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The Gaussian-expansion method for the evaluation of molecular integrals
is described. The molecular integrals over the Slater-type functions are chosen
as numerical examples, but the method can be applied to integrals over any
other functions as long as the functions can duly be expressed in terms of
Gaussian-type functions. A fairly detailed description is presented of the
mathematical analysis with the purpose of facilitating the computer coding.

§ Introduction

The title of the present paper bears a close
resemblance to that of a recent paper by Shavitt
and Karplus,? ¢ Gaussian-Transform Method for
Molecular Integrals.”” In order to express the 1s
Slater-type function, Shavitt and Karplus used the

integral transform,
3 2

o _3 _¢
eor=—t S STe me s, (1)

2V ),

In the present paper we use an approximate finite-

set Gaussian expansion,
2
e$T= > ciem i . (2)
7

This idea is not at all new. In fact, Foster and
Boys?® reported briefly such an attempt.

The transform (1) is an obvious mathematical
sophistication of the finite expansion (2) in that
the transform (1) can be regarded as an exact
infinite-set expansion. However, there is no
guarantee that a mathematical sophistication
infallibly brings in overall excellence or con-
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venience. A simple-minded approach could be
quite useful and good enough for certain purposes.
As we will describe later there are several reasons
to invoke approximate finite-set Gaussian expan-
sions such as (2) for the evaluation of multicenter
molecular integrals.

Let us consider the general electron repulsion
integral

SS AWBU)1r)CQ)D2)drdrs . (3)

where A4, B, C, D represent certain functions or
orbitals on generally different centers and 1 and
2 designate electron coordinates. If one adopts
the Slater-type orbitals (STO’s) for the calculation
on polyatomic molecules, one has to evaluate a
number of integrals of the type of (3), in which
A, B, C, D represent STO’s. In 1950 Boys®
pointed out that if 4, B, C, Din (3) are Gaussian-
type orbitals (GTO’s) the evaluation of the integral
presents no grave difficulty. Shavitt and Karplus
made full use of Boys’ finding through the integral
transform (1), but their undertaking is said to be
strictly STO-oriented. In their method STO’s
play the role of basis functions for molecular cal-
culations and GTO’s are used as only mathemati-
cal tools in evaluating difficult molecular integrals
such as (1) in which 4, B, C, D represent STO’s.

Our basic attitude in the present paper may be
regarded as GTO-oriented but only in a broad
sense. One of us (S. H.)» demonstrated, through
direct energy calculation of atomic systems, that
the Gaussian-type functions are not hopelessly
poor in representing both Slater-type and Hartree-
Fock-type atomic orbitals, if one is willing to use
several Gaussian-type functions. The project has
been pushed further extensively by using the least
squares curve-fitting method, and some encourag-
ing results are presented in the preceding paper.®
For example, suppose the function A4(1) in (3) is
either 2p STO’s or 3p STO’s. Torepresent it, we
adopt a finite-set GTO expansion, say,

(4)
where Nj(a;) is a normalization factor and c4 the
eXpansion coefficient. Here, it is imperative to
have a good approximate expansion without using
too many terms. In the preceding paper, it is
shown that by using eight terms of x exp (—ar?)
type functions we can obtain decent expansions
for both 2p and 3p Slater-type orbitals. In the
present paper it will be shown that those expan-
sions actually yield fairly accurate values for
various molecular integrals over 2p and 3p STO’s.

N
S caiNi(as)(x—xa)e i ri—ra? |
4=1
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The implication is that we may evaluate various.
multicenter molecular integrals over 3p STO’s
with no more cost than over 2p STO’s. This is.
one of the advantages of using the finite-set ex-
pansions over using rather inflexible integral
transform (1). A similar situation holds also for-

'1s, 25 and 3s STO’s for which we use only the:

lowest s-type GTO, exp (—ar?). Going back to
our example, we may also suppose that the func-
tion A(1) is a Hartree-Fock-Roothaan 2p or 3p-
orbital for a certain atom. It seems quite possible:
that we can obtain fairly good approximate GTO
expansions for them using about the same number
of terms as required for expanding 2p or 3p STO.

So far we are concerned with obtaining ¢“ap--
proximate’’ expansions of some functions in.
terms of GTO’s. However, we may mold a
linear combination of several GTO’s which isa
basis function for molecular calculations in its.
own right. For example, an approximate GTO
expansionof a certain atomic Hartree-Fock orbitak
may, under a new light, be regarded not as an
‘“approximate’’ function but as an independent:
basis function which has a reasonable ¢‘re-
semblance’’ to the Hartree-Fock orbital. Fur-
thermore, we can split such a linear combination
of several GTO’s into, say, two parts which,
after properly renormalized, are regarded as two
newly molded basis functions for molecular cal-
culations. A new name, the combined Gaussian-
type orbitals (CGTO’s), may be coined for these:
more or less artificially molded linear combina-
tions of GTO’s. It is worth-while to note that:
the scaling procedure applied .to the GTO ex-
pansion of STO® can be applied also to this CGTO
basis function. There is no such convenience of”
scaling in the original Hartree-Fock-Roothaan.
expansion that is a linear combinatoin of Slater--
type orbitals.

