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I. INTRODUCTION concern, by priority, systems where it is a good approximatior
to treat the lattice classically and the spin—lattice coupling a
Spin-lattice relaxation is the irreversible evolution of a spia random perturbation of the spin system: molecules in solu
system toward thermal equilibrium with the orbital degrees ¢ibn or insulating solids where the nuclei are relaxed by para
freedom of the medium in which the spins are embedded, call@@gnetic impurities. Nothing specific will be said on systems
the lattice. This encompasses all spin variables amenable to where a quantum description of the lattice is mandatory: metals
servation: longitudinal or transverse magnetizations, spin—sgi@miconductors, superconductors, quantum solids, quadrupc
energy or multiple-quantum coherences. It is only when thielaxation, etc., for which satisfactory full treatments can be
evolution is due to static spin—spin interactions that we wifbund in the literature. Nor will we give any qualitative de-
speak of spin—spin relaxation. Although it attracted attentiageription of relaxation, which is assumed to be known by the
even before the existence of resonance, for electronic spin sggader. Such an introduction can be found, e.g., in R, (
tems () it is mostly with the development of resonance methzh. 9.
ods that spin—lattice relaxation proved to be a central conceptThe article is organized as follows. In Section I, we use &
both as a fundamental topic in thermodynamics and as a tetdssical description of the lattice, and we derive the maste
of prime importance for investigating the dynamical and struequation for the density matrix and for the expectation value o
tural properties of condensed matter. This is particularly sm observable, for a spin system subjected to a random pertt
in NMR. The basic understanding and the elaboration of th&tion. The treatment is made in turn for a static Hamiltoniar
main formalisms of nuclear spin—lattice relaxation were devednd a time-dependent one, limited to off-resonance RF irradie
oped from 1948 to about 1960, in parallel with those of eletion. An account for the finite temperature of the lattice is made
tronic spins. The basic references are Bloembergen, Purcgienomenologically. This part follows closely the procedure of
and Pound (BPP)2j, Wangsness and Blocl8)( and Bloch Ref. (13). It departs in several respects from earlier treatments
(4), Solomon §), Abragam 6), Redfield ), Bloch @), and in particular it does not use the adiabatic approximation, whicl
Tomita ©). makes it possible to treat on the same footing heteronuclear at
These works were described in detail by Abrag&@dnd nearly identical homonuclear spins. In Section I, the lattice is
Slichter 0). Many developments have and continue to takeeated quantum-mechanically, so as to take rigorously into ac
place on various extensions and specific applications of spiceunt its finite temperature. For a static spin Hamiltonian, the
lattice relaxation. A good introduction, with references, can liseatment is inspired from the description by Abraga ¢f
foundinthe “Relaxation” articles of tHencyclopedia of Nuclear the Wangsness-Bloch approac @, 8§. The case when the
Magnetic Resonanddl). spin Hamiltonian is time-dependent is treated in several step!
The purpose of this article is somewhat different. It is t&F irradiation with an effective field in the rotating frame suc-
presentab initio a compact, clear, and complete descriptiooessively much smallerthan and comparable with the static fielc
of a general formalism of spin—lattice relaxation theory, withnd the general case of a time-dependent spin Hamiltonial
two objectives: provide the reader with a well-defined procé-his part does not quite follow the approaches of Bloghof
dure for performing relaxation calculations of practical uséredfield {).
fulness, together with a full and convincing justification of its Although an effort has been made toward clarity and sim:-
derivation. As a corollary, its purpose is not to give credit ngalicity, some calculations are per force somewhat lengthy an
to analyze in detail the various relaxation mechanisms, excepimplicated. The last two sections contain such calculations
when needed for pedagogy, nor to provide an extensive bildind their study is not mandatory in a first reading. They are
ography. Although of general applicability, the formalism wilindicated by an asterisk.
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I1. CLASSICAL DESCRIPTION OF THE LATTICE Equation [5] then yields
A. Static Spin Hamiltonian d . s .
- : —6 = —i[Ha(t), 5]. [8]
1. Derivation of the Master Equation dt

. we c0n3|d_er a nuqlear spin system \_/vhose Hamlltonla_m CONThe Hamiltoniarﬂfll(t) has a double time dependence: that
sists of a main, time-independent Hamiltonidp, plus a spin—

lattice coupling temt, (t) of vanishing average value: due to its random character and that due to the passage to t
piing 1 9 9 ' interaction representation.

By formal integration of Eq. [8], we obtain
H = Ho + Ha(t). [1]

t
We assume in a first step thd has only discrete levels, i.e., itis 6(t)=5(0)—i /0 [Ha(t), 6(t)] dt’, 9]
a Zeeman interaction in a liquid, so that the dipolar interactions
average out. _ , , o a form which is inserted into the right-hand side of Eq. [8]. We
We callo the spin density matrix. Its evolution is given bygpiain
the Liouville—von Neumann equation:

do "y ~ to~ Y N~ el ’
do _ T —I[Hl(t),a(O)]—/ [Ha(t), [Ha(t)), 5 ()] dt’.  [10]
— =—i[H, o] [2] t 0
dt
This expression is rigorous. For physical reasons, we subje

We begin by removing the static Hamiltoniay, so asto sin- i; 14 two modifications.

gle out the effect of the perturbatid, (t). This is done by the

use of an interaction representation which, for a purely Zeemant. We take an ensemble average of all terms. The reasc
interaction, corresponds to the well-known passage to the rotgtthat remote parts of a large system relax independently c
ing frame. We replace all operato€sin the laboratory frame €ach other. Each of them experiences a random coupling wit

by the operators a different evolution history, leading to a different local density
matrix &. These parts are simulated by different members of
Q — O(t) = exp(Hot) Q exp(—i Hat). [3] Gibbs ensemble. All have identical initia{0) and, sincé,(t)

has a vanishing average, the first term on the right-hand side «
. . o . Egq. [10] vanishes.
The evolution of the density matrix in this representation is 5 " | the remaining term on the right-hand side of Eq. [10]

given by we replaces{t) by
d d . ~ o -
a& = a{equ Hot)o exp(—i Hot)} G(t) = () — Jeq,

= iHob + eprHot)d—a exp(—iHot) —i6Ho, [4] Whereoeqis the thermal equilibrium form of the density ma-
dt trix for the HamiltonianH,. This is the phenomenological ac-
count for the finite lattice temperature, which will be justified in
Section IlI.
We obtain in place of Eq. [10]

that is, according to Egs. [1] and [2],

9 i #0, 51— 1 explHot)[(Ho+ Ha), o exp(—i Hot). [5]

d - t— ~
“ G370 == [ L. a0, GO~ aeallat. [11]

WhenU andU are hermitian conjugate unitary operators (i.e.,

UUT = 1), we have in full generality where the ensemble average is noted by an overbar.
In the next step, we expand the spin—lattice Hamiltonian in
U[A, BJUT = [UAUT, UBUT], [6] the form

so that the last term on the right-hand side of Eq. [5] is equal to Ha(t) = Z Vo Fe(t) = Z VIFA (), [12]

eXpEHo[(Ho + Ha), ol exp(=iHot) = [(Ho + Ha(1)). 61\ 0re theV, are spin operators and tlfg(t) are random func-
[7] tions of time. The equality of the two forms is a consequence



162 MAURICE GOLDMAN

of the fact that{1, being a Hamiltonian, is hermitian: of the correlation timer; will be given later). Weassumehat
the quantity(Q) we are interested in has a slow evolution on

Ha(t) = Hi(t). the time scaler, and we choose > 7. in Eq. [17]. The ex-

. ) ) pectation valué Q) depends on given matrix elementsadt),
The decomposition [12] is made in such a way that and although other physical variables may have a much fast

evolution than Q), we state for the moment that the evolution of

& (t) is slow on the time scale.. This will soon be justified. We

first derive the evolution equation f¢€)(t) under the assump-

tion that it is slow, compared with; 1, and then we determire

\7a(t) = exp( Hot)V, exp(—iHot) = explwq,t)V,. [14] Posterioriwhich are the conditions for the result to be consistent
with this assumption.
Such a decomposition is always possible. As an example, lefThe shortness of, compared to the time scale of evolution

us choose of & and the choice df > . have three main consequences, as
we show next.

Vo = (1) Hal (1 [15]  The first consequence is that we may repka@e) by & (t) on
the right-hand side of Eq. [17], since only valued'differing
from t by only a few timest. contribute to the integral. The

. : . . second consequence is that, since each member of the Gibbs ¢
@a = (1Holl) = (J[Tol])- [16] semble has experienced its random perturbation for many time
The operatoV, defined by Eq. [15] has only one nonvanishindec: the effect of the difference in their random evolutions aver-
matrix element. In usual problems, the operattraave several 29es out, so that the variougt) are equal, and we may replace
nonvanishing matrix elements, and there are several possibl&) by J (t). As a consequence, there is a decoupling betwee

[Ho, Vo] = w4 Va, [13]

whence

where|i) and| ) are eigenkets dfy. Then

choices for theV, . the average over the spin part and that over the lattice part. Equ
We can write Eq. [11] under the form tion [17] is then replaced by
450 dsn=-% / VL. V). GO
dtU dt - - 0 o ) B )
t
=- fo [Va(t). [Vi (). (6(t) — Gegll Fa(t)F (1)) At ~ Gl R (DF; () dt.. [18]
a.p

(17] We limit ourselves to stationary random functions, a realistic
assumption in most practical cases, that is such that
Because of the different density matricest’) in different
mgmbers ofthe Gibbs ensemble experlencnjg.dlfferent.tlme evo- 7,:(1(0,:;@) = Gus(lt — t']). [19]
lutions of the random functionB, (t), F;(t'), it is essential to

use a joint average over the spin part (1)}, and the lattice Equation [18] is the master equation for the evolution of the

part (i.e., €. (t)F; (1)) under the integral of Eq. [17]. This IasJFdensity matrix{t) in the interaction representation. We use it to

equation is nearly as rigorous as Eq. [10], butin full generalify o o the master equation feft) in the initial Schodinger
it is well nigh insoluble. There is an exception, the case Wh?@presentation By inverting Eq. [3], we have

the evolution ofH;(t) corresponds merely to a variation of res-

onance frequency of the spins: modulation of the chemical shift

or of the indirect interaction by chemical exchange or molecular

reorientations. In this case, the perturbatiéfigt) at different ] o .

times commute with each other as well as with the Hamiltonigihence, by differentiating both sides,

Ho. The theory appropriate to this case is specific and it will not 45

be treated here (see, e.g., Rel85)). —o(t) = —i[Ho, o (t)] + exp(iHot) — expiHot). [21]
For the general case when the random perturbations at dirdt dt

ferent times do not commute, a clean theory of relaxation is From the expression [18] faté /dt, together with the prop-

possible only in the limit when the fluctuation of the randorty (6] and the definition [19], we obtain

perturbation is fast compared with the evolution through relax-

ation of the physical variables under study. More specifically, let d . t ~t

7. be the time scale for the fluctuation of the random functions aa(t) = —i[Ho, o (t)] - Z/O [Ve, [Vﬁ t' -1,

F(t): itis the time scalé —t’ = t; over which a typical product %h

Fu(t)F; (t') decays by a substantial amount (a better definition (o(t) — 0eg)l] Gap(t — t') dt'. [22]

o (t) = exp(—iHot)o (t) expl Hot), [20]
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The term under the integral depends tnonly through The double commutators {0, V,], V] will often vyield
t —t’ = 7, which extends from 0 to. The third consequence gperators differing fronQ. Some of them may not correspond
of havingt > . is that we can extend the integral to infinity+o observable physical variables. However, since the observab
From Eq. [14], we have quantity Q depends on them, it is necessary to calculate thei
» evolution as well. The process must be repeated until reachin
VﬂT(t’ —t) = exp[-iwp(t’ — t)]VﬂT = exp( CI)IBT)VT, [23] aclosed system of operatagg with coupled relaxation evolu-
tions. Some among them may correspond to independently me
and we obtain finally surable quantities. One then speaks of cross-relaxation prope
although there is no fundamental difference between the tw
cases as regards the formal calculations.
Let us consider such a closed set, chosen in such a way th

d . ~
37 = =ilHo. o] =3 [Ve. [V}, (o(1)
a.p

we have
— 0eq)]] Jup(@p), [24]
[Qi, Ho] = —2i Qi. (30]
whereJyg4(w), called a spectral density, is defined by
Equation [29] then yields a system of coupled equations o
the form

Jup(w) = /OO Gys(r) explwt) dr. [25] g
’ gt (@0 =120 = 2 Q)0 ~ Qe (31

Being Fourier transforms over positive time only, the spectral
densities are complex. It can be shown quite generally that thejir
real part corresponds to relaxation proper, whereas their imagi-
nary part produces a shift of the resonance frequencies, kno
as the dynamical shift. We do not consider these shifts in the
present article. A comprehensive analysis can be found@h (
and references therein.

