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The relativistic S-matrix formalism of Feynman is applied to
the bound-state problem for two interacting Fermi-Dirac particles.
The bound state is described by a wave function depending on
separate times for each of the two particles. Two alternative
integral equations for this wave function are derived with kernels
in the form of an expansion in powers of g~, the dimensionless
coupling constant for the interaction. Each term in these expan-
sions gives Lorentz-invariant equations. The validity and physical
signi6cance of these equations is discussed. In extreme non-
relativistic approximation and to lowest order in g' they reduce to
the appropriate Schrodinger equation.

One of these integral equations is applied to the deuteron ground

state using scalar mesons of mass p with scalar coupling. For
neutral mesons the Lorentz-invariant interaction is transformed
into the sum of the instantaneous Vukawa interaction and a
retarded correction term. The value obtained for g' differs only
by a fraction proportional to (p/M)2 from that obtained by using
a phenomenological Yukawa potential. For a purely charged
meson theory a correction term is obtained by a direct solution
of the relativistic integral equation using only the 6rst term in
the expansion of the kernel. This correction is due to the fact
that a nucleon can emit, or absorb, positive and negative mesons
only alternately. The constant g' is increased by a fraction of
1.1(it4/M) or 15 percent.

I. INTRODUCTION

V ARIOUS mathematical formalisms, all equivalent
physically, for a relativistic treatment of scat-

tering problems for two or more particles have been
developed in the last few years by Dyson, Feynman,
Schwinger, and Tomonaga. It is the aim of this paper
to present an extension of the Feynman formalism' to
bound-state problems involving several particles.
Throughout this paper we shall deal only with two
Fermi-Dirac particles interacting with each other by
means of an arbitrary (electrodynamic or mesonic)
interaction in the absence of any external forces,
particles, or quanta. The extension of the method to
more complex bound states should, in principle, be
straightforward, although the computational work
might we11 become prohibitive.

For a scattering problem involving two such particles,
the Feynman formalism consists essentially of giving a
prescription for the amplitude function (or kernel)
E(3,4; 1,2), representing the probability amplitude for
the one particle to proceed from time and place x„1 to
x„s, while the other particle proceeds from time and
place x„2 to x„4.This meaning of the amplitude function
suggests that we should describe a state of the system
by a wave function f(x», x») with 16 spinor compo-
nents, depending on a separate time for each of the
particles as well as on the spatial coordinates of the
two particles. Such an approach bears some similarity
to the many-times formalism of Dirac, Fock, and
Podolski' and of Bloch. ' In a purely formal way f(3,4)
can be calculated, by the help of E(3,4; 1,2) and pre-
scriptions given in FI and II, if f(1,2) is known.

E(3,4; 1,2) is defined in terms of a doubly infinite series,
but a relatively simple integral equation can be derived

' R. P. Feynman, Phys. Rev. 76, 749 (1949), hereafter referred
to as FI, and R. P. Feynman, Phys. Rev. 76, 769 (1949),hereafter
referred to as FII.

Dirac, Fock, and Podolski, Physik. Z. d. Sowjetunion 2, 468
(1932).

~ F. Bloch, Physik. Z. d. Sowjetunion 5, 301 (1934).

for it. From this an integral equation can be derived
for f(3,4) with an inhomogeneous term depending on
$(1,2). E(3,4;1,2) also obeys a differential-integral
equation from which a homogeneous diGerential-integral
equation can be derived for P(3,4) which does not
contain any boundary conditions for t& and t& explicitly.

These equations are derived in Sec. II and their
validity discussed in Sec. III. These equations are
applied to the deuteron ground state using a scalar
meson theory with scalar interaction in Secs. IV and V.

II. DERIVATION OF THE EQUATIONS

Throughout this paper we shall use, wherever
possible, the notation of FI and FII and shall put
k=c=i. YVe 6rst give a formal derivation of two
equations for the wave function P(1,2) and the ampli-
tude function E(3,4; 1,2) based on the expression given
in FII for E(3,4; 1,2) and postpone a discussion of the
validity of these equations till the following section.

Consider two Fermi-Dirac particles of masses m
and m&, respectively (electrons or nucleons), capable of
interacting with each other through "the virtual emis-
sion and absorption of quanta" (photons or mesons).
Let G(1,2) be the interaction function corresponding to
a simple exchange of one quantum written in its lorentz
invariant form (proportional to a dimensionless coupling
constant g'). For the case of electrodynamics we have

G(1,2) =e'y„y„'i'i+(s, ii)

For scalar mesons with scalar coupling G(1,2) is the
relativistic generalization of the Yukawa potential, etc.
(for further details see Sec. 10 of FII). We now define
reducible and irreducible graphs in a manner similar to
that used by Dyson;4 i.e., we call a graph reducible if
it can be split into two simpler graphs by drawing a
line which cuts no quantum lines at all and each of the
two particle lines only once. The remaining irreducible
graphs can be ordered according to the power of the

4 F. J. Dyson, Phys. Rev. 75, 486 and 1736 (1949).
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coupling constant g' occurring in the expression we
ascribe to the graph, this power being half the number
of particle vertices in the graph. For the first power of
g' we have only one graph, labeled 1 in Fig. 1, to which
corresponds the expression G(1,2). We define two more
quantities 6' and 6&')

GRAPH

G(1,2) =F,l' b,G'(1,2),
G&"(1,2; 3,4) =G(1,2) 6&4& (1,3)5'" (2,4),

(2)

where &&&4&(1,3) is the four-dimensional delta-function

i&(x„&—x„,)

and I', a "vertex part, " is an operator made up of
Dirac matrices operating on particle a only, while F(,
operates only on particle b. The index r represents
summation over different operator components (4 for
electrodynamics; 1, 4 or 16 for simple meson theories,
etc.); G'(1,2), the "quantum propagator, " is a function
of (x„&—x„b) not containing any Dirac operators. To
the other irreducible graphs we ascribe mathematical
expressions G'"'(1,2; 3,4). The expressions correspond-
ing to the three graphs 2A, 28, and 2C, shown in
Fig. 1, are

G""'(1,2; 3,4) = —iF„I'„K,(3,1)E,(4,2)

X F .I'b G'(1,4)G'(2, 3), (3a)

G&'s&(1,2; 3,4) = i dr—bl&&4&(2,4)

X I',.K+,(3,5)I'„K+,(5,1)

X I'„I'b.G'(1,3)G'(2,5), (3b)

G&-c&(1,2; 3,4) = —i t'd. ,S«&(2,4)

1 3(24/4g X

3B
FIG. 1. Irreducible graphs of various orders. Solid lines denote

Fermi-Dirac particles, broken lines denote quanta.