In the following section we shall describe the:
mathematical analysis. The Gaussian-transform
method as described by Shavitt and Karplus? is.
undoubtedly a very powerful and promising ap-
proach to the evaluation of multicenter integrals.
However, the whole set-up is rather formidable:
and its complete computer programming is far
from an easy task. By contrast, mathematical
simplicity in the expansion method would en-
courage even a novice to start coding a multicenter
molecular integral program. In the third section
presented is a brief description of the programs
actually coded. Numerical results and concluding
discussions are presented in the last section and
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additional advantages of the Gaussian-expansion
method over the Gaussian-transform method are
mentioned.

§2. Mathematical Analysis

The following mathematical analysis is es-
sentially due to Wright.® Considerable supple-
mentations are added and a few alterations are
made in order to make the presentation more
readable and ready for actual program coding.

Gaussian-Expansion Methods for Molecular Integrals

22(l+m+n)+3/2al+m+n+3/2
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1. Preliminary

In the Cartesian coordinates a GTO centered
at A is written as

x(A, a, 1, m,n)=x4'ya™za" exXp (—aras? . (2.1)
Here x4, y4 and z4 are the components of a posi-
tion vector r,4 relative to 4, ra=r—A, and [, m
and n are ‘‘quantum numbers’’ and are zeros or
positive integers. The normalization constant is
omitted for convenience. The normalized GTO
is obtained by multiplying the normalization
constant N:

1

2.2)

Na, I, m, n):{

where (21—1)11=1.3.5....(2I—1).

The GTO function has the following characteristic property:

QI—1)11 2m—1)11 Rn—1)11 75/ } s

Suppose that there are two 1s GTO’s,

exp (—aira?) and exp (—asrs?), centered at 4 and B respectively. The product of these GTO’s
yields again a GTO centered at P=(a14+a:B)/(a:1+az), namely.

exp (—aura?) exp (—aerp?)=exp (—aiaz AB2[y) exp (—yrp?) ,

where r=a1+a;,.

2.3)

When the GTO’s are not 1s orbitals, extra factors such as xslixpl2 appear in their product. For
later analysis we rewrite these factors in terms of xp, the coordinate relative to P. We note that
ra=r—A=(r—P)+(P—A)=rp+(P—A), hence x,=xp-+PA, and xp=xp+PB,. Therefore

Xalixgle=(xp+ PA)1(xp+ PBy)la= Z‘fj(ll, ls, PA,, PBo)x7 ,
J

(2.4)

fill, m, a, b) means the coefficient of x7 in the expansion of (x+a){(x+5b)™. Thus we have

x(A4, ar, I, my, n)x(B; az, ls, ms, ng)

=exp (—aazAB[7) 3 filll, Iz, PAs, PBu)xp' exp (—yxp?)

X 3 fi(my, mz, PAy, PB,)ypi exp (—1yp% Zk‘,fk(nl, nz, PA,, PB)z,* exp (—7rzp?) .
J

(2.5)

This characteristic property of GTO’s makes it rather easy to calculate various molecular integrals
with the aid of the following mathematical formulae.

S”xw exp (—ax?)dx=
0

—oco

Here H,(z) is the Hermitian function and is defined as

_(2"_2—:1)_!!_ «/L+ i (2.6)

ntl i+l

gw giegn exi) (—axt)dx=in <_7;T_)—;‘(2_\}_7_)n H, <Ki}7> exp (—42‘;) . (2.7)
g (oo 28

Ha(2)= (=) exp (%) ‘T‘Z— exp (—2)=n! 3

where [x] means ¢‘largest integer less than or equal to x"’.

o it(n—=201 °

This formula is given by Wright® without

proof, but can be proved by the method of mathematical induction if we differentiate the above ex-

pression with respect to y.

