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Foreword 

Many powerful computer codes exist in the field of molecular chemistry, based on ab initio quantum­
mechanical techniques. They can predict many properties of small- and medium-sized molecules with 
reasonable accuracy and at comparatively low cost. Their use has become common practice in the last 
ten years in many areas of activity, particularly in experimental chemical research, both in academic and 
in industrial environments. 

The situation is much less advanced in the parallel field of condensed-matter studies. This is not due ~ a 
lack of potential interest: the development of new materials is one of the areas where the rate of progress 
is most rapid, and the amount of financial investment is largest. Materials for electronic and mechanical 
applications are in most cases crystalline structures, perfect or with controlled dosage of defects, whose 
properties cannot be understood without reference to an accurate description of the system at an atomic 
scale. 

The intrinsic difficulty of handling systems of potentially infinite size explains only in part why crystalline 
studies are so far behind the current frontier of molecular quantum chemistry, a gap which presently is 
about fifteen years. Another possible reason may be that theoretical chemists have developed over many 
decades widely accepted interpretative schemes, a relatively standard language, a number of practical 
tools, good books and excellent computer codes so that having access to that technology does not require 
a very high-level entry point. On the other hand, making the wealth of knowledge embodied in stan­
dard solid-state theory compatible with an atomic-scale description of condensed systems is still an open 
problem. The question is how to transfer concepts and results from a "quantum-chemical" description of 
crystals to the parameterized world of solid-state physicists, and vice-versa. 

Furthermore, the research 8lld development effort which is being devoted to the implementation of pow­
erful and user-friendly codes tor the study of crystalline properties is curiously enough much less intensive 
than that devoted to the production of new molecular codes, and in the improvement of existing ones 
whose performance is already excellent. It is thus not surprising that the molecular cluster model, which 
can utilize standard codes with only minor modifications, is at present the favourite tool for quantum­
mechanical investigations of the properties of crystals and their surfaces. 

We now have the opportunity to change this state of affairs. There are a number of general-purpose, rea­
sonably accurate and well-tested Qb initio computer codes for crystals which are available to the scientific 
community. The rate of their improvement depends, in a sense, on their circulation, on the criticisms 
they receive and on the suggestions which are derived from their use. It is also very important that 
the various groups active in this field are open to unbiased comparison of the merits and drawbacks of 
their proposals, both as concerns basic ideas and approximations, and actual implementation of computer 
codes. 

Schools and workshops can play a useful role to this effect, by teaching young people active in the field of 
Material Science how to exploit these new powerful tools. The present book contains the Proceedings of 
the Fourth School of Computational Chemistry, organized by the Interdivisional Computer Chem­
istry Group (GICC) of the Italian Chemical Society, and held in Torino on 19-24 September 1994, whose 
schedule is reported in Appendix A. Only the morning lectures (with few exceptions) are reproduced 
here, the afternoons being devoted to practical exercises performed by the students with use of the three 
codes available at the School, and described in Part 3. 



VI 

The texts of the lectures can give only part of the information which can be obtained at a School through 
the possibility of practicing with the different programs, and from the contact ""ith their authors. They 
nevertheless represent, on the whole, a useful introduction to the field, a reference for deeper study of 
certain specific subjects, and an objective body of information concerning the state-of-the-art in ab-initio 
simulations of the quantum-mechanical properties of crystalline materials. 

Part One (Chapters 1-3) of the book provides a general introduction to the subject, addressed 
particularly to readers with a general knowledge in quantum chemistry, but not much confidence in solid 
state theory and its concepts. 

Part Two (Chapters 4-1) is intended to give a deeper insight into the special algorithms and compu­
tational techniques which are currently adopted in ab initio computer codes for crystals. 

Part Three (Chapters 8-10) presents in parallel three different programs which are available to 
all interested potential users on request, and based on very different approaches. These presentations 
may help newcomers in the field to understand the meaning hidden in the acronyms, and to choose the 
most suitable tool for their needs. 

Finally, Part Four (Chapters 11-16) is an attempt to show what kind of information on the observ­
able properties of condensed systems can be obtained from ab initio quantum-mechanical calculations. 
In particular, Resta's contribution demonstrates that important observables have become accessible to 
simulation, using quite unconventional new approaches. The last chapter, devoted to the hot topics of 
superconductivity, shows the importance of finding the connection between the results of ab initio calcu­
lations and high-quality theoretical schemes using parameterized Hamiltonians. 

The publishing of these notes and their distribution to all the students of the above mentioned School 
has been possible thanks to the support of the Italian CNR (Consiglio Nazionale delle Ricerche). 

A preliminary draft of these Proceedings has been distributed among attendants of the 1995 School 
organized under contract CHRX-CI'93-0155 of the Human Capital &: Mobility Programme of the Eur<>­
pean Community, which has provided additional funding for the work of revision. 

I would finally like to thank Dr. Fiona Healy, who has read the manuscripts with patience and in­
telligence, and corrected their English, when necessary and when possible. 

Cesare Pisani Torino, May 1996 
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Crystal Lattices and Crystal Symmetry 

Davide Viterbo 

Department of Inorganic, Physical and Materials Chemistry, University of Torino, via Giuria 
7,1-10125 Torino, Italy 

June 4,1996 

Summary. The basic concepts of the geometrical representation of crystalline 
solids and of their symmetry are outlined. The combination of periodic trans­
lational symmetry (describing crystal lattices) with other symmetry elements 
(rotation axes, mirror planes, inversion centers, etc.) is described as the basis of 
the space group theory. 

Key words: Crystal Lattice - Translational Symmetry - Unit Cell - Crystal 
Structure - Crystallographic Rows and Planes - Metric Tensor - Reciprocal Lat­
tice - Symmetry Operators - Symmetry Elements - Point Groups - Symmetry 
Classes - Laue Classes - Crystal Systems - Bravais Lattices - Space Groups 

1. Lattice geometry 

1.1. Lattices 

Crystalline solids, as confirmed by evidence from several experiments (the 
anisotropy of their physical properties, diffraction, etc.), may be described as or­
dered repetitions of atoms or groups of atoms in three dimensions. Translational 
periodicity in crystals may be conveniently studied by focusing our attention on 
the geometry of the repetition rather than on the repeating motif. In an ideal 
crystal, all repeating units are identical and we may say that they are related 
by translational symmetry operations, corresponding to the set of vectors: 

T=ua+vb+wc (1) 

where u, v and ware three integers ranging from minus infinity to plus infinity, 
zero included, and a, band c are three non-coplanar vectors defining the basis 
of the three-dimensional space. Real crystals may present more or less marked 
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Figure 1. A three-dimenaionallattice, showing a unit cell (heavy lines). 

deviations from this ideal, perfect order. The set of points at the ends of all the 
translation vectors T forms a three-dimensional lattice and the points are called 
lattice nodes (Figure 1). The three integers u, v and w defining a given vector, 
are the corresponding coordinates of the node in the reference system defined by 
a, b and c. The parallelepiped formed by these three basis vectors is called the 
unit cell and their directions define the crystallographic axes: X, Y and Z. The 
lattice constants are the three moduli a, b and c and the three angles, a, fJ and 
'Y between the vectors (a between b and e, fJ between a and e and 'Y between a 
and b). 

A two-dimensional example will serve to illustrate these concepts. In Figure 
2(a), a given "three-atom" motifis repeated at intervals a and b. If we replace 
each motif by a point at its centre of gravity we obtain the lattice of Figure 
2(b). The same lattice is obtained if the point is located on any other position of 
the motif and the position of the lattice with respect to the motif is completely 
arbitrary. If any lattice point is chosen as the origin of the lattice, any other 
point in Figure 2(b) is uniquely defined by the vector: 

T=ua+vb (2) 

where u and v are integers and the unit cell is defined by the vectors a and b. 
The choice ofthe basis vectors is rather arbitrary, as shown in Figure 2(b), where 
four different choices are illustrated, all of which are consistent with relation (2) 
with u and v being integers. These cells contain only one lattice point, since the 
four points at the corners of each cell are each shared by a total of four cells. 
They are called primitive cells. Nevertheless, we are allowed to choose different 
types of unit cells, such as those shown in Figure 2(c), which contain two or 
more lattice points. Also in this case, each lattice point will satisfy (2) but u and 



Crystal Lattices and Crystal Symmetry 

Figure 2. (a) Repetitionofagraphicalmo­
tif as an example of a two-dimensional crys­
tal; (b) the corresponding lattice with some 
examples of primitive cells; (c) the same lat­
tice with some examples of multiple cells. 

3 

Figure 3. Lattice rows and planes. 

v are no longer restricted to integer values (in Figure 2(c), point P is related to 
the origin and to the basis vectors a' and h' by a vector with u = ~, v = ~). 
These cells are called multiple or centred cells. 

1.2. Crystal structure 

The periodic repetition of the structural motif (atoms, groups of atoms or 
molecules) by the infinite set of vectors (1) yields the crystal structure, which 
is completely determined once the lattice constants and the coordinates, x, Y 
and z, of all the atoms in the unit cell are known. These coordinates are the 
components of the vectors: 

rj = Xj a + Yj h + Zj C (j = 1, 2 ... N) (3) 

linking the cell origin to the nucleus of the j-th atom. For all N atoms inside 
the chosen unit cell, the coordinate values are in the interval 0 to 1. They are 
therefore called fractional coordinates and are given by: 

x=Xja y=Yjb z=Zjc 
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1.9. Crystal/ographic rows and planes 

Since crystals are anisotropic, it is necessary to identify, in a simple way, di­
rections or planes in which specific physical properties are observed. Directions 
defined by two lattice nodes, and planes defined by three lattice points are called 
crystal/ographic directions and planes, respectively. A lattice row is defined by 
two lattice points and the identity period, separating the infinite number of 
nodes along the row is the minimum distance between two points. The lattice 
translations will then generate an infinite number of parallel and equally spaced, 
identical rows (Figure 3). Therefore, in a lattice with a primitive cell, the vector 
T = u a + v b + w c linking the origin with the nearest point on a given crys­
tallographic direction, may be used to represent a given row together with the 
infinite number of rows parallel to it. The three values u, v and ware the indices 
of the row, which is then represented by the symbol [uvw]. The three integers u, 
v and w have no common factor since they correspond to the coordinates of the 
point nearest to the origin along the row. The three rows corresponding to the 
base vectors a, b, and c will have symbols [100], [010] and [001], respectively. 

z 

1 r 

x 

Figure 4. Some lattice planes of the set (236). 

Three lattice points define a crystallographic plane. Let us consider a plane 
intersecting the three crystallographic axes, X, Y and Z, at the three lattice 
points (p, 0, 0), (0, q, 0) and (0,0, r) with integer values for p, q and r (Figure 4). 
Suppose that the largest common factor of p, q and r is 1 and that m = pqr is 
their least common multiple. Then the equation of the plane is: 

X/(pa) + Y/(qb) + Z/(rc) = 1 (4) 

If we introduce the fractional coordinates, x = X/a, y = Y /b and z = Z/c, the 
equation of the plane becomes: 
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z/p+ y/q+z/r = 1 

Multiplying both sides by the product pqr we obtain: 

qrz + pry + pqz = pqr 

which can be rewritten as: 

hz+ ky+lz = m 

5 

(5) 

(6) 

where h = qr, k = pr and I = pq are also integers with largest common factor 
equal to 1 and m = pqr. We can therefore generate a family of planes parallel 
to the plane (6) by varying m over all integers from -00 to +00. These will all 
be crystallographic planes since each of them is bound to pass through at least 
three lattice points. Each lattice plane is identical to any other within the family 
through a lattice translation. For a given triplet h, k and I, the plane with m = 0 
will pass through the origin, while the plane with m = 1, that is: 

b+~+lz=1 m 
will be the closest to it. The intercepts of plane (7) on X, Y, Z are l/h, l/k 
and 1//, while those of plane (6) are m/h, m/k and m/I. It is then clear that 
the distance of plane (6) from the origin is m times that of plane (7). The three 
indices, h, k and I, define the family of identical and equally spaced crystal­
lographic planes, and are called the Miller indices. The symbol of a family of 
planes is (hkl). A simple interpretation of the Miller indices can be deduced 
from (6) and (7). In fact, they indicate that the planes of the family divide a 
into h parts, b into k parts and c into I parts. Crystallographic planes parallel 
to one of the three axes, X, Y or Z, are defined by indices (Okl), (hOI) or (hkO) 
respectively. Planes parallel to the Y Z (face A), X Z (face B) and XY (face C) 
planes are of type (hOO), (OleO) or (001) respectively. 

1.~. The metric tensor 

In matrix notation, the set of basis vectors chosen to define a lattice may be 
written as: 

Ie): 0) (8) 

and a lattice vector with indices u, v and w, is written as: 

IT) = (ule) with (ul = (u v w) (9) 

The modulus of this vector is obtained from the scalar product of the vector by 
its transpose: 

(TIT) = (ule)(elu) = (uIGlu) 
where G = leHel is a square matrix: 

( 

a·a a·b a.c) 

G= b·a b·b h·c 

c·a c·b c·c 

(10) 

(11) 

which is known as the metric tensor or matriz and allows the calculation of all 
geometrical features of the lattice. 
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1.5. The reciprocal lattice 

In metric calculations and in the interpretation of many physical properties of 
crystals (diffraction, conductivity, etc.), it is very useful to introduce the so­
called reciprocal lattice. Given the basis of a lattice (called here a direct lattice) 
as defined by (8), we can associate with it the basis le*) of a new lattice, defined 
by the vectors a*, b*, e*, satisfying the condition I = le*)(el or explicitly: 

from which: 

( : : :) = ( :::: :::: ::.::) 

o 0 1 e* . a e*· b e* . e 

a*· a = 1 
a*· b = 0 
b*· a = 0 
e*· a = 0 

b*· b = 1 
a*· e = 0 
b*· e = 0 

e*· b = 0 

e*· e = 1 

(12) 

(13) 

The last three lines of equations (13) suggest that a* is normal to the plane (b, e), 
b* to the plane (a, e) and e* to the plane (a, b). The modulus and direction of 
a*, b*, e* are fixed by relations (13). According to the second row of (13), we 
can write: 

a* = p (b 1\ e) (14) 
where p is a constant. Scalar multiplication of both sides of (14) by a, will give: 

a* . a = 1 = p (b 1\ e)·a = p V (15) 

from which p = l/V (V is the volume of the unit cell). Equation (14) and its 
analogues obtained from the third and fourth row of (13) may then be written 
as: 

a* = (b 1\ e)/V j b* = (e 1\ a)/V j e* = (a 1\ b)/V (16) 
giving the reciprocal basis vectors in terms of the direct unit cell. Equations (13) 
also suggest that the roles of direct and reciprocal space may be interchanged: 
i.e. the reciprocal of the reciprocal lattice is the direct lattice. It may be easily 
seen that a reciprocal lattice vector: 

T* = ha* + kb* + le* (h, k, I integers) (17) 

is perpendicular to the family of direct lattice planes (hk/). For the reciprocal 
lattice, we can also define a metric matrix G*: 

( 

a*· a* a*· b* 

G* = b* . a* b*· b* 

e*· a* e*· b* 

and it may be verified that: 

a*· e* ) 

b*· e* 

e*· e* 

(18) 

G* = G- 1 (19) 
Finally, it is worth pointing out that the "l's" in equations (12) and (13) are 
sometimes substituted by a constant, such as 211": the resulting reciprocal lattice 
is simply scaled by a factor equal to the constant. 
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2. Symmetry operations and symmetry elements 

2.1. Isometric transformations 

In order to understand the periodic and ordered nature of crystals, it is also 
necessary to know all other operations, besides translation, by which the repe­
tition of the basic motif may be obtained. Given two identical objects, placed 
in random positions and orientations, we must know which operations should 
be performed to superimpose one object onto the other. The existence of enan­
tiomeric molecules also requires that we know how to superimpose two objects 
of opposite handedness (enantiomorphic objects). The objects are said to be con­
gruent if each point on one object corresponds to a point on the other and if 
the distance between two points on one object is equal to that between the cor­
responding points on the other. As a consequence, the angles formed by three 
related points will also be equal in absolute value and the correspondence is 
called isometric. The congruence may either be direct or opposite according to 
whether the corresponding angles have the same or opposite signs. The study of 
operations relating congruent objects is the goal of the theory of isometric trans­
formations, of which we will only consider the most useful results (more detailed 
accounts may be found in references [1]-[9]). For a direct congruence, the move­
ments by which two objects are brought to coincidence, may be: a) a translation, 
which we have already considered; b) a rotation of 21fln around an axis (an axis 
of order n or an n-axis); c) a rototranslation or screw movement, which may 
be considered as the combination (product) of a rotation around an axis and a 
translation along the axial direction. For an opposite congruence, which relates 
enantiomorphic objects, these may be brought to coincidence by the following 
operations: a) an inversion with respect to a point; b) a reflection with respect 
to a plane; c) a rotoinversion, the product of a rotation around an axis by an 
inversion with respect to a point on that axis (an ii-axis); d) the product of a 
reflection by a translation parallel to the reflection plane: the plane is then called 
a glide plane; e) a rotoreflection, the product of a rotation by a reflection with 
respect to a plane perpendicular to the axis. As is well known, the description 
of the chemical and physical properties of molecules may be greatly simplified 
when their symmetry is taken into account and the symmetry operations which 
are considered are among those listed above. 

