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1. Introduction

This is an almost literal write-up of the 14 lectures I gave at the 1995 Les Houches
school Quantum Symmetry, plus an extra lecture on BPS states and D-branes that sum-
marizes some important developments that have taken place after the school. It should be
regarded as a broad-brushed sketch of modern views on quantum field theory and string
theory, stressing moduli spaces, duality and the interconnectedness of the subject. I have
taken perhaps a more mathematical point of view than is usual in these kind of introduc-
tory texts. I also tried to emphasize the common themes of various fields, perhaps at the
expense of completeness and many details.

In the last decades, in a long series of abstractions and generalizations, string theory
has emerged as the leading candidate for a fundamental theory of nature. Part of the
motivation is (unfortunately, from a physical point of view) the intrinsic mathematical
beauty of the theory. In fact, both directly and indirectly string theory has influenced
various mathematical fields, and vice versa string theory has been influenced by recent
mathematical development. In the last two years we have witnessed a marked change
in pace in all this. In a confluence of a wide variety of ideas, many of them dating
back to the 70s and 80s, the structure, internal consistency and beauty of string theory
has greatly improved. We have now a much better and clearer picture of what string
theory is about. Somehow the original concept of one-dimensional strings generalizing
zero-dimensional point particles has become less central. The extended nature of the
string and the infinite tower of oscillations that comes with it, serves more to naturally
regularize the important field-theoretic massless excitations that include the gravitons
and gauge bosons that mediate the unified forces. Indeed, it is not at all clear that the
massive modes will form stable asymptotic states that can be (in principal) observed.

More than just a generalization of field theory, the crucial fact seems to be that string
theory leads by itself naturally to the most important physical principles, such a quantum
mechanics, general relativity, gauge theories and supersymmetry, without assuming these
from the beginning. Indeed, it seems that any quantum theory that combines these four
ingredients has to be a string theory. One therefore gets a the feeling that we are essentially
dealing with a unique, very constrained object. The precise mathematical definition of
this object still eludes us, but the remarkable internal consistency has been a constant
source of new insights in the nature of quantum systems, the dynamics of gauge theories,
the geometry of space-time, and last but not least a wonderful inspiration for beautiful
mathematics.

Crucial in all the recent developments has been the concept of duality. In fact, duality
has been a powerful idea in physics for a long time, both in statistical mechanics and
field theory. In many respects duality in field theory and string theory can be used as an
organizing principle, as I will try to do in these lectures.
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Fig. 1: A road map for the lectures.

The purpose of these notes is to give an introduction to many of the important elemen-
tary concepts from a point of view that is considerable more mathematical than usual,
as was dictated by the particular audience of this Les Houches school. We will start at
a (pedantically) low level and try to work our way up at a steady pace. In my lectures I
used the analogy of a mountain walk (in a leisurely, Swiss style) and I gave the road map
of fig. 1. as a summary of the course.

Let me describe it in some detail. The scenery consists of two mountain ranges that
we can label as 2D or World-Sheet and as 4D or Space-Time. They both lead to the great
summit of the Theory of Everything. Unfortunately, it is permanently hidden in a thick
layer of clouds, so we have no guarantee that our trail will actually reach this summit.
From the slopes we see the thick Glacier of Experts. Now and then we witness enormous
avalanches on the glacier when big pieces of knowledge drop down and into the ferocious
preprint flow called Hep-th that comes running down the glacier. This treacherous stream
is very difficult to navigate, at least if you are a typical Les Houches student. We will
walk two trails that explore the scenery, avoiding the glacier and the flow of preprints,
that will each take half of the course of lectures.

The first one traverses the two-dimensional range. If the first few miles of this trail
look familiar and uninteresting, I beg the reader patience, since the surroundings will

6



change quickly. We will start with the small hills of Quantum Mechanics, after which we
will move to the barren scenery of 2D Topological Field Theory, a bare bones version of
quantum field theory. In the next stage we will put some flesh to these bones, and explore
Conformal Field Theory. Then we are ready to meet the first examples of T-Duality in the
context of toroidal sigma models. After all this we make our first attempt to scale String
Theory. However, we exclusively take a perturbative point of view using the language of
Riemann surfaces. This will slow down our pace and, more important, our view. Slightly
disappointed with the vista, we return to base camp and plan a second effort, avoiding
the Riemann surfaces.

In our second walk we explore the four-dimensional world, keeping consistently a space-
time perspective. Now we can use non-perturbative techniques to our advantage. We
start by looking at S-Duality in abelian gauge theory. After a little detour to study four-
dimensional Topological Field Theory, we then move on to Supersymmetry, in particular
supersymmetric gauge theories, spending a lot of time on exploring the vacuum structure.
Here the most prominent feature is the Seiberg-Witten Mountain Pass that allows us to
leap forward into the non-perturbative world. The next mountain, Supergravity, we will
mostly skip because the guide feels very uneasy at its slippery slopes. Instead we start
immediately our second ascent of String Theory, now using the powerful tools of duality.
After this strenuous trip, we spend some time at high altitude to look for stringy BPS
States, that we can take home as a souvenir of our adventure and show our mathematical
friends. Slightly dizzy of spending too much time at these great heights, we return back
home, leaving the guide exhausted. (He had to recover for more than a full year, before
he could even start recounting this experience!)

Needless to say, it is unthinkable to make this trip and cover all territory in fine detail,
particularly if one walks in the high mountains. Sometimes we have to jump over a few
crevasses, and we might not have always kept a careful balance. Whenever the reader
gets lost, I hope the (always incomplete) references to the extensive literature can help to
find the way back to the trail. The reader might even try a refreshing dip in the Hep-th
river in the end. Enjoy our trip!

2. What is a quantum field theory?

Before we start the actual lectures, let us make a few very general philosophical remarks
about quantum field theory — a hard to grasp subject, despite decades of physical and
mathematical efforts.

2.1. Axioms vs. path-integrals

There are basically two ways in which one can approach quantum field theories: either
in terms of axioms or in terms of quantization.

1. Axioms. Here we do not refer to any classical theory. One simply looks for a

7



consistent set of amplitudes or correlation functions, satisfying certain well-defined sets
of axioms. Here one can think of such diverse examples as the Wightman’s formulation
of axiomatic field theory [1] or Segal’s geometric axioms of conformal field theory [2].
Although this approach is much preferred from a mathematical point of view, it is, unfor-
tunately, highly non-trivial to define realistic four-dimensional QFTs along these lines. In
fact, only for simpler systems such as topological field theories or two-dimensional theories
can this powerful approach be used to its full extent and satisfaction.

2. Quantization. The textbook approach [3]. Here one starts with some classical
action S(φ) for a classical field φ(x) and subsequently tries to make sense of the path-
integral (over some appropriately defined big enough, infinite-dimensional space of field
configurations)

A =
∫
Dφ eiS(φ)/h̄ P (φ), (2.1)

with P (φ) some local expression representing the correlation function. One usually first
tries to interpret this definition in perturbation theory in Planck’s constant h̄. In a certain
regime, the amplitudes can have a meaningful, although most likely asymptotic, expansion
of the form

A ∼
∑

n

Agh̄
g, (2.2)

where the perturbative coefficients Ag are computed as sums over all Feynman diagrams
Γ with a fixed number of g loops [3]

Ag =
∑

Γ

wΓ

#Aut (Γ)
. (2.3)

Here the individual weight wΓ of the diagram Γ is computed using the Feynman rules
and we divide by the order of the symmetry group of the diagram (as one should do in
all generating functions as a matter of principle). This relation with graphs explains why
quantum field theories can describe point-particles and their interactions. The expansion
of the path-integral in this combinatorical, diagrammatical fashion is of course a very
general property of the asymptotics of integral of weights eiS(φ), where S(φ) is a polynomial
in φ. A famous finite-dimensional example of such an integral is the Airy function.

From this perturbative point of view there is no essential difference between a field
theory and a string theory. String theories just give rise to amplitudes that allow expan-
sions where the coefficients Ag are given as sums of surfaces with g handles. In general
the weight of a particular surface is computed as an integral over the moduli space of
inequivalent conformal metrics Mg on the surface [4]

Ag =
∫

Mg

wg. (2.4)

The beauty of perturbative string theory, as contrasted with perturbative point-particle
field theory, is that at fixed order g in the above expansion there is only one surface with
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g handles to consider, whereas the number of connected graphs growths as g!. So string
theory simplifies the combinatorics. In the usual low-energy limit reduction of string
theory to the supergravity quantum field theory, these various diagrams can be recovered
as particular limits of degenerated surfaces in the “corners” of the moduli space Mg.

It is clear that this expansion in terms of surfaces will not be generated in any obvious
fashion by a path-integral of the form (2.1). Indeed, string field theory, which tries to
do exactly that, is a particularly complicated (and some would say, unnatural) effort to
capture the surface expansion is terms of graphs. In order to do this successfully, one has
to cut up the moduli space of Riemann surfaces Mg in cells, labeled by graphs, such that
the Feynman sum over graphs reduces to an integral over Mg. It is quite remarkable that
this can be done in a completely well-defined and mathematically very beautiful way [5],
and this formalism makes use of the most advanced concepts in the quantization of gauge
systems, such as the BV-formalism [6]. But all in all, at this moment the conceptual
advances in this approach are less striking.

However strong the intuition behind the semi-classical picture is, both in field theory
and in string theory, the perturbative point of view does not adequately capture everything
about a quantum field theory, as has become clear from our growing understanding of the
phenomenon of duality.

2.2. Duality

Indeed, recently a particular powerful framework to think about quantum field theories
has emerged, that is somehow complementary to the axiomatic or path-integral approach
and that stresses the concept of a moduli space of quantum field theories. A central role
is played by duality symmetries. (For a nice physical introduction see e.g. [8].) Through
these dualities the semi-classical quantization point of view looses some of its uniqueness.

Just as is the case for many other fields of mathematics (in particular algebraic ge-
ometry) it is useful to consider families of the objects that one is studying. The space
that parametrizes the objects is usually called a moduli space, and can be studied on its
own. For example, in the case of Riemann surfaces we obtain the moduli space Mg, first
introduced by Riemann and one of the most intricated and beautiful spaces in algebraic
geometry, see e.g. [7]. Other famous moduli spaces are the spaces of vector bundles,
self-dual connections, holomorphic maps etc.

So, following this line of thought, it is natural to consider a family of quantum field
theories. This gives us a parametrized set of amplitudes A(λ), where the moduli λ1, λ2, . . .
take value in a moduli space M. Depending on the particular kind of quantum field theory
that we are interested in, the space M will carry certain geometric structures. Indeed,
one of the important issues in these lectures will be how properties of the QFT translate
into properties of the moduli space.

The classical action underlying the QFT can be recovered in perturbation theory if
there exists a point (or, more generally, a codimension one subspace) in M where one

9
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Fig. 2: In the moduli space of a QFT we could have two pos-
sible semi-classical, perturbative regimes, described by fields
φ with a classical action S(φ) and dual fields φD with a clas-
sical action SD(φD). The transformation relating the vari-
ables in the two different patches is a duality transformation.

of the moduli vanishes, say λ = 0, and where the coefficients Ag in the perturbative
expansion of A in λ

A(λ) ∼
∑

Agλ
g (2.5)

can be computed by Feynman diagrams. Out of the Feynman rules we can then “in
weak coupling” reconstruct the action S(φ). After the fact we can then identify λ as
Planck’s constant. The classical action thus captures the description of the QFT in the
neighbourhood of λ = 0. The zero-locus λ = 0 is then parametrized by the remaining
moduli, that get now reinterpreted as a set of classical coupling constants that appear in
the action S(φ).

And as we stressed above, this perturbative information is in general incomplete (e.g.
has a zero radius of convergence) and has to be be supplemented by non-perturbative
corrections. We can think of the usual semiclassical approach as giving some preferred set
of local coordinates on M in the neighbourhood of λ = 0 (technically the normal bundle
of the locus λ = 0).

However, it is very well possible that there is another point λ0 in the moduli space with
analogous properties, see fig. 2. That is, there can exist a second expansion parameter
λD = λ− λ0 and a second expansion

A(λ0 + λD) ∼
∑

Bgλ
g
D (2.6)

with exactly the same properties as the original, semi-classical expansion (2.5). Out
of the coefficients Bg we can now recover an a priori different classical action SD(φD),
possibly using a completely different set of fields φD. In that case we have two alternative
“quantizations” that give rise to the same family of quantum field theories, and we speak
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of a dual description, with dual fields and a dual action. Note that we also have two
candidates for Planck’s constant, λ and the dual expansion parameter λD. This makes
the concept of quantization ambiguous, to say the least.

There are various examples of such dual formulations, some known for a long time,
some only discovered recently. A rather famous case of a duality transformation is the
identification between free bosons and free fermions in two dimensions, or more generally
the identification between the Sine-Gordon model and the massive Thirring model [9], see
e.g. the textbook [10]. The two models describe respectively a scalar field ϕ(x) with an
interaction of the form

λ−1 cos(λ
1
2ϕ) − 1) (2.7)

and a (massive) fermion field ψ(x) with interaction

λD(ψψ)2. (2.8)

The claim is that these models are physically equivalent, where the coupling constants
λ, λD are related by

λ =
1

1 + λD
(2.9)

In particular weak coupling in the Sine-Gordon model corresponds to strong coupling in
the Thirring model. In the solution of Coleman the fermion field ψ is written in terms of
the boson ϕ as the non-polynomial vertex operator

ψ(x) =: eiϕ(x) : (2.10)

This operator can be seen to create a soliton or kink in the Sine-Gordon model. Vice versa,
the bosons are recovered in the fermionic model by “bosonizing” the charge current as

∂ϕ(x) = ψψ(x). (2.11)

This two-dimensional example captures some important characteristics of the more
general picture. Quite often the dual variables describe solitonic objects in the original
weakly coupled system. These solitons become infinitely massive at weak coupling. At
strong coupling however, the solitonic degrees of freedom can be come very light and take
over the role as preferred classical fields.

For instance, the Montonen-Olive duality [11, 8] of four-dimensionalN = 4 non-abelian
super Yang-Mills theory interchanges the gauge bosons, that are typically thought of as
fundamental fields, with the ’t Hooft-Polyakov monopoles [12] that appear as solitonic
solutions to the classical field equations, thereby also interchanging electric and magnetic
fields. As such it is a quantum realization of the classical electric-magnetic duality of
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(abelian) Maxwell theory, that we will discuss at great length in §9. These kind of dualities
have been generalized successfully to string theory recently, see e.g. [13, 14, 15, 16, 17]
and the reviews [19, 20]. Indeed, string theory is at present our most fruitful source of
these bizarre quantum equivalences. We will see examples of this later in the course.

An additional phenomenon that is nicely illustrated by the example of Montonen-Olive
duality, is the concept of self-duality. Namely, it might be the case that the “new” dual
theory we discovered at the second expansion point is actually identical to the old one,
i.e.

S(φ;λ′) = SD(φD;λ′D). (2.12)

Here λ′ denote the remaining moduli that parametrize the classical action and the sub-
space λ = 0. In the case that such a quantum identification exists, the moduli space M
is clearly not parametrizing inequivalent quantum field theories, since the points λ = 0
and λD = 0 represent the same theory. We therefore have to divide by a further group
G that identifies the dual descriptions. This group G is called the duality group. It can
be regarded as the natural automorphism group of the QFT. The proper moduli space is
then the quotient of M by G.

If the dual coupling constants λ and λD are related as

λD = 1/λ, (2.13)

or more generally, if the limit λD → 0 corresponds to λ → ∞, we speak of an S-duality.
This will then relate weak coupling λ = 0 to strong coupling λ = ∞. A typical example
in statistical physics of such a duality is the Kramers-Wanier duality of the Ising model,
another one is the Montonen-Olive duality mentioned above. In string theory these S-
dualities are particularly powerful.

The main lesson that duality teaches us, is that “quantized fields” might not be the
ultimate way to think about quantum field theories! It might be necessary to cover the
moduli space M of quantum field theories (or strings for that matter) by local patches,
in a way analogous to the coordinate patches by which we cover a manifold. In certain
patches we have a formulation in terms of fields, actions, and path-integrals. The precise
choice of fields and action might change from patch to patch. The transition functions
are the duality transformations. There might also be parts of the moduli space where no
such semi-classical description exist at all, and we are left with the “abstract” QFT.

This general description is of course terribly academic at this point. Only when we
will meet various examples of duality groups during the lectures, it will become clear how
powerful this notion of duality is. With these warnings out of the way, let us now start
the proper lectures.

3. Quantum mechanics

We start on familiar grounds — quantum mechanics. In it simplest form quantum
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mechanics consists of a Hilbert space H and a unitary map

Φ(t) : H → H (3.1)

describing the time evolution of the system during a time interval t. The composition law
of time evolution tells us these transition amplitudes satisfy the relation

Φ(t1) ◦ Φ(t2) = Φ(t1 + t2), (3.2)

which implies the existence of an hermitian Hamiltonian H with Φ(t) = eitH . We will
often consider the Euclidean case, obtained by the analytic continuation t → it, where
Φ(t) = e−tH .

The Euclidean partition function is defined as

Z(t) = Tr e−tH (3.3)

(if this makes mathematical sense) and will then be a good way to encode the spectrum
and degeneracies of the system. Indeed, if the spectrum of H is discrete with eigenvalues
ǫn and finite degeneracies d(n) = dimHn of the corresponding eigenspaces Hn we have

Z(t) =
∑

n

d(n)e−ǫnt. (3.4)

A particular useful quantum mechanical model is the point particle moving on a space
X and its supersymmetric cousin that we will consider in a moment. In this case we have
coordinates and momenta (qµ, pµ) that take value in the standard phase space T ∗X, the
total space of the tangent bundle to the manifold. In canonical quantization the Hilbert
space is given as H = L2(X) and we realize the operator pµ as −i ∂

∂qµ .

In the path-integral approach to quantization, we pick a Lagrangian of the form

L = pµq̇
µ −H(p, q) (3.5)

with H(p, q) the Hamiltonian function. With this Lagrangian we compute the matrix
elements

Kt(y, x) = 〈y|Φ(t)|x〉 (3.6)

of the transition amplitude Φ(t) as the Feynman-Kac path-integral over all paths with
q(0) = x, q(t) = y

Kt(y, x) =
∫
DpDq e−

∫ t

0
L. (3.7)
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The additivity of time translations (3.2) gets reflected in the composition law of these
kernels

Kt1+t2(z, x) =
∫

X
dy Kt1(z, y)Kt2(y, x). (3.8)

The simplest case is actually the one with vanishing Hamiltonian, H = 0, which
one could call topological quantum mechanics. This is an almost empty system. As we
see by doing the integral over p, the path-integral localizes to q̇ = 0, i.e. to constant
configurations q ∈ X. So the evolution is indeed trivial with

Kt(x, y) = δ(x, y) (3.9)

and Φ(t) = 1. The only ingredient is this model is therefore the Hilbert space H = L2(X).

For the usual point particle we pick a metric gµν on X and define H = p2. The
Hamiltonian is therefore represented as the Laplacian on X,

H = −∆. (3.10)

In that case Kt(x, y) reduces to the usual heat-kernel, satisfying

∆xKt(x, y) = ∂tKt(x, y), K0(x, y) = δ(x, y). (3.11)

An important example is the case of a torus, X = T n, represented as the quotient space
R/2πΛ, with Λ a lattice. Since the spectrum of p is now given by the dual lattice Λ∗, the
partition function of this model becomes a theta-function (see §7.3)

Z(t) = Tr He
−tH =

∑

p∈Λ∗

e−2πtp2
(3.12)

3.1. Supersymmetric quantum mechanics

N = 1 supersymmetric quantum mechanics leads to spinors on the manifold X and
has proven to be of fundamental importance to understand for example index theorems.
In topological applications, the N = 2 supersymmetric point particle is more useful (see
e.g. [21], or for a recent analysis [22]). Here one introduces besides the bosonic variable
q, p two more fermionic variables θ, θ satisfying

θ2 = θ
2

= 0, θθ = −θθ, (3.13)

and a Lagrangian

L = pq̇ + iθθ̇ −H. (3.14)

14



In canonical quantization we have {θ, θ} = 1 with the reality condition θ† = θ, so that we
can consider θ as a coordinate and θ as the conjugated variable

θ =
∂

∂θ
, (3.15)

which acts as an operator on wave functions

ψ(q, θ) ∈ H = L2(R1|1) ∼= Ω∗(R). (3.16)

Supersymmetric wave functions can either be viewed as functions on the vector space
R1|1, which is by definition the vector space with one even and one odd coordinate, or
they can be viewed as differential forms on R. In this latter point of view one considers
θ as the one-form dq and expand the wave function as

ψ(q, θ) = ψ(0)(q) + ψ(1)(q)θ. (3.17)

More generally, for a superparticle on a general n-manifold X, the Hilbert space is in
this way interpreted as the total space of normalizable differential forms on X,

H = L2(X̂) ∼= Ω∗(X). (3.18)

Here the n|n dimensional supermanifold X̂ is defined as ΠTX, where the parity trans-
formation Π declares the fibers of the tangent bundle TX to be anti-commuting. The
second isomorphism is implied by the more general expansion of a super wave function as

ψ(q, θ) =
n∑

k=0
ψ(k)

µ1,...,µk
(q)θµ1 · · · θµk . (3.19)

The coefficients ψ(k)
µ1,...,µk

are completely antisymmetric and are naturally interpreted as
differential k-forms on X.

Note that the Hilbert space has natural Z gradation. We can define fermion number
F by given θ charge one and consequently θ charge minus one. Fermion number will then
correspond to the notion of degree for differential forms.

The supersymmetry transformations are given by

δqµ = θµ, δθµ = ipµ, (3.20)

so that Q = iθµpµ. On wave functions Q equals the exterior differential d,

Q = θµ ∂

∂qµ
= d. (3.21)

15



We thus find that Q2 = 0 and its cohomology gives the de Rahm cohomology of X

H∗
Q(H) = H∗

dR(X). (3.22)

There is also the hermitian conjugated operator Q∗, defined by (here the metric gµν and
its inverse gµν enter)

Q∗ = gµνθµ
∂

∂qν
= d∗ (3.23)

These operators give the one-dimensional N = 2 supersymmetry algebra

{Q,Q∗} = H ⇐⇒ {d, d∗} = ∆. (3.24)

The supersymmetric ground states satisfy

Q|ψ〉 = Q∗|ψ〉 = 0, (3.25)

and thus their wave functions correspond to harmonic differential forms,

dψ = d∗ψ = 0. (3.26)

The space H0 of supersymmetric ground states is thus canonically identified as

H0 = Harm∗(X). (3.27)

We can compute the superdimension of the Hilbert space (defined as the dimension of the
even part minus the dimension of the odd part) in terms of the Witten index [23]

sdimH = Tr (−1)F = sdimH0. (3.28)

It equals the Euler number of the space X

sdimH = χ(X) =
∑

k

(−1)k dimHk(X). (3.29)

These relations between supersymmetry and algebraic topology were first stressed by
Witten [24] and permeate the whole subject.

16



3.2. Quantum mechanics and perturbative field theory

Perturbative quantum field theories that describe particles and their interactions can
be obtained in “first quantized” form from quantum mechanics by making the metric on
the world-line of the particle dynamical. We integrate the amplitudes over the world-line
time t ≥ 0.

For example, the usual free field massless propagator, associated to a line segment,
takes the form

——— =
∫ ∞

0
dt e−tH = − 1

∆
=

1

p2 . (3.30)

To include interactions one considers “one-dimensional quantum gravity” where the
space-time is an arbitrary graph Γ. The space of metrics modulo diffeomorphisms on such
a graph is parametrized by an assignment of lengths ti ≥ 0 to all the edges of the graph.
So, we sum over all graphs and integrate over the lengths with some particular weights.
Of course, we can think of these lengths as the Schwinger parameters of the Feynman
diagrams of quantum field theory. As such they are completely equivalent to the moduli
of Riemann surfaces that appear in string theory and that we discuss at great length later
on.

For the one-loop amplitude one finds in this way

= 1
2

∫ ∞

0

dt

t
Tr e−tH = −1

2Tr log ∆ = −1
2 log det ∆. (3.31)

(The extra factor 1/t in the integrand has to do with the action of the circle group on the
graph. We have to factor by the volume of this isometry group, which is given by t. The
factor 1

2 is a reflection of the Z2 symmetry of the circle graph, that flips the orientation.)

Simlarly, a more general one-loop scattering amplitude, with external momenta p1, . . . , pn

satisfying p2
i = 0, can be represented as

p
n

tn

p
1

t1

p
2 t2

=
∫
dt1 · · ·

∫
dtn · Tr

(
eip1xe−t1Heip2xe−t2H · · · eipnxe−tnH

)
(3.32)

A more modern presentation of this first-quantized picture of QFT would use the
notions of ghosts and BRST operators. We add to the QM system two anticommuting
fields b and c with action

Sgh =
∫
dt bċ, (3.33)
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which gives canonical anticommutation relations {b, c} = 1 and a two-dimensional ghost
Hilbert space Hgh. It consists of the ghost vacuum of degree zero defined by b|0〉 = 0 and
the state |1〉 = c|0〉 in degree one.

The full Hilbert space is now defined as the tensor product of the “matter” Hilbert
space Hm = L2(Rn), for which we choose a momentum basis |p〉, p ∈ R, and the ghost
Hilbert space Hgh

H = Hm ⊗Hgh = H(0) ⊕H(1). (3.34)

As indicated it has graded pieces in degree zero and one. The BRST operator is given by
the degree one operator

Q = cH. (3.35)

On a general state Q acts as

Q|p〉 ⊗ |0〉 = p2|p〉 ⊗ |1〉,
Q|p〉 ⊗ |1〉 = 0. (3.36)

The space V of “physical” states is now defined as the cohomology of Q,

V = H∗
Q(H). (3.37)

One easily verifies that these physical states are of the form

|phys〉 = |p〉 ⊗ |1〉, p2 = 0. (3.38)

They are created out of the vacuum, |vac〉 = |0〉⊗|0〉, by the action of the vertex operators
φp = c · eipx with p2 = 0,

|phys〉 = φp|vac〉. (3.39)

Note that any expectation value of the form

〈phys′|{Q,O}|phys〉 (3.40)

vanishes, since Q annihilates both the bra and the ket. In particular we have the algebra

{Q, b} = H, (3.41)

which tells us that within physical correlation functions the Hamiltonian vanishes. This
vanishing of the Hamiltonian is the signature of a theory of quantum gravity. We can also
introduce operators

φ(1)
p = {b, φp} = eipx (3.42)
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Fig. 3: The Schwinger parameters of various Feyman
graphs contributing to a particular amplitude can be glued
together to form one connected moduli space.

In terms of these operators the general one-loop amplitude (3.32) can then be written as

∫
dt1 · · ·

∫
dtn · Tr

(
φp1e

−t1Hφ(1)
p2
e−t2H · · ·φ(1)

pn
e−tnH

)
(3.43)

We will see later that this particular way of writing field theory amplitudes will be gen-
eralized in string theory.

As an aside we note that, for more complicated graphs, the Schwinger parameter
spaces of the individual graphs can be glued together to form a connected moduli space
that is quite analogous to the moduli space Mg of Riemann surfaces that will be a central
point in the coming lectures. To every diagram Γ we can associate a cell whose points
are parametrized by the length of the edges. These cells can be glued together in the
following fashion. If one of the lengths becomes zero, the graph will change topology. We
now glue the cell of this new graph to the side of the cell of the old graph, as is illustrated
in fig. 3.. In this way we construct a cell complex that is a Feynman diagram analogue of
Mg [26, 27].

4. Two-dimensional topological field theory

After our discussion of quantum mechanics and its relation to field theory, we now
turn to to two-dimensional quantum field theories and their relation to string theory. The
simplest type of quantum field theory is a topological field theory (TFT) which has the
defining property that all amplitudes are independent of the local Riemannian structure.
Two-dimensional TFTs will be the subject of this lecture. Here we will concentrate on
the properties of one particular quantum field theory. Later in §8 we will generalize our
analysis to include families of such theories.
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4.1. Axioms of topological field theory

The axiomatic formulation of topological field theories has been given by Atiyah [28]
following Segal [2] and uses the language of categories and functors. (A particularly
thorough exposition of this approach is given in [29].)

Let us recall that a category contains a set of objects x and a set of arrows or morphisms
f : x → y, which should be regarded as abstract quantities satisfying an associative
composition law. That is, given two arrows f : x → y and g : y → z, we can form
the composite arrow g ◦ f : x → z, such that (h ◦ g) ◦ f = h ◦ (g ◦ f). A category
further presumes that for each object x an identity arrow 1x : x → x exists, satisfying
f ◦ 1x = 1y ◦ f = f . A functor between two categories is a map that maps objects to
objects, morphisms to morphisms, that respects all relations.

A good example is the category Vect of (say, complex, possibly graded) vector spaces,
where the objects are obviously vector spaces and the morphisms correspond to linear
maps between the vector spaces. This is actually an example of a so-called abelian tensor
category, where the objects and morphisms can also be multiplied using the (associative
and commutative) tensor product ⊗, and have an inverse, the linear dual V ∗. If we
have maps Φ1 : V1 → W1 and Φ2 : V2 → W2, we can form the tensor product map
Φ1 ⊗ Φ2 : V1 ⊗ V2 →W1 ⊗W2. The unit is C.

To define a topological quantum field theory, we start with the category Man(d) of
d-dimensional manifolds, where the the objects are smooth, compact, oriented manifolds
X (not defined up to isomorphism, and thus equipped with a given parametrization in
local coordinates) and where the morphisms

M : X → Y (4.1)

are bordisms. That is, the morphism M is a smooth, oriented manifold of dimension d+1
with the property that it has two boundary components, isomorphic to X and Y , where
the natural orientation coming from the orientation of M agrees with the orientation of
Y but disagrees with the orientation of X,

∂M = (−X) ∪ Y. (4.2)

(So −X indicates the same manifold X, now with the opposite orientation.) We will call
the components X and Y “incoming” and “outgoing” respectively. In a figure we have

M

X Y

The properties of a category require that there exists a composition law of two bordisms
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M : X → Y and N : Y → Z,

M

X Y

N

Z

producing a new bordism

N ◦M : X → Z. (4.3)

This composition law is obviously given by “gluing” the two boundaries,

M

X Y

N

Z

that is, by identifying the two boundary components Y and −Y . We can do this in a
unique way, since both copies of Y come with a parametrization. The identity morphism
is given by the cylinder,

1X : X × [0, 1]. (4.4)

These definitions make Man(d) into a category.

