Math 146, Winter 2008

Homework #5

Due on Wednesday, March 12.

Problem 1. Let $\mathfrak{B} = \{(1, 2, 4), (0, -1, 1), (2, 3, 8)\}$ be a basis of \mathbb{R}^3 , and consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose standard matrix is:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

Find the matrix $[T]_{\mathfrak{B}}$. (Recall that $[T]_{\mathfrak{B}} = [T]_{\mathfrak{B}}^{\mathfrak{B}}$.)

Let V be a dimensional vector space V over F, and $T \in \mathcal{L}(\mathbf{V})$, a linear transformation from V to V. We say that T is **triangularizable** if there exists an ordered basis \mathfrak{B} of V such that $[T]_{\mathfrak{B}}$ is an upper triangular matrix, i.e,

$$[[T]_{\mathfrak{B}}]_{ij} = 0$$
, for all $i > j$.

The following sequence of problems is to prove the statements below. For $F = \mathbb{C}$, or more generally, any **algebraically closed field**, T is triangularizable. Moreover, under the same condition, for any two commutative linear transformation $T, U \in \mathcal{L}(V)$, i.e., TU = UT, they are **simultaneously triangularizable**, which means that there exists an ordered basis \mathfrak{B} of V such that $[T]_{\mathfrak{B}}$ and $[U]_{\mathfrak{B}}$ are upper triangular.

In particular, for any $n \times n$ matrix $\mathbf{A} \in M_{nn}(\mathbb{C})$, there exists an invertible $n \times n$ matrix $\mathbf{Q} \in M_{nn}(\mathbb{C})$ such that $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$ is an upper triangular matrix. Moreover, for any two matrices $\mathbf{A}, \mathbf{B} \in M_{nn}(\mathbb{C}), \mathbf{AB} = \mathbf{BA}$, then there exists an invertible $n \times n$ matrix $\mathbf{Q} \in M_{nn}(\mathbb{C})$ such that both $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$ and $\mathbf{Q}^{-1}\mathbf{B}\mathbf{Q}$ are upper triangular matrices.

Problem 2. Let V be a vector space over $F, W \subset V$ a subspace. As we have introduced in tutorials, we can define the set V/W of equivalence classes, under the equivalence relation \sim_W , or mod W

$$\mathbf{x} \sim_W \mathbf{y} \iff \mathbf{x} - \mathbf{y} \in W.$$

More precisely, let $\mathbf{x} + W$ be the subset of V consisting of all vectors of the form $\mathbf{x} + \mathbf{w}$ for some $\mathbf{w} \in W$; i.e.,

$$\mathbf{x} + W = \{\mathbf{x} + \mathbf{w} | \mathbf{w} \in W\}.$$

Then V/W is the set consisting of all distinct subsets of V of the form $\mathbf{x} + W$; i.e.,

$$V/W = \{\mathbf{x} + W | \mathbf{x} \in V\}.$$

We also denote $\mathbf{x} + W = [\mathbf{x}] \mod W$, or simply just $[\mathbf{x}]_W$ or $[\mathbf{x}]$. Define an addition and a scalar multiplication on V/W as follows: for all $\mathbf{x}, \mathbf{y} \in V$, $c \in F$,

$$(\mathbf{x} + W) + (\mathbf{y} + W) := [(\mathbf{x} + \mathbf{y}) + W], \quad c \cdot (\mathbf{x} + W) := (c\mathbf{x} + W).$$

- (a) Show that V/W is a vector space under the addition and scalar multiplication defined above. This vector space is called the **quotient space** of V by W.
- (b) Let V be an n-dimensional vector space over F and W an m-dimensional subspace of V. Prove that V/W is an n m-dimensional vector space.
- (c) Let W a subspace of V, and T a linear transformation from V to itself. We say that W is an **invariant subspace** of T, or T-invariant if $T(W) = \{T(\mathbf{w}) | \mathbf{w} \in W\}$ is contained in W. Let W be an invariant space of T. Show that a mapping \tilde{T} from V/W to V/W defined by

$$\tilde{T}([\mathbf{v}]_W) = [T(\mathbf{v})]_W$$

is a well-defined linear transformation. This linear transformation is called the **restriction** of T on W.

