
Math 146, Winter 2008

Homework #5
Due on Wednesday, March 12.

Problem 1. Let B = {(1, 2, 4), (0,−1, 1), (2, 3, 8)} be a basis of R3, and consider the linear transformation
T : R3 → R3 whose standard matrix is:  1 1 0

0 −1 1
−1 1 1


Find the matrix [T ]B. (Recall that [T ]B = [T ]B

B
.)

Let V be a dimensional vector space V over F , and T ∈ L(V), a linear transformation from V to V .
We say that T is triangularizable if there exists an ordered basis B of V such that [T ]B is an upper
triangular matrix, i.e,

[[T ]B]ij = 0, for all i > j.

The following sequence of problems is to prove the statements below. For F = C, or more generally, any
algebraically closed field, T is triangularizable. Moreover, under the same condition, for any two com-
mutative linear transformation T, U ∈ L(V ), i.e., TU = UT , they are simultaneously triangularizable,
which means that there exists an ordered basis B of V such that [T ]B and [U ]B are upper triangular.

In particular, for any n×n matrix A ∈ Mnn(C), there exists an invertible n×n matrix Q ∈ Mnn(C) such
that Q−1AQ is an upper triangular matrix. Moreover, for any two matrices A,B ∈ Mnn(C), AB = BA,
then there exists an invertible n × n matrix Q ∈ Mnn(C) such that both Q−1AQ and Q−1BQ are upper
triangular matrices.

Problem 2. Let V be a vector space over F , W ⊂ V a subspace. As we have introduced in tutorials,
we can define the set V/W of equivalence classes, under the equivalence relation ∼W , or modW

x ∼W y ⇐⇒ x − y ∈ W.

More precisely, let x + W be the subset of V consisting of all vectors of the form x + w for some w ∈ W ;
i.e.,

x + W = {x + w|w ∈ W}.
Then V/W is the set consisting of all distinct subsets of V of the form x + W ; i.e.,

V/W =
{
x + W |x ∈ V

}
.

We also denote x + W = [x] mod W , or simply just [x]W or [x]. Define an addition and a scalar multipli-
cation on V/W as follows: for all x,y ∈ V , c ∈ F ,

(x + W ) + (y + W ) := [(x + y) + W ], c · (x + W ) := (cx + W ).

(a) Show that V/W is a vector space under the addition and scalar multiplication defined above. This
vector space is called the quotient space of V by W .

(b) Let V be an n-dimensional vector space over F and W an m-dimensional subspace of V . Prove
that V/W is an n − m-dimensional vector space.

(c) Let W a subspace of V , and T a linear transformation from V to itself. We say that W is an
invariant subspace of T , or T -invariant if T (W ) = {T (w)|w ∈ W} is contained in W . Let W
be an invariant space of T . Show that a mapping T̃ from V/W to V/W defined by

T̃ ([v]W ) = [T (v)]W

is a well-defined linear transformation. This linear transformation is called the restriction of T
on W .
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Problem 3.
Let V be a vector space, W ⊂ V a subspace, and let q : V → V/W be the natural linear transformation:

q(v) = [v] mod W

where [v] denotes the equivalence class of v modulo W . Let Z be a vector space, and let T : V → Z be a
linear transformation.

(a) If W 6⊂ ker T , prove that there is no linear transformation T̃ : V/W → Z such that T = T̃ ◦ q.
(b) If W ⊂ ker T , prove that there is a linear transformation T̃ : V/W → Z such that T = T̃ ◦ q.

Problem 4. Let V be am n-dimensional vector space over F , and T ∈ L(V ), a linear transformation
from V to itself. Given a polynomial f =

∑m
i=0 ait

i ∈ P (F ), we define

f(T ) :=
m∑

i=0

aiT
i,

where T i = T ◦ (T i−1) and T 0 = idV , the identity transformation on V .

(a) Show that there is a polynomial f such that f(T )=0. Given a bound of the degree of f . (Hint:
consider the subspace H of L(V ), generated by {T i}i=0,1,.... Warning: you are not allowed to use
the theorem of determinant to do this and the following problems.)