We have one extra operation that is not standard in categories. We also want to
be able to glue two boundary components of a single irreducible manifold: if the two
boundary components of M contain a common factor X, we want to define the partial
trace

Tr X : M → Tr X(M). (4.5)

This is best explained in a picture

Tr :
-X

M Tr M

X
(4.6)

Note further that Man(d) is also a tensor category, with the product given by the disjoint
union ∪ and unit the empty set ∅.

A d+ 1 dimensional topological field theory (TFT) can now be defined as a functor

Φ : Man(d) → Vect (4.7)

from the category of d-manifolds to the category of vector spaces, satisfying certain extra
properties. Concretely this means that to any space X we associate a vector space VX ,

Φ : X → VX , (4.8)
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and to any bordism M a linear map ΦM

(M : X → Y ) ⇒ (ΦM : VX → VY ) . (4.9)

The fact that Φ is a functor tells us that the amplitudes ΦM should satisfy a factorization
law

ΦN◦M = ΦN ◦ ΦM . (4.10)

In case that the relevant operator is trace-class (or when all vector spaces VX are finite-
dimensional) we have an extra condition:

ΦTr XM = Tr VX
ΦM . (4.11)

Since both category are abelian tensor categories, we further demand that Φ respects the
products ⊗ and ∪,

VX∪Y = VX ⊗ VY , V−X = V ∗
X , V∅ = C. (4.12)

and

ΦM∪N = ΦM ⊗ ΦN , Φ−M = Φ∗
M , Φ∅ = C. (4.13)

The existence of these amplitudes ΦM can be physically motivated by the following
path-integral argument. If φ(x) is a local set of fields in the theory, a state in the “Hilbert
space” VX will be a wave function Ψ(φX) on the space of field configurations φX(x) on the
spacelike manifold X. The path-integral on M with fixed values φX , φY at the boundaries
X and Y then gives the kernel KM(φY , φX) of the evolution operator ΦM

KM(φY , φX) =
∫

φ|X=φX , φ|Y =φY

Dφ e−S(φ) (4.14)

The transition amplitude then relates an “incoming” wave function Ψin(φX) to an “out-
going” wave function Ψout(φY ) as

Ψout(φY ) =
∫

DφX KM(φY , φX)Ψin(φX) (4.15)

in a huge generalization of the evolution operator e−tH and its kernel Kt(y, x) of quantum
mechanics. The gluing law then corresponds to the composition law (3.8) in quantum
mechanics

KN◦M (φZ , φX) =
∫

DφY KN (φZ , φY )KM(φY , φX), (4.16)
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that tells us that evolving along M and then evolving along N is equivalent to evolving
along N ◦M .

Some further scattered remarks:

(1) We assume a natural action of the permutation group, possibly graded if we are
dealing with a fermionic theory (the vector spaces VX can be odd), if several boundary
components are isomorphic.

(2) By definition the vector space associated with the empty set (a legitimate bound-
ary!) is C. Therefore, in case the d + 1 dimensional manifold M is closed, ∂M = ∅, the
corresponding morphism ΦM : C → C will be given by multiplication by a constant ZM ,
the partition function. In path-integral language we have the identification

ZM =
∫

Dφ e−S(φ) (4.17)

where one integrates over all field configurations on M .

(3) If M has a single outgoing boundary Y , so that M : ∅ → Y , the transition
amplitude ΦM is a map C → VY and thus defines a special state

M Y : ΨM ∈ VY . (4.18)

This can also be understood in path-integral language. The wave function is given by

ΨM(φY ) =
∫

φ|Y =φY

Dφ e−S(φ). (4.19)

Here we integrate over all possible extensions of the field φY on Y to a field φ over all
of M . In concrete situations, the field configurations on Y might be classified by certain
topological indices that indicate whether or not this extension exists. (Here one can think
about a spin structure for a fermion, or a vector bundle for a gauge field.) The vector space
VY then splits into superselection sectors, and depending how the data can be extended
over M , the vector ΨM will sit in one of these superselection sectors.

3. If a manifold M can be split into two parts M1 and M2 with common boundary
∂M1 = X = −∂M2, we can compute the partition function as the inner product of the
two states representing the two halves,

M1
M2X : ZM = 〈ΨM1,ΨM2〉. (4.20)

This way of writing the partition function can be helpful if one wants to construct a new
manifold M ′ by surgery on X. In that case one applies a diffeomorphism of X that is
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not in the identity component of π0Diff(X) and that is realized as an operator γ on the
vector space VX . The partition function of M ′ can then be written as

ZM ′ = 〈ΨM1 , γΨM2〉. (4.21)

(4) If M = [0, 1] ×X and N = S1 ×X, we can compute the dimension of the vector
space VX as the partition function of N (given the fact that this dimension is finite)

ZN = Tr ΦM = dim VX . (4.22)

4.2. Topological field theory in two dimensions

In this subsection we will restrict our investigations to two dimensions where our
manifolds M are surfaces of genus g. This example has been explained quite often [25,
30, 31], but, with the risk of repeating myself once too often, I explain it here since it
a necessary, though routine, part of our 2D route to string theory. For a very thorough
review of these and other aspects of two-dimensional TFT see [32].

Since the only connected compact one-dimensional manifold is the circle S1, we have
only one vector space to consider

V = VS1 (4.23)

together with its dual. For convenience we will assume V to be finite dimensional. The
data of a two-dimensional topological field theory are now obtained by considering re-
spectively the sphere with one, two, and three holes. Let us briefly run through the
argument.

(1) Following remark (2) in the previous section, the disk with an outgoing boundary
gives rise to a particular state

1 ∈ V, (4.24)

that we will denote as the identity, for reasons that become obvious in a moment. Simi-
larly, the disk with one incoming boundary gives an element of the dual vector space,i.e.
a linear functional

〈·〉0 : V → C. (4.25)

According to (4.20) the partition function of the two-sphere is then expressed as

Z(S2) = 〈1〉0 (4.26)

24



(2) The cylinder with one incoming and one outgoing boundary is just the identity
map 1 : V → V . If we choose two incoming boundaries, it gives a bilinear map

η : V ⊗ V → C, (4.27)

If we choose an explicit basis φi for V (with φ0 = 1) we obtain the graded symmetric
matrix

ηij = η(φi, φj) (4.28)

By factorization, this inner product η will be non-degenerate (but not necessarily positive).
It allows us to identify the incoming states in V with the outgoing states in the dual space
V ∗. The inverse is given by the cylinder with two outgoing boundaries. We will write
η−1(φi, φj) = ηij . It is a simple exercise to check that η · η−1 = η ·−1 η = 1. (Draw the
corresponding pictures.)

(3) Finally the pair of pants, or the sphere with three holes, corresponds (again with
the appropriate choice of orientations of the boundaries) to a map

c : V ⊗ V → V. (4.29)

If we introduce the notation

α · β = c(α, β), (4.30)

this makes V into an algebra, the operator product or Verlinde algebra of the topological
field theory [33]. The multiplication c allows us to identify states with operators in a very
simple way. It gives a map

c : V → End(V ). (4.31)

In a basis we will write the matrix corresponding to φi as Ci. We also introduce the
structure coefficients cij

k in

φi · φj =
∑

k

cij
kφk. (4.32)

Note that if we choose three incoming boundaries we get a map

c : Sym3V → C, (4.33)

which is characterized by the fully (graded) symmetric tensor

cijk = cij
lηlk. (4.34)
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The inner product η is obtained by inserting the identity in this trilinear map, which gives
in components

ηij = cij0. (4.35)

All these data suffice to calculate any partition or correlation function, since every
surface can be reduced to a collection of three-holed spheres, cylinders and disks, by
cutting it often enough. Of course, there are many inequivalent ways to factorize a
particular surface. The final answer should however not depend on the particular choice
of factorization. This gives further constraints on the data η and c.

For instance, a simple consequence of the symmetry of the 3-punctured sphere is the
compatibility of the metric η with the multiplication

η(α · β, γ) = η(α, β · γ). (4.36)

In a picture

=

Another relation expresses the inner product η in terms of the linear function 〈·〉0 as

η(α, β) = 〈a · β〉0 (4.37)

But most importantly, if we consider the sphere with four holes, there are two inequiv-
alent ways of factorization

=

which translates in associativity of the algebra V

(α · β) · γ = α · (β · γ). (4.38)

It can be easily checked that no further conditions will be found when we consider
more complicated surfaces. An associative algebra V with such an invariant inner product
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η is called a Frobenius algebra, and this simple object captures a 2d TFT completely. (For
more on 2D TFTs see [32].)

With the concept of factorization, it is extremely easy to calculate higher genus par-
tition and correlation functions. In fact, we can introduce an operator H that creates an
handle. It is defined as the state associated to the torus with one puncture and has the
representation

H =
∑

i,j

ci
ijφj . (4.39)

In this fashion a genus g partition function Zg can be written as a genus zero correlation
function

Zg =
〈
H · · ·H︸ ︷︷ ︸

g

〉
0

= TrHg−1. (4.40)

4.3. Example — quantum cohomology

Let us briefly discuss an important class of examples of Frobenius algebras: classical
and quantum cohomology. We will see later how this is realized in (topological) sigma
models.

We start with classical cohomology. Let X be a compact orientable manifold. We
can take V = H∗(X) with as multiplication the wedge product of differential forms
α · β = α∧ β, which is graded commutative. On the states we now have an obvious inner
product given by the intersection form

η(α, β) =
∫

X
α ∧ β. (4.41)

Note that more generally the genus zero correlation functions are given as

〈α1 . . . αn〉0 =
∫

X
α1 ∧ · · · ∧ αn. (4.42)

For example, if X = PN , the cohomology ring is simply generated by a generator x of
degree two with the single relation

xN+1 = 0, (4.43)

so V = C[x]/(xN+1), as an algebra.

It is clear that the cohomology ringH∗(X) satisfies all the relations of a two-dimensional
topological field theory. We note that we already represented H∗(X) in supersymmetric
quantum mechanics in §3.1. Here, however, we have a natural geometrical interpreta-
tion of the ring structure (although the multiplication can also be defined in quantum
mechanics).
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We really go beyond quantum mechanics if we consider quantum cohomology or
Gromov-Witten invariants. For quantum cohomology we again take the vector space
V = H∗(X), but now define a new, improved “quantum” product [34, 35, 25, 36]. Let
X now be a compact Kähler manifold and consider holomorphic maps2 (sigma model
instantons) from the Riemann sphere into X

x : P1 → X, ∂x = 0. (4.44)

Let N denote the moduli space of such “stable” holomorphic maps (stability adds some
special set of singular maps, making the moduli space compact). Let furthermore ω1, . . . , ωn

be a integer basis of the Picard lattice H1,1(X) ∩ H2(X,Z). For any map we define a
multi-degree d = (d1, . . . , dn) by

[x(P1)] =
∑

diωi. (4.45)

The moduli space N will now decompose in components of different degree Nd (not
necessarily irreducible)

N =
⋃

d

Nd, (4.46)

with in particular the constant maps

N0
∼= X. (4.47)

It is not easy to describe these instanton spaces for the generic case. However, there is
a simple formula for the ‘virtual dimension’ that is defined as follows. (Here we consider
maps x : Σ → X, with Σ a general Riemann surface of genus g.) Consider the tangent
space at a point x ∈ Nd. This tangent space TxNd is by definition given by the infinitesimal
maps δx satisfying ∂δx = 0, i.e.

δx ∈ H0(Σ, x∗TX). (4.48)

(TX denotes the holomorphic (1, 0) tangent bundle of X.) We also have to consider the
group H1(Σ, x∗TX). The spaces H0 and H1 are the kernel and cokernel of the ∂ operator
on Σ twisted with the holomorphic vector bundle x∗TX . The Hirzebruch-Riemann-Roch
theorem gives an expression for the difference between the dimensions of these groups

dimH0 − dimH1 =
∫

Σ
ch(x∗TX) · td(TΣ)

= n(1 − g) −
∫

Σ
x∗c1(X), (4.49)

2One can also take X to be a symplectic manifold and study pseudo-holomorphic maps, as introduced
by Gromov to produce symplectic manifold invariants. This is how the subject started in mathematics
[37].
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with n = dimCX. The RHS of this equation is known as the virtual dimension of the
space Nd. If H1 vanishes, the virtual dimension equals the actual dimension. We see that
the virtual dimension is independent of the homotopy of the map x in the Calabi-Yau
case, with c1(X) = 0,

dimH0 − dimH1 = n(1 − g). (4.50)

In the particular case of genus zero, N has virtual dimension n, the same as X.

We now choose parameters ti and define the quantum cup product as

〈α1 . . . αn〉q =
∑

d

qd
∫

Nd

ϕ∗
iα1 ∧ · · ·ϕ∗

nαn, (4.51)

where qd = exp
∑
dit

i. Here we pull-back the cohomology classes αi on X to the moduli
space N of holomorphic maps by first considering the “universal instanton”

Φ : N × P1 → X, Φ(x, z) = x(z), (4.52)

and then choosing n sections si : N → P1. We then define ϕi = Φ ◦ si. One easily
verifies that the answer does not depend on the various choices involved. This quantum
product defines again an associative algebra. The associativity condition can be proved
by a degeneration argument that we will sketch in more detail in §8.9. In the limit q → 0
we recover the usual cohomology ring, which is the contribution of the identity component
N0. For example, in the case of projective space, X = PN , the relation xN+1 = 0 gets
deformed to [25]

xN+1 = q. (4.53)

Many other cases have been worked out [38].

For later use we note here that for a Calabi-Yau three-fold the operator product
coefficients cijk of the elements ωi ∈ H2(X) have an expansion [39, 40]

cijk =
∫

X
ωi ∧ ωj ∧ ωk +

∑

d

Nd
didjdkq

d

1 − qd
, (4.54)

where Nd counts the number of rational curves of degree d in X.

5. Riemann surfaces and moduli

We have seen that it is very simple to compute the partition function of a two-
dimensional topological field theory for a genus g surface. It is simply given as

Zg = TrHg−1, (5.1)
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with H the handle operator. In string theory we also associate a number Fg, the g loop
vacuum amplitude, to a topological surface of genus g, but in a much more involved way.
Instead we consider the moduli space Mg of Riemann surfaces and define the genus g
amplitude as

Fg =
∫

Mg

Zg, (5.2)

in terms of a particular volume form

Zg ∈ H top(Mg), (5.3)

that is produced by a two-dimensional conformal field theory. (Here the bar indicates the
stable compactification, that we will discuss in §5.4.)

In terms of these higher-loop string amplitudes Fg the space-time partition function
reads

Zspacetime ∼ exp
∑

g

λ2g−2Fg (5.4)

with λ the string coupling constant. (Unfortunately, these expansions do not converge,
so as it stands Zspacetime is only a formal object.) Note that in the same notation we can
say that a 2d TFT, which by definition does not depend on the complex structure on the
surface, gives a partition function that is constant on Mg and thus can be regarded as an
element of

Zg ∈ H0(Mg). (5.5)

We now have to explain how quantum field theory leads to natural volume forms on
Mg. But before we do that, we spend the rest of this lecture to make some comments
on Riemann surfaces and their moduli. This material is of course completely standard
mathematics, see e.g. [41].

5.1. The moduli space of curves

There are basically three different ways to think about Riemann surfaces:

(1) As complex curves, i.e. one-dimensional complex varieties where the complex co-
ordinates z and w in two patches are holomorphically related, w = w(z). Equivalently, we
are given a complex structure on the topological surface. Recall that a complex structure
is a linear map J , defined in the tangent space at each point, that satisfies J2 = −1 and
the integrability condition ∇J = 0. The complex structure allows us to split the com-
plexified tangent space in holomorphic and anti-holomorphic vectors, with eigenvalues i
and −i, and tells us what the (local) analytic coordinate is. Equivalently, we are given a
∂ operator, and holomorphic functions are defined by ∂f = 0.

(2) As algebraic curves, i.e. as the solutions of polynomial equations

f(x, y) = 0 (5.6)
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in two complex variables x, y ∈ C. (Strictly speaking, solutions of homogeneous equations
f(x, y, z) = 0 in complex projective space P2.)

(3) As surfaces with a conformal class of metrics. In two dimensions any metric gab

defines a complex structure through the relation

Ja
b =

√
gǫacg

cb (5.7)

with ǫab the Levi-Civita symbol and g = det gab. Furthermore, all complex structures are
obtained in this way. As we see, J is invariant under local rescaling (Weyl transformations)
of the metric gab → ρ(x)gab, and so is only determined by the conformal class of the metric.
Locally we can choose coordinates xa such that gab = ρ(x)δab, and in these coordinates the
complex structure reduces to the usual identification of R2 = C, with analytic coordinate
z = x1 + ix2.

The moduli space Mg parametrizes all Riemann surfaces up to equivalence. It is an
orbifold space (even a quasi-projective algebraic variety) of complex dimension

dimC Mg =





0, g = 0,

1, g = 1,

3g − 3, g ≥ 2.

(5.8)

This can be proved using deformation theory of the ∂ operator on the surface Σ.
We will assume g ≥ 2 so that we are dealing with the generic situation. The deformed
operator is written as ∂+µ∂ with Beltrami differential µ, a section of TΣ⊗T ∗

Σ. There is no
integrability condition for complex curves. (By dimensional reasons, an obstruction would
lie in H2(TΣ), which vanishes). Infinitesimal diffeomorphisms, which lead to equivalent
complex structures, are generated by vector fields ξ and induce the equivalence µ ∼ µ+∂ξ.
Therefore, the tangent space at the point Σ ∈ Mg is given by

TΣMg
∼= H1(TΣ) (5.9)

Using Serre duality one finds that H1(TΣ) ∼= H0(K2)∗, with K = T ∗
Σ the canonical line

bundle on Σ. With Riemann-Roch one then computes that

dimH0(K2) − dimH0(T ) = 3g − 3. (5.10)

For g ≥ 2 the space H0(T ) of holomorphic vector fields, i.e. infinitesimal automorphisms
of the surface Σ, vanishes and the space of quadratic differentials has the dimension
dimH0(K2) = 3g − 3, which then equals the dimension of the moduli space. (For genus
zero and one, we have h0(T ) = 3, 1 respectively.)
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From the point of view of conformal metrics one starts with the space of all metrics
modulo diffeomorphism, and chooses a unique representative in each conformal class.
This can be conveniently done by requiring the curvature R to be constant. Taking into
account the Gauss-Bonnet theorem

∫

Σ

d2z

2π

√
gR = 2 − 2g, (5.11)

R can be normalized to be 1, 0,−1 for genus g = 0, 1,≥ 2. (For genus one we also
have to normalize

∫√
g = 1.) We still have to identify constant curvature metrics by the

diffeomorphism group Diff(Σ), which does not act freely. Therefore the moduli space is
not a smooth space; “symmetric” surfaces will be fixed points of certain transformations,
which makes Mg into an orbifold. Actually, one can do this identification in two steps,
by first taking the quotient by the identity component Diff(Σ)0 and subsequently the
mapping class group Γg, which represents the global diffeomorphisms and is defined by
the exact sequence

1 → Diff0(Σ) → Diff(Σ) → Γg → 1. (5.12)

The first step is a smooth operation that produces the so-called Teichmüller space Tg
∼=

Cn. However, the second step that expresses the moduli space as the quotient

Mg = Tg/Γg, (5.13)

can have fixed points, that correspond to surfaces with extra automorphisms.

5.2. Example — genus one

A simple example is the case g = 1: the two-torus T 2 or elliptic curve. Let us consider
this moduli space from the three equivalent points of view.

(1) First we use the language of complex curves. A complex curve of genus one,
topologically a two-dimensional torus T 2, can be represented as C/Λτ with the lattice

Λτ = Z ⊕ τZ (5.14)

and τ an element of the upper half plane H = T1 (defined by Im τ > 0). That is, we have
identifications

z ∼ z + 1 ∼ z + τ. (5.15)

which produces a topological two-torus, as illustrated infig. 4. Note that we used here the
automorphisms of the torus to put one of the two generators e1, e2 ∈ C of the rank two
lattice Λ to 1. A more invariant expression for the modulus τ would be as the quotient
e2/e1. Different basis choices for the lattice Λτ , that are related by elements in SL(2,Z),
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1

1+

0

C

Fig. 4: The torus or elliptic curve is obtained by quotienting
the complex plane by a two-dimensional lattice.

0 1/2-1/2

F

Fig. 5: The action of the modular PSL(2, Z) on the upper-
half plane and a fundamental domain F .

give the same elliptic curve. This leads to a further identification of the modulus τ by the
modular group Γ1 = PSL(2,Z). This group acts on τ by fractional linear transformations

τ → aτ + b

cτ + d
,



a b

c d


 ∈ PSL(2,Z). (5.16)

It is generated by the transformations

T : τ → τ + 1,

S : τ → −1/τ, (5.17)

satisfying the relations S2 = (ST )3 = 1. The action on the upper half-plane is depicted
in fig. 5.
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The moduli space M1 equals the quotient of the upper half-plane H by the modular
group SL(2,Z) and can be represented by the well-known fundamental domain F , defined
by restricting |τ | ≥ 1, |Reτ | ≤ 1

2 and indicated in fig. 2. Topologically we have F ∼= C.
Note that, once we compactify the moduli space by adding the point τ = i∞, the resulting
“stable ” moduli space M1 is topologically a (Riemann) sphere,

M1 ∼= P1 (5.18)

It contains three orbifold singularities at τ = i, τ = e2πi/3 and τ = i∞. These are
respectively the fixed points of the transformations S, ST and T of order 2, 3 and ∞.
The point at infinity corresponds to a singular elliptic curve, as we will see in a moment.

(2) From the point of algebraic curves, any genus one curve is represented by the cubic
equation (elliptic curve)

y2 = x3 + ax+ b, (5.19)

for some constants a, b ∈ C. However, this identification is not unique (the moduli space
is one-dimensional and here we have two parameters) and in order to express the relation
of the constants a, b with the modulus τ we first have to introduce some facts about
modular forms that we will need at various places later in the lectures.

A modular form of weight k is a holomorphic function f(τ) on the upper half plane
satisfying the condition

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) (5.20)

and which is well-behaved at infinity, i.e. has an expansion of the form

f(τ) =
∑

n≥0
anq

n, q = e2πiτ . (5.21)

Since the product of two modular forms of weight k and l gives again a modular form,
now of weight k + l, the space of modular forms is a ring. As a ring it is generated by
the Eisenstein series E4(τ) and E6(τ) of weight 4 and 6 respectively. The normalized
Eisenstein series Ek(τ), for k ≥ 4 and even, are defined as

Ek(τ) = 1 − 2k

Bk

∑

n>0

nk−1qn

1 − qn
=

∑

(m,n)=1

1

(m+ nτ)k
(5.22)

There are two independent forms of weight 12, namely E3
4 and E2

6 . Therefore, we can
define a linear combination that vanishes at q = 0, the discriminant

∆ =
E3

4 −E2
6

1728
= η24 = q − 24q2 + . . . (5.23)
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where η is Dedekind’s eta function

η(τ) = q
1

24
∏

n>0
(1 − qn). (5.24)

We need the discriminant ∆ in our last definition, that of the modular j-function

j(τ) =
E3

4

∆
. (5.25)

Since it is defined as a ratio of two modular forms both of weight 12, it transforms with
weight zero. However, since the moduli space M1 ∼= P1 is compact, the only globally
holomorphic function is constant. Therefore j has a pole at q = 0,

j =
1

q
+ 744 + 196884q + . . . (5.26)

In fact, one can proof that the map j : M1 → P1 is a bijection, so the value of the
j-function classifies the inequivalent elliptic curves. (One often speaks about M1 as the
“j-line.” Also, all meromorphic modular functions are necessarily rational expressions in
the j-function, j generates the function field on M1.)

We can now express the constants a and b in terms of the modulus τ . One finds that
a = −π2

3 E4(τ) and b = −2π6

27 E6(τ) so that the j-value of the curve (5.19) is given by

j(τ) = 1728
4a3

4a3 + 27b2 . (5.27)

This tells us which elliptic curves are equivalent and which are not.

(3) Finally, from the point of view of conformal structures, we have to pick a flat
metric on T 2, which is of the general form

ds2 = λ dx2 + µ dxdy + ν dy2, (5.28)

with constants λ, µ, ν ∈ R. Such a metric can always be written as

ds2 = ρ|dx+ τdy|2, gab = ρ




1 Reτ

Reτ ττ


 (5.29)

We then immediately make contact with the complex structure point of view.
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5.3. Surfaces with punctures

We can also include marked points on the Riemann surface. If we fix n different points
P1, . . . , Pn ∈ Σg, the corresponding moduli space Mg,n has dimension

dimC Mg,n = 3g − 3 + n, (5.30)

at least if 2g − 2 + n > 0, one extra dimension for each puncture.

The simplest case is genus zero. We pick points z1, . . . , zn ∈ P1 with zi 6= zj if i 6= j.
However, the moduli space M0,n is not simply (P1)n minus diagonals, since P1 has a
non-trivial group of automorphisms

Aut (P1) = PGL(2,C), (5.31)

that we have to factor out. It acts by Möbius transformations on the coordinates zi,

z → az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0. (5.32)

This quotient can be eliminated by fixing three points, say, {z1, z2, z3} = {0, 1,∞}. In
this way we find for example that

M0,3
∼= pt. (5.33)

and

M0,4 ∼= P1 − {0, 1,∞}. (5.34)

Here we shouldn’t confuse the Riemann surface and the moduli space! We can compactify
this space to M0,4

∼= P1 by adding back the configurations z = 0, 1,∞. However, it is
better to think of adding singular curves with a node and two points on each component,
that is, surfaces of the form

Let us explain this in some more detail.

5.4. The stable compactification

The moduli space Mg,n is non-compact because complex curves can become degener-
ate. There exists a direct, intuitive interpretation of the points at the boundary. There
are basically two ways in which a surface can degenerate. If we think in terms of a con-
formal class of metrics, the surface can either form a node (equivalently, a long neck) or
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two marked points can collide. The boundary of Mg,n can be thought to lie at infinity.
One would like to compactify the moduli space by adding points at infinity, not unlike
how one compactifies the plane Rn to the n-dimensional sphere. In this case the points at
infinity represent particular singular Riemann surfaces. The Knudsen-Deligne-Mumford
or ‘stable’ compactification [42] tells us to add the following singular curves:

(1) The process in which two points z1 and z2 ‘collide’, when the difference q = z1 −z2
tends to zero, can (after a coordinate transformation z → z/q) alternatively be described
as the process in which a sphere, that contains z1 and z2 at fixed distance, pinches off
the surface by forming a neck of length log q. These two descriptions are fully equivalent,
but the latter is actually more in the spirit of conformal field theory, since we see in an
obvious way the operator product expansion emerge. The natural final configuration is
not simply the surface with z1 = z2, but it consists of a separate sphere containing the
points z1, z2 and a third point where the infinite long tube was attached, together with
the original surface with one marked point less.

In the stable compactification we add this configuration as limit point. The crucial prop-
erty of this compactification is that the points zi never are allowed to come together.

(2) If a cycle of non-trivial homology pinches, we replace the surface by a surface with
one handle less and two extra marked points, the attachment points of the infinitely thin
handle.

So by this process we lower the genus by one.

(3) Finally, in case a dividing cycle pinches, the resulting surface consists of two
disconnected surfaces of genus h and g − h, each having one extra puncture.

It can be shown that this prescription makes Mg,n into a compact orbifold space Mg,n

(and even a complex projective variety).

6. Conformal field theory

The next step in our hierarchy of two-dimensional field theories is conformal field
theory (CFT). There are two mathematically sound ways to think about conformal field
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theories. Either in terms of representations of the Virasoro algebra and operator alge-
bras, or in terms of Riemann surfaces. The algebraic and the geometric formalisms are
equivalent, but we will mainly focus on the latter.

6.1. Algebraic approach

We can think about CFTs in terms of a Hilbert space H that carries a representation
of the Virasoro algebra Vir⊕Vir generated by the local holomorphic and anti-holomorphic
vector fields

Ln = zn+1 ∂

∂z
, Ln = zn+1 ∂

∂z
(6.1)

on the cylinder C∗. These generators can be assembled in the (anti)holomorphic stress
tensor

T (z) =
∑

n

Lnz
−n−2,

T (z) =
∑

n

Lnz
−n−2. (6.2)

After quantization the Virasoro algebra Vir with central charge c reads

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0. (6.3)

To build a quantum field theory out of these representations, one has to introduce addi-
tional algebraic structure, in particular the operator algebra [43]. This produces in the
end well-defined correlation functions

〈φ1(P1) · · ·φn(Pn)〉g, (6.4)

where φi ∈ H are states/operators and Pi are points on a genus g Riemann surface Σ.
Ignoring the anomaly for a moment, these correlations functions are non-trivial functions
on Mg,n. Due to lack of time we will have to refer to the literature for a further discussion
of this “algebraic” point of view. (For a more physical review see for example the excellent
lectures by Ginsparg and Cardy at the 1988 Les Houches school [44, 45] and the reprint
volume [48]. For a more mathematical exposition see e.g. [46, 47]. )

6.2. Functorial approach

Alternatively, one can start with Segal’s functorial axioms [2] or what is known in
the physics literature as the operator formalism [49]. Hereto one has to consider a much
bigger, “dressed up” moduli space, denoted as Pg,n. It consists of Riemann surfaces Σ
of genus g and n marked points Pi ∈ Σ together with a choice of local coordinates zi
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around the punctures. These local coordinates are chosen such that the point Pi is given
by zi = 0. Of course, there is a projection map

Pg,n
π→Mg,n (6.5)

(with infinite-dimensional fibers) that simply forgets the information about the local co-
ordinate. The local coordinate not only allows one to “cut a hole” around the puncture
by removing the disk |zi| < 1, it also gives a parametrization of the resulting boundary
S1.

Generalizing the axioms of two-dimensional TFT, a CFT can now be regarded as a
functor

Φ : Riem → Hilb (6.6)

from the category Riem of these Riemann surfaces with parametrized boundaries to the
category Hilb of Hilbert spaces. (Here we completely ignore the notion of the central
charge c. Strictly speaking, everything here only holds for c = 0, which is actually the
relevant case for string theory.)

That is, a CFT is map Φ that associates to each element in this extended moduli space
Pg,n an element in the n-th tensor product of the Hilbert space

Σ ∈ Pg,n ⇒ ΦΣ ∈ H⊗n. (6.7)

(Note that for a Hilbert space we can identify H with H∗ so that we need not distinguish
incoming and outgoing states.) If we compare this point of view with the axioms of a
TFT we see two important differences:

(1) The morphisms now depend on the choice of complex structure;

(2) The vector space of states H associated to the circle is now infinite-dimensional
and carries an hermitean inner product.

