Math 146, Winter 2008

Homework #4
Due on Wednesday, February 27.

Problem 1. Find the inverse of the following matrix:

1 2 -4
-1 -1 5
2 7 =3

Problem 2. Let T: R?® — P»(Q) be the following linear transformation:
T(x,y,2) = (x +y — 22)t> + (v + 2y + 2)t + (2x + 2y — 32)
Prove that T is an isomorphism, and find a formula for 7.

Problem 3. Find a basis for the column space of the following matrix:

1 0 -1 0
1 -4 1 2
3 2 -4 -1

Problem 4. Find a basis for the row space, the column space and the null space of the following matrix:

Problem 5. Let V = C?(R) be a set of all continuous functions on R, with their values in C, which is a
vector space over C. Without using the uniqueness theorem of ordinary differential equations, prove the
following statements.

(a) Let c € C, and f € V which satisfies the conditions,

ff=ecf =0, f(0) =
Show that f(xz) = 0 for all z € R. (Hint: this is indeed a calculus problem. By the fundamental
theorem of calculus, we have
r)=a / ft)dt
0

/ O/fh%

for any n € N. Now you use the fact that f(z) is bounded on [0, z] (why?) to show that f(z) must
be zero as n — 00. )
(b) Using Part (a), show that the subspace H of V defined by

H={feV|f —cf=0}
is one-dimensional and {e®*} is a basis of H.
(c) Let ¢ € C, and H' be a subspace of V' defined by

H={feV|f—&f=0}
Show that H finite dimensional. Find the dimension of H' and a basis of H’. (Hint: for any d € C,
let T; = D — dI be a mapping from V' to V defined as

D—dI(f)=f —df
Then Ty is a linear transformation. We can identify H’ as the kernel of 7.0 7", or that of T_.0T,.)

Repeat this process and we will get



Problem 6. Let T} (resp. to Ty) be the linear transformation of R? to R?® which is a rotation by angle
7/4 about the z-axis (resp. to z-axis).

(a) Find the matrix representation of T} and T, in the standard ordered basis of R?).
(b) Prove that the hyperplane z + y + v/2z = 0 is mapped to xy-plane by T57T}.

Problem 7. Recall a ring A is a set, together with two laws of composition, called multiplication
and addition respectively, and written as a product and as a sum respectively, satisfying the following
conditions:
(i) Forany r,s € A, r+s=s+r.

(ii) There exists a zero 0 € A such that For all r € A, r+0 =r.
(iii) For all r € A, there exists —r such that r + (—r) = 0.
(iv) For all r;s,t € A, r(st) = (rs)t.
(v) There exists 1 € A such that for all r € A, 1 -7 =r =r-1. Moreover, 1 # 0.

(vi) For all m,s,t € A, (r + s)t =rt + st, and t(r + s) = tr + ts.
It satisfies one more condition

(vii) For all r,s € A, rs = sr,
we say A is a commutative ring. For examples, P(F'), the set of all polynomials with coefficients in a

field F', is a commutative ring. However, M, (f), the set of all n X n matrices with entries in a field F' is
a ring but not commutative.

Let A be a ring and a is a subset of A. We say that a is a (two-side) ideal of A if a satisfies (i), (ii),
(iif), and
Vre Aja €a, ra€a,ar € a; (*)
or, equivalently,
AaCa, aACa

For any ideal a of A, we can define an equivalence relation = moda, by for all ,s € A, r = s mod a if and
only if r — s € a. We denote A/a the set of all equivalence classes associated to = moda. More precisely,

Ala={r+a|r € A}
We define an addition and a multiplication on A/a by for all r,s € A
(r+a)+(s+a)=(r+s)+a, (r+a)-(s+a)=rs+a.

(a) Let A be a ring, and a an ideal of A. Prove that the above definitions of the addition and the
multiplication of A/a is well-defined; i.e., if r+a=17"+a, s+ a =5+ a, then

(r+s)+a=0"+s)+a, rs+a=r's+a

Indeed, A/a is a ring under the addition and the multiplication defined above, called the quotient
ring of A by a. Note that the zero element in A/a is 0 + a = a and the identity element in A/a is
1+ a. (we will assume this fact later.)

(b) Let A be a ring, and a be a subset of A satisfying the condition (i), (ii), and (iii) above. We still
can define the addition on A/a as the same way as above. Prove that the multiplication on A/a
defined in this problem is well-defined if and only if a satisfies the condition (x).

(c) Let A be aring, and a an ideal of A. We say that a is a principal ideal if there exists a € A such
that

a = AaA = {ras|lr € A,s € A}.
In this case, we say that a is generated by a. If all ideals of a ring A are principal and 0 # 1, we call
A is a principal ring. Show that P(F) and Z are principal rings. (Hint: consider the non-zero
element @ in a with minimal degree or absolute value. Show that a = Aa).