(b) Let f, g ∈ P (F ). Show that

f(T ) ◦ g(T ) = (f · g)(T ),

where f · g is the product in P (F ).
(c) Let A(T ) be a subset of P (F ) consisting of all polynomials f such that f(T ) = 0. Show that A(T )

is a subspace of P (F ) with an extra property that for any g ∈ P (F ), f ∈ A(T ), g · f ∈ A(T ).
(c) Let c(T ) be a non-zero polynomial A(T ) with a minimal degree. Show that for any f ∈ A(T ),

c(T )|f ; i.e., there exists g ∈ P (F ) such that f = g · c(T ).

Problem 5. A field F is called algebraically closed if any non-constant polynomial f ∈ P (F ), there
exists α ∈ F such that f(α) = 0. For instance, C is algebraically closed, by the fundamental theorem of
algebra. Let V be a vector space over a field F , and T ∈ L(V ). We say that a non-zero vector v of V is
an eigenvector of T with the eigenvalue λ ∈ F if

T (v) = λv.

(a) Let V be a finite dimensional vector space over an algebraically closed field F , and T ∈ L(V ).
Show that there exists an eigenvector v with an eigenvalue λ for some λ ∈ F . (Hint: using the
previous problem. Consider the factorization of c(T ) = (t − λ) · g(t), and using the minimality of
degree of c(T ) to prove the existence of eigenvectors. Warning: again, you are not allowed to use
the theory of determinant.)

(b) Give an example to show that the statement of (a) is not true if we drop the condition of algebraically
closed on F .

Problem 6. Let V be a finite dimensional vector space over an algebraically closed field F , and T ∈ L(V ).
Show that T is triangularizable. (Hint: we prove it by induction on the dimension of V . Let v be an
eigenvector of T , and W = Span{v}. The T̃ is a linear transformation from V/W to V/W . Then we apply
the induction hypothesis on V/W . )

Problem 7. Let V be a vector space over F , and T, U ∈ L(V ) which commutes; i.e., TU = UT .

(a) Let W be a T -invariant subspace. Show that U(W ) is also T -invariant.
(b) Let λ be an eigenvalue of T . A subspace Vλ = {v ∈ V |T (v) = λv} of V is called the eigenspace

of V associated to λ or simply λ-eigenspace. Show that Vλ is U -invariant.
(c) Assume that F is algebraically closed. Show that T and U have an common eigenvector v.
(d) Assume that F is algebraically closed. Show that T and U can be simultaneously triangularizable.



Problem 8. Let V be a vector space over F of dimension n, and let V ∗ be the vector space of linear
functionals on V . That is, let:

V ∗ = Hom(V, F ) = {T : V → F | T is linear}
(This V ∗ is called the dual space of V .) Prove that dim V ∗ = dim V .

Problem 9. Let V and W be vector spaces over F , and let T : V → W be a linear transformation. Let
V ∗ and W ∗ be the dual vector spaces, defined on the previous problem (or in section 2.6).

Prove that T ∗ : W ∗ → V ∗ is a linear transformation:

T ∗(f) = f ◦ T

( T ∗ is called the dual transformation to T .)

Problem 10. Let V be a vector space over F with basis B = {v1, . . . ,vn}. For each i, define an element
v∗

i ∈ V ∗ by:
v∗

i (a1v1 + . . . + anvn) = ai

Show that the set B∗ = {v∗
1, . . . ,v

∗
n} is a basis of V ∗. B∗ is called the dual basis of B.

Problem 11. Let V be a vector space with basis B = {v1, . . . ,vn}, and let W be a vector space with
basis B′ = {w1, . . . ,wm}. Let T : V → W be a linear transformation. Prove the following relation:

[T ]B
′

B
= ([T ∗]B

∗

B′∗)t

Conclude that the rank of T equals the rank of T ∗.

Problem 12. Let V and W be finite dimensional vector spaces over F . Define a mapping g : V ∗×W →
HomF (V,W ) by for all l ∈ V ∗, w ∈ W , v ∈ V ,

g(l,w)(v) = l(v)w.

(a) Show that g is bilinear.
(b) By the universal property of the tensor product, we have a module homomorphism (linear trans-

formation) h from V ∗ ⊗ W to HomF (V,W ). Prove that h is an isomorphism.

Problem 13. (Bonus) Let A be a ring, and M , N , and G be modules over A. Define the direct sum
M ⊕ N of M and N to be the set of M × N = {(m,n)|m ∈ M,n ∈ N} with the addition and the scalar
multiplication as follows: for all m, m1,m2 ∈ M , n, n1, n2 ∈ N , a ∈ A,

(m1, n1) + (m2, n2) = (m1 + m2, n1 + n2), a(m,n) = (am, an).