The action of the Virasoro algebra is recovered by considering the cylinder or annulus
C∗ which represents a map H → H, but we will not go into this here, see [2].

The CFT correlation functions are obtained by choosing vectors φ1, . . . , φn ∈ H and
inserting them into the linear forms ΦΣ : H⊗n → C,

〈φ1(P1) · · ·φn(Pn)〉g = ΦΣ(φ1, . . . , φn) (6.8)

The gluing property is more involved than in the case of a TFT, since it involves a
local modulus q, comparable to e−t in the case of quantum mechanics. We can glue two
Riemann surfaces Σ1 and Σ2 at two punctures P1 ∈ Σ1 and P2 ∈ Σ2 by identifying the
local coordinates z1 and z2 as

z1z2 = q, q ∈ C∗. (6.9)
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This is the inverse of the degeneration process we sketched in §5.4. The amplitudes of the
new surface Σ = Σ1 ∪q Σ2 are now given by

ΦΣ = 〈ΦΣ1 , q
L0qL0ΦΣ2〉. (6.10)

This corresponds geometrically to cutting unit disks |zi| ≤ 1 out of the surfaces and
inserting a cylinder of length − log |q| and rotating this cylinder (“twisting”) around an
angle arg q. Note that the dimensions of the moduli spaces work out, since we introduce
a new modulus q in the gluing process.

The Virasoro algebra can be recovered in the following general way: if we pick a
non-single valued holomorphic vector field ξ on the surface, possibly with poles at the
punctures, then we can associate to this a deformation of the complex structure µ = ∂ξ
(a quasi-conformal transformation). Thereby we obtain a vector field on the moduli space
Pg,n. We denote the Lie derivative of this vector field (as it acts on functions on the
moduli space) as Lξ. On the other hand the Virasoro generators L(i)

n that act on the
Hilbert space H at puncture zi = 0, are given in terms of the stress-tensor as

Ln =
∮
dz

2π
zn+1T (z). (6.11)

More generally, we can define for an arbitrary local vector field ξ

Lξ =
∮

dz

2πi
ξ(z)T (z). (6.12)

The relation between the functorial approach and the Virasoro algebra is now given by
the symbolic equation (

Lξ +
∑

i

L
(i)
ξ

)
Φ = 0, (6.13)

that tells us that a deformation of the moduli in Pg,n can be translated into an action of
Vir on the state spaces at the punctures.

6.3. Free bosons

Let us put our feet back on the ground and briefly review the ur-CFTs associated with
free bosonic and fermionic fields, since we will need these results later. A free boson, with
action

S =
1

2π

∫
d2z ∂x∂x (6.14)

can be conveniently discussed in terms of the spin one currents ∂x and ∂x. Because of
the equation of motion, ∂∂x = 0, these currents have a meromorphic expansion

− i∂x =
∑

n∈Z

αnz
−n−1, α†

n = α−n. (6.15)
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The standard free field quantization procedure gives rise to a Fock space description of
the Hilbert space. We have canonical commutation relations

[αn, αm] = nδn+m, (6.16)

and the Fock states are created out of the ground states |p〉, with p ∈ R, defined by

α0|p〉 = p|p〉, αn|p〉 = 0, n > 0. (6.17)

The bosonic Fock space, that we will denote as Bp, is spanned by states of the form

|ϕ〉 = α−n1 · · ·α−ns
|p〉. (6.18)

The operator-state correspondence relates these states to the vertex operators

ϕ(z) = ∂n1x · · ·∂nsxeipx(z). (6.19)

The Fock space forms a c = 1 representations of the Virasoro algebra, generated by the
stress-tensor

T = −1
2(∂x)2. (6.20)

The space is graded by conformal dimension, the eigenvalues of the operator

L0 =
∮
zT (z) = 1

2α
2
0 +

∑

n>0
α−nαn (6.21)

and U(1) charge or (space-time) momentum

J0 = −i
∮
∂x = α0. (6.22)

The degeneracies for fixed eigenvalues can be read off from the character

TrBp

(
yJ0qL0+c/24

)
=
ypq

1
2 p2

η(q)
. (6.23)

If we combine left-movers and right-movers, the full Hilbert space is of the form

H =
∫
dp Bp ⊗ Bp. (6.24)
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Its partition function reads

Z = TrH

(
qL0+ 1

24 qL0+ 1
24

)

=
∫
dp
q

1
2 p2
q

1
2 p2

|η|2

=
1√

Im τ |η|2
=

1√
det′ ∆

(6.25)

with ∆ the scalar Laplacian on T 2.

We can make a slight variation on this model by including a background charge Q.
This modifies the stress-tensor to

T = −1
2(∂x)2 − iQ∂2x (6.26)

and gives c = 1 − 3Q2. This shift produces

L0 → L0 + 1
2QJ0 (6.27)

and gives the vertex operator eipx a conformal dimension 1
2p(p + Q). In the character

(6.23) this can be done by the “twist” y → yqQ/2.

6.4. Free fermions

Free two-dimensional chiral (Dirac) fermions b, c have an action

S =
1

π

∫
d2z b∂c (6.28)

where we can take the spins of b and c to be λ and 1 − λ, with λ half-integer for phys-
ical fermions (that obey spin-statistics) and λ integer for ghost fields (that violate spin-
statistics). The equations of motion give ∂b = ∂c = 0, so we have again mode compositions
of the form

b(z) =
∑

n∈Z+ǫ

bnz
−n−λ,

c(z) =
∑

n∈Z+ǫ

cnz
−n−1+λ. (6.29)

Here ǫ = 1
2 , 0 indicates the two possible spin structures on the circle, usually referred to

as Neveu-Schwarz (NS) and Ramond (R) respectively.
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Quantization starts from the canonical anti-commutation relations

{bn, cm} = δn+m,0, (6.30)

with

{bn, bm} = {cn, cm} = 0. (6.31)

One defines a Fermi sea |µ〉 satisfying

bn|µ〉 = 0, n > µ− λ,

cn|µ〉 = 0, n ≥ λ− µ. (6.32)

and this gives rise to a fermionic Fock space, written as F ǫ
µ and spanned by states of the

form

b−m1 · · · b−mr
c−n1 · · · c−ns

|µ〉. (6.33)

This will form a representation of the Virasoro algebra with central charge

c = 1 − 3(1 − 2λ)2, (6.34)

and stress tensor

T = −λb∂c + (1 − λ)∂bc. (6.35)

We also have a U(1) quantum number given by the eigenvalues of the operator

J0 = −
∮
b(z)c(z) (6.36)

With these conventions the modes bn carry charge −1 and cn carry charge +1. The
degeneracies for fixed eigenvalues of L0 and J0 follow from the expansion of the character

TrFǫ
µ

(
qL0+c/24yJ0

)
= yµq

1
2µ(1+µ−2λ) ∏

n≥λ−µ

(1 + yqn)
∏

m>µ−λ

(
1 + y−1qm

)
(6.37)

7. Sigma models and T-duality

We now want to discuss some examples of less trivial CFTs describing strings moving
on spaces with non-trivial topology. One of the interesting phenomena that we meet
here is that two manifolds that are classically very different, turn out to be equivalent
when considered as a background in string theory. This is one of the manifestations of
duality. In its more sophisticated form this is known as mirror symmetry [50, 39, 51, 52],
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as discussed at great length in the lectures of Brian Greene [53]. Here we will mainly
stick with the more tractable abelian dualities. These so-called T-dualities are reviewed
in great detail in [54]. Actually, as we will see, abelian dualities are basically infinite-
dimensional versions of the fact that under Fourier transformation the gaussian behaves
as

e−ax2 → e−x2/a. (7.1)

7.1. Two-dimensional sigma models

In this lecture we discuss two-dimensional sigma models. Here the fundamental fields
are maps

x : Σ → X, (7.2)

where Σ is a closed Riemann surface (compact without boundary) and X is a priori an
arbitrary compact n-dimensional Riemannian manifold. The corresponding quantum field
theory is defined through the path-integral over all such smooth maps

Z =
∫

Dx e−S, (7.3)

where the action S is defined as follows. We choose a conformal class of metrics on the
surface Σ, so that we obtain a Hodge star ∗, and pick coordinates xµ and a metric Gµν

on X. The action is then given by

S =
1

4πα′

∫

Σ
Gµν(x)dx

µ ∧ ∗dxν . (7.4)

Here α′ is the coupling constant of the sigma model that we usually simply set to one
by absorbing it into the metric G. Note that weak coupling α′ → 0 (in which sigma
model perturbation theory makes sense and the classical action, in particular the target
space metric can be recovered) corresponds to large volume of the target space X. It is
well-known that the critical points of the action are given by the so-called harmonic maps
— a beautiful subject in classical differential geometry (see e.g. [55]).

The action can be generalized by also picking a two-form B = 1
2Bµνdx

µ ∧ dxν on X
and adding the term

i

4π

∫

Σ
Bµνdx

µ ∧ dxν =
i

2π

∫

Σ
x∗B (7.5)

to the action. Note that by Stokes’ theorem this term is invariant under shifts B → B+dΛ.

Actually, we have an even stronger quantum equivalence by which we shift B →
B + 4π2C with C a closed two-form with quantized periods,

C ∈ H2(X,Z), (7.6)
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since the path-integral picks up a term

Z → Z · e2πi
∫

Σ
x∗C = Z (7.7)

When is such a sigma model conformal invariant? The action only uses the Hodge
star, so classically the theory only depends on the conformal class of the metric on Σ. This
conformal invariance is in general not preserved at the quantum level. It is ruined by the
implicit but very important metric dependence of the measure Dx in the path-integral.
This fact is reflected by a non-vanishing beta-function, which for a sigma model is given
by an expression in the target space Riemann tensor [56]

βµν = Rµν + α′ 1
2RµκλρRν

κλρ +O((α′)2) (7.8)

So to first order in sigma model perturbation theory, conformal invariance implies that
the target space should provide a solution to the vacuum Einstein equations

Rµν = 0. (7.9)

One similarly derives an equation for the background Bµν field, that reads to first order
in α′

dB = 0. (7.10)

Together with the gauge equivalence that we discussed above this gives us an element in
the torus3

B ∈ H2(X,R)/H2(X,Z). (7.11)

Actually, for compact spaces, the full ‘elliptic’ equations βµν = 0 only allows for flat
space solutions,

Rµνλρ = 0 (7.12)

leaving only tori (and singular quotients) as possible candidates for a conformal invariant
sigma-model. This situation improves remarkably if we also include fermionic degrees
of freedom, as we will indicate in §7.7. (But see Brian Greene’s lectures [53] for more
details.)

7.2. Toroidal models

The simplest cases for conformal invariant sigma-models are tori, so let us assume that
X can be written as

X = T n = Rn/2πΛ (7.13)

3Here and everywhere we ignore torsion.
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with Λ a rank n lattice. The action of these toroidal models is pure gaussian

S =
1

2π

∫

Σ
(Gµν +Bµν) ∂x

µ∂xν . (7.14)

Duality is in this context the statement that the sigma-model model is insensitive (up to
a change in normalization of the partition function) to the interchange of the torus with
the dual torus

T n ⇐⇒ (T n)∗. (7.15)

This particular type duality transformation is usually referred to as T-duality [54]. It
interchanges target spaces with large volumes and target spaces with small volumes.
From the point of view of sigma model perturbation theory it relates strong and weak
coupling

α′ → 1/α′, (7.16)

so we could have named it a world-sheet S-duality. But we prefer to reserve the term S-
duality only for space-time strong-weak coupling transformation. Since a T-duality is an
automorphism of the CFT and acts for every given Riemann surface, it is a perturbative
symmetry from the point of string perturbation theory.

The simplest way to prove T-duality starts from the following path-integral [57] (we
drop the B-field for convenience)

Z =
∫

DADy exp− 1

2π

∫
(GµνA

µ ∧ ∗Aν + Aµ ∧ dyµ) (7.17)

with Aµ (for fixed µ = 1, . . . , n = dimX) a vector-valued one-form on Σ and yµ a set of
scalars. On the one hand we can integrate out yµ, which imposes the condition

dAµ = 0 ⇒ Aµ = dxµ, (7.18)

at least locally. This gives us back the sigma model on the original torus T n. On the
other hand we can integrate out the field Aµ which gives the integral

Z =
∫
Dy exp− 1

2π

∫
Gµνdyµ ∧ ∗dyν (7.19)

with Gµν the dual metric on the dual torus T̂ n, GµνGνλ = δµ
λ. This produces the T-dual

model.

Before we discuss the full T-duality group, let us first briefly review some general
facts about lattices, that will also come in useful later, when we discuss four-dimensional
geometry in §9.1.
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7.3. Intermezzo — lattices

A lattice Γ is by definition a Z vector space,

Γ ∼= Zn, (7.20)

together with a non-degenerate, symmetric bilinear form (inner product)

Q : Γ × Γ → Z. (7.21)

This bilinear form will have a signature (p, q). The dual lattice Γ∗ is defined as the set

Γ∗ = {x ∈ Rn; Q(x, y) ∈ Z, ∀y ∈ Γ}. (7.22)

A lattice is self-dual, Γ∗ = Γ, if and only if the inner product is unimodular

detQ = ±1. (7.23)

A lattice Γ is called even if

x2 ∈ 2Z, ∀x ∈ Γ, (7.24)

and odd otherwise. For even lattices the signature σ = p− q satisfies necessarily

σ ≡ 0 (mod 8). (7.25)

The classification of self-dual lattices now proceeds depending on whether the inter-
section form is even or odd and whether it is (positive or negative) definite or not [58].
The various possibilities are

odd even

indef p1 ⊕ q(−1) pH ⊕ nE8

def n1, exotic exotic: E8, D16, . . .

Here H denotes the two-dimensional hyperbolic lattice

H =

(
0 1
1 0

)
(7.26)

and E8 the root lattice of the Lie algebra of the same name. The most remarkable fact
is that there exists (for given rank and signature) a unique indefinite self-dual lattice —
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a theorem by Hasse and Minkowski. In the odd case it carries simply the diagonal form,
so the lattice equals the hypercube lattice. In the even case, where we will denote the
lattice as Γp,q with p, q > 0, p− q = 0 (mod 8), it is given by a sum of hyperbolic and E8
lattices,

Γp+8n,p = pH ⊕ nE8. (7.27)

Unfortunately, the situation in the definite case is much more complicated, because
there are many more possibilities apart from the obvious cubic lattice n1. These are
usually referred to as exotic lattices. Although the number of possibilities remains finite for
given rank, it grows rather dramatically: for rank 8, 16, 24, 32, . . .we find 1, 2, 24,∼ 107, . . .
inequivalent even definite self-dual lattices. We will need these facts about lattices again
if we consider four-manifolds in §9.1.

For any lattice Γ of positive signature (n, 0) we define the theta-function as

θΓ(τ) =
∑

v∈Γ
q

1
2v2
, q = e2πiτ , Im τ > 0. (7.28)

Poisson resummation gives that

θΓ(−1/τ) =
(
i

τ

)n/2

θΓ∗(τ) (7.29)

So for Γ even and self-dual, θΓ(τ) is a modular form of weight n/2, e.g. in the simplest
case

θE8(τ) = E4(τ). (7.30)

7.4. Spectrum and moduli of toroidal models

Returning to our discussion of toroidal sigma models, we want to show that the full
duality symmetry group of the sigma model with target space T n is given by

G = O(n, n,Z), (7.31)

by which we denote the group of automorphisms of the lattice

Γn,n = Λ∗ ⊕ Λ, (7.32)

with inner product

p2 = 2k ·m, p = (k,m), k ∈ Λ∗, m ∈ Λ. (7.33)
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This so-called Narain [59] lattice Γn,n is an even self-dual lattice of signature (n, n). As
we have seen, it is unique up to isomorphism,

Γn,n ∼= H ⊕ · · · ⊕H︸ ︷︷ ︸
n times

. (7.34)

The action of the duality symmetry group O(n, n,Z) is particular clear if we consider
the Hilbert space of the toroidal model. It is again given by a sum of tensor products of
left-moving and right-moving Fock spaces as in §6.3, now however built on momentum
states pL and pR that take value in the Narain lattice

H =
⊕

(pL,pR)∈Γn,n

BpL
⊗ BpR

, (7.35)

with

pµ
L,R = kµ ±mµ +Bµνmν , k ∈ Λ∗, m ∈ Λ, (7.36)

(Here indices are raised and lowered with the metric Gµν .) Note that the choice of metric
and B-field determines the split of the momentum p,

p = pL ⊕ pR, p2 = p2
L − p2

R. (7.37)

The one-loop partition function reads

Z = TrH

(
qL0+ n

24 qL0+ n
24

)
=

∑

(pL,pR)∈Γn,n

q
1
2 p2

Lq
1
2 p2

R

|η(q)|2n
(7.38)

One can prove quite straightforwardly that the partition function Z is invariant under
modular transformations. Invariance under T and S transformations in SL(2,Z) is im-
plied by the fact that Γn,n is even and self-dual, respectively. Furthermore, the expression
is by inspection invariant under the action of O(n, n,Z) on the lattice, since we sum over
all elements.

The “classical” moduli space of this CFT is parametrized by the constant n×n matrix

Gµν +Bµν , (7.39)

and is given by the Grassmannian Grn,n of maximal positive subspaces in Rn,n

Grn,n = {V ∈ Rn,n, dimV = n, (·, ·)|V > 0}
∼= O(n, n;R)/O(n;R)× O(n;R). (7.40)
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The “quantum” moduli space is defined as the left-quotient of this homogeneous space
by the “arithmetic subgroup” G = O(n, n,Z)

MT n = G\Grn,n. (7.41)

To see how this Narain moduli space classifies toroidal sigma models, choose a V ∈ Grn,n,
so that we can write

Rn,n = V ⊕ V ⊥. (7.42)

A vector p ∈ Γn,n can in this decomposition be written as p = (pL, pR) with pL ∈ V ,
pR ∈ V ⊥. The quadratic form p2 will be the difference of two positive definite forms of
rank n

p2 = p2
L − p2

R. (7.43)

So we recover the spectrum described above. Note that inside the duality-group G we
have a “geometrical” subgroup

SL(n,Z) ⊂ O(n, n,Z) (7.44)

that represent the “large” diffeomorphisms of T n.

7.5. The two-torus

A particular interesting case appears for n = 2, it is described in detail in [60]. Here
we are dealing with X = T 2, a two-torus or elliptic curve, which is the simplest example
of a Calabi-Yau space. We can represent the elliptic curve as

T 2 = C/Z⊕ ρZ, (7.45)

with the modulus ρ ∈ H, the upper half-plane, and naturally identified modulo the action
of the modular group PSL(2,Z). The Kähler form and the B-field (which has here only
one non-zero component) combine conveniently in one complex (1,1) form

ω = 1
2(B + igzz)dz ∧ dz. (7.46)

We can write this complexified Kähler form as

ω = σ

(
π

Im ρ
dz ∧ dz

)
, (7.47)

where we introduced a second complex modulus σ as

∫

T 2
ω = 2πiσ (7.48)
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Note that the area is given by Imσ and should be positive, so σ also takes value in the
upper half-plane. The local moduli are therefore

(ρ, σ) ∈ H ×H (7.49)

which indeed represents the Grassmannian Gr2,2. The sigma model action reads in this
parametrization, with complex field x = x1 + ρx2 that takes values on the torus C/Λρ

(see (5.14) for notation)

S =
∫
iπd2z

Im ρ

(
σ∂x∂x− σ∂x∂x

)
(7.50)

Now our claim is that there is also a modular PSL(2,Z) group acting on the Kähler
variable σ. In fact, one transformation, the usual shift of the B-field, is easily seen to be
represented by

T : σ → σ + 1. (7.51)

The transformation S : σ → −1/σ relates small and volume, and equals the T-duality
that we proved in §7.2.

One way to see the full duality symmetries is to notice that the Narain lattice can be
written as

Γ2,2 =
4⊕

i=1
Zei (7.52)

with ei ∈ C2 the vectors

e1 = (1, 1), e2 = (ρ, ρ), e3 = (σ, σ), e4 = (ρσ, ρσ). (7.53)

and where the signature (2, 2) inner product of a vector (pL, pR) is given by

p2 =
p2

L − p2
R

Im ρ · Im σ
. (7.54)

From this explicit realization of the Narain lattice we can simply read off the full quantum
symmetry group O(2, 2,Z). In fact, we have the isomorphism

O(2, 2;Z) = PSL(2,Z) × PSL(2,Z) ×| Z2. (7.55)

The two copies of Γ = PSL(2,Z) act in the obvious way on the two moduli ρ, σ and the
Z2 interchanges them

(ρ, σ) ↔ (σ, ρ) (7.56)

Note that this transformation interchanges the complex Kähler form ρ and the complex
structure σ. It can be seen as the simplest realization of mirror symmetry. It can be

51



A 1

B
1

A 2

B2

A g

Bg

Fig. 6: A Riemann surface with an homology basis.

intuitively understood by picking a rectangular two-torus with radii R1 and R2. We then
find

ρ = i
R1

R2
, σ = iR1R2. (7.57)

A duality transformation on one S1 will send R1 → 1/R1 and thus interchange ρ and σ.

Concluding, the moduli space for a sigma model with target space T 2 is

MT 2 ∼=
(
P1

ρ ×P1
σ

)
/Z2 (7.58)

7.6. Path-integral computation of the partition function

It might be instructive to also compute the partition function (7.38) of a toroidal
model directly from the path-integral [61, 62]. We will do the general case of a field

x : Σ → T n ∼= Rn/2πΛ (7.59)

on a genus g surface Σ.

We first choose an homology basis Ai, Bi, i = 1, . . . , g, of H1(Σ,Z) as in fig. 6. In
terms of these cycles the one-form dx has periods

1

2π

∮

Ai
dx = mi ∈ Λ,

1

2π

∮

Bi

dx = ni ∈ Λ. (7.60)

Now we can write

dx = α + dy, (7.61)

with y a proper function Σg → Rn and α a harmonic vector-valued one-form, dα = d∗α =
0, with quantized periods

α

2π
∈ H1(Σ,Λ). (7.62)
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To compute the contribution to the action of this harmonic piece, the form α must be
decomposed in terms of the basis ωi ∈ H0(KΣ) (i = 1, . . . , g) of holomorphic (1,0) one-
forms on Σ and their conjugates. These satisfy canonical normalizations of their periods

∮

Ai
ωj = δi

j ,
∮

Bi

ωj = τij . (7.63)

with τij the period matrix, a complex symmetric matrix with Im τ > 0. Note that these
abelian differentials satisfy ∫

Σ
ωi ∧ ωj = −2i Im τij . (7.64)

If we now write

α = λiωi + λ
i
ωi, (7.65)

we see that the periods are expressed as

mi = λi + λ
i
,

ni = τijλ
j + τ ijλ

j
, (7.66)

so that the coefficients λi can be solved in terms of the winding numbers mi, ni ∈ Λ as

λ = iπ(Im τ)−1(n−mτ). (7.67)

If we insert this expression for α in the action, we obtain the contribution

Sm,n = 1
2π(n−mτ )(Im τ)−1(n−mτ) + iπm · B · n. (7.68)

So the partition function can be written as

Z = Zqu

∑

m,n∈Λ
e−Sm,n . (7.69)

Here Zqu is the contribution of the single-valued fields y, a determinant that does not
depend on the moduli of T n (apart from the zero-mode).

In order to reach the canonical form (7.38) we have to perform a further Poisson
resummation on the variables ni ∈ Λ, exchanging it for the dual variables ki ∈ Λ∗. The
soliton sum then takes the familiar form

∑

mi∈Λ, ki∈Λ∗

exp (iπ(k +m)τ(k +m) − iπ(k −m)τ(k −m)) (7.70)
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in which we recognize the left-moving and right-moving momenta pL = k +m and pR =
k −m. If we now restrict to g = 1 we obtain (7.38).

This computation is particular interesting for the case of a two-torus. If we compute
the genus one partition function, we are dealing with maps

x : T 2
τ → T 2

ρ,σ, (7.71)

where the suffices indicate the moduli. In the parametrization of §7.5 the soliton sum
reads

∑

m,n∈Λρ

exp

(
−iπσ |n−mτ |2

Im τ Im ρ
+ iπσ

|n−mτ |2
Im τ Im ρ

)
(7.72)

were m and n are elements of the lattice Λρ = Z ⊕ ρZ. After the Poisson resummation,
we get the momentum sum

∑

k,m∈Λτ

exp

(
iπτ

|k −mσ|2
Im ρIm σ

− iπτ
|k −mσ|2
Im ρIm σ

)
(7.73)

Here we note a remarkable triality permuting the three moduli ρ, σ, τ [60].

7.7. Supersymmetric sigma models and Calabi-Yau spaces

If we add world-sheet supersymmetry, the set of conformal invariant sigma models
becomes more interesting. For N = 1 supersymmetry not much happens: only tori and
orbifolds survive. However, for N = 2 supersymmetry there is a much richer class, the
Calabi-Yau spaces [63, 64].

Calabi-Yau manifolds, first introduced in the physics literature in [65], are Kähler
spaces of complex dimension d for which the holonomy, which generically lies in U(d) for
a Kähler space, restricts to SU(d). Calabi-Yau spaces can equivalently be defined by the
property that for fixed Kähler class they have a unique solution to the vacuum Einstein
equation

Ri = 0, (7.74)

i.e. they allow for a Ricci-flat Kähler metric. Indeed, the usual second order term in sigma
model perturbation theory in the beta function (7.8) disappears for N = 2 models, as does
a third order term. So in the context of N = 2 supersymmetry Ricci flat models stand a
change to define a CFT. It turns out that there is a nontrivial fourth order correction, but
this correction can always be compensated by adding a piece to the metric, that keeps
the cohomology of the Kähler class invariant.

As conjectured by Calabi [63] and proven by Yau [64], a necessary and sufficient
condition for Ricci flatness is given by the condition that the canonical line bundle of X,
defined as

KX =
∧dT ∗

X (7.75)
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is trivial

c1(KX) = c1(X) = 0. (7.76)

So we have in particular one global holomorphic section Ω of KX (unique up to a scale
factor). That is, a CY space comes with a unique holomorphic volume-form

Ω = Ω(x)dz1 ∧ . . . ∧ dzd (7.77)

Therefore the space Hd,0(X) is one-dimensional,

hd,0 = 1. (7.78)

If a manifold has precisely SU(d) holonomy and not less (so that it is a Calabi-Yau space
in the strict sense) we further have

h1,0 = h2,0 = . . . = hd−1,0 = 0. (7.79)

In dimension d ≤ 3 we have the following list of possible CY spaces

d = 1 T 2

d = 2 T 4, K3

d = 3 T 6, T 2 ×K3, CY3

Here CY3 denotes a simply connected three-fold; all tori have trivial holonomy group and
K3 is the unique compact two-dimensional CY with holonomy SU(2). We will not discuss
supersymmetric sigma models on CY spaces in much detail here, since they are covered
in detail in Brian Greene’s lectures [53]. To be self-contained in these notes, let us just
make a few comments about their moduli spaces, that we need later.

For Calabi-Yau three-folds we only understand the local structure of the sigma-model
moduli space in full detail. It is clear that we have a unique CFT on X given a com-
plex structure and a Kähler class. Deformations of complex structures are infinitesimally
given by the cohomology groupH1(TX). Using the existence of the holomorphic three-form
one can show that these deformations are unobstructed [66]. Furthermore this cohomol-
ogy group is isomorphic with H1,2(X). Thus variations δσ of the complex structure are
parametrized by

δσ ∈ H2,1(X), (7.80)

and there are h2,1 of these complex structure deformation parameters. The inequivalent
Kähler deformations δρ, including the B field) are elements of the cohomology group

δρ ∈ H1,1(X) = H1(T ∗
X). (7.81)
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These give rise to another h1,1 complex moduli. Summarizing, the moduli space of CY
sigma models takes the local form

TXM ∼= H2,1(X) ×H1,1(X) (7.82)

In the case of the two-torus we already saw the important role these moduli-deformations
δρ, δσ played, and that there were strong relations between the two. Actually, in that
case we could simply interchange the two. Mirror symmetry is the generalization of that
phenomenon to higher dimensional manifolds [52].

7.8. Calabi-Yau moduli space and special geometry

Let us make a few further remarks about the moduli space of complex structures of
Calabi-Yau three-folds. Let M be the moduli space of inequivalent complex structures
on the CY space X. If h2,1 = g, then is M a g dimensional complex space. On X we can
pick a holomorphic volume-form Ω. Let L denote the moduli space of pairs (X,Ω). Since
the choice of Ω is unique up to multiplication by complex numbers, L is a line bundle
over M,

L π→M. (7.83)

We can now consider the so-called period map that is defined as follows. First we recall
that H3(X,C) = H3(X,Z)⊗C, where the cohomology group H3(X,Z) is the dual to the
space H3(X,Z) of three-cycles. By the intersection form

η(α, β) =
∫

X
α ∧ β, α, β ∈ H3(X,Z), (7.84)

it is naturally a 2g + 2 integer dimensional symplectic vector space. It is a topological
object whose definition does not depend on the choice of complex structure.

If we choose a particular complex structure we get a Hodge decomposition of H3(X,C)
in terms of the Dolbeault groups

H3(X,C) ∼= H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 (7.85)

with H
p,q

= Hq,p. The piece H3,0 represents the space of holomorphic volume forms and is
one-dimensional. The period map now associates to the pair (X,Ω) the point in H3(X,C)
represented by Ω. An important mathematical result is that this map

L → H3(X,C) (7.86)

is injective [66]. This gives a description of L as a cone in H3(X,C). (It is a cone, since
we can scale the holomorphic three-form by multiplication by C.)
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Now the period map can be described in more detail if we choose once and for all a basis
in H3(X,Z) by picking a canonical basis Ai, Bi (i = 0, . . . , g) of homology three-cycles.
This gives a dual basis αi, β

i of integer three-forms. On this basis we can decompose the
holomorphic (3,0) form as

Ω = φiαi + Fiβ
i (7.87)

in terms of the periods

∮

Ai
Ω = φi,

∮

Bi

Ω = Fi. (7.88)

Because of the properties of the period map, the components φi may be used as local
coordinates on L, or, equivalently, as homogeneous coordinates on M. The components
Fi become then functions of the φi. We can now differentiate Ω with respect to these
moduli φi. The g + 1 partial derivatives

ωi = ∂iΩ (7.89)

will give a basis of the space4

W = H3,0 ⊕H2,1. (7.90)

Note that we have

H3(X,C) = W ⊕W (7.91)

and this is a complex polarization of the symplectic vector space, which means concretely
that ∫

X
ωi ∧ ωj = 0. (7.92)

The g + 1 three-forms ωi are given in components as

ωi = αi +
∂Fj

∂φi
βj. (7.93)

We will use the notation

τij =
∂Fj

∂φi
. (7.94)

Now we claim that

τij = τji. (7.95)

4Here we need the technical assumption of Griffiths transversality: the first order variation of a (3, 0)
form gives at most a (2, 1) form [67].
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This follows directly from relation (7.92), by using the fact that for any two 3-form Φ and
Ψ ∫

X
Φ ∧ Ψ =

∑

i

(∮

Ai
Φ
∮

Bi

Ψ −
∮

Ai
Ψ
∮

Bi

Φ
)
. (7.96)

The LHS can only contribute if it is a form of total degree (3,3). Various identities are
obtained by inserting forms for which the LHS vanishes. For instance, if we plug in ωi

and ωj this is the case, and we find the relation

τij =
∮

Bj
ωi =

∮

Bi
ωj = τji (7.97)

Since τij = ∂iFj , this tells us that locally the period Fi is the derivative of a function on
L, the prepotential F(φ)

Fi = ∂iF . (7.98)

Note that this function is homogeneous of degree two. This relation is obtained easily by
using the above trick again for the forms Ω and ωi, which gives

0 =
∫

X
Ω ∧ ωi = φj∂jFi −Fj. (7.99)

So, Fi is homogeneous of degree 1, and therefore F is homogeneous of degree 2 (and
therefore a section of the bundle L⊗2. Note that we can write

F = 1
2φ

iFi = 1
2

∮

Ai
Ω
∮

Bi

Ω. (7.100)

Another useful identity is that

Ω = φiωi. (7.101)

That is, in the local coordinates φi on W , the three-form Ω is given by the vector φ.

