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‘SUMMARY

The work of a previous paper on the elastic stability of a thin twisted strip
has been corrected and extended to the consideration of the stability of the
twisted strip when it is also subjected to a tension along its length. It is
found that the strip becomes unstable at a definite value of the twist and
that the instability is in the form of a number of loops superposed on the
twisted strip in contrast to one loop in the case when no tension acts on the
strip. The theory has been compared with experiment and satisfactorily
good agreement between them is found.
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Stability of Polyatomic Molecules in Degenerate
Electronic States

I—Orbital Degeneracy

By H. A. JanN, Davy-Faraday Laboratory, The Royal Institution
AND E. TELLER, George Washington University, Washington, D.C.*

(Communicated by F. G. Donnan, F.R.8.— Received 17 February 1937)

INTRODUCTION

In the following we investigate the conditions under which a polyatomic
“molecule can have a stable equilibrium configuration when its electronic
state has orbital degeneracy, i.e. degeneracy not arising from the spin. We
shall show that stability and degeneracy are not possible simultaneously
unless the molecule is a linear one, i.e. unless all the nuclei in the equilibrium
configuration lie on a straight line. We shall see also that the instability is
only slight if the degeneracy is due solely to electrons having no great
influence on the binding of the molecule.

* This research was carried out when the authors were working in the Sir William
Ramsay Laboratories of Inorganic and Physical Chemistry, University College,
London.
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We first note that if accidental degeneracy (i.e. degeneracy not caused by
symmetry) is disregarded then a degenerate electronic state necessarily
entails a symmetrical nuclear configuration. Thus in order to cover all cases
we may first consider each possible type of symmetry separately and discuss
what nuclear configurations are consistent with each symmetry. A given
molecule will possess a continuous set of configurations consistent with one
definite type of symmetry, and among these configurations there may be one
with a minimum electronic energy. This configuration is then stable with
respect to all totally symmetrical nuclear displacements (i.e. displacements
which do not disturb the symmetry). Weshall have to investigateits stability
with respect to all other nuclear displacements.

Now a nuclear configuration cannot be stable if the electronic energy for
neighbouring configurations depends linearly upon any one of the nuclear
displacements. There may be reasons of symmetry, however, which preclude
such a linear dependence, and we illustrate the occurrence and non-occur-
rence of this respectively by the two following examples. In these examples
there is the added complication that the nuclear displacements in question
cause a splitting of the degenerate electronic state into states with different
energies. This complication will be the rule rather than the exception, since
the displacements reduce the symmetry of the original configuration. A
linear dependence upon a nuclear displacement of the energy of any one of
these states formed by the splitting is then sufficient to cause instability.

1—Two ExAMPLES

In our first example we consider the motion of a single electron in the field
of three nuclei lying on a straight line. The states of the electron can then be
classified as o, 7, d, etc., states according as the component of the electron’s
orbital angular momentum along the nuclear axisis 0, + 1, '+ 2, etc. (in units
of h/2m). The o states are non-degenerate, whilst the 7, ¢ and further states
are each twofold degenerate, corresponding to the fact that the electron may
move either clockwise or anticlockwise about the nuclear axis. If, now, one
of the nuclei (say the middle one) is displaced through a distance d per-
pendicular to the axis, then the axial symmetry will be destroyed and the
degeneracy removed. Each twofold degenerate state will split into two
states, one symmetrical with respect to reflexions in the plane of the nuclei
and the other antisymmetrical with respect to the same plane. These states
will have different energies E, and E,. When the nuclear displacement is
varied these states and their energies will change continuously, but their
symmetry will remain and it is clear that when the displacement is —d the
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states and energies will be the same as before. Thus the two energies E; and
E, must be even functions of d, and all that is required for stability with
respect to this nuclear displacement is that the function be positive in both
cases (see fig. 1).

ES ES

Fic. 1

In our second example we consider the motion of a single electron in the
field of a plane square configuration of four identical nuclei. There is a
similarity between the two examples in that, in the first example once the
wave function on any half-plane through the axis is given, then it is deter-
mined by symmetry for all other such half-planes: a rotation through the
angle ¢ multiplies the wave function by e?*%, where A is the axial component
of the orbital angular momentum. Inthesecond example, on the other hand,
the symmetry about the axis through the centre of the square, although
considerably reduced, still determines the wave function completely on any
four half-planes at right angles to each other, once the wave function has
been given on any one of them. The function is again multiplied by ¢,
where here @ is restricted to the values + /2, 7 and A can have the values 0,
+ 1. The state with | A | = 1is again twofold degenerate. We will discuss the
stability of the square configuration for this degenerate electronic state.
Consider the two displaced configurations I and IT depicted in fig. 2. These