It can be proved that M ⊕N is a module over A. Let M1, M2, . . ., Mn be A-modules. We can define ⊕Mi

in the same way. Usually, we write the elements in ⊕Mi as
∑

i mi, where mi ∈ Mi and the zero element
of ⊕Mi is

∑
i 0Mi

.
We have learned from the last homework that linear independence is not very useful for general modules.

However, there are objects in modules which are similar to vector spaces. Let M be a module over a ring
A and S be a subset of M . We say that S is a basis of M if S is not empty, if S generates M , and if S
is linearly independent; in particular, if S is a basis of M , then M 6= {0} and every elements of M has a
unique expression as a linear combination of elements of M . We say M is a free module if M has a basis.
We also define the zero module to be a free module generated by an empty set. For example, A itself is a
free module over A. If M has a finite basis B = {m1, . . . ,mn}, then

M ' ⊕iAmi ' An

As we shown before, not every module has a basis. We say a ring A is a domain if for all a, b ∈ A,
a 6= 0, b 6= 0, then ab 6= 0. A commutative domain A is called a a principal ideal domain if every ideal
of A is principal. In this problem, we would like to show that free modules over principal ideal domains
have similar properties of vector spaces.

To avoid the complication, from now on, we assume that A = P (F ), the polynomial ring over a field
F . We have proved that A is principal. It is an integral domain since the product of any two non-zero
polynomials are still a non-zero polynomial.



(a) Let M be a module over A, and a be an ideal of A. Let aM be a subset of M defined as

aM = Span{am}a∈a,m∈M = {a1m1 + · · · + anmn|ai ∈ a,mi ∈ M,n ∈ N}.
Show that aM is a submodule. (Hint: the same as vector spaces, to prove a subset S is a submodule,
we only need to show that S contains the zero element, and closed under addition and scalar
multiplication.)

(b) Consider the quotient module M/aM . It is again an A-module (you do not need to show this). We
define a scalar multiplication of A/a on M/aM as follows:

(a + a) · (m + aM) = am + aM.

Show that this scalar multiplication is well-defined. Indeed, M/aM is an A/a-module under this
scalar multiplication (you do not need to prove this).

(c) Let M be a free module over A with a finite basis B = {m1, . . . ,mn}, and a an ideal of A. We
know that M ' ⊕iAmi. Show that

M/aM ' ⊕iAmi/ami

as A-modules and A/a-modules.
(Hint: consider a mapping φ defined by for m =

∑
aimi,

φ : m + aM 7→
∑

i

(aimi + ami).

Show that φ is an isomorphism.)
(d) Let M be a free module with a basis {m} and a an ideal of A. Show that M/aM is isomorphic to

A/a as A-modules and A/a-modules.
(e) Let M be a free module with a finite basis. Show that every basis has the same cardinality. This

number is called the dimension of M . (Hint: consider an irreducible polynomial f in A (is there
one?). Let a = Af , the principal ideal generated by f . Then A/a is a field. Now the module M/aM
is a module over a field A/a, and therefore it is a vector space over A/a. Use this information to
show that every basis of M has the same cardinality.)

(f) Let M be a finitely generated free module over A, and N a submodule. Then M is free and its
dimension is less than for equal to the dimension of M . (Hint: let B = {m1, . . . ,mn} be a basis
of M , Mr the submodules of M generated by {m1, . . . ,mr for r = 1, . . . , n, and Nr = N ∩ Mr.
We prove by induction on r. For r = 1, N1 = {am1|am1 ∈ N}. First of all, show that the subset
{a ∈ A|am1 ∈ N1} of A is an ideal and therefore {a ∈ A|am1 ∈ N1} = Aa1 for some a1 ∈ A. If
a1 = 0, then N1 = {0} and we are done. If not, it implies N1 = Span{a1m1}, which is a free module
of dimension 1. Assume inductively that Nr is free of dimension less than or equal to r. Let a be
the set of all elements a ∈ A such that there exist an element n ∈ N which can be written

n = b1m1 + · · · + brmr + amr+1,

for bi ∈ A. Show that a is an ideal and use this information to show that Nr+1 is free.)