Finally, there is a beautiful formula for the natural Weil-Peterson Kähler metric on
the moduli space M [68]. (Note that such a metric canonically exist, since the complex
deformations can be written as special metric deformations. The space of Riemannian
metrics always carries a natural metric itself.) In the case of a family of Calabi-Yau spaces
the metric is Kähler and given in terms of the Kähler potential K, which can be written
as

e−K =
i

2

∫

X
Ω ∧ Ω (7.102)

or in terms of the special coordinates φi,

e−K = Im (φ
iFi) = (φ, φ). (7.103)
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Here we use the inner product (·, ·) on the space W defined by

(x, y) = xi(Im τ)ijx
j . (7.104)

Note that this inner product has signature (g, 1). The corresponding hermitian form can
be written as

(x, y) =
i

2

∫
x ∧ y. (7.105)

The corresponding Kähler (Weil-Peterson or Zamolodchikov) metric is given by

Gi = ∂i∂K, (7.106)

so that for general vectors x, y ∈W , with x = xiωi, we have

G(x, y) = Gix
iy = − (x, y)

(φ, φ)
+

(x, φ)(φ, y)

(φ, φ)2
. (7.107)

Here we recall that the three-form Ω is expressed as Ω = φiωi. Since e−K gives the metric
on the line bundle L, almost by definition the corresponding Kähler form ω = ∂∂K has
the property

ω = 2πc1(L). (7.108)

Hence we have the quantization condition ω/2π ∈ H2(M,Z). (The technical term for
such a Kähler metric that arises as the Chern class of a line bundle is restricted Kähler.)

The Kähler metric is by inspection degenerate in the direction of the vector φ = Ω,

G(x, φ) = G(φ, y) = 0 (7.109)

In fact, here it is useful to introduce a slightly differently normalized metric, the so-called
tt∗-metric (see §8.12) defined as

gi = e−KGi (7.110)

In terms of this metric we have

g(x, y) = −(x, y) +
(x, z)(φ, φ)

(φ, φ)
= − i

2

∫
x⊥ ∧ y⊥ (7.111)

where x⊥ is the (2, 1) part, satisfying (x, φ) = 0, of the general 3-form x ∈W = H3,0⊕H2,1.
So, when we restrict to H2,1, and thereby descend from L down to M, we have

gi = −Im τij . (7.112)
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More precisely, with P⊥ the orthogonal projection on H2,1,

g = −P⊥ · Im τ · P⊥ (7.113)

We now see that g (and G) give a good metric on the moduli space M.

This description of the geometry of the moduli space of complex structures of a CY
manifold in terms of the homogeneous function F is known as special geometry [69].
Special geometry was first discovered in the context of N = 2 D = 4 supergravity [70]. It
was then shown that CY spaces give a concrete realization [68]. This is not a coincidence,
since the CY manifold can be used as a compactification in string theory. We will see
later in §8.12 how the same structure also emerges in CFT, or more precisely, families of
N = 2 string vacua.

It is interesting to see what happens at a singularity in MX . If the Calabi-Yau space
develops a node, a particular three-cycle, say A0, will shrink to zero volume. So the period

φ0 =
∫

A0
Ω → 0 (7.114)

will go to zero. Now one can prove that if we make a monodromy at the singular locus
φ0 = 0, i.e. transform φ0 → e2πiφ0, there will be an action on the other cycles given by
the Picard-Lefshetz formula [71]

C → C + η(C,A0)C. (7.115)

So the dual cycle B0 will transform as

B0 → B0 + A0, (7.116)

and therefore we have

∂0F =
∫

B0

Ω → ∂0F + φ0. (7.117)

From this we read off immediately that the singularity of F around φ0 = 0 takes the form

F ∼ 1

4π
(φ0)2 log φ0. (7.118)

We will make use of the result later.
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8. Perturbative string theory

From our deliberations on conformal field theories we now move upwards to the world-
sheet formulation of perturbative (bosonic) string theory. This a subject for a lecture series
in its own, and fortunately there are excellent set of lectures in the literature [72, 73, 74, 75]
(as there are excellent text books [4]). So we will mainly focus on the more abstract
mathematical aspects, that are usually not stressed so much in an introductory course.

8.1. Axioms for string vacuum

From an axiomatic point of view a perturbative string vacuum consists of three ingre-
dients: a representation H of the Virasoro algebra (actually the classical Witt algebra),
a BRST differential Q, and an anti-ghost field G that can be used to make volume forms
on the moduli space Mg,n. More precisely, we need (for a mathematical exposition see
e.g. [76])

(1) A (necessarily non-unitary) CFT of central charge c = 0. That is, we have Vi-
rasoro generators Ln, Ln acting on a Hilbert space H. This Hilbert space is graded by
ghost/fermion number F ,

H =
⊕

n∈Z

H(n). (8.1)

Quite often we can introduce a bi-grading by separately conserved left-moving and right-
moving ghost charges FL and FR with F = FL + FR.

(2) A BRST operator

Q : H(n) → H(n+1) (8.2)

satisfying Q2 = 0. This makes the Hilbert space H into a complex.

(3) Anti-ghosts G,G that are primary spin two fields with a mode expansion

G(z) =
∑

k

Gkz
−k−2 (8.3)

and similarly for G(z). The generators Gn, Gn are odd and anticommuting, and satisfy
the algebra

{Q,Gn} = Ln, {Q,Gn} = Ln, (8.4)

[Ln, Gm] = (n−m)Gn+m. (8.5)

Given these three basic ingredients one defines the Hilbert space of basic states as

Hbasic = kerG−
0 ∩ kerL−

0 , (8.6)
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with G±
0 = G0 ±G0, etc. Here we note the important relation

{Q,G−
0 } = L−

0 . (8.7)

The space V of physical states is finally defined as the “semi-relative” cohomology

V = H∗
Q(Hbasic). (8.8)

This last definition needs some explaining. Suppose we have a space X that carries a
circle action, say for convenience a free action, so that we have a S1 principal fiber bundle
π : X → B over some base space B. Let ξ be the vector field that generates the S1 action.
Now suppose we want to compute the cohomology of B in terms of the cohomology of X.
There is a general procedure to do this for arbitrary quotient spaces called equivariant
cohomology [77], but here there is a much more simple procedure. To this end we consider
the following two operators that act on the space Ω∗(X) of differential forms on X: the
inner product ιξ with the vector field ξ, and the Lie derivative Lξ. These operators satisfy
Cartan’s relation

{d, ιξ} = Lξ. (8.9)

The differential forms on B pulled-back to X can now be characterized by two properties:
they are S1 invariant, and thus satisfy Lξα = 0, and they have no components in the
direction of the fiber, ιξα = 0. This is the definition of a basic form,

Ω∗
basic(X) = ker ιξ ∩ kerLξ. (8.10)

The cohomology of B can now be computed by working with these basic forms. We see
that to make an analogy with string theory, we have the translation

Ω∗(X),Ω∗
basic(X), H∗(B), d, ιξ,Lξ ⇐⇒ H∗,H∗

basic, V, Q,G
−
0 , L

−
0 . (8.11)

In string theory the relevant circle action is the rotation of the string as implemented by
the world-sheet momentum operator L−

0 .

With all this machinery in place, string amplitudes are defined by choosing physical
vectors φ1, . . . , φn ∈ V and doing the following integral over Mg,n

A(φ1, . . . , φn) =
∫

Mg,n

〈φ1 · · ·φn

3g−3+n∏

I=1

∫

Σ
µIG

∫

Σ
µIG〉. (8.12)

Here µI is a basis of Beltrami differentials spanning TΣMg,n. Since G(z) is a section of
K2, the combination µIG is a (1, 1) form on the surface Σ and so the integral makes sense.
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In particular we have the following form of the genus g vacuum amplitude

Fg =
∫

Mg,n

〈
3g−3∏

I=1

∫

Σ
µIG

∫

Σ
µIG〉. (8.13)

By some formal manipulations this expression can be simplified for the case of the one-loop
amplitude, giving [78]

F1 =
1

2

∫

F

d2τ

Im τ
Tr
(
FLFR(−1)F qL0qL0

)
. (8.14)

(The factor 1
2 is because of the Z2 symmetry z → −z that any elliptic curve allows.)

8.2. Intermezzo — twisting and supersymmetry

Before we continue our discussion of string theory it is useful to review briefly the
concept of twisted supersymmetries and non-local operators, since these concepts play
an important role in the following and are quite generally applicable, also in the four-
dimensional context in later lectures.

Supersymmetry transformations Q are fermionic operations that square into the trans-
lation operator. The usual supersymmetry algebra has the form

{Qα, Qβ} = γµ
αβPµ. (8.15)

Here the supercharges Qα are spinors on the space-time manifold, and Pµ is the momen-
tum operator that generates translations. Now generically there are no covariant constant
spinors on a curved manifold, so it is difficult to find manifolds that allow global super-
symmetries. (Just as it is generally speaking not true that a manifold allows isometries.)
In fact, to find a global supersymmetry that always exists, independent of the space-time
topology, one needs a scalar supersymmetry. (There is always a covariant constant func-
tion, the constant function.) That is, we are looking for a slightly different supersymmetry
algebra of the form

{Q,Gµ} = Pµ, (8.16)

with Q a scalar and Gµ a vector, both odd and satisfying

Q2 = 0, {Gµ, Gν} = 0. (8.17)

Since the “BRST operator” Q squares to zero, for any QFT with such an operator we
can define in general the cohomology group

V = HQ(H) (8.18)
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of “physical” states annihilated by Q, modulo Q exact states. If Q symmetry is unbroken,
i.e. if the vacuum satisfies Q|vac〉 = 0, all expectation values of Q commutators vanish,
since

〈[Q,O]〉 = 0. (8.19)

(We write 〈· · ·〉 = 〈vac| · · · |vac〉.) This implies that if a set of local operators O1, . . . ,On

all satisfy

[Q,Oi(x)] = 0, (8.20)

their correlation function

〈O1(x1) · · ·On(xn)〉 (8.21)

is constant. This is proven algebraically by observing that

∂O
∂xµ

= [Pµ,O] = [Q,O(1)
µ ], (8.22)

where we define the one-form

O(1)
µ = [Gµ,O]. (8.23)

We thus find that5

∂

∂xµ
〈O1(x1) · · ·On(xn)〉 = 〈[Q,O1,µ(x1) · · ·On(xn)]〉 = 0. (8.24)

All this can be done in a more systematic way as follows [80]. In fact, regarding the
Q symmetry as a spin zero supersymmetry is a very fruitful analogy. It is convenient to
go to a “superspace” formulation of the theory where, in addition to the space-time coor-
dinates xµ we have additional Grassmannian coordinates θµ, just as when we considered
supersymmetric quantum mechanics. Starting from a physical field O(x), that we will
now denote as O(0)(x) to indicate that it is a zero-form, the superfield O(x, θ) is defined
as

O(x, θ) = eθµGµO(x)

=
∑

k

O(k)
µ1...µk

(x)θµ1 · · · θµk . (8.25)

Here the fields O(k) are generated from O(0) by repeated application of Gµ

O(k)
µ1...µk

(x) = [Gµ1 , [Gµ2, . . . , [Gµk
,O(0)(x)] . . .]]. (8.26)

Since O(k)
µ1...µk

is antisymmetric in all its indices, it represents a k-form, and we can write
this relation as

[G,O(k)] = O(k+1), G = Gµdx
µ. (8.27)

5We write in the following [·, ·] for the graded (anti)commutator in the following.

64



Since we have [Q,G] = d, these differential forms satisfy the important descent equation
[80]

dO(k) = [Q,O(k+1)]. (8.28)

We can draw two conclusions from this equation. First, it suggests a new class of non-local
physical observables. If C is a k-dimensional closed submanifold, the descent equation
shows that

OC =
∫

C
O(k)(x) (8.29)

is a physical observable, since

[Q,OC ] =
∫

C
dO(k−1) =

∫

∂C
O(k−1) = 0. (8.30)

Secondly, if C and C ′ represent the same class in Hk(M), we have C − C ′ = ∂B and

OC −OC′ =
∫

B
dO(k) = [Q,

∫

S
O(k+1)]. (8.31)

So the physical observable depends only on the homology class of C. That is, for each
class in Hk(M) and each element in V = H∗

Q(H) we can construct a non-local operator

C ∈ Hk(M) ⇒ OC =
∫

C
O(k)(x) (8.32)

Why is all this relevant for string theory? As we have stressed, string amplitudes are
obtained by integrating over the moduli space. In particular we have to integrate over
the positions of the vertex operators that create a certain string state in the push-forward
Mg,n → Mg,n−1. These vertex operators have to be (1, 1) forms on the Riemann surface.
These volume forms are obtained through the above procedure.

More precisely, we first observe that the translation operators are given by

∂

∂z
= L−1,

∂

∂z
= L−1. (8.33)

Part of the algebra of the anti-ghosts tells us that

{Q,G−1} = L−1, {Q,G−1} = L−1. (8.34)

Therefore our scalar supersymmetry (8.16) is realized on the world-sheet.

Suppose we now pick a physical state, that is a cohomology class of Q. Such a state
can be assumed to have conformal weight zero. If not, we use the relation

{Q,G0} = L0 (8.35)
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to prove that it is Q exact. Out of such a operator φ of weight zero we can now make the
associated two-form as

φ(2) = [G−1, [G−1, φ]]. (8.36)

The integrated vertex operators are now given by the non-local Q closed expressions

φΣ =
∫

Σ
φ(2). (8.37)

8.3. Example — The critical bosonic string

We now return to string theory by giving some simple examples.

In the bosonic string (see e.g. [46]) the axioms are satisfied by starting with 26 bosonic
free fields xµ. These fields have stress-tensor

T = −1
2(∂xµ)2, (8.38)

which generates a c = 26 representation of the Virasoro algebra. To this we add the
ghosts of the bosonic string, a b, c system as described in §6.4 with λ = 2. So b(z) has
spin two and c(z) has spin −1 and the central charge equals c = −26. The full Hilbert
space is now given by

H = H26 bosons ⊗Hghosts. (8.39)

It is graded by the ghost charge F = − ∮ bc and carries the action of the BRST charge

Q =
∮ (

−1
2c(∂x)

2 + c∂cb
)

(8.40)

The anti-ghost is given by the b field (which gives its name to G)

G(z) = b(z), (8.41)

which indeed has the defining property

{Q, b(z)} = T (z). (8.42)

Physical fields typically take the form

φ = ccV, (8.43)
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with V a primary field in the matter sector of conformal dimension (1, 1). The most
important fields are the states of the form

V µν
p = ∂xµ∂xνeipx ⇐⇒ αµ

−1α
ν
−1|p〉, (8.44)

which represent the Fourier modes of the space-time fields Gµν(x) and Bµν(x).

8.4. Example — Twisted N = 2 SCFT

Another important example is the twisting of the N = 2 superconformal algebra in two
dimensions, say with central charge c = 3d. In that case we have the following currents:
the stress-energy tensor T of spin 2, two supercurrents G± of spin 3/2, and a U(1) current
of spin 1. In these algebra states and fields are characterized by their conformal dimension
h and charges q

L0|φ〉 = h|φ〉, J0|φ〉 = q|φ〉. (8.45)

where L0 and J0 are the zero-modes of T and J . Twisting amounts to redefining the
stress tensor as

T → T + 1
2∂J, (8.46)

which gives in particular L0 → L0 + 1
2J0 and accordingly adds the charge to the conformal

dimensions

h→ h+ 1
2q. (8.47)

Since the supercurrent G± has h = 3/2 and q = ±1, this gives field G = Q+ and Q = Q−

of spin 2 and 1. The modes Ln, Gn, Qn, Jn of the four currents form a closed algebra,
which is simple the N = 2 superconformal algebra written in a different basis

[Lm, Ln] = (m− n)Lm+n, [Jm, Jn] = d ·mδn+m,0,

[Lm, Gn] = (m− n)Gm+n, [Jm, Gn] = −Gm+n,

[Lm, Qn] = −nQm+n, [Jm, Qn] = Qm+n,

{Gm, Qn} = Lm+n + nJm+n + 1
2d ·m(m+1)δn+m,0,

[Lm, Jn] = −nJm+n − 1
2d ·m(m+1)δm+n,0.

(8.48)

So all the conditions of a string vacuum (and more) are satisfied.

We see in particular that out of this twisted N = 2 we can produce a two-dimensional
topological field theory with Hilbert space V = HQ(H). The ring V is in that case known
as the chiral ring [85].
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8.5. Example — twisted minimal model

As the simplest example of the twisting procedure we consider one free boson x with
a background charge Q = −1/

√
3 so that the central charge vanishes c = 0. This is the

twisted k = 1 N = 2 minimal model. Now the vertex operators

Vp = eipy/
√

3 (8.49)

have conformal dimension h and “ghost charge” q given by

h = 1
2p(p− 1), q = 1

3p. (8.50)

The BRST charge and the anti-ghost are defined as

Q =
∮
V3(z), G(z) = V−3(z). (8.51)

This string theory has two physical states

φ0 = 1, φ1 = V1, (8.52)

with (h, q) = (0, 0) and (0, 1
3). The algebra of these fields is trivial

φ1 · φ1 = 0. (8.53)

It is a nice exercise to compute the corresponding two-forms

φ
(2)
0 = 0, φ

(2)
1 = V−2. (8.54)

The only non-zero amplitude in this toy model is the four-point function

A(φ1, φ1, φ1, φ1) =
∫
d2z |(z − 1)

2
3z

1
3 |2 (8.55)

which is some finite ratio of Γ-functions.

8.6. Example — topological string

In its simplest form the topological string is obtained by twisting a N = 2 sigma model
on a Calabi-Yau X. (See [31] for an extensive review of topological strings and their role
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in non-critical string theory and two-dimensional quantum gravity, and see [82] for their
importance for intersection theory on the moduli space of Riemann surfaces.)

For the simple case X = C (or T 2), the topological string is given by two free scalar
fields x1, x2 that can be combined in complex fields x = x1 + ix2 and x = x1 − ix2. The
central charge c = 2 of this system is matched by a λ = 1 (b, c) system with central charge
c = −2. The total stress-tensor is given as

T = −∂x∂x − b∂c (8.56)

The BRST transformation rules are then taken as

Qx = c

Qx = 0

Qc = 0

Qb = ∂x (8.57)

The anti-ghost is G = b∂x. Typical physical fields are eipx, ceipx.

8.7. Functorial definition

After all these concrete examples, we return into the clouds and our abstract discussion
of perturbative string theory. In order to give a more functorial definition of a string
vacuum, using the language of categories, we have to make two generalizations beyond
CFT [83, 84]

(1) The Hilbert space H is a complex, with differential Q. Its cohomology we will
denote again as V .

(2) The amplitudes ΦΣ are differential forms on the extended moduli space. So, we
have maps

ΦΣ : H⊗n → Ω∗(Pg,n) (8.58)

This structure is sometimes also called a cohomological field theory [81, 36].

If one wishes, one can introduce two new categories, the category Comp of Hilbert
space complexes and equivariant maps, and the category TRiem of so-called topological
Riemann surfaces [31]. The definition of these objects is such that their moduli space is
given by the 3g − 3|3g − 3 dimensional superspace

M̂g,n = ΠTMg,n (8.59)

so that functions on the moduli space become differential forms on Mg,n. With all this
in place, a perturbative string vacuum is a functor

Φ : TRiem → Comp. (8.60)
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We see that we have made the progression

TFT ⇒ CFT ⇒ Strings

and at the same time our amplitudes or morphisms became objects in bigger and bigger
spaces

H0(Pg,n) ⇒ Ω0(Pg,n) ⇒ Ω∗(Pg,n).

In string perturbation theory we have two differentials: the supercharge or BRST
operator Q that acts on the Hilbert space H and the exterior differential d on the moduli
space. Perturbative string theory is now abstractly defined by the extra relation

(d+Q)ΦΣ = 0. (8.61)

The relation with the anti-ghost field

G(z) =
∑

n

Gnz
−n−2 (8.62)

is as follows. The amplitudes are differential forms on moduli space with a degree deter-
mined by the total ghost charge. If we have a form of degree p, we can pick Beltrami
differentials µ1, . . . , µp ∈ TΣPg,n

∼= H1(TΣ) and find the equivalence

〈
∏

i

φ1(Pi)
p∏

I=1

(∫

Σ
µIG

∫

Σ
µIG

)
〉

= 〈ΦΣ(φ1, . . . , φn),
∧

I

(µI ∧ µI)〉. (8.63)

If we now choose φi ∈ V = H∗
Q(H0) then the condition

dΦΣ(φ1, . . . , φn) = 0 (8.64)

tells us that ΦΣ actually is a map

ΦΣ : V ⊗n → H∗(Mg,n). (8.65)

Here we use that the fibers in the projection Pg,n → Mg,n do not contribute to the Q
cohomology [84]. This is guaranteed by the restriction to basic states, as in (8.6). Indeed,
the only non-trivial part in the infinite-dimensional fiber of the projection is the circle
action obtained by rotating the local coordinate z → eiθz. This rotation is implemented
by the operator L−

0 . This explains the analogy with computing the cohomology of the
base manifold of a circle bundle that we mentioned in §8.1.
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The final g loop string amplitudes, that computes scattering of string states, are then
expressed by a further integral over Mg,n that picks out the top component

A(φ1, . . . , φn) =
∫

Mg,n

ΦΣ(φ1, . . . , φn). (8.66)

8.8. Tree-level amplitudes

This structure becomes more manageable in genus zero. As a simple example consider
the sphere with three holes. Since we have seen that M0,3 = pt, the three point function
is simply given by a complex number

〈φ1(z1)φ2(z2)φ3(z3)〉0 = Φ0,3(φ1, φ2, φ2) ∈ C. (8.67)

If we pick a basis φi ∈ V this gives us the structure coefficients of a TFT

cijk = Φ0,3(φi, φj, φk). (8.68)

So we see that we actually went through a little loop,

TFT ⇒ CFT ⇒ String ⇒ TFT. (8.69)

For the more general case of an n-point function in genus zero, we obtain a cohomology
class on M0,n. In string theory we are particularly interested in the forms of top degree.
We will define the n-point genus zero string amplitude as

ci1···in =
∫

M0,n

Φ0,n(φi1 , . . . , φin)

= 〈φi1(0)φi2(1)φi3(∞)
n∏

k=4

∫
φ

(2)
ik
〉 (8.70)

with φ(2) = [G−1, [G−1, φ]], a (1, 1) form on the surface.

As written above this amplitude has not the manifest permutation symmetry of the
indices i1, . . . , in. That this symmetry is still present we can show by considering again the
automorphisms of P1. To this end we recall that the non-local operators can be combined
into one superfield (8.25) on the topological Riemann sphere ΠTP1,

φ(z, z, θ, θ) = φ(0) + φ(1,0)θ + φ(0,1)θ + φ(2)θ θ. (8.71)
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Here we suppressed the (z, z) dependence on the RHS. Let us now consider a correlation
function on the sphere of the form

〈 n∏

i=1

∫
φi(z, z, θ, θ)

〉
0
. (8.72)

This expression is not well-defined, since it is invariant under a fermionic extension of
the PGL(2,C) symmetry, generated by operators L0, L1, L−1 and G0, G1, G−1 and their
complex conjugates. We have to factor out the infinite volume of this group in order to
obtain a finite answer. These symmetries correspond to the super-Möbius transformations

z → az + b

cz + d
, θ → θ + αz2 + βz + γ

(cz + d)2 . (8.73)

This extended PGL(2, C) symmetry can be used to fix three of the z-coordinates, say
z1, z2, z3, at 0, 1, and ∞, and put three of the θ-coordinates to zero. We choose these
anti-commuting coordinates to be θ1, θ2, θ3. If we recall that

∫
d2θ · φ = φ(2), φ|

θ=0
= φ(0), (8.74)

then we see that after gauge fixing we are left with a correlation function of the form

〈
φ

(0)
i1
φ

(0)
i2
φ

(0)
i3

∫
φ

(2)
i4
. . .
∫
φ

(2)
is

〉
0
. (8.75)

Since we started from an expression that was explicitly symmetric in all indices i1, . . . , is,
this correlator also has this permutational symmetry. That is, it does not matter which
three operators we represent as zero-forms. The generalized PGL(2,C) invariance tells
us that we can interchange a zero and a two-form.

8.9. Families of string vacua

Out of the generating function of n-point functions we can construct a family of TFTs
labeled by coordinates t ∈ V ∗ by the definition

cijk(t) = 〈φiφjφk exp
∫
tkφ

(2)
k 〉. (8.76)

Physically one can think of deforming the two-dimensional action by

δS =
∫
tnφ(2)

n (8.77)
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We claim that this defines a family of multiplications on the vector space V . Note that
in this way we derive the higher n-point functions by taking derivatives at t = 0. In
terms of the coefficients cijk(t) the permutation symmetry of (8.75) gives the important
integrability condition

∂icjkl = cijkl = ∂jcikl. (8.78)

We stress that this is an additional condition imposed on the family of algebras cijk(t), and
a consequence of the topological invariance. We can integrate this relation three times,
at least locally, to find that the three-point functions are actually the third derivatives of
a function F(t), the so-called free energy or prepotential

cijk(t) = ∂i∂j∂kF(t). (8.79)

Symbolically, F(t) is defined as

F(t) = 〈exp
∫
tiφ

(2)
i 〉. (8.80)

For example, comparing with our discussion of quantum cohomology, formula (4.54)
in §4.3, we see that in the case of a sigma model on a Calabi-Yau three-fold we have the
following expression for F

F(t) =
∫

X

t3

3!
+
χ

2
ζ(3) +

∑

rational C

Li3
(
e2πt·C

)
. (8.81)

with t ∈ H1,1, Li3(x) =
∑

k>0 x
k/k3, ζ(3) = Li3(1), and χ the Euler number of X. The

sum is over all rational curves C ∼= P1 in X. (The constant term is determined by mirror
symmetry, or by a degeneration argument.)

As a corollary to the result (8.78), consider the special identity operator φ0 = 1.
There is no corresponding two-form, since G commutes with the identity. So the coupling
coefficient t0 does not exist, there is no modulus associated to 1 ∈ V . This fact, combined
with integrability relation (8.78), shows that

0 = ∂0cijk = ∂ic0jk = ∂iηjk. (8.82)

So we have shown that the metric or two-point function η is independent of the deforma-
tion parameters ti.

We have claimed that also for t 6= 0 the coefficients cijk(t) define a Frobenius algebra.
That is, the generating function F(t) satisfies the so-called WDVV equation [25, 86, 31,
32, 36]

∂i∂j∂mFηmn∂n∂k∂lF = ∂i∂k∂mFηmn∂n∂j∂lF . (8.83)
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This gives an infinite set of relations on the expansion coefficients ci1...ik of F .

There is a nice mathematical way to prove this last equation starting from Segal’s
axioms [36]. Keel [87] has shown that the cohomology of M0,n is generated by divisors
(codimension one subvarieties) DS defined as follows. Pick a subset S ⊂ {1, . . . , n} with
2 ≤ #S ≤ n− 2. DS is now defined as the set of all singular rational curves with a single
node, such that the punctures Pi, i ∈ S lie all on one component, whereas the punctures
Pj , j 6∈ S, all lie on the second component:

S

Clearly these divisors lie in the compactification divisor, the “boundary” of M0,n, since
they represented singular curves. Now Keel has shown that these divisors generate all
cohomology (as a ring) with a single constraint that is best expressed by a picture

∑

S; i,j∈S, k,l 6∈S

i

j

k

l

i

j

k

l
- = 0 (8.84)

This directly implies the associativity condition on cijk.

8.10. The Gauss-Manin connection

Let us quickly summarize the most important ingredients of the world-sheet discussion
of string vacua and the associated topological field theory. It consists of a moduli space
M of string vacua with over it a vector bundle V carrying a bilinear form η together with
an associative multiplication on each fiber. In a concrete basis φi ∈ V this multiplication
is given in terms of the structure coefficients

cijk(t) = 〈φiφjφk〉0 (8.85)

Here ti are the (special) coordinates on the moduli space M of TFTs.

More precisely, there are five important conditions that we can distinguish.

(1) The parameters ti are coordinates on M, i.e. the vector fields Di = ∂/∂ti commute

[Di, Dj] = 0. (8.86)
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Moreover, the vector field D0, corresponding to deformations by the identity operator
vanishes.

(2) The coefficients cijk satisfy the integrability condition

Dicjkl = Djcikl, (8.87)

(symmetry of the 4-point function) that allows us to write them locally as

cijk = DiDjDkF , (8.88)

in terms of the prepotential F(t).

(3) The algebra is associative for all values of the moduli,

cij
ncnkl = cik

ncnjl. (8.89)

(4) The bilinear form ηij = c0ij is conserved,

Diηjk = 0, (8.90)

which is equivalent to the statement that D0cijk = 0 using (2).

(5) The algebra is compatible with η

cijkη
jk = cikjη

kj, (8.91)

which is equivalent to the complete symmetry of cijk.

