
Math 146, Winter 2008

Homework #4
Due on Wednesday, February 27.

Problem 1. Find the inverse of the following matrix: 1 2 −4
−1 −1 5

2 7 −3


Problem 2. Let T : R3 → P2(Q) be the following linear transformation:

T (x, y, z) = (x + y − 2z)t2 + (x + 2y + z)t + (2x + 2y − 3z)

Prove that T is an isomorphism, and find a formula for T−1.

Problem 3. Find a basis for the column space of the following matrix: 1 0 −1 0
1 −4 1 2
3 2 −4 −1


Problem 4. Find a basis for the row space, the column space and the null space of the following matrix:1 1 0 −1

1 2 3 0
2 3 3 −1

 .

Problem 5. Let V = C2(R) be a set of all continuous functions on R, with their values in C, which is a
vector space over C. Without using the uniqueness theorem of ordinary differential equations, prove the
following statements.

(a) Let c ∈ C, and f ∈ V which satisfies the conditions,

f ′ − cf = 0, f(0) = 0.

Show that f(x) = 0 for all x ∈ R. (Hint: this is indeed a calculus problem. By the fundamental
theorem of calculus, we have

f(x) = a

∫ x

0

f(t)dt.

Repeat this process and we will get

f(x) = cn

∫ x

0

· · ·
∫ t1

0

f(t1)dt1 · · · dtn.

for any n ∈ N. Now you use the fact that f(x) is bounded on [0, x] (why?) to show that f(x) must
be zero as n → ∞. )

(b) Using Part (a), show that the subspace H of V defined by

H = {f ∈ V |f ′ − cf = 0}
is one-dimensional and {ecx} is a basis of H.

(c) Let c ∈ C, and H ′ be a subspace of V defined by

H = {f ′ ∈ V |f ′ − c2f = 0}.
Show that H finite dimensional. Find the dimension of H ′ and a basis of H ′. (Hint: for any d ∈ C,
let Td = D − dI be a mapping from V to V defined as

D − dI(f) = f ′ − df.

Then Td is a linear transformation. We can identify H ′ as the kernel of Tc ◦T−c or that of T−c ◦Tc.)
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Problem 6. Let T1 (resp. to T2) be the linear transformation of R3 to R3 which is a rotation by angle
π/4 about the z-axis (resp. to x-axis).

(a) Find the matrix representation of T1 and T2 in the standard ordered basis of R3).
(b) Prove that the hyperplane x + y +

√
2z = 0 is mapped to xy-plane by T2T1.

Problem 7. Recall a ring A is a set, together with two laws of composition, called multiplication
and addition respectively, and written as a product and as a sum respectively, satisfying the following
conditions:

(i) For any r, s ∈ A, r + s = s + r.
(ii) There exists a zero 0 ∈ A such that For all r ∈ A, r + 0 = r.
(iii) For all r ∈ A, there exists −r such that r + (−r) = 0.
(iv) For all r, s, t ∈ A, r(st) = (rs)t.
(v) There exists 1 ∈ A such that for all r ∈ A, 1 · r = r = r · 1. Moreover, 1 6= 0.
(vi) For all r, s, t ∈ A, (r + s)t = rt + st, and t(r + s) = tr + ts.

It satisfies one more condition

(vii) For all r, s ∈ A, rs = sr,

we say A is a commutative ring. For examples, P (F ), the set of all polynomials with coefficients in a
field F , is a commutative ring. However, Mnn(f), the set of all n× n matrices with entries in a field F , is
a ring but not commutative.

Let A be a ring and a is a subset of A. We say that a is a (two-side) ideal of A if a satisfies (i), (ii),
(iii), and

∀r ∈ A, a ∈ a, ra ∈ a, ar ∈ a; (*)

or, equivalently,
Aa ⊂ a, aA ⊂ a

For any ideal a of A, we can define an equivalence relation ≡ moda, by for all r, s ∈ A, r ≡ s mod a if and
only if r − s ∈ a. We denote A/a the set of all equivalence classes associated to ≡ moda. More precisely,

A/a = {r + a|r ∈ A}.
We define an addition and a multiplication on A/a by for all r, s ∈ A

(r + a) + (s + a) = (r + s) + a, (r + a) · (s + a) = rs + a.

(a) Let A be a ring, and a an ideal of A. Prove that the above definitions of the addition and the
multiplication of A/a is well-defined; i.e., if r + a = r′ + a, s + a = s′ + a, then

(r + s) + a = (r′ + s′) + a, rs + a = r′s′ + a.

Indeed, A/a is a ring under the addition and the multiplication defined above, called the quotient
ring of A by a. Note that the zero element in A/a is 0 + a = a and the identity element in A/a is
1 + a. (we will assume this fact later.)

(b) Let A be a ring, and a be a subset of A satisfying the condition (i), (ii), and (iii) above. We still
can define the addition on A/a as the same way as above. Prove that the multiplication on A/a
defined in this problem is well-defined if and only if a satisfies the condition (∗).

