav(# (Z)j N'm )(N’mlv(”)(Z)le)
><GN,(E)—|—(Ni1m|v<”)(Z)|N’m)< N'm lla”(%zl i Nm + I)GN/(E’) } . (3.3)
Again with the aid of (2.9) of I and (2.7) of III, one has

b3 (Ni1m1v<ﬂ>(2)|N'm)( N'm ZQE%@' Nmil)

—_y (NilmI—l

182D N oo 2) o
0x

der (d2’ | v (r, Z .
=_ Sz_n;zg z_nrﬁ I ﬁ%v(m(r’, Z)Tyyar(r— 1)y (r—1") exp [Fi0(r, P1)] . (3.4)

Therefore, one sees that the &-part (3.3) satisfies eq. (2.10). Under strong magnetic fields, it
becomes

E5ury (E—10, E+i0) = }(Pﬁﬂ[—zi Im Gy (E-+i0)] , (3.5)
where

() =4-2rl? zgdZN;m(Z) 7 (Nilmlv‘“(Z)le)(Nm ll%‘ Nm+1 > . (3.6)
) m

Substitution of eq. (3.5) into eq. (2.12) yields

=\ (5m) e () - ) T 6

with
Iy)'= L1 (3.8)
=4.27]* %} SdZNi(!"(Z) % (Nm|v®(Z)|Nm)|? , (3.9)

where use has been made of eq. (3.5) of 1.
When scatterers are of sufficiently short range, one replaces the potential by a d-potential,

v, Z)=VI(Z)0D(r) . (3.10)
Then
N llaw )!N’—Fl) _yez) [NEIRED .
2l 2
(NOJ(Z) | N70) = V”lgz), (3.12)
7T

and other matrix elements are zero. One gets
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aof 1 E—E\* 2
4o = N+ —)1—-(—=& , 3.13
o= (= 35) 4 +2>[ (577 | —
and
(ervy:( N+ %)I” , (3.14)

where I can be expressed in terms of the relaxation time r, obtained in the Born approxima-
tion by assuming the same scatterers in the absence of magnetic fields.

=4y SdZN;#)(Z) M:—z—hwcﬁ . (3.15)
[z 2zl? .2 75
When scatterers are of sufficiently slowly-varying type, eq. (3.6) becomes
(y*)P=4-2z 3] SdZNW(Z)S Sdgr' 1090 2) oy R
= 2712 )2xl? 0x
X Ty e1(R)ww(R) exXp (Fio(R)]
~— 424 Y SdZN“‘)(Z)S [ ] A Z)] N+12£1)2 (3.16)
i 0x 2
where §(R)=tan"*R,/R,. It can be written as
(FN*)2:—2‘/ M/;_iﬁ vy, (3.17)
where V(r) is the local potential energy. Therefore, one has
(=4 N Kap vy (3.18)
T T T ml T and doxy decreases in proportion to (//d)*, where

d is of the order of the range of scatterers.

In order to see such range dependence ex-
plicitly, we assume scatterers with a Gaussian
potential

w 2
v, Z)= Vz) exp(—é—) . (3.19)

TZ'dZ 2
After a little manipulation, one gets
(Iy*)*=I"hy*(a) ,

10 ]
(TNXY1 )41 (Ns1/2)

with
1
05 Iy 1
=t \/2N+1+1
X S dx XL (a2x) LY _1 001 2(a2x) e MHaDz |
0

(3.20)
where a=d/l and L,™(x) is associated Laguerre’s
polynomial. Corresponding expression for I'y*
is given by eqs. (2.24) and (2.26) in ref. 7. For
the ground Landau level, for example, one gets
00 ; - .2y \4 1

0 1 2 3 9 = . 3.21
( r, > 2(1+a?)? G-21)

a
Fig. 3. (I'y*¥/I'y)*/(N+1/2)

s a function of In Fig. 3, (I'y®/I'y)*/(N-+1/2) is plotted against
a=d|l. the range a for several Landau levels. Therefore,

o
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40P, decreases very rapidly with increasing range if I'y is kept constant.
3.2 Short-ranged scatterers under magnetic fields of arbitrary strength