A more succinct description of these conditions uses the matrices Ci defined by the
natural map c : V → End(V ), with matrix elements

(Ci)j
k = cij

k = cijlη
lk. (8.92)

With these matrices the integrability condition reads

[Ci, Dj] = [Cj , Di], (8.93)

whereas the associativity reads

[Ci, Cj] = 0. (8.94)
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In fact, if we define the “Gauss-Manin connection” [32]

∇i = Di − λCi, (8.95)

with spectral parameter λ, then the relations (1),(2) and (3) can be summarized in the
statement that

[∇i,∇j] = 0, (8.96)

for all values of λ. The compatibility of ∇ with η

η(∇α, β) = η(α,∇β) (8.97)

gives the relations (4) D0η = 0, and (5) η(Ciα, β)i = η(α,Ciβ). Why such a connection
should exist will become clear in the later lectures when we consider the integral structure
behind all this.

8.11. Anti-holomorphic dependence and special geometry

Up to now we only discussed the holomorphic coordinates ti, which are analytical
coordinates on the moduli space M of string vacua. In order to discuss the full geometry
of M we need also the dependence on the complex-conjugate variables tı. This geometrical
structure is called special geometry, and we have seen an example when we discussed the
moduli space of Calabi-Yau three-folds in §7.7. The structure has been worked in the
general context of twisted N = 2 models by Bershadsky, Cecotti, Ooguri and Vafa.
These matters are explained in full detail in the beautiful papers [88, 78, 79], so we only
summarize the most important results without proofs. This special geometry of moduli
space of string vacua is only present for string vacua that give rise to space-time theories
with N = 2 supersymmetry.

We have seen that the vector space V had a natural bilinear form (over C)

ηij = η(φi, φj). (8.98)

However, in these models there is also an hermitian form

gi = g(φi, φ). (8.99)

Here the complex conjugate fields φı are defined in terms of some anti-linear map

φı = Mı
iφi, (8.100)

satisfying MM∗ = −1.
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In our deformation problem we now have to allow for anti-holomorphic dependence
on the variables tı. The corresponding deformations are described by local operators

δS =
∫

Σ
tıφ

(2)
ı , (8.101)

with

φ
(2)
ı = [Q−1, {Q−1, φı}]. (8.102)

Since this field it explicitly Q-exact, its insertions will lead to total derivatives on Mg,n,
which can only give contributions at the compactification divisor. Indeed, naively one
would have ignored these boundary terms and would have concluded that all amplitudes
are holomorphic. If one is less naively, one has to investigate in a precise way the be-
havior on singular curves, and in this way one discovers that certain objects do obtain
an antiholomorphic dependence. This has been done in [88, 78, 79], and we now give the
results.

The hermitian form g leads to a Kähler metric on the moduli space M. In fact, the
canonical metric is the the so-called Zamolodchikov [89] or Weil-Peterson metric

Gi = eKgi (8.103)

with

e−K = g(φ0, φ0) = 〈0|0〉. (8.104)

(Here φ0 denotes the identity operator.) It is normalized so that G00 = 1. This metric
appears in the two-point functions

〈φi(z)φ(w)〉 =
Gi

|z − w|2 . (8.105)

It is a Kähler metric

Gi = ∂i∂K, (8.106)

with Kähler form K given in (8.104). Apart from the derivative Di and the operator
product matrices Ci, we now have conjugate objects Dı and Cı. These satisfy the relations

[Dı, Cj] = 0, [Di, D = 0]. (8.107)

These relations express the fact that the three-point function cijk is a holomorphic object

Dıcijk = 0 (8.108)
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However there is an additional important relation that tells us how the curvature of the
Kähler metric is related to the associative algebra, the so-called tt∗ relation [88],

[Di, Dı] + [Ci, Cı] = 0 (8.109)

In terms of the Zamolodchikov metric Gi this gives the so-called special geometry or
special Kähler relation

Rik
l = Gkδi

l +Giδk
l − e2KciknG

nncmnG
lm (8.110)

Let us note that relations on Di, Dı, Ci, Cı can be summarized in terms of the Gauss-
Manin connection as

[∇i,∇j] = [∇ı,∇] = [∇i,∇] = 0 (8.111)

So apparently there is a natural flat connection on the moduli space of string vacua, that
preserves the bilinear form η. The reasons why this connection exist will become apparent
when we take a space-time point of view. There we will uncover an integer structure on
V , related to electric and magnetic charges in the four-dimensional space-time.

The metric G satisfies a second important quantization condition: the associated
Kähler form of type (1, 1),

ω =
i

2
Gidz

i ∧ dz, (8.112)

(which is by definition closed, dω = 0) has integer periods

ω/2π ∈ H2(M,Z) (8.113)

In the language of geometric quantization, this means that the phase space M can be
quantized. There exists a line bundle L over M with first Chern class

c1(L) = ω/2π. (8.114)

The Kähler form can thus be realized as the curvature of the U(1) connection on L.

8.12. Local special geometry

The above structure we also met in §7.8, when we discussed the moduli of Calabi-Yau
manifolds, and is called local special geometry or special Kähler geometry [69]. The formal
definition is as follows:

Definition: a local special geometry (M, V,Ω) is defined by the following ingredients:
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(1) A complex, Kähler manifold M, the moduli space, of complex dimension

dimM = g. (8.115)

(2) A holomorphic, flat Sp(2g+2,Z) vector bundle V → M. We denote the symplectic
form as η. In the case of the Calabi-Yau moduli space, this was the canonical bundle with
fiber H3(X,Z) and η was given by the intersection form on these three-cycles. The flat
connection is written as ∇,∇. It satisfies dη(α, β) = η(∇α, β) + η(α,∇β).

(3) A holomorphic section Ω of V , satisfying the conditions

η(Ω,∇Ω) = 0, η(Ω,Ω) > 0 (8.116)

(4) the Kähler form on the moduli space is given by

e−K = η(Ω,Ω) (8.117)

To establish the correspondence between the description of the Calabi-Yau moduli
space in §7.8 and the deformations of N = 2 string vacua in the previous subsection, note
that the holomorphic section Ω determines a line bundle L → M. In fact, in the CY case
we can choose a polarization

V = V 3,0 ⊕ V 2,1 ⊕ V 1,2 ⊕ V 0,3 (8.118)

where V
p,q

= V q,p and V 3,0 ∼= L is the line bundle generated by Ω and W = V 3,0 ⊕V 2,1 is
the subspace generated by ∇Ω. Note that if α ∈ V p,q and β ∈ V p′,q′ then the polarization
satisfies the condition that

η(α, β) 6= 0 ⇒ p+ p′ = q + q′ = 3 (8.119)

The description in terms of a local coordinate φi follows exactly the discussion in §7.8.
First we choose a (local) canonical integer basis αi, β

i of V using the flat connection ∇.
We then expand the section Ω in terms of this basis in the familiar form6

Ω = φiαi + Fiβ
i. (8.120)

Condition (3) now leads to the integrability relation

Fi =
∂F
∂φi

, (8.121)

6Here, in order to make contact with §7.8, we indicate the special local coordinates as φi instead of ti.
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which defines quite generally the prepotential F as a section of L⊗2. Finally, the all
important three-point functions cijk are derived as

cijk = −η(Ω,∇i∇j∇kΩ) (8.122)

or in local coordinates,

cijk =
∂3F

∂φi∂φj∂φk
(8.123)

In the case of a Calabi-Yau model, the local parameters correspond to the deformations
of the complex structure in H2,1(X). This then gives the so-called Type B chiral ring [35]

cijk = −
∫

X
Ω ∧ ∂i∂j∂kΩ (8.124)

This ring can be motivated as follows. We can define the cohomology groups

H−p,q(X) = Hq

∂
(Y,

∧p(T (1,0)X)) (8.125)

That is, we consider objects which are of the form

α(x) = αi1...ip
1...q

∂

∂xi1
∧ . . . ∧ ∂

∂xip
dx1 ∧ . . . ∧ dxq . (8.126)

Note that compared with the usual Dolbeault groups, we replaced antisymmetric prod-
ucts of the holomorphic cotangent bundle with antisymmetric products of the holomorphic
tangent bundle, which is essentially the operation of mirror symmetry. The unique holo-
morphic 3-form Ω can be used to give an isomorphism

Ω :
∧p(T (1,0)X) → ∧3−p(T (1,0)X)∗, (8.127)

which also gives an isomorphism

H−p,q(X) ∼= H3−p,q(X). (8.128)

The space

H−∗,∗(X) =
⊕

0≤p,q≤3
H−p,q(X) (8.129)

acquires an obvious ring structure using the wedge product, both on forms and vector
fields. Furthermore, since

H−3,3(X) ∼= H0,3(X) = C, (8.130)

80



we have an integration formula, and the structure coefficients of the algebra can again be
expressed in terms of intersection numbers. By definition this ring does depend crucially
on the choice of complex structure — we use vector fields for the holomorphic indices and
forms for the anti-holomorphic indices. There is however no dependence on the Kähler
class. If we use the isomorphism H−1,1 ∼= H2,1 and choose an explicit basis for H2,1 we
reproduce the above formula.

9. Gauge theories and S-duality

We leave our discussion of the world-sheet formulation of string theory, and now turn
to the space-time description, where we will try to reinterpret some of the mathematical
structures that we found in the previous lectures. Hereto we first discuss in the following
lecture S-duality in four-dimensional abelian gauge theories. However, before we do this,
it might be useful to review some four-dimensional geometry. (The following sections
closely follow [90].)

9.1. Introduction to four-dimensional geometry

Four-dimensional geometry is a very rich and difficult subject [91, 92, 93]. Since we
have been living exclusively in two dimensions in the previous lectures, we might be
tempted to think too simple about topology in other dimensions. For example, the classi-
fication problem of four-manifolds is very much different in nature from the classification
of surfaces. Compact, orientable surfaces are topologically classified by an integer, their
genus,

g=0 g=1 g=2

...

g=3

· · ·

That the situation is not that simple in four dimensions we can already see by considering
the most important invariant of any manifold, the fundamental group π1.

It is a classical theorem in topology that any finitely representable group (i.e. a group
that can be represented by a finite number of generators satisfying a finite number of
relations — not a very severe restriction) can appear as the fundamental group of a four
dimensional manifold. There is a surgery algorithm that constructs the required manifold
starting from the generators and the relations. Markov’s solution of the word problem
shows that the question whether two finitely representable groups are actually isomorphic
is undecidable. That is, there is no computing algorithm that can decide this question
within a guaranteed finite time. This theorem has therefore rather dramatic consequences
for the classification problem of manifolds in dimensions d ≥ 4. There is simply not a
conceivable ‘list’ of four-manifolds. This fundamental problem can however easily be
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circumvented by assuming that the four-manifold M is simply connected

π1(M) = 0. (9.1)

This we will often assume in the following.

After the fundamental group, the next important invariant is the second cohomology
group H2(M). To understand better the role played by the second cohomology of a
four-manifold, it might be instructive to consider first the analogous situation for two-
dimensional surfaces, if only because it is so much more easily visualized.

For any two-dimensional surface Σ we can consider the first homology group H1(Σ)
of homology cycles or equivalently the dual cohomology group H1(Σ) of cocycles. We
can think of such a cocycle physically as a flat abelian gauge field A, F = dA = 0. The
pairing between a cycle C ∈ H1 and a cocycle A ∈ H1 is the Wilson line

∮

C
A. (9.2)

For a genus g surface H1 has rank b1 = 2g. It is naturally a symplectic space by the
intersection form

Q(α, β) =
∫

Σ
α ∧ β. (9.3)

Q is an integer, unimodular anti-symmetric form. By a standard theorem in symplectic
linear algebra there exists a canonical symplectic base α1, . . . , αg, β

1, . . . , βg ∈ H2(Σ,Z),
satisfying

Q(αi, β
j) = δi

j, (9.4)

with all other intersections vanishing. The dual homology basis Ai, Bi we described in §7.6
and looks like fig. 4. If we have a orientation-preserving diffeomorphism on the surface, it
will act on the first cohomology by a symplectic transformation. That is, there is a map
(actually a surjection)

Diff+(Σ) → Sp(2g,Z). (9.5)

In four dimensions the analogue object to consider is the second cohomology group
H2(M). A physical picture to keep in mind is that, instead of considering Wilson lines,
we now look at magnetic fluxes F (satisfying the Bianchi identity dF = 0) through a
two-cycle Σ (a linear combination of surfaces)

∫

Σ
F. (9.6)

In four dimensions we have an analogous intersection form

Q : H2 ×H2 → R (9.7)
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defined by

Q(α, β) =
∫

M
α ∧ β. (9.8)

In the four-dimensional case Q is symmetric and non-degenerate. Over R such a form
can be diagonalized and thus is easily classified by its rank b2 = dimH2 and signature
(b+

2 , b
−
2 ) (the number of positive respectively negative eigenvalues). The signature σ(M)

of the 4-manifold M is defined as the difference of positive and negative eigenvalues of Q

σ = b+
2 − b−2 . (9.9)

It has a local expression due to Hirzebruch’s signature theorem

σ(M) =
∫

M

1
3p1 = − 1

24π2

∫

M
TrR ∧ R. (9.10)

The signature σ and the Euler character χ are the two classical invariants of a four-
manifold.

However, there is more sophisticated information hidden in the intersection matrix Q
since it is actually defined on the lattice

Γ = H2(M,Z). (9.11)

We can think of the elements of this lattice as quantized fluxes, in the sense that

F ∈ Γ ⇒
∫

Σ
F ∈ Z (9.12)

for all surfaces Σ. By Poincaré duality the lattice Γ is self-dual, so we can use the
classification results of §7.3.

It might be helpful to list some concrete examples of well-known 4-manifolds and their
intersection forms

M Q

CP1 1

CP1 −1

S2 × S2 H

T 4 31 ⊕ 3(−1)

K3 3H ⊕ 2(−E8)

83



Herea bar indicates a complex manifold with opposite orientation. (Every complex man-
ifolds comes with a preferred orientation.)

Just as in the case of Riemann surfaces we can study the representation of the diffeo-
morphism group on Γ. Since this action should preserve the intersection form, there is a
homomorphism of the group of orientation preserving diffeomorphisms Diff+(M) into the
arithmetic group O(Q,Z) = Aut (Γ), that leaves the lattice fixed,

Diff+(M) → O(Q,Z). (9.13)

The question is whether this map is actually onto (as was the case for the modular group
for a Riemann surface). This is an important issue for Donaldson theory, where we con-
struct differential invariants out of classes in Γ. Since a manifold invariant should by
definition be invariant under diffeomorphisms, these Donaldson polynomials will neces-
sarily be constructed out of tensors on H2 that are invariant under the action of the
image of Diff+. In case that this image is the full group O(Q,Z), standard invariant
theory teaches us that the only invariants are tensors constructed out of the intersection
form Q itself.

There is one more set of characteristic classes that we have not mentioned yet, the
Stiefel-Whitney classes

wi ∈ H i(M,Z2). (9.14)

For the case of a compact, simply-connected orientable manifold we have automatically
w1 = w3 = 0. This leaves w2 as the only new characteristic class. It is the obstruction to
a spin structure. The class w2 plays an important role if we consider the lattice reduced
modulo 2, because of Wu’s formula that states that for all x ∈ Γ

w2 · x = x2 (mod 2). (9.15)

This implies that Q is necessarily even if w2 = 0 or equivalently if M is spin.

9.2. The Lorentz group

It might be convenient to also review some standard facts concerning the Lorentz group
SO(3, 1) or its Euclidean version SO(4) and its representations. Consider a 4-dimensional
vector space V ∼= R4 and the corresponding space of two-forms Λ2 ∼= R6. If we pick a
volume form e ∈ Λ4, then we can define the intersection form

q : Λ2 × Λ2 → R (9.16)

by

α ∧ β = q(α, β)e, α, β ∈ Λ2. (9.17)
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It is easily verified by explicit computation that the symmetric bilinear form q has sig-
nature (3, 3). The linear transformations SL(4,R) preserve the volume form and induce
linear maps on Λ2 that preserve q. Thus we have a natural map

SL(4,R) → SO(3, 3,R). (9.18)

This is actually a double cover of the identity component of SO(3, 3).

The intersection form q is not enough to decompose Λ2 into maximal positive and
negative subspaces

Λ2 ∼= Λ2
+ ⊕ Λ2

−. (9.19)

In fact, there is a moduli space of such decompositions parametrized by the grassmannian

Gr3,3 = SO(3, 3,R)/SO(3,R)× SO(3,R). (9.20)

To find such an explicit decomposition we can pick a metric (positive inner product) g on
V . This induces a metric on Λ2 (also denoted by g) which decomposes Λ2 into orthogonal
eigenspaces of the Hodge ∗-operator, defined by

g(α, β) = q(α, ∗β). (9.21)

The ∗-operator squares to one

∗2 = 1, (9.22)

and the spaces Λ2
± can now be defined as the eigenspaces with ∗ = ±: the self-dual (SD)

respectively anti-self-dual (ASD) forms. The Hodge star only depends on the conformal
class of the metric g, which can be identified with the grassmannian (9.20). The choice
of a metric g gives thus rise to a natural homomorphism

SO(4,R) → SO(3) × SO(3) = SO(3, 3) ∩ SO(6), (9.23)

which is again a two-fold cover.

This local picture can be repeated globally by considering the tangent bundle TM .
There is a splitting of the 2-forms into SD and ASD pieces

Ω2(M) = Ω2
+(M) ⊕ Ω2

−(M). (9.24)

Descending to de Rahm cohomology, we find a similar decomposition

H2(M) = H2
+(M) ⊕H2

−(M) (9.25)
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with

b2
± = dimH2

±. (9.26)

We also notice that (anti)self-dual cocycles are necessarily harmonic

dα = 0, ∗α = ±α ⇒ d∗α = 0. (9.27)

Since we are also interested in fermions, we will in general consider representations of
the universal cover group of SO(4)

Spin(4) ∼= SU(2)+ × SU(2)−. (9.28)

Its irreducible representations are labeled by the dimensions (n+,n−) with n± = 1, 2, . . ..
In particular we have

scalar : ψ (1, 1),

chiral spinor : ψα (2, 1),

anti-chiral spinor : ψα̇ (1, 2),

vector : ψαβ̇ ∼ ψµ (2, 2),

SD two-form : ψαβ = ψβα ∼ ψ+
µν (3, 1),

ASD two-form : ψα̇β̇ = ψβ̇α̇ ∼ ψ−
µν (1, 3).

As we already mentioned in §9.2, the spinor bundles, with n+ + n− odd, only exist if the
4-manifold is spin w2 = 0.

9.3. Duality in Maxwell theory

Our first example of a space-time theory which has a non-trivial duality symmetry is
Maxwell theory — U(1) gauge theory on a four-manifold M . We pick a line bundle L
on M and a connection A on L with curvature F . The curvature satisfies the Bianchi
identity dF = 0 and has integer periods around two-cycles Σ ⊂ M

1

2π

∫

Σ
F ∈ Z, (9.29)

This gives of course the first Chern class

c1(L) =
[
F

2π

]
∈ H2(M,Z) (9.30)

that classifies the line bundle L topologically.
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To consider the Maxwell equations we further need a metric on M , or more precisely, a
conformal structure or Hodge star ∗ (so the metric is only defined up to local rescalings.)
The equations of motion now read d∗F = or

d(∗F ) = 0. (9.31)

Electric-magnetic duality or “abelian S-duality” is the observation that the equation
d∗F = 0 together with the Bianchi identity

dF = 0 (9.32)

are invariant under the transformation F↔∗ F that interchanges the E and B field.

This duality is also present in the quantum theory, in fact it extends to the group
SL(2,Z). This can be made more precise by considering the path-integral. The Maxwell
action can be concisely written if we introduce for any complex variable

τ = τ1 + iτ2 ∈ H (9.33)

the operator τ̂ : Ω2(M) → Ω2(M) that acts on two-forms as

τ̂ =




τ1 + iτ2∗, Euclidean signature (4, 0),,

τ1 + τ2∗, Lorentzian signature (3, 1)..
(9.34)

(Note that in Lorentzian signature ∗2 = −1.) In terms of the usual coupling constant g
and the theta angle θ we have

τ =
θ

2π
+

4πi

g2 . (9.35)

The Maxwell action, including the theta-angle, now reads

S =
1

4π

∫

M
F ∧ τ̂F. (9.36)

The partition function is defined as the integral over the space of connections A (which
includes a sum over all possible line bundles L) modulo the action of the gauge group G

Z =
∫

A/G

DAeiS (9.37)

We note immediately that under the theta-angle shift θ → θ + 2π, or equivalently under
the transformation

T : τ → τ + 1, (9.38)
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the partition transforms by the phase factor

Z → Z · e2πik, (9.39)

with

k =
1

8π2

∫

M
F ∧ F =

∫

M

1
2c

2
1 ∈ 1

2Z. (9.40)

In case M is spin, so that the intersection form is even, k is an integer, and the T
transformation is a quantum symmetry.

It is useful at this point to introduce the dual field strength, the two-form

FD = 2πi
δS

δF
= τ̂F. (9.41)

In Maxwell theory (with a theta angle) we can then define electric and magnetic charges
e,m ∈ Z as

e =
1

2π

∫

S2
FD,

m =
1

2π

∫

S2
F. (9.42)

Here we choose a two-sphere S2 surrounding a certain region in a three-dimensional spatial
slice. Under the T-duality we have the Witten effect [94]: the field strength and dual field
strength transform as

T :

(
FD

F

)
→
(
FD + F

F

)
, (9.43)

so that the charges transform as

T :

(
e

m

)
→
(
e+m

m

)
. (9.44)

In this way a monopole receives an electric charge equal to its magnetic charge and
becomes a dyon (an object with both electric and magnetic charge).

We now claim that the full duality group of Maxwell theory is

G = SL(2,Z), (9.45)

and that it acts on the coupling constant by fractional linear transformations

τ → aτ + b

cτ + d
. (9.46)
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In fact the vector (FD, F ) transforms as a doublet

(
FD

F

)
→


a b

c d



(
FD

F

)
. (9.47)

To prove this duality we have to consider the second generator of SL(2,Z), the well-known
electric-magnetic S-duality

S : τ → −1

τ
, (9.48)

that interchanges F and FD:

S :

(
FD

F

)
→
(
−F
FD

)
, (9.49)

and consequently also the electric and magnetic charges

T :

(
e

m

)
→
(
−m
e

)
. (9.50)

Note that this transformation squares to minus the identity (the parity transform), S2 =
−1. Since the coupling constant g2 transforms into 1/g2, S relates strong and weak
coupling (even though this is a free theory, with no perturbation expansion!).

S-duality is derived in complete analogy with the proof of T-duality in the toroidal
sigma model in §7.2. One starts with the path-integral

Z =
∫

DFDAD exp
(
iS(F ) +

i

8π

∫

M
F ∧ dAD

)
(9.51)

with F a two-form onM and AD an abelian dual gauge field. The manipulation is familiar
from §7.2. Integrating out AD forces the Bianchi identity dF = 0, which allows us to write
F locally as dA. Integrating out F produces the dual model, with FD = 2πiδS/δF = dAD,
with dual coupling constant −1/τ .

9.4. The partition function

We now consider the computation of the Euclidean partition function, following [95,
96]. The most interesting part is the contribution of the zero-modes. The zero-modes are
here the first Chern classes

p = [F/2π] ∈ H2(M,Z). (9.52)

For classical field configurations p will be an harmonic representative, dp = d∗p = 0. We
can write a general two-form F that satisfies the Bianchi identity as

F = 2πp+ dα, (9.53)
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with α a proper one-form. Note that Γ = H2(M,Z) carries the intersection form

p2 =
∫

M
p ∧ p, (9.54)

which makes it into a self-dual lattice (even if M is spin). A choice of metric on M gives
a decomposition of two-forms in their self-dual and anti-self-dual parts. We will write for
the zero-mode piece

p = pL + pR, (9.55)

with ∗pL = pL and ∗pR = −pR, so that

p2 = p2
L − p2

R. (9.56)

In this way the zero-mode contribution to the action reads

S = π(τp2
L − τp2

R) (9.57)

The answer for the partition function now becomes a theta-function [95, 96]

Z = Zqu ·
∑

(pL,pR)∈Γ
q

1
2p2

Lq
1
2p2

R, q = e2πiτ (9.58)

This generalized theta-function is identical to the zero-mode contribution of the toroidal
sigma-model with Narain lattice Γ. The factor Zqu represents the contribution from the
oscillations and is a product of determinants. By the usual arguments of string theory,
the theta function is a modular form (though not holomorphic) of weight 1

2(b+, b−) if the
lattice Γ is even and self-dual, which is the case for spin manifolds.

One way to understand this appearance of theta functions has been suggested by Erik
Verlinde [95]. Consider a model in six dimensions on the manifold X6 = M4 × T 2, where
the two-torus has modulus τ . The dynamical field is a two-form B with three-form field
strength H = dB and action

S =
∫

X
H ∧ ∗H. (9.59)

Now demand that H is self-dual and has a decomposition as H =
∑

i Fi ∧ Ci with Fi a
two-form on M4 and Ci a one-form on T 2. The self-duality on X6 now tells us that the
Hodge star on M4 is correlated with the Hodge star on T 2. H has then a decomposition
(with dz = dx+ τdy)

H = F+dz + F−dz = Fdx+ FDdy (9.60)

(Note that F = F+ + F− and ∗F = F+ − F−, so that FD = τ1F + iτ2 ∗ F = τF+ + τF−.)
If (A,B) is a basis for H1(T

2) we can write

F =
∮

A
H, FD =

∮

B
H (9.61)
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The partition function can now be computed either by first integrating over T 2, which
reproduces the gauge theory computation, or by first integrating over M4, which gives a
sigma model with target space the torus H2(M)/Γ. This Kaluza-Klein point of view will
be substantially upgraded if we go to string theory.

9.5. Higher rank groups

We can make a simple generalization of Maxwell theory by considering an abelian
gauge group of rank g. In that case we have one-form gauge fields Ai, i = 1, . . . , g, with
corresponding curvatures F i = dAi. We can now write an action with a matrix τij of
coupling constants and theta-angles

S =
1

4π

∫

M
F i ∧ τ̂ijF j (9.62)

Note that we can take τij to be symmetric; the above action makes only sense if also
Im τij > 0. So we are dealing with a period matrix of an abelian variety of dimension g
(see §11.6) for example the Jacobian of a genus g Riemann surface. The definitions of the
dual field strengths are now

FD,i = τ̂ijF
j, (9.63)

and we have a 2g dimensional vector of electric and magnetic charges ei, mi ∈ Z, i =
1, . . . , g,

ei =
1

2π

∫
FD,i,

mi =
1

2π

∫
F i. (9.64)

The duality group is the rank 2g symplectic group

G = Sp(2g,Z), (9.65)

that acts on the coupling constant matrix as τ → (Aτ +B)(Cτ +D)−1.

9.6. Dehn twists and monodromy

This model can be obtained by considering the six-dimensional model of §9.4, now on
the manifold M4 ×Σg. Note that from this point of view the group Sp(2g,Z) is identified
by (a quotient) of the mapping class group of the surface Σg. As such it is generated by
Dehn twists. A Dehn twist DC on a homology cycle C is defined by cutting the surface
on C and gluing it back together after a 2π rotation. The action on the homology cycles
is given by

DC : C ′ → C ′ + η(C,C ′)C (9.66)
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Fig. 7: The action of a Dehn twist is implemented by a
monodromy in the moduli space.

where the symplectic form η(·, ·) denotes the intersection product on the first homology
group H1(Σg,Z).

This Dehn twist can also be seen as a monodromy in the moduli space Mg. If we pinch
the cycle C we obtain a double point. The pinching process can be described by inserting
first a tube connecting the two marked points with modulus q, as in our discussion of
CFT. We write this modulus as q = e−t+iθ, so that the cycle C shrinks to zero in the limit
t→ ∞. If we now fix t and all other moduli of the surface and follow the loop θ → θ+2π
in Mg, the Dehn twist DC is implemented, see fig. 7.

This is a special case of what is called in generality Picard-Lefschetz theory7 [71]:
modular/duality transformations are related to vanishing cycles in the “compactification”
Σg. This fact we will meet again when we start studying Calabi-Yau compactifications in
string theory.

10. Moduli spaces

We have stressed the importance of the concept of a moduli space in the study of
quantum theories of fields and strings. There are basically three ways in which moduli
spaces enter in field theory or string theory: (1) as special classical solutions, (2) as
families of QFTs and (3) as families of inequivalent vacua. A priori the three ways are
not related, however there are various deep relations between these points of view that

7Note that Picard-Lefschetz theory is the complex analogon of Morse theory [97]. In Morse theory
we consider a real function f : M → R and look at how the inverse image Mx = f−1(x) varies as a
function of x. The essential behaviour is at the critical points df = 0 where the topology of Mx jumps, in
a controlled way determined by the signature of the Hessian of f . In the complex case we have a complex
function f : M → C and one can go around a critical point, and study the corresponding transformation
on the homology of f−1(x).
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occur in string theory that we will use to our advantage.

10.1. Supersymmetric or BPS configurations

The first occurrence of moduli spaces is as spaces of special classical configurations of
the (usually bosonic) fields φ, possibly modulo gauge transformations. A good example
is given by the four-dimensional anti-self-duality (ASD) condition

F+ = F + ∗F = 0, (10.1)

that gives rise to the moduli space of instantons, defined as the set of solutions to this
equation modulo gauge equivalence [92].

These configurations typically arise as supersymmetric or BPS configurations. If we
denote the bosonic variables and fermionic variables generically as φ and ψ, then the
supersymmetry variation δψ of the fermions reads (at ψ = 0)

δψ = G(φ)ǫ, (10.2)

BPS configurations are characterized by the property that for a particular subset of su-
persymmetry parameters ǫ the RHS vanishes.

For example, in N = 2 supersymmetric gauge theories that we will discuss in more
detail in the next lectures, we have a relation

δψ = Fµνγ
µνǫ, (10.3)

so that for a chiral spinor ǫ that satisfies γ5ǫ = ǫ, we find that ASD configurations with
F+ = 0 are invariant under half the number of supersymmetry variations.

These moduli spaces are often noncompact. In the case of ASD gauge fields this is
a familiar consequence of the fact that the instanton equations allow solutions on flat
space R4. Since the ASD equations depend on the choice of Hodge ∗, they are invariant
under conformal transformations of the metric. So we can find a one-parameter family of
rescaled solutions x→ t ·x. Since the instanton in the limit t→ 0 becomes a δ-function in
the origin and therefore is no longer a smooth solution to the ASD equation, the moduli
space on R4 is clearly non-compact. This argument can be repeated for general four-
manifolds. In the limit t → 0 we have almost point-like instantons on R4. We can now
cut out a little disk containing most of the solution and “graft” this onto a point of X.
Taubes has proven that this can made into a solution for the ASD equation on X [98].
We see that therefore also on a general manifold point-like instantons occur in the limit
t→ 0.