\Whose solution is straightforward.
A case often encountered is that when the difference in th
Qillation frequenciesy; — 2;) of two operatorL); andQj is
Mfuch larger than their cross-relaxation ratg It then results,
from the general theory of linear differential equations, that the
effect of cross-relaxation on the evolution of eithi€) or (Q;)
2. Evolution of Expectation Values: Cross-Relaxation is negligible: it yields a relative contribution of the order of

We are not so much interested in the evolution of the density rij /198 — Q< L.
matrix itself as in that of measurable spin variables. Qebe

the operator corresponding to such a variable. We have  For such couples of operators, one may then discard the cros
relaxation terms from Eqgs. [31]. This corresponds to the so

(Q) =Tr{Qo} [26] called adiabatic approximation.
and L . .
3. Evolution in the Interaction Representation
ﬂ (Q) = Tr{ Qda } [27] One is often led to calculate an expectation value in the inter
dt dt action representation. Since most of the time it corresponds to

We use the following general property: rotating frame, we note it with the subscript

Tr{A[B, C]} = Tr{[A, B]C}. [28] (Q)r(t) = Tr{Qa& (1)}, [32]

Applied twice in succession to Eq. [27], withs/dt given by gnd
Eq. [24], this yields

d

d
—(Qyt) =Trlo—¢&!. 33
dt(@ Q)(t) r{tho} [33]

= (=i[Q. Ho)(®) = D Jup(wp) ([ Q. Val. VII(D))
o,p

; On the other hand, by inserting the condition [13] into Eq. [18],
—([[Q, Vul, Vg])egh- [29]  we have

This is an equation relating expectation values, and there isi t ) )
no need to make assumptions as to the forma @j. It is the U( )= Z/ expli wyt) expi—iws(t — 7)}Gep(r) dr
master equation for expectation values in the 8dimger rep-
resentation, that is in the laboratory frame. X [V, [Vg , (6(t) — Gegll. [34]
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We extend the integral overto infinity and use the definition the frequencies,, ws, w| + ws, andw, — ws. We write
[25], whence, from Eq. [33],
= 3
{ [4]] wo + [39]

a)sza)o—5

d
3t Q) = =D expli (@a — )] Jup (p)
o,p ‘ with § < wo.
x {{([[Q, Vq], Vg])r(t) —([[Q, V], VﬁT]>r eqt- [35] We assume that the correlation functiéh@) are exponential

with a single correlation time:

This derivative is a sum of smoothly varying terms, when
w, = wg, and of oscillatory terms. When the oscillatory fre-
guenciesw, — wg are large compared with the average decay . ) . . .
rate of (Q)(t), their contributions are fast oscillations of smal|¥ IS lort1.ly Vf[’,'th coLreIann T:ch?.onsé of th|§ for_:_nh that tr;el
amplitude, and they can be ignored. This was the first formul ere‘? on 'Tetct as aLwe -t N |n.e meaning. The spectra
tion of the adiabatic approximation. When on the other hand t ghsities (real part) are Lorentzian:

G(t) = G(0) exp(-t /o). [40]

oscillations are not fast, the present treatment is ill adapted to T
quantifying their effect. By contrast, this is easily done by cal- J(w) = G(O)m- [41]
culating the derivatives of expectation values in the 8dimgjer ¢
representation, that is in the laboratory frame, as done \jfk have then
Section IIA2. This is in fact the main advantage of using the
laboratory frame picture. J(w) = G(0) Tc
The simplest way of establishing the connection between 1+ w§r2(1+ 8/ wg)?
both formulations is as follows. Let us consider the same set of T
operatorg); as in Section 1IA2. We have =~ G(0) m~ [42]
Cc
(Qi)(t) = THQi5 (1)) Likewise,
= Tr{Q; equ HOt)U(t) exp(—iHot)} J(CUS) _ G(O) Tc
- 2.2(1 2
= Tr{lexp(—i Hot) Qi exp( Hot)lo (1)},  [36] 1+ wgre(1 = 8/wo)
T
= G(O)TCZZ, [43]
or else, according to Eqg. [30], “ote
T
. J(w —ws) = G(O)Tingz- [44]
(Qi)r(t) = exp(=i 2 t)(Qi)(t). [37] ¢
We assume thatr; « 1, so that
If we have(Qj)eq = 0, Eq. [31] then yields
J(w1 — ws) = J(0), [45]

%(Qi n(t) = —Z exp[—i (2 — )t (Qj)(t). [38] asituation very common for homonuclear spins in liquids.
j As a consequence of Egs. [42]-[45], the relaxation is the sam
as if both spins had resonance frequencies equaj.to
We see the origin of the oscillatory terms in Eq. [35]: they cor- Instead of using the full interaction representation, defined b
respond to cross-relaxation between operators having differéig operator

resonance frequencies in the steady spin Hamiltokhign
U = expli(w 1z + osSHt], [46]

4. Intermediate Representation .
we could have used a frame rotating at frequedsagyor both

There are cases when it is convenient to use a representa§ipihs, defined by the operator
intermediate between the Scoldifiger and the interaction repre-
sentations. This will be illustrated for a system of homonuclear U’ = expliwo(l; + SH]. [47]
spinsl andSin aliquid, whose resonance frequencigandws
are close, as aresult of different chemical shifts. Let us consiggyye write
the contribution to their relaxation from the random modulation .
of their dipolar interaction®). It involves spectral densities at Q =u'Qu" [48]
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in this representation, we have fields, withwg = wp or 2wg. We have then
d ~/ : ~/ 1y ~/ 1 A 2
T5(1) = i[5~ $).5'(0] ~i[F4(1). 5/ 0). [49] 1. (o) [55]
dt T1 1+ (,z)O‘L'CZ

The second term is processed as in Section IIA1, and it yieldg requirement becomes in that case
the correct result.

If on the other hand the conditioir, « 1 is not fulfilled, e (Awt)?
one must use the full interaction representation, which leads to ~
Eq. [34] fordé /dt. Then it is permissible to limit oneself to the

intermediate representation, defined by It is fulfilled either by condition [54] or by the usually less

, . stringent condition,
oini(t) = exp[-is(l; — S)t]o (t) explis(l; — SHt]. [50]

=~ —— <1 56
Ti 1+ wft [>6]

Aw

The evolution equation in this representation is P <1 [57]
d ) . in the limit whenwgz: > 1.
giont(®) = =801z = S), oim(t)] + expl-id(1z — S

d . i i
o d—&(t)expﬂ&(lz _ ). [51] 6. Extension to Solids

t In NMR, a solid is characterized by the existence of static
spin—spin interactions, usually much smaller than interaction:

terms are with frequencias, and 2s0. Since in all resonance aiving rise to discrete levels: Zeeman or quadrupolar or a com
o bination of both. The spin—spin interactions, mostly dipolar,

experiments the frequeney, is much larger than all relaxation limited to their secular part, produce a quasi-continuous broac

rates, we can discard the oscillating terms as a result of the adl- S
! o ; . ening of the otherwise discrete levels. The decay of the transvers
abatic approximation. Equation [51] describes correctly trans-

X . ! magnetization is then governed by the spin—spin interactions ar
verse cross-relaxation between spirendSin the presence of . . . . N
. : . is nonexponential. Spin—lattice relaxation in that case concern
a differential precession.

. . L . other variables such as the longitudinal magnetization or th
The intermediate representation is also useful in other cases; 9 9 ‘

indirect interactions or RF irradiation, as seen in Section ”B_quadrupole alignment or the dipolar energy. -
We take as an example a Hamiltoni&tfy consisting of

Zeeman and secular dipolar interactions, of the form

If we use the approximations [42] and [43], the only oscillatin

5. Conditions of Validity of the Theory

As seen above, the theory assumes that the relaxation times Ho=Z + Hp. (58]
under consideration are much longer than the correlation time
1.. We consider as an example transverse and longitudinal relaxY he random perturbation can still be written under the form
ations in a liquid, due to dipolar couplings (see, e.g., R&). ( [12], but with theV,, chosen so as to have
We call (Aw)? the average square of the dipolar interactions and
wo the Larmor frequency. [Z, Vo] = waVa [59]
Transverse relaxation can be produced by the longitudinal

components of the dipolar field, for whighy = 0. Then we N place of [13]. _
have as an order of magnitude Since the term&Z and H, are commuting, we have from

Eq. [3]
1 2
T (Aw)7Te. [52] V, (t) = expl Hot)V, exp(—i Hot)
The condition of validity of the theory is for that case = exp(Hpt) exp( Zt)Ve exp(-i Zt) exp(—iHpt)
= equ wat)voz(t)v [60]
/T < 1, (53]
whereV,(t) is defined by
that is,
V, (t) = expi Hpt)V, expiHpt). [61]
|Aw|te < 1. [54]

When calculating the evolution of a variabl®;), we have
Longitudinal relaxation involves only transverse dipolaby analogy with Egs. [25] and [28] to calculate integrals of the
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form Under these conditions, the calculation of relaxation in a solic
© is exactly the same as in a liquid.

| Qv Vi ® expian)Gus) de

0 7. Synthesis and Discussion

For an exponential correlation function of the form [40], the

. . The derivation leading to the master equation [29] follows &
integral is of the form

well-defined succession of steps, which we first recapitulate.

[o¢]
7= / K(r;t)expliws — 1/tc)r] dt [62] 1. Start with the Liouville—von Neumann equation [2] for the
0 evolution of the density matrix.
2. Go over to an interaction representation so as to single ol
%e effect of the random spin—lattice coupling.
3. Perform a formal integration af and reinject into the
evolution equation, so as to have a two-time product of randon

The variation ofK with 7 is due to the dipolar interactions
and is therefore complicated. However, the integral [62] had
simple solution if the decay oK is slow on the time scale
liwg — 1/tc|71: it is the same as if the dipolar terfd, were

absent, that is, functions. . , ) |
4. Take an ensemble average jointly over spin and lattice var
Tc ables.
I~K@Ot)———. 63 . :
( )1 —iwpte [63] 5. Replace by & — 6, in @ phenomenological treatment of

o o ] the finite lattice temperature.
The reason lies in a general characteristics of functions whosg; Expand the spin—lattice coupling into a sum of products o
decay is due to dipolar interactions, namely that their Fourighin operators by random lattice functions.
transforms have fast decaying wings, approximately like a7 choose the timemuch longer than the correlation tine

Fourier transforms (over positive time) &f(z;t) andG(r) be e We can replace (t') by &(t);
K(w) and e The average of the produdpin x lattice decouples into
1 the products of the averagsgin x lattice. The latter are corre-
G(w) = 1/7' [64] lation functions of random lattice functions;
Tc— lw

e We can extend the integration limit to infinity, which

The Fourier transforr of the productk (r; t)G(z) (Eq. [62]) ntroduces well-defined spectral densities. _
is equal to the convolution of their Fourier transforms: 8. Go back to the Schdinger representation and write the

evolution equations for the expectation value of variables. The!

+oo have the following characteristics:
L(wp) K(w)G(wp — w) dew e The derivative of an expectation value is a sum of two
_:Ooo terms: the contribution of the static spin Hamiltonian and tha
_ / K()/[1/7c — i (wp — )] do of spin—lattice relaxation;
—o0 ¢ Itdepends on expectationvalues, not on the detailed forr
1 +00 K(o) do of the density matr_ix; _ _
T wa 1+io/l/r—iwg] [65] e The relaxation part contains no oscillatory terms;

e Cross-relaxation shows up without ambiguity.