In this section we specialize ourselves to the case of short-ranged scatterers.

eqs. (3.11) and (3.12), eq. (3.3) becomes

&% 21y (E—i0, E+i0)=i2i4/WIm S(E+0) ,

S(E)= % I3 Gy(E) .

where

Since the vertex part yy,.in;, vp=1v, vanishes, the Hall conductivity becomes

e2
2

doxy=—

S(— g-]j;—)dE 2(Im S(E+i0))* 3 (N-+1) Im [Go (E-+i0)Gry...(E—i0)]

—21Im X(

(Vol. 39,

By the use of

(3.22)

(3.23)

_ e ([ _af E-+i0) . , ,
=53 S( aE)dE o, (N1 (i) Tm Gy(E-+10) Im Gy (B+i0) . (3.24)

On the other hand, the transverse conductivity oxx is written as

OxXxT o oE

e S ( _2L>dE 3 (N+1)(her,)* T Gy (E-i0) Im Gy, (E+i0) .

(3.25)

2(1+30,2c,2)

2r X’

One notices that at zero temperature X[ .

—21Im S(E;+ i0)
_———‘_GXX 2
fw,
where E; is the Fermi energy. If one puts
Im 3 (Ep+i0)=—7%/2r, eq. (3.26) is the same as
the phenomenological formula (1.3).*
Let us consider the case that the Fermi level

(3.26)

doxy=

xexp(— w;fﬂ,

where X’ is defined in IV.

m027f2(1+wc2ff2) hwc

(3.29)

lies in high Landau levels at zero temperature. L
The discussion in IV applies directly to the
present oyxy. When the magnetic field is suffi-
ciently strong (w,r;>1), one gets.

e’ 1\ I
=4 (Nt =
doxz T ( + 2 )hwc

N
.lu..

x[1+ <-’;—2 —1><h%)z+--- ] ., (3.27)

HALL CONDUCTIVITY

or

Aoxr _ F[1+ ”2(F>2+-~-], (3.28) ' /

24 fiw,
at each peak associated with the N-th Landau - 'l
level. When the magnetic field is rather weak [ Z

(w.77<51), on the other hand, one has N %

oxx o,

_né’t;, oy
m -1 + wczf f2

Oxy—

NI BT

* As is easily seen, eq. (3.26) is applicable to A
three-dimensional systems. Further it is easy to
show that eq. (3.26) still holds for 4+ even if
effects of higher Born scattering are included
within the single-site approximation (SSA).

00 05 10
Y =/

Fig. 4. 4doyxy and Jdoxyloxx as a function of
y=Ihw, at X’=Nhe,. See also Fig. 2 in IV.

15
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y=12__—""

Oxy | (€2/n2R)

Y= fwe =V(2/m)uc

Fig. 5. Examples of oscillatory oyy for several y=1I"/%a,.

In Fig. 4, doxy and doxy/oxx at X’=Nhw, for general y=1I"/#iw,, which are numerically calcu-
lated, are shown as a function of 7. The oscillatory conductivity oyy calculated numerically in
a similar manner to IV is given in Fig. 5.

§4. Higher Approximations under Strong Magnetic Fields

First, we investigate effects of higher order scattering from a single scatterer employing the
single-site approximation (SSA) as in II. When the magnetic fleld is sufficiently strong, one
should include diagrams corresponding to those shown in Fig. 2 of II and one gets

Loy= gf(E)dEzyzz2 5 SdZN;w(Z) 5 i[( N1 \13”—”‘5;@ E Nm)

X(Nm‘l LAt Z’] Nim +1)—(x<-»y)}

1 0 1

X Im —Re s
Xy—v§(Z) 0E ~ Xy—v§52:(Z)