The moduli space also can have singularities. For the ASD equations these singu-
larities occur whenever the gauge group G does not act freely. This is the case if the
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holonomy group of the connection is U(1) instead of SU(2). We can then restrict the
gauge group consistently to U(1) and we are dealing with an abelian connection. So the
only singularities are the abelian instantons. In that case the curvature is just a R-valued
2-form F ∈ H2(X,R). It must however satisfy a quantization rule. The first Chern class
of the U(1) bundle should be an integer cohomology class. If we now also impose the ASD
condition, we see that abelian instantons ∗F = −F correspond one-to-one with elements
of the lattice

H2
− ∩H2(X,Z). (10.4)

These singularities form in general not a serious problem. We should remember that we
are free to pick a metric. If we choose a generic metric and thus a generic positioning of
the subspace H2

− ⊂ H2, the intersection with the integer lattice H2(X,Z) will typically
be zero, unless H2

− has codimension zero (if b2
+ = 0). (Also the case b2

+ = 1 has to be
treated carefully.) This is a rather general effect, quite often slight perturbations of our
moduli problem can make the singularities disappear.

10.2. Localization in topological field theories

One of the applications of the moduli spaces of the type discussed above in QFT is
that, under suitable circumstances, the path-integral can localize to these configurations,

Z =
∫

Dφ e−S ⇒
∫

M
· · · (10.5)

Localization is a crucial ingredient in topological field theories [80, 99, 100], see the reviews
[21, 101, 102], that allows us to express partition and correlation functions as integrals
over finite dimensional moduli spaces instead of over infinite field space. Of course, it is
the unique structure of topological models that allows such a drastic reduction in degrees
of freedom.

The mathematical idea of localization has rich applications. The most familiar one is
the calculation of the Euler characteristic of a manifold X [103]. On the one hand it can
be computed by picking a Riemannian metric and integrating over X the Euler density
Pf (R) that is constructed out of the Riemann curvature tensor. On the other hand the
Euler character can be computed by counting the number of zeroes of a generic vector
field on the manifold.

In quantum mechanics the localization principle is well-known as the phenomenon
of the Nicolai map [104]. This can be nicely illustrated by a zero-dimensional example.
Consider a polynomial s(x) and the “path-integral”

Z =

∞∫

−∞
dx e−s2/2. (10.6)
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As it stands this integral has no interesting invariances and cannot be computed in any
simplified way. If instead we consider the modified integral

Z =
∫
dx e−s2/2 ∂s

∂x
, (10.7)

we can compute it without much effort, since it can be rewritten as

Z =
∫
ds e−s2/2 =





0, if s even,

1, if s odd.
(10.8)

So we see Z computes a simple invariant of s: the degree of the map s : R → R, which
is either zero or one depending on whether s is an even or odd polynomial. The partition
function Z is thus invariant under all deformations of s that leave the boundary conditions
at infinity invariant.

Now that we have established the “topological invariance” of Z we can make use of
this by deforming the action s in such a way that the localization becomes evident. To do
this, we rescale s → t · s and take the limit t → ∞. In this limit the gaussian factor will
damp the integral for all values of x except for the zeroes of the function s(x). Around
these points we can perform a semi-classical approximation. In this way the computation
localizes to a finite number of points. We compute Z as sum over the zeroes of s of a
factor ±1, very much in analogy with the Euler character,

Z =
∑

s(x)=0
sgn det(ds). (10.9)

One way to express this localization is that the semi-classical approximation gives an
exact result.

A third way to compute the integral Z will be a metaphor for the actual computations
in field theory. We start by rewriting the factor ∂s/∂x as a fermionic gaussian integral.
We introduce two fermionic variables ψ, ρ and rewrite Z as

Z =
∫
dxdψdρ e−S, (10.10)

with action

S = 1
2s

2 + ρ∂sψ. (10.11)

This action S has a BRST symmetry Q given by

Qx = ψ, Qψ = 0, Qρ = s(x), (10.12)
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As it stands this symmetry is not nilpotent. This property we obtain if we introduce a
further bosonic auxiliary field H and write

Z =
∫
dxdHdψdρ e−S, (10.13)

with

S = isH + 1
2H

2 + ρ∂sψ. (10.14)

The symmetry is now extended as

Qρ = H, QH = 0. (10.15)

With this extra auxiliary field H the BRST symmetry squares to zero “off- shell”

Q2 = 0. (10.16)

Now there is a simple localization argument for this BRST charge due to Witten
[105]. Our integral Z is expressed as an integral over a 2|2 dimensional superspace. On
this space we have the action of the fermionic symmetry Q generated by a vector field ξ,
that is, Q = Lξ. The odd vector field ξ squares to zero, ξ2 = 1

2 [ξ, ξ] = 0, a non-trivial
property for an odd vector field. The orbits of this group action are 0|1 dimensional
curves parametrized by an odd coordinate θ. Because of the fundamental identities of
grassmannian calculus

∫
dθ 1 = 0,

∫
dθ θ = 1, (10.17)

the integral of a constant function, such as the BRST-invariant action density e−S, along
the orbit will automatically give zero. Therefore the only non-vanishing contributions to
the integral can come from the zero-dimensional orbits, that is, the fixed points of Q or
equivalently the zeroes of the vector field ξ.

10.3. Quantization

A second application is that moduli spaces can be quantized. Here we consider a
supersymmetric point particle moving on the moduli space M. In this way there is a
canonical way to associate a (graded) vector space V to the moduli problem as

V = H∗(M). (10.18)
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The (super)dimension of this space can be computed using the Euler character, that often
also allows a representation as a TFT partition function [106, 107, 108]

sdimV = χ(M). (10.19)

We will see an application of this in §13 when we discuss the quantization of D-branes.

10.4. Families of QFTs

The second way moduli spaces appear in our story is as families of quantum field
theories. For example, in quantum mechanics we can consider a potential

V (x) =
∑

tnx
n (10.20)

The coefficients tn now label a family of systems. We have seen in detail how the moduli
space of two-dimensional TFTs and CFTs is a rich object. In field theory such deformation
will be of the general form

δS =
∫

O (10.21)

with O some set of local operators. The Hilbert space of the quantum field theory thus
contains the tangent space to the moduli space M.

10.5. Moduli spaces of vacua

The third way moduli spaces occur is as spaces of inequivalent vacuum states of a
single QFT. Here we should be careful to distinguish the classical moduli space Mcl and
the quantum moduli space Mqu. For example, in the above case of a particle in a potential
V (x), the classical vacua correspond to the absolute minima of V , so that Mcl might be
very complicated; quantum mechanically we know that tunneling will produce a unique
vacuum state, so Mqu = pt.

The phenomena of inequivalent vacua in a QFT is strongly related the appearance of
scalar fields. Scalar fields have the unique property that they can have expectation values
compatible with Poincaré invariance. In fact, when we consider a QFT with scalar fields
φ on a noncompact spatial manifold, say Rn, then we have to impose boundary conditions
for the scalars

φ(x)
|x|→∞→ φ0. (10.22)

The values φ0 will minimalize the energy and thus take value in some moduli space

φ0 ∈ Mcl. (10.23)

(Stated otherwise, in the path-integral we have to separate out the constant modes φ0,
since they are not L2.)
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If we consider the same QFT on a compact manifold, the constant mode φ0 becomes
L2 and the partition function will be obtained as an integral over M

Z =
∫

M
dφ0 · · · (10.24)

11. Supersymmetric gauge theories

A good class of examples of field theories with scalar fields and non-trivial families of
vacua are four-dimensional supersymmetric gauge theories, to which we will now turn.

11.1. Supersymmetric gauge theories

A general D = 4 supersymmetric gauge theory with N ≤ 4 supersymmetries consists
of the following field content: a gauge field Aµ together withN Majorana fermions λI

α, λα̇,I ,
I = 1, . . . , N , and 1

2N(N − 1) real scalar fields, conveniently described by an N ×N anti-
symmetric matrix φIJ = −φJI . All these fields take action in the adjoint representation
of the gauge group. The simplest supersymmetric action is of the form

S =
∫

Tr


F ∧ ∗F + iλID/λ

I +DφIJ ∧ ∗DφIJ +
∑

I,K

[φIJ , φJK ]2 + λI [φ
IJ , λJ ]


 (11.1)

The supersymmetry transformations satisfy

[QI
α, Q

J
α̇] = δIJγµ

αα̇Pµ. (11.2)

If we introduce a general linear combination

δ = ηα,IQ
I
α + ηα̇,IQ

I
α̇, (11.3)

the transformations of the vector Aµ read in terms of the bispinor Aαα̇ = Aµγ
µ
αα̇

δAαα̇ = iλI
αηα̇,I − iηα,Iλ

I

α̇. (11.4)

The fermions transform in the two chirality components of the field strength

δλI
α = Fαβη

β,I + i[φIJ , φJK]ηK
α +Dαα̇φ

IJηȧ
J ,

δλ
I

α̇ = Fα̇β̇η
β̇,I − i[φIJ , φJK ]ηK

α +Dαα̇φ
IJηα

J . (11.5)
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Finally, the scalar fields transform as

δφIJ = λI
αη

α,J + λ
I

α̇η
ȧ,J . (11.6)

This model has an internal U(N) R-symmetry, under which the charge Q transforms as
the fundamental representation N and Q transforms as the conjugate transformation N.

11.2. Twisting and Donaldson theory

We explained in section §8.2 how the twisting procedure can produce a TFT starting
with a supersymmetric field theory. In four dimensions one needs a model with at least
N = 2 supersymmetry [80]. This has a symmetry group

Spin(4) × U(2)R, (11.7)

where Spin(4) is the double cover of the Lorentz group SO(4) and the internal R-
symmetry U(2)R acts on the two supersymmetry charges QI which transform as a doublet.
This group is (locally) isomorphic to

H = SU(2)+ × SU(2)− × SU(2)R × U(1), (11.8)

Irreducible representations of this group are labeled by (n+,n−,nR, q), where n indicates
the dimension of the SU(2) representation and q indicates the U(1) representation z →
eiqθz. The twisting procedure replaces the component SU(2)+ by the diagonal subgroup
of SU(2)+ × SU(2)R. That is, the Lorentz spins are replaced as

(n+,n−) ⇒ (n+ ⊗ nR,n−). (11.9)

We see that the supercharges QI
α, Q

J
α̇ transform under H as (2, 1, 2, 1) and (1, 2, 2, 1).

Consequently, under the twisting procedure they decompose as tensors of type (1, 1) ⊕
(3, 1) and (2, 2), that is, as a scalar and a self-dual two-form, and as a vector

QI
α ⇒ Q,Q+

µν ,

Q
J
α̇ ⇒ Gµ. (11.10)

So we see that we obtain the required twisted supersymmetry algebra (8.16)

{Q,Gµ} = Pµ. (11.11)

Therefore, we are dealing with a topological field theory.
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Note that on a general curved four-manifold the holonomy group will be SO(4) ∼=
SU(2)+ × SU(2)−, so the twisting procedure that changes the Lorentz properties will be
a measurable effect. The twisted model is therefore physically speaking inequivalent to
the untwisted model. This is similarly true on a complex manifold with holonomy group
U(2) = U(1)+ × SU(2)−. However, on a hyperkähler or Calabi-Yau manifold, where the
structure group of the tangent bundle is simply SU(2)−, the twisting is invisible. Twisting
changes the SU(2)+ representation, but that part of the frame bundle can be trivialized8.

For an N = 2 gauge theory the resulting topological field theory was first introduced
by Witten [80, 109]. It fits perfectly in the general framework we sketched. Starting point
is N = 2 supersymmetric Yang-Mills theory. Its fundamental multiplet (A, λI , φ) consists
of a connection Aµ, two spinors (λI

α, λ
I
ȧ) (I = 1, 2) and a complex scalar field φ, all taking

their values in the adjoint bundle. After twisting we recover the following fields

Aµ ⇒ Aµ

λI
α ⇒ ψµ

λI
ȧ ⇒ ρ+

µν , η

φ ⇒ φ

φ ⇒ φ (11.12)

We recognize the fundamental topological multiplet (A,ψ, ρ) together with an equivariant
multiplet (η, φ, φ), that is due to the fact that we quotient by the gauge group. The
BRST transformations can be derived from the N = 2 supersymmetry algebra that we
gave before and read

δAµ = ψµ

δψµ = Dµφ

δρ+
µν = F+

µν

δφ = η (11.13)

The “section” s in the general localization setup of §10.2 is thus identified as

s(A) = F+ (11.14)

and its zero locus is indeed the moduli space M of ASD connections.

11.3. Observables

In any TFT of cohomological type, the observables are the cohomology classes of
the BRST operator. The most important classes of the twisted N = 2 SYM model are

8Stated otherwise, one does have (two) covariant constant spinors on a hyperkähler four-manifold.
Unfortunately, in the compact case, the only hyperkähler spaces are T 4 and K3.
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constructed out of the local operator

O(0) =
1

8π2 Trφ2. (11.15)

We construct its descendents by

dO(i) = δO(i+1). (11.16)

As we reviewed in section §8.2 any cycle gives rise to a physical operator via the map

C ∈ H∗(M) ⇒ OC =
∫

C
O(i). (11.17)

For twisted N = 2 Yang-Mills this gives the following operators: (We will assume that M
is simply connected, so that only H0(M), H2(M) and H4(M) contribute.) Associated to
two-cycles Σ ⊂M we find

OΣ =
∫

Σ
O(2) =

1

4π2

∫

Σ
Tr (φF + ψ2). (11.18)

For the top form we recover the chern class or instanton number

OM =
∫

M
O(4) =

1

8π2

∫

M
TrF ∧ F = ch2. (11.19)

Note that by Poincaré duality, the coupling constants to the operator
∫
C O(i) naturally

takes value in H4−i(M). If we write

O =
∑

i

O(i) ∈ Ω∗(M), (11.20)

and t ∈ H∗(M), then a general coupling to the action reads

δS =
∫

M
t ∧O. (11.21)

(The integral naturally picks out the forms of total degree four.)

Since the path-integral localizes to the moduli space M, the (expectation values of
the) operators have a direct interpretation as cohomology classes on M. In fact, we get
Donaldson’s map [110]

µ : Hi(M) ∼= H4−i(M) → H4−i(M). (11.22)
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The mathematical definition of this operation is roughly as follows. There is a natural
bundle on the product space M ×M. This bundle has a second Chern class ĉ2. We can
now consider the differential form α ∧ ĉ2, which is of degree 4 + k, and integrate it over
the fiber X

µ(α) =
∫

X
a ∧ ĉ2. (11.23)

We see that in the particular example of the identity 1 we have

µ(1) =
∫

X
c2 = n ∈ Z. (11.24)

The famous Donaldson polynomials are now defined in terms of the generating func-
tional

D(v, λ) =
〈
exp

(∫

M
tO(4) + v ∧ O(2) + λO(0)

)〉
, (11.25)

with coupling constants

t ∈ H0(M), v ∈ H2(M), λ ∈ H4(M). (11.26)

The generating function has an expansion

D(v, λ) =
∑

n≥0
e−ntDn(v, λ), (11.27)

where Dn(v, λ) is a finite sum of intersection products on Mn, the component of M
of instanton charge n. However, it is a nontrivial matter to make rigorous sense of
these intersections, since we have seen that the moduli space is non-compact. In fact, a
tremendous amount of work goes in proving that the heuristic definitions below actually
make sense in some precise way. It is a polynomial since only contributions of degree
d = dimMn contribute (with deg(v) = 2, deg(λ) = 4.) The main theorem of Donaldson
states that the polynomials Dn are diffeomorphism invariants if b+

2 > 1.

11.4. Abelian models

After this detour to TFT, let us now consider N = 2 (untwisted) Maxwell theory, with
gauge group G = U(1)g. We will write the gauge fields again as Ai = Ai

µdx
µ, i = 1, . . . , g.

In that case it is convenient to combine the two real scalars into one (rank g vector-valued)
complex scalar φ(x). The most general action, compatible with supersymmetry and at
most second order in derivatives, is given by

S =
1

4π

∫ (
F i ∧ τ̂ij(φ)F j + gi(φ)λi

I∂/λ
,I + gi(φ)dφi ∧ ∗dφ

)
, (11.28)
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where both the matrix of coupling constants τij and the sigma-model metric gi are allowed
to depend on φ. Supersymmetry restricts this dependence in the following way: The
“period matrix” τij should be the second derivative of an holomorphic function F(φ) of
φ, the prepotential,

τij =
∂2F
∂φi∂φj

,
∂F
∂φ

i = 0. (11.29)

Furthermore, the kinetic terms for the fermions and scalars are directly related to this
period matrix as

gi = Im τij . (11.30)

Summarizing, the Lagrangian is essentially given by one complex “function” (it will
turn out to be a section of a line bundle), the prepotential F(φ). This fact is more or less
immediately clear if one takes the superspace point of view.

In the case of a simple quadratic action, as we have been considering up to now, this
prepotential is given by

F = 1
2τijφ

iφj. (11.31)

Note that under S-duality τ → −τ−1, the prepotential transforms as under a Legendre
transformation. This will be the general behaviour.

The important difference with the nonsupersymmetric case is that the coupling con-
stant τ is now a function of the scalar fields, that take some constant asymptotic value
φ ∈ M. So, instead of a space parametrizing a family of QFTs, we are dealing with one
gauge theory (with given prepotential) that has a family of vacua with varying coupling
constant τ(φ).

In the quadratic case the abelian duality group Sp(2g,Z) can be trivially extended to
the fermions and scalars. We simply have to define dual scalar field as

φDi = τijφ
i, (11.32)

similarly as we defined the dual field strength.

The question is now if and how these duality transformations get modified for general,
not necessarily quadratic prepotential. For convenience we mainly restrict to the case of
one U(1) factor, so put g = 1. We claim that we still obtain a duality group SL(2,Z)
that acts by linear fraction transformations on the coupling constant τ , but that the
transformation of the scalar fields is more involved. In fact, we have to define the general
dual scalar fields as [111, 112]

φD,i =
∂F
∂φi

. (11.33)

Note that this implies that

τij = ∂i∂jF =
∂φD,i

∂φj
. (11.34)
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We now claim that the vector (
φD

φ

)
(11.35)

transforms as a doublet under SL(2,Z). Indeed, to show that this is consistent, remark
that the transformation rule

(
φD

φ

)
→


a b

c d



(
φD

φ

)
(11.36)

implies that

τ =
∂φD

∂φ
→ aτ + b

cτ + d
. (11.37)

Let us now see in detail how the T and S transformations that generate SL(2,Z) act.
For T we find

T :

(
φD

φ

)
→
(
φD + φ

φ

)
(11.38)

from which we recover the behaviour of the prepotential

T : F → F + 1
2φ

2. (11.39)

For the S-duality we find

S :

(
φD

φ

)
→
(
−φ
φD

)
(11.40)

so that F(φ) → FD(φD) with F ′
D = φ. That is, FD is the Legendre transform of F

S : F → Legendre(F). (11.41)

11.5. Rigid special geometry

The question is now: on what space M take the scalar fields their values and what is
the right definition of the prepotential F(φ)?

In fact, this is a good point to review the general structure of the moduli space of
vacua of a theory with global (rigid) N = 2 supersymmetry — the so-called rigid special
geometry [112]. We will then show that it reduces in local coordinates to the structure
we have discussed above.

Local special geometry, as we discussed in §§7.8,8.11,8.12, arises in theories with local
(gauged) supersymmetry, such as string theory and its low energy limit supergravity.
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Rigid special geometry is a property of theories with global (non-gauged) supersymmetry,
such as the four-dimensional gauge theories that we discuss here. The two structures are
very closely related, as we will see from the following definition:

Definition: a rigid special geometry (M, V,Ω) is defined by the following ingredients:

(1) A complex, Kähler manifold M (the moduli space) of dimension

dimC M = g. (11.42)

(2) A holomorphic, flat Sp(2g,Z) vector bundle V → M, i.e. a representation π1(M) →
Sp(2g,Z) that produces a lattice bundle Γ such that V = Γ⊗C can be given a holomor-
phic structure. We denote the symplectic form on the fiber as η. We further write ∇,∇
for the (1, 0) and (0, 1) pieces of the connection with

∇2 = ∇2
= [∇,∇] = 0. (11.43)

Compatibility with the symplectic form gives

dη(α, β) = η(∇α, β) + η(α,∇β). (11.44)

(3) A holomorphic section Ω of V ,

∇Ω = 0, (11.45)

satisfying the Lagrangian condition

η(∇Ω,∇Ω) = 0, (11.46)

(so ∇Ω spans a Lagrangian subspace in V ) and the positivity constraint

− iη(∇iΩ,∇Ω) > 0. (11.47)

(4) Finally, the Kähler form on the moduli space is given by

K = − i

2
η(Ω,Ω). (11.48)

Note that the holomorphic section Ω gives a natural complex polarization

V = V (1,0) ⊕ V (0,1), (11.49)
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where V (1,0) is the image of ∇Ω.

To make contact with the previous formulas, notice that if we choose a (local) canonical
Z-basis αi, β

i (i = 1, . . . , g) of V with η(αi, β
j) = δi

j, we can write the preferred section
Ω as

Ω = φiαi + Fiβ
i. (11.50)

Since Ω is a holomorphic section, we can locally use the components φi as analytic coor-
dinates on M (special coordinates), so that the conjugate components Fi become (holo-
morphic) functions of φi. We then have

∇iΩ = αi + ∂iFjβ
j, (11.51)

The condition η(∇Ω,∇Ω) now gives

∂iFj = ∂jFi, (11.52)

which is an integrability condition that tells us that there exists a local holomorphic
function F(φ) with

Fi =
∂F
∂φi

. (11.53)

We now define the period matrix as

τij = ∂i∂jF . (11.54)

Note that in these special coordinates the Kähler metric is given by

gi = ∂i∂K = Im τij > 0, (11.55)

also by definition. From this form one can derive that the Riemann tensor satisfies the
following identity, that is often taken as the starting point of rigid special geometry:

Riıj = −cijkcıkgkk. (11.56)

Here the “three-point functions” are defined as

cijk = ∂i∂j∂kF . (11.57)

We note that these can be written more covariantly as

cijk = η(∇i∇jΩ,∇kΩ) = −η(∇iΩ,∇j∇kΩ). (11.58)
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Also note that if we have the further relation η(Ω,∇Ω) = 0, the prepotential is of the
quadratic form

F = 1
2τijφ

iφj, (11.59)

with constant matrix τij .

11.6. Families of abelian varieties

There is a natural geometric realization of rigid special geometry using abelian vari-
eties.

Consider an abelian variety X of complex dimension g (see e.g. [114]). That is, X is
of the form W/Γ with W ∼= Cg a complex vector space and Γ ∼= Z2g a rank 2g lattice.
Topologically, X is a real 2g dimensional torus,

X ∼= T 2g. (11.60)

Such a complex torus is called an abelian variety if it can be embedded in projective
space. There is a simple criterion that determines whether that is the case.

We have two natural coordinates to use on W and X. First we can consider the
natural complex coordinates z1, . . . , zg coming from the isomorphism V ∼= Cg. Secondly,
there are real coordinates x1, . . . , x2g from the isomorphism W ∼= Γ ⊗ R. Here we have
chosen a basis ea in the lattice Γ.

Consider the space H1(X,C). This is a 2g dimensional complex vector space with a
natural decomposition

H1(X,C) = H1,0 ⊕H0,1 (11.61)

in terms of the one-form dzi of type (1,0) and the conjugate forms dzi of type (0,1). The
dual space H1(X,Z) is canonically isomorphic with the lattice Γ. We use the same symbol
to indicate a basis ea of one-cycles in X. Given the natural pairing between homology
and cohomology, we can define a 2g × g period matrix

∮

ea

dzi = πa
i (11.62)

Since there is a natural dual basis of the space H1(X,Z) given by the 2g real one-forms
dxa, whose periods satisfy ∮

ea

dxb = δa
b, (11.63)

the period matrix πa
i can be seen to relate the two natural coordinates as

zi = xaπa
i. (11.64)
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According to Kodaira’s embedding theorem we now have to look for a two-form η (the
Kähler form) of type (1, 1) that is closed, integer and positive. Now it is easy to write
down an integer two-form in the real coordinates. Any form of the type

η = 1
2ηabdx

a ∧ dxb (11.65)

with integer antisymmetric matrix ηab = −ηba ∈ Z will do. We can rewrite this form in
terms of the complex coordinates and now demand that the pieces of type (2,0) and (0,2)
vanish, and the piece of type (1,1) is positive. These conditions translate immediately
in terms of the period matrix π as the famous Riemann conditions. In fact, under these
conditions we can always choose a basis (ai, b

i) of Γ such that

η(ai, b
j) = δi

j , (11.66)

and so that the periods are of the form
∮

ai

dzj = δi
j,

∮

bi
dzj = τ ij . (11.67)

In terms of the period matrix τij we then find that the Riemann conditions read

τij = τji, Im τ > 0. (11.68)

In more invariant notation, the Riemann conditions tell us the decomposition of the
2g dimensional vector space V = Γ ⊗ C, given by

V ∼= H1(X,C) = H1,0 ⊕H0,1, (11.69)

is a polarization for the Hodge form η. That is,

η(α, β) = 0, (11.70)

if α, β both in V (1,0) or V (0,1). We furthermore have the positivity condition

− iη(α, α) > 0 (11.71)

An important and famous class of examples of abelian varieties are the Jacobians of curves

X = H1(Σg,C)/H1(Σ,Z) (11.72)
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Since abelian varieties are completely characterized by their period matrix τ , the mod-
uli space Ag of (principally polarized) abelian varieties has a simple description as the
quotient of a homogeneous space

Ag
∼= Sp(2g,Z)\Sp(2g,R)/U(g) (11.73)

Here Sp(2g,Z) is the naturally symmetry group of the lattice Γ endowed with the sym-
plectic form η. Over this moduli space we have a canonical flat, holomorphic Sp(2g,Z)
vector bundle V (the Hodge bundle) with fiber

VX = H1(X,C) (11.74)

How do we now get a solution of special geometry out of all this? We are clearly
looking for a g dimensional family of abelian varieties parametrized by the moduli space
M. That is, we are looking for a map

M → Ag (11.75)

with the property that the holomorphic tangent bundle to M can be identified with the
space H1,0(X,C). For more along this lines see e.g. [115].

11.7. BPS states

Any system with extended supersymmetry has a special subspace of the full Hilbert
space H, the so-called BPS space

HBPS ⊂ H, (11.76)

that consists of “small” supermultiplets. These BPS states play a fundamental role in
understanding duality symmetries.

More precisely, suppose we are dealing with some supersymmetry algebra with a set
of n supercharges Qα (n will always be even.) The Hilbert space will decompose in
irreducible representations of this algebra. Since the supersymmetry algebra will be of
the general form

{Qα, Qβ} = ωαβ
i Ki, (11.77)

with

[Qα, Ki] = 0, [Ki, Kj] = 0, (11.78)

where the Ki are some set of bosonic charges, consisting of the translation operator Pµ

and some extra set of central charges, usually denoted as Z. The symmetric bilinear forms
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ωi will always be non-degenerate. Therefore, when we consider a representation where
the operators Ki have fixed generic eigenvalues ki, so that the total bilinear form

ω = ωik
i (11.79)

is non-degenerate, we are essentially dealing with a representation of a n-dimensional
Clifford algebra. The dimension of the representation will therefore be 2n/2. However, for
special values of the charges ki, it might be the case that the bilinear form ω becomes
accidentally degenerate. In that case there are certain linear combinations of supercharges
that annihilate the representation. This representation is then called a BPS representa-
tion. If it satisfies the conditions

ǫαQ
α|BPS〉 = 0, (11.80)

for m independent spinors ǫ, the rank of the Clifford algebra will be n−m and therefore
the dimension of the representation will be 2(n−m)/2.

Let us now see what the role is of BPS states in models with global N = 2 supersym-
metry. The four-dimensional N = 2 supersymmetry algebra is given as

{QI
α, Qβ̇,J} = δI

Jγ
µ

αβ̇
Pµ, (11.81)

However, we also have to consider the other commutators, which can take the most general
form

{QI
α, Q

J
β} = ǫIJǫαβZ,

{Qα̇,I , Qβ̇,J} = ǫIJǫα̇β̇Z, (11.82)

with complex central charge Z ∈ C satisfying

[Z,Q] = [Z,Q] = [Z, P ] = 0. (11.83)

For a general state with eigenvalues Pµ = Mδµ,0 and Z, one easily derives an upper bound
for the mass [113]

M2 ≥ |Z|2. (11.84)

In fact, states with M2 = |Z|2 are precisely the small BPS representation (of dimension
2 instead of 4).

The proof this statement follows a very general argument. For a given multiplet the
BPS condition can be written as (we suppress the indices)

(
ǫQ+ ǫQ

)
|BPS〉 = 0. (11.85)
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This condition holds with fixed ǫ, e for all states in the BPS multiplet. If we take the
commutator with the supercharges, we derive the conditions on the supersymmetry pa-
rameters of the form

p/ǫ+ Z†ǫ = 0,

Zǫ+ p/ǫ = 0. (11.86)

Combining these equations with the mass shell condition p2 = M2, one deduces that M2

coincides with the highest eigenvalue of ZZ† and Z†Z, with ǫ and ǫ being the corresponding
eigenvectors,

(ZZ†)ǫ = M2ǫ

(Z†Z)e = M2e. (11.87)

This determines the BPS masses completely in terms of the central charge Z. In the
N = 2 context we find that Z†Z = ZZ† = |Z|21, so that the above BPS mass formula is
obtained immediately.

In the case of an N = 2 abelian gauge theory with coupling constant τij the central
charge Z takes a simple form. If a state carries charge q = (e,m), with electric charges ei

and magnetic charges mi, the central charge Z(q) takes the form [113]

Z(q) = φi(ei − τijm
j) (11.88)

This result can be generalized to the case where one has non-trivial moduli dependence
τij(φ). Without proof, we mention that in that case the general mass formula takes the
following form (see e.g. [8])

Z(q) = η(q,Ω) = φiei −Fim
i. (11.89)

We note that this expression is explicitly Sp(2g,Z) invariant.

11.8. Non-abelian N = 2 gauge theory

Our story has now come to the seminal work of Seiberg and Witten [111] on the non-
abelian N = 2 SYM model. This work has been reviewed many times [116, 8], and we
refer to these references (and the original papers!) for more details.