2.2. Symmetry restrictions imposed by lattice periodicity 

Suppose now that the isometric operations not only bring to coincidence a pair 
of congruent objects, but act on the entire space. If all the properties of the 
space remain unchanged after the operation has been performed, the operation 
will be a symmetry operation and symmetry elements are the points, axes or 
planes with respect to which symmetry operations are carried out. 

When, as in the case of ideal crystals, the space is filled by the periodic 
repetition of a motif, we have seen that it may be described by a lattice. In 
this case, not all symmetry elements are compatible with the periodic nature of 
the space, which requires the repetition of these elements also. Without losing 
generality, let us assume that a rotation axis of order n passes through the 
origin 0 of the lattice. Since all lattice points are identical, there will be an 
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o 
.~---..--- -----..... 

T-T" 

Figure 5. Lattice points in a plane nonna! to the symmetry axis n passing through O. 

n axis passing through each and every lattice point, parallel to that passing 
through the origin. Each symmetry axis will lie along a lattice row and will be 
perpendicular to a crystallographic plane. In Figure 5, T is the period vector of 
a row passing through 0 and normal to n. Lattice points at -T, T' and Til will 
also be present, and the vector T' - Til, parallel to T, will have to be a lattice 
vector. This imposes the condition that T' - Til = mT, m being an integer; in 
a scalar form: 

2cos(21r/n) = m (m integer) (20) 

which is only verified for n = 1, 2, 3,4,6. Axes with n = 5 or n > 6 are not allowed 
in crystals. This is the reason why it is impossible to pave a room only with 
pentagonal tiles. The same restrictions apply to rotoinversion axes (n axes) and 
to screw axes. For the latter, the possible values of the translational component 
t are also restricted by periodicity: for an axis of order n, the translational 
component is repeated n times, and, because of lattice periodicity, we must have 
nt = pT, with p integer and 0 ~ p < n, or: 

t = (p/n)T (21) 

Thus, for a screw axis of order 4, the allowed translational components will be 
(0/4)T, (1/4)T, (2/4)T and (3/4)T. A normal n axis may be thought of as 
a special screw with t = 0 and the properties of a screw axis are completely 
defined by the symbol np. 

Reflection planes are indicated by the symbol m and must be parallel to 
the crystallographic planes. For glide planes, the periodicity requires that the 
translational component t must be either t = 0 (mirror plane) or t = ~T. 
Glide planes with translational components equal to 8/2, b/2 and c/2 will be 
indicated by the symbols a, band c respectively, while the diagonal glides with 
translational components: (8 + b)/2, (8 + c)/2, (b + c)/2 and (8 + b + c)/2, 
are indicated by the symbol n. As we have seen, in a non-primitive cell, T is a 
vector with rational components and t may assume other values: in this case, 
the symbol d is used for the glide plane. 
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Table 1. Graphical symbols for symmetry elements: (a) axes normal to the plane 
of projection; (b) axes 2 and 21 parallel to the plane of projection; (c) axes 
parallel or inclined to the plane of projection; (d) symmetry planes normal to 
the plane of projection; (e) symmetry planes parallel to the plane of projection. 

:; 0 

• Ib) -,-.1 3 & 2_ m--

4 • 2_ • a.b------- ,." 
2, I c--

3, .32 ...... 4 ---f 
4,.42.43 .... 4f n _._._.- F 6 .. 62.6s.s..6s" ....... 

3 4. , 
4 ~ 3/ 

1 d _. __ .-

~ ! • (I) (cl (eI) ,e) 

Of the five rotoinversion axes, only 3, 4, and 6 are independent, while I and 
2 are equivalent to an inversion point and to a mirror plane, m, perpendicular to 
the axis, respectively. Finally, it can be shown that all the rotorefiection axes are 
equivalent to rotoinversion axes and these symmetry operations will no longer 
be considered separately. 

The graphic symbols of all independent symmetry elements compatible with 
a crystal lattice, used in the International Tables for Crystallography [1], are 
shown in Table 1, while their effects on the space are illustrated in Figure 6, 
where, following international notation, an object is represented by a circle with 
a + or a - sign next to it indicating whether it is above or below the plane 
of the page; its enantiomorph is indicated by a comma inside the circle and, 
when both object and enantiomorph fall one on top of each other in the drawing 
plane, they are represented by a single circle divided into two halves (each with 
its appropriate sign), one of which contains a comma. 

Symmetry operations relating objects through a direct congruence are called 
proper, while those relating objects through an opposite congruence are called 
improper. 

3. Point groups and symmetry classes 

In crystals more symmetry axes, both proper and improper, with or without 
translational components, may coexist. Let us first consider the combinations of 
symmetry operators which do not imply translations, i.e. the combinations of 
proper and improper axes intersecting in a point. These are called point groups, 
since the operators form a mathematical group and leave one point fixed. The 
set of crystals having the same point group is called crystal class and its symbol 
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-0 -0-
1" 0+ 

+~.-0+ 
2 

~+ 
2 

6 

6. 6. 

Figure 6. Arrangements of symmetry-equivalent objects, showing the effect of rotation, in­
version and screw axes. 

is that of the point group. In three dimensions, there are 32 possible crystallo­
graphic point groups. The simplest groups are those with only one symmetry 
axis. As we have seen, there are 5 possible proper (P) axes and 5 improper 
(I) axes giving rise to 10 point groups. We must also consider the cases where 
both a proper and an improper axis are simultaneously present along the same 
direction; these give rise to 3 new groups indicated by the symbol nln. In the 
remaining 19 groups, more axes coexist. We will not consider the rules governing 
the combinations of different axes (see references [1]-[9]), but simply list, in Table 
2, the conventional symbols of the resulting groups, together with those of the 13 
single-axis point groups. It may be noted that crystals with inversion symmetry 
operators which have an equal number of 'left' and 'right' moieties, each being 
the enantiomorph of the other. It is important to note that there is no direct 
relation between the crystal symmetry classes and the molecular symmetry of 
the individual molecules forming the crystals, in the sense that molecules which 
have a molecular symmetry not allowed in crystals (for instance with a 5 axis) 
may well form crystals. Of course, the symmetry of the crystal will belong to 
one of the 32 point groups. 
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3.1. Point groups in one and two dimensions 

In a one-dimensional lattice, there are only two possible point groups: 1 and T. In 
two dimensions, instead of reflection with respect to a plane, we have reflection 
with respect to a line and rotoinversion axes are not used. The following 10 point 
groups result: 1, 2, 3, 4, 6, m, 2mm, 3m, 4mm and 6mm. 

4. Laue classes and crystal systems 

4.1. The eleven Laue classes 

It is also very important to understand how the symmetry of the physical prop­
erties of a crystal relates to its point group. Of basic relevance to this is a 
postulate of crystal physics, known as the Neumann principle: "the symmetry 
elements of any physical property must include the symmetry elements of the 
crystal point group" . In keeping with this principle, the physical properties may 
present a higher, but not a lower, symmetry than the point group. As a conse­
quence physical experiments do not normally reveal the true symmetry of the 
crystal. Some of them, such as diffraction, always add an inversion centre and 
point groups differing only by the presence of such a centre will not be differ­
entiated by these experiments. When these groups are collected in classes they 
form the 11 Laue classes also listed in Table 2. 

Table 2. List of the 32 point groups. 

Crystal Systems Point groups Laue Lattice 
Classes point groups 

Non-centrosymmetric Centrosymmetric 

Triclinic 1 r r r 
Monoclinic 2 m 2/m 2/m 2/m 
Orthorhombic 222 mm2 mmm mmm mmm 
Tetragonal 4 4 4/m 4/m 4/mmm 

422 4mm,42m 4/mmm 4/mmm 
Trigonal 3 3 3 3m 

32 3m 3m 3m 
Hexagonal 6 6 6/m 6/m 6/mmm 

622 6mm,62m 6/mmm 6/mmm 
Cubic 23 m3 m3 m3m 

432 43m m3m m3m 

4.1. The seven crystal systems 

If the crystal periodicity is only compatible with axes of order 1, 2, 3, 4 and 6, 
the presence of these different types of axes will in turn impose some restrictions 
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on the geometry of the lattice. It is therefore convenient to group together the 
symmetry classes with common lattice features which may be described by unit 
cells of the same type. In turn, the cells will be chosen in the most suitable way 
to show the symmetry actually present. Seven different groups may be identi­
fied, which are listed in the first column of Table 2. They are known as the seven 
crystal systems. 

Triclinic system - Point groups 1 and I have no symmetry axes and therefore 
there are no constraints on the unit cell: the ratios a : b : c and the angles Q, /3, 
'Y can assume any value. 

Monoclinic system - Point groups 2, 2 == m and 2/m all present a two-fold 
axis. Conventionally, this axis is assumed to coincide with the b axis of the unit 
cell (y-axis unique) and then a and c can be chosen on the lattice plane normal 
to b. We will then have Q = /3 = 900 and 'Y unrestricted and the axial ratio 
a: b : c also unrestricted. 

Orthorhombic system - Classes 222, mm2 and mmm all have three mutually 
orthogonal two-fold axeljl. If we assume these as reference axes we will obtain a 
unit cell with angles Q = /3 = 'Y = 900 and with unrestricted a : b : c ratio. 

Tetragonal system - The 7 point groups: 4, 4, 4/ m, 422, 42m, 4mm and 4/ mmm, 
all have a single four-fold axis which is chosen to coincide with the c axis. Then 
the a and b axes become symmetry equivalent on the plane normal to c. The 
cell angles will be Q = /3 = 'Y = 900 and the axial ratio a : b : c = 1:I:c. 

Trigonal and hexagonal systems - 3, 3, 32, 3m, 3m, 6, 6, 6/m, 622, 6mm, 62m 
and 6/mmm all ha.ve a. single three-fold or six-fold axis which is assumed to 
coincide with the c axis. Axes a and b become symmetry equivalent on the 
plane normal to c. Both systems are characterized by a unit cell with angles 
Q = /3 = 900 and 'Y = 1200 and ratio a : b : c = 1:I:c. 

Cubic system - 23, ma, 432, 43m and m3m all have four three-fold axes di­
rected along the diagonals of a cube and can be referred to orthogonal unit cell 
axes coinciding with the cube edges. The presence of the three-fold axes ensures 
that these directions are symmetry equivalent. The chosen unit cell will have 
Q = /3 = 'Y = 900 and axial ratio a : b : c = 1 : 1 : 1. 

5. Bravais Lattices 

As we have seen, each crystal system can be associated with a primitive cell 
compatible with the point groups belonging to that system. Each of these prim­
itive cells defines a lattice type, but there are other types of lattices, based on 
non-primitive cells, which are also compatible with some of the crystal systems 
but cannot be related to those already seen. In this section, we will describe the 5 
possible plane lattices and the 14 possible space lattices based on both primitive 
and non-primitive cells. These are called Bravais IlJttices, after Auguste Bravais 
who first listed them in 1850. 



Crystal Lattices and Crystal Symmetry 13 

(8) 1:2 (b) m:2mm (et m:2mm 

(d) 4;4mm (e) 3:6:3m:6mm 

Figure 1. The five plane lattices and the corresponding two-dimensional point groups. 

5.1. Plane lattices 

As may be seen in Figure 7(a), an oblique cell is compatible with the presence 
of axes 1 and 2 normal to the cell. This cell is primitive and has point group 
2. If the row indicated by m in Figure 7(b) is a reftection line, the cell must be 
rectangular. It is primitive and compatible with the point groups, m and 2mm. 
The lattice shown in Figure 7(c) with a = b and "'( ::f: 90°, is also compatible 
with m. 

Table 3. The five plane lattices. 

Cell Type oCeeD Point group oC the net Lattice parameters 

Oblique p 2 a,b,'Y 
Rectangular p,e 2mm a, b, 'Y = 90° 
Square p 4mm a= b, 'Y =90° 
Hexapnal p 6mm a = b, 'Y = 120° 

Even though this lattice has an oblique primitive cell, each lattice point has 
2mm symmetry and therefore, the lattice must be compatible with a rectangular 
system. This can be seen by choosing the rectangular centred cell, defined by 
the unit vectors: a' and b'. The choice of an orthogonal cell is more convenient 
because it is more simply related to the symmetry of the lattice. It is important 
to note that the two lattices shown in Figures 7(b) and (c) are of different types, 
even though they are compatible with the same point groups. In Figure 7( d), a 
plane lattice·is represented, which is compatible with the presence of a 4 axis. 
The square cell is primitive and compatible with the point groups 4 and 4mm. 
Finally, in Figure 7(e), a plane lattice is shown, compatible with the presence 
of a 3 or a 6 axis. A primitive unit cell with a rhombus shape and angles of 
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600 and 1200 (an hexagonal cell) may be chosen. This is compatible with the 
point groups 3, 6, 3m and 6mm. A centred rectangular cell can also be selected, 
but such a cell, which is not as simply related to the lattice symmetry, is less 
convenient. The basic features of the five plane lattices are listed in Table 3. 

ICI 

Id) 

Figure 8. Monoclinic lattices: (a) reduction of a B-centred cell to a P cell; (b) reduction of an 
I-centred to an A-centred cell: (c) reduction of an F-centred to a C-centred cell; (d) reduction 
of a C-centred to a P non-monoclinic cell. 

5.2. Space lattices 

In Table 4, the different types of cells are described. The positions of the ad­
ditional lattice points define the minimal translational components which will 
move an object onto an equivalent one. For instance, in an A-type cell, an object 
at (x, y, z) is repeated by translation into (x, y + v/2, z + w/2), with v and w 
integers; the shortest translation from the original position will be (0, 1/2, 1/2). 

Let us now examine the different types of three-dimensional lattices grouped 
in the appropriate crystal systems. 

Triclinic lattices - Even though non-primitive cells can always be chosen, the 
absence of axes of order greater than one makes such choices inconvenient. The 
simplest choice is that of the primitive cell described in section 4.2. 