4.1y

where X (E)=Gy(E)™!, v¥.(Z)=(Nm|v'*”(Z)|Nm), and one should choose N in such a way that
E, is closest to E. Making use of eq. (2.8) and integrating by parts, one has

' (Z)

o= :;_ZhK - gi)dE 2l 3, gdZNW 2z

Nm—+1 ) ’

Xy _ W%’L(Z)
Xy—v$.(Z) Xy—v§uZ)

x WeUZ)— o (Z)) Im [ln

X o (Z) }
—1n N + Nin+1
X ”_’U(N,ZLH(Z) _v<#;L+1(Z)
) 1
U)o DT | WU I
XRe— 1+ 4 4@ (Z)Re 1 Im 1 ]} , 4.2)
Xy— 00 1(Z) Xy—v%, (Z) Xy—v5041(Z)

where such branch of logarithm should be chosen whose imaginary part lies between —z and z.
With the aid of eq. (2.9) of II and the relation
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I(lelav—(:;——x(z)‘ Nm+1 >|2——-%(N-I—m—l—l)[(Nm—l—l]1)“‘)(Z)le—l-1)—(Nm11)</"(Z)|Nm)]2 , (4.3)

which is given in Appendix of II, the Hall conductivity becomes

nec
Oxy="" '_“+A € s

e’ af T 1
— _ I \qpl= 1
ﬁhS( 6E> {2[N+1 nImlnXN:l
(Nm‘lM—(Z)‘Nmﬁ-l) :
0x

1 1
R«
VOZ) - X 0En(Z)

— 2zl Y SdZ N®(Z) ¥
© m

X DEUZ) — 0 (2] [vmm Im

1 1

TRy Cm @ " o v%‘;H(Z)]} ' @4
The Green’s function Gy or X is determined by the self-consistency equation (2.8) of II. From the
above equation, one can conclude that As{} vanishes and oxy becomes —nec/H=—e:(N+1)/2a#,
when the Fermi level lies in energy gaps between adjacent N-th and N+1-th Landau levels at
zero temperature.

Let us consider the case that concentrations of scatterers are sufficiently small and impurity
bands are separated from the N-th Landau level. At the energy where the spectrum has a gap
between two impurity bands or between an impurity band and the main Landau level, X, be-
comes a negative real number in case of attractive scatterers and a positive one in case of re-
pulsive scatterers. When the Fermi level lies in those spectral gaps at zero temperature, therefore,
the Hall conductivity becomes —e?N/2z% in case of attractive scatterers and —e*(N+-1)/2z# in
case of repulsive scatterers.* This means that electrons which fully occupy impurity bands do
not contribute to the Hall current, while those which occupy the main Landau level give rise to
the same Hall current as that obtained when all i.e. 1/2zl% electrons of the Landau level move
freely.

In case of high concentrations of scatterers, the absolute value of X, becomes large compared
with (Nm|v*(Z)|Nm) and further X, approaches a solution in the SCBA

Xy BBy iV Ty (4.5)

Therefore, one has

w___ ¢ af> E( ) . E—EN>2 3/2
LoD, 3:;%5( e (Y- () (4.6)

(I =2 Qal’) 3 SdZle(Z) z [(lela”-(:—x(z)l Nm+1 )iz

with

X [(Nm|[v*(Z)|Nm)—(Nm~+1|v(Z) | Nm+1)] . (4.7)

Especially in case of short-ranged scatterers, eq. (4.7) becomes

(') =20-2e1" 3 S dZN#(Z) [ L T : | 43)

As can be seen from the above equations, the effects of higher Born scattering does not vanish
in the limit of I'/#w,—0, and further they depend on the sign of scatterers: 4o{} becomes positive
(negative) when scatterers are attractive (repulsive). It should be noticed also that do%; does

* A repulsive scatterer can have impurity bands in our system.
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not increase with the Landau level N in contrast to 4o¢; and that it is independent of N in
case of short-ranged scatterers. With the increase of the concentration of scatterers, 4oy be-
comes small, which is consistent with the result obtained in II that the SSA approaches the SCBA
in case of high concentrations of scatterers.