Itis equivalent to say thal (z;t) evolves slowly over the time  This procedure avoids, explicitly or implicitly, a number of
scale|1/tc — iwg|™*, or to say that the width of(w) is small  traps encountered when performing relaxation calculations. W
compared withl/z.—iwg|. As aconsequence, only those valuesome back briefly on some of them.

of w for which _ . .
(a) Use of an interaction representation that does not remov

o] < |1/7c — i wg] all of Ho. Itis a representation defined by

contribute to the integral. For these values, the denominator does Q- & = exp(Ht)Q exp(—iHt)
not differ significantly from unity and the integral is approxi-
mately equal to

with H # Ho.
400 The evolution of the density matrix in this representation is
K(w) do o« K(0;t), [66]
- d ~/ : v v ~/
which justifies statement [63]. dt’ () = 1l(Ho =+ 73(1). & (0], (671
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i.e., it involves a nonrandom terrfﬂ() — 'H) in addition to the Which, through repeated use of property [28], is equal to
random one. This procedure does not allow a clean derivation

of a master equation where the effect of rela3<£m0n is properly TrH{Q[V,, [V, c®)]]} = TrH{[[Q, V], ij]a(t)}
accounted for, because the time dependencé;6f-r) is not

correct and leads to spectral densities with the wrong frequency. = ([[Q. Val. Vi) (). [71]
However, we have seen in Section 11A4 that it may nevertheless

yield the correct result when the extra frequency correspondingBy using [28] only once, it is found that this trace is also equal
to the residual Hamiltonian is much smaller than the inversg

correlation time. In case of doubt, it is safer to go first to the full

interaction representation and then go back to an intermediate 1 _ T
representation if it is more convenient than the laboratory frame. THQIVe [V, o O = THIQ. VellVy. o). [72]

Among more serious wrongdoings is the fact of treating the .
effect of the residual term?f(g, — H) perturbatively, or even € the trace of a product of single commutators. The latter ar

worse, to use a terri{ which does not commute witk(y, SO (slightly) simpler to calculate than double commutators, which
that (ﬁ(’) — 'H) is time dependent. seems to be an advantage. However, Eq. [78biequal to the_ _
(b) Make the premature assumption that the average oversﬁ‘rﬁ’edat'o” value of an operator, and in qrder to _calculate it, i
and lattice variables is the product of the independent averad&decessary to guess what the formodf) is. This is usually
As an example, let us consider the derivative(@f(t) in done by performing a pgrt]al decompositiorodf) into a set of
the interaction representation. According to Eq. [17], it involve&thogonal operators, limited to those expected to be relevan
terms of the form We write then

t - o(t) = iQi + P, 73
expl(w. — op)t] [ THIQ. VAL V15(1) ©=2.50Q 73]
x expliwg(t —t")]G(t —t')dt’. with
The integral is of the form Tr(QiQj) = Tr(QiP) = 0. [74]
() = /t C(t')D(t — t') dt. [68] Only the o_pgratorQi are Sl_Jp_posed t_o intervene in relaxation
0 and are explicited. The remaining tefris supposed not to play
any role.
It is easily solved by the Laplace transform method. L€E), }Fhe coefficients; are obtained from
C(2), andD(Z), the Laplace transforms oft), C(t), andD(t),
respectively, i.e., for instance,
peciivel, L&, fort (Q) = Trio(®Q) = &Tr(Q). [75]
(2) = /0 (t) exp(-2t) dt. [69]  The right-hand side of Eq. [72] then reads

Itis awell-known property of Laplace transforms thatto Eq. [68]  Tr([Q, v, ][V}, o (1)]} = Zgi Tr[Q, VLIIVS, Qil}. [76]
there corresponds i

I(2) = C(2)D(2), [70] This procedure is all righprovidedthat the choice of th€);
is a good one. Some of its triumphs in the past have been:
which would mean thatQ),(t) could be calculated rigorously at , )
any timet, and even in the case when the relaxation rates are nof 0 MiSs cross-relaxatios(17), _ ,
small compared with; L. This conclusion is totally erroneous, ® [0 Miss cross-correlation effects between dipolar inter-
as results from the formal treatment detailed above. This provigghions of adjacent spin pairdg or between dipolar and

a proofad absurdunof the necessity of using a joint averagd@niSOtropic nuclear shielding interactioris), _
over spins and lattice at short times. o tomiss the fact that, for spins larger that21the relaxation

(c) Make guesses about the form of the density matrix in tt? lin€ar spin components may depend on higher powers of th
course of relaxation. spin operatorsi3).

We have seen in Section 1IA2 that the derivative (@) The advantage of calculating the double commutators ir
depends on terms of the form Eq. [29] is that the operators on which the variation(q¥)
, depends show up naturally. There is no need to make “intelli
Tr{Q[ V.. [V4, ()]}, gent” guesses.
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B. Time-Dependent Spin Hamiltonian: Off-Resonance We consider the case whéhis much larger than the relaxation
RF Irradiation rates, or the spin—spin resonance width in solids.

. . . ... As regards the spin—lattice coupling, we write it in a form
The case of an arbitrary time-dependent spin Hamiltonian "E’iapted to the specific nature of the spin Hamiltonian:

complicated. It will be discussed at the end of Section Ill. We
limit our.selves t.o the prac;tlcglly only case of mtgrest_. that of.a Ha(t) = Z VinFin(®), [83]
system in a static magnetic field subjected to an irradiation with —

a much smaller periodic field of frequenayin the vicinity of

the Larmor frequencyy corresponding to the static field. Anywith

component of the RF field parallel to the dc field can be ignored,

since its effect is negligible. Irradiation is usually made with a [1z. Vin] = MVin, (84]
linearly polarized RF field, which can be decomposed into a sum ,

of circularly polarized fields rotating in opposite directions, thawhence, according to Eq. [78],

is with opposite frequenciesw and—w. The only effective one ~

is that rotating at the frequency closedg, say+w, and we ) = Zm:eprma)t)Vm Fin(0)- [85]
discard the other one. The spin Hamiltonian is then a Zeeman

interaction with a static part plus a much smaller normal part (i) We go over to a doubly rotating frame by the transforma-
rotating at frequency: tion

Ho = wol, + w1(lx Coswt + I sinwt) A@t) — Ot) = exp(Q121)0 expiQlst),  [86]

= wol expiwlt)lx expfwlt
@0z + wrexpCiolhlexploldt) in which representation the evolution of the density matrix is

to which we add the spin-lattice couplifi¢y (t). The first step

of the formal treatment, passage to an interaction representation
which singles out the effect of the spin—lattice coupling, is per- 5
formed by two successive unitary transformations, as followsin order to write{1(t), we express the operatovs, in a form
adapted to the tilted axes pertaining to the doubly rotating frame

d ~ R =
G0 = —ilH0.50). [87]

(i) Each operator is replaced by

Q = O(t) = explwl,t)QexpCinl,t), [78] Vi = Xm:)\r‘%Vév [88]
which corresponds to the passage to a frame rotating at frequepay,
w around the directionDof the static field.
Through the same treatment as from Eq. [4] to Eq. [8], the [z, Vr,)] — er/J' [89]
evolution of the density matrix in this representation is given by
d y y We then obtain from Eqgs. [85] and [86]
g0 ® = —i[(Ho — wlz + Ha (1)), 5 (1)]. [79] .
Ha(t) = > Fu(®ARV, expli (Mo + pQ)t].  [90]
The new spin Hamiltonian is m.p

To proceed, we solve Eq. [87] exactly as in Section [IA2, for
the case of a static spin Hamiltonian, and then we go back to th
firstrotating frame. This is a convenient intermediate represent:
. . tion, in which the effective Zeeman interaction is static. Possible
Wher_e A. IS _equ_al to _the resonance offset._ The e_ffecn_v eriodic terms as a function ofwill have frequencies equal to
Hamiltonian in this rotating frame is a Zeeman interaction wit ultiples ofw, and they may safely be discarded. The evolution

a static field oriented along an axig th the xz plane at an : : : .
N o | equation for t) is of a form slightly more complicated than
angle® from the direction @ of the static field, with E?qu [3|5] but<(c3t)rr1(ezv1/ise very simill?ar' y P

Heit = Ho — wly = (wo — w)1; + wyply
= Al + w1 ly = Ql;, [80]

tan® = 2 [81]
A

LMD = (910, 12D — Y 4 Inn(mo + 42)

m,p.q
< {([Q. VoI, Ve e(t) — (I1Q. Vi1, Vg Direq)-
(82] [91]

The corresponding Larmor frequency is

Q=(A%+ a)f)l/z.



ADVANCES IN MAGNETIC RESONANCE 169

The only question is about whiakq has to be used in orderthat of the longitudinal one, with terms proportional 3¢wo),

to account for the finite lattice temperature. This is discussedHg2), and J(0).

length in Section Ill. The answer is that it is not the same for all The only effective time-dependent dipolar interaction be-
terms in the decomposition of the spin—lattice couplhigt). tween an electronic spiBand a nuclear spihat fixed positions

In the case under study, where the effective frequdndy the is equal to

rotating frame is much smaller than the RF frequengythe

answer, intuitively correct, is the following: Ha(t) = S(O(Al, + BI, + B*I_} [97]
= 2 n _

e For the termsV,, which do not commute withy, it is the

same as in the absence of RF irradiation, We assume the lattice temperature high enough for the equilik

rium value(S;)eq to be negligibly small, with

Oeq=1— BLaxl, [92
whereg, is the inverse lattice temperature. _ A= 121 3cog0) (o8]
o Yot ™ B =22 goossins i)
Jnm(Mw + p) = Inm(M), [93] wherer is their mutual distance, adandy are the polar angles

of r in a frame where Dis along the static part of the field (see,

a result similar to [42] and [43]. Combining these results, tHe9- Ref._(i)). ) .
relaxation due to the terms &f; with m # 0is exactly the same N the first reference frame, this coupling is
as inthe absence of RF irradiation, and that due to the other ones

is toward zero. Ha(t) = S(t){Al, + Bexplwt)l, + B*expiwt)l_}. [99]

For actual calculations, it is also possible to expressfhas
a function of thev,,,. We give below two examples of relaxationAs stated above, the contribution of the termsiins calculated
under RF irradiation. They are intended to illustrate the formaas in the absence of irradiation, that is according to Eq. [35] an
ism for actual physical cases. The complexity of the formulg82]. The result is
should not conceal the formal simplicity of the calculations.