So we turn to N = 2 Yang-Mills theory with a non-abelian gauge group G and Lie
algebra g. The fundamental multiplet is again of the form

(Aµ,Λ
I
α,Λ

I
α̇,Φ), (11.90)
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where all fields take value in the adjoint bundle g. The important difference with the
abelian case is that the action now contains a potential term of the scalars Φ ∈ g ⊗ C of
the form

V (Φ) =
∫

M
Tr [Φ,Φ†]2. (11.91)

This potential vanishes if Φ is restricted to the complexified Cartan torus t ⊗ C. In the
case G = SU(2), to which we will restrict from now on, Φ is of the form

Φ =



φ 0

0 −φ


, φ ∈ C. (11.92)

Global action of SU(2) gives the further identification

φ↔− φ (11.93)

(in the general case φ ∈ t⊗ C/W , with W the Weyl group), so that the classical moduli
space of vacua is given by (here we added the point at infinity)

Mcl
∼= P1 (11.94)

with good local coordinate u = φ2 = 1
2Tr Φ2. Note that we expect singularities at u = 0

and u = ∞.

What is quantum moduli space? This is the question Seiberg and Witten posed and
answered. We first notice that a question about the vacuum structure refers to long
distances, i.e. infrared physics. So we are only interested in the massless fields, whose
correlation functions do not decay exponentially in distance. Since the “Higgs field” Φ
will in general have a non-zero expectation value with u = 1

2〈Tr Φ2〉 6= 0, by the Higgs
phenomenon all fields will acquire masses except for the component of the multiplet in
the direction of Φ. That is, we can try to define a U(1) gauge field

A = Tr (Φ̂A), Φ̂ = Φ/|Φ|. (11.95)

Of course, this definition does not make sense at the zeroes of Φ. Around such a zero the
unit vector field Φ̂ defines a possibly non-trivial element of π2(S

2) with winding number
m, which represents an obstruction to deforming the zero away. These configurations are
characterized by the property that for a two-sphere in R3 surrounding such a zero

∫

S2
dA = 2πm (11.96)

and therefore the singularity carries possible magnetic charges. Indeed, these are the
famous ’t Hooft-Polyakov monopoles [12]. In the long-distance limit we can think of them
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as point-like objects. In order to correctly represent all SU(2) gauge field configurations,
we therefore have to add a gas of these monopoles. This translates into a second quantized
monopole field. In fact, it is a long-standing conjecture of ’t Hooft that we can understand
the vacuum structure of a non-abelian gauge theory in terms of abelian gauge fields and
magnetic monopoles [117]. This deep point of view has been brilliantly confirmed by the
work of Seiberg and Witten. In general the monopoles will have positive masses, so in the
infra-red limit (where we scale the metric on the volume of the four-manifold to infinity)
it is not necessary to include the monopole fields in the action.

As we sketched above, after integrating out the massive fields, we are left with an
effective abelian theory. Such a model is characterized (to quadratic order in derivatives)
by a prepotential F(φ). The coupling constant τ is given as its second derivative τ = F ′′.
We further have a Sp(2,Z) ∼= SL(2,Z) vector bundle V = Γ ⊗ C with a holomorphic
section

Ω =

(
φD

φ

)
, φD =

∂F
∂φ

. (11.97)

The electric and magnetic charges are, for given value of φ, given by

q =

(
e

m

)
=

1

2π

∫

S2

(
FD

F

)
∈ Γ. (11.98)

We now present the derivation of the prepotential F .

11.9. The Seiberg-Witten solution

Starting point for the SW solution is the behaviour of the prepotential around the
point u = ∞, where the leading contribution can be computed in perturbation theory.
The coupling constant τ = F ′′ has an expansion

τ = τ0 +
i

π
log(φ/Λ) +

∑

n

an(Λ/φ)4n (11.99)

where the first term τ0 is the classical contribution, the second term represents the one-loop
contribution (this is the only perturbative correction), whereas the other terms indicate
instanton corrections, that are in general difficult to compute exactly. The logarithmic
piece gets us started, since we derive the local monodromy of the SL(2,Z) bundle around
∞. If u→ e2πiu we see that

(
φD

φ

)
=

(
F ′

φ

)
→
(
−ϕD + 2ϕ

−φ

)
= M∞

(
φD

φ

)
. (11.100)

With this monodromy

M∞ =




−1 2

0 −1


 (11.101)
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we can try to extend the vector bundle to P1−{0,∞} by having the opposite monodromy
around the origin, where we expect our second singularity. However, we also have to satisfy
the positivity constraint Im τ > 0. It turns out that this is impossible without introducing
a third singularity. Indeed, the SW solution assumes the minimal amount of a total of
three singularities, say at u = ∞, 1, and −1, with monodromy matrices

M1 =




1 0

−2 1


,

M−1 =




−1 2

−2 3


. (11.102)

These matrices generate the SL(2,Z) subgroup

Γ(2) = {γ ∈ SL(2,Z); γ ≡
(

1 0
0 1

)
(mod) 2}. (11.103)

The quantum moduli space is given by the Ansatz

Mqu = H/Γ(2), (11.104)

which is “almost” the moduli space of elliptic curves. In fact, M parametrizes elliptic
curves Σ of the particular form

y2 = (x2 − 1)(x− u). (11.105)

The bundle V is now the bundle with fiber over Σ ∈ M given by

VΣ = H1(Σ,Z) ⊗ C. (11.106)

So the charge lattice Γ is identified with the first homology group of the elliptic curve
Γ = H1(Σ,Z).

To such a surface we can associate a natural modulus τ (of the elliptic curve) that
always satisfies the positivity condition Im τ > 0. Note that the modulus can be expressed
as a ratio of periods

τ =

∮
B ω∮
A ω

, (11.107)

with (A,B) a canonical basis of H1(Σ) and ω = dz = dx + τdy the unique holomorphic
one-form.
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Now that we are given the bundle V → M, we should ask what the prepotential is.
There is an obvious guess. Let’s pick some one-form λ on Σ. We can then consider the
following Ansatz

φ =
∮

A
λ

φD =
∮

B
λ. (11.108)

By definition this vector will transform correctly under SL(2,Z). However, special geom-
etry imposed the further constraint that

τ =
∂φD

∂φ
=

∮
B

∂λ
∂u∮

A
∂λ
∂u

. (11.109)

If we compare with (11.107) we see that necessarily

∂λ

∂u
= cω. (11.110)

There is a (unique up to scalars) meromorphic one-form with this property. This then
completes the solution.

11.10. Physical interpretation of the singularities

The two new singularities in M have a beautiful physical interpretation. Recall the
formula for the BPS formula (11.89) for a dyon with charges (e,m) in a model with N = 2
supersymmetry:

M = |Z| = |φe− φDm| (11.111)

For fixed charges this mass varies with the moduli. Now, if at some point in the moduli
space a linear combination φe−φDm, with e,m ∈ Z vanishes, this has important physical
consequences. It implies that the dyon with these particular charges will have zero mass.
But the SW solution was based on the premises that the abelian (super) gauge field was
the only massless field! Therefore, at these points in M we expect our formalism to break
down. This breakdown will manifest itself in a singularity in the solution. There are three
such points u = 1,−1,∞.

At u = ∞ the situation is clear: here the non-abelian gauge fields with (e,m) = (±1, 0)
become massless again, restoring the SU(2) symmetry.

At u = 1 we have a very different situation. Here the monodromy M1 forces the
component φD → 0. Thus magnetic monopoles with (e,m) = (0, 1) get zero mass at this
point. In the ’t Hooft philosophy we had presumably taken into account the monopole
fields, when we arrived at our effective action encoded by the prepotential F . The fact that
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these fields actually become massless declares this procedure after the fact invalid. One
should thus undo this integration procedure and reintroduce the monopole fields in the
path-integral. This removes the singularity. It was simply the result of an overambitious
simplification of the dynamics.

It is very important that it is not a physical singularity. There is no problem with
having singularities in a moduli space that parametrizes a family of classical field configu-
rations. Neither is there a problem if the moduli space parametrizes inequivalent quantum
field theories. One simply decides not to consider such a model. (A good example of such
a singularity is a sigma model on a singular target space.) However, one cannot allow
singularities in a moduli space that parametrizes inequivalent vacua of a single theory.
There is no way in which we can prevent the theory of exploring the region in moduli
space that contains the singularity. (At least, if it is at finite distance, which is the case in
all situations that we will discuss.) There must be a physical mechanism that “explains”
the singularity, such as the massless monopole in the SW point u = 1.

One can reproduce the monodromy matrix M1 from this physical argument — an
important consistency check on the solution. First we use S-duality to go to a dual
description in which we use the expectation value of the dual scalar field φD as the local
coordinate around u = 1 and have a corresponding dual gauge field AD. The electric
charges of this dual gauge field are the magnetic charges of the original gauge field A,
that we recover in the perturbative expansion around u = ∞. In these new dual variables
we have a dual prepotential FD(φD) in which we can express φ = F ′

D. We can now
make a perturbative calculation of the dual coupling constant τD = F ′′

D by considering the
one-loop contribution of the nearly massless monopoles. They give

τD ∼ − i

π
log(φD/Λ) (11.112)

from which we deduce that φ ∼ − i
π
φD logφD, so that the monodromy for φD → e2πiφD

is given by

φ→ φ− 2φD. (11.113)

This gives the required monodromy matrix

M1 =




1 0

−2 1


. (11.114)

In a similar fashion the massless dyon of charge (1, 1) produces the monodromy matrix
M−1 around the second singularity u = −1.

There is a nice geometric interpretation of this monodromy in terms of the elliptic
curve. At the three singularities we have τ → i∞, so that we are dealing with a singular
elliptic curve of genus one. We can picture this singular curve by shrinking an homology
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cycle to zero. For example, in the case u = 1 the B-cycle shrinks to zero, so that also

φD =
∮

B
λ→ 0. (11.115)

By doing a Dehn twist around this cycle, we recover the monodromy matrix, precisely as
in our discussion in section §9.6.

11.11. Implications for four-manifold invariants

Somewhat as an aside, we can ask what the implications of the SW solution are for
four-dimensional topology [118].

We have seen how a twisted version of N = 2 super Yang-Mills with gauge group
SU(2) led to Donaldson’s manifold invariants by localization to the moduli space of non-
abelian instantons. In this argument, we applied more or less semi-classical arguments.
These arguments can be made valid if the gauge coupling constant, that controls quan-
tum corrections, is assumed to be small. Thanks to the “running” of coupling constants
in quantum gauge theories, that makes the coupling constant a non-trivial function of
the scale, and thanks to asymptotic freedom, that tells us that the coupling will actu-
ally decrease if we make this scale very small in non-abelian N = 2 SYM theory, we
can conclude that this semi-classical approximation is appropriate for small volumes of
the four-manifold. But the Donaldson invariants are topological invariants, they do not
depend on the choice of Riemannian metric (for b+ > 1). We can therefore take this
metric to be as small as we want, and can thus correctly apply semi-classical reason-
ing. This is the usual philosophy behind the application of non-abelian gauge theory to
four-dimensional differential topology.

However, we can also take a completely contrary point of view and consider instead the
infrared limit of large volume9. Then we believe that only the massless degrees of freedom
are relevant, since all other fields have exponentially decaying interactions, which in the
IR limit become point-like. Of course, these massless fields are described by an effective
Lagrangian that takes correctly into account the quantum loops of all the massive fields
that we have integrated out in the process. In this case, such an effective field theory will
be an abelian gauge theory of the type we have been considering in §11.4.

If we now apply our localization formulas of §10.2 to the BRST fixed points of this
effective abelian theory, we find that this model localizes to the solutions of the abelian
instanton equation

F+ = 0. (11.116)

However, as we discussed already in section §10.1, for an abelian gauge field the curvature
is necessarily quantized in integer fluxes, [F/2π] ∈ H2(M,Z). But F is also ASD, so

9This point of view is actually more intuitive. If we study topology we are typically interested in
global, large scale features. At least, this is the colloquial use of the expression “topological” in physics.
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F = F−. For a generic metric and thus a generic positioning of the subspace H2
− ⊂ H2,

the intersection with the integer lattice H2(M,Z) will only be non-zero if H2
+ = 0 i.e.

b+
2 = 0, which one usually assumes not to be the case. We conclude therefore that for the

generic four-manifold and generic metric the abelian BRST fixed point set is empty.

There is however one caveat. If we compute the partition function on a compact four-
manifold M , as we will certainly do in the context of manifold invariants, there is no
moduli space of disjunct vacua, as labeled by the quantum moduli space Mqu. In fact, as
we already have explained in §10.5, in this case one is forced to integrate over the constant
values of the scalar fields too. We thus have to consider our model for all values of the
modulus u ∈ P1 and integrate over u. Away from the singularities this is not a problem,
but at u = ±1 we get a modified equation, because we also have to take into account the
massless monopole and dyon fields respectively that we cannot ignore in the IR limit.

What is the form of their contribution? If we use an S-dual formulation, the massless
fields are simply the field content of N = 2 QED, i.e. supersymmetric Maxwell theory
with an additional massless fermion field (a neutrino). Independently of the work of
Seiberg and Witten, one could have considered the twisted version of QED as a generator
of four-manifold invariants after Witten’s paper [80] in 1988 showed how N = 2 models
can be twisted to produce topological field theories. However, somehow the believe was
that only non-abelian Yang-Mills theories, that due to asymptotic freedom stand a much
better change to exist mathematically, would be able to produce non-trivial differential
geometry invariants! (Indeed, it is a beautiful fact that both in physics and in mathematics
dimension four stands out as giving the richest phenomena.)

The extra N = 2 matter multiplet in QED takes the form (M I , ψα, ψα̇), with ψ the
usual fermion field and M I a doublet of two complex scalar fields (sneutrinos). The
twisting modifies the spin of these fields as

M I ⇒ Mα

ψα ⇒ ψα

ψα̇ ⇒ ρα̇ (11.117)

We obtain a commuting bosonic variable M that transforms as a spinor! The BRST
transformations are

δMα = ψα,

δρα̇ = (∂/M)α̇. (11.118)

Finally, because of the coupling of the matter multiplet to the gauge multiplet, the trans-
formation for the field ρ+

µν in (11.13) gets modified to

δρ+
µν = F+

µν − (MM)+
µν . (11.119)

Looking at the transformation rules of the fields (ρ+
µν , ρȧ) we see that in this case the

section is given by

s = (F+ − (MM)+, DM) (11.120)
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Its zero locus is the Seiberg-Witten moduli space described in [118] and discussed in the
lectures by Garcia. See also [119].

12. String vacua

This finishes our introduction!

We now arrive at the last stretch of our journey — the space-time physics of string
theory. The most important new ingredient is of course the dynamical metric (together
with its supersymmetric partners). String theory is a theory of quantum gravity and
string perturbation theory can be used to compute weak-coupling quantum gravity effects.
These perturbative computations follow the pattern described in the first half of the
course. One picks a CFT describing the string vacuum around which we can do our
perturbative expansion in terms of Riemann surfaces. The expansion coefficients of the
n-point scattering amplitudes

A ∼
∑

g

Agλ
2g−2 (12.1)

are then computed as integrals over the moduli space Mg,n. However, this is only part of
the total picture.

First of all, the series expansion is only asymptotic, it does not converge10, so additional
nonperturbative information is needed to fix the final answer. These nonperturbative
phenomena are not necessarily completely “stringy” in nature. They can sometimes be
understood from a low-energy point of view, where we forget about the infinite set of
massive states. In fact, the issues that we will discuss, such as dualities, moduli spaces
and BPS states, can be even understood without studying much dynamical issues in
quantum gravity.

12.1. Perturbative string theories

At present we know of five different perturbative string theories, i.e. theories that allow
a consistent perturbation expansion in terms of Riemann surfaces, summarized in table
1. We apologize that we didn’t clearly explained the precise world-sheet formulations of
these theories. We did explain the bosonic string, but there are a few extra subtleties
when we are dealing with super Riemann surfaces that we didn’t want to get into.

Recently, two more string vacua have been discovered. These theories, called M-theory
[16, 122] and F-theory [123] do not allow a perturbative formulation in terms of surfaces.
In fact, the geometrical objects seem to involve (2, 1) dimensional super membranes and
(2, 2) signature objects that are even less well understood. (See [124] for a conjectural
definition of M-theory.) For completeness we add these two new models in table 2.

10See [120]. Indeed, one can estimate that string perturbation theory generates terms of order 2g! at g
loops [121].
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perturbative world-sheet space-time space-time gauge group
vacuum geometry dimension susy

I unoriented, open (9,1) N = 1 Spin(32)/Z2

IIA super, closed (9,1) N = (1, 1) U(1)

IIB super, closed (9,1) N = (2, 0) —

HO heterotic, closed (9,1) N = 1 Spin(32)/Z2

HE heterotic, closed (9,1) N = 1 E8 × E8

Table 1: The five known perturbative string theories.

perturbative world-volume space-time space-time gauge group
vacuum geometry dimension susy

M super membranes? (10,1) N = 1 —

F SD three-branes? (10,2) N = 1 —

Table 2: The new string vacua M-theory and F-theory are
less well-understood.

The insight that all perturbative string theories are different expansion of one theory
is now known as string duality. The precise way in which the different models are related
is too involved to be explained in this set of lectures (but see e.g. [19, 20]. It is one of the
amazing new insights following from string duality that these “theories” are all expansions
of one and the same theory around different points in the moduli space of vacua. Indeed
we have the beautiful picture of the moduli space fig. 8. given in [20] where we have
various “cusps” around which the amplitudes allow systematic geometric expansions.

We will say briefly a few words about the world-sheet formulation of the perturbative
string theories, although we do not have time to discuss this in full detail (see e.g. [4]
or more recent lecture notes such as [75]). Of course, all models follow roughly the line
discussed for the bosonic string in §8.3. We will not discuss the open string of Type I.
According to the modern point of view it is by an S-duality related to the heterotic string.
For the remaining strings we have the following left-moving and right-moving degrees of
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Type IIA
Type IIB

Het SO(32)

M Theory
F Theory

Het E  x E8 8
Type I

String Theory
  Moduli Space

Fig. 8: The moduli space of string vacua. Various pertur-
bative theories are recovered in expansions around the cusps.

freedom

string Left Right

bosonic xµ xµ µ = 1, . . . , 26

IIA & B xµ xµ µ = 1, . . . , 10

ψµ ψµ

heterotic xµ xµ µ = 1, . . . , 10

ψµ xI I = 1, . . . , 16

We add the bosonic string for good measure, although in the end it is inconsistent due
to the existence of a tachyon. Here the 16 internal right-moving bosonic fields xI of the
heterotic string take their value in the torus defined by modding out the lattice E8 ⊕ E8
or D16 giving the HE and HO theory respectively.

12.2. IIA or IIB

The distinction between the two type II theories has to do with space-time chirality.
It will be important in the following, so we riefly review it. In the IIA theory we have
supersymmetry generators Qα, Qα̇ of both 10-dimensional chiralities, whereas in the type
IIB theory the two supercharges Q1

α, Q
2
α carry the same chirality. In terms of the world-

sheet CFT description this distinction is made in the way the GSO projection is defined.

Recall that the 10 Majorana fermion fields ψµ are most conveniently quantized by
combining them in pairs into 5 Dirac fermions

ψ = ψ1 + iψ2, ψ∗ = ψ1 − iψ2. (12.2)
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These fields have an expansion of the form

ψ(z) =
∑

n∈Z+ǫ

ψnz
−n− 1

2 , (12.3)

where the spin structure ǫ = 0, 1
2 is determined by the NS or R boundary condition

ψ(e2πiz) =




ψ(z), ǫ = 1

2 (NS),

−ψ(z), ǫ = 0 (R).
(12.4)

In the NS sector we have a well-defined vacuum state with

ψn|0〉 = ψ∗
n|0〉 = 0, n > 0. (12.5)

The Fock space FNS built on this vacuum has a natural Z2 grading by the fermion number
J0 = 0, 1 modulo 2,

FNS = F0
NS ⊕F1

NS (12.6)

The GSO projection, that is an important ingredient in the definition of the superstring,
tells us to take the odd piece F1

NS.

For the Ramond sector, the modes ψn are integer valued. This means that we have
zero modes ψ0, ψ

∗
0 satisfying a Clifford algebra

{ψ0, ψ
∗
0} = 1 (12.7)

Therefore the vacuum |σ±〉 will be two-fold degenerate. It is a spinor of SO(2), and it
satisfies

ψn|σ±〉 = ψ∗
n|σ±〉 = 0, n > 0. (12.8)

The states |σ±〉 have conformal dimension h = 1
8 and Fermi number ±1

2 . This can be seen
by bosonization. Introduce a scalar field ϕ with −i∂ϕ = ψψ∗ so that

ψ = eiϕ, ψ∗ = e−iϕ. (12.9)

The spin fields σ±, that create the R ground states out of the NS vacuum now take the
form

σ± = e±
i
2 ϕ. (12.10)

The Ramond Fock space is again graded

FR = F+
R ⊕ F−

R , (12.11)
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where the total Fermi number is J0 = ±1
2 mod 2. The GSO projection instructs us to

take either F+
R or F−

R . It is hard to distinguish the two, since there is no intrinsic way to
determine the absolute sign of the fermion charge J0.

For the full multiplet of 10 fermion fields, the R ground states form a rank 25 = 32
spinor of Spin(10). In fact, after bosonization they take the form

σα = eiα·ϕ, α = (±1
2 ,±1

2 ,±1
2 ,±1

2 ,±1
2). (12.12)

The spinor splits in two chiralities distinguished by

∑

i

αi = ±1
2 mod Z. (12.13)

The GSO projection will project on one chirality. Again, which chirality is a matter of
taste, they will be permuted by a parity transformation. But there will be a marked dif-
ference when we combine left-movers and right-movers. The GSO projection is performed
separately in both sectors, and we have a two-fold ambiguity in each sector. Of the total
of four possibilities we can identify two by flipping the sign of the overall fermi number
F = J0 + J0.

The two remaining choices give physically distinct theories, the type IIA and type IIB
string theories. As we mentioned already, they differ in the relative sign in the chiralities
of the two supercharges. In a formula we obtain the following contribution to the Hilbert
space

IIA :
(
F1

NS ⊕ F+
R

)
⊗
(
F1

NS ⊕F−
R

)
,

IIB :
(
F1

NS ⊕ F+
R

)
⊗
(
F1

NS ⊕F+
R

)
. (12.14)

This gives four different sectors in the Hilbert space

(NS,NS) : boson
(NS,R) : fermion
(R,NS) : fermion
(R,R) : boson

(12.15)

The (NS,NS) sector contains the familiar massless bosonic fields: the metric Gµν , the
two-form field Bµν and the dilaton field Φ, all corresponding to states of the form

ψµ

− 1
2
ψν
− 1

2
|p〉. (12.16)
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The massless bosonic fields in the (R,R) sector have long been neglected, but they
play a crucial role in recent developments. By definition they are bispinors. However, we
can further decompose them in terms of irreducible representations of Spin(10). If S±

denote the two chiral spinor representations, and Λk the representation of k-forms, we
have

IIA : S+ ⊗ S− ∼= Λ0 ⊕ Λ2 ⊕ Λ4

IIB : S+ ⊗ S+ ∼= Λ1 ⊕ Λ3 ⊕ Λ5
+ (12.17)

Here Λ5
+ indicates the self-dual 5-forms. These relations are derived in the familiar way,

we write a k-form as a bispinor using the Dirac matrices

Fαβ̇ =
∑

k even

F (k)
µ1...µk

(γµ1 · · · γµk)αβ̇

Fαβ =
∑

k odd

F (k)
µ1...µk

(γµ1 · · ·γµk)αβ (12.18)

Here the total differential form

F =
∑

k odd/even

F (k), F (k) ∈ Ωk(R9,1) (12.19)

satisfies the self-duality condition ∗F = F.

The corresponding vertex operators couple to k-form field strengths. This we can see
by looking at the equation of motion. The bispinor Fαβ satisfies two Dirac equations, one
on the left and one on the right. In terms of differential forms this gives the equations

dF = d∗F = 0, (12.20)

which we recognize as the Bianchi identity and the Maxwell equation.

12.3. D-branes

Summarizing, in the type II superstring we have a collection of generalized gauge fields
A(k), which are k-forms, with k odd and even in the IIA and IIB case respectively.

Now we are familiar with one such generalized gauge field, the two-form B field that
we find in the (NS,NS) sector. The string carries a charge for this field, as can be seen
from the sima-model coupling

∫
d2z 1

2Bµν(x)∂x
µ∂xν =

∫

Σ
B. (12.21)
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This minimal coupling is complete analogous to the way a particle with a one-dimensional
world-line C couples with charge q to a one-form gauge field A

q
∫
dτ Aµ(x)ẋµ = q

∫

C
A. (12.22)

So we see that the string has charge +1 with respect to B. In a similar spirit the objects
that would couple to a p + 1 form gauge field A(p+1) are p-branes (“pea brains”). These
p-dimensional extended objects sweep out a p+ 1 dimensional world-volume Cp+1 if they
propagate in time. The coupling takes the form

q
∫

Cp+1

A(p+1). (12.23)

This coupling is invariant under gauge transformation which shift A by a p-form Λ

A→ A+ dΛ, (12.24)

at least if the wave function of the p-brane transforms at the same time by

ψ → eiq
∫

brane
Λψ, (12.25)

which is the definition of charge q.

What are these mysterious extended objects that carry the charges of the RR fields?
They cannot be present in the perturbative string spectrum, since we only find couplings
to the field strength F = dA. (Since F is invariant under gauge transformations, the
perturbative string states are neutral.) String theory has therefore to be complemented
with non-perturbative states carrying the RR charges. These were found in a brilliant
proposal by Polchinsky and called D-branes [125]. These D-branes are reviewed in great
detail in a collection of excellent lecture notes [20], see also the lectures by Mike Douglas
at this school [126]. So we will skip their world-sheet formulation. We cannot stress
too much how important it is that for the first time we have an exact description of
non-perturbative solitons in string theory.

12.4. Compactification

In string theory we will have to compactify the 10-dimensional space-time manifold
on a 6-dimensional compact space X. This space has in general moduli φ that take
value in a moduli space MX that parametrizes the inequivalent geometrical structures we
can choose on X. In perturbative string theory these moduli appear as the parameters
describing the family of sigma-models, or more general CFTs that can appear as string
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4D susy I/Het IIA IIB M F

N = 8 — T 6 T 6 T 7 T 8

N = 4 T 6 K3 × T 2 K3 × T 2 K3 × T 3 K3 × T 4

N = 2 K3 × T 2 CY3 C̃Y 3 CY3 × S1 C̃Y 3 × T 2

N = 1 CY3
∼= C̃Y 3 orient. orient . G2 CY4

Table 3: Compactifications in string theory.

vacua; the proper moduli space is therefore the “quantum moduli space” that includes
sigma-model quantum effects. It is not necessary that the compactification fiber Xx over
the 4-dimensional space-time point x ∈ R4 is the same at each point; we can allow small
local variations. Stated otherwise, the moduli φ ∈ MX become space-time scalar fields

φ(x) : M4 → MX . (12.26)

Therefore we have the all-important relation

families of CFTs ⊂ vacua of string theory. (12.27)

Here we write ⊂ instead of ∼= since we realize that string theory can have moduli such
as the string coupling constant that are not present or difficult to understand in string
perturbation theory.

The amount of supersymmetry we expect in four dimensions will dictate the combina-
tion of perturbative string plus compactification manifold. We have gathered these data
intable 3. A few scattered remarks about this table: The amount of supersymmetry in 4D
is simply given by the number of original supersymmetries in the uncompactified space-
time times the number of covariantly constant spinors on the compactification space X.
This latter number is determined by holonomy group of X. The holonomies are: trivial
for T n, SU(2) for K3, SU(3) for a Calabi-Yau three-fold CY3, G2 for a seven-dimensional
manifold with this exceptional holonomy, and SU(4) for a Calabi-Yau four-fold CY4.

In this table all horizontal theories should give the same four dimensional physics.
There should therefore be relations among the compactification data. In particular they
should all have the same moduli space. The two equivalent Calabi-Yau three-folds CY3
and C̃Y 3 are related by mirror symmetry.

In Type I or heterotic compactification we also have to pick a gauge bundle V → X
over the compactification manifold X. This gauge bundle should satisfy the topological
constraints

c1(V ) = 0, c2(V ) = c2(X). (12.28)
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We have studied in section §§8.9–12 the abstract structure of string vacua. It corre-
sponded to a family of 2d TFTs that satisfied certain integrability conditions. We now
want to make contact with the space-time approach where they correspond with moduli
spaces of supersymmetric vacua. Indeed, we know that upon compactification we obtain
(in the low energy limit) a supergravity theory that contains a supersymmetric sigma
model with target space the moduli space MX of the compactification data X. This
moduli space appears as the expectation values of the scalar fields φi and thus should
be interpreted as a moduli space of vacua of a single theory (string theory respectively
supergravity).

The scalar fields φi will have an action that is highly constrained by the requirements
of supersymmetry. We have seen this in detail for the scalar components of the so-called
vector multiplets in global N = 2 supersymmetry in §11.4 and this led directly to the
rigid special geometry for the moduli space M as captured by the prepotential F . The
analogous discussion for local supersymmetry can be done along the same lines and leads
directly to local special geometry that we met at various places. So we see that space-time
considerations give a direct interpretation of the geometry of the moduli space of string
vacua — one of the themes of this lecture series.

In this way we can reproduce the results from CFT obtained in §7 and §8. However,
there is one thing we can do from a space-time perspective that is very difficult from the
world-sheet point of view, namely to explain the integer structure and the correspond-
ing canonical flat Gauss-Manin connection. Quite generally, the existence of the integer
structure is related to charge quantization and charge lattices. Indeed, for a compacti-
fication on a Calabi-Yau X we have seen that the integer structure was related to the
lattice H3(X,Z). This is the charge lattice for the the 4-form gauge field of the type
IIB string theory. However, in perturbative string theory there are no objects that carry
charge with respect to this field. The charged objects are 3-dimensional D-branes that can
wrap around the 3-cycles of the Calabi-Yau, intrinsically non-perturbative objects that
are invisible from the CFT perspective. So the D-branes finally complete our picture. In
§13 their role in determining the BPS spectrum will be considered.

12.5. Singularities revisited

We have seen that the moduli spaces of string backgrounds might have singularities.
These singularities have often a completely straightforward explanation. They simply
parametrize the singular geometries of the target space X. There is no reason why a
sigma model on such a singular space would have to make sense. However, once we
realize that the same moduli space is now used to label vacua of string theory, we run
into trouble. What will prevent the string of exploring these singular points? And what
happens at these points, where CFT and thus string perturbation theory no longer makes
sense?