Monoclinic lattices - In the same section, we have described the conventional 
primitive monoclinic cell as having a = {J = 90° with '"( and a:b:c unrestricted. 
Figure 8(a) shows a B-centred monoclinic cell with unit vectors a, hand c. 
Choosing unit vectors, so that a' = a, hi = h, c' = (a+c)/2, gives the primitive 
cell shown by the dotted line, which is also monoclinic (c' lies on the ac plane 
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Table 4. The conventional types of unit cell. 

Symbol Type Positions of Number of lattice 
additional lattice points points per cell 

P primitive 1 
I body-centred (1/2, 1/2, 1/2) 2 
A A face-centred CO, 1/2, 1/2) 2 
B B face-centred (1/2, 0, 1/2) 2 
C C face-centred (1/2 1/2,0) 2 
F all faces centred (1/2, 1/2, 0), (1/2, 0, 1/2) 2 

(0, 1/2, 1/2) 4 
R rhombohedrally (1/3, 2/3, 2/3),{2/3, 1/3, 1/3) 3 

centred (description 
with "hexagonal axes") 

and only the value of f3 will change). A B-type monoclinic cell can therefore 
always be reduced to the conventional primitive cell. With similar arguments, 
it may be shown that an I cell can be reduced to an A cell [Figure 8(b)] (since 
the a and c axes can always be interchanged, an A cell is equivalent to a C 
cell), and an F cell may become a C cell [Figure 8(c)]. However, a C cell is 
not reducible to a monoclinic P cell, as may be seen in Figure 8(d), where the 
primitive cell, shown by the dotted line with: a' = (a+b)/2, b' = (-a+b)/2, 
e' = e, no longer has the features of a monoclinic cell, since r' ::f. 90°, la'i = 
Ib'l ::f. le'l and the 2 axis lies along the diagonal of a face. It is worth noting that 
the choice of the C cell becomes necessary if we want to preserve the symmetry 
features of the monoclinic lattice in the cell geometry. The P cell shown by the 
dotted line is an allowed, but less convenient, reference system, which is seldom 
used to describe crystal structures. Nevertheless, in some cases, the choice of 
a P cell may become more convenient from a computational point of view and 
then an appropriate transformation must be performed from the conventional 
C cell to the corresponding primitive one. All transformation matrices, which 
allow passage from a centred cell to the corresponding primitive one and vice 
versa, are given in Table 5. It can therefore be concluded that there are two 
distinct monoclinic lattices, conventionally described by P and C cells, which 
are not interchangeable. 

Orthorhombic lattices - With arguments similar to those used for monoclinic 
lattices, it can be verified that there are four different types of orthorhombic 
lattice, which are conventionally described in terms of P, C, I and F cells. 

Tetragonal lattices - As a result of the four-fold axis, an A cell will always be 
equivalent to a B cell and therefore, to an F cell; indeed, the combination of the 
two lattice translations (0, 1/2, 1/2) and (1/2, 0, 1/2) gives the third translation 
(1/2, 1/2, 0) of the F cell (see Table 4). The latter is then transformable to a 
tetragonal I cell. A C cell is interchangeable with another tetragonal P cell. Thus 
only two different tetragonal lattices, P and I, are found. 
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Table 5. Transformation matrices, M, conventionally used to generate centered from 
primitive lattices, and vice versa, according to the relationship: A' = M A. 

1-+ P P-+I Rh -+ Robv Robv -+ Rh 

( -! ! 1 

) ( 0 1 i) ( 
a 1 1 

) (~ 
-1 -r) 1 _1 I 1 0 _I i I 1 

1 ~ -I 1 1 -£ _i i 1 
2 2" 3 3" 

Rh -+ Rrev Rrev -+ Rh F-+P P-+F 

( 1 -t 1 

) ( 1 0 -~ ) ( 0 t t ) ( -1 1 1 ) I I -1 1 1 0 1 -1 1 _i _I i I 2 

3 3 3" 1 1 t 0 1 1 -1 

A-+P P .... A B-+P P .... B 

( -1 0 

f) ( -1 0 0 ) ( 
_1 0 n ( -1 0 

~ ) _1 2 
0 0 -1 1 0 -1 0 -1 
0 ~ 0 1 1 1 0 1 0 2" 2 

C-+P P-+C 

( 1 1 

-~ ) ( 
1 1 j) 1 _I 1 -1 

2 2 
0 0 0 0 

(b) 

Figure 9. The rhombohedral lattice. The basis of the rhombohedral cell is labelled Q.h, bh and 
Ch (numerical fractions are calculated in terms of the Ch axis). (a) Obverse setting; (b) the 
same figure as in (a), projected along Ch. 
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Cubic lattices - For cubic lattices, symmetry requires that an A-type (or B or 
C) cell is also an F cell. There are three independent cubic lattices, P, I and F. 

Hexagonal lattices - Only the P hexagonal Bravais lattice exists and is described 
in terms of the conventional primitive cell (a = p = 900 and'r = 1200 and ratio 
a : b : c = 1 : 1 : c) described in section 4.2. 

'!Mgonal lattices - As in the case of the hexagonal lattices, all centred cells are 
transformable to the conventional P trigonal cell. As may be seen in Figure 9, 
due to the presence of a three-fold axis, some lattices can exist which may be 
described by a primitive cell of rhombohedral shape, with unit vectors all, bn, 
CIl, such that an = bn = Cll, all = f3n = 'rll, and the three-fold axis lies along 
the an + bll + CIl direction. Such lattices may also be described by the three 
triple hexagonal cells with basis vectors: 

8H = an - bn j bH = bn - cn j CH = an + bn + CIl or 

8H = bn - cn j bH = CIl - 8n j CH = all + bll + CIl or 

~=~-~j~=~-~jQ=~+~+~ 

which are said to be in obverse setting. Three further triple hexagonal cells, said 
to be in reverse setting, can be obtained by changing aH and bH into -aH and 
-bH. In conclusion, some trigonal lattices may be described by a hexagonal P 
cell, others by a triple hexagonal cell. In the first case, the nodes lying on the 
different lattice planes normal to the three-fold axis will lie exactly on top of 
each other. In the second case, these planes are shifted with respect to each 
other, in such a way that the nth plane will be superimposed on the (n + 3)th 
plane (see Figure 9). 

The 14 Bravais lattices are illustrated in Figure 10 by means of their con­
ventional unit cells. Each of these lattices will have a conesponding reciprocal 
lattice. It may be easily verified that the reciprocal of each type of crystal system 
will be a lattice of the same crystal system: the reciprocal of an F lattice is an 
I lattice and vice versa. 

5.3. Wigner-Seitz cells and Brillouin zones 

Other cells may also be used to describe the 14 Bravais lattices. If we regard 
the conventional cells, which are parallelepipeds, as particular types of polyhe­
dra, we can find several families of polyhedra with which we can fill up space 
by translation. A very important type of space filling is obtained through the 
Dirichlet construction. Each lattice point is connected with a line to its nearest 
neighbours and then, through the mid-points of all these segments, the planes 
perpendicular to them are traced. These intersecting planes will delimit a region 
of space which is called the Dirichlet region, Wigner-Seitz cell or Voronoi cell. Au 
example in two dimensions is given in Figure 11(a), and two three-dimensional 
examples are shown in Figure U(b). The Wigner-Seitz cell is always primitive 
and coincides with the Bravais cell when this is both rectangular and primitive. 
A construction identical to the Wigner-Seitz cell delimits in reciprocal space a 
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Triclinic 

Monoclinic 

Orthorhombic 

Tetragonal 

Cubic 

Trigonal 

Hexagonal 

Figure 10. The 14 three-dimensional Bravais lattices. 

cell conventionally known as the first Brillouin zone. There will be 14 first Bril­
louin zones corresponding to the 14 reciprocal Bravais lattices and that of an I 
lattice will look like a Wigner-Seitz cell of an F lattice and vice versa. As will 
be shown in the rest of this book, the Brillouin zones are very important in the 
study of lattice dynamics and in the band theory of solids. 

6. Space groups 

In section 3, we have seen that 32 combinations of either simple rotation or 
rotoinversion axes are compatible with the periodic nature of crystals. By com­
bining the 32 point groups with the 14 Bravais lattices, 73 space groups are 
obtained. Furthermore, if we also consider symmetry operations with transla­
tional components, such as screw axes and glide planes, the total number of 
possible combinations, i.e. of crystallographic space groups, becomes 230. Note, 
however, that when such combinations have more than one axis, the restriction 
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(b) 

Figure 11. Examples of Wigner-Seitz cells. 

that all symmetry elements must intersect in a point no longer applies. As a 
consequence of the presence of symmetry elements, several symmetry-equivalent 
objects (groups of atoms or molecules) will coexist within the unit cell. We will 
call the smallest part of the unit cell an asymmetric unit, which will generate the 
whole cell contents when the symmetry operations of thF space group are applied 
to it. The asymmetric unit is not usually uniquely defined and can be chosen 
with some degree of freedom. It is, nevertheless, obvious that when rotation or 
inversion axes are present, they must lie at the borders of the asymmetric unit. 
We can, therefore, define as a crystallographic space group, the set of symme­
try operations which, in a three-dimensional periodic medium, convert a given 
asymmetric unit into all its equivalent units. The space groups were first inde­
pendently derived by the mathematicians Fedorov (1890) and Schoenflies (1891) 
and are listed in Table 6. 

Here, we will simply introduce the main terms of the space group language, 
following the international notation of Herman-Mauguin, used in the Interna­
tional Tables for Crystallography [1]. Indeed, the aim of this section is to intro­
duce the reader to the use of these tables, which are an essential tool for the 
study of solid-state physics and chemistry. Each space group symbol consists of 
a letter (P, A, B, C, I, F, R), which indicates the type of centring in the con­
ventional cell, followed by a set of characters indicating the symmetry elements. 
Such a set is organized· according to the following rules: 

1. For triclinic groups, no symmetry directions are needed and only two space 
groups exist: PI and pI. 

2. For monoclinic groups, only one symbol is needed, which gives the nature of 
the unique dyad (two-fold) axis (proper and/or inversion). Two settings are 
used: y-axis unique or z-axis unique. 
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Table 6. The 230 three-dimensional space groups arranged by crystal systems and point 
groups. 

Cryatal system Pointpoup Spacepoupa 

1nc:linic I PI 
I pi 

MODOClinic 2 P2, P21, C2 
m Pm, Pc, em, Cc 
2/m P2/m, P21/m, C2/m, P2/c, P21/C, C2/c 

Orthorhombic 222 P222, P222h P21212, P212121, C2221 , C222, 
F222, 1222, 1212121 

mm2 Pmm2, Pmc21, Pcc2, Pma2h Pea21, Pnc2h 
Pum21, P1Io2, PM21, Pnn2, Cmm2, Cmc21, 
Ccc2, Amm2, Alm2, Ama2,A1Io2, Fmm2, 
FtIcI2, 1mm2, Ih2, ImA2 

mmm Pmmm, Pnnn, Pc:c:m, Pilon, Pmma, PnnG, 
Pmna, Peco, Pllam, Peen, P6cm, Pnnm, 
Pmmn, PIIen, Plica, Pnma, Cmcm, Cmco, 
Cmmm, Cccm, emma, Ceco, Fmmm, Ftldd, 
Immm., Ihm, Dca, Imma 

Tetragonal 4 P4, P41, P42, P4a, 14, 141 
i pi, Ii 
4/m P4/m, P442/m, P4/n, P42/n, 14/m, 141/0. 
422 P422, P4212, P4122, P41212, P4222, P42212, 

P4322, P43212, 1422, 14122 
4mm P4mm, P46m, P42cm, P42nm, P4cc, P4nc, 

P42mc, P4211c, 14mm, 14cm, 141m4, 141ctl 
im pi2m, Pi2c, Pi21m, Pi21C, P4m2, Pia, 

P462, Pin2, Iim2, lia, li2m, li2d 
4/mmm P4/mmm, P4/-. P4/nlm, P4nnc, P4/mbm. 

P4/mnc, P4nmm, P4/ncc. P42/1DJ1J1!, P42/mcm, 
P42/nIIc, P42/nnm, P42/mIIc, P42/mnm, P42/nmc, 
P42/nc:m,14/mmm,I4mcm,141/a.md, 141/a.ctl 

1ngonal-hexagonal 3 P3, P31, P31, R3 
3 pa,R! 
32 P312, P321, P3t12, P312l, P~12, 

P~21,R32 
3m P3mI, P31m, P3cI, P3lc, 83m, R3c 
3m P32m, P32c, PLaI, P3cI, R3m, RIc 
6 P6, P6t, P6a, ~, ~, P6t 
i pi 
6/m P6/m,~/m 
622 P622,P6t22,PS.22,P~22,P6t22,P6322 
6mm P6mm, P6cc, ~cm, ~mc 
8m Fihn2,PiC2,~,P62c 
6/mmm ~ P6mcc, ~/mcm, P6a/mmc 

Cubic 23 P23, F23,I23, P213, 1213 
au! Pm3, Pn3, Fm3, Ftl3, Im3, Pa.3, 1a.3 
432 P432, P4232, F432, F4132, 1432, P4332, 

P4132,14132 
43m pi3m, Fi3m, lia, pian, Fi3c, li3d 
m3m Pm3m, PDia, ~ Pn3m, Fm3m, 

Fcf3m, Fd3c, Fm3c, Im3m, Ia.3d 
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3. For orthorhombic groups, the three dyads (proper and/or inversion) along 
x, y and z are given in sequential order. Thus Pca21 means: primitive cell, 
glide plane of type c (translational component along z) normal to the x-axis, 
glide plane of type a (translational component along x) normal to the y-axis 
with a two-fold screw axis along z. 

4. For tetragonal groups, first the tetrad (proper and/or inversion) axis along 
z is specified, then the dyad (proper and/or inversion) along x is given, and 
after that the dyad along [110] is specified. For instance, P4a/nbc denotes a 
space group with primitive cell, a 4a screw axis along z, to which a diagonal 
(n) glide plane is perpendicular, a glide plane of type b normal to x, and a c 
glide plane normal to [110]. Because of the tetragonal symmetry, the x and 
y axes are equivalent and there is no need to specify the symmetry along y. 

5. For trigonal and hexagonal groups, the triad or hexad (proper and/or inver­
sion) along the z-axis is first given, then the dyad along x and after that 
the dyad along [110] is specified. For example, P63mc has a primitive cell, a 
six-fold screw axis 63 along z, a reflection plane normal to x and a c glide 
normal to [110]. 

6. For cubic groups, the order is: dyads or tetrads (proper and/or inversion) 
along x, followed by triads along [111] and dyads along [110]. Thus F4132 
has a face centred cell, a 41 axis along x, a three-fold rotation axis along 
[111] and a two-fold rotation axis along [110]. 

For a given space group, lattice symmetry directions that carry no symmetry 
elements are represented by the symbol '1', as in P3m1 and P31m. In general, 
the '1' at the end of the space group symbol is omitted, as in P6 (instead of 
P611) or F23 (instead of F231). We note that: 

- The 73 space groups obtained from combinations of the Bravais lattices with 
symmetry elements which have no translational components are called sym­
morphic space groups. Examples are: Pm, P222, Cmm2, F23, etc. 

- Many compounds, such as biological molecules, are enantiomorphic and will 
then crystallize in space groups with no inversion centres or mirror planes; 
there are 65 groups of this type. 