—w LABB I()((I,) — Ig). [100]

d
1. Local Nuclear Relaxation by a Fixed Paramagnetic Center a(lﬂB =

In insulating solids, the nuclear relaxation of spin@ is due

to the random modulation of their dipolar coupling with fixedvhere Iy is equal to(l,)eq for oeq of the form [92]. Here, the
paramagnetic impurities at low concentration. The modulatigiyrmalization of] (w) corresponds t&(0) = 1 in Eq. [40].

is that of the expectation value of the electronic spin compo-

nents under the effect either of their own spin—lattice relaxation d S(S+1)

or through flip—flop processes among electronic spins. The cor- —(ly)g = —— 3 2BB*J(w)(l), [101]
responding correlation time is in general not short compared

with the nuclear Larmor period, . .
which can be written

ez 1 94
wote [54] d S+1)
T \xy/B= 775
Since the electronic Larmor frequengyis about 3 orders of dt 3

magnitude larger thasng, we have

- 2BB*J(w)(lxy).  [102]

This contribution to relaxation along the axeX 0 Z of the
tilted frame is obtained from the relations

weTe > 1. [95]
l,=clz —slx
We have then for the spectral densities Iy = sly +cCly [103]
ly = ly
J(we) K J(wo) < I(2) < J(0) [96]
Iz =cl,+ sl
and the contribution to relaxation of the transverse electron spin Ix = —sl; +clx [104]
components, proportional th(we), is negligible compared with Iy =1y,
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with ¢ = cos® ands = sin®. We have d S+1
L ivia= - LD w2 y0)+ La@y). 113
d d d dt 3
d—(lz) d —(Iz )+Sd—(| x)
t t t We add both contributions to relaxation, as well as the
_ §(S+1) * evolution under the effective spin Hamiltonian [80], and we ob-
=-=328B J@)2c(ls) — 2clo+s(hy} - finally
S(S+1)
— -2BB*J(w) d S+
3 L = - ey
x {26 + $%)(1z) — cs(Ix) — 2clo}, [105]
z X ° +ZBB*(20 +59)3()](12) — c{A23(0)
and likewise, +2BB*J(w)](Ix) — 4cBB J(w)lo}  [114]
d d d d S(S+ 1)
a“X)B:—Sa(lz)‘l‘Ca(Ix) a<|X>=—§z<|y> 2 [P A%3(0)
1 x
~AHD 2BB aw) 2501 + 2510 + 1) +2BB'(2"+ CZ)J(‘”)]
+cgA%2J(Q) — 2B B*J(a))](lz)
S(S+ 1) * 2 2
- 2BBTJ(@)I(25" + )X +45BB J(w)lo} [115]
—cs(lz) + 2slo} 106 d S
z ° [106] F() =210 = X + Dic2p230)+ 2A23(2)
d S(S+1) .
giive=- -2BB*J(w)(lv). [107] +2B B*J(a))] Iy). [116]
For calculating the contribution of the termlip we write the Since we assume that the effective frequefaég much larger
first Eq. [103] under the form than the relaxation rates, we can neglect the cross-relaxatic
S between(lx) and{l2).
l,=clz — E(I; +17). [108] Let us calculate within this approximation the expectation
values of the various spin components in the steady state.
We have in the doubly rotating frame Equation [114] yields
& S ., ' . C
l,=clz — E[I+ exp(t) + 1~ expiQt)]. [109] (I7)ss = |Om, [117]

Sincel, = I, the calculation of relaxation in the first rotatingwith
frame is similar to that in the laboratory frame with a static spin

Hamiltonian (Eg. [29]), but with Q)eq = 0. We obtain after a Kot n A*J(Q) ‘ [118]
trivial calculation 2  4BB*J(w)
E(IZ)A _ S(S+1) AZ[SZJ(Q)Uz) Equation [116] yields
dt 3 _S(5+1)
1 (Ix)ss [c?A2J(0) + S A%J(R)
- 5eS A0 + (1) 30
+2BB*J(@)]{ly)ss, [119]
S(S+1) ,
—=og A1) — eI [110] e
%(ljr)A = —wAZ[CZJ(O)(H) + %SZJ(Q)(“JQ (Ix)ss < (ly)ss [120]
Therefore, we neglecl x)ssin EqQ. [115] and we replacd z)ss
—{I’)) +cs J(Q)(Iz)], [111] by the value [117]. We obtain
] ] ] | __S(S+1) c’s[A%)(Q) — 2BB*J(w)]
or else, by separating the real and imaginary parts, (Iv)ss= 30 21 K2

%um: —S(S; 1)A2[ c2J(0)(Ix) +csI)(12)] [112] +4SBB"J(a))}I0, [121]
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that is, malized functiong=, through
<|Y>SS < (IZ)SS: [122] A= _7/r_zh X %FO
B=2Myx L =_1A
except forc « 1, where it can be checked that all components rs 7 2/6 4 [127]
are vanishingly small. C = Vr_zh x 1F;
The physically evident result is that in a large effective field h . 1pes
the steady-state spin orientation is locked along this effective E=-T x3F.

field.
The Fn, of vanishing average value, obey the following

Remark. In the case wheft, « 1, that isJ(2) >~ J(0), relations:
the relaxation is the same as in the absence of RF irradiation. 6
The corresponding equations are FmFZ = E(Sm’m“ [128]

U1, = —2((15) = 1o) They are themselves proportional to second-order spheric:
detree E [123] harmonics of the polar angles § (see, e.g.,12), (13), (20)).
%('x)m = —%Ux), Since we content ourselves with a formal treatment, the

alphabet notation is simpler to use and there is o need to dete

whence, according to Eqs. [103] and [104], its specific form. As above, we assume that

J(w £ Q) >~ J(w).

d ¢z s c
EUZ) - _<ﬁ + ﬂ) <<IZ> 24 (T T)s? IO)‘ [124] Furthermore, we assundelarge enough to allow the separate
observation of the spinsandS, but much smaller than the mean

The result turns out to be exactly the same as Eq. [114], &ective frequency2 "1‘ the rotating frame (Eq. [82] as well as
cept forJ(0) in place ofJ(€2). The indiscriminate replacementth€ correlations rate; ™. . o
of J(0) by J() under RF irradiation would, however, yield The effective Hamiltonian in the rotating frame (first interac-
erroneous results, since from Egs. [115] and [116] the deri3Rn representation) is
tives of (Ix) and(ly) depend on both spectral densities. It is ~on ~
only through the complete calculation given above that one can Ht) = (12 + S2) + 8(12 — S) + Ha(D), [129]

obtain the right answer. wherel andS have parallel axeZ, defined by Eq. [81]. Since

3 « 2, we can project, andS, ontolz andS;. The effective

2. Dipolar Relaxation of a Homonuclear Spin Pair spin Hamiltonian in this representation is then
in a Liquid
Hett = (R4 680)1z + (2 —60)S7. 130
We consider two homonuclear spihsand S of resonance et = ( Nz +( )5z [130]
frequencies given by Eq. [39]: As for the spin—lattice coupling(, it is
= wo+6 Ha(t) = A)1:S + Bt)(1+S- + 1-S;) + C(t) exp(et)
W) = wo + [125]
ws = wg — 8. x (1S + 1;S;) + c.c. + E(t) exp(2wt)1 . S, + c.c.
[131]
They are subjected to RF excitation atan ofisétom wo(A = |n complete analogy with the preceding section, the relaxatior

wo — w), and their relaxation is due to the modulation of theijye to terme andE of Eq. [126] is the same as in the absence of

dipolar interaction by Brownian rotation at constant distancgggiation. Through the use of Eq. [35], one finds (see, e8)., (
with a correlation timer.. The spin—lattice coupling is of the (10), and 2)),

form (6, 12)
d i .
Ha(t) = AM)1.S + B)(1+S- + 1-Sp) + CO(1+ S + 1,S)) gilllce = —CCI(@){(12) — lo} = 2EE"J(20)
+cc 4+ E()I,S, +cc [126] x {(12) + (&) — 2lo} [132]
d

3
a('x,y)c,E = —CC*J(CU){EUX,y) + (Scy)}
The notation for the orbital parts corresponds to the Van Vleck
notation (see, e.g., Ref6), Ch. IV). They are related to nor- — EE"J(2w)(Ix.y) [133]
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and similar expressions for the sp8) by interchanging the (Q)eq= 0,
lettersl andS.
We can use Egs. [103] and [104], and similar ones for thed

_ _ A2 el 2 1\
spinsS, to express the corresponding relaxation rates along thQﬂ( z)ag = —A ”32( ¢ —1)73(0)
axes XY Z We write explicitely the evolution alongZonly. 9 9
Through a straightforward calculation, we obtain the following + —c?s?J(Q) + _343(29)] (17)
results 16 2
1 2
d 3 - 3—2( —1)7J(0) — s 43(29) [(
a“Z)C'E = —{ (Cz + ESZ)CC*J(w)

[138]
2 2 *

+(2¢" +s)EE ‘](2“))} ({Iz) and a similar expression for the derivative 6f ) o 5. We canadd

S pe o these contributions to those 6f E (Eq. [134]). The equations

—{s°CC" J(w) + 2c°EE" I (20) (&) of evolution of (Ixy) and (Sxy) turn out to be much more

+{cCC"J(w) +4sEE J(20)}lo.  [134] complicated.

We have discarded the cross-relaxation terms betwieerand C. Alternative Approaches to Relaxation
(Ix)-

The evolution equations for tHespin components are obtain
by permutation.

Let us now consider the contribution from the term#\iand

B in Eq. [126]. We rewrite them as 1. Relaxation Matrix of the Density Matrix

We cite only two of them, which are particularly known and
of wide use. They concern essentially the case when the sp
Hamiltonian is time-independent.

This approach consists of writing differential equations for the
Hing = Hiag = A(t){(clz —sly)(cS — ) various matrix elements of the density matrix as a function of
other matrix elements. In the preceding formalism, it amounts t«
1 choosing for th&); the projections$g) (|, wherela) and|8) are
- 5[(S|z +clx)(s&F +¢S) + IvS/] } [135] pasis kets of the spin Hilbert space, most of the time eigenket
of the static spin Hamiltoniafio. Their expectation values are
or else, by using the operatdrs andS, , UB) @) = Tr(B)alo) = (BIB) (ele) (alo | )
. 1 1 = (Ol|0'|/3> = Ogpp- [1391
lans(t) = A 5667~ |12z - 50118 +15)]
The differential system is of the form

o128, + S+ 128+ S1)
ZRa/S y80ys5- [140]

0’0(,3

+gs2(|;s“++ I/S)}. [136]
The matrix R,z ,s is called the relaxation matrix. Each of
We neglectcin Eq. [130] for going to the doubly rotating frame Its indexes corresponds to the labels of two kets of the Hilber
and we obtain space. Ifn is the number of dimensions of the Hilbert space,
the number of elements of is n? and that of the matriR is
~ 1 1 3 n*, although many of them may vanish. Equation [140] is gen-
Ha(t) = A(t){ 5(302 - 1)['252 - ZUiS + VSQ} ~ 1 eral, rigorous, and compact. As such, it is often very convenier
for stating general relaxation properties of the system unde
x colexp( Qt)(1zS, + S1}) studly.
+expCiQt)(12S + S17)] By contrast, Fhe expecta_tion_ valugg;) used in.Section [1A2
3 CtljlrreTpC)ln(tj' to Ilqearlcomblnatlgns off sucE matné ek:.merrts of i
2 / i / All calculations involve a number of such combinations muc
* és [exp@ 2Nl S, +exp-2 Qt)I_S’_]} [137] smaller tham?. It has sometimes been argued that the determi
nation of the time evolution of all matrix elementscoprovides
We proceed as in Section I[IB1 and we find after a straigha-much better (in fact complete) description of relaxation. Le
forward calculation of the same structure as Eq. [29] withs consider, as an example, the modest case of five spihs 1
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linked by relaxation. The number of states in the Hilbert space isThe system [143] then reads

n=2°= 32, the number of matrix elementsri$= 210 = 1024,

and the number of elementsRis 2°° = 1,048,576. A collection q ;

of 1024 evolution curves, furthermore dependent on the initial —(Q)(t) = — Z/ Kij (t — t)(Q)(t)dt’.  [144]
conditions, doesiot represent an information, but the burial of dt 7 J0

any information. However, this conclusion must be somewhat

moderated. First, the interdependent elements wfll usually

be grouped into separate sets of dimension much smallenthan Th? next physmal argument is that the decay of the.memor}
fdnctionsK;; is much faster than that of the expectation val-

Second, in systems with not too many dimensions, it may tur
y y y (Qj). In that case, we may choosdéong enough, replace

. S
out to be convenient to solve the system [140] by computer aHg , . . e .
then to perform the physically relevant combinations. Third, for 1) () by {Q;)(t), and extend the integral to infinity. We obtain

systems with few dimensions, the solution of the system [140]
may be simpler and faster than by any other method. d

However, in most cases the use of Eq. [29], whereQhare a@i) = _Z)‘ii Qi) [145]
observable physical quantities, saves both time and effort. !

2. The Memory Function Approach with

An excellent and comprehensive description of this method
can be found in Ref.21). We give but a simplified hint at its
principle.