The expression given in FII for the amplitude
function E(3,4; 1,2) consists of a doubly infinite sum
of terms, one corresponding to each of the possible
reducible or irreducible graphs, plus the term
E+,(3,1)E+b(4,2) corresponding to the propagation of
both particles without the exchange of any quanta,
For an irreducible graph (&b) we have a term

XF„E+,(3,5)F .K+ (5,1)

X F.,I „G'(3,5)G'(1,2),

where E+,(1,3) is the amplitude function for the propa-
gation of particle a as a free particle. The expressions
corresponding to graphs 2C and 2D, self-energy and
mass-renormalization terms respectively, must be taken
together with that for 28. As an example of more
complicated graphs we choose 3A:

G&'"'(1,2; 3,4) = —)t) drbdr&&F, Kp, (3,5)

XF„K~,(5,1)I'„I'b,K+b(4,6)

X Fb,E+b(6,2) Fb,G'(3,6)

XG'(5,2)G'(l, 4). (4)

The prescription for the general term G&"'(1,2;3,4)
should be obvious from these few examples. It should
be noted that, no matter how complicated the diagram
(&b), G'"' depends explicitly only on the four variables
~Py7 +(s2) +(sa& +8

E&"&(3,4; 1,2) = i ' —drbdr&&drqdr&&

XK~.(3,5)E+b(4,6)G&"&(5,6; 7,8)

XE+,(7,1)E+b(8,2). (5)

For a reducible graph which can be split up into two
irreducible graphs, (rb) and (m), respectively, we have
a term

fffK'" "'(3,4; 112)= i, )~ )
—

Jl drbdrbdr, dr&&

XK+,(3,5)K+b(4,6)G'"'(5,6; 7,8)

x K™(7,8; 1,2). (6)

For a graph reducible into 3 irreducible graphs we have

K&" ""&(3,4;1,2)= i ~

' —
~ drbdr, dr7drb

XE+ (3,5)E+b(4,6)G'"'(5,6; 7,8)

XE& "'(78 12) (7)
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Fio. 2. Reducible graphs whose eGect is included in the
single term G('&.

and so on, for any reducible graph. Let G(1,2; 3,4)
be the sum of all expressions G{")(1,2;3,4) for all
i rredlci hie graphs:

G—
I G{1)+G(2A)+ G(2B}+G(2c)+G(2D)

+G(2a)+G{gA)+. . .
I (8)

In Sec. 3 of FI aii integral equation with a simple kernel
is derived for the amplitude function for a single
electron in an external 6eld from an expression in the
form of a singly inlnite sum. Using Eq. (5) to (8) we
obtain, by an analogous argument, an integral equation
for E(3,4; 1,2) from the expression as a double sum,
the kernel containing the singly infinite sum G(1,2; 3,4):

E(3,4; 1,2) —E+.(3,1)E4.g(4, 2)

Ii dTgdTgdT'/dTgK+ (3,5)E+g(4,6)JJ
X G(5,6; 7,8)E(7,8; 1,2). (9)

The expression (8) for G(1,2;3,4) consists of an
expansion in powers of the coupling constant. Each
term in this expansion can, in principle, be calculated,
but no closed expression for G(1,2; 3,4) has as yet been
found; and hence the method described in this paper is
not immediately applicable to bound-state problems
for which the coupling constant is large. For problems
for which the coupling constant is reasonably small,
there is, however, considerable simpli6cation to be
gained from a treatment involving the function 6 over
a method involving summation over all reducible
graphs. If, for instance, in Eq. (9) G is replaced by
merely the 6rst term in its expansion G&'&, this is
equivalent to an inclusion of an in6nite number of
reducible "ladder-type" graphs, examples of which are
given in Fig. 2, in addition to the irreducible graph 1
in the double-sum expression for E(3,4; 1,2). This
means that some graphs of higher power in g' are
included automatically in such an approximation,
while others are not. The value of this for the case of
smaH g' can perhaps be made plausible by means of the
following physical arguments. In a bound state the
particles interact with each other for an inf{nite (or at
least very long) time. If g' is very smail, the probability
for "6nding one virtual quantum in the 6eld" is small
and the probability for "6nding two virtual quanta
simultaneously" is much smaller still. Although the
probability for the exchange of a quantum during a

small time interval is fairly small, during the in6nite
time of existence of the bound state an inde6nite num-
ber of quanta may be exchanged slccess& ely. It is just
such processes that the ladder-type graphs deal with.
On the other hand, all graphs omitted in such an
approximate treatment, except for self energy and
mass renormalization graphs, involve "crossed quantum
lines" (for example, graph 2A or 3A) or Lamb-shift-type
terms (for example, 28). Such graphs refer to processes
in which two or more quanta are "in the field simul-
taneously, " which are indeed unimportant if the
coupling constant is small. If 6' is thus replaced by G&o

in Eq. (9), this integral equation reduces, with the
help of Eq. (2), to a simpler equation involving G(1,2).

If one wants to include the higher terms in the
expansion of 6, further simplification can be obtained
by modifying the I' „6', etc. , along lines outlined by
Dyson. ' Thus, by modifying G', graph 2n (vacuum
polarization term) could be automatically included in
the expression for graph i. Graph 30. is then included
in graph 2A, etc. Similarly, a modification of I'„and
I'g, would include graph 28 (Lamb shift type) in 1 and
graph 38 in 2A, etc. A modi6cation in G('~) would
include graphs containing parts like graph 4n in graphs
containing parts like graph 2A and so on.

We can, again in a purely formal way, write down an
equation for the propagation of the wave function
P(1,2) in terms of K(3,4; 1,2) according to the pre-
scriptions of FI and FII (see FI, Eq. (18)).

P(3 4) = ~E(3 4 1,2)N (1)¹(2)
Xf(1,2)d'V)d'V2, (10)

where, for any four-vector A„,

A'=A„y„,.

In the x„i-space the integration is carried out over a
closed 3-dimensional surface in space-time completely
enclosing the point x„3. The essential parts o& this
surface are two spacelike surfaces, i.e., all of three-
dimensional space at two times t~&t3 and ti'&t3. S„is
the inward drawn normal to the surface. For the time
$1 only the components of f(1,2) corresponding to
positive energy of particle a occur, for t&' only those for
negative energy. The prescription for x2„and particle
b is analogous.