2.9)
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This is a well-known formula and one can refer to various text books® for its explanation.
2 2 ! —3 5 2
exp (—ok?) =25k Sos exp (_:9—2 k )ds . (2.10)
This is derived from an identity e—“.—_are-"”dx by letting a=0k? and x=1/s2.
1
1
F,,(t):S w2t exp (— ) . , @.11)
: 0

This is the definition of an auxiliary function F,, and the relating formulae can be found in Shavitt’s

paper.®
2. Overlap integral
The use of the formulae (2.5) and (2.6) immediately gives the following expression for the overlap

integral:

S x(A, as, i, my, m)y(B, as, Iz, ma, nz)dxdydz

T \3/2 . [(Iy+Ig/2] — —  (2i—Dn
= (—T—) eXp (——alazAB2/T) i=20 fzi(ll, 12, PAx, PBm) ( (27,)3
[(my+mg) /2] (2j—=1)1 1 Lngd n)/2] k=] (2.12)

X ggo fzj(mn mg, PAy; PBy) (27/): kg() ka(nly na, PAZ’ PBZ) <2r)k ¢

3. Kinetic energy integral
The kinetic energy integral is defind by

KE= SX(A’ a1, ll) ny, m)(—A/Z)x(B, Az, lz, mé, nz)dr . (2.13)

If we denote the overlap integral between y(A, as, l1, my, i) and y(B, as, Iz, ma, 1) as S(lz, me, ns), we
have

KE=qa{2(ls+ma+n3)+3}SUs, ms, nz)
—2a:*{S(I3+2, mz, ng)+ Sz, mz+2, ne)+S(ls, me, na+2)}

—_ —;— {12(12—1)5(12—2, mg, n2)+mz(mz—1)S(lz, m2—2, n2)+nz(nz, I)S(lz, ma, nz——2)} . (214)

4. Nuclear attraction integral
The nuclear attraction integral is defined by

NAI—= S (A, s, I, m, ) ri (B, as, Io, ma, no)dr | 2.15)
C

where r. is the distance between r and C; r,=|r—C|=|r.|. The product of two wave function is
again rewritten in terms of the coordinates relative to P. We note that r.=r—C=r—P-(P—C)
=rp-+p and use the formula (2.9), then 1/r, can be rewritten as

U N
k? 27% ) k2

1
rc 2rn?
Then we have
NAI= —2—17;; exp (—aias AB2[y) .Zkfi(ll’ Iz, P4,, PB;)
LIV EY. 2

X - fi(my, ms, PAy, PBy)-fi(n1, nz, PA,, ﬁz)-s i’: etk-p dee"kx'”xi exp (—rx?%)

X deeiku-w exp (—ry?) S dzet*z+2zk exp (—rz?) , (2.16)
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where y=a:+a:. Integrations over x, y, and z can be carried out by formula (2.7). Thus, the
integral part in the right-side of the above equation becomes, letting e=1/4y,

1

1= [ e i (5 (o) () (5) (o) (s5)

X it ( ff)% (2«} . ) H, (2 5_) exp (—ek?) .

Using the formulae (2.8), (2.10) and (2.7), we have

[1,/2] €r [(z—27)/2] ( )up 1.—27‘——2u6u
7= 0 rl w=0 ul(i—2r—2u)!

y (ypie G
X (= )]'2 ;v'(] 25—20)! —)k '2 % wl(k—2t—2w)!

——( )i

)w sz—zt—zwew

X S dSs. Seli+ith—2r+s+t)—(@+v+w)} exp (_-p_ Sz) .
0 . 46

Putting this expression back into eq. (2.16), we obtain

NAI:Z—: exp (—asaiABr). 3 Aiyroallss Iny Asy Bay o 7)
7%

X 2 Ajyaw(mly mg, Ay, B1/, Cy, T) 2 Ak,t:w(nh Nz, Az; Bz: Cz, r)Fy C‘;P2> s (2.17)
€

IR
where v=i+j+k—2(r+s+1)—@+v+w), and

— )i !C'_Pzi—Zr—Zu(l JAp)r+e
rlul(i—2r—2u)!

Airrsallsy Lo Asy BesCo 7)=(—)fi(lu» Io» Pz, PB)-< 2.18)

In eq. (2.17) the summations with respect to indices i, r and u extend form 0 to I,-+I,, [i/2] and
[(i—2r)/2], respectively. The ranges of (J, s, v) or (k, ¢, w) can be easily found in the same way.

5. Electron repulsion integral
The definition of the electron repulsion integral is

eR1— (a2 sl o)

x () sty oxp (—avh iy 5iesy oxp (—audy 2.19)
12

Here r;» denotes the distance between the two electrons (riz=|ri2|=|r:—ri|), where r; and r; are
the position vectors of each electrons. The manipulation of this integral closely parallels that of
the nuclear attraction integral. From the characteristic property of Gaussian functions we can
reduce the above integral to the following form.