Problem 3.

Let V be a vector space, $W \subset V$ a subspace, and let $q: V \to V/W$ be the natural linear transformation:

$$q(\mathbf{v}) = [\mathbf{v}] \mod W$$

where $[\mathbf{v}]$ denotes the equivalence class of \mathbf{v} modulo W. Let Z be a vector space, and let $T: V \to Z$ be a linear transformation.

- (a) If $W \not\subset \ker T$, prove that there is no linear transformation $\tilde{T} \colon V/W \to Z$ such that $T = \tilde{T} \circ q$.
- (b) If $W \subset \ker T$, prove that there is a linear transformation $\tilde{T}: V/W \to Z$ such that $T = \tilde{T} \circ q$.

Problem 4. Let V be am n-dimensional vector space over F, and $T \in \mathcal{L}(V)$, a linear transformation from V to itself. Given a polynomial $f = \sum_{i=0}^{m} a_i t^i \in P(F)$, we define

$$f(T) := \sum_{i=0}^{m} a_i T^i,$$

where $T^{i} = T \circ (T^{i-1})$ and $T^{0} = \mathrm{id}_{V}$, the identity transformation on V.

- (a) Show that there is a polynomial f such that f(T)=0. Given a bound of the degree of f. (Hint: consider the subspace H of $\mathcal{L}(V)$, generated by $\{T^i\}_{i=0,1,\dots}$. Warning: you are **not** allowed to use the theorem of determinant to do this and the following problems.)
- (b) Let $f, g \in P(F)$. Show that

$$f(T) \circ g(T) = (f \cdot g)(T),$$

where $f \cdot g$ is the product in P(F).

- (c) Let A(T) be a subset of P(F) consisting of all polynomials f such that f(T) = 0. Show that A(T) is a subspace of P(F) with an extra property that for any $g \in P(F)$, $f \in A(T)$, $g \cdot f \in A(T)$.
- (c) Let c(T) be a non-zero polynomial A(T) with a minimal degree. Show that for any $f \in A(T)$, c(T)|f; i.e., there exists $g \in P(F)$ such that $f = g \cdot c(T)$.

Problem 5. A field F is called **algebraically closed** if any non-constant polynomial $f \in P(F)$, there exists $\alpha \in F$ such that $f(\alpha) = 0$. For instance, \mathbb{C} is algebraically closed, by the fundamental theorem of algebra. Let V be a vector space over a field F, and $T \in \mathcal{L}(V)$. We say that a *non-zero* vector \mathbf{v} of V is an **eigenvector** of T with the **eigenvalue** $\lambda \in F$ if

$$T(\mathbf{v}) = \lambda \mathbf{v}.$$

- (a) Let V be a finite dimensional vector space over an algebraically closed field F, and $T \in \mathcal{L}(V)$. Show that there exists an eigenvector **v** with an eigenvalue λ for some $\lambda \in F$. (Hint: using the previous problem. Consider the factorization of $c(T) = (t - \lambda) \cdot g(t)$, and using the minimality of degree of c(T) to prove the existence of eigenvectors. Warning: again, you are **not** allowed to use the theory of determinant.)
- (b) Give an example to show that the statement of (a) is not true if we drop the condition of algebraically closed on F.

Problem 6. Let V be a finite dimensional vector space over an algebraically closed field F, and $T \in \mathcal{L}(V)$. Show that T is triangularizable. (Hint: we prove it by induction on the dimension of V. Let **v** be an eigenvector of T, and $W = \text{Span}\{\mathbf{v}\}$. The \tilde{T} is a linear transformation from V/W to V/W. Then we apply the induction hypothesis on V/W.)

Problem 7. Let V be a vector space over F, and $T, U \in \mathcal{L}(V)$ which commutes; i.e., TU = UT.

- (a) Let W be a T-invariant subspace. Show that U(W) is also T-invariant.
- (b) Let λ be an eigenvalue of T. A subspace $V_{\lambda} = \{\mathbf{v} \in V | T(\mathbf{v}) = \lambda \mathbf{v}\}$ of V is called the **eigenspace** of V associated to λ or simply λ -eigenspace. Show that V_{λ} is U-invariant.
- (c) Assume that F is algebraically closed. Show that T and U have an common eigenvector \mathbf{v} .
- (d) Assume that F is algebraically closed. Show that T and U can be simultaneously triangularizable.