Let {)}12(3,4) denote the expression obtained for
P(3,4) from Eq. (10) by replacing E(3,4; 1,2) by
K+,(3,1)K+g(4,2). Then @1 2(3,4) is a wave function
which varies with t3 and t4 like the wave function for
two free particles and is equal to p(1,2) for lg ——t1 and
t4 ifg. Substituting Eq. (9) into Eq. (10), we obtain
an inhomogeneous integral equation for f(3,4):

lg(3,4) = @1,2(3,4)—$)I t~~]tdTgdTgdT2dTg

XK+ (3,5)E~b(4,6)C(5,6; 7,8)f(7,8). (11)
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It will be convenient to separate the motion of the
center of mass from the relative motion. This is made
slightly dificult by the fact that in relativity theory
the coordinate of the center of mass cannot be defined.
However, the total esonsentlm, which is the momentum
of the center-of-mass motion, can be defined. One can
then select some coordinate, more or less arbitrarily, to
represent the absolute position, in time and space, of
the system, and use apart from this only relative co-
ordinates. Let us denote the "absolute" coordinate by
X„; it may be for instance the position of particle a
itself, or a linear combination

X„=nx„,+(1—n)x„2 (12)

with n any arbitrary constant. Let the relative coordi-
nate be denoted by

Xp Xpi Xp2 ~ (12a)

Primed quantities, x„', X„', etc. , denote the equivalent
expressions with 1 and 2 replaced by 3 and 4. If the
interaction function G(1,2) does not depend on any
external factors, it will be a function G(x„) of x„only.
G(1,2; 3,4) will then be a differential-operator function
of the relative space-time coordinates x„and x„' and of
the difference of the two "absolute" coordinates
(X„—X„'), but not of X„ itself. In this case we can
look for solutions for our wave function which have the
special form,

ip(1,2) =exp(iK„X„)f(x„), (13)

where E„ is an arbitrary constant four-dimensional
vector. Such a wave function represents an eigenstate
of the operator I'„of the total momentum and hence a
stationary state with total energy E4. The condition
for this state being a bound state is then

K'= K„K„&(m,+—m(,)'. (14)

An arbitrary solution of Eq. (11) may be analyzed into
fourier components of the form (13). If we select a
fourier component satisfying the energy condition (14),
then for this component the term (P, &(3,4) in Eq. (11)
cannot contribute because it represents a free state of
the two particles and hence the bound-state condition
(14) cannot be true for it. For a bound state, we there-
fore obtain Eq. (11) without the inhomogeneous term,

ip(3,4) = i (
—

( dr pdr6drrdrsK+. s(3,5)
. 1' (' t' I'

XK+b(4,6)G(5,6; 7,8)lp(7, 8). (11a)

Precisely this equation has been derived rigorously from
quantum field theory by Gell-Mann and Low. ' Its
relevance also to states of "positive" energy can perhaps
be made plausible from the fact that, in any stationary
state, there will be an infinite number of scatterings, so
that any free-particle function like @i,2(3,4), which may
"initially" have been present, will be destroyed "in the
course of time. "

5 M. Gell-Mann and P. Low, Phys. Rev. 84, 350 (1951}.

In contrast to the rigorous derivations of Gell-Mann
and Low, we have merely derived Eqs. (9), (11), and
(11a) in a purely formal way from Eq. (10) and Feyn-
man's expression for K'(3,4; 1,2) in the form of a doubly
infinite sum. Gell-Mann and Low' have shown that
this expression for K(3,4; 1,2), and hence Eq. (9), can
be derived rigorously from quantum field theory even
for times for which the interaction is acting. The use
of Eq. (10), however, is not correct unless the interaction
can be neglected at and between times t& and t2. If the
interaction remains constant throughout all times,
Eq. (11a), and not Eq. (11), is then correct.

III. FURTHER DEVELOPMENT OF THE EQUATION*

It is convenient to introduce momentum variables.
If x(p3, p4) is the fourier transform of P(3,4), then
Eq. (11a) transforms into

x(p„p4) =i l ldprdp8[p3' m.] '[p—4' m-p]—
a J

XG(p~ 4» s)x(» ~) (15)p p p p p
where

G(p3, p4., pi, p8) = (2x) I
)

"drndrpdr, drs

XexpISLP3xg+P4xg —Prxr —PsxajI

XG(5,6; 7,8).

Pp=18xp= ZBzpi+13rp2

p ssp (1—„=—)p mp f*„— *„,.

Of these, I'„ is obviously the total momentum and is
uniquely defined, whereas the definition of the relative
momentum can be changed by changing a, which
amounts to the addition of an arbitrary multiple of the
total momentum. To facilitate the transition to the
nonrelativistic limit, it is convenient to make the special
choice

n= m/( m+ m)i

then in the nonrelativistic limit (12) goes over into the
normal definition of the center of mass. All the calcula-
tions in this section, however, are independent of this
choice.

With the change of variable in (12) to (12c), Eq. (15)
reduces to

4(p.) = „~d'P'& 'G(P O' K)4(p') (16)

*These equations are summarized in the Appends.

The symbols p3, etc., denote four-vectors, paxz four-
dimensional scalar products, and each of the integrals
in Eq. (15) goes over four-dimensional momentum
space. The superscript a in Pa' means that the Dirac
y-operators for particle a must be inserted.

Next, we may introduce total and relative momenta.
Defining coordinates as in (12), (12a), we have for the
conjugate momenta
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+r1
C(p, p', K)=(2x) ' d~A~ d7x x-

&& exp I i[K(X—X')+px —p'*'5 I

XG(x, x', X—X')

~4(p.)=i ~d'P'G(p P', K)4(p'). (17)

From Kq. (17) we can derive the equivalent equation
in coordinate space:

rP(x„)=i dr;G(x, x', K)iP(x„'), (18)

where

G(x, x', K) = dex exp[iK(X X')56—(x, x', X—X')

and p is now considered as the differential operator
iW =i y„,8z„As f—(p„) depe.nds on the "relative energy"
p4, so f(x„) in Eq. (18) depends not only on three
relative distance variables x but also on t=—x4, the
"relative time" variable. Equation (18) is still mani-
festly lorentz-invariant and is to be considered as an
clgcnvaluc cquatlon ln a four-dlIlMnslonal space with
IC' as eigenvalue, the binding energy being [m,+mi,

An integral-differential equation, similar to Kq. (18),
can be obtained, without going to the center-of-mass
system and without using Kq. (13), by applying to Eq.
(11) or Eq. (11a) the operator (iVg' —m )(iV4' —m~).
This yields

(iV 3 m.) (iy4' mg—)tP(3,4)—
drgd~eG(3, 4; 5,6)f(5,6). (19)

Equation (19) is the analog in our problem of the Dirac
equation for a Fermi-Dirac particle in an external 6eld.
As discussed in FI, to obtain results equivalent to

s=[(m./m. +ma) K'+ p m—.5
)& [(my/m. + my) K' p—' m—p5

Fquation (16) is an integral equation for the momen-
tum-space wave function $(p„) which depends on only
four variables, namely, the components of the relative
momentum of the two interacting particles. It differs
from the ordinary Schrodinger momentum wave func-
tion by the appearance of the "relative energy" ~=—p4
as a fourth independent variable. G(p, p'; K) is the
generalized interaction function in four-dimensional
momentum space.