ERI=exp {—(a1a2AB?/71)—(asasCD?[y2)}
X Zf:il(lla 127 mzs ‘I)_B,;) ijl(mla ms, ﬂy, F-le) szkl(nl’ Nz, ?f-lz’ TBZ)
1 J1 1
X Zfiz(ls, ls, Q_Ca;, Q—D-a:) ijz(ms, mi, Q—C_'Ih Q_Du) kakz(ns, Ry, Q_C'z’ Q_I—)z)
2

X‘S Xd" P1dF. sziPlLy 1’11 ZPl exp ( 7 Pl)x % Zzg exp (— Tzr Qz) (2.20)

where yi=ai+a: and yx=as+a,. Q is defined as Q=(asC+auD)/(as+as), and rp=ri—P and
reo=r:—Q. Further we shall denote Q—P as p. Formula (2.9) can be expressed as



J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by University of Waterloo on 04/26/19

2318 H. TAKETA, S. HuziNAGA and K. O-0HATA (Vol. 21,

— €Xp (lk rxz) =

11 Sdk 1 sdk
Iz

where ris=p—rpi+rq:. Thus, the integral part in the right side of eq. (2.20) becomes after some
manipulations,

I'— SSdrmdrqumyPl zZHh exp (— 7’17‘1:1) xQZyQ2 zQ, exp (_Tzr:n)

1 \%a2(1
:7':5( ) SdS
7172 0

X( 1 )zl< 1 )i2 . '[il/ﬁl [ig/2] (—=)rtrep miyare
272 ) B 2 2 P2t (b —2r)!

dky kgi1tie=2r1tr) etkzpz exp <__g;k”)

1 i1 ( )81+82T1817’282
—_— 1721
X( < > Jige! 321% s11(J1—251) 1521 (Ja—252)!

ky (—)trttap tipte
k 1ka!
<2T ) e ;1 !22 t1'(k1—211)'kz'(k2—212)7

dk, k1t m2titte) ethapz exp ( —;1— k:) s

where d=(1/4y1)+(1/4r:). The integration over k; in this expression can be carried out as follows
by using the formula (2.7) again.

)

s? sz)

5+ i1+ig—2(r +rg) 2
_111+@2—2(r1+r2)< > (25 )1 9—2(ry+ry Hi1+iz—2(r1+’z)(%s) exp (._ i; Sz)

1 A P2
=girtia(— )f1+"2( ) ( )’1*"2—2“’1”2’ exp ( v SZ)

(—)epgirtis=2ritry—2ugu
-2 !
X {ir+iz (r1+r2>} % u'{l1+12_2(r1+r2) 2!

S dky eikxPz [, t1tia—2(ritTa) eXp (...

Selig+ig—20rytro—u} | (2.21)

The integration over k, and k, can be carried out by exactly the same manner, and we obtain

1 J— J—
ERI— 2% ( T )T oxp {_ s AB? a3a4CD2}
7172 \71+72 71 T2
X 2 BilaiZa'rla‘rz;u(ll’ IZ, Awa Bm st r1l189 149 ths Dm s Qm rZ)

111891712790 %

X > lesjz’sl,szw(mls mz, Ay, By, Py, r1|lms, my, Cys Dy, Oy, 7'2)

J1959181289>

X 2 Bkl)kZ,tlstZ;w(nly na, Az, Bz, Pz’ Tlln33 Ny, Cza -Dzy st TZ)FV(PUZ/45) .

kiskgrtysto, w

where v=i1+iz+ji1+jet+ kit ke—2(r1+r2+s1+52+t1+-ts)—u—v—w, and

Bil,izwl,rz,u(lh ls, Az, By, P, T1|ls, 14, Cs, Dy, Qm 7’2)
:(_)i?‘fil(lh Iz, PA,, -IJ—Bz)ﬁz(ls, Iy, @xa Q_-Dx)
i1! ip! (4r1)m1(4y2)"20m1ts
(47’1)’1(47’2)125’1“2 ' rilrel(ii—2r1) 1 (fa—2r2)!
(_)upzil+i2—2(11+12)—2u5u

u,!{i1+iz—2(r1+rz)—2”}! )

X [i14ia—2(r1+r)]!

(2.22)
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In eq. (2.21) the summations with respect to the indices iy, iz, 71, 72 and u extend from 0 to ;41
Is+14, [i1/2], [i2/2] and [(is+i2)/2—r1—r2], respectively. The ranges of (ji, j, 51, 52, v) or (ki, ks, t1,
#3, w) may be found in the same way.

§3. Computer Program

Our next task is to code the above formulae for the computer. It is not very hard to code these
formulae quite generally, but our coding is limited to the cases in which the sum of the ‘‘quantum
numbers”’ of a GTO appearing in the integral does not exceeds 2. (I4+m-+n<2 in eq. (2.1)). This
restriction makes it possible to get an efficient program.