- Among the 230 space groups, there are 11 enantiomorphic pairs: P31-P3a, 
P3d2-P3a12, P3121-P3a21, P41-P4S, P4122-P4s22, P41212-P4s212, P61-
P6s, P6a-P64, P6122-P6s22, P6a22-P6422, P4132-P4332. If one chiral form of 
an optically active compound crystallizes in one of the two enantiomorphic 
space groups, the other form will crystallize in the other. 

- ':fhe point group to which a given space group belongs may be obtained from 
its symbol by omitting the lattice indication and by replacing the screw axes 
and the glide planes with their corresponding symmorphic symmetry ele­
ments. For instance, the space groups P4a/mmc, P4/nnc, I41/acd all belong 
to the point group 4/mmm. 

- The frequency of the different space groups is not uniform. Organic com­
pounds tend to crystallize in those space groups which permit close packing 
of objects of irregular shape. It may be understood intuitively that this close 
packing is better achieved when screw axes and glide planes are present. 
Indeed, these symmetry elements, through their translational components, 
facilitate the approach of concave and convex parts of an irregular molecule 
in crystal formation. 
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Figure 12. (a): The space group Ceca, as described in Volume A of the International Tables 
of Crystallograph.y [1]: Origin Choice 1. 
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Figure 12. (b): The space group Ceca, as described in Volume A of the InteNl.IJtional Table6 
of Crystallograph.y [1]: Origin Choice 2. 
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Figure 13. The space group P4222, 811 described in Volume A of the International Table. 0/ 
Org.tallogmph, [1]. 
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As we have already mentioned, the standard description of the crystallographic 
space groups is contained in Volume A of the International Tables of Crystallog­
raphy [1]. For each space group the Tables include an extensive set of descriptors. 
In Figures 12 and 13, the space groups Ccca and P4222 are shown as examples. 
Here is an outline of the information most relevant to this course. 

Figure 14. (a) A P212121 crystal 
structure and its symmetry elements 
(G. Chiari, D. Viterbo, A. Gaetani 
Manfredotti and C. Guastini (1975), 
Cry st. Strv.ct. Commv.1l., 4, 561) and 
(b) a P2I/ c crystal structure and its 
symmetry elements. Glide planes are 
emphasised by the shading (M. Cal­
leri, G. Ferraris and D. Viterbo (1966), 
Acta Cryst., 20, 73). For clarity, hy­
drogen atoms are not shown in either 
figure. 

1. The first line gives the abbreviated international Herman-Mauguin and 
Schoenflies symbols of the space group, the point group symbol and the 
crystal system. 

2. The second line gives the sequential number of the space group, the full in­
ternational Herman-Mauguin symbol and the so called Patterson symmetry 
(this corresponds to the point group symbol, preceded by the lattice symbol 
and we shall not consider it further). The short and full versions of the sym­
bols differ only in some space groups. While in the short symbols symmetry 
axes are suppressed as much as possible, in the full symbols, axes and planes 
are listed for each direction. 

3. When needed, the third line gives the chosen unique axis, settings, origin 
choices or reference axes. 

4. Two types of space group diagrams (as orthogonal projections along a cell 
axis) are given: one shows the arrangement ofthe symmetry elements and the 
other, the position of a set of symmetry equivalent points. Close to the graph­
ical symbols of a symmetry plane or axis parallel to the projection plane, the 
'height' is printed as h, a fraction of the shortest lattice translation normal 
to the projection plane (unless h = 0). For some space groups, the diagrams 
illustrating the arrangement of the symmetry elements are shown in more 



26 Davide Viterbo 

than one projection. In the most recent edition of the Tables, for the cubic 
groups, the second type of diagram is shown as a stereo pair. 

5. Information is next given concerning the chosen origin position (see later), 
the definition of the asymmetric unit, the list of symmetry operations with 
their positions and the symmetry generators (the minimum set of symmetry 
operations of the group from which all the others are derived). 

6. The block positions (called also Wyckoff positions) contain: (a) the general 
position, a set of symmetry equivalent points, each of which is left invariant 
only by application of the identity operation and (b) a list of special positions. 
A set of symmetry equivalent points is in a special position if each point is left 
invariant by at least two symmetry operations of the space group; this usually 
happens when the points are on a symmetry element or at the intersection 
of more than one symmetry element. For instance, a point on a three-fold 
rotation axis is left invariant not only by the identity, but also by the rotation 
itself. The first three columns of the block give the multiplicity (number of 
equivalent points per unit cell), the Wyckoff letter (a code scheme starting 
with a at the bottom position and continuing upwards in alphabetical order) 
and the site symmetry (the group of symmetry operations which leave the 
site invariant). The symbol adopted for describing the site symmetry has the 
same sequence of symmetry directions as the space group symbol and a dot 
marks the directions which do not contribute any element to the site symme­
try. In the next column, the fractional coordinates of the Wyckoff positions 
are given. We note that, by definition, the general position always has site 
symmetry 1. For this position, each fractional coordinate is preceded by a 
number between parentheses, which is the same number preceding the corre­
sponding symmetry operation listed in a previous block. For structures, such 
as molecular crystals, in which a formula unit is well defined, crystallographic 
papers give the number of 'molecules' in the unit cell (usually denoted by 
the letter Z). If the molecules, as in the case of the structure illustrated in 
Figure 6 (a), are in a general position, Z is equal to the multiplicity of the 
general position (in P212121, Z = 4). In the structure shown in Figure 6 (b), 
the centre of the molecule lies on an inversion centre and the asymmetric 
unit is formed by half a molecule; Z is then equal to the multiplicity of the 
special position at site I (in P21/c, Z = 2), which is half that of the general 
position. We shall not consider the final column which contains the reflection 
conditions, which are important for diffraction experiments, nor describe the 
information given in the remaining blocks, which have not been reproduced 
in Figures 12 and 13. 

6.1. Choice of origin 

The characterization and description of crystal structures are greatly simplified 
by the choice of a suitable origin. In the International Tables, the following 
conventions are used. 

- For centrosymmetric space groups, the origin is normally chosen on an in­
version centre. An alternative choice is given if the space group possesses 
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points of high site symmetry not coincident with the inversion centre. Thus 
for Pn3n, two origin choices are considered: at -1-1-1 from the centre of43m 
and at the centre of 3m. 

- For non-centrosymmetric space groups, the origin is chosen at the point of 
highest site symmetry (e.g. the origin for P4c is chosen to be at 41c) or 
at a point conveniently placed with respect to the symmetry elements. For 
example, on the 21 axis in P211 on the glide plane in Pc, at 1a21 in Pca21 or 
at a point symmetrically surrounded by the three screw axes in P212121. 

6.2. The plane groups 

In two dimensions, 17 plane groups may be defined. They are listed in Table 7. 

Oblique cell 
Rectangular cell 
Square cell 
Hexagonal cell 

Table 7. The 17 plane groups. 

p1,p2 
p~,pg,CD1,p3nun,p3mmg,p2gg,c2mm 

p4, p4mm, p4gm 
p3, p3~1, p32~. p6, p6mm 

In the symbols, the lattice letter is lower case and g is a glide reflection line. 
The 17 plane group diagrams are shown in Figure 15 and the ways by which 
they repeat a given motif are shown in Figure 16. It should be noted that any 
periodic decoration of a plane surface, such as a floor, wall or fabric, will belong 
to one of these plane groups. Some very beautiful examples are given in reference 
[10], where many drawings and paintings of the Dutch painter M.e. Escher are 
reproduced. 

6.9. Matriz representation of symmetry operators 

A symmetry operation acts on the fractional coordinates (z, y, z) of a point P to 
obtain the coordinates (z', 11', z') of a symmetry equivalent point P'. In matrix 
notation, this transformation is written as 

x' = ( ~ ) = (:: : ::) ( : ) + ( : ) = RX + T (22) 

z Rst RS2 Rss z . Ts 

The matrix R is the rotational component (proper or improper) of the symmetry 
operation, while T is the matrix of the translational component. As an example, 
let us consider the space group Ccca (origin choice 1) shown in Figure 12. In 
the block 'positions', we can see that under the operation number (2) (a 2-axis) 
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through the 17 plane groups. 

a point at (z, y, z) is moved to (-z + i, -y + i, z). Using matrix notation, this 
operation is represented as 

( 
-z+ i) ( 
-y+i 0 

z 0 

-1 o 

-1 

o 

It may easily be seen that all rotation matrices have a determinant equal to 
±1 (the + sign corresponds to a proper rotation and the - sign to an improper 
rotation) and their elements have values 0, 1 and -1. 
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Summary. Reciprocal space vectors, Bloch Functions and periodic bound­
ary conditions are introduced and discussed. The 7r bands of two-dimensional 
graphite are obtained with a model hamiltonian and are used to illustrate the 
effect of translational symmetry on the wave function. 

Key words: Reciprocal Lattice - Brillouin Zone - Bloch Theorem - Bloch 
functions - Periodic Boundary conditions - Band Structure - Density of states 

1. Introduction 

In this chapter, some concepts of band theory are introduced with reference to 
the electronic states of a crystalline compound. Most of these concepts, which 
are related to the periodic nature of the solid, can be applied to the single 
particle spectrum obtained from other "parts" of the hamiltonian: for example, 
there is a vibrational band structure of the solid (phonons; see Chapter 12) and 
the magnetic properties of a crystal can be also described in terms of a spin 
hamiltonian whose eigenvalues are organized in bands [1, 2]. 

For a chemist, probably the most immediate intuition of a solid is as a large 
molecule, and actually many chemical properties can be understood with this 
model. Quantum mechanical approaches exist (see Chapter 13 ) for the inves­
tigation of local properties of solids (local defects, d spectrum of a transition 
metal in an ionic compound, core electron properties), which treat the solid as 
a molecule or a cluster of atoms perturbed by the rest of the infinite system. 
However, for most of the crystalline properties, it is necessary to take into ac­
count, explicitly, the infinite nature of the system. In a brute force extension of 
the familiar LCAO (Linear Combination of Atomic Orbitals) scheme to solids, 
one would need to consider a very large number of basis functions, and work 
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with unmanageably large matrices in the solution of the eigenvalue problem. 
However, if translational symmetry is taken into account and Bloch functions 
(see below) are used to form representative -sets, which are the bases for the 
irreducible representations (IRs) of the translation group (TG), the problem is 
factorized into n problems of dimension m, where n is the number of IRs of 
the TG, and m the number of basis functions within the unit cell. In fact, a 
general theorem of quantum mechanics [3] states that matrix elements of totally 
symmetric operators (as the hamiltonian is) between functions which are bases 
for different IRs (or different rows of the same IR) of the group are zero. 

The calculated electronic band structure is the eigenvalue spectrum resulting 
from a single particle approach (within the Hartree-Fock, density functional 
theory or other formalisms), to the problem of the electronic wavefunction of a 
periodic solid. The difference with respect to the molecular case is due to the 
fact that symmetry plays such a fundamental role in solids that it is convenient 
(as discussed above) to identify each crystalline orbital CO (the equivalent of 
the molecular orbital, MO) with two labels, one (k) for the IR of the translation 
group to which the CO belongs, and another (n) ordering the eigenvalues, E:~, 
related to the COs at given k: tP~. 

In this chapter, we will discuss the relationship between the translational 
invariance of the hamiltonian and k vectors through the Bloch theorem, and 
explain why t"~ and tP~ are continuous functions of k, while remaining discrete 
with respect to n, as in the molecular case. The continuous nature of t"~ entails 
the problem of counting the number of states in a given energy interval; to this 
purpose, we will introduce the definition of Density of States (DOS); the vector 
nature of k requires a careful definition of the surface, separating, according 
to the Aufbau principle, empty and occupied states; the Fermi energy and the 
Fermi surface need to be defined. The infinite order of the translation group, 
which entails an infinite number of eigenvalues and eigenvectors, does not create 
unsolvable problems, because the above mentioned continuity in k space of t"~ 
and tP~(r) can be exploited by solving the secular equation for a suitable finite 
number of k points, and then interpolating the k dependent functions of interest 
(see Chapter 4 for details). 

2. Reciprocal lattice 

In the previous Chapter, the unit vectors of the direct (a, h, c) and reciprocal 
(a*, h*, c*) lattices were introduced. We will use from now on the notation at, 
a2 , sa instead of a, h, c, and hb h2' h3 for 211"a* ,211"h* ,211"c·. We then have (see 
Chapter I, eq. (13»: 

for i,i=I,3 

The scalar product of two vectors, k = Li kihi and r = Li riSi, becomes 

3 

k . r = 211" L kiri 
i=l 

(1) 

(2) 

The reciprocal lattice can be generated by analogy with the direct lattice through 
the relation: 
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3 

Km = 2:mibi 
i=l 

33 

(3) 

where the m. are integers (positive, negative or zero). The difference between k 
and Km must be noted: ki coefficients are not required to be integers. 

With our choice of the length of the reciprocal unit vectors, it may be immedi­
ately verified that: 

exp(iK· T) = 1 (4) 

for all couples of reciprocal (K) and direct (T) lattice vectors. 
When the vectors ai are orthogonal, equation (1) is satisfied if each bi is 

parallel to a., and has a length 211"/ I a. I , whence the name reciprocal vector. 
The relation between as and b. vectors in the case of two-dimensional hexagonal 
graphite is illustrated in figure 1. Suppose we are now interested in finding all 

Figure 1. Direct (al and a2) and reciprocal (bl and b2) lattice vectors of two-dimensional 
graphite. 

the k vectors which generate different values for the function exp(ik . T), where 
T is any direct lattice vector. It is easily seen from equation (4) that vectors k' 
and k which differ by a reciprocal lattice vector K give the same value for the 
exponential function, that is, they are equivalent. Only the points in the zero 
(or reference) reciprocal cell (or any other cell obtained from it by translation) 
need then to be considered. An alternative and totally equivalent choice which 
is frequently used refers to the so-called First Brillouin Zone, or simply the 
Brillouin Zone (BZ), whose points, K., have the property of being at the shortest 
distance from the origin among the infinite equivalent points k=K.+K, with K 
running over all the reciprocal lattice vectors (see Chapter 1, Section 5.3). The 
BZ of the two-dimensional graphite lattice is shown in figure 2. 

3. The Bloch theorem 

Let T be a translation operator, associated with the Bravais lattice vector T, 
that shifts the argument of any function, F(r), by T: 

TF(r)=F(r+T) (5) 

If F(r) is the product of the Hamiltonian, H(r), times a generic function, 1jI(r), 
we obtain: 
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Figure 2. Fint Brillouin Zone (BZ) of two-dimensional graphite. Symbols for the special 
points (capitalletten) and lines (lower case letter) are indicated. The irreducible part of the 
BZ (mZ) is the triangle r-p-Q (or any other triangle obtained from it using one of the point 
symmetry operaton). Q', Q~, Q~ are obtained by translating Q, Ql and Q2; Ql and Q2 are 
obtained from Q by a rotation of 11'/3 and 211'/3. 