Let us write the evolution of a functioB(t) under the form

Aij =/OmKij(t)dT. [146]

d t Equation [145] describes the evolution due to the sole relaxatior
aG(t) = - / K(t, t"G(t') dt'. [141] Ifthe contribution from the static spin Hamiltonian is added, we
0 obtain a system identical with Eq. [31].
. N . This method is sound, elegant, and efficient. Particularly
The fgnchonK(t, t) is called thg memory function oB(t). seducing is the fact that Eq. [144] iggorous (provided that
Equation [141] can be used for its definition. However, when . . = .
; ; th& functionsH; (t) have indeed a negligible effect). One is then
G(t) describes the evolution of some property of a system act,[e ;
. . ; empted to assume that Egs. [145] and [146] are also rigorou:
upon by a random interactiof\(t), the memory function can be . . . )
) . : . ; that is that all memory functions do indeed quickly decay to
physically interpreted in terms of the correlation function asso-

! . . zero.
ciated tof (t) f*(t’) (22). It often happens that this correlation L . . .
function depends only ort & t'). Then, this is also the case of. This will be trueprovidedthat the choice of the variables of

. interestQ; is correct. There lies the main danger of this method:
the functionk , and Eq. [141] becomes the choice of th&); is made a priori through physical intuition.
d ¢ Ifthis intuition fails, that s if the se®; is incomplete, the results
—G(t) = _/ K(t —t)G(t")dt. [142] will be wrong although the system [144] is correct. By taking
dt 0 a definite example, it can be shown that when the se@;of

. . . .. _Is jncomplete, not all of the restricted set of memory functions
This last equation can be generalized to the case of d'ﬁer%fétcay fast enough to allow the passage from Egs. [144] to [145
functionsG; (t) whose evolutions are coupled. We then get '

Although this method and that of Section IIA look very similar,
¢ there is a fundamental difference between them. In the passa

EGi(t) — _Z/ Kij (t — t)G;(t") dt’. [143] from Eqgs. [29] to [31], the various variablg®;) on which the

dt 7 /0 decay of(Q;) depends are n@uessedthey arededucedrom

the calculation of the double commutators on the right-hand sid
As a next step, we consider a system involving a large numberadfEq. [29]. There is no need to exert one’s physical intuition.
time-dependent functions. It may be possible, by an appropriatéAs a last remark, one must use a joint ensemble average ov
choice, to select a sptof “functions of interest” and to write, for the two functions under the integral in Eq. [144]. The argument
this set, an equation of the form [143] plus, on each right-haiglthe same as that in Section IIAL. It is only at latglat it is
side, an extra functioHl; (t) which, through physical arguments,decoupled into the product of the averagexgfand(Qj). If
is small and evolves on a much faster time scale tBgh). Its this is neglected, one might use Eq. [144] to describe relaxatio
effect is then negligible and it can be discarded. at arbitrarily short times, in a way similar to that criticized in
In relaxation problems, these functions are the expectatiSection IIA7 (Egs. [68]-[70]).

values of physical quantitied; of interest (or rather the depar- To sum up, the memory function method is excellent when
ture of these expectation values from thermal equilibrium). used with care.
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111. QUANTUM DESCRIPTION OF THE LATTICE 4. The lattice is an “infinite thermostat,” in the sense that its

_ temperature is not altered by energy exchanges with the sp
We consider now the system under study from the preéX/stem: form [151] fofP does not vary with time.
gquantum mechanical point of view. It depends on both spin vari- o )
ables and lattice variables. Its Hamiltonian is of the form The development of the theory, very similar to that of Sectior
I1A2, is made in succession for different cases.

H=H+Hz+ 7. [147] A. Static Spin Hamiltonian
HereH, is the spin Hamiltonian, which depends only on spin The Hamiltoniarf{; does not depend on time.

variables,F is the lattice Hamiltonian, which depends only on In the absence df{, », the unitary operator of evolution of

lattice (orbital) variables, an#{, » is the spin—lattice coupling, the system would be

which depends on both types of variables and commutes with

neitherH, nor F. U(t) = exp(iHot) = exp[—i (H, + F)t]. [153]
The density matrix describing the state of the whole system,

including both spin and lattice variables, is calledits evolution In order to single out the effect dfl, », we go over to an

equation is of the same form as Eq. [2], interaction representation defined by the operator
d _ UT(t) = expll (Hi + F)t], [154]
P =" [H, p]. [148]

a generalization to spin and lattice of the passage to the rotatir

It acts on a Hilbert space which is the tensorial product of a sgi@Me, whence we get, in place of Eq. [8],
and of a lattice Hilbert space. What this means is that we can d s
choose in it basis kets with a double indéix: ) referring to af) = —i[H, £(t). p]. [155]
spin variables and lattice variables .
In the absence of spin—lattice coupling, the main Hamiltoniahhe following steps are:

(1) Throughformalintegration, we obtain an equation similar

would consist of two commuting operators whose expectation g _ L to - )
values would remain constant in time. It would then be possibleg;? = —1[Hi7. p(0)] - /o [H1#(t), [Hi#(), p()]] dt'.
to write the density matriy in the form of a product, [156]

o =0oP, [150] (2) We take an ensemble average, whose meaning in t
present case will be given later. This allows us to drop the firs

whereo andP depend only on spin and lattice variables, rd€M on the right-hand side. _ _ _
spectively. The role of the terfi, 7 is to couple, andF and (3) The system is assumed to have two widely different time

to induce a mutual evolution with possible exchange of energiF@|es: the evolution time far(f), or more precisely that for the
This is what spin—lattice relaxation consists of. evolution of the expectation value of an observable, and a muc

The theory is made for systems subjected to the foIIowir@é}orter correlatio_n time;, whose meaning WiII_be precised later.
conditions. e choose the time much longer than.. This has the same
three consequences as in Section IIAL. The first two are that w
1. The coupling, r is small enough thatitis still meaningful have a decoupling between spin and lattice ensemble averag
to speak of separate spin and lattice energy levels. and that we may replage(t”) by 5(t) on the right-hand side of
2. The density matriy can still be written in the form [150]. gq. [156].

3. The lattice part is in a statistical equilibrium state charac- (4) We go back to the Schdinger representation, which

terized by a temperature, i.e., it is of the form yields
P = exp—BLF)/Tr{expALF )}, [151] %p(t) = —i[Ho. p(t)]
where t -
- [ Dtz (=) 0 de.— 1157)
BL= KT, [152] ’

We use now the third consequence of having chdsgn t,
is called the lattice inverse temperature. namely we extend the integral to infinity.
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With the new notation, This provides an unambiguous definition of the spin density
. y matrix o, consistently used in Section II:
Hir(r) = Hix(—7) = exp(~iHot)H,  expiHot), [158]
o =Trgp. [168]
we obtain
We use this definition in Eq. [162]. The first term on the right-

o) = ~ilHo, o] - / “Hur Pl r(e), pt)]] dr. [150] hand side yields
0

(5) We expand(t) according to Eq. [150]. As fok, , we —ITEAHo, oI} = =i T M) + 7). 0P

write it in the form of an expansion similar to that of Eq. [12], = —iTrs{[Hi, o]P + o[ F, P]}. [169]
Hir = ZV“ F, = Z VIFT, [160] We use Eq. [167] together with the property that the trace of ¢
~ — commutator vanishes, and we obtain

where theV, are spin operators and thg are time-independent —iTre{[Ho, p]} = —i[H1, o], [170]
lattice operators which take the place of the random functions

used in Section II. Th¥, are chosen so as to obey the relationghich s identical with the first term on the right-hand side of

Eq. [24].
[H1, Vol = @ Ve. [161]  (7) We have to take the trace over lattice variables of the
_ second term on the right-hand side of Eq. [162]. The double
Equation [159] becomes commutator under the sign sum is over products of two opera
q N tors: a spin one and a lattice one. We recall the general formula
a”“) — —i[Ho, p] — Z/o [V, F,. [\7;(’) for commutators of products,
a.f
s [AB,C] = A[B, C] +[A, C]B, [171]
x Fy(z), o Pl dz. [162]
whence
SincevﬁT and F/I depend only on spin and lattice variables,
respectively, and owing to the form [149] &fy, we have [C, AB] = —[AB,C] = A[C, B] +[C, A]B. [172]

VL(I) = exp(—iH, r)VﬁT exp(H, t) = exp( a)ﬂ‘L')Vg [163] For the commutator of two products, we obtain
=il _ ; T
Fs(r) = exp(—i Fr)Fz exp( Fr). [164] [AB,CD] = A[B, CD] +[A, CD|B

(6) We will use Eq. [162] to calculate the evolution of the ex- = AC[B, D] + A[B, C]D
pectation values of spin variables, i.e., of opera@udepending +C[A, D]B +[A,C]DB. [173]

only on the spins, that is
We consider a typical term under the integral on the right-hanc

(Q) = Tr{Qp} = Tr{QsP}. [165] side of Eq. [162], for which we use provisionally the following
simplified notation:
If one uses reduced traces, the trace of a product of commuting Vv Y
operators (such aQc andP) is equal to the product of their «
traces (see, e.g., Rell2), Ch. 4). Fo —> F
Equation [165] is then \7;(1) gy’ [174]
(Q) = Tr {Qo} x Tre(P) = Tr(Qo). [166] Fi(r) > F.

In the first term on the right, the traces are on spin variables a@iad we write schematically, for the evolution of the spin density
lattice variables, respectively. According to Eq. [151], we hav@atrixo,

Tre(P) =1, [167] %a(t) =—i[H,o)] = Trge /oo[v F,[VF,oP]] dr.
0

whence the second term. [175]
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According to rule [173], the first commutator is equal to term, that is

[VF.oP] =Vo[F.P] (a) Tr-(PEF).
+ V[F,o]P (b) _ = - _ o
. . [176] We do this by writing explicitely the trace in a basis of eigenkets
+ o[V, PIF (c) ofthe lattice HamiltoniatF. We bypass completely the difficulty
+[V,0]PE  (d). of defining a reduced trace in a Hilbert space whose dimensior
form a continuous set, as is the case for the lattice. We us

The terms i) and €) contain the commutator of a spin operatofrorrr_1ally a comple_te trace over numerable basis kets. This wil
influence the final result.

by a lattice operator. These operators commute, since they g t e write then
pend on different variables, and these terms vanish. We are le

with = Sg/ /
Tr([P, FIF) = > _((FIPIf)(FIF|f)(f|F|f)
[VF,oP] =Vo[F,P] +[V.o]PF. [177] "
o . . — (FIF[E)(FIPIE)(FIF( )
Now we write its commutator wittF and take the trace with I
respect to lattice variables. We obtain = g(( FIPIETIFIEOCEIFIT))
TIF(IVF, [VF, oPll} = TV F, (Vo[ F, P+ [V, c]PF)]) 5 (1_ (f'1P] f/>> (180]
=Tre(VVo[F,[F,P]] (a) (fIPIf)
+ [V, Vo][F, PIF (o) [178] With the notation
+ VIV, o][F,PF] ()
N R (F1F11) = oy
+[V,[V,o]lPFF}.  (d) [181]
(T'FIf) = of
The terms &) and €) vanish: they involve the trace ovét of a .
commutator of lattice operators. Reporting the remaining ter¥¢ have, according to Eq. [151],
into Eq. [175] yields , ,
(1Pt
TP explBL(ws — wt)}. [182]

go(t) = —i[H,, 0] —/ [V, [V.o]Tr =(PFF)dr
dt 0 (9) Thethirdterm ontheright-hand side of Eq. [179] involves
an integral overr. The two terms depending onareV and
F. The variation oV (i.e. V() in full notation) is given by
Eq. [163]. Let us consider the matrix element,
Let us compare the second term on the right-hand side with . N
the corresponding term in Eq. [22] (with the same simplified (FIFIf) = (fIFjg(f)l f').
notation for a typical term). They look very much alike, except ) .
for two differences: According to Eq. [164] it is equal to
The correlation function of random functiofisF () is re-
placed by the trace }Ei[Plf(r)F]. The latter must therefore be
conside_red a quantum correlation function. It is this one who%e integral over is then
decay timer; is assumed very short compared to that of spin
quantities of interest. Its variation with temperature originates 0 .
from that of P (Eq. [151]). J= /0 expli(wp — wf +wp)ridr. [184]
The term inoeq added by hand in the classical lattice model
is absent. If the “ansatz” used in Section Il is indeed corredts real part, the only one we consider, is proportional to
this term must correspond to the third term on the right-hand
side of Eq. [179]. This is what we must analyze next, in three J x¥(wp — w1 + or). [185]
successive steps.
(8) In order that they have comparable lattice parts (correlds a consequence we may replace ratio [182] by
tion functions), we must arrange the trace o¥epf the third
term on the right to be of the same form as that of the second explBL(ws — w)} — explBLws}. [186]