In our program a subroutine for f;(I1, Iz, a, b) is prepared in which the explicit formulae of f; are
coded for all possible values of /; and /; according to the definition (2.4). Once we have the subroutine
of f;, it is straightforward to code the programs for the overlap integral and the kinetic energy
integral. The formulae for the nuclear attraction integral and the electron repulsion integral contain
the auxiliary function F, given by eq. (2.11). The necessary formulae for computing F,(¢f) can be
found in Shavitt’s paper.?

The central task is to carry out the multiple sum appeared in the nuclear attraction integral or the
electron repulsion integral. For nuclear attraction integral, the summation in question is

W: 2 Ai’r,u(lla 127 Ax: -Ba:’ Cz’ r) 2 -A:iasw(ml, ms, A]/’ By’ Cy, r)

Ty U 928,
X ktz Ak’f”ll}("l’ N2, Aza Bz; Cz’ r)Fv(sz) s

where v=i+j+k—2(r+s+t)—u—v—w. We rewrite this as
W= zl: Gy, by, Az, By, Cs, ')’) > Gy(my, ma, Ay, By, Cy, 1)
J

(I+J+EK=v)
X % GI(nl, na, Aza st Czy T)FI+J+K(rP2)= 2 { I;K GIGJGK}FV H (3'1)

where the notation (/4-J+K=v) means that the summation must be taken over the values of indices

satisfying the condition /4+J+K=v, and G; is defined as

(-—)"’l !Pzi—z'r—-m Er+u
rlal(i—2r—2u)! °’

(i—2r—u=1I) — —
GI(Ila l2’ Aa}a Bx’ C:h T): 2 2 2 (_)i.fi(ll’ 12: PAZ: PB!G) * (3'2)

where the summation must be taken over the values of indices satisfying the condition i—2r—u=1I.
The simplest way to calculate the values of G;’s is perhaps to write down the explicit formulae, i.e.

L+1L=0: G,=1,
L+lk=1: Go=fo,
Gi=—p.
L+L=2: Gy=fo+ fi/2r,
G1=—f1]7'—f1/27’ s
G:=p*.
L+L=3: Go=fo+ fa/2r,
Gi=— fip—f2l2r—3pl27
Ge= f3p*+3p[27
Gz=—p3.
Lt+b=4: Go=fo+fa/2r+3/41%,
Gi=— fip— f2/2r—3pfs/r—3/2r%,
Ge= fop*+3pfs/2r+3p*[r+3/41%,
Gs=— fop*—=3p°I7
Gy=p*.
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The method of carrying out the multiple sum in the electron repulsion integral is similar to that
for the nuclear attraction integral, but a little more complicated. We rewrite this summation as

=333 Bipizﬂ‘p'rzm leajzsslyszw Bklskzﬂptz;w F,

(I+T+E=v)

= ;KCICJCKFI+J+K= DI CiC;CglF, , (3.3)
where
(i1+ig—2(r +r9) —u= I) (4741)1'1 (_)i2i2 ' (47,2>1-2
CI_ zzl 122 721 % u ﬂl (47'1)7’1 r1!(i1—2r1)! i (47‘2)i2 rzl(iz—zrz)!
{il +1‘2__2(r1 +r2)} 1 (_)upxi1+i2—2 (ry+rg)—2u
u! {il +i2—2(r1+r2)—2u} 1 girtig—2(rytry)—u
(L+M—u=
= 2 2 2 HL(lls 12: PAx, PBza Tl) ( )MHM(IS’ l4a QC:M QD:H T2)
L,M
(Lot M) (= )yeptnin-es 6
ul {(L+ M) —2u} 1 +m—v
and
(1—2r=L) ARy
Hyh by a, b, )= 2 > il by a6, 7) (3.5)

r

r1(i—2r)1(47)i2

This quantity is computed, in our program, by using the following explicit expressions.

Hy=(2ab+a?)/4r+6(1/47)*,

=0, ,=0: Hy,=1.
L=1,1=0: Hy=a,
Hi=1/4y.
L=1,l=1: Hy=ab-+1/2r,
Hi=(a+b)/47 ,
He=(1/47)%.
L,=2,05=0: H,=a%*+1/27,
Hi=a/2y,
H,=(1/47)2.
L,=2,L=1: Hy=a%+2a+b)2r,
Hy=(2a-+b)(1/47)*,
Hs=(1/47)*.
L=2,0=2: Hy=(ab)*+

(a2+4ab+b2) 2y +12(1/47)%,

Hy=ab(a+b)2r+12(a+b)1/47),
Hy=(a*+4ab+b%)(1/47)*+12(1/47)%,
H3=2(a+b)(1/4]’)3 >

H,=(1/47)*.