TH(r)1/J(r) = H(r + T)1/J(r + T) = H(r)1/J(r + T) = H(r)T1/J(r) (6) 

where the second step follows from the periodic nature of H (the kinetic energy 
operator is invariant to any translation; the potential operator, V(r), is periodic 
by hypothesis). Equation (6) must hold for any 1/J function at any r point; which 
implies that: 

TH=HT (7) 

that is, H commutes with the space (as well as the point) symmetry operators of 
the space group. A fundamental theorem of quantum mechanics [4] states that, 
when two operators commute, it is possible to choose the eigenvectors of the 
first to be also eigenvectors of the second (if the levels are not degenerate, the 
theorem simply states that the eigenvectors of the first operator are eigenvectors 
also of the second): 

H1/J = E1/J 

T1/J = .,.(T)1/J 

(8) 

(9) 

Let us consider now the application of two translation operators to the function 
1/J: 

Tfi1/J(r) = T1/J(r + T') = 1/J(r + T + T') = TVT1/J(r) = fit1/J(r) (10) 

where fit is the translation operator associated with the lattice vector: 
T" = T + T'. Therefore, the translation operators commute and the group is 
Abelian [4]: 

(11) 

and then, combining (9) and (11), we get: 

ITt1/J(r) = .,.(Th(T')1/J(r) = .,.(T")1/J(r) = .,.(T + T')1/J(r) (12) 

whence 
.,.(T + T') = .,.(Th(T') (13) 
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The general Bravais lattice vector Tn is a linear combination of the primitive 
vectors of the Bravais lattice with integer coefficients: 

Tn = nlal + n2a2 + naaa 

Equation (13) then takes the form: 

-y(Tn) = -y(alt1 -y(a2t'-y(aat3 

(14) 

(15) 

With no loss of generality, the number -y(aj) can be written in exponential form: 

-y( aj ) = exp(211"ikj) 

Equation (15) then becomes: 

-y(Tn) = exp[211"i(nlkl + n2k2 + naka)] 

If we define a reciprocal vector k with components ki: 

k = k1b1 + k2b2 + kaba 

(16) 

(17) 

(18) 

and remember the property given in eq. (1), then eq. (17) can be written in a 
more compact form: 

-yeT) = exp( ik . T) 

Substituting back (19) into (9), we obtain: 

TtjJk(r) = tjJk(r + T) = exp(ik . T)tjJk(r) 

(19) 

(20) 

which is the Bloch theorem. It must be noticed that eq (20) has been obtained 
for a one-electron hamiltonian of the form ii = -r + VCr), under only one 
assumption: the periodic nature of the potential. It is easily generalized to any 
one-electron hamiltonian which includes, in some way, electron-electron interac­
tions, such as the Fock or the Kohn-Sham hamiltonians (see Chapter 3), provided 
that the electronic structure reflects the symmetry of the lattice, as is normally 
the case for the ground state. Exceptions may be found in magnetic crystals, 
where it may be necessary to consider unit cells larger than the crystalline cell 
(see Chapter 14). 

Each eigenfunction of the periodic Hamiltonian if can then be labelled with 
k, according to its translational properties (eq. 20). The k vector can be chosen 
in the BZ, because any k' external to the BZ can be written as k' = K. + K, 
where K. is within the BZ and K is a reciprocal lattice vector; 

exp( ik' . T) = exp[i( K. + K) . T] = exp( iK. . T) 

The Bloch theorem can be cast in a different way; we can write: 

tjJk(r) = exp(ik . r)w(r) 

where 
w(r) = exp( -ik . r)tjJk(r) 

is immediately shown from eq. (20) to be a periodic function of r: 

w(r + T) = exp[-ik· (r + T)]tjJk(r + T) = 

(21) 

(22) 

(23) 

= exp(-ik. r)exp(-ik. T)exp(ik· T)tjJk(r) = w(r) (24) 

A function defined as in eq. (22) is called Bloch function (BF). 
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4. The periodic boundary conditions 

Our model of the solid is as follows: the system is finite, but macroscopic; for 
simplicity, we can suppose that it is a parallelepiped containing N = Nl . N2 . N3 
unit cells, whose sides are Ni . Iii. The electrostatic potential, the atomic posi­
tions and the electron charge distribution close to the surface are different from 
those at the center of the finite crystal. However, due to the macroscopic na­
ture of our system, the number of atoms perturbed by surface effects is a small 
fraction of the total number of atoms (in a cubic box of side a, if surface effects 
penetrate for .1x, the fraction of perturbed volume is 6a2.1x / a3 , which tends 
to zero when a tends to infinity). This argument requires further comment and 
a deeper discussion is given in ref.s [10, 11]; in fact, unscreened electric charges 
at the surface would create an, electrostatic potential decaying very slowly (l/r) 
within the bulk; in this case, bulk properties would be influenced by the nature 
of the surface (charge and shape). 

Under normal conditions, we can expect the bulk properties (electron charge dis­
tribution, energy per atom, single particle spectrum, vibrational frequencies, 
etc) to be insensitive to the surface, and also to the boundary conditions im­
posed on the wavefunctions. Among the many possible choices for the boundary 
conditions, the most convenient ones from a computational point of view are 
then chosen. The usual assumption is that the finite crystal is part of an infinite 
crystal, and it is delimited in a purely formal way. It is then assumed that the 
(single particle) wavefunction obeys the following condition (Born- Von Karman 
or periodic boundary conditions): 

for j = 1,3 

If this condition is applied to the Bloch function, one gets (eq. 20): 

,pk(r + Njaj) = exp(iNjk· aj ),pk(r) = ,p(r) 

which implies: 

(25) 

(26) 

(27) 

This may be written, remembering the definition (18) and the property (1), as: 

exp(21riNjkj) = 1 (28) 

which is satisfied if: 
kj = nj/Nj (29) 

with nj integer. The above equation shows that, because of the periodic boundary 
conditions, vectors k are real; the general K. vector inside the unit reciprocal cell 
is defined as: 

(30) 

From equation (30), each K. point can be attributed a small parallelepiped with 
edges bj/Nj and volume 11K.: 

11K. = (hI/Nt)· (b2/N2) x (h3/N3) = [hI . (h2 x b3)]/N = VBz/N (31) 

The quantity in square brackets is the volume of the reciprocal lattice cell (or 
of the BZ, VBZ), which is equal to (21r? /V (where V is the volume of the 
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direct lattice cell). This results from equation (1) and is obvious in the case of 
orthogonal aj vectors. Equation (31) can therefore be recast as: 

11K. = (21r)3 / (V N) (32) 

which shows that the number of K. points in the reciprocal primitive cell or in 
the BZ is equal to N, the number of unit cells in the crystal. 

We can show, at this point, that e: is continuous in K. and discrete in n. If we 
substitute eq. (22) in the Schrodinger equation (8) and eliminate the exponential 
factor from both sides, we obtain the following equation for the periodic function 
w(r): 

(33) 

where U(r) (the periodic potential) and wK.(r) must have the same periodic­
ity, which allows us to look at the above equation as referring to the unit cell 
volume. That is to say, eq. (33) is an hermitian eigenvalue problem referring 
to a finite volume. On general grounds, such an eigenvalue problem is expected 
to have an infinite set of solutions, w:(r), with discretely spaced eigenvalues, 
e:(r), labelled by n. On the other hand, the hamiltonian, in the above equa­
tion, contains K. as a continuous parameter, and therefore, again on the basis of 
general considerations, the solutions w:(r) and the corresponding eigenvalues 
vary with continuity as a function of K.. 

In many situations, k-dependent functions must be summed over all the K. val­
ues within a portion of the BZ; in the limit of infinite N, the sum is replaced by 
an integral as follows: 

(34) 

where the prime indicates that the sum (integral) extends only to the points in 
the selected region of the BZ, and the weighting factor results from the discussion 
following equation (32). 

5. Bloch functions 

We can summarize the results of the two previous sections as follows: 

a) the eigenvectors of the periodic hamiltonian must satisfy the Bloch theorem 
(eq.20); 

b) different eigenfunctions can satisfy the Bloch theorem for the same K. value; 
this implies that the eigenvectors of our hamiltonian are also labelled with an 
n index: tfJ:(r). In group theory language, K. labels one of the (infinite, one­
dimensional) IRs of the abelian translation group; tfJ:(r) is a basis function 
of that representation; 

c) there are as many solutions as there are non-equivalent K. points; the num­
ber of K. points is N, the number of cells in the crystal. As the crystal size 
increases, the K. points get closer and closer; at the limit of an infinite (and 
therefore, also for a finite but macroscopic) lattice, K. becomes a continuous 
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variable that can take on all the possible values within the BZ, and expres­
sion (34) can be used to perform all the summations that are needed. 

In solid state computational chemistry and physics, the unknown single-particle 
crystalline wavefunction, ""~(r), is expanded in a finite set of BFs, tfJ::(r): 

""~(r) = E c:ntfJ:(r) (35) 
p 

The coefficients, C::n, are determined variationally by solving the set of coupled 
matrix equations (see eq. 26 in Chapter 3): 

H" c" = 8" c" E" 

(C")+8"C" = I 
(36) 

(37) 

where H" is the hamiltonian matrix in the basis set of the tfJ1'(r) functions; 8" 
is the overlap matrix among these functions (8" = I if the basis functions are 
orthogonal); C" is the matrix of the variational coefficients, C::n; and E" is the 
diagonal matrix of the single particle eigenvalues, e:. Two basic types of BFs 
are used for the expansion (35): 

a) localized functions, or atomic orbital (AO) based BFs: 

tfJ:(r) = E exp(i" . T)'Pp(r - Arp - T) (38) 
T 

where JJ labels the AOs in the unit cell, and Arp is the position (in the reference 
or zero cell) of the atom on which the atomic orbital 'P is centered. The AOs 
are usually linear combinations of the products of Gaussian functions by 
real, solid harmonics [10,12, 13]; Gaussian functions are usually preferred to 
Slater functions because of their analytical properties. It is easy to see that 
the function defined in equation (38) satisfies Bloch's theorem: 

tfJ:(r+T) = E exp(i". T")'Pp(r - Arp-T" + T) 
Til 

= E exp[i" . (T' + T)]'Pp(r - AIP-T') 
T' 

= exp(i,,· T)tfJ:(r) (39) 

where T' = Til - T; the summation index has been changed from Til to T' 
because all the lattice vectors are spanned in both cases. 

b) Plane waves: 
tfJ~(r) = exp[ir·(" + K)] 

The plane waves also satisfy Bloch's theorem: 

(40) 

tfJ~(r + T) = exp[i(r + T).(" + K)] = exp(i" . T) exp[ir·(" + K)] 
= exp(i". T)tfJ~(r) (41) 
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In both equationS (38) and (41), normalization factors have been disregarded. 
It should be appreciated that there is a very large difference between the two 
kinds of basis functions; for example, the number of AO-based BFs that can 
be built does not depend on the size of the unit cell, but rather on the number 
of atoms in it; the number of PW-based BFs, below a given kinetic energy 
cutoff (see Chapters 4 and 6), on the contrary, depends on the unit cell size 
and shape, but not (explicitly) on the number or type of atoms in the unit 
cell. Another important difference is that the plane waves 4>~ and 4>~1 are 
orthogonal, whereas AO-based BFs are not. 

6. Band Structure: general comments 

Examples of the electronic band structure of a metal (aluminum), a semicon­
ductor (silicon) and an ionic compound (NaCl) obtained with the Local Density 
Approximation (LDA) approach are reported in Chapter 10. In the NaCI case, 
the bands are very flat (very small dispersion, that is, very small dependence 
on the No vector), and the band gap (energy difference between the highest oc­
cupied and lowest empty eigenstate) very large; at the opposite extreme, in the 
metallic case, the dispersion is large and there is continuity between valence and 
conduction (lowest non-occupied) bands. The Si band structure is intermediate 
(semiconductor). The reported band structures refer to two lines only in the 
First Brillouin Zone, r - X and r - L (see fig. 3), which contain, however, the 
most significant points; for each band, the eigenvalue at a generic No point will fall 
within the eigenvalues at the special points. The notation for the special points 

Figure 3. First Brillouin ZOne for the face-centered cubic lattice. Points and linea of symmetry 
are indicated. Note in particular that X and L are at the center of the square and hexagonal 
faces, respectively. 

is ~ry old [5]; for the simplest lattices it can be found, for example in Slater's [6] 
and Callaway's (7) books. At rand L the band structure presents degeneracies, 



40 Roberto Dovesi 

which are a consequence of point symmetry (see, for example, refs. [8, 9] for a 
discussion of these aspects). 

The general features of the bands obtained with the Hartree-Fock (HF) and 
LDA hamiltonians are very similar, the most evident difference being the energy 
scale: the HF bandwidths and bandgaps are always larger (by a factor 2 to 4) 
than the LDA ones. This difference is not related to the use of a finite basis set 
or to some numerical inaccuracy, but depends in an essential way on the dif­
ferences between the HF and Kohn-Sham hamiltonians .. The question "Which 
is the more correct: the HF or LDA band structure?" entails another question: 
"Can we compare the band structure to some physical observable, in particular 
to the optical spectrum?". For a long time, the quality of a periodic ab initio 
calculation has been judged on the basis of the agreement with the experimen­
tal band structure. However, the HF and LDA eigenvalues can be related only 
very vaguely (see comments on this point in Chapter 3) to this quantity, which 
requires an appropriate description of both the excited and the ground states. 
In spite of these limitations, the calculated band structure is a useful qualita­
tive tool for the description of the electronic structure of crystalline systems. In 
Chapter 13, for example, the band structure is used to describe the modifications 
resulting from cutting the infinite crystalline system and creating a surface. 

In many situations, the HF and LDA approaches give very similar ground 
state properties, in spite of large quantitative differences in the band structure. 
The reasons for this are: 

a) The ground state properties involve only the occupied single particle states. 
b) In the sum over the occupied crystalline orbitals, to be performed for cal­

culating any ground state property, the numerical value of the eigenvalue is 
not involved. 

c) The total energy of the system is NOT equal to the sum of the occupied e::;:. 
In other situations, the two methods provide a qualitatively different description 
of the occupied manifold that entails also large differences in the ground state 
electronic properties: systems which are insulators at the HF level and metal­
lic at the LDA level; transition metal insulators which show a different energy 
ordering in the d states, and then differences in the magnetic properties. As a 
last comment, we remember that the ab initio techniques described in Chap­
ters 8, 9, 10 and on which the WIEN, PWSCF and CRYSTAL codes are based, 
are self-consistent schemes, in which the solution at cycle n is used to build the 
effective hamiltonian at cycle n + 1. At each cycle, the effective hamiltonian is 
then diagonalized at a given set of K. points, the number of occupied energy 
levels is determined, the new density matrix is built, the new hamiltonian is 
calculated, and so on. 

There are two aspects in this process which are related to the present dis­
cussion: a) how the K. points in the Brillouin Zone are chosen; and b) how the 
eigenvalues at a given K. point are occupied. As regards the first point, which 
will be discussed at length later on (in Chapter 4, in particular), we simply re­
call here that, in genera.l, a commensurate net of non-equivalent K. points in the 
BZ is used; the integration over the BZ is then replaced by a weighted sum; the 
number of terms in the sum necessary to give reasonable results is determined by 
using nets with increasing numbers of points, and monitoring the convergence 
of the most important properties, in primis, the total energy. As regards the 
second point, we recall once again that the total energy of the system is not 
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simply the sum of the eigenvalues: at each cycle of the SCF process, the total 
energy resulting from filling the eigenvalues with lowest energy, according to the 
Aufbau principle, is in general lower than that resulting from a different filling 
scheme; this is true, in particular, when the energy gap is large; when, however, 
the gap reduces to a fraction of an eV, it could happen that anti-Aufbau filling 
would produce a lower energy than the canonical Aufbau scheme. 

7. Band Structure: a simple example 

In this section, we consider a very simple example, the 1r bands of two­
dimensional graphite, in order to illustrate some of the features of the band 
structure. We will consider BFs built on atomic orbitals (s,p) centered on the 
two atoms of the unit cell (see figure 1). The s, pz: and py AOs have the appropri­
ate symmetry for building states symmetric with respect to the graphite plane 
(0" states), whereas pz AOs contribute to 1r states. At any given K, point, 1r states 
are a linear combination of BFs with the appropriate symmetry, that is, in our 
case, built on the pz AOs. In a minimal basis set scheme, at each K, point we can 
build two BFs of 1r symmetry, one with the pz AOs centered on atom A, the other 
on atom B (see figure 1). As discussed in the previous section, it is sufficient to 
focus on special points which, in the graphite case (see figure 2), are r, Q and P. 