Well, we have been at this point before. In the rigid special geometry solution of
Seiberg and Witten we also met singularities. At these singularities the abelian gauge
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theory became infinite. But these infinities had a good explanation. They were the result
of integrating out a nearly massless field, the monopole or dyon. If we had reinstated this
degree of freedom, the model would make perfect sense at these points in moduli space.

It was the brilliant insight of Strominger [127] that precisely the same thing happens in
string theory! For concreteness let’s consider a compactification of the Type IIB theory on
a Calabi-Yau space X. At a typical singularity the space X will develop a node. At this
node a three-cycle C will shrink to zero, quite analogous to the shrinking of a one-cycle
in the case of the SW solution. Is there an accompanying charged object that becomes
massless? Yes, Type IIB string theory contains 3-branes that can wrap around the cycle
C. There mass will be given (at least for BPS states) by the period of the holomorphic
3-form Ω,

M ∼
∫

C
Ω. (12.29)

So we see that in the singular limit M → 0, and we have precisely the same situation.
We have to introduce new degrees of freedom, describing the quantum fluctuations of this
new light soliton.

12.6. String moduli spaces

What is the general structure for moduli spaces of inequivalent string vacua? In the
low-energy limit string theory reduces to a particular supergravity model, and the vacuum
manifolds for theories with local supersymmetry have been studied in great detail. In fact
we always have the following ingredients:

(1) A moduli space M that carries certain geometric structures (special Kähler, hy-
perkähler, quaternionic) depending on the exact amount of supersymmetry.

(2) A charge lattice Γ ∼= Zr with rank r equal to the number of abelian gauge fields
in the uncompactified dimensions11.

(3) A duality group G that acts on Γ. In many cases this representation is actually
irreducible.

(4) A homomorphism π1(M) → G, that is, a (necessarily flat) Γ bundle over the
moduli space M.

(5) A BPS spectrum HBPS ⊂ H.

Let us make some comments on this last ingredient. In supersymmetric theories the
next step beyond the description of the vacua is the spectrum of BPS states. For extended
supersymmetry there is a rich structure of such states. The BPS Hilbert space is graded

11Here the case D = 4 is special since there ∗F is also a two form and thus an abelian gauge field gives
rise to both electric and magnetic charges. Consequently, in four dimensions the rank of the lattice is
twice the number of U(1) gauge fields. Similarly, for D = 5 there is one extra generator.
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by the charge lattice Γ (as is the full space H)

HBPS =
⊕

q∈Γ
Hq. (12.30)

The graded pieces Hq have typically finite dimensions

D(q) = dimHq. (12.31)

In fact, it is interesting to consider the corresponding entropy, defined as

S(q) = logD(q). (12.32)

Using relations with black hole physics, this entropy can be compared, for large charges q,
to the so-called Bekenstein-Hawking [128] entropy SBH that can be computed by classical
(super)gravitational methods,

S(q)
q→∞−→ SBH(q). (12.33)

This gives an indication of the growth of the degeneracy of BPS states. In fact, in the
interesting dimensions d = 4, 5, 6 one finds that

S(q) ∼





2π|q|, d = 6,

2π|q|3/2, d = 5,

2π|q|4, d = 4.

(12.34)

12.7. Example — Type II on T 6

As an example let us consider the compactification of the type IIA or IIB theory on
the six-torus T 6. In that case one expects the following structure [15]:

The “classical” moduli space is given by the homogeneous space

Mcl = E7(7)/SU(8). (12.35)

Here E7(7) indicates the maximally noncompact real version of the Lie group E7, with 7
noncompact directions. The lattice Γ has rank 56 and it forms an irreducible representa-
tion of the U -duality group

G = E7(7)(Z) (12.36)

a discrete group. The quantum moduli space is the quotient

M = G\Mcl (12.37)
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The flat vector bundle is the obvious one.

The degeneracies D(q) of BPS states are expected to grow with entropy [129]

S(q) = 2π
√
Q4(q), (12.38)

where Q4 is the unique quartic invariant of E7 (that can be used to define E7). We see
that this is already an incredibly rich structure.

13. BPS states and D-branes

We have seen that the next step beyond describing the string vacua is the spectrum
HBPS of BPS states. How are these BPS vector spaces computed? This subject has seen
a remarkable progress in the last year, after the introduction of Polchinsky’s D-branes.
Seminal papers in the field are, among others [125, 130, 131, 132, 133, 134]. There are two
cases that are relatively well-understood, the perturbative states and the pure D-brane
states, that we will now review.

13.1. Perturbative string states

Both in the type II and the heterotic string we can find BPS states in the perturbative
string spectrum. These are by far the easiest states to understand. They are obtained
by putting the right-handed bosonic and fermionic oscillators in their ground state. This
is most easily done in the Green-Schwarz light-cone description of the physical Hilbert
space (see [4]).

Recall that in this description the spectrum is generated by the following fields:

8 left-moving and 8 right-moving bosonic fields xi(z) and xi(z) that transform as a
vector 8v under SO(8);

8 integer-moded left-moving fermionic fields Sα(z) that transform as a spinor 8s of
SO(8);

8 integer-moded right-moving fermions Sα̇(z) or Sα(z) that, depending on whether
we are considering the type IIA or IIB theory, transform as a (conjugated) spinor 8c

respectively 8s.

Note that the three representations 8v, 8s, 8c of SO(8) are related by triality (a
necessary ingredient for space-time supersymmetry) and all carry an invariant real inner
product.

These fields are quantized with the free action (written for the IIA case)

S =
1

π

∫
d2z

(
1
2∂x

i∂xi + Sα∂Sα + Sα̇∂Sα̇

)
. (13.1)
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For future use we introduce the explicit mode expansions

∂xi(z) =
∑

k

αi
kz

−k−1,

Sα(z) =
∑

k

Sα
k z

−k. (13.2)

Since the chiral fermions Sα are in the Ramond sector, their ground states form a repre-
sentation of the Clifford algebra

{Sα
0 , S

β
0 } = δαβ . (13.3)

If Sα would have transformed in 8v, as is usually the case for a Clifford algebra, the
spinor representation would have been 8s ⊕ 8c. Since Sα transforms here as 8s, one finds
(after applying triality) that the R ground states give the representation 8v ⊕ 8c. On the
right-moving side, we have a similar picture, possibly with the interchange of chirality. In
the GS formulation there is no GSO projection, therefore the ground states have the form

(8v ⊕ 8c) ⊕ (8v ⊕ 8c,s) (13.4)

The four terms in this product give the four sectors labeled (NS,NS) through (R,R) in
the covariant approach. In particular 8v ⊗ 8v gives the light-cone modes of the Gµν and
Bµν field.

The other, massive physical states are produced by acting with the creation operators
αi
−n, Sα

−n on these ground states. This gives a description of the Hilbert space tensor
product of bosonic and fermionic Fock spaces both of rank 8. These left-moving and
right-moving Fock spaces have a gradation by the number operators (NL, NR).

If we compactify on a torus T n, we can fix momenta (pL, pR) in the Narain lattice Γn,n.
The physical Hilbert space is then defined as the subspace satisfying the level-matching
constraints

1
2p

2
L +NL = 1

2p
2
R +NR. (13.5)

Note that this can be written in the signature (n, n) inner product as

1
2p

2 = NR −NL. (13.6)

The uncompactified momentum k ∈ R9−n,1 is fixed by the mass-shell condition

1
2k

2 + 1
2p

2
L +NL = 0. (13.7)

So for the type II string compactified on T n the degeneracies D(p) of physical states with
momenta p ∈ Γn,n are given by

D(p) =
∑

n−m=p2/2
d(n)d(m) (13.8)
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where the coefficients d(k) are generated by

∑

k

d(k)qk = 16
∏

n

(
1 + qn

1 − qn

)8

(13.9)

which is the character of 8 fermionic and 8 bosonic Fock spaces (the factor 16 counts the
Ramond ground states).

For the heterotic string we tensor the left-moving supersymmetric spectrum-generating
algebra we just described with 24 right-moving transverse bosonic oscillators xI

R(z). The
compactified momenta (pL, pR) now take value in the extended Narain lattice

Γn,n+16 ∼= Γn,n ⊕ (−E8) ⊕ (−E8). (13.10)

The right-moving degeneracies at oscillator level NR are given by c(NR − 1) with

∑
c(k)qk =

1

q
∏

n

(1 − qn)24 =
1

η(q)24 , (13.11)

the character of 24 bosonic Fock spaces. Because of the bosonic intercept (which produces
massless states at level NR = 1) the level-matching now gives

1
2p

2
L +NL = 1

2p
2
R +NR − 1. (13.12)

Note that this can be written as

1
2p

2 = NR −NL − 1. (13.13)

So the full spectrum of perturbative heterotic string states with p ∈ Γn,n+16 takes the
form

D(p) =
∑

n−m=p2/2
d(n)c(m). (13.14)

13.2. Perturbative BPS states

For BPS states we simply put the left-moving supersymmetric oscillators in their
ground states. That is we impose the conditions

αi
n|BPS〉 = Sα

n |BPS〉 = 0, n > 0. (13.15)
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Why is this a BPS state? To understand this we have to consider the supersymmetry alge-
bra. In the light-cone description of the physical states, the (left-moving) supersymmetry
generators are given by (we put p+ = 1)

Qα = Sα
0 ,

Qα̇ =
∮
∂xiγα̇β

i Sβ. (13.16)

We can decompose Qα̇ in zero-mode piece and a non-zero mode Qα̇
+ piece as

Qα̇ = piγα̇b
i S0,β +Qα̇

+. (13.17)

On ground states Qα̇
+ will act trivially, by definition,

Qα̇
+|BPS〉 = 0. (13.18)

So, BPS states satisfy the condition

(ǫαQ
α + ǫα̇Q

α̇)|BPS〉 = 0, (13.19)

with

ǫa = piγα̇a
i ǫα̇. (13.20)

Precisely the same argument holds for the heterotic string. So we see that 8 of the 16
left-moving supercharges annihilate these states. Consequently, for the type II and the
heterotic strings these are 1/4 and 1/2 BPS states respectively.

The degeneracies of these BPS states is entirely given by the right-moving states, that
can be arbitrary as long as level matching is satisfied. So we find that the number D(p)
of perturbative BPS states with given charge p are given simply by

D(p) =




d(1

2p
2), type II,

c(1
2p

2), heterotic.
(13.21)

13.3. D-brane states

A second class of BPS states that are now reasonable well-understood are the D-brane
states, that can appear in the type II and type I string. We will concentrate on the type
II states here.

In general these D-brane BPS states are believed to appear as follows (see e.g. [134])
In a compactification on a Calabi-Yau space X there exist special embedded subspaces
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C ⊂ X called supersymmetric cycles. To such a cycle C we can associate a charge q in
the homology lattice

q = [C] ∈ H∗(X,Z). (13.22)

We can further associate to the cycle C a moduli space MC that parametrizes the in-
equivalent supersymmetric embeddings. The BPS states should appear by “quantizing”
this classical moduli space MC . In a naive way quantization means computing the ground
states of the supersymmetric particle moving on the moduli space. These ground states
are represented as harmonic differential forms. So roughly we have

Hq ≈ H∗(MC) (13.23)

However, there are various subtleties in this reasoning that we will partly explain and
partly sweep under the rug (see e.g. [135, 136] for a critical analysis).

What kind of cycles are appropriate? Here we have to distinguish between the type
IIA and IIB theories. Recall that we had two sets of bosonic fields: NS fields and RR
fields. Consequently we have a decomposition of the charge lattice as

Γ = ΓNS ⊕ ΓRR (13.24)

In the NS sector we find the graviton Gµν , 2-form Bµν and the dilaton Φ. In the RR
sector we have a series of generalized k-forms gauge fields A(k), where k can take all odd
or even values in the IIA or IIB theory respectively. Moreover the total RR curvature

F =
∑

dA(k) (13.25)

satisfied the self-duality condition ∗F = F .

If we compactify on X we can have abelian gauge fields out of both sectors. The NS
sector only gives a contribution if X is the product with a torus T n. Then we have the
following charges: n momenta (from the metric G) and n winding numbers (from the
2-form field B) giving12

ΓNS = Γn,n. (13.26)

In the RR sector we produce after compactification an abelian gauge field out of a (p+1)
form Ap+1 for every element Cp ∈ Hp(X,Z). The “push-down”

A =
∫

Cp

Ap+1 (13.27)

12There are two exceptions to this rule: When we compactify down to five dimensions we can dualize
the B field to give one more magnetic charge. In compactifications to four dimensions all gauge fields
can be dualized, doubling the lattice.
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gives a one-form in the uncompactified space-time. So the RR charge lattice is given by

ΓRR =




Heven(X), type IIA,

Hodd(X), type IIB.
(13.28)

In the type IIA theory the most general D-brane state with charge

p ∈ Heven(X) (13.29)

is realized as a sum of irreducible even-dimensional cycles Ci with multiplicity ni

p =
∑

i

ni[Ci]. (13.30)

In the Type IIA theory we demand that the cycles C ⊂ X are holomorphically embedded
for a complex structure on X compatible with the given Ricci flat metric [137]. We further
need the additional date of a choice of holomorphic vector bundle Ei → Ci of rank ni over
each irreducible component. There is a concrete proposal for what the relevant moduli
space MC of such cycles should be: the moduli space of simple, semi-stable coherent
sheaves S with Mukai vector [135, 136]

Ch(S)
√

tdX = p. (13.31)

In the type IIB theory we are dealing with odd dimensional cycles. Let us assume for a
moment that we are dealing with a proper Calabi-Yau three-fold that is simply connected,
so that Hodd(X) = H3(X). The correct notion of a supersymmetric three-cycle is now
special Lagrangian [137, 138, 139].

A special Lagrangian L satisfies two conditions [140]: (1) it is a Lagrangian, i.e. the
Kähler symplectic form vanishes when restricted to L, and (2) it minimalizes the volume
in its homology class. More precisely, it has the property that (with an appropriate phase
factor eiθ) the period of the holomorphic three-form Ω satisfies

∫

L
eiθΩ = vol(L). (13.32)

For an irreducible BPS cycle we also have to pick a line bundle over L, as we did in the
IIA case. The special Lagrangian calibration was introduced because its properties closely
match those of holomorphic cycles that we met on the IIA side. In fact, Strominger, Yau
and Zaslow [138] have been able to proof that the moduli space ML has some very nice
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properties. It is always a Kähler manifold, even a Calabi-Yau space, and its complex
dimension is given by

dimC ML = b1(L). (13.33)

We will now consider a few interesting examples of compactifications where we know
how to compute the BPS spectra.

13.4. Example — Type IIA on K3 = Heterotic on T 4

Our first example concerns the compactification of the Type IIA theory on K3 [132,
131]. By string duality this is equivalent to a compactification of the heterotic string on
the four-torus. This compactification produces a supersymmetric theory in six dimensions
with N = 2 supersymmetry. The charge lattice is of signature (4, 20) and even, self-dual

Γ = Γ4,20. (13.34)

This lattice can be understood as the Narain lattice from the point of view of the heterotic
string.

Viewed from the type IIA theory it is the (even) homology lattice of a K3 surface X

Γ = H∗(X,Z), (13.35)

which labels the RR charges. It indeed carries an intersection form that is even and self-
dual. (There are no perturbative charged states in this compactification.) The duality
group is

G = O(4, 20,Z) = Aut (Γ). (13.36)

In the heterotic description these transformations are all perturbative T -duality symme-
tries. In the K3 compactification they correspond to quantum automorphisms of the K3
manifold [141].

For K3 surfaces the quantum moduli space is completely known [141]. The duality
group is

G = O(4, 20,Z), (13.37)

which is the automorphism group of the unique even, self-dual lattice of signature (4, 20)

Γ4,20 = H ⊕H ⊕H ⊕ (−E8) ⊕ (−E8). (13.38)

The quantum moduli space is given by the Narain space

MK3 = G\O(4, 20,R)/O(4,R)×O(20,R). (13.39)
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One of the implication of string duality is that both compactifications should also have the
same moduli space, which is indeed the case, since the above Narain space is well-known
to classify the heterotic compactifications (see the discussion in §7.4).

The BPS spectrum has a straightforward perturbative description in terms of the
heterotic string, it is simply a Fock space built on the lattice Γ. So the degeneracy D(p)
for a state with charge p ∈ Γ is given by

D(p) = c(1
2p

2) (13.40)

with generating function η−24, see (13.11). According to the string duality hypothesis,
these states should have an alternative description in terms of quantizing D-branes on
K3.

This idea has been in fact (partly) confirmed. There are various cases where the
moduli space of D-branes can be quantized and does give the required degeneracies. We
have seen that in IIA theory a general D-brane configuration is a set of holomorphic13

subvarieties Ci ⊂ X with multiplicities ni

p =
∑

i

ni[Ci], (13.41)

and the moduli space MC of such cycles is some set of appropriate sheaves. The strong
version of string duality says that any two elements C,D of H∗(X) with the same self-
intersection number give rise to isomorphic moduli spaces

MC
∼= MD (13.42)

related by the duality group O(4, 20,Z). Of course for the group O(3, 19,Z), which is
the image of Diff(X) in the second cohomology group, this is a trivial statement. As it
stands, the strong duality statement is definitely not true with the above definition of
MC in terms of coherent sheaves, it most likely needs quantum corrections.

One can show that under certain conditions the moduli space MC is isomorphic to
the Hilbert scheme X [N ] of subschemes of length N on an algebraic K3 surface X,

MC
∼= X [N ], N = 1

2p
2. (13.43)

Crucial in the correspondence with the heterotic description is the result of Göttsche [142],
who computed the Hodge numbers of these Hilbert schemes. The Hilbert scheme can be
understood as a resolution of the orbifold symmetric product spaces

X [N ] π→SnX = XN/SN . (13.44)
13Holomorphic for a complex structure on X that is compatible with the hyperkähler structure that is

parametrized by the moduli space MX .

137



For algebraic surfaces, the Hilbert scheme is always smooth and its cohomology can be
computed unambiguously. For the symmetric products we can do a similar computation,
but we must be careful that we use the appropriate orbifold Euler character [143, 106].
Anyhow, the result is the generating function

∑

N≥0
qNχ(SNX) =

∏

n>0

1

(1 − qn)24 =
q

η(q)24 . (13.45)

There is a clear intuitive picture why we get a Fock space. Let αµ
−1 (µ = 1, . . . , 24)

be a basis of H∗(X). The suffix −1 will be explained shortly. Now there are obvious
cohomology classes that we can construct in the N -th symmetric product of X, one
simply takes symmetric products of the classes on X

αµ1
−1 · · ·αµN

−1 . (13.46)

If this was everything the generating function (13.45) would read 1/(1 − q)24. However,
there are an infinity of mirror images of the classes αµ

−1. In the diagonal X in the sym-
metric product S2X we find a second copy of this class, denoted as αµ

−2. Similarly, if a
point on XN is left invariant by a cycle of length n we get a class αµ

−n. The (orbifold)
cohomology is the symmetric algebra on all these generators (creation operators) αµ

−n, i.e.
a Fock space.

One case where the correspondence with Hilbert schemes is made rather easy, is the
situation of N zero-branes and one four-brane. In that case we have p2 = 2N , and the
moduli space is indeed given by

MC = X [N−1], (13.47)

so that we compute

D(p) = χ(X [N−1]) = c(N), (13.48)

which checks with the heterotic prediction c(p2/2).

A particular other interesting case has been studied in [134] and by Yau and Zaslow in
[144], namely the case that C is an irreducible curve of genus g with class p = [C] ∈ H2(X).
In that case the adjunction formula expresses the genus as

p2 = 2g − 2. (13.49)

The moduli space MC , that parametrizes such holomorphic curves together with a choice
of a holomorphic line bundle, is fibered over the local system Pg that parametrizes just
the family of curves

MC
π→Pg. (13.50)
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The fiber of this map is the Jacobian Jac(C) of line bundles on C. This Jacobian is
generically a torus, Jac(C) ∼= T 2g. Therefore the Euler character χ(MC) seems naively
to vanish, since the Euler number of the fiber is zero. There is a catch in this argument,
however, if the curve is singular and degenerates to a curve of lower genus with nodes. Over
these exceptional subspaces the dimension of the fiber drops. Now in the case of a total
degeneracy to a genus zero curve, the fiber is a point. Only these points, corresponding to
nodal rational curves, can contribute to the Euler number. Therefore there is a beautiful
prediction from string duality for the number of rational curves with g nodes on a K3
surface: it is given by the coefficient c(g−1) of the generating function 1/η24. This checks
with the explicit computations that have been done for low number of nodes [144].

13.5. Example — Type II on T 4

Our second example concerns the compactification of the Type IIA or IIB string on a
four-torus. (T-duality will relate the two types.) This model has N = 4 supersymmetry
in six dimensions. It has both NS and RR charged states. In fact, the duality group is
[15]

G = O(5, 5,Z), (13.51)

that acts on the rank 16 charge lattice as a chiral 16 spinor representation. Of course,
there is a perturbative T-duality subgroup

T = O(4, 4,Z) ⊂ G, (13.52)

under which the charge lattice decomposes as

Γ = ΓNS ⊕ ΓRR. (13.53)

Here both lattices are isomorphic to the even, self-dual Narain lattice Γ4,4. For the NS
lattice this is true by construction. Note that it transforms as a 8v under the T-duality
group. The RR lattice we obtain (say in the Type IIA) theory) as

ΓRR = Heven(T 4,Z). (13.54)

This has indeed an even, self-dual intersection product of signature (4, 4), as we have
seen in §9.1. So we also obtain ΓRR

∼= Γ4,4. Note however that this lattice transforms
as a spinor 8s under the T-duality group O(4, 4,Z). (The Type IIB lattice Hodd(T

4,Z)
transforms as the conjugate spinor 8c.)

Now we can make two computations. The perturbative states, with p ∈ ΓNS, have a
direct computable degeneracy in terms of a left-moving superstring partition function

D(p) = d(p2/2), (13.55)
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with generating function (13.9). The full duality group G allows us to transform these
perturbative states in pure D-brane states with p ∈ ΓR. Here we have to make a similar
computation as we did for the case of K3.

There is a conjecture with ample support that the relevant moduli space of torsion
free coherent sheaves is indeed always a hyperkähler deformation of the Hilbert scheme or
symmetric product SNT 4 [145]. The relevant formula is now that the cohomology of these
symmetric products produces the chiral superstring partition function. This is indeed the
case, since

∑

N≥0
qNχ(SNT 4) =

∏

n>0

(
1 + qn

1 − qn

)8

. (13.56)

This is again a powerful check on string duality.

For a general state with charge p in the full charge lattice Γ = ΓNS⊕ΓR the degeneracy
is given by the following formula [146]. There is natural bilinear map 16 ⊗ 16 → 10 in
O(5, 5,Z) given by the Dirac matrices. So 1

2p
2 is naturally a ten-dimensional vector in

the Narain lattice
1
2p

2 ∈ Γ5,5, (13.57)

with components 1
2p

αγµ
αβp

β, µ = 1, . . . , 10. In general such a vector will be a multiple N
of a primitive vector. The complete duality invariant formula for the degeneracy is now

D(p) = d(N). (13.58)

13.6. Example — Type II on K3 × S1 = Heterotic on T 5

Our following example is a compactification down to five dimensions, best understood
first from the heterotic perspective. In a compactification on T 5 we have clearly a Narain
lattice Γ5,21 of perturbative charges. However, the full charge lattice is one dimension
higher,

Γ = Γ5,21 ⊕ Z, (13.59)

because of the following reason. The B field, which has a three-form field strength, can
be dualized in five dimensions to produce an extra gauge field A with dA = ∗dB. We will
denote this extra charge as m. States with non-zero m charge are magnetic monopoles
for the B field. Elementary string states can only carry electric B field charge. So, a
generically charged BPS state with non-zero magnetic charge m cannot be described in
terms of perturbative heterotic string states and we are stuck. (States with m = 0 can of
course be described in CFT terms, but they are special. For example, their degeneracies
do not grow as fast as the generic states with m 6= 0.)

On the other hand, there is a nice description of these states from the type IIA
formulation in terms of strings and D-brane states on the manifold S1 × K3. Here we
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have a different decomposition of the charge lattice [147]. From the NS charges we first
have the Γ1,1 Narain lattice associated to the S1 factor. The type IIA B-field gives an
additional magnetic charge

ΓNS = Γ1,1 ⊕ Z (13.60)

In the type IIA formulation the RR charges come from the homology of the K3 factor,

ΓRR = H∗(K3,Z) ∼= Γ4,20 (13.61)

We first consider the moduli space associated to a D-brane state with R charge
pR ∈ ΓRR. As we have seen, this moduli space is conjectured to be isomorphic to (a
hyperkähler resolution) of the symmetric product SNK3, with N = 1

2p
2
R − 1. In section

§13.4 we computed the cohomology of this moduli space, or in physical terms we consid-
ered supersymmetric quantum mechanics on it. Now we are dealing with a fiber bundle
K3 × S1. In the limit that the K3 fiber is much smaller then the circle14, we might
assume by an adiabatic argument that the D-branes are supersymmetric for each point
of the circle. In this way we obtain a map

S1 → SNK3, (13.62)

i.e. an element of the loop space L(SNK3). We now want to quantize this loop space.
Note that it has a natural circle action, corresponding to rotations of the S1, and the
appropriate object to compute will be the S1-equivariant Euler character of the loop space.
In physics terms this means we have to consider a two-dimensional N = 2 supersymmetric
sigma model with as target space this symmetric product [147].

BPS states will correspond to states that are in right-moving ground states. For any
target space X, the spectrum of such states is computed by the elliptic genus [148]

χ(X; q, y) = Tr H
(
(−1)F yFLqL0− c

24

)
, (13.63)

where H is the Hilbert space of the sigma model with RR boundary conditions on the
fermions. If X is a Calabi-Yau space of complex dimension, χ(X; q, y) has beautiful
modular properties. It is a weak Jacobi form of weight zero and index d/2 (with, as
usual, q = e2πiτ , y = e2πiz). This implies that the elliptic genus has an expansion in
non-negative powers of q

χ(X; q, y) =
∑

n≥0, k

c(n, k)qnyk. (13.64)

The coefficients c(n, k) have a topological definition in terms of characteristic classes on
X. One result we will need is the elliptic genus of K3. It has many representations. One

14Recall that we are computing an integer topological invariant, so we are allowed to pick a convenient
metric.
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that is easy to derive in the orbifold limit K3 = T 4/Z2 is the following expression in
classical Jacobi theta functions

χ(K3; q, y) = 8
∑

α=2,3,4

(
ϑα(τ, z)

ϑα(τ, 0)

)2

(13.65)

Since K3 is a CY space, all its symmetric products will also be CYs. We can thus
consider their elliptc genera. In fact, there is a nice formula for the generating function
of the elliptic genera of the symmetric products, which generalizes Göttsche’s result [149]

∑

N≥0
pNχ(SNK3; q, y) =

∏

n>0,m,k

(1 − pnqmyk)−c(nm,k). (13.66)

Here c(m, k) are the expansion coefficients of the elliptic genus of K3. Let us expand the
RHS in Fourier coefficients ∑

n,m,k

d(n,m, k)pnqmyk. (13.67)

According to the D-brane picture of the BPS states the final formula for the degeneracy
of a BPS state with pR ∈ ΓR and magnetic charge m and spin J is now given in terms of
the elliptic genera of the symmetric products SNK3 as

d(1
2p

2
R, m, J). (13.68)

Using the above explicit formula, one can evaluate the asymptotic of these degeneracies
and finds the expected entropy [150]

S(pR, m, J) ∼ 2π
√

1
2mp

2
R − J2 (13.69)

13.7. Example — Type IIA on X = Type IIB on Y

In our last example we compactify the IIA or IIB theory on a Calabi-Yau three-fold
to four dimensions with N = 2 supersymmetry.

One of the most interesting applications of D-brane BPS states has been to the issue
of mirror symmetry. The usual statement of mirror symmetry tells us that the Type IIA
theory on a Calabi-Yau three-fold X is equivalent to the Type IIB theory compactified
on a dual Calabi-Yau three-fold Y , with X and Y related by the mirror map. Indeed,
we have seen how Type IIA and Type IIB were simply related by flipping the sign of
the right-moving U(1) charge. The two string theories are believed to be equivalent in
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the perturbative sector, which is the only thing CFT arguments will teach us anything
about. It is no more than natural to conjecture that this equivalence extends to the
nonperturbative sectors, and in particular to the D-brane BPS states.

Now we have also seen that the description of D-brane states was very different in the
IIA and IIB theories. In the IIA setup we had to find a holomorphic subvariety C ⊂ X
with charge

[C] ∈ Heven(X). (13.70)

The actual BPS states were obtained by quantizing the moduli space MC associated to
C. This moduli space is most likely the space of some appropriate sheaves, possibly with
“quantum” corrections.

In the Type IIB theory the same BPS states should arise by quantizing the moduli
space ML that parametrizes the inequivalent special Lagrangians L ⊂ Y with charge

[L] ∈ H3(Y ). (13.71)

Now the “strong mirror conjecture” claims that not only do the BPS state spaces
obtained from MC and ML agree, the actual moduli spaces should be isomorphic

MC
∼= ML. (13.72)

This conjecture has an immediate and powerful implication [138]: it allows us to
directly construct the manifold X from the geometry of the mirror manifold Y . The
argument is extremely simple and clear: There is one very special supersymmetric cycle
on the IIA manifoldX — a point P ∈ H0(X). The moduli space all possible “zero-branes”
P is of course the original space X itself,

MP = X. (13.73)

So if mirror symmetry holds this means that on the IIB manifold Y there must be one
very special Lagrangian three-cycle L with the property that

ML
∼= X. (13.74)

The moduli space of L must therefore be a Calabi-Yau three-fold. As we mentioned the
complex dimension of ML is given by b1(L). So this condition forces the three-cycle L to
be a three-torus

L ∼= T 3. (13.75)
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So we find that, in order for a mirror pair (X, Y ) to exist, the Calabi-Yau space Y must
allow a fibration by three-tori over some (real) three-dimensional base manifold B,

Y
π→B, π−1(x) ∼= T 3. (13.76)

B parametrizes the different special Lagrangian embeddings of L. The full moduli space
ML also takes into account the choice of a line bundle on L. But the space of line bundles
on a torus T 3L is nothing but the Jacobian or dual torus Jac(T 3) = T̂ 3. So this gives
ML and thus also the IIA manifold X as a dual fibration

X = ML
π̂→B, π̂−1(x) ∼= T̂ 3. (13.77)

Now going from T 3 to the dual torus T̂ 3 is nothing but a T-duality, which explains the
title of [138] “mirror symmetry is T-duality.” This picture has been confirmed in examples
[151].
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