To calculate Cr’s we first prepare the storage
locations for Cr’s, and calculate the value of the
summands one by one for all possible values of
L, M, and u(0<L<li 4L, 0O<M<s+1, u<[(L+
M)/2]). The value of a summand found is
accumulated into the storage location Crymy—u.

So far we have described the calculation of
individual integrals. We shall now go over to

the construction of the whole program. We first
notice that the wave function concerned is not a
single GTO but a combined GTO (CGTO), i.e. a
linear combination of several GTO’s, all of
which have common ‘‘quantum numbers’. A
molecular integral over these wave functions can
be calculated as a linear combination of the
molecular integrals over the individual GTO’s.
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The same factors f; can be used in the cases of
the overlap integral, the kinetic energy integral
and the nuclear attraction integral. For this
reason, in our program ‘‘One electron integral*’,
the overlap integral, the kinetic energy integral
and the nuclear attraction integrals over the
individual GTO’s are simultaneously calculated
and accumulated into the respective storage loca-
tion to calculate these integrals over CGTO’s.
While in the program “ Two electron integral’’,
Hi(li, l,a,b,7) are calculated directly as ex-
plained before without using f;.

A CGTO is specified by I, m, n (quantum
numbers), n; (number of GTO’s included in the
CGTO), as, as, - -+, an; (eXponent parameters of
GTO?’s), ¢1, ¢z, -« -, cai (coefficients of the linear
combination), and of course the position of the
center of CGTO. All necessary CGTO’s and all
necessary coordinates are numbered and stored.
Then we can select a wave function by two
integers numbering the CGTO and the position
of the center.

§4. Results and Discussions

In Table I presented are the computed values
of the two-center one-electron integrals over the
1s Slater-type function (1/+/z) exp(—r) by using
the approximate GTO expansions described in
details in the preceding paper.® The column

Table I. One electron integrals: - 1s—1s.
Rap
(a":l‘) 4.0 8.0 12.0 16.0
(Lsa[1s3)

4 0.189074 0-009786| 0.000103| 0.3x 1076
6 0.189215] 0.009747) 0.000207| 0.000002
8 0.189267| 0.010217| 0.000354, 0.000008

10 0.189261f 0.010169| 0.000396/ 0.000014

A 0.189262f 0.010176/ 0.000375 0.000012

<1sa|——%-dllsb)
|

4 |—0.002579,—0.002310,—0.000065|—0.4 x 106

6 |—0.003138—0.002142|—0.000097|—0.000002

8 |—0.003048—0.002049—0.000111{—0.000003
10 {—0.003048/—0.002078/—0.000105|—0.000004
A |—0.003053(—0.002069/—0.000107|—0.000004

(Lsal1/rallsy)

4 0.091748, 0.002208 0.000017| 0.4x10-7

6 0.091518| 0.002851 0.000041| 0.3x10-¢

8 0.091584) 0.003042/ 0.000072] 0.000001
10 0.091581f 0.003012( 0.000087 0.000002
A 0.091578 0.003019, 0.000080, 0.000002
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“4, 6, 8, 10, A” has the following meaning:
Numbers in the row following a numeral, say 8,
are the approximate values of integrals computed
by using the 8-term GTO expansion of 1s STO,
the parameters of which are specified in Table 2
of the preceding paper.® The row headed by 4
gives the accurate values of integrals for the
purpose of comparison. One observes that the
4-term expansion naturally gives rather poor ap-
proximate values while the 10-term expansion
seems to yield values good enough for most pur-
poses.

Table II contains the result of the similar pilot

Table II. One electron integrals: 2pr—2px.
Rap
(a"{l‘) 4.0 8.0 12.0 16.0
(2pra|2pms)
4 0.286986| 0.023067| 0.001041} 0.000026
6 0.286949| 0.023079] 0.001065] 0.000028
8 0.286945| 0.023073] 0.001146| 0.000039
A 0.286945| 0.023057| 0.001142| 0.000044
1
<2p7r¢[ —7412pm)
4 0.045850/—0.001318/—0.000207|—0.000009
6 0.045798/—0.001328|—0.000205/—0.000009
8 0.045784|—0.001358/—0.000197|—0.000011
A 0.045789|—0.001353|—0.000196|—0.000010
(2pza|l/ra|2pms)
4 0.094649; 0.005099| 0.000168 0.000003
6 0.094634| 0.005098 0.000172| 0.000004
8 0.094629/ 0.005089| 0.000188| 0.000005
A - 0.094631| 0.005088 0.000187| 0.000005

“calculations for the two-center one-electron in-

tegrals over the 2pr STO (1/+/m)xexp(—r),
Table Il over the 3pr STO (2/15x)3xr exp(—r)and
Table IV over the 3dyz STO (+v/2/r/81)yz exp (—r).
The Cartesian coordinate system used here has
the z-axis along the line connecting the two
centers g and 5. The format of these three tables
is almost identical with that of Table I and may
need no further explanation.