Problem 8. Let V be a vector space over F of dimension n, and let V^* be the vector space of linear functionals on V. That is, let:

$$V^* = \operatorname{Hom}(V, F) = \{T \colon V \to F \mid T \text{ is linear}\}$$

(This V^* is called the dual space of V.) Prove that $\dim V^* = \dim V$.

Problem 9. Let V and W be vector spaces over F, and let $T: V \to W$ be a linear transformation. Let V^* and W^* be the dual vector spaces, defined on the previous problem (or in section 2.6).

Prove that $T^* \colon W^* \to V^*$ is a linear transformation:

$$T^*(f) = f \circ T$$

 $(T^* \text{ is called the dual transformation to } T.)$

Problem 10. Let V be a vector space over F with basis $\mathfrak{B} = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$. For each i, define an element $\mathbf{v}_i^* \in V^*$ by:

$$\mathbf{v}_i^*(a_1\mathbf{v}_1+\ldots+a_n\mathbf{v}_n)=a_i$$

Show that the set $\mathfrak{B}^* = {\mathbf{v}_1^*, \dots, \mathbf{v}_n^*}$ is a basis of V^* . \mathfrak{B}^* is called the **dual basis** of \mathfrak{B} .

Problem 11. Let V be a vector space with basis $\mathfrak{B} = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$, and let W be a vector space with basis $\mathfrak{B}' = {\mathbf{w}_1, \ldots, \mathbf{w}_m}$. Let $T: V \to W$ be a linear transformation. Prove the following relation:

$$[T]_{\mathfrak{B}}^{\mathfrak{B}'} = ([T^*]_{\mathfrak{B}'^*}^{\mathfrak{B}^*})^t$$

Conclude that the rank of T equals the rank of T^* .

Problem 12. Let V and W be finite dimensional vector spaces over F. Define a mapping $g: V^* \times W \to \text{Hom}_F(V, W)$ by for all $l \in V^*$, $\mathbf{w} \in W$, $\mathbf{v} \in V$,

$$g(l, \mathbf{w})(\mathbf{v}) = l(\mathbf{v})\mathbf{w}.$$

- (a) Show that g is bilinear.
- (b) By the universal property of the tensor product, we have a module homomorphism (linear transformation) h from $V^* \otimes W$ to $\operatorname{Hom}_F(V, W)$. Prove that h is an isomorphism.

Problem 13. (Bonus) Let A be a ring, and M, N, and G be modules over A. Define the direct sum $M \oplus N$ of M and N to be the set of $M \times N = \{(m, n) | m \in M, n \in N\}$ with the addition and the scalar multiplication as follows: for all $m, m_1, m_2 \in M, n, n_1, n_2 \in N, a \in A$,

$$(m_1, n_1) + (m_2, n_2) = (m_1 + m_2, n_1 + n_2), \quad a(m, n) = (am, an).$$

It can be proved that $M \oplus N$ is a module over A. Let M_1, M_2, \ldots, M_n be A-modules. We can define $\oplus M_i$ in the same way. Usually, we write the elements in $\oplus M_i$ as $\sum_i m_i$, where $m_i \in M_i$ and the zero element of $\oplus M_i$ is $\sum_i \mathbf{0}_{M_i}$.

We have learned from the last homework that linear independence is not very useful for general modules. However, there are objects in modules which are similar to vector spaces. Let M be a module over a ring A and S be a subset of M. We say that S is a **basis** of M if S is not empty, if S generates M, and if S is linearly independent; in particular, if S is a basis of M, then $M \neq \{0\}$ and every elements of M has a unique expression as a linear combination of elements of M. We say M is a **free** module if M has a basis. We also define the zero module to be a free module generated by an empty set. For example, A itself is a free module over A. If M has a finite basis $\mathfrak{B} = \{m_1, \ldots, m_n\}$, then

$$M \simeq \bigoplus_i Am_i \simeq A^i$$

As we shown before, not every module has a basis. We say a ring A is a **domain** if for all $a, b \in A$, $a \neq 0, b \neq 0$, then $ab \neq 0$. A commutative domain A is called a **a principal ideal domain** if every ideal of A is principal. In this problem, we would like to show that free modules over principal ideal domains have similar properties of vector spaces.