+ / Oo[v, Vo Tr ([P, F]F)dz. [179]
0

(FIFIf) = exp{—i(wi — )Tl FIF]If).  [183]
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without altering the value of this third term . That is, we magnd we have, according to Eq. [191],
use in place of Eq. [180]

Tr([P, FIF) 1—expBLog) =1 —expBL(w] —wi)] =1— <(J! :Zeq:'j>>
~ €q
— [1— exp@Lag)] D _((FIPIT)(FIFIT)(F/|F|f))
M = [(jl0eql]) — (iloeqli})] x .  [194]
= [1 — exp(BLwp)]TH(PFF). [187] (iloed i)

Let us insert this result into Eq. [179], reverse the ConneCti%cording to this last form, the term i('hlVglﬂ “inthe last term
[174], and go back to Eq. [162]. We obtain on the right-hand side of Eq. [188], can be written

1
(iloegl})’
~ Ve, V]oI(L — exp(BLop))). [188] [195]
from which Eq. [188] becomes

d :
gic® = —ilHi. o] - Xﬁ: Jup(@p){[Ver. [V ] (V1) x (1— expBLop)) = (iI[V). oedl) x

We can multiply all terms by a spin operat@ and take the
traces, following property [28], We obtain

d , .
gie O =—ilHr. 0] - D Jup(@p){[ Ve [V 0]
o.p

CLQO = HIQHBO ~ Y dp@pf(1Q. Vel ViTIO

wp —[Va [V} oedogiol). [196]

—([Q. VIV — expBLey))}. [189] _ o _
This last form is still not very palatable and it would not be

Equation [188] is the master equation for the density matrix a¥§'Y €Sy to use for actual calculations. _
Eq. [189] is the master equation for expectation value. Both are! N€ Situation undergoes a qualitative change when going t
compact and of direct usefulness. However, they are puzzlingi¢ limit of high temperature. It corresponds to the situation
two respects. First, it is not immediately clear toward whichere for all frequencies;, one has
value spin-lattice relaxation makes the quanti) (evolve.
Second, it seems we have not kept our promise: Equations [188] BLop K 1, [197]
and [189] have little resemblance to Eqgs. [24] and [29], obtained
by the phenomenological replacement @) by o (t) —oeq. This  so that only terms linear i, need be retained (the effect of

is done next. A the average dipolar field (23, 24) is a subject in itself, which is
(10) Let us consider a specific matrix eIemenVé(r), outside the scope of the present article). At high temperatur
the density matriceseq ando are very close to the unit oper-
(i |\A/L(r)|j) = (i| exp(iH, ‘L')V; expH,7)lj) atoTr, with a de.parture of the first order fia. The commutqtor
, [V, 0eq] contains such a term, because the part proportional
= exp{—i(wi — wj)THiVgl]), [190] the unit operator yields a vanishing contribution. Therefore, in
order to stick to the linear approximation, we need repaa_g’e;
wherew; andw; are the eigenvalues: by unity on the right-hand side of Eq. [196].
As another way to obtain the same result, we have at higl
(i.|H| Ii? = o 191] temperature
(JIRi 1)) = oj.

1—expBL(wj — wi) ~ —BL(wj] — o)

By comparison with Eq. [163] we have
=(1-BLoj) - (1-LLwi)

©p = @ — i, [192] = (jloedl}) — (iloegli).  [198]
which can be inserted into the last term on the right-hand side
of Eq. [188]. whence
We introduce the thermal equilibrium spin density matrix with . _ _ o _
respect to the spin Hamiltonia, , (iIVgliyo — (il[Vg, oedlj)o = (il[Vg, oedl]) [199]

Oeq = EXPPLH)/TriexppBLHi )}, [193] to the first order injy.
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As a consequence of discarding'o in Eq. [196], we obtain With
in place of Eq. [188]
H, £(t) = exp( Ft)H, r expi Ft). [205]

d .
aa(t) = —i[Hi. o] - Z Jap (@p)[Ver, [ij’ @) —oedll.  The beginning of the relaxation evolution is when, starting from
P spin and lattice thermal equilibrium, the spin part of the systen
[200] s disturbed out of equilibrium by a spin excitation. The follow-
ing evolution under relaxation of the spin observables does nc
which is identical to Eq. [24] (with{, for the static spin depend on the exact instant of time when the spin excitation i

Hamiltonian instead of{o). performed. That is, Eq. [205] can be replaced by
The net result of the present treatment, borrowed from
Refs. @, 4), is that the replacement Hy #(t; T) = expli F(t + T)]H, + expl—i F(t + T)]. [206]
a(t) = o(t) — oeq The relaxation evolution must be independent pind we may
use in place of [206] an average ovEr This corresponds to
is no longer phenomenological: it is proved. choosing a Gibbs ensemble of systems with all possible value

It should be emphatically stressed that Eq. [200] is valid onfyf T. This ensures that the first term on the right-hand side o
in the high-temperature domain. The equations valid at all tefag. [156] does indeed vanish.
peratures are Eqs. [188] and [189]. Athightemperature Eq. [189]Remark Il  Itis a general fact that the evolution of a quantum
becomes system, let it be one of its kets or its density matrix, is describec
d by a unitary operator. This is definitely not the case for the
v — _ T relaxation contribution to the evolution of (e.g., Eq. [200]).
dt<Q)(t) (=R Hh(® ;3: Fop(@aI[Q- Vel V511 The reason s thatis not the density matrix of the whole system:

it is merely its projection on the spin variables. It is natural that

+ BLopTr(Q. VuI V). [201]  a projection, that is a fraction of the total density matrix, should
not behave in the same way as the full density matrix.
The trace is equal to In Section I, we have described the density matrix of the
whole system, subjected to both steady (time independent
Tr(Q[V,, Vg]). [202] Vvaryinginaregularfashion) and random interactions. There, th

nonunitary evolution of the density matrix originated from the

) i ) _ ) fact the we truncated it: we did not consider its fast, random fluc

For given termsV,, Vg, their commutator tells immediately  ations pecause it did not give rise to observable phenomen

which operatorsQ evolve toward a nonzero equilibrium value s tryncation is the rule in statistical dynamics and thermo:

Remark+-Onensemble averages. We have stressed the ilynamics. It is at the origin of the transition from microscopic

portance of taking an ensemble average for the evolutien of reversibility to macroscopic irreversibility.

which has two consequences: the impossibility of studying theremark 11—On spectral densities. In the general expres-

density matrix at times comparable with the correlation time sjon [189], it often happens that most, if not all, contributions
and the simplicity brought about by choosing a tinietermedi- 1, the relaxation evolution ofQ)(t) originate from terms with
ate between. and the characteristic evolution time of physical, _ B. The corresponding spectral densly; () is, accord-

observables. An argument was given for this procedure in tm@ to Egs. [179], [181], [183], [184], and [185], of the form
classical treatment of the lattice. What is the corresponding ar-

gument when the lattice is treated quantum-mechanically?
The answer is the following. Since we are ultimately inter-

Intn) = ReY_ [ explopr)dr(11P11)
+J0
ested in the evolution of the spin density matrixit is unnec- b

essary to start from Eq. [148]. We may first go to an interaction x (f ||f;,(r)| f)(f'|Fgl )
representation with respect to lattice only, that is perform the ~
connection = Rer expli(wg — ws + w¢)r]dr
f.f /0
— Q'(t) = exp( (Ft)Q exp(-i Ft), 203 e
whence = 7ReY (f|PI)(fIF]|f)(f'|Fs|f)

f,
%o/(t) — CiTre[(H) + Hi2@), o' ()] [204] x 8(wp — w1 + o). [207]
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In addition to the terms of the formd, Vﬂ]VL(t)...just The spin-lattice coupling must have matrix elements betwee
described, let us consider, in the sum [189], those @ [ &) and|b). It can be written in all generality

V1V (7). . . for which .
Hig=I1,F+I1_F. [215]

V(t) = expl—iwgt)Vs. 208
#(7) PEIwsT)Vs [208] Through the use of the general Eg. [189], we have

The corresponding spectral density, named for convenience,

Jplop). s equal 0 ) = 3@ 11 11O — [ 1110
o0 x[1— o)} = I (~w -
3y (—ep) = Re/ exp(iwsT)THPE4(r)F}} dz.  [209] [ =exprolly = S =)z 1. LD
0 — ([l -1 O[1 — expEBLo)l}
Since we have = —J(@){([[1z, 1+], 1-D() = ([1z, 1L]1)(1)
(F'|Bp(0)[f) = <f||f;f3(-,;)| £1y*, [210] x [1 —expBLo)] + expBLo)(([1z 1-], 1))

o — [z, 1-]1) (D) [exp(BLo) — 1]}, [216]
we obtain in place of Eq. [207]

00 where we have used Eq. [212]. Both double commutators ar
Jgﬁ(_wﬂ) = Re;/o expl-i(wp — ws + ws)T]dT equal to

I, 1], 121 =115 1], 1] =215, 217
x (F[PIEY (IRl E)CFIFAIE) e e T = 1 1L 1 1247]

_ nReZ( £/1PI ) f“:;| £) whereas the other terms are
f, £

x (F'1Fg] £)8(wp — w1 + wr). [211]

=1
{[|Z,|+]|__|+|__2+|Z 218

[ 1]y =—1ly =—3 41,

By comparison with Egs. [182] and [207], we obtain ) )
When reported into Eq. [216], they yield

Is(—wp) = expBLog) Ips(wp). [212]

) = ~3(@)2exp(Buo) + 1(12) +expleue) — 1)
In the high-temperature limit, these spectral densities multi- 1 1
ply terms linear in inverse temperatyse (term between curly = —J(w)2[expBLw) + 1]{(|Z> + = tan)—<—f5Lw>}.
brackets on the right-hand side of Eq. [201]). In that case, one 2 2
may forget the exponential in Eq. [212] and use [219]

Jgﬂ(_wﬁ) ~ Jps(wp), [213] According to Eq. [214], we obtain after a little algebra

d
in accordance with the classical treatment of Section IlA. at P, = BT Py = —2J(w){expBLw) Py, — Py}

— _921f(_ _ -
1. lllustration: Relaxation Transition between Two Quantum = —2J'(o){(Py — exp(=pLw) Pu)
Levels = — {WodPu — Wy P [220]

We single outin a systemtwo discrete levels of katgnd|b), o
. : "’ This yields
with an energy separatiohw, and we analyze the relaxation-
driven transition probabilities between them. p W
. . . el u d—u
The simplest way is to describe these two levels by a fictitious (F) =W
spinl = 1/2. The up and down level populations correspond to d/ eq u~d
the following expectation values:

= exp(-pLw), [221]

which is consistent with the general results of statistical me:
1 chanics.

Pu= (i + IZ) [214] Itcan be checked that for obtaining result[221] itis imperative
Pa=(3—1). to use expectation values for the ter@,[V,]V,, in Eq. [189].
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However, at high temperature, this expectation value is replacgd obtain
by the trace (Eq. [201]). Let us see what it yields.

With the help of Egs. [217] and [218], Eqg. [201] yields z LB P
p of Egs. [217] and [218], Eq. [201] y 5= —ifr Bl [230]

Zle

d
—(l2) = = J(@){4(1)(1) + Lo}

dt of the same form as Eg. [155], which we transform to a form

1 analogous to Eq. [156]:
= —4J(a)){(|z) + Z,BLw}. [222]

d ~ R : t = = N ORyes ’
The same result is obtained from Eq. [219] expanded to thegt? ~ ' [H17. p(O)] _/0 [F1#(0), [H1 A1), AN AT
first order inB_w. [231]

B. Time-Dependent Spin Hamiltonian
The next steps are:

1. Off-Resonance Irradiation . .
] . We take an ensemble average, for which the first term on th
We analyze the same problem as in Section 11B1-1: the re'%ht-hand side vanishes.

ation of a nuclear spin subjected to off-resonance irradiation at aye yse form [160] forH,  and form [150] forp, with P
frequencyw in the vicinity of its Larmor frequencyo. The spin  given by Eq. [151].