It is tempting to simplify Kq. (16) (or Kq. (15)) by
multiplying it by the operator F, since it does not
depend on the variables of integration p', P'. Equation
(16) then leads to

Dirac's hole theory both masses m, and m~ in Eq. (19)
(and in Eqs. (17), (18)) must be considered to contain
an in6nitesimal negative imaginary part.

If the coupling constant g' is small, we should obtain
a reasonable approximation by replacing C(1,2; 3,4) by
G&'&(1,2;3,4). This substitution simplifies Eqs. (11),
(11a), (15), (16), (17), (18), and (19) considerably,
owing to the presence of the delta-functions in Kq. (2).
In this approximation, Eq. (17) reduces to

pp(p„) = (2ir) 'i) d'kG(k„)f(p„+k„), (17a)

where G(k„), the interaction function in momentum
space, is the four-dimensional fourier transform of
G(1,2). Similarly, Eqs. (18) and (19) reduce to ordinary
diGerential equations,

and
FP(x„)=iG(x„)P(x„) (18a)

(iw, ~—m.)(iV,'—m&)g(1, 2) =iG(1,2)P(1,2). (19a)

Whereas any solution of Eq. (11a) also satisfies
Eq. (19), the inverse is not necessarily true, since Eq.
(19) is derived from Eq. (11) or Eq. (11a) by the
application of two diGerential operators. The solutions
of Kq. (11a) (or of the equivalent equations (15) and
(16)) corresponding to a fixed value of the total energy
determine uniquely stationary states of the system. In
practice, however, it may be more convenient to solve
Kq. (19) (or the equivalent (17) and (18)) than Eq.
(11a). Since Eq. (19) is a necessary but not sufficient
condition, only those solutions of Eq. (19) will be
physically acceptable which can be shown to satisfy
Kq. (11a).It would be more satisfactory from a practical
point of view to have some criteria of "good behavior"
of the wave function f(1,2) which would determine
directly which of the solutions of Eq. (19) correspond
to physical states, without any reference to Eq. (11a).
No completely satisfactory set of such criteria has as
yet been found, but the following discussion of a purely
6ctitious adiabatic variation of the coupling constant
g' may be useful in a search for such criteria and for an
understanding of the physical significance of the wave-
function P(1,2).

Let T be the time coordinate X4 of the center of mass
in the coordinate system in which it is at rest. Let us
assume that G(1,2) is not absolutely invariant, but that
the coupling constant g' is an extremely slowly (adia-
batically) varying function of T, g'(T) such that, for
very large positive and negative values of T, g'(T) is
arbitrarily small, while for —To(T(TO, g'(T) is
practically constant and has its correct physical va, lue
go~. Let us assume we have found a set of solutions of
the eigenvalue equation (18), one solution for every
value of g' between zero and g02 such that both K' and
P(x„) are "smooth continuous" functions of g'. In the
limit of extremely slow variation of g'(T) the wave



RELATIVISTIC EQUATION FOR BOUND —STATE PROBLEMS

function is given by the adiabatic approximatiov

p T

tP(x„; X, T)=exp iK I+i dT'K4[g'(T')]
4 —x

X0[x.; g'(2')]. (20)

For the solution f(x„; X, T) to be physically acceptable,
P[x„;g'(2')] for g'(& ~)=0 must then be a wave
function describing two free Fermi-Dirac particles of
masses nz, and mg, respectively. If a particular set of
solutions of Eq. (18) satisfies this "boundary condition, "
it automatically satisfies Eq. (11).t

The bound states we have discussed so far reduce,
when the coupling constant is adiabatically reduced to
zero, to a state in which only two particles and no other
particle pairs or quanta are present. When the inter-
action is "on" f(1,2) only represents the partial proba-
bility amplitude for the presence of only two particles.
But it should then, in principle, be possible to express
the partial probability amplitudes for the presence of
any number of additional particle pairs and quanta
uniquely in terms of f(1,2) and K'(g'). These expres-
sions then contain expansions in positive powers of g'-

and reduce to zero in the limit of g' tending to zero.
More complicated types of bound states may also exist.
For instance there can be a bound state of two particles,
plus an extra quantum. (For large enough values of g',
the quantum itself may perhaps also be bound to the
two particles. ) The fundamental wave function for
such a bound state would be of form P(1,2; q„), where
q„denotes the coordinates of the quantum, and would
satisfy a more complicated equation analogous to (11a).
The probability amplitudes for the presence of two
particles and no quanta, or of two quanta, etc., would
then be expressible in terms of P(1,2; q„) and g' and
would tend to zero as g' does.

In the nonrelativistic limit and for the case of small
coupling constant, the formalisyn of this paper leads
exactly to the ordinary nonrelativistic Schrodinger
equation for a bound state for two particles. An
example of this, and of the way Eq. (19) may be solved
in practice, is given in the next section.

IV. SCALAR MESONS. EXTREME NONRELATIVISTIC
LIMIT

We consider the problem of the deuteron ground state
with scalar meson theory with scalar coupling. We shall
solve only the approximate equation (19a), obtained
from Eq. (19) by replacing C by the first term in its
expansion, 6&'&. lt is most convenient to use the equiva-
lent equation in relative-momentum space, Eq. (17a).
This becomes

('K +p M)(,'K' -p' M)t—p(p )-——

gi(4~ij)
~
iI d4k[k—2 +2]—lp(p +k ) (21)

)It would then seem that this criterion of good behavior
would be sufhcient; but it is not unambiguous, since the adiabatic
variation of the wave function is not well-de6ned for the value
of g'(1') which just gives a bound state of zero binding energy.

where we have used the relativistic generalization of
the Yukawa potential,

G(k„)=g'[x(k 2—p')]—'. (22)

M and p, are the nucleon and meson mass, respectively,
each including aii infinitesimal negative imaginary
part, and g' is the dimensionless coupling constant
equivalent to the fine structure constant in quantum
electrodynamics. Without loss of generality, we can
choose the coordinate system in which the center of
mass is at rest. The first three components of E„are
then zero and K4 is the eigenvalue of Eq. (21).

The range of nuclear forces is large compared with
the Compton wavelength of a nucleon, and hence the
meson mass p is small compared with the nucleon mass
M. Furthermore, the binding energy of the deuteron is
smaller than y'/M. Under these circumstances, a non-
relativistic calculation for the deuteron problem shows
that the coupling constant g' is of the order of magnitude
of p/M and hence small compared with unity. It is
further found that the momentum distribution in the
deuteron falls oG rapidly for momenta greater than p,
i.e., the "velocities" in the deuteron are of the order of
magnitude of g' and hence small. Such a nonrelativistic
solution should then be a good approximation and
should be identical with the extreme nonrelativistic
limit of our Eq. (21).