As an illustrative example, we consider a model system in which a single kind of scatterers
with the Gaussian potential (3.19) is distributed randomly. In a similar manner to in §3 of II,
one can calculate gxy of the ground Landau level. Examples of the results are shown in Fig. 6.

HALL CONDUCTIVITY 4
~Oxy / (e2/m2R)

-dxy/(ezln?ﬁ) i
(a=10, C=005~020) B 7 1
15
—{10
-05
.
<. v
> o~ N ya
00 )
N ——anin I
E/|Eg(@)] 00 05 10

(@) (b)
Fig. 6. Examples of oxy of the ground Landau level in case of scatterers with a Gaussian
potential. ¢=2xl2N;. See also Figs. 6~11. (a) oxy as a function of the energy. (b) oxy as a
function of total number of electrons.

Next we investigate effects of simultaneous scattering from more than two scatterers to the
lowest order, confining ourselves to the case of sufficiently high concentrations of short-ranged
scatterers. One has to take into account those diagrams shown in Fig. 1(b) and gets

I 9
doy= eh 3 FE)dE hy® [ ImGy* = Re Gy—Im GNaiE ReG,® ] , (4.9)
with
d*R (N1
hy D=4 Sz K P Ui R (R Ty 1 RIT = 5 Vi R s (R L o(RYI) . (4.10)

Partial integration of eq. (4.9) yields

e It af 1 1
doy=— 44( aE>dEhN<2>[71mGNZ|GN12—TImGN4]. @.11)

If one uses Gy given by eq. (4.5) of the SCBA, it becomes

w__ e 1, <__ai> E—E, _(E__EN>2:|312
AO'XY =25 2 h}v S £y dE T 1 T N (4.12)

Il

the integrand of which becomes zero at E=E, portant for large Landau level index N.

and becomes large at tails of the spectrum.

One has, for example, h®=1, h,®=3/4,---, §5. Discussion and Conclusion

and £, decreases with the increase of N. The relation (3.26) between doyy and oxx in
Therefore, many-site corrections are not im- the SCBA can physically be understood as fol-
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lows. When an electric field E, is applied in
the y-direction, a center of the cyclotron motion
of electrons moves in the x-direction with a
drift velocity v,=cE,/H, which gives rise to the
Hall conductivity —nec/H. Effects of scattering
can be regarded as a frictional force acting on
each electron, the strength of which is given
by F,=—mv,/t=—eE,|/w,r, where ¢ is a relaxa-
tion time. The current in the x-direction due
to this force becomes

i :J"UxxEy:AUXYEy .
(_e) ;T
Therefore, one has eq. (3.26).

MOS inversion layers on Si (100) surface are
a typical two-dimensional system. For usual
electron concentrations (N;,,=>10*?cm~2%), main
scatterers of this system are considered to be of
short range and their concentrations are con-
sidered to be relatively large. Therefore, the
results in the SCBA together with eq. (4.6) are
expected to apply to inversion layers. Measure-
ments of both gxx and ogy will give useful in-
formations on main scatterers and especially on
the level broadening I'. If one compares line-
shapes obtained from eq. (3.6) of I and eqs.
(3.13) and (4.6), one sees that the effective
width of 4doyy is smaller than that of o¢gx.
Therefore, spin and valley splittings are expected
to be seen in oyxy at higher Landau levels than
in oxx. Recently Igarashi, Wakabayashi and
Kawaji measured these quantities.® The overall

dj,=oxx (5.1)

T. AnpoO, Y. MAaTsumoTto and Y. UEMURA

(Vol. 39,

behavior of their results is satisfactorily in agree-
ment with the present theory. Detailed com-
parison will be made in their paper.
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