Fic. 2
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may be regarded clearly as belonging to a positive and negative value of one
and the same nuclear displacement. This nuclear displacement destroys the
fourfold axial symmetry, replacing it by a twofold one. The degenerate state
will split into two states ¢, and ¢,., the first having a node in the horizontal
plane of symmetry o and the second a node in the vertical plane ¢’. Now it is
clear that since the configurations I and II are geometrically congruent and
the planes ¢, o in II correspond respectively to the planes o, o’ in I, the
energy of ¢, for the configuration I must be the same as the energy of ¢, for
the configuration IT. Thusif E_, E_. are the corresponding energies, we must

have the relation
EU(I) = Eo"(II)'

Similarly : E_(II) = E_(I).

Thus the two energy levels E,, E . have crossed over at the energy E, of the
undisplaced configuration (see fig. 2). There is here thus no apparent reason
of symmetry which precludes a linear dependence of the energy levels upon
the nuclear displacement in the neighbourhood of E,, and the square con-
figuration therefore will not in general be a stable equilibrium configuration
for the degenerate electronic state.

2—GENERAL THEOREM

In the above two examples we have seen how the type of molecular
symmetry can determine whether the energy of a degenerate electronic
state should depend linearly or not upon nuclear displacements. It is our
purpose to study this influence for all possible types of symmetry. We do
this by an application of group theory to perturbation calculation. We
restrict ourselves in this paper to orbital degeneracy and reserve the con-
sideration of the special effects due to spin degeneracy for a second paper.
The electronic energy levels of the displaced configuration are the charac-
teristic values of a perturbation matrix, the elements of which may be
expressed as a power series in the nuclear displacements. Unless those
perturbation matrix elements which are linear in the nuclear displacements
all vanish, then at least one perturbed energy level will depend linearly upon
a nuclear displacement. Now the elements of these matrices are integrals
which are necessarily invariant with regard to the group of symmetry of the
equilibrium configuration. The integrands, on the other hand, are products
whose transformation properties are determined by those of the degenerate
electronic wave functions and the nuclear displacements. From an in-
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vestigation of these transformation properties it may be deduced whether
the invariance of the integrals and the transformation properties of the
integrands are compatible. Unless this is the case the integrals vanish. If,
however, they are compatible the matrix elements depending linearly upon
the nuclear displacements will be in general different from zero. It will be
found that all linear matrix elements will necessarily vanish only when the
nuclear configuration shows complete axial symmetry, i.e. only when all the
nuclei in the molecule lie on a straight line. AU non-linear nuclear configura-
tions are therefore unstable for an orbitally degeneraie electronic state. Thus if we
know of a polyatomic molecule that the nuclei in the equilibrium configura-
tion do not all lie on a straight line, then we know at the same time that its
ground electronic state does not possess orbital degeneracy. We should
exclude from our consideration, however, orbitally degenerate electronic
states in which the degenerate electrons do not contribute appreciably to the
molecular binding and are not perturbed therefore by nuclear displacements.
Such is the case for the inner degenerate electronic shells of the paramagnetic
rare earth ionic salts. If, apart from such instances, a non-linear molecule is
paramagnetic, then we may conclude that this paramagnetism must be due
to the action of the spin alone, for it is well known that a non-degenerate
orbital state can possess neither a mean orbital angular momentum nor a
mean orbital magnetic moment (cf. van Vleck 1932).

3—MATHEMATICAL, FORMULATION AND GROUP-
THEORETICAL CONSIDERATIONS

We shall have to consider nuclear configurations ¢ which can be obtained
from the given symmetrical configuration @, by adding a linear combination
of a complete set of displaced configurations @, which may be chosen ortho-
gonal to each other, to the translations and rotations and also to all the
totally symmetrical displacements:

Q = Q0+ZTQT777"

Here the 7, are infinitesimally small quantities which we will call the (non-
totally symmetrical) normal displacements of the configuration @,. It is to
be noted that the 7, can be so chosen that they transform according to
irreducible representations of the symmetry group of @, (cf. Wigner 1930).