Hamiltonian’, is the same as in Eq. [77], and the spin-lattice \ne go back to the Schdinger representation for the lattice
coupling is of the same form as in Eq. [160]. The developmeyiaples and to an intermediate representation (first rotatin

is a combination of those of Sections 1IB and IIl. We indicatgame) for the spin variables. The corresponding unitary operatc
its main steps very succinctly. is

Following the formalism at the beginning of Section IlI, we
use an interaction representation where the evolution of the den-
sity matrix depends only on the spin-lattice coupling. The cor- Ur(OU2(1).
responding unitary operator is
We choosd much longer than the correlation timg, as a
ut@) = Uﬁz(t)Ufl(t)U;(t), [223] consequence of WhiCh we may replacé’y by &(t) and we
extend all integrals to infinity.
We obtain an equation whose terms have a form similar tc

with Eq. [179],
UL(t) = exp( Ft), [224] J N
UiL(0) = explolat) 5] gro® = —ilen.5] - /O [V (t). [Vt 7). 500
Ul,(t) = exp( 212t). [226]

x Trr(PF(r)F)dr + /OOO[\”/(t), V(t, 7)5(t)]

where the orientation of the axiZ@nd the effective frequency

Q are given by Egs. [81] and [82], respectively. As above, we < Trx([P. FIF)dr. [232]
assume tha® « ». We use the following notations. o
For a spin operator, whereHe¢ is given by Eq. [80], and
ULMOQUI(t) = Q(t) [227]  V(t, 7) = U2())U3(t — 1)VjUi(t — 1)U/,(7)
T A _ A B
U210 Q(1)Ui2(t) = Q(t). [228] = Uj2(0)U1(0)U (OVIU (U] ()U(2),  [233]

For a lattice operator, that is, according to Egs. [225] and [227],

T _F _Em _ Pl
UrOFUA) = F(O = FO) = F(=D. [229] V(t, 1) = exp(-i QIz7) expliwl,7) expwl )V}

Starting from the Liouville-von Neumann equation, x exp—iolt) explwl,7)exp(Ql27). [234]

d . .
ai” = —i[H, p], We use the formulations [83], [84], [88], and [89] f&f; =, and
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we obtain, as a general expression for Eq. [232], of oeq is then given by Eq. [193]. When the spin Hamiltonian
is time dependent, the various operatls?@(t, 7) will have a

gc?(t) = —i[Her, 5(t)] — Z AT dependence onproduced by several operators (Eq. [234]), and

dt X the relative dependence on these will not be the same for diffel

o ent operators/(f. In order to obtain an expression resembling
% / dz expfi (Mw + q2)7] Eq. [200], one must thereforiaventa fictitious Hamiltonian
0 ‘H,(m, g), tailored so as to yield
x (V2 [V, 6 @ITr 2(PF (2)F .
(V5. Vg S OLTr AP Fn(7) ) Vi(r) = exp[-iH, (M, a)]V, expli H, (m, q)r]. [241]
—[Vp, Vg6 OITr=([P, Fl(@)]Fm)).  [235]
Following the same treatment as from Eqs. [190] to [199], we
The integral involving the first trace ovex, in the second are led to express Eq. [239] under the form
term on the right-hand side, yields the quantum spectral density

Jm.m(Mw + q<2). That of the third term is analyzed exactly asin  d _ oL .
Section IlIA. It yields, in complete analogy with Eqgs. [187], a"(t) = —i[Het, G (1)] — n%:q AR Im.m(Me + 9<2)
o0 . VI, IV, (6 () — ao(m, g))]], 242
| explmo + a@aTrA(P. BN o Ve [V (00 = cnlm- ) 242
0
with
= Jnm(Mme + qR)[1 — exp@L(mew + qR))]. [236]
oo(M, q) = 1 — BLHi(M, Q). [243]

We then obtain an expression similar to Egs. [188] and [189],
Different terms VJ require a priori different pseudo-

Eg(t) = —i[Hes, 6] — Z ARAY I m(Mo + qR) Ham_illtor.\iansH| (m, ), to.which there corresponds different
dt m,p.q “equilibrium” density matrices.
<ALV, IV 3O — [V5, V6 (0] There is still another p?‘omt. In”the absence of a static spir
Hamiltonian, there is no “natural” choice of spin components
x [1 — exp(L(me + €)1} [237] o 1, +. Instead of using/;, V;, one might as well have ex-

pressed them as a function of the init\},. Using the latter

d *
— t) = (—I1[Q,H t) — APAS] m Q I . . .
dt<Q>r( ) = (=1Q. Her) (1) Z mhm Jnm(Me + Q<) would lead to “equilibrium,” density matricag,(m) different

m,p.q
P P from theog(m, ). Then, there is no single limit for the evolu-
x {I[Q. Vpl. qu(t) —([Q. VplVgh(h) tion of o (or &) under the effect of relaxation. This of course
x [1 — exp@BL(Mmw + q2))]}. [238] should make no difference for the steady-state limit of observ:
able physical quantities. Under these conditions, there is little
In the high-temperature approximation, they reduce to interest in sticking to form [242]: Equations [237]-[240] are

just as good and simpler. The various points raised above al

d ) ! . . .
a&(t) — i[Her 6] — Z APAE I (Mo + G92) illustrated in Section I1IB3.*.

m.p,q
x ([V, [VC;T’ SO + [V, quf]lgL(mw +qQ)} 2. Nuclear Relaxation by a Paramagnetic Center:

Simplified Treatment
[239]

. ~ 01q° We are now in a position to justify the phenomenological treat-
(Q)r(t) = (=1[Q. Herl) (1) = D ApAL Imm(Moo +0ARQ) ey given in Section 11B1, and to its approximations. The con-
. mpa ditions correspond to high temperature and effective frequenc
x {(I[Q VI, V' I (®) © much smaller than the Larmor frequensy. We limit our-
1o\t selves to a short qualitative discussion.
+Tr(QIVp, Vg'DAL(Me + a<2)). [240] Let us first consider the terms B, B* of Eq. [97]. Through
q(_a unitary transformation [234], they yield a dependence on

These equations are well defined and solve entirely the pr(g
the form

lem. However, one might try to express Eq. [239] under a forM
similar to Eq. [200]. There is a fundamental difference between

the present case and that of a static spin Hamiltonian analyzed expli (Mo + q€2)7],
in Section IIB. There, the time evolution of all operat&fl (7)

is due to the static spin Hamiltonig#y (Eq. [163]) and the form with m = £1 andg = 0, +1.
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For the relaxation part af () (Eq. [242]), they yield spectral still be written under the form [97], but with
densities, .
S (t) = exp( Ft)S exp(iFt).
J(Mw + qR2) >~ J(Mw), [244] ) _ )
Itwould have been possible to make a different separation: us
as a result of the smallness ©f as noted in Section 11B1-1. asH, the Zeeman interactions of the spinandSplus thel —
These terms also give rise to “equilibrium” density matrices, dipolar coupling, asF the orbital interactions, and &s, » the
coupling between the electronic spin and the orbital degrees ¢
oo(Mm, @) = 1 — BL(Mw +q)lz ~ 1 — BL(mw)l,, [245] freedom. For_actua_ll relaxation Calculatlons_ at low temperature
the latter choice might prove more convenient. Of course, botl
choices should yield the same result for the relaxation of the

Since we may negle&® in both theJ and theoy, the result spin|. This comparison will not be analyzed here.

will be the same as if the system had been subjected to a statlghe calculation will be made successively with spin opera
spin Hamiltonian: tors in’H, » adapted to the axeé® XY Zof the tilted frame and

adapted to the axed xyzof the first rotating frame.
wly ~ woly. [246] ~Axes_ OXYZ We s'Fart from the spin—latti(_:e coupling
Hi#(t) in the first rotating frame (Eq. [99]). With the help
of Eq. [103] we write the spin operators in terms lof and
L = Ix xily. We obtain

for the same reason.

In that case, there is no point in using operatigrd | for the
terms in B, B*. Their effect can be calculated with., as in
Section 1IB1.

Asforthe termsinAlL, they give rise to terms in exg{ Qt), ﬁ,f(t) — Sz(t){A[clz — §(|/+ + |/_)} + Bexp(wt)
as inferred from Eq. [109]. The corresponding matricgsvill 2

be of the form 1 1_
[slz + %I’ - TI } + B*exp(-iwt)
=14+
00 Bz, [247] 14c, 1-
X |slz+=—=1" - T' [248]

and they correspond to steady-state limits negligibly small com-
pared with those arising from thg(m, q) of Eq. [245].

These brief comments are sufficient to justify the approxima- From Eq. [234], we obtain fo #(t, 7)
tions made in Section IIB1. The same approximations apply to
any practical situation involving off-resonance irradiation. Hig(t, 7)

s , . s )
3. *Nuclear Relaxation by a Paramagnetic Center: = Sz(t){ A[Clz — 5 eXpiQT)lL — S exp( Qf)l_}
Complete Discussion

We consider the same system as above, we still keep the high- + B exp(wt) [ exp(-iwr)slz + %
temperature approximation, but we lift the preceeding constraint
on the relative magnitudes & andwg. We consider explicitely
the case of a rotating field. With a linearly polarized field which
is not small compared to the static field part, one cannot discard 14c
one of its rotating components, and the problem becomes seri- + B* exp(— |wt)[exp(wr)slz + ——expl(o + Q))1”
ously complicated. Although of limited usefulness in existing 2
experimental situations, the present discussion is included with 1 — ,
the purpose of clarifying through a specific example the main =~ o expl(w - Q)T)IJ } [249]
points raised in Section I11B1.

Let us come back to the spin-lattice coupling [97]. Inwe can use these expressions in Eq. [239], where we disca
Section 1IB1, the electronic spin compone®(t) was consid- terms oscillating atmw. As a consequence, term% from
ered a random variable of vanishing average value. In this s@gy, [248] are coupled with termeg, from Eq. [249] so as to

tion, we must use it as a static operator, whose evolutlony@d productsA? or BB*. The result is then of the form
produced by the lattice. In the present approach, the “lattice”

F consists of the sum of the electronic Zeeman interaction, the d . . . ) .

orbital interactions (for instance the phonons), and the coupling aa(t) =—iQ[lz,6(t)] = A2 — BB"u.  [250]

of the electronic spin with the latter. Thanks to its orbital part,

its spectrum is quasi-continuous. The spin—lattice coupling cé¥e do not detail the corresponding lengthy calculation. We lool

x expli(w + Q)7)l;, — 1%0 expi(w — Q)r)l’:|
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instead at the characteristics of the form [242]. We note that welts contribution tods /dt is then of the form
can write Eq. [249] under the form
S : ~
C1 o — EJ(w){[B* o[BIz +ily), (6(t) — BLeolx)]]
FIB....[B*(Iz —ilv), G(t) + Ao},
x exp(lzt) + [Bexpfo(t — 1)) [255]

7:[|]:(t, ‘L') = Sz(t){Aexp(—l Q|Z‘L')|:C|Z - ;U; + |/)i|

. . l1+c
+BYexpio(t — 7))lslz + Bexp{ot) 2 whereas the part exp{wt)l> can be written
x expl—i(w + Q)1z7)l expl(w + Q)Iz7) + h.c. 1

1—_c¢ explwt)lz = ={expiwtlx)(Iz +ily)explwtlx)
— Bexpfwt)—— expl(w — Q)127)1" 2
2 Lexplotlx)(lz —ily)expliotly)). [256]

x expi(w — Q)1 +h.c.t. 251
PCi(@ )1z7) } [251] Its contribution todé /dt is of the form

By comparison with Eqgs. [241]-[243], these terms yield con-

s i} . .
tributions todé /dt of the following forms: C2 o =5 I@)[B.... [BX(Iz +11v), (G (O + Aol

the part inl ;. of first term on the right-hand side of Eq. [251]: +[B....[B(Iz=ilv). (6(t) - fLwbll}.  [257]