The wave function f(p„), or P(x„), is a 16-component
spinor, the 16 components referring to the two possible
spin directions and two signs of the energy for each of
the particles. In analogy with the usual treatment of
the nonrelativistic limit of the ordinary Dirac equation,
we wish to carry out a reduction to the "large compo-
nents" of Eq. (19a) or Eq. (21); i.e., we want an
approximate equation involving only the spinor compo-
nents referring to both particles in positive energy
states. Various methods, analogous to various methods
used for the Dirac equation, ' are possible for such a
reduction. One way is to transfer the term involving 6
to the left-hand side in the differential equation (19a)
and to multiply this equation to the left by the operator
[(pi +m, )(ps'+mq) —iG] which gives the equation,

I (pi2 m, ') (pi—2 mp) i—[G, (p—i'p&'+ m,mq)]+

+i[G, (pi mg+pg'm, )] —G'If(1,2) =0, (23)

where Pi' i&„B*»——and Eq. (23) is considered as an
ordinary differential equation in configuration space.
A similar equation can be obtained from Eq. (21). We
expand in powers of (p/M) and g' (which are of the
same order of magnitude) and retain only the first two
nonvanishing powers in this expansion (p' and p'/M,
respectively). The spatial components of y„are of the
order of (p/M) From Eq. (24),. about to be derived,

e H. A. Bethe, Haedbuch der Physik (Verlag. Julius Springer,
Berlin, 1933),Vol. 24/1, p. 304. H. A. Kramers, Bund-cc. Jahrbuch
der chenischen Physik (Ahead. Uerlag. , Leipzig, 1938),Vol. 1,p. 295.
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4(p) = d~V(p, ~'). (25)

The right-hand side of the modified Kq. (24) does not
contain e now, and on the left-hand side P is multiplied
by a simple number (not operator). We can then write
the modified Eq. (24) in the form,

4(p, ~) = —g'{[(E/2)+ (P'/2M)+ ~j

X [(E/2)+ (P'/2M) —ej2si}

X
J

I d'kP (y+ k) [2x'(k'+ p') $
—'. (26)

The first two factors in Eq. (26) are now the only ones
depending on e, and they are easily integrated over e,
using the fact that E contains a small negative imagi-
nary part. This yields a simple equation for p(p):
(E+P'/M) 4 (p)

= —g'Jj'd'kg(P+k)[2m (k'+P') j '. (27)

Equation (27) is identical with the Schrodinger equation
in momentum space for two nonrelativistic nucleons
interacting by means of a static central Yukawa
potential.

The relative motion of the two nucleons could be
described by a "mixed" wave function f(p, i), instead

f This demonstration involves some algebra.

it follows that G is of the order of p'/3P H. ence, f. the
third and fourth terms in Eq. (23) contribute only
terms of order p~/M2 or higher. Let E=—(2M E—4) be
the binding energy, e—=p4 the "relative energy" variable,
and p—= p = —p~ the three-dimensional relative mo-
mentum. Equation (23) then reduces to the following
approximate equation for the "large components, " in
the relative energy-momentum space, which does not
contain any Dirac- (or spin-) operators at all:

(-'E+ ~+p'/2M) (-'E ~+&'/2M) 0(u ~)

= —(g' /27-ri) I ~d'kdcu[2x'(k' —co'+ p') j '

X~(p+l, ~+ ) (24)

Since in Eq. (21) M (but not p4) contains an infini-
tesimal negative imaginary part, 2E in both factors of
Kq. (24) also contains a negative imaginary part.

An iteration method for solving Kq. (24) will be
described in the next section. However, if the relative-
energy term co' is omitted in the denominator on the
right-hand side, we shal1. now show that this equation
reduces exactly to the ordinary Schrodinger equation
for two nonrelativistic particles. This omission of aP is
equivalent to replacing the lorentz-invariant, and hence
retarded, Yukawa interaction by an interaction which
is instantaneous in the center of mass system. We
change the variable of integration from a& to (a&+e)
and define

of by f(x„) or P(p„), obtained by taking the fourier
transform of f(x, t) only for the three space coordinates
but not for the relative time I,. The function P(y),
which is the conventional momentum-space wave func-
tion, is then seen to be, except for a multiplicative
constant, P(p, t) for the special value 3=0, i.e., for
equal times for the two particles. The general expression
for f(p, t) can be obtained from Eqs. (26) and (27),
and the total wave function is proportional to g(p)
times

exp {iET+i( ',E+p—'/2M) $ }

=exp{i(E+p'/2M)t~ —i(p'/2M)i2} for t(0,
«(28)

exp {iET—i(-,'E+p'/2M) i }

=exp{i(E+P'/2M)t2 —i(P'/2M)i&} for t) 0.„

This wave function (28) can be said to correspond to
propagation into the "future" as free waves (frequency
p'/2M) and into the "past" in a more complicated
"bound" manner.

V. EXACT SOLUTION OF NONRELATIVISTIC
EQUATION

The solutions of Eq. (24) differ from those of the
approximation to it, Eq. (26), by terms of the relative
order of magnitude of g'. It was found that a straight-
forward application of a perturbation expansion in
powers of g', starting with a solution of Eq. (26) as
zero-order wave function, leads to wrong results even
for a very small value of g'. This is due to the fact that
one of the integrands occurring in the solution of Eq.
(24) has a pole for a value of e for which the solution
of Kq. (26) is a very poor approximation. However, in
the preceding paper' a method was described for solving
integral equations of a type similar to that of Kq. (24)
by an iteration method which does not involve any
expansion in powers of g'.