The energy operator H(Q) for the electronic motion in the field of the
nuclei fixed in the configuration @ can be expanded as a power series in the 7,:

H = HO+2K(Q)”r+ZK3(Q)7]rﬂs+ cre
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where the V,, 7, are functions of the electronic coordinates g alone, since the
kinetic energy of the electrons is included in the energy operator Hj. ’

Let E, be the energy level of the degenerate electronic state and ¢, a
complete set of orthogonal wave functions such that

H0¢p = E0¢p' ‘

In the configuration @ this energy level either may be spﬁt up into a number
of different energy levels E, or it may be merely displaced (i.e. the degeneracy
may not be removed). The configuration ¢, can be stable with respect to all
nuclear displacements only if each of these energy levels £, has a minimum
. for @ = @,. We denote the contribution to the perturbed energy Z, arising
from the linear terms > V.7, by EZ, putting

r

B, = By+H+

Perturbation theory shows that the perturbation energies EZ are the
characteristic values of a perturbation matrix having the following elements:

Mpo' = 2771' ¢§Vr¢ad’r'

Now it is clear that if & is a characteristic value of this matrix for a given set
of values of the 7,, then — E is a characteristic value for the configuration
obtained by changing the sign of all the 7,. Thus unless the characteristic
values of this matrix all vanish (in which case the matrix itself must vamsh)
the configuration @, cannot possibly be a stable one.

If the representation of the symmetry group of the conﬁguratlon @
which is subtended by the products ¢%V,¢, does not contain the identical

represeﬁtation, then the integrals fgﬁ;‘ V. ¢,dr will vanish, for these integrals

are necessarily invariant with respect to the symmetry operations. If this
condition does not hold, then the integrals in general will not vanish. Now
the normal displacements 7, may be chosen so that the ¥, transform accord-
ing to irreducible representations V of the group of symmetry. The de-
generate wave functions ¢, will also subtend a representation @ of the group
of symmetry, which representation will be in general irreducible. An
exception occurs here, as Wigner (1932) has shown, when the degeneracy
arising from the invariance of the wave equation with respect to time
reversal is considered; this may cause an “accidental” degeneracy so that
the wave functions of the energy level subtend a representation which is the
sum of two irreducible representations. For our purpose, however, this
double representation @ may be treated as though it were a single one. It
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may then be shown that if we restrict ourselves to orbital degeneracy (i.e. if
we do not consider the spin wave functions) the representation @ and con-
sequently the wave functions ¢, can be chosen always real. The products
¢, V.4, are linearly independent except that of course

b V8 = B,V 9s-

They will therefore transform according to the product representation
V[9?], where [@?] denotes the representation of the symmetrical product of
@ with itself (cf. Weyl 1928). Thus if there exists a normal displacement
(other than a totally symmetrical one) for which V[®?] contains the identical
representation, the symmetrical configuration @, will not be stable.

We may illustrate these general considerations by applying them to the
two examples discussed in the introduction. In the first example the group
of symmetry for a general position of the nuclei on the axis is C%. The
degenerate irreducible representations are all two-dimensional, and there is
an infinite series of them, denoted by %, , E,,..., B, ,.... It can be shown (cf.
Tisza 1933) that the representation of the symmetrical product of £}, is given

by
[B}] =4, + Ey,,
where A, is the unit representation. Placzek (1934) has shown that for

linear nuclear configurations all non-totally symmetrical vibrations are of
the type Z,. One finds

E\[E}] = E\(A,+ Ey) = By + Egp oy + By,

so that the product V[®?] never contains the identical representation 4, for
any non-totally symmetrical vibration and any degenerate electronic state
®. Thus, as has already been seen above, there is no reason of symmetry why
the linear nuclear configuration should not be stable in any of the degenerate
states. In the second example the reverse is the case. Here the group of
symmetry is D?, and there are only two degenerate representations, viz.
E,and E,, g and u referring to even and odd representations with respect to
inversion in the centre of symmetry. These representations are both two-
dimensional. The considerations of Wigner (1930) show that the square
configuration possesses non-totally symmetrical displacements of types

By, By, By, and E,. Since it can be shown that

(7] = [B7] = 41+ Byy+ By,

and since B}, = B}, = 4,,, we see that B, [EZ], B, [EZ%], B, [ E%] and B,,[E?]
all contain the identical representation4,,. Hence normal displacements of
the type B, , or B,, render the square configuration unstable for a degenerate
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electronic state of either type. One verifies easily that the nuclear displace-
ment considered in the example is of the type B,,.