To avoid the complication, from now on, we assume that A = P(F), the polynomial ring over a field F. We have proved that A is principal. It is an integral domain since the product of any two non-zero polynomials are still a non-zero polynomial.

(a) Let M be a module over A, and \mathfrak{a} be an ideal of A. Let $\mathfrak{a}M$ be a subset of M defined as

$$\mathfrak{a}M = \operatorname{Span}\{am\}_{a \in \mathfrak{a}, m \in M} = \{a_1m_1 + \dots + a_nm_n | a_i \in \mathfrak{a}, m_i \in M, n \in \mathbb{N}\}$$

Show that $\mathfrak{a}M$ is a submodule. (Hint: the same as vector spaces, to prove a subset S is a submodule, we only need to show that S contains the zero element, and closed under addition and scalar multiplication.)

(b) Consider the quotient module $M/\mathfrak{a}M$. It is again an A-module (you do not need to show this). We define a scalar multiplication of A/\mathfrak{a} on $M/\mathfrak{a}M$ as follows:

$$(a + \mathfrak{a}) \cdot (m + \mathfrak{a}M) = am + \mathfrak{a}M.$$

Show that this scalar multiplication is well-defined. Indeed, $M/\mathfrak{a}M$ is an A/\mathfrak{a} -module under this scalar multiplication (you do not need to prove this).

(c) Let M be a free module over A with a finite basis $\mathfrak{B} = \{m_1, \ldots, m_n\}$, and \mathfrak{a} an ideal of A. We know that $M \simeq \bigoplus_i Am_i$. Show that

$$M/\mathfrak{a}M \simeq \oplus_i Am_i/\mathfrak{a}m_i$$

as A-modules and A/\mathfrak{a} -modules.

(Hint: consider a mapping ϕ defined by for $m = \sum a_i m_i$,

$$\phi: m + \mathfrak{a}M \mapsto \sum_{i} (a_i m_i + \mathfrak{a}m_i)$$

Show that ϕ is an isomorphism.)

- (d) Let M be a free module with a basis $\{m\}$ and \mathfrak{a} an ideal of A. Show that $M/\mathfrak{a}M$ is isomorphic to A/\mathfrak{a} as A-modules and A/\mathfrak{a} -modules.
- (e) Let M be a free module with a finite basis. Show that every basis has the same cardinality. This number is called the **dimension** of M. (Hint: consider an irreducible polynomial f in A (is there one?). Let $\mathfrak{a} = Af$, the principal ideal generated by f. Then A/\mathfrak{a} is a field. Now the module $M/\mathfrak{a}M$ is a module over a field A/\mathfrak{a} , and therefore it is a vector space over A/\mathfrak{a} . Use this information to show that every basis of M has the same cardinality.)
- (f) Let M be a finitely generated free module over A, and N a submodule. Then M is free and its dimension is less than for equal to the dimension of M. (Hint: let $\mathfrak{B} = \{m_1, \ldots, m_n\}$ be a basis of M, M_r the submodules of M generated by $\{m_1, \ldots, m_r \text{ for } r = 1, \ldots, n, \text{ and } N_r = N \cap M_r$. We prove by induction on r. For r = 1, $N_1 = \{am_1 | am_1 \in N\}$. First of all, show that the subset $\{a \in A | am_1 \in N_1\}$ of A is an ideal and therefore $\{a \in A | am_1 \in N_1\} = Aa_1$ for some $a_1 \in A$. If $a_1 = 0$, then $N_1 = \{0\}$ and we are done. If not, it implies $N_1 = \text{Span}\{a_1m_1\}$, which is a free module of dimension 1. Assume inductively that N_r is free of dimension less than or equal to r. Let \mathfrak{a} be the set of all elements $a \in A$ such that there exist an element $n \in N$ which can be written

$$n = b_1 m_1 + \dots + b_r m_r + a m_{r+1},$$

for $b_i \in A$. Show that \mathfrak{a} is an ideal and use this information to show that N_{r+1} is free.)