(c) Let A be a ring, and a an ideal of A. We say that a is a principal ideal if there exists a ∈ A such
that

a = AaA = {ras|r ∈ A, s ∈ A}.
In this case, we say that a is generated by a. If all ideals of a ring A are principal and 0 6= 1, we call
A is a principal ring. Show that P (F ) and Z are principal rings. (Hint: consider the non-zero
element a in a with minimal degree or absolute value. Show that a = Aa).

(d) Let A = P (F ) and f be an irreducible polynomial of A. Using the fact that for all g ∈ A, there
exist r, s ∈ A such that rg + sf = gcd(f, g), prove that every non-zero element in A/(f) has an
inverse, where (f) = Af is the principal ideal generated by f . As a consequence, A/(f) is a field.
(you do not need to prove this.)



(e) Construct a field with four elements.

Problem 8. Let A be a ring. A (left) module over A, or a (left) A-module M is a set, together with
two operations + and ·, that satisfy exactly the same axioms as vector spaces except replacing F by A.
For example, vector spaces over a field F are modules over F . Other example are Zn, viewed as Z-modules
by for all m ∈ Z

m · [a]n = [ma]n.

Let M and N be two modules over A, and T a map from M to N . We say T is a module homomorphism,
an A-linear map, or A-homomorphism, if for all r ∈ A, m1,m2 ∈ M ,

T (rm1 + m2) = rT (m1) + T (m2).

We use HomA(M,N) to denote the set of all A-homomorphisms from M to N . Similarly, It is exactly
the same as the case in vector spaces, except replacing F by A. Similarly, we can define isomorphisms,
submodules, the span, linear independence on modules as we did for vector spaces.

(a) Let n ∈ N and M = Zn, a Z-module. Show that any non-empty subset S of M is linearly
dependent. This example shows that the term “linear independent/dependent” is not really useful
in the general module setting.

(b) A subset of S a module M over a ring A is said to be a spanning set if M = Span S = {
∑

i aisi|ai ∈
A, si ∈ S}. A module M over a ring A is said to be finitely generated if there exists a finite
spanning set. Show that for any n ∈ N, Zn is finitely generated.

(c) Let M be a finitely generated module over a ring A. A spanning set S of M is called minimal if
any proper subset of S is not a spanning set of M . Let M = Z10. Find two minimal spanning sets
of M whose sizes are different. Therefore, we can not define “dimension” on modules.

(d) Let M = Z, and N = Zn be two Z-modules. List down all elements HomZ(M,N) and HomZ(N,M).

Problem 9. Let A be a commutative ring, and M , N , and G be modules over A. Define the direct
sum M ⊕ N of M and N to be the set of M × N = {(m,n)|m ∈ M,n ∈ N} with the addition and the
scalar multiplication as follows: for all m,m1,m2 ∈ M , n, n1, n2 ∈ N , a ∈ A,

(m1, n1) + (m2, n2) = (m1 + m2, n1 + n2), a(m,n) = (am, an).

It can be proved that M ⊕N is a module over A. Let M1, M2, . . ., Mn be A-modules. We can define ⊕Mi

in the same way.
A mapping g from the set M × N to G is called bilinear if it is linear respect to each component; i.e.,

for all m1,m2 ∈ M , n1, n2 ∈ N , c1, c2 ∈ A,

g(c1m1 + m2, c2n1 + n2) = c1c2g(m1, n1) + c1g(m1, n2) + c2g(m2, n1) + g(m2, n2).

Let K be a module over A with the following property, called the universal property: there exists a
surjective bilinear mapping f from M×N to K such that for any module G over A with a bilinear mapping
g from M ×N to G, there exists a unique module homomorphism h from K to G such that h ◦ f = g; i.e.,
the following diagram commutes

K

h

��

M × N

f
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g
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G

If so, we say that K is a universal object, and called a tensor product of M and N , denoted by
M ⊗A N . For any m ∈ M and n ∈ N , we use m ⊗ n to denote f(m,n). It can be showed that such a
universal object exists.

(a) Prove that the tensor product is unique up to an isomorphism of modules; i.e., if K, and L are
modules over A satisfying the universal property, then there exists a module homomorphism from
K to L, which is bijective and its inverse is also a homomorphism of modules. (Hint: use the



universal property to construct mapping from L to K and K to L, and then use it again to show
the composites of them are identities.)

(b) If V and W be finite dimensional vector spaces over a field F , with bases B = {v1, . . . ,vn} and
C = {w1, . . . ,wm}. Define a vector space X over F whose basis is the set of pairings {(vi,wj) :=
vi ⊗ wj|1 ≤ i ≤ n, 1 ≤ j ≤ m}; i.e.,

X = Span{vi ⊗ wj}1≤i≤n,1≤j≤m} = {
∑
i,j

aijvi ⊗ wj|aij ∈ F}.

We define a mapping f from V × W to X as follows:

f

(∑
i

aivi,
∑

j

bjwj,

)
=
∑
i,j

aibjvi ⊗ wj.

Show that f is bilinear and X is the tensor product V ⊗F W of V and W .
(c) Show that Z5 ⊗Z Z7 is the zero module. (Hint: consider any bilinear mapping g from Z5 × Z7 to

any Z-module M . Show that g is the zero mapping; i.e., g(a, b) = 0 for all a ∈ Z5 and b ∈ Z7.)