4—PRrOOF OoF GENERAL THEOREM

Excluding the groups of complete axial symmetry, we have to show, for
all configurations and any degenerate one-valued representation of the group
of symmetry, that a symmetrical nuclear configuration necessarily possesses
non-totally symmetrical normal displacements transforming according to
irreducible representations V such that V[®?] contains the identical repre-
sentation. This is equivalent to showing that [®?] in its reduced form con-
tains at least one of the representations V.

Now Wigner (1930) has shown how to calculate for any given nuclear
configuration how many normal displacements of each irreducible type
occur. In order to apply this calculation of Wigner toall possible symmetrical
molecules we note that any symmetrical configuration must contain sets of
equivalent nuclei whose positions are transformed into one another by the
various symmetry operations. For any given group of symmetry there are
various possible kinds of such equivalent sets according as the points lie on
no symmetry element or on one, two or more of them. We have applied the
method of Wigner to all possible sets of equivalent points for the various
groups of symmetry, and the results of our calculations are tabulated in
Table I.

In this table the notation of Placzek (1934), Mulliken (1933), Lennard-
Jones (1934) and Tisza (1933) is used for the groups and their irreducible
representations. Column I gives the designation of the group, columns IT
and III give the reduction into irreducible constituents of the translations
and rotations respectively, column IV gives a designation to the various
kinds of equivalent points for each group, column V gives the number of
equivalent points in each individual set, column VI gives the symmetry.
elements, if any, on which these points lie, whilst the last column VII gives
the reduction into irreducible constituents for the whole set of nuclear
displacements inclusive of translations, rotations and normal displacements
for a “molecule’ consisting of the equivalent points given in column IV. By
subtracting the translations and rotations from this last column we find what
types of normal displacements occur. This subtraction has not been carried
out in the table, since for any molecule more than one set of equivalent
points may occur (i.e. more than one row of the table is required, or the same
row required more than once), whilst the subtraction of the translation and
rotation has'of course only to be carried out once. The table will be useful not
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merely in establishing our theorem but also in showing what normal dis-
placements any given molecule possesses. Tables for this purpose restricted
to the crystallographic point groups have already been published by
Placzek (1934) and further tables for special molecules have been given by
Bright Wilson (1934). ,

Now in order to establish our theorem for each group of symmetry we
must investigate what is the minimum number of points from which a
molecule of the corresponding symmetry can be composed. For instance, if
we want to construct a molecule of the symmetry 7' it will not be sufficient to
take six atoms and place them on the twofold axes (the points (b) in Table I),
for this configuration would have the higher symmetry O;,. To this end we
list in Table IT the minimum number of the different kinds of points which are
necessary and sufficient to produce each of the various groups of symmetry.
In this table an entry such as 2(a) means that two complete sets of points of
the type () have to be taken to produce the necessary symmetry. Types
which are not listed can never produce the symmetry no matter how many
complete sets of such a type are taken, e.g. the type (b) for the group 7'.

Tasre 11
Group Minimum points required to produce symmetry of group
Cy 2(a)
0% (a)
Capa 2(a)
Cap 2(a)
Dyyiy (@)
D,, (@)
Ogm-l (a’)
i, 2(a), 2(b) or (a)+(b)

Dy (@) or (b)
D, (a), (b), (e}, (D), (¢) or (f)

Chi  2(a), 2(0) or (@)+(b)

Dhyy  (a), (B), (¢) or (d)

Chp 2Aa), 200), (@) + (), (@) +(c) or (B) +(¢)

s 2(@), 2(b), 2(c), (@) + (), (@) +(c); (a)+(d), (b)+(c), (b)+(d) or (c)+(d)
Sty 2(a)

Sty (a) or (b)

T (@)

T, (@), (b) or (d)

T (a) or (b)

o (@)

O, (@), (b), (¢), (), (e) or (f)

I (@)

Ih (a’)s (b)’ (C), (d) or (6)
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Tasre III

Symmetrical product of degenerate representatiohs

[El2c]=A1+E2k (k= 1, 2"“)
(B3] = [BL) = Ai,+ By, k=1,2,...)
[BEf] = A+ B,y for k<p/2

=A+E,;,. o for k>p/2 k=1,2,..., p)
[E}] = A+ By, for k<p/2

= A+2B for k = p/2

. =A+ E,y, 4 for k>p/2 (k=1,2,...,p—-1)

[E3] = A+ By for k<p/2

=A,+ By, o for k>p/2 (k=1,...,p)