Such an iteration method has been applied previ-
ously' to the solution of Eq. (27) for the ground state
of the deuteron with an initial trial wave function of
the form,

A(p) = [(&+p'/M)(P'~ '+~') j ', (29)

where u is a dimensionless parameter. By analogy with
the prescriptions of the preceding paper' we assume an
initial trial wave function for the ground-state solution
of Eq. (24) in the form,

40(p, ~) = [(k&+P'/2M)' —"3 '

X(P'a ' e'b '+p') ' (30)—

where u and b are dimensionless coefficients which have
to be determined and where E and p are considered to
have infinitesimal negative imaginary parts. For values
of e small compared with p, the function $0 di6'ers little

' E. E. Salpeter, Phys. Rev. 84, 1226 {1951).
8 J. S. Goldstein and E. E. Salpeter (to be published).
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from the equivalent solution of Eq. (26). The first
factor of Eq. (30) suggests that P(p, «) will be of interest
mainly for values of

~
«~ of the order of magnitude of

(p,'/M), which is incleed much less than ti. The expres-
sion (30) for $0 is then substitutecl for in P the integral
on the right-hand side of Eq. (24), which yields a
better approximation to ip(p, «), i.e. , the first iterated
function Pi(p, «):

P„,+i(0,0) = 1b„(0,0). (32)

For convenience in calculation it is useful to define two
functions a, (p) and b„(p, «) by

4"(p «) = L('A'+P'/2M) —«'] '

& I p'a. '(p) «'» '(p, «—)+t 'I ' (33)

The advantage of these two functions a„and b„ is that
they vary slowly with p and «. We then determine "rea-
sonable" values for a and b by requiring, for some con-
veniently chosen values of p and «, that

p (P, 0)/ip (0, 0) = p (p, 0)/tbo(0, 0), i.e., ai(p) = a; (34)

4'i(p «) '4'i(p 0) =A(p «)!A(p o) i e bi(P «) = b (35)

For a more detailed discussion of the method used see
the preceding paper. '

A meson mass p of 275m, agrees fairly well both v ith
the mass of the charged x-meson' and with calculations'"
on the triplet effective range of the neutron-proton
force. Ke therefore take a value of 0.150 for ti/M. For
the ratio (EM)l/ti we take a value of 0.32, which agrees
fairly well with a deuteron binding energy E of 2.226
Mev and the above value for the meson mass. We
determine the value to be used for a by applying
condition (34) for p=a. For the extreme nonrelativistic
equation (26) a similar choices gives a value for a of
approximately 1.85; and the three-dimensional equa-
tions equivalent to Eqs. (31) and (32) with N=O give
a value for gP of 2.39(p/M). This value of gP differs
from the exact value of g' for Eq. (26) by only a fraction
of one percent. '

Estimates for b for the four-dimensional equation
(24) can be obtained easily from Eqs. (31) and (35) for
the four cases of p and e very small or very large

'Smith, Barkas, Bishop, Bradner, and Gardner, Phys. Rev.
78, 86{A) {1950)."E. E. Salpeter, Phys, Rev. S2, 60 {1951).

4 i(p, «) = —g-'L(-'-&'-+ p-', 2M)' —«-']

f,,
X Jl d'Ada)$0(p+k; «+~)

Xgw'i(tt '
co-'—+ti-')] ''-(31)

In principle this iteration procedure could be repeated
any number of times.

Since the binding energy of the deuteron is known,
we shall consider E as given and g' as the eigenvalue of
Eq. (24). We then find successive approximations
gj"-, g2'-, etc. , to g' by requiring that

compared with ti, estimates for a from Eqs. (31) and
(34). These calculations for a and b could in principle
be carried out for any value of (ti/M), but wouhi be
rather involved, since Eqs. (34) and (35) are coupled
equations for the two unknowns a and b. In order to
simplify the computations, an expansion in powers of
(ti/M) was employed and only the first two terms in

this expansion retained. Equation (35) involves, to this
approximation, only the value 1.85 and not a itself and,
for peti and «((ti gave b=1.31; for p&&ti and «»ti,
b= 1.93; for p»p, and any value for «, b= 1.85. For the
following calculations a somewhat arbitrary value of
b=1.6 was used. Equation (34) with p=a was then
solved for a, the solution involving a short numerical
integration. With the values thus obtained for a and b,

Eqs. (31) and (32), with n=O, give a, value for gP:

a=1.85(1-0.5«ti/M), b=1.6;
gi'-'= 2.39(ti/M) (1+0.98ti/M).

(36)

The integrals occurring in Eq. (31) cannot be carried
out analytically for general p and «, but the numerical
work involved in evaluating Pi(p, «) for any particular
pair of values for p and « is not very lengthy. The
function ai(p) is real for all values of p; bi(p, «) is real
for ~&@, but is, in general, complex for e&p. The
function ai(p) and the absolute value of bi(p, «) are
slowly varying functions and, in the whole range 0&p,
~&M, do not vary by more than about 50 percent.
Hence, if required, pi(p, «), ai(p), and bi(p, «) could be
evaluated for a few values each of p and e and aa
interpolation method used on ai(p) and bi(p, «) for
intermediate values of p and «. A better approximation
gi"- to the coupling constant for Eq. (24) could then be
obtained after one more double integration, using Eq.
(31) with t«=1. However, gi2 is probably not in error
by very much more than one or two percent. Since in
the derivation of Eq. (24), terms of relative order of
magnitude of (ti/M)'&0. 01 have in any case been
omitted, an evaluation of g2' was not considered worth
while.

The mixed wave function corresponding to $0(p, «) is

exp(iE. T)

Di'(P'a '+ ti') (E/2+ p '/2M)' ']-—'--
exp[&i( i2L+ p '/2M)t]-'-

X
(-,'E+ p'/2M)

exp[&ib(p 'a "-+ti') lt]'-—
(37)

b (P2a
—'2+ 2) g~

where the + sign holds for 3&0 and the —sign for /&0,
The first term of (37) is of the same form as Eq. (28);
the second term gives a contribution to the wave
function which does not correspond to the propagation
into the "future" as free waves and is connected with
the fact that a retarded interaction is used. The two
different denominators occurring in the first and second
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terms of (37) are of the order of magnitude of (p'/M)
and p, respectively. Thus, the absolute value of the
second term is smaller than that of the first by a factor
of the order of (ti/M).

Expression (36) for gi2 shows that appreciably differ-
ent results are obtained if the relativistic retarded
interaction function (h' —aP+p') ' is used instead of
the instantaneous function (h'+p') '. We can get a
better insight into the significance of these differences

by deriving an approximate equation involving a three-
dimensional wave function from Eq. (24). We again
define P„(p) by means of

@-(y)= «V-(y, e').

In Eq. (24), unlike in Kq. (26), e and ce cannot be
eliminated unless the dependence of f(y, e) on e is
known. But if the expression (30) is substituted into
Eq. (31), then the integration over co can be carried out.
The ensuing expression for Pi(y, e) can then be inte-
grated over e giving an expression for pi(p) not involv-

ing ~ or co. Finally, the integrand in this expression can
be expressed in terms of @p(p). Neglecting terms of
order of magnitude (p/M)' compared with unity, this
expression becomes

(P+P'/M)4i(y) = g' d'h—L2+(h'+a')3 '

X {1+P(y,k) )40(p+k) (38)

P+(P"+
I
p+k{')/2M

P(p, k)—= ——
(h'+t ')'
-', E+ {p+k{'/2M

+ (39)
b (p2a

—2+ a2) 1+(h2+ a2) 1

Equation (38) is identical with the equation for the
iterated function Pi(p) obtained from Eqs. (26) and
(27), except for the presence of the additional term
involving F(p, k). Thus, the difference between the
retarded and instantaneous interaction functions can,
to first order in (Ii/M), be included in an equation for
the orthodox three-dimensional wave function g(y) by
adding an extra interaction function to (h2+y') '. This
additional term depends on y as well as on k and
represents therefore a velocity-dependent potential.
For p, h, p, F(y, k) is of the order of magnitude of
(~/M).