(d) Let A = P(F) and f be an irreducible polynomial of A. Using the fact that for all g € A, there
exist r,s € A such that rg + sf = ged(f, g), prove that every non-zero element in A/(f) has an
inverse, where (f) = Af is the principal ideal generated by f. As a consequence, A/(f) is a field.
(you do not need to prove this.)



(e) Construct a field with four elements.

Problem 8. Let A be aring. A (left) module over A, or a (left) A-module M is a set, together with
two operations + and -, that satisfy exactly the same axioms as vector spaces except replacing F' by A.
For example, vector spaces over a field F' are modules over F'. Other example are Z,,, viewed as Z-modules
by for all m € Z

m - [a], = [mal,.
Let M and N be two modules over A, and T"a map from M to N. We say T'is a module homomorphism,
an A-linear map, or A-homomorphism, if for all r € A, m;, my € M,

T(rmy +mg) = 7T (my) + T (my).

We use Homa (M, N) to denote the set of all A-homomorphisms from M to N. Similarly, It is exactly
the same as the case in vector spaces, except replacing F' by A. Similarly, we can define isomorphisms,
submodules, the span, linear independence on modules as we did for vector spaces.

(a) Let n € N and M = Z,, a Z-module. Show that any non-empty subset S of M is linearly
dependent. This example shows that the term “linear independent/dependent” is not really useful
in the general module setting.

(b) A subset of S a module M over a ring A is said to be a spanning set if M = Span S = {}_, a;s;|a; €
A,s; € S}. A module M over a ring A is said to be finitely generated if there exists a finite
spanning set. Show that for any n € N, Z,, is finitely generated.

(c) Let M be a finitely generated module over a ring A. A spanning set S of M is called minimal if
any proper subset of S is not a spanning set of M. Let M = Z1o. Find two minimal spanning sets
of M whose sizes are different. Therefore, we can not define “dimension” on modules.

(d) Let M = Z, and N = Z,, be two Z-modules. List down all elements Homyz (M, N') and Homgz (N, M).

Problem 9. Let A be a commutative ring, and M, N, and G be modules over A. Define the direct
sum M @ N of M and N to be the set of M x N = {(m,n)lm € M,n € N} with the addition and the
scalar multiplication as follows: for all m,my,ms € M, n,ny,ns € N, a € A,

(m1,n1) + (M2, n2) = (M1 +ma,ny +na), a(m,n) = (am,an).

It can be proved that M & N is a module over A. Let My, Ms, ..., M, be A-modules. We can define ®&M;
in the same way.

A mapping ¢ from the set M x N to G is called bilinear if it is linear respect to each component; i.e.,
for all my,ms € M, ny,ny € N, ¢1,09 € A,

g(crmy +ma, cony + ng) = cicag(ma, n1) + crg(ma, ng) + cag(ma, n1) + g(ma, na).

Let K be a module over A with the following property, called the universal property: there exists a
surjective bilinear mapping f from M x N to K such that for any module G over A with a bilinear mapping
g from M x N to G, there exists a unique module homomorphism A from K to G such that ho f = g; i.e.,
the following diagram commutes

If so, we say that K is a universal object, and called a tensor product of M and N, denoted by

M ®4 N. For any m € M and n € N, we use m ® n to denote f(m,n). It can be showed that such a
universal object exists.

(a) Prove that the tensor product is unique up to an isomorphism of modules; i.e., if K, and L are

modules over A satisfying the universal property, then there exists a module homomorphism from

K to L, which is bijective and its inverse is also a homomorphism of modules. (Hint: use the



universal property to construct mapping from L to K and K to L, and then use it again to show
the composites of them are identities.)

(b) If V and W be finite dimensional vector spaces over a field F', with bases B = {vy,...,v,} and
¢ ={wy,...,wy,}. Define a vector space X over F whose basis is the set of pairings {(v;, w;) :=
vi@w;|l <i<n,1<j<m}ie,

X = Span{v; @ W, hi<i<ni<jem} = { ) aijvi ® wjlai; € F}.
i

We define a mapping f from V x W to X as follows:

f (Z a;vj, Z bjo, ) = Z az-iji X W;.
i J 1,J
Show that f is bilinear and X is the tensor product V ®@r W of V' and W.
(c) Show that Zs ®y Z7 is the zero module. (Hint: consider any bilinear mapping g from Zs x Z7 to
any Z-module M. Show that g is the zero mapping; i.e., g(a,b) = 0 for all a € Zs and b € Z;.)