[E%] = A, + By, for k<p/2

=A,+ B+ B, for k = p/2
=A,+ H,,_ 5, for k>p/2 (k=1,...,p-1)
[BL) = [BL) = A, + By, , for k<p|2
=Ay+ Eypiq g, for k>p/2 (k=1,..., p)
[BL] = (L) = Ag+ By, , for k<p/2
=A,+2B, for k = p/2
=A,+ Bypgy,q for k>p/2  (k=1,...,p—1)
[By) = [B] = Ayy+ By, for k= p/2
» =A,+ Eypiyn, for k>p/2 (k=1,...,p)
(B3] = [BL] = Ay, + By, , for b<p/2
= Ay;+ By, + By, for k = p/2
= A+ Byp g,y for k>pj2 (k=1,...,p—1)
[EZ] =B = A’+ By, for k<p[2
=A'+ B}, o for k>p/2 (k=1,..., p)
[E?] = A+ By, for k<p
=A+2Bfork=yp
=A+E;, o fork>p (k=1,...,2p-1)
[E2] = A+ By, for k<p
=A,+ B+ By fork=p
=A,+Ey, g for k>p (k=1,...,2p—1)
[E*]=A+E
[Fl=A+E+F
[B?]=A,+E8
[FY]=[F]=A4,+E+F,
(Bl = [B] = A4,+E,
[Fj] =[F3]=A9+E0+Fa
[Eﬁ] = [Eﬁ] = A1y+Ea
[Fi, =[FlL]l= [F3] = [F3,]= A+ By + Fy,
[(Fll=[Fil=A+H
[P*]l=4+G+H
[H2] = A+G+2H
[F%n] =[Fll= [F3]=[F3]= 4,+H,
[G§] = [G?,] =A,+ G, +H, v
[(H] = [Hy] = 4,+ G, +2H,
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We require, further, the symmetrical products of the various degenerate
representations. These may be taken from the work of Tisza (1933), for they
are identical with the representations subtended by the first overtones of the
corresponding normal vibrations. For convenience we tabulate in Table I1I
these symmetrical product representations for all degenerate representa-
tions. '

Using Tables I, IT and III, our general theorem will be verified easily.
For instance, according to Table II the group of symmetry O, can be pro-
duced by one complete set of equivalent points of any of the types (a), (b),
(¢), (d), (e) or (f). But from Table I we see that each of these sets of points
has normal displacements of the type E,, and according to Table 111, E [®?]
always contains the identical representation for any degenerate representa-
tion @ of the group O, . We must, of course, always remember that displace-
ments of the type 4,, (or 4; or A or.4,) must not be made use of, since the
molecular configurations considered are always taken to be stable with
respect to all totally symmetrical displacements.

5—CONCLUSION

In concluding we would like to point out again that the forces which tend
to destroy the symmetrical configuration, and which we have shown exist in
cases of orbital degeneracy, will be important only if the degenerate electrons
participate strongly in the binding of the molecule. The effect may be small
~ both if the degenerate electrons are in inner atomic shells or if they are in
highly excited states. Spin degeneracy may also produce similar effects, but
these, too, will be small, since the coupling of spin and nuclear motion will
depend upon the interaction of the spin with the orbital motion of the
electrons, which interaction, at least for light elements, is small. Further-
more, a general theorem of Kramers (1930) and Wigner (1932) shows that for
molecules containing an odd number of electrons there is a twofold spin
degeneracy which cannot be split by any electrical forces. Such twofold
spin degeneracy cannot therefore produce any instability of the molecular
configuration. It can beshown, however, that with the exception of this one
type of degeneracy all degenerate electronic states of non-linear molecules
are unstable whether the degeneracy is due to electronic orbits or to spin.
The proof of this statement, together with a more detailed discussion of the
order of magnitude of splitting, will be given in a second paper.

The authors are indebted to Professor L. Landau for a discussion which -
led to the formulation of the theorem here established. The research was
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carried out in the Sir William Ramsay Laboratories of Inorganic and
Physical Chemistry, University College, London. We are greatly indebted to
the Imperial Chemical Industries, Ltd., for grants which enabled us to
carry out the work, and above all to Professor F. G. Donnan, Director of the
Laboratory, for his great hospitality and kind interest.

SUMMARY

It is shown that orbital electronic degeneracy and stability of the nuclear
configuration are incompatible unless all the atoms of a molecule lie on a
straight line. The proof is based on group theory and is therefore valid only if
accidental degeneracy is disregarded. If the electrons causing the degeneracy
are not essential for molecular binding, only a slight instability will result.
Table I, which is needed to prove the theorem, can also be used to obtain the
number of proper vibrations of a given symmetry type for any polyatomic
molecule.
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