An approximation to g', somewhat more accurate
than gi2, can also be obtained from Eq. (38). If we
again consider (p/M) small and expand in powers of it,
F(p, k) is small compared with unity throughout the
whole range over which the integrand of Kq. (38) is
appreciable. %e can therefore use first-order perturba-
tion theory, taking the ground-state solution of Eq. (27)
as the unperturbed wave function and considering
(h'+ a2) 'F(p, k) as the perturbation potential. It
should be noted that an attempt to use perturbation

theory directly in Eq. (24) would be equivalent to an
unjusti6ed omission of the second half of expression

(39) for F(p, k). Using the expression (29) as an
approximation to the unperturbed wave function the
first order perturbation treatment for Eq. (38) was
carried out. After some rather tedious numerical and
analytical integrations we found, keeping the deuteron
binding energy constant,

g'= 2.39(p/M) (1+1.Opt'/M).

The expression (40) represents only the first two terms
in an expansion in powers of (p/M). The coetficient
1.07 of the second term in Kq. (40) should be accurate
to better than ten percent and agrees, as well as can be
expected, with the equivalent coe%cient in the less
accurate expression (36) for g .

VI. DISCUSSION

We have found in Eq. (40) that the value of g'

required to obtain the correct binding energy of the
deuteron in relativistic theory divers from the non-
relativistic value by an amount of relative order p/M.
This is of the same order as the coupling constant g',
and as the "average" value of p/M in the deuteron
ground state. Thus we get a correction of relative order
e/c where e is the "average" nucleon velocity, in con-
trast to the wells. nown result in the theory of the
hydrogen atom that relativistic elfects (fine structure)
are of relative order (e/c)'= (e'/hc)'.

This surprising result is not due to a mistake because,
in the derivation of Eq. (24) from the Lorentz-invariant
Eq. (21), only errors of the relative order (p/M') or
smaller were made. Indeed, we shall prove that the
result (40) is correct, neglecting terms of relative
order (p/M)', if only charged mesons can be erat2ted and
absorbed by nucleons. On the other hand, for neutral
mesons, and also for electromagnetic interaction as in
the hydrogen atom, our result in the last section must
be corrected.

Indeed, Eq. (21), the basis of our calculations in the
last section, differs from the complete Kq. (19) by the
replacement of the full interaction C by the one-meson
interaction G&". But for a neutral field theory all other
contributions G&") also have to be included, and in

particular the graphs 2A —2D of Fig. 1 will give con-
tributions containing only one power of g' more than
the "main" term G"' which alone was included in (21).
It must therefore be expected that these terms will

give corrections to (40) of the order g'= p/M, i.e., of
the same order by which (40) differs from the nonrela-
tivistic result. In charged meson theory, the graphs
2A —2D do not contribute as will be shown below.

From the example of the hydrogen fine structure, it
should be expected that the contribution from tlie
"two-meson graphs" 2A —2D not only is of the same
order as the relativistic correction in (40) but actually
cancels this correction exactly, leaving only corrections
of the relative order (p/M)' to the nonrelativistic result.
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Indeed, the msgul derivation of Eq. (27) from field

theory, by separation of a "static" interaction, seems
to neglect only terms of relative order (p/M)'. This
has been confirmed by a detailed relativistic analysis
of the problem by DancoG. " We must therefore show
that our theory also gives the nonrelativistic result to
order (p/M)'. This could of course bedone by explicitly
calculating the contributions of graphs 2A —2D and
showing that they compensate exactly the relativistic
correction term in (40), but this would be both tedious
and unconvincing. Instead, we shall use a transforma-
tion of the theory which will give the result directly
and will in addition be useful for the practical applica-
tion of the theory to neutral fields.

Such a transformation is somewhat analogous to
that described in Sec. 8 of FII for the elimination of
the longitudinal field in quantum electrodynamics.
Feynman showed that the formal incorporation of a
certain interaction function, which depends explicitly
on the energy change of the interacting particle, into
the matrix elements for any arbitrary process undergone

by a particle (initially and finally in a free state) does
not afkct the total amplitude function for any such

physical process. For the case of electrodynamics the
addition of these terms to the two longitudinal compo-
nents of the retarded electrodynamic interaction results
exactly in an instantaneous coulomb interaction. We
shall now show that the formal incorporation of a
slightly different interaction function does not affect
the total amplitude function, for any physical processes
involving neutral scalar mesons. The addition of this
interaction to the retarded scalar meson interaction
(22) results in the sum of an instantaneous Yukawa
interaction and a more complicated, but smaller,
retarded interaction.

Consider the probability amplitude function for any
arbitrary graph for two Fermi-Dirac particles, initially
and finally in a free state, interacting S times by means
of arbitrary interactions with "vertex parts" F. For
the special case of scalar meson interactions with scalar
couplings F, defined in Eq. (2), is unity. Consider an
additional interaction, involving an energy-momentum
change of q„, with a velocity-dependent vertex-part A:

A=(p —M)y4 —y4(m —M) =(p+-) yy4 —cv (41)

where p„and vr„=(p„+q„) are the energy-momentum
vectors before and after the interaction respectively;
~ is the energy change q4 and p, ~ the three-dimensional
momenta. This interaction function is similar to the
one used in FII except that p4 is replaced by unity.

We next modify the above mentioned arbitrary graph
involving .V F-interactions by including one additional
interaction involving a vertex part A either before the
first F-interaction of particle a or between the first and
second, etc., the corresponding vertex parts for particle

» S. M. Dancoff, Phys. Rev. 78, 882 (1950).

b being left arbitrary. We now sum the amplitude
functions corresponding to these (%+1) modified
graphs, following the procedure explained in FII. The
contribution to this sum of the first term in expression
(41) for A acting between the eth and the (m+1)st
I'-interaction, plus that of the second term of Eq. (41)
between the (e—1)th and eth I'-interaction, contains
the following factors:

(P —M) 'P (P —M) '

X[(p„—M)y4](m„—M)—'. .
(42)(p„,—M)-'[y4(~„,—M)]

X(m i—M) 'F„(m„—M) '
The first term of Eq. (41) acting before the first I'-
interaction, and the second term acting after the last
F-interaction, give no contribution, since particle a is
initially and finally in a free state. The sum of the
amplitude functions for these (X+1) modified graphs
is then equivalent to the sum for E modified graphs,
in each of which one of the E F-interactions is replaced
by a combined interaction with vertex part A.':

X'= F~,—~,F.