One might think at first sight that the termsdg would cancel
out in the sunt; + C,. This is not so because the first terms in
the double commutator originate frof, ~(t), and those pro-
portional toB are not the same as those proportionaBto

One may also remark that, say, expé{ )|z could be written
at variance with Eq. [254], as follows,

—A2JQ)[....[.... (G() — oo,

The third term and its Hermitian conjugate:

2
_BB*<¥) Jw+Q)....[.... (6(t) — oo(w + QI

expiwt)lz
The fifth term and its Hermitian conjugate: 1
= E{eXp(—ia)‘Hy)('z +ilx) explortly)
N2
-B B*(%) J@—Q...[.... (61 — oo(—w + Q)] +explotly)(lz —ilx)exp(-iwtly)},  [258]

and a similar expression for exp(r)lz. All these forms are
correct and they must yield the same result for the evolution of
physical quantity Q). It turns out to be much more convenient
to use the formal Eq. [240]. If in the trace on its right-hand side
o ] ) _the operatof\/c;T is 1z, the only operator® andVr’, for which
which illustrates the fact that different terms of the spin—latticg e trace does not vanish ate and 1’ in any order. Let us

coupling lead to different limitsy. _ _ chooseQ = I/, andV;, = I’. The contribution of these terms to
The second term needs special attention. The pP@ik rejaxation limit of(1 ) is proportional to

exp(—iwt)lz can be written

with the notation

oo(w) =1—BLwlz, [252]

expiot)lz = expiot) x 3[(Iz +ily) + (12 —ily)] —sJ(w)BB*Tr([1, I’_]lz){<1_|2_C X —ﬂLa))

[253] -
_(1 . ,BLa))} — 4 ;J(w)BB* « BLov. [259]

or else
We consider now explicitely the evolution equation fbg).

expiwt)lz = E{exp@wrlx)(lz +ily)expiwtlyx) Its calculation is trivial and we will give only its result. We

) ) introduce the (arbitrary) expectation value,
+expiotlx)(lz —ily) equ wtlx)}

[254] lo = Tr[Iz00(wo)] = —BLwoTr(12), [260]
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and we obtain, ignoring cross-relaxation,

dt

C 20 = —ss+ 1){A2s2J(sz)(<|z>(t) - ﬁuo)
wo

w+ Q

+BB*(1+¢%)J(w + Q)((Iz)(t) -

w—Q
wo

+BB*(1—c?)J(w — Q)(('z)(t) +

)
.0)}.

[261]

In the case treated above, wh@n« wy, that is alsav >~ wyq,
we obtain a result identical to Eq. [114], where the ternl i)
is ignored.

Axes Oxyz We keep fofi{z¢ (t) the form [99]. ForH, £(t; )

we start from Eq. [249] and express the operatgrd . in terms

of I, 1. We have, from Eq. [104],

We insert these expressions into Eq. [249] and we obtain

Iz =C|z+%(|++ |—)
I, =—sl,+ 31, — 501

I !/

l1-c l+c
—sl, — 1501, 4+ e,

ﬂ“r(t, T)

= S(1) x {A[(CZ + % cosQr)l, + [%S

x exp(iQr) + Z(l — c) exp( Qr)] I

CSs
+3

s .
5 + 4_1(1 — ¢)exp(-iQr)

—~ 2(1 + ) exp( Qr)] I_} + Bexp{ot)

« [[scexp(—i wr) — ;(1 +0) explai (@ + 2)1)

2

[262]

- Z(l—l—C)

+ ;(1 — ) expli(w — sz)f)] I, + [% exp(—i wr)

+ <1%:>2exp(—i(w +Q)1) + (%)2

x expli(w — Q)r)] L+ |:S—22 expiwt) —

_ 2

x expEi(w + Q)1) — !

+ B* exp(-i wt)[[sceprwr)

1—c?

< expli(w— Q)t)i| I
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~ @+ expi(+ 1)

+ ;(1 —c)expl(w — Q)r):| I,

+s_2exa )+£2
5 SXpleor 2

2
x expl(w + Q)7) + (?) expl (& — 9)1)} I

2 _ 2
+ [% explot) — ! 4C exp (o + Q)7)

2

< expl(o - sz)r)} u} }

[263]

We have writterin extensdhis formidable expression (for the
simplest possible system), but we use it only for a qualitative
discussion.

By simple inspection of the functions of it is immediately
evident that if we use for the derivative efd form similar to
Eq. [242], the termsy corresponding to Eq. [243] will not all
be equal and furthermore they will be very different from those
arising in the preceding section.

There are several lessons to be learned from this analysis, as
the contrast between a time-independent and a time-depende
spin Hamiltonian. As regards the latter,

(1) There are no privileged axes adapted to the developme
of the spin—lattice coupling. The best choice is that which make
the calculation easiest. In the general case analyzed in this se
tion, there is a definite preferences for the ax¥sY@. In the
limit when the approximations made in Section IlIB2 are valid,
it even turned out that the most convenient was to use differer
axes for treating the terms in A and thoseBnB*.

(2) The density matrix (t) does not evolve toward a sin-
gle limit: there are differenty for the different spin terms
of the spin-lattice coupling, which depend furthermore on the
choice of its expansion. This deprives that kind of presenta
tion of the relaxation equations from much of its “enlightening”
interest.

(8) The pedestrian use of the direct expression [237] (or it
equivalent Eq. [238]) is both devoid of ambiguity, in general
much simpler than Eq. [242], and furthermore valid at all tem-
peratures, whereas Eq. [242] is valid only at high temperature

These conclusion will show up even more clearly in the nex
section.

4. *The General Problem of a Time-Dependent Spin
Hamiltonian

This section is included for completeness. It refers to a physi
cal situation which does not seem relevant to experimental inve:
tigation at present. However, it might be used for problems no
involving spins, but whose formulation could be made so as t
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formally mimic a spin problem. Furthermore, its very generalitifl B1, and 11IB2. We obtain the by now familiar expression
provides an overview of the problem of relaxation.

We consider a spin system whose spin Hamiltonian undergoes d .
an arbitrary time variation. The canonical example is that of a ap(t) = —i[Ho. p(t)]
Zeeman interaction with a field varying both in orientation and 0 R
in magnitude. All we request is that its spectrum at all times —/ [H 7, [Hi#(t; ), p(t)]] dz, [268]
0

consists of discrete and energy-split levels. In the case when
part of the spectrum is quasi-continuous, as in solids with dipola
interactions, the width of this part should be small compared\%
the large splittings, so as to allow the kind of treatment used in A _ ~ ;
Section 11A6. Hiz(t; ) = UMH #(t — 7)UT(Y)

The initial development repeats that of the beginning of =UMUT(t — t)H 27Ut — 1)UT(1). [269]
Section 1ll. We begin with the Liouville—von Neumann equa-
tion [148], where the Hamiltoniafto (Eq. [149]) is the sum of £qr 4 general time-dependent Hamiltoniéh, the expression

a fixed lattice part and a time-dependent spin #&rt). The 4t y andUT is not so simple as in the preceding sections. We
interaction representation in which the evolution of the densif4ye however. in full generality

matrix o depends only on the spin—lattice coupling is defined by
the replacement of all operatogsby

ere

Ut) = Ut;t — 1)Ut — 7), [270]
Q— Q) =V (HQU(), [264]  \whereu(t;t — 1) is still defined by Eq. [265] with the initial
condition
with
Ut—r;t—1)=1, [271]

{ GU® =~ +FU®) (265 thatis

LUt(t) = iU )H @) + 7). t

Uut;t—t)=T exp(—i Ho(t") dt’), [272]
t—7

We have indeed

whereT is the Dyson chronological operator.

%,5('[) = (%Uf(t))p(t)u (t) + UT(t)(%p(t))U (t) Another general property is that
d Ut—oUit—1)=1, [273]
+UImn0(FU0)
whence, according to Eq. [269],
=iUT(H +F)pU —iUT[(H, + F + H, 5), p]U A T
iU p(H, + F)U Hix(t;7) =U(tt — o)H 2UT(t t — 7). [274]
= —iU[(H, + F+Hir — H) — F), p]U Next, we expand+,  under the same form as [160]. How-
o~ 5 ever, the various spin operatdrs can no longer have a definite
= —i[H#(t), o(t)]. [266]  relationship with the time-dependent spin Hamiltonfn(t).

They have to be chosen with reference to the physical quantitie
Through formal integration and ensemble average, we obtaine wants to observe.
an equation similar to [156], without the first term on the right- SinceHy = H, + F is a sum of two commuting operators,
hand side: Eq. [272] can be written

d t . U(t;t —t) =U(t;t — t)Ux(1), [275]
370 = = [ ). [Far(e = 0.5 - 0 de. [267]
0 .
with

We choose the timemuch longer than the lattice correlation ot
time, which makes it possible to replagét = ) by 5(t); we go Ui(tit —7) =T exp| —i
back to the Sobdinger representations and extend the integral
to infinity, in accordance with the procedure of 1Al and llIA, Ux(t) = exp(=i Fr), [277]

t—t

Hi () dt’) [276]
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and Eq. [274] becomes It is also possible, through a simple algebraic manipulation

. N ~ to write
Hir(t;1) = ) Valt; 1)Fu(r) q
« a(Q)(t)

=Y [Uitit — )Vo U (t;t — 7)) oo q

2 = RO~ Y [ SHta) )
x [Uz(r)FUL()]. [278] w“ho T

i BLo

We use Egs. [150] and [168] and we obtain for the spin density x (expBLeo) +1) dw{([[Q’ Val, Vs ])(t) + tan)—(7>
matrix an expression of the same form as Eq. [179],

) <(l1Q vl Vo)) [284]
gio O =-1[H@®. o]
~ where the symbd{.. ., ... } has the usual meaning of an anti-
_/ Z{[Va’ [\‘/Ea;f),a(t)]] commutator:
o s {A B} = AB+ BA [285]

x Tre(PEL(T)Ey) — [Va, Vi(t; 7)o (t)
( ﬂA_ ) [ 4 ] In the high-temperature limit, it is possible, through the same
x Tre([P. Fjg(r)] Fe)dt}. [279] procedure as for Egs. [241]-[243], to replace in Eq. [28@)
by o (t) — oo, but there would be a continuous distribution of
Since in the present case the evolution \ai;(t' 7) is matricesog, and this would be even less informative than in the
more complicated than Eq. [163], we cannot directly jump 52S€ Of arotating field. _ _
Egs. [188] and [189]. We do the following. There is one exceptllon, when the spin Hamiltontdn(t)
We consider a complete set of spin operatrsall of which varies very little on the time scatg. Equation [278] would then

may not be present i, . We may then write read
Vitn =Y By, (280] Hir(tic) = 2_Iexp i () Ve exp 7 ()0)
' x [exp(—i F1)F, exp(F7)], [286]
which is no more than an expansion‘%j; over the complete )
set. and Eq. [279] could be written under the form
Next, we Fourier-analyze the functioriswith respect tor:

d ) o0
- o = — i (0. 0] —Trf/0 [ 7.
S(t- S (4.
Fi(t;7) = /_ _HGa)eptondo. 281 (A (60), (00) — on)] . 287

In complete analogy with the passage from Eq. [179] t@here
Eqg. [188] we obtain
oeq(t) = 1 — BLH (). [288]

d ) +00
a"(t) = —i[H (), o ()] — Z / )‘?f(t; @) Jops (@) dew This corresponds to a relaxation of the density matrix towarc
8T its instantaneous equilibrium value. It happens only in a ven
X ([Va: [V 0 O] = [V Vo (](1 — exp(pLe))}. ~ SPecial case. _
In the general case, Eq. [283] or [284] provides a complett
[282]  solution of the relaxation problem, valid whatever the varia-
tion of the spin Hamiltonian and whatever the lattice temper-
The expectation value of an operaf@revolves accordingto  ature. For a given spin Hamiltoniah, (t), they can be solved
by computer provided that a model is available for the spectre
densities.

~+00
HQO = RO - Y [ o)) d

a,B,8
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