Table I, II, IIl and I'V present part of the results
of our preliminary molecular integral calculation
with the purpose of checking of the Gaussian-
expansion method in the case of the one-electron
molecular integrals. For the two-electron mole-
cular integrals we shall show the results for the
integrals for which the reference values are
readily available in the papers of Karplus and
Shavitt.t.1® In Table V three families of ap-
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Table ITII.  One electron integrals: 3pr—3px. Table IV. One electron integrals: 3dy,—3dy..
Rap 4.0 8.0 12.0 16.0 Rap 4.0 8.0 12.0 16.0
(a.u.) ) (a.u.) :
{3pna|3pmy). (3dyzal3dyz)
4 0.493102| 0.081299] 0.007042, 0.000378 4 —0.282754/—0.171105/—0.019459,—0.000854
6 0.493104| 0.081346| 0.007178| 0.000445 6 —0.282409/—0.169100—0.020951/—0.001364
8 0.493104| 0.081346| 0.007181| 0.000457 8 —0.282409|—0.169130—0.020800,—0.001480
A 0.493104) 0.081346/ 0.007175] 0.000440 A —0.282410|—0.169147—0.020801|—0.001487
(30w~ 4135) (3l —5 413,1)
4 0.071980, 0.000576/—0.000701{—0.000075 4 —0.177519{—0.023193] 0.001007| 0.000207
6 0.071978 0.000567|—0.000694/—0.000074 6 —0.177495/—0.022534/ 0.000702/ 0.000214
8 0.071978 0.000569/—0.000695/—0.000073 8 —0.177497,—0.022600, 0.000744;, 0.000198
A 0.071978] 0.000568/—0.000694|—0.000074 A —0.177487|—0.022618| 0.000748| 0.000198
(3prall/ra|3pms) (3dyzall/rel3dyz)
4 0.136026| 0.016364| 0.001080;, 0.000045 4 —0.106282|—0.036084|—0.003000,—0.000101
[ 0.136024) 0.016369] 0.001100; 0.000055 6 —0.106232|—0.035709|—0.003244|—0.000164
8 0.136024| 0.016370; 0.001100; 0.000057 8 —0.106232|—0.035725{—0.003218/—0.000181
A 0.136024] 0.016369| 0.001100] 0.000054 A —0.106231|—0.035730{—0.003218/—0.000182
Table V. Pi-electron repulsion integrals for the benzene molecule (a.u.).
6
Integral A‘f:;lur:; ¢ 4-term 6-term 8-term Brrorsx10
4 [ 8
11 12 0.121755 0.121785 0.121760 0.121755 +30 + 5 0
11 13 0.013891 0.013899 0.013902 0.013888 + 8 +11 -3
11 14 0.005796 0.005807 0.005808 0.005802 +11 +12 + 6
11 23 0.068193 0.068204 0.068194 0.068194 +11 +1 +1
11 24 0.010001 0.010005 0.010008 0.010002 + 4 +7 +1
11 25 0.005416 0.005421 0.005424 0.005420 +5 + 8 + 4
11 26 0.016131 0.016129 0.016135 0.016129 -2 + 4 -2
11 34 0.051664 0.051672 0.051665 0.051664 + 8 + 1 0
11 35 0.008846 0.008847 0.008850 0.008845 +1 + 4 -1
12 12 0.034091 0.034105 0.034092 0.034090 +14 + 1 -1
13 13 0.000633 0.000633 0.000634 0.000633 0 + 1 0
14 14 0.000124 0.000124 0.000124 0.000124 0 0 0
12 13 0.004112 0.004113 0.004113 0.004111 + 1 + 1 -1
12 14 0.001535 0.001538 0.001538 0.001536 + 3 + 3 +1
12 15 0.003174 0.003176 0.003176 0.003173 + 2 + 2 -1
12 16 0.023927 0.023936 0.023928 0.023927 + 9 + 1 0
13 14 0.000252 0.000252 0.000253 0.000252 0 +1 0
13 15 0.000481 0.000481 0.000481 0.000480 0 0 -1
12 34 0.015663 0.015668 0.015663 0.015663 + 5 0 0
12 35 0.002517 0.002517 0.002518 0.002516 0 + 1 -1
12 36 0.001465 0.001466 0.001467 0.001466 +1 + 2 +1
12 45 0.013740 0.013744 0.013740 0.013740 + 4 0 0
13 24 0.000578 0.000578 0.000578 0.000578 0 0 0
13 25 0.000255 0.000255 0.000255 0.000255 0 0 0
13 46 0.000437 0.000437 0.000437 0.000437 0 0 0
14 25 0.000122 0.000123 0.000123 0.000122 +1 + 1 0
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Table VI. Two-electron integrals for a methane molecule:
Atom x y z Orbital Symbol Exponent
o 0.0 0.0 0.0 15(C) c 5.70
H, 0.0 0.0 —-2.0 2p(C) X, ¥,z 1.625
H, 1.88561808 0.0 0.666666667 1s(H) h 1.000
H; —0.94280904 1.63299316 0.666666667
H, —0.94280904 —1.63299316 0.666666667
Integral 4-term 6-term 8-term 10-term Comparison value
(hy he; ha hy) 0.0306538 0.0306826 0.0306814 0.0306827 0.03068252
(A1 hg; by hs) 0.0356602 0.0356951 0.0356930 0.0356947 0.0356937°
(hy hy; ha hg) 0.0956640 0.0957073 0.0957053 0.0957075 0.09570562
(¢ hy; hs hy) 0.0125312 0.0126835 0.0127382 0.0127439 0.01274072
(¢ hi;c hy) 0.0110484 0.0111416 0.0111836 0.0111903 0.0111949¢
(¢ ¢ ; hihy) 0.1664934 0.1665295 0.1665273 0.1665312 0.1665363¢
(¢ hy; x hy) 0.0194777 0.0197179 0.0198054 0.01980902
(¢ hi;z hy) 0.0058439 0.0058706 0.0058844 0.00588522
a. Pitzer. b. Shavitt and Karplus (20x20x24). c. Shavitt and Karplus (24 x 24 x 28).