K, = r = (0,0) 
At this special point, BFs reduce to a sum of pz functions, each centered on 
atom A (¢~) or B (¢~). In figure 4, the structure of ¢~ is shown. 
If we adopt a simple Extended Huckel type hamiltonian, we can also estimate the 

Figure 4. Top view of the graphite two dimensional lattice and of 4Jj;(r), the BF at K = r 
built from the pz atomic orbitals centered on atoms of type B. 

relative strength of the interaction between the two BFs at the different K, points. 
According to this model, in the AO basis, only diagonal and first neighbour 
matrix elements must be taken into account (the values being indicated as Q and 
f3 respectively); next-nearest neighbours and farther interactions are disregarded. 
The other assumption of the method is that basis functions are orthogonal, so 
that equation (36) simplifies to the case S=I. We must then evaluate the 2 x 2 
Huckel matrix, with the above prescriptions. Let us begin with HAA: 

HiA = ~ L~::)lPA(r - SA - T')lhllPA(r - SA - T)} 
T T' 
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= ~)cpA(r - SA)lhlcpA(r - SA - T») = a 
T 

where the N-1 factor comes from the N-1/2 normalization factor of each BF, 
the second step is justified because the T summations extend to all lattice vec­
tors; the last step is due to the fact that the first neighbours of the central A 
atom are of type B, meaning that only the diagonal (T = 0) contribution is 
different from zero. Operating in the same way for the off-diagonal elements, 
we obtain HIB = 3{J (each atom A has three B neighbours). We need then to 
diagonalize the following matrix: 

( a 3{J) 
3{J a 

whose eigenvalues are a ± 3{J. The splitting of the two bands is 6{J. Since, in this 
case, we have one 11' electron per atom, only the lowest state is occupied. 
At the point Q: 

,,= Q = (1/2,0) 
The exponential factor in eq. 38 becomes (T = mal + na2): 

. {I ifm is even } 
exp(.m1l') = -1 if m is odd 

Note that at Q, as at r, the BFs are real. The BF centered on atom B is shown 
in figure 5. The BF'on atom A, or those for the point QI = (0, 1/2) (see figure 2) 

Figure 5. Same as figure 4 for .~(r); Black circles indicate negative values. 

can be easily obtained by translation and a rotation through 11'/3. The matrix 
elements of the Hiickel matrix are easily evaluated: HjA = a, because, as in 
the previous case, only the T = 0 term is different from zero. For HjB' the 
situation is similar to that at r, but, as figure 5 shows, we have two positive and 
one negative contribution, so that the resulting value is {J. The two eigenvalues 
are then a ± {J. If {J is a negative number (simulating attractive terms), at Q the 
first eigenvalue is higher and the second is lower than at r. 
At P: . 

" = P = (1/3, 1/3) 
Here, the exponential factor does not reduce to a real function, and the BF 
is now complex, so that in figure 6 both the real and the imaginary parts are 
represented. The exponential factor: 
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Figure 6. Top view of the real (left) and imaginary (right) parts of tP~(r), the BF at IS=P 
built from the p" atomic orbitals centered on atoms of type B. 

exp[21ri(m + n)/3) = cos[21r(m + n)/31 + isin[21r(m + n)/3} 

mUltiplies the PlI functions by -0.5, -0.5 and 1.0 (the real part) and by t/2, -t/2 
and 0.0 (the imaginary part, where t is the square root ofthree), for m+n equal 
to 38 + I, 38 + 2 and 38 respectively. In the figure, small circles indicate AOs 
bearing the 0.5 or t/2 factors; black circles indicate negative values. As regards 
the matrix elements: in H~A = (tp~(r)lhltp~(r»), the exponential factor cancels 
for the T = 0 terms (note that the function on the left is the complex conjugate 
of that on the right); for T =F 0 the matrix elements between AOs are zero, 
as at Q and r, so that also in this case H ~A = a. For H ~B there are three 
contributions to the real part and to the imaginary part, each of which sum to 
zero: -0.5,8+(-0.5,8)+,8 = 0 and -0.5,8+0.5,8+0,8 = 0, respectively; at P, the 
matrix is then already diagonal, and therefore, the eigenvalues are degenerate 
and equal to a. 

The Hartree-Fock band structure of graphite, resulting from an all electron 
calculation (Is, 2s and 2p AOs in the basis set), is shown on the left of figure 7; 
'If bands are qualitatively similar to those discussed for our simple model where 
the amount of dispersion depends on the ,8 value; small ,8 values give flat bands. 
In order to remove the degeneracy at the P point, which is not an artifact of 

I 
I 

I 
I 

I 
I 

-'.21 •• .21 .usL-....::::: ....... ::::::::...-L--I 
.' r 0' , r QI' .. r OP 

Figure 'T. Hartree-Fock band structure of graphite (left), hexagonal BN (center) and the 
system H+graphite (right), where hydrogen is adsorbed on top of each carbon atom. 

the Huckel or Hartree-Fock models nor of the limited basis set, but is a result 
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of symmetry constraints, one of the following two perturbations, with respect to 
the above situation, are necessary: a) two different atoms are used, for example 
Nand B instead of the two C atoms, as shown in figure 7 (center), where the HF 
band structure of hexagonal BN is reportedj b) atoms are added above and/or 
below the layer, as for example in three-dimensional graphite or when an atom 
(H, for example) is adsorbed on top ofthe C atomsj in this case, positive and 
negative interactions are allowed and the degeneracy is removed, as shown on 
the right in figure 7. 

8. Density of States 

We must often calculate weighted sums over the electronic single particle levels: 

S = 2 L:f(nj,,) (42) 
n," 

If f( nj ,,) depends on n and " only through the eigenvalues, t:, we can write: 

S = 2 L:f(e:) = 2 L: I f(e)6(e - e:)de = I f(e)n(e)de (43) 
n," n," 

where 

nee) = 2 L:6(e - e:) = (2/VBZ) L: I' 6(e - e:)d" (44) 
n," n 

is the density of states (DOS), 6 is the Dirac delta function, and the" integral 
extends over the BZj the energy integral often extends to the energy interval 
-00 < e < ep. The number of electrons in the unit cell is given by: 

(45) 

The comments concerning the physical meaning of the band structure can be 
applied also to the DOSj the electronic DOS is to be considered a qualitative 
instrument for understanding the electronic structure of a solid. Particularly 
useful from this point of view is the Projected DOS (PDOS) (see Chapter 3, 
section 4.2), according to which the states can be attributed to the basis func­
tions and then to the atoms of the unit cell, following a scheme very similar to 
that used for the Mulliken analysis in molecular quantum chemistry. The total 
DOS can then be written as a sum over atomic contributions, as shown in fig­
ures 8 and 9. In figure 8, which refers to the adsorption of atomic hydrogen on 
graphite, hydrogen is shown to contribute to all the valence bands of graphitej 
this "mixing" is a clear indication of a covalent interaction. Figure 9, refers, on 
the other hand, to the adsorption of CO on a MgO monolayerj the bands of the 
adsorbate and of the substrate are completely separatej the dispersion of both 
is very small; the only difference between the superposition of the bands of the 
non-interacting and of the interacting systems is a modest shift of the adsorbate 
bands. This is a very clear example of a purely electrostatic interaction. 
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Figure 8. Density of states spectra for H on graphite (on top 1:1 adsorption). The higher 
contour corresponds to the total density, the area below the broken line to the hydrogen 
contribution. Valence and conduction bands are at negative and positive energies, respectively. 

9. Fermi Energy and Fermi surface 

In a closed shell model, each energy band can allocate 2 x N (N is the number 
of cells) electrons; if in the unit cell there are n electrons, and the bands do 
not cross, the lowest n/2 bands are occupied and are separated from the empty 
bands; however, if n is odd, or if the valence bands'cross, more than n/2 bands 
are partially occupied. At each cycle of the SCF process, an energy CF (the Fermi 
energy) must be determined, such that the number of one electron levels with 
energy below cF is equal to the number of electrons (or, in other words, the 
number of filled bands below cF is equal to half the number of electrons in the 
unit cell). The Fermi surface is the surface in reciprocal space, which satisfies 
the condition c::- = cF (see Chapter 4). . 
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1. Introduction 

The purpose of this Chapter is to provide an overview of the methods and com­
putational tools currently adopted in the ab initio quantum-mechanical (QM) 
study of the chemical and physical properties of crystals, and more specifically: 
a) to make it easier for non-specialists to find their way in a disconcerting vari­
ety of proposals, each characterized by a different language, different algorithms, 
different topical problems; b) to give references for those who want to go deeper 
in certain subjects; c) to serve as an introduction to subsequent chapters of this 
book. 

Given the chemical composition and the crystalline structure of a periodic 
system, the aim of ab initio computational methods is to calculate its chemical 
and physical properties as accurately as possible at a reasonable cost, without the 
need for empirical a priori information (although such information can be useful, 
see section 3.1). In principle, a QM description should be provided for all involved 
particles, that is, for all electrons and nuclei. In fact, the Born-Oppenheimer 
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separation is universally adopted: the potential energy surface is first determined, 
corresponding to the fundamental level of the electronic subsystem for each given 
nuclear configuration; nuclear motion is studied a posteriori, by considering the 
electronic energy as an external potential [1]. In this Chapter and in most of 
the subsequent ones, we shall be concerned only with electronic properties, that 
is, those that depend on the electronic structure of the crystal. This, in turn, is 
a function of the geometry and the electric charge of the nuclei, which will be 
taken as fixed and arranged according to a crystalline lattice. The problem of 
nuclear motion is one of great relevance, because thermodynamic, acoustic and in 
part, transport properties of the system depend precisely on nuclear vibration or 
migration. Chapter 12 will discuss some aspects of this problem (see also section 
5 of this Chapter). 

Preliminary to any QM study of the electronic structure is the choice of the 
electronic hamiltonian, that is, one must decide which energetic contributions 
should be included and which expression should be adopted for them. We shall 
make reference in the following to the non-relativistic electrostatic Hamiltonian 
jjnr. It includes the kinetic energy of electrons, their Coulomb interaction with 
nuclei and between themselves, as well as the electrostatic interaction between 
nuclei as a constant term: 

jjnr = - ECvrU2) - E ZA/riA + E 1/rij + E ZAZB/rAB (1) 
i,A i>j A>B 

Here and in the following, use is made of atomic units, a.u., see table 1. 

Table 1. Atomic units. e and mo are the electron charge and rest mass, respectively; h is the 
Planck constant. 

Quantity 

Mass 
Charge 
Angular momentum 
Length 
Energy 
Time 
Velocity 

Atomic unit (name) 

mO 
e 
Ii 
ao = 1i2/(me2)(Bohr) 
Eh = e2 /ao (Hartree) 
to = Ii/Eh 
aD/to = Eh/(me2) I'i:I c/137 

51 Equivalent 

9.109610-31 kg 
1.60221O-18 C 
1.054610-34 J 8 

5.291810-11 m 
4.359810-18 J 
2.418910-17 8 

2.1579106 ms-1 

Neglecting relativistic effects may be a poor approximation in some instances. 
The mean square velocity v of an electron in a 1s orbital is Z a.u.: for heavy 
atoms it may be an appreciable fraction of the velocity oflight (c = 137.036a.u.). 
In mercury (Z = 80), vic ~ 0.58, and the corresponding relativistic mass is 
m = 1.23 mo. Since the electron mass appears in the denominator of the Bohr 
radius, the 1s orbital is contracted by about the same amount. Such important 
relativistic effects concerning core electrons, indirectly affect valence electrons. In 
heavy atoms, valence s and p orbitals are contracted and stabilized with respect 
to the non-relativistic case, due to the orthogonality constraints with the orbitals 
of the innermost shells; on the other hand, valence orbitals of d and f type are 
significantly expanded and destabilized, because of the more effective screening 
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ofthe nuclear charge by the s and p electrons. These effects can be partially taken 
into account by using a relativistic treatment for core electrons (see Chapter 9), 
or by adopting relativistic pseudo-potentials in valence-only calculations (see 
section 2.4). In addition, the relativistic Dirac hamiltonian contains the spin 
variable explicitly (for instance, in the so-called spin-orbit coupling term) [2} 
while in non-relativistic quantum mechanics, spin effects are important only 
because of the exclusion principle. A recent study of mercury (atom, clusters and 
bulk) provides an instructive example of the importance of relativistic effects in 
solid state theory [3]. Neglected relativistic terms may be taken into account a 
posteriori by a perturbative treatment or some other corrective scheme. 

The knowledge of the Hamiltonian, and of the total number of electrons con­
tains in nace all information about the electronic structure of the system, both 
concerning static and time-dependent features. In the following, we shall take 
the system as neutral, that is, the number of electrons per crystalline unit cell, 
n, will equal the sum of the nuclear charges of the translationally inequivalent 
nuclei. To make progress, in particular to be able to exploit the essential simpli­
fication introduced by the periodic nature of the external field, we must specify 
which aspects of the electronic structure we are mainly interested in. We shall 
see that the ground state electronic structure (GSES) plays a fundamental role 
in solid state physics; its determination, and the associated properties will be 
the main object of our interest. A straightforward, though unfeasible'means for 
determining the GSES would be to solve the corresponding Schrodinger equa­
tion: 

jjn,.tPo = Eo(R) tPo (2) 
where the ground state energy, Eo(R), corresponds to the lowest eigenvalue for a 
given nuclear configuration, R. In fact, it is not only impossible to determine, but 
also to manipulate such a cumbersome object as tPo (an antisymmetric function 
of 3nN spatial coordinates and nN spin co-ordinates, where N is the number of 
crystalline cells, see Chapter 2). It is better to consider simpler functions, which 
contain as much useful information as possible. One possible choice is to look 
for simplified forms of tPo: in particular, in the Hartree-Fock (HF) approach, we 
approximate tPo by a Slater determinant, corresponding to the antisymmetrized 
product of nN one-electron functions. Other quantities can be chosen to describe 
the GSES. The one-electron density matrix (or "one-matrix): 

'Yo(r,r') = nN f··· f dr2·· ·drnN diTt·· ·diTnN X . . 
x [tPo(r, iTt; r2, iT2; •.. ; rnN, iTnN) tP;(r', iTt; r2, iT2; ••• ; rnN, iTnN)} 

(3) 

is a very simple function which contains a lot of important information (see 
Chapter 14) and is the primary objective of some procedures (see sections 5 and 
6). In density functional theory (DIT), the objective is still simpler, namely, 
the determination ofthe electron density: po(r) == 'Yo(r,r); from the knowledge 
of this function of three spatial coordinates, all ground state properties can be 
derived, in principle, by means of suitable integrals (see sections 2.2 and 6). The 
dream of solid state physicists is to determine the self-energy function, E(r, r', e), 
which would permit all ground state one-particle properties to be obtained, 
including one-electron excitation energies [4]; E(r,r',e) can be estimated, for 
instance, through Hedin's GW-approximation [5]. 
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The main obstacle to the solution of equation 2, or to the determination 
of some intermediate quantity which contains the desired information, lies in 
the inter-electronic interaction term, Li>; I/ri; , which prevents the problem 
from being factorized into nN problems for the individual electrons. An essential 
simplification, therefore, consists in introducing an effective potential for each 
electron in the field of the others, and substituting a sum of one-electron Hamil­
tonians (finr ~ Li hi) for the full Hamiltonian, at the cost of neglecting some 
higher order effects to be specified below. This allows us to achieve two advan­
tages simUltaneously: firstly, to de-couple the electronic motions; secondly, to 
introduce, quite naturally, the translational symmetry of the problem. In fact, 
since we are interested in the GSES, any effective potential must reflect the 
symmetry of the external potential and therefore be translationally periodic: 
the methods, language and techniques of band theory can be used (Chapter 
2). The following scheme summarizes the concepts introduced up to now (in 
the lines below, we list the approximations introduced and the effects that are 
disregarded): 

=> 
~ 

nuclear 
motion 

(fixed nuclei) => iinr 
~ 

relativistic 
effects 

=> 
~ 

higher order 
effects 

=> 
~ 

excited 
states 

GSES 

(4) 

In the rest of this Chapter, we will concentrate our attention on the last 
two parts of this scheme. Section 2 is concerned with the formulation of one­
electron approximations for the Hamiltonian, starting from the consideration of 
the prototypical periodic system, the homogeneous electron gas. Two ab initio 
schemes are currently adopted. The first is based on OFT, and its fundamental 
objective is to derive the correct ground state electron density, po(r), and the 
exact ground state energy, Eo; the second consists of adopting the HF approxi­
mation, and aims at obtaining the best single-determinant representation of the 
ground state wave-function in a variational sense. The fundamental limitation 
of OF theory is that one must use approximate expressions for the effective po­
tential, since an exact formulation is not available. On the other hand, with the 
HF approach one is always faced with an electronic correlation problem [1, 6). 
as is discussed below. The use of pseudo-potentials (PP) to dispense with the 
treatment of core electrons in one-electron hamiltonians is well established in 
solid state theory and is summarily treated here. 