If each F is unity, then A' is zero and the introduction
of the A-interactions does not acct the total amplitude
function. The A used in FII (&4 replaced by unity)
led to a A' equal to zero for any F.

In the center-of-mass system (p,„= pb„=p„) w—e-
define an interaction between particles a and b in-
volving an energy-momentum transfer q„=(k, co), with
a velocity-dependent interaction function L(p„; k, a&):

L—g2[4~2($2 "2+~2)(P2+p2)]—1

&&{4'(A.'—2(o)+(A'+2(o)A'I. (44)

We can write the I.orentz-invariant retarded scalar
meson interaction function G(k, a&), expression. (22), as
{[G L]+LI.Using Eq. —(44) and thesecondexpression
in Eq. (41), we find

g2

2w'(k'+ p')

(p+~) v'v4 (u+-) v'v4'
X (45)

(P2 "2+"2)

The first of the two terms of expression (45) is exactly
the iestantaneols Yukawa interaction function and,
when substituted for G, leads to Eq. (27) and not to
Eq. (24). The second term in Eq. (45) represents a
velocity- (and spin-) dependent interaction and, since
p, k, and ~yM~ are all of the order of magnitude of p,
is smaller than the first term by a factor of order
(p/M)'. Since I' for the scalar meson interactioll js
unity, it follows from Eq. (43) that the additional
interaction function +L goes not contribute to the
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Frc. 3. Graph for a
process involving virtual
pair creation and annihila-
tion, which is included in
graph 2A.

total amplitude function for any interaction between
the two particles.

The "crossed" graph 2.4 might be considered to
represent the "presence of two mesons in flight simul-

taneously. " The first part of Eq. (45) represents an
instantaneous exchange of mesons, and one might

expect that such an interaction should not contribute
anything to the term 6"~' corresponding to graph 2A.
In reality its contribution to 6"~' is not exactly zero,
since processes involving intermediate states of negative

energy (represented in Fig. 3) are included in graph 2A,
but is smaller than the expression 6" ' for the retarded
interaction function (22) by a factor of order (p/M)'.
The second term of Eq. (45) is itself small, and its
contribution to G"-" is still smaller by a factor of order

(p/M); the total sum of expressions LG"a'+G" '

+G" &] should be of the same order of magnitude as
this contribution. Ke have therefore shown that re-

placing 6 by the instantaneous Yukawa interaction
function g' /2w'(k' +p'-) only introduces errors of relative
order of magnitude (p/M)', the leading correction
term being given by the second term of Eq. (45).

However, for a purely charged scalar meson theory
the position is radically difI'erent if we assume that a
nucleon cannot change into a double charged or nega-

tively charged proton by the emission or absorption of
charged mesons and if we assume no coupling with

neutral mesons at all. In this case a nucleon can emit

(or absorb) positive and negative mesons only alter-

nately, and the crossed graph 2A and Lamb shift

graph 28 are completely forbidden by charge conserva-

tion. Since the nucleons in the deuteron are not free,
the self-energy and mass-renormalization graphs 2C
and 2D together may contribute nonvanishing terms;
but these, as well as the terms due to more complicated

graphs, are of a smaller order of magnitude than 6&'")

with a retarded scalar interaction function. Therefore,

Eq. (24) and the approximate solution derived for it in

the last section give correctly the first two terms in an

expansion in powers of (y/M) for charged scalar mesons

(in the absence of multiply charged nucleon states). It
should be noted that the transformation carried out
above for neutral mesons is based on the condition
that a A-interaction can be introduced into any graph
at any point. If we are restricted to charged mesons,

and neutrons and protons only, this condition cannot
be fulfilled (because of charge conservation) and the

above transformation cannot be carried out.
For a purely charged scalar theory the coupling

constant g' required for the interaction is then larger

by approximately 1.1(p/M) or 15 percent, than for a

purely neutral theory. E'or a Serber mixture of charged
and neutral mesons (giving no force in p-states) the
increase is only one quarter of this amount; for a
Kemmer charge-symmetric mixture there is a decrease
of very roughly four times this amount. It should be
emphasized that calculations on a scalar meson theory
were carried out in this paper merely to illustrate the
methods developed and not because of any belief in
this theory being correct physically.

The equations described in this paper are being
applied to an investigation of the relativistic corrections
to the fine structure and hyperfine structure of hydro-
gen. No way has as yet been found to apply this
equation to problems in which the coupling constant is
not small, e.g. , the deuteron with pseudo-scalar mesons.
Given any phenomenologieal interaction potential, how-

ever, one can always find a relativistically invariant
generalization of it. This Lorentz-invariant interaction
function could then be substituted in Eq. (14) or Eq.
(19); and a relativistic, but purely phenomenological,
equation for bound states for two particles is then
obtained. An investigation of the theory of Fermi and

Yang, "using such an equation, is planned.
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APPENDIX. SUMMARY OF EQUATIONS DERIVED
IN SECS. II AND III

The amplitude function A. (3,4; 1,2) is defined uniquely by the
inhomogeneous integral equation (9). This definition is exactly
equivalent to that given by Feynman in the form of a double
infinite series. Equation (9) leads to Eq. (11) or (lla) for the wave
function in coordinate space, lIt (1,2). Equation (11) is obtained if
the interaction is "on" only for a finite time, Eq. (11a) if the
interaction is constant throughout all time. Equation {11)con-
tains a boundary condition in the form of an inhomogeneous term

p&, 2(3,4) and therefore has only one solution. Equation (lia) is a
homogeneous integral-difFerential equation and has an infinite
number of solutions, each one corresponding to a "physically
acceptable state. "The fourier transform of Eq. (11a) is Eq. (15),
an equation for the momentum-space wave function y(PI, p&).

For the case of an interaction constant throughout all time, we

may look for special solutions for our wave function satisfying
the condition (13). These solutions correspond to states with a
definite total momentum and total energy. For these states,
Eq. (11a) reduces to a more special equation (v hich is not given
explicitly in the text) and Eq. (15) to the special equation {16).

By applying certain operators to Eqs. (11a) or (11) we obtain
Eq. (19) and an equivalent equation (not given explicitly) can
be derived from Eq. (15). By applying equivalent operators to
Eq. (16) and its counterpart in coordinate space, we obtain
Eqs. (17) and (18), respectively. These four derived equations
are more convenient for practical solutions, but are only necessary
and not sufhcient conditions. If the expression 0 is replaced by
the first term in its expansion, 6('), Eqs. (17), (18), and (19)
reduce to the approximate Eqs. (17a), (18a), and (19a), respec-
tively.
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