proximate values of the r-electron repulsion in-
tegrals for the benzene molecule are shown.
These values should be compared with Table I
in the Short Note by Karplus and Shavitt.!® The
three families of values result from the 4-term,
6-term and 8-term GTO expansions of the 2px
Slater-type orbital with the orbital exponent 1.59.
The C-C distance is 2.6320755 a.u. These para-
meter values are the same as those used by
Karplus and Shavitt.1® The performances of the
6- and 8-term expansions are gratifying and even
the 4-term expansion gives approximate values
quite satisfying when compared to the values
given by Sklar’s or Mulliken’s approximation
which are listed in Table I of Karplus and
Shavitt.1

In Table VI an attempt is made to present
several values of many-center integrals for a
methane molecule which are to be compared with
the values shown in Table I in a recent paper by
Shavitt and Karplus.t

In the Gaussian-expansion method, we must
carry out a fourfold summation to evaluate a
two-electron integral. This means that we need
to compute N* basic summands, N being the
number of Gaussian-type functions in the ex-
pansion. (For simplicity we assume that all
four expansions have the same N.) This is un-
avoidable as long as the present finite-set method
is adopted. However, the Gaussian-transform
method of Shavitt and Karplus also contains a
three-fold summation: We must perform a three-

dimensional numerical integration. Thus, the
numbers of summations to be compared are N*
in the present paper and uXvXw in the paper of
Shavitt and Karplus.? The Gaussian-transform
method seems to have had a serious trouble get-
ting a convergent result for (ck;; hsh,). It does
not seem to settle down in the final value even if
uXpXwsoars up to 28x28x28~2.2x10¢. Con-
vergence studies in the present Gaussian-expan-
sion method are not very exhaustive but there are
indications that the asymmetric integral such as
(chy; hshs) is less troublesome to be evaluated in
the present method. Since the individual sum-
mand of the present method is simpler than the
corresponding integrand in the Gaussian-trans-
form method, the overall performance of the ex-
pansion method could be much more economical
than the sophisticated Gaussian-transform method
if we are not pursueing a very accurate evalua-
tion of the molecular integral as such.

So far the discussion has been rather STO-
oriented but of course we need not confine our-
selves to this realm. For instance, our basis
functions that are combinations of several GTO’s
may bear close resemblances to Hartree-Fock
orbitals of certain atom. In the present integral
program it does not matter what the combined
Gaussian-type orbitals actually represent.

The computer we have been using is the
OKITAC 5090H which has 8K core and needs
250pus for a floating point multiplication and 330us
for a floating point division. The program is
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coded in ALGOL. It isnot easy to make a definite
statement about the computation time but we feel
it safe to state that the present Gaussian-expansion
method is at least as economical and useful as
the Gaussian-transform method of Shavitt and
Karplus? for ab initio calculation of the electronic
structures of poly-atomic molecular systems.
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