The intermediate object of our study (the GSES, described either by 1o(r, r/), 
or by a simplified expression for !lio) is some function of the electron coordinates 
which is usually expressed as a linear combination of a finite set of one-electron 
functions, -P1'(r) (I' = 1, ... ,p) or ofthe products thereof. The choice of the basis 
set is one of the critical aspects of most computational schemes: the algorithms, 
the efficiency, the very structure of the program are often intimately related with 
this choice. A general introduction to the basis set problem in ab initio crystalline 
studies is provided in section 3. More detailed analyses, with reference to specific 
choices, are contained in Chapters 9, 10 and 11. 
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Section 4 outlines the standard methods for the determination of the GSES, 
which are based on the solution of one-electron equations and on the use of band 
theory. The key features and the critical computational issues are similar for OF 
and HF schemes and are exposed briefly in parallel. 

Non-standard methods which have relevance to solid state studies and are 
not considered in this book, are summarily treated in section 5 for information. 
The general problem of the scaling of the computational cost with the size of 
the irreducible part of the crystal is also considered. 

Section 6 serves as an introduction to the last part of this book, concerning 
the calculation of crystalline properties. 

2. One-Electron Hamiltonians 

2.1. Introduction: The electron gas problem 

The problem of the homogeneous electron gas (a system of interacting electrons 
in a uniform sea of compensating positive charge) has traditionally played a 
crucial role in solid state theory, but its importance has grown dramatically 
with the advent and the extraordinary success of OF theory. The discussion of 
the merits and limitations of one-electron Hamiltonians in solid state physics can 
begin with some of the essential results concerning this ideal system. A concise 
account of the subject is given in chapter 2 of Fulde's book [6]; a clear and 
detailed treatment (except for the more recent studies) can be found in Raimes' 
book [7]. 

The only parameter which characterizes the electron gas is its uniform den­
sity, p (number of electrons per unit volume), or equivalently, the radius of the 
Wigner-Seitz sphere, r, = [(4/3)1I"pj-l/3. One often speaks of low density or high 
density electron gas according to whether r, > 1 or r, < 1 (for instance, for 
valence electrons in sodium r, = 3.9, for core electrons in carbon r, = 0.22; 
as always, a.u. are used). Two one-electron approximations are applied to solve 
the non-relativistic problem of equation 2. The free-electron approach takes into 
account the fact that classically, the electrostatic self-interactions of the electron 
gas and of the positive background and their mutual interaction cancel exactly. 
The only term which is left is the sum of the kinetic energy terms for the individ­
ual electrons. In addition, an exchange term appears in the HF approximation, 
which takes into account the antisymmetry of the wave-function (see section 
2.3). The problem then becomes an elementary one for the individual electrons: 

[ 1 2 -2V' + (Vx)i]tPi(r) = €itPi(r) (5) 

In this equation, the exchange term, (Vx)i, is zero for the free-electron gas ap­
proach; in the HF scheme, it is a constant which may depend on i but is in­
dependent of r for symmetry reasons. The eigenvectors are then plane waves: 
tPi(r) == tP(r; k) = ,a-! exp(a k· r), with eigenvalues €i == €(k) = ! k2 + vx(k) 
(for symmetry reasons, €i cannot depend on the direction ofk). According to the 
Aufbau principle, the occupied orbitals fill a sphere in k-space, centered in k = 0 
of radius kF = 1/(ar,), with a = [4/(911")]1/3 = 0.521 . Since the expression of 
the occupied orbitals is known, the HF value of vx(k) can be calculated and it 
turns out to be: 
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v~(k)= kF[2+ k}-k2 .loglk+kFI= kF F(~) (6) 
211" k . kF k - kF 211" kF 

The GS energy per electron is easily calculated in the two cases. For the 
free-electron approximation, it is purely kinetic: 

(7) 

In the HF case, it contains, in addition, an exchange term: eHF(p) = ekin(P) + 
e~(p), with: 

(8) 

The results just presented have had great historical importance in creating a 
bad reputation for the HF approximation among solid state physicists. Consider 
first the density of states (DOS), that is the number of one-electron states per 
unit energy interval and per unit volume. It is tempting to use the information 
above to calculate the distribution of electronic excitation energies, an excited 
state being created by letting one or more electrons pass from an occupied 
level, c, to an empty one, c', with a corresponding energy cost: .de = e' - e. 
This assumption is strictly valid within the free-electron approximation, and 
finds a loose justification in Koopmans' theorem for the HF model (see section 
2.3). Using the free-electron levels [e(k) = k2/2] gives satisfactory agreement 
with experiment for many electronic properties (low temperature specific heat, 
electrical conductivity, spin susceptibility among others) of alkali metals such 
as lithium or sodium, for which the electron gas model is best justified. The 
addition ofthe exchange correction, v~(k) (equation 6), instead of improving the 
agreement, introduces serious discrepancies with respect to experiment. First of 
all, the energy spread of occupied levels is too large. More fundamentally, it 
is easily seen that the derivative with respect to energy of the F(k/kF) factor 
in equation 6 exhibits a logarithmic divergence when k = kF: this corresponds 
to zero density of states at the Fermi level, obviously contrary to experimental 
evidence. This paradoxical result is not inherent in the homogeneous electron gas 
model, but has been shown to be a necessary outcome of the HF equations when 
applied to metallic systems [8, 9]. It is the result of neglecting correlation effects 
in the HF approximation, which are essential for screening the r- 1 dependence 
of the Coulomb interactions in a metal. 

Correlation effects are of decisive importance also for the cohesive energy 
of the electron gas. In the HF expression for the specific energy: cHF(p) = 
ekin(p)+e~(p), the exchange term makes the electron gas stable for r, > 2.41, but 
in all cases, the calculated cohesion energy is low with respect to the experimental 
cohesion energy of alkali metals. A great deal of theoretical and computational 
work has been devoted to obtaining a good estimate of the correlation energy 
for the electron gas. The many-body study by Gell-Mann and Bruckner for 
high densities [10], and the more recent quantum-Montecarlo results of Ceperley 
and Alder for low densities (see section 5) [11] are particularly important. The 
calculated data have been recently parameterized by Perdew and Zunger [12], in 
order to obtain an analytic expression, which is useful for DF calculations (see 
section 2.2): 

ec(p) = 0.0311logr, - 0.048 + 0.0020r, log r, - 0.01l6r, [for r, < 1] 
ce(P) = -0.1423/(1 + 1.0529F, + 0.3334r,) [for r, > 1] (9) 
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Figure 1. Contributions to the energy per electron for the homogeneous electron gas, as a 
function of the Wigner-Seitz radius, r •. The r. values of valence electrons of a few simple 
metals are reported. 

Figure 1 shows the importance of correlation corrections in the region of electron 
densities of chemical importance. The effect of external fields on the properties 
of the electron gas is a subject of great interest, still intensively studied, espe­
cially for its applications in DF work (see section 2.2). 

2.2~ Density functional theory 

DF techniques are based on two theorems, proved by Hohenberg and Kohn in 
1964 [13], and on a computational scheme proposed by Kohn and Sham (KS) 
the following year [14]. 

The first theorem states that a given ground state (GS) electron density, 
po(r), cannot arise from two different external potentials, unless the two differ 
by a constant. Hence, the GSES (!lio and all derived GS observables, in particular 
Eo) is uniquely determined by po(r). 

The second theorem establishes a variational criterion for determining po(r) 
and Eo together for a given external potential created, for example, by a set 
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of nuclear charges: V(r) = - LA ZA/lr - rAI. Eo is found by minimizing an 
expression of the form: 

E[p(r)] = / p(r)V(r)dr + ~ / [p(r)p(r')]/Ir - r'l dr dr' + 

+ f p(r)g(r; [PD dr + L ZAZB/r AB 
• A>B 

= EE:l:t + EJ + Ek:tc + ERepNuc (10) 

with respect to an arbitrary function, p(r), which represents an n-electron den­
sity. The minimum is obtained precisely in correspondence to po(r). In this ex­
pression, the first term gives the interaction energy with the external potential, 
the second term is the classical self-interaction of the charge density p(r), while 
the last term is the usual internuclear repulsion. The third term, Ek:tc, contains 
the g(r) function, which may be interpreted as a density of kinetic, exchange and 
correlation energy per unit electron density at r. g(r) is known to be a universal 
functional of the density p (that is, it uniquely depends on the whole charge 
distribution). Its analytic form is not known, but different approximations are 
used. A local density approximation (LDA) consists of making g(r) depend only 
on the value of pat r. Among LDAs, the historically important Thomas-Fermi 
approximation [15] is obtained by giving g(r) the value of the specific kinetic 
energy of an electron gas with uniform density, p(r): g(r) ~ (3/10)[31r2p(r)]2/3 • 

The most critical aspect of g(r; [PD, however, is precisely that it contains the 
kinetic energy term: the Thomas-Fermi approximation is not very accurate but 
it is difficult to improve on it. The KS method is based on the two theorems 
above but permits us to calculate explicitly the most important part of the 
kinetic energy. In fact, it consists of solving a parallel problem for a system of 
n pseudo-independent electrons, characterized by the same GS density as the 
actual system. For the pseudo-system, the pseudo-kinetic energy Ekp3 can be 
explicitly calculated and the problem is solved according to the following self­
consistent field (SCF) procedure: 

a) Find the n/2 lowest eigenvalues and the corresponding eigenfunctions (or­
bitals) of a one-electron effective Hamiltonian: 

(11) 

b) Calculate the density: 

(12) 

c) Re-calculate VeJJ(r) as a functional of p(r): 

VeJJ(r) = V(r) + f p(r')/Ir - r'ldr' + I':z:c(r; [PDj (13) 

if self-consistency is not reached, go to step a). 
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d) At self-consistency, per) = po(r) (GS density) and the GS energy can be 
calculated: 

Eo = Ekp, + f Po (r)V(r)dr +! f (po(r)po(r')]/Ir - r'l dr dr' + 
• 2. 

+ Ezc + ERepNuc 

Ekp, = L f ?h(r)*(-~V2)'1h(r)dr 
i • 

Eze = f Po (r)e:z:c(rj (po])dr (14) 

The two universal functionals J.'ze(rj (P]) in equation 13 (effective exchange­
correlation potential) and ezc(rj (P]) in equation 14 (specific exchange-correlation 
energy) are related to each other by a functional derivative equation: 

J.'xc(rj (P]) = c5Exe«(P])/ c5p(r) == c5{ f p(r')exc(r' j (p])dr'} / c5p(r) (15) 

The following can be noted: 

- The beauty and the originality of the KS scheme lies in the fact that its aim is 
not to give an approximation to tVo, but to yield the exact GS energy Eo and 
the exact GS electron density, po(r), directly. In this sense, it is important to 
observe that the pseudo-wave-function, defined as an antisymmetrized prod­
uct of the pseudo-spin orbitals: tVKS = A [lli(th(r2i-la(U2i-l).,pi(r2i,8(u2i»], 
has nothing to do, in principle at least, with the true tVo, except that it de­
fines the same GS density. This is equally true for the pseudo-eigenvalues ei, 
which should not be used as indicative of one-electron excitation energies. 
On the other hand, it has been customary in solid state applications to adopt 
such an inclusive interpretation of the results of the KS equations: this at­
titude has some theoretical ground (see section 6) and is justified by many 
remarkable successes. Part of the theoretical work in the field of OF theory 
aims at defining an effective potential which· generates pseudo-eigenvalues ei 
more strictly related to one-particle excitations [16]. 

- The crucial problem in the KS inethod is the definition of the exchange­
correlation functional (it should be noted that this definition is not fully 
appropriate, because Eze must contain, in addition to the exchange and 
correlation energies, a correction to the pseudo-kinetic energy Ekp,). For 
this purpose, reference is most often made to the results for the homogeneous 
electron gas. The LOA is by far the most frequent choice: 

where ez(p) and ec(p) are given by expressions (8) and (9) (when applied to 
the electron gas, LOA-OF theory is exact but tautological). In the LOA, the 
relationship between J.'xe and exe simplifies to: J.'ze(P) = d(peze(p)]/dp. The 
celebrated X-a method of Slater [17] can be interpreted as an anticipation 
of the KS-LOA equations, with only the exchange LOA potential included, 
multiplied by an empirical parameter (3a/2). 
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- Given a fairly regular density, any functional a(r; [P]) is a function of p and 
all its derivatives at r. The LDA can be viewed as the zero term in a gradient 
expansion of the exact functionals [13]. In recent years, the use of gradient­
corrected (GC) functionals has become more and more wide-spread, which 
corresponds to going a step farther in the gradient series. In these cases, 
the value of the C:ce functional depends both on the value of the density at 
r, per), as well as on the magnitude of the density gradient there, IVp(r)l. 
For the parameterization of such functionals, reference is made to results for 
the inhomogeneous electron gas [18). On the other hand, the convergence 
properties of the gradient series are unknown and making real progress by 
adding more of the neglected, higher-order terms (see equation 4) seems a 
hopeless task. 

- Up to now, we have considered only closed-shell systems. The extension of 
DF theory to spin polarized systems is quite natural [19, 12]. One must 
define an electron density for each spin state: pt, p! or equivalently, a total 
density, p = pt + p! and a spin electron density m = pt - p!. All functionals, 
for instance C:cc, will depend on both densities: C:cc == c:cc(r; [p, m]). The 
discussion of this class of important problems goes beyond the scope of this 
chapter. 

- The electron-electron Coulomb interaction energy (see equation 10) contains 
a spurious contribution arising from the interaction of each electron with 
itself. This should be exactly cancelled by an exchange term of opposite 
sign but this does not happen in standard applications of DF theory, due 
to the approximations involved in the calculation of E:cc. There is a need 
for a self-interaction-correction (SIC) to the KS equations, especially in their 
application to molecular systems. Different SIC methods have been proposed, 
which consist essentially of subtracting, from the total energy expression, the 
sum of the self-interactions in the individual pseudo-orbitals [12, 20]. For a 
recent critical account, see references [21]. 

- The history of DF applications in solid state physics is too rich to be even 
summarily sketched here; some examples will be given in subsequent Chap­
ters of this book.The pioneering work of M.L. Cohen and collaborators at 
Berkeley should however be mentioned, who produced in the seventies and 
eighties an ample and convincing documentation of the power, generality and 
reliability of the ab initio DF treatment of crystalline systems [22]. 

2.3. Hartree-Fock theory and the electron correlation problem 

The HF equations are homologous to the KS ones, in the sense that we are again 
looking for a set of n/2 orbitals as eigenfunctions of a one-electron Hamiltonian, 
the Fock Hamiltonian 1 (here, reference is made to a closed-shell system; the 
extension to spin-polarized systems is considered in Chapter 6): 

1 t/Ji(r) == [-(1/2)'\72 + vCr) + r dr' p(r')/Ir - r'lJ ,pi(r) + 

- I: f dr'[,pj(r'}* ,pi(r')]/Ir - r'lJ ,pj(r) = 
j • 

= Ci ,pi(r) (16) 
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The first three terms in the Fock Hamiltonian coincide with the correspond­
ing KS ones (the expression for the electron density is the same). However, 
instead of the effective exchange-correlation potential, #Jlt:c(r; [P)), here we have 
the "exact" non-local exchange operator (the fourth term in equation 16). Again, 
the HF equations must be solved through an SCF procedure, corresponding to 
steps a-d of section 2.2, since both the Coulomb and the exchange operator 
depend on the set of functions, ,pier). The essential difference, with respect to 
the KS ¥proach, is that the antisymmetrized product of the Fock spin orbitals: 
l/fHF = A[ni(tPi(r2i-la(tT2i-l),pi(r2i,8(tT2i)] is an approximation ofthe GS wave 
function: more precisely, it is the best single-determinant approximation (in a 
variational sense) ofl/fo. Similar comments apply concerning the one-matrix (see 
Chapter 14). The HF energy, EHF, is defined as the expectation value of the 
non-relativistic Hamiltonian for l/fHF: 

EHF = (l/fHF/Hnr/l/fHF) 

= 2 E (dr {tPi(r)* [-V2 /2 + V(r)],pi(r)} + 
i • 

+ E f dr dr' [,pi(r)*,pi(r)] [,pJ(r')*,pJ(r')*J / Ir - r'l + 
iJ • 

-1/2 E f dr dr' [,pi(r)*,pJ(r)] [,pJ(r')*,pi(r')*] / Ir - r'/ (17) 
ij • 

Here are a few comments on the HF method: 

- The non-local exchange term makes the HF equations more difficult to solve 
than the KS ones, where plt:c(r; [P]) is simply a multiplicative operator, no 
matter how complicated its determination. This is specially true for crys­
talline systems, as we shall see in section 4. If one adds the fact that HF 
performs poorly for the electron gas, the simplest of all periodic systems 
(section 2.1), the lack of popularity of this approximation among solid state 
physicists would appear well justified. This contrasts with its almost universal 
acceptance in molecular studies. Early attempts to formulate and implement 
HF computational schemes for periodic systems have had scant success, in 
spite of the high quality of those studies [23, 24, 25, 26]. Only in recent years 
has it become possible to formulate a fair judgment about the usefulness of 
the HF approach in solid state physics, since the advent of powerful com­
puters and of general purpose computational schemes [27, 28], which have 
allowed us to assess its performance for a variety of systems (see section 7). 

- At variance with DF theory, one-electron HF eigenvalues ct&n be attributed 
a physical meaning. If one creates an (n - I)-electron state, represented 
by a single-determinant l/f' which may be obtained from l/fHF by eliminat­
ing a spin-orbital with eigenvalue ei, it is easily shown that ei = tlE == 
(l/fHF/Hnrll/fHF) - {l/f'IHnr/l/f'} (Koopmans'theorem) [IJ. ilE (or ei) can be 
considered as an ionization potential of the system, if one assumes that the 
removal of the electron does not affect the other occupied orbitals (the frozen­
orbital approximation). The neglect of relaxation tends to produce ionization 
potentials that are too positive; correlation effects, whose importance grows 
with the number of electrons, correct partly for this error. For molecules, 
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Koopmans' ionization potentials are usually in reasonable agreement with 
experiment [1]. 

- As a by-product of the solution of the HF equations, virtual orbitals and 
energy levels are obtained, corresponding to solutions of equation 11 with 
eigenvalues higher than those of occupied orbitals. Using Koopmans' theo­
rem, one can estimate electron affinities, by adding an electron in a virtual 
orbital. In this case, however, the correlation correction adds to the relaxation 
error, and electron affinities are far too negative. Similarly, it is incorrect to 
use one-electron HF eigenvalues to calculate the excitation energy resulting 
from the promotion of an electron from an occupied (.,pi) to a virtual (.,pj) 
energy level as LlE = cj - Ci. Therefore, HF band structures are not suitable 
for the estimation of optical excitations in crystals: the HF main gap for 
insulators and semi-conductors is usually about twice as large as that given 
by experiment [27]. On the other hand, it is relatively easy to correct HF 
band-structures to reproduce the spectrum of optical excitations, by using, 
for instance, the GW approximation [5,29,30]. 

- The main limitation of the HF solution lies in the neglect of correlation 
effects. Consideration of the interaction of each electron with the average 
field of the others leads to an over-estimation of electron-electron repulsions: 
in fact, electrons move so as to keep apart from each other (otherwise stated, 
each electron carries along a correlation hole). The recent book by Fulde 
discusses the correlation problem in crystalline studies and can be used as a 
fundamental reference [6]. 

- If we are interested only in an estimate of the correlation energy, Ec = 
Eo-EHF, simple and powerful techniques are available, based on the precepts 
of DF theory. As was shown in the preceding sub-section, it is possible to 
define an LDA or a GC expression for correlation-onlyfunctionals. In Chapter 
11, indications are given of the efficiency of these techniques. 

- While in molecular quantum chemistry the electron correlation problem has 
been studied in detail for several decades now and many different powerful 
techniques have been devised to cope with it, the state of the art in solid state 
theory is far less advanced, not only because of the difficulty of obtaining good 
crystalline HF wave-functions. Most standard molecular schemes use the set 
of occupied and virtual orbitals as basic ingredients. In crystals, these are 
de-localized and correspond to a continuum of levels, which makes their treat­
ment awkward. Furthermore, a correlation scheme must be size-consistent in 
order to be transferable to solid state applications. The size-consistency re­
quirement can be stated as follows. The application of the scheme to a system 
composed of N identical and independent subsystems, must give exactly N 
times the correlation energy obtained for the individual system. The most 
standard of all correlation schemes, the variational Configuration-Interaction 
technique, restrained to single and double excitations (SD-CI) does not sat­
isfy this requirement. The reason is easily understood: the product of the 
wave-functions for the individual sub-systems, each containing SD excita­
tions, would indeed give N times the individual energy, but contains excita­
tions involving up to 2N electrons. Among size-consistent schemes which are 
beginning to be transferred from molecular to solid state applications, we 
note the coupled-cluster (CC) technique [31], the Moeller-Plesset perturba­
tive series and the Green-function many-body approach, which is particularly 
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appropriate for correcting the HF band-structure [30]. The local approach, 
which is a variant of the CC method specially designed for crystals, is am­
ply illustrated in Fulde's book [6]. Finally, if one does not impose symmetry 
restrictions on the spin component of the wave-function and looks for unre­
stricted HF solutions, one often obtains a lower energy by separating spin-up 
from spin-down electrons in space; interesting results have been obtained for 
simple metals [32J. 

- Fulde's comment about the value of HF computations for solids can be re­
ported in conclusion [6]: 

"Provided that the correlations are not too strong, HF calcula­
tions are a good starting point, and allow solids and molecules to be 
treated the same way and with the same accuracy. The development 
of quantum chemistry has proven thatab initio calculations based on 
controlled approximations capable of systematic improvement have 
made simpler computational schemes based on uncontrolled simplifi­
cations obsolete. Whether or not the same will eventually hold true 
for solid-state theory remains to be seen." 

iLl. Pseudo-potentials 

In many respects, core electrons are unimportant for determining the stability, 
structure and low-energy response properties of molecules and of crystals. It is 
a well-established practice to modify the one-electron part of the Hamiltonian 
by replacing the bare nuclear attraction with a PP operator, Vp., which permits 
us to restrict the calculation to valence electrons, for both types of system. This 
choice is necessary in practice when the system includes heavy atoms (Z > 20). 
Consider a system comprising a set of nuclei A and n electrons, of which n' are 
valence electrons. We can write equations of the form: 

[-V2/2 + f p'(r')/Ir - r'ldr' + J.!:l:c(r; [P')) + L Vp.AJ ,pt{r) = ~~ ,pHr) (18) 
.A 

which coincide with the DF-KS equations 11-13, except for the substitution of 
VCr) by the PP operator: Vp. = LA Vp'A (a parallel procedure can be followed 
in the HF case). Primed symbols have been introduced to indicate that the 
SCF solution of these equations is limited to valence electrons; that is, we will 
consider only the n' /2 eigenfunctions corresponding to the lowest eigenvalues, 
and use them to calculate the valence density, p'(r), which in turn is used to 
define the electrostatic, exchange and correlation interactions between valence 
electrons. The PP operator must reproduce screened nuclear attractions, but 
must also account somehow for the Pauli exclusion principle, which requires 
that valence orbitals are orthogonal to core ones. Consider an atom A at A, 
with ncA core electrons, whose highest angular quantum number is L. Suppose 
L = 1, that is, the core contains only sand p electrons. At long range, we must 
have: v".A = -(ZA - neA)/rA, with rA = Ir - AI. At short range, v".A must 
act differently on functions of sand p symmetry, while it operates equivalently 
on functions of higher angular quantum number, that is: 
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L l 

v" = -(ZA - ncA)/rA + LU:-r(rA) { L lim}(imIlA + w,-r(rA) (19) 
l=O m=-l 

w,-r(rA) and U:-r(rA) are short-range functions; the term in braces is a pro­
jector, which makes U:- r act only on functions which have i-symmetry with 
respect to rA. In establishing the explicit form of V"A, a number of character­
istics are sought (not all of them can be optimally satisfied): 

i) Pseudo-valence eigenvalues, c~, should coincide with the true ones, C; ; 

ii) Pseudo-orbitals, ,pHr), should resemble as closely as possible the true ones, 
,pi(r), in an external region as well as being smooth and node-less in the core 
region; 

iii) Pseudo-orbitals, ,pHr), should be properly normalized; 
iv) The functional form of the PPs, though preserving non-local character, 

should be designed so as to simplify as far as possible their use in com­
putations; 

v) Explicit expressions for the functions w,-r(rA) and U:-r(rA) should be 
provided for the different atomic species, to be used independently of the 
environment; 

vi) For heavy atoms, relativistic effects should be taken into account (see Intro­
duction): that is, the form of the PP should be derived from relativistic KS 
or HF atomic calculations. 

The performance of PP techniques in solid state physics is usually very good, 
except for some critical cases (for instance, if core relaxation effects are impor­
tant, which may occur when simulating very high pressures, or when the elec­
tron configuration in the crystalline environment is very different from that of 
the isolated atom) [22,33]. Among PPs designed for KS-LDA calculations, the 
norm-conserving ones tabulated for all atoms by Bachelet et al. [34] are perhaps 
the most popular; ultras oft PPs, which ensure the very smooth behaviour of the 
pseudo-valence orbitals in the core region are useful in applications where plane 
waves are used as a basis set (see section 3.2 and Chapter 10) [35]. With regard 
to PPs for HF calculations, we may mention those introduced by the Toulouse 
group [36] twenty years ago, which are still widely used, and the more recent 
ones designed by Hay and Wadt [37]. In all these cases, relativistic corrections 
are added for heavy atoms. 

3. Analytic representation of Wave-function and Operators 

9.1. Introductory remarks 

There is a huge amount of information contained in the GSES and associated 
operators. An efficient computational scheme must be able to manipulate this 
information economically with regard to CPU time, storage requirements and the 
number of input/output operations. If possible, the algorithms should be simple 
and general enough to make accumulation and transfer of know-how from one 
program to another easier. Linear representations of one-electron functions are 
usually adopted: 
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p 

f(r) = I: c,.<p,.(r) (20) 
,.=1 

With few exceptions, the basic ingredients in solid state applications for the 
construction of the basis-set functions, <p,.(r), are plane-waves (PW) and/or 
Gaussian type orbitals (GTO), and they are the only ones that are considered 
in the following. The basic advantage obtained from the use of PWs and GTOs 
is related to the fact that they make the computation of integrals in direct 
and/or reciprocal space very easy. If numerical techniques are used to perform 
integrals throughout the calculation, much greater freedom is possible in the 
choice of the representative functions: these may include Slater type orbitals (see 
below), PWs, numerically tabulated orbitals or any combination of these. A KS 
computational scheme based on a numerical approach has been prepared recently 
by Baerends and collaborators [38]. All types of symmetry and periodicity in 
one, two and three dimensions can be handled. The efficiency of the scheme in 
handling complicated structures is still to be assessed, however. 

When using linear representations, the problem of the errors related to the 
use of an incomplete expansion set arises. There is the need of making such errors 
as small as possible, while using manageable basis sets. Each application requires 
a careful analysis: the art of devising good basis sets is a very important one, and 
is based on experience and competence (see Chapter 8). In this respect, even ab 
initio methods can profit from empirical knowledge. One of the advantages that 
are obtained from the use of Baerends' numerical approach is that the problem 
of basis set incompleteness, which often plagues schemes based on PWs and 
GTOs, becomes almost irrelevant. 

3.2. Plane waves 

PWs are, in a sense, the ideal basis functions for a periodic system. If one denotes 
the general wave-vector as k and the translationally equivalent vector in the first 
Brillouin Zone (BZ) as K., we can write: 

<Pk(r) = Q-1/2 exp (ak· r) = Q-1/2 exp [a(K. + K)·r)] == <PK(r; K.) (21) 

The last symbol indicates that the general PW is a Bloch function (BF) asso­
ciated with the point K. within the BZ and labelled with a discrete index K, 
corresponding to a vector of the reciprocal lattice (see Chapter 2, equation 41). 
PWs are an orthonormal, complete set: any function belonging to the class of 
continuous, normalizable functions (which are those of interest in QM) can be 
expanded with arbitrary precision in the PW set. The set is universal, in the 
sense that it depends neither on where atoms are located within the cell nor 
on their nature. As we shall see in section 5, this characteristic is particularly 
valuable in Car-Parrinello calculations, where nuclear positions are continually 
changing. . 

In practice, one must use a finite number of PWs: how many are necessary? 
Normally one chooses a cutoff energy, T, that is, for each K. in the BZ, one 
includes all PWs with (K. + K)2 < T = X2 (X is the radius of the sphere 
centered at the origin in reciprocal space which includes all selected PWs) in the 
expansion set. In typical calculations, T is of the order of 20 Ry (for historical 
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reasons, cutoffs are usually measured in Rydbergs: 1 Ry = 0.5 a.u.). If the 
volume, V, of the unit cell in direct space is 1000, say, then the volume of the 
Brillouin zone is VBZ = 81r3 /V = 0.248 and the number of K vectors, hence of 
PWs, cPK(r; ,,), contained in the sphere is (41rX3 /3)/VBZ = 534. While this is 
not a small number of basis functions, the finest detail that can be revealed in 
direct space with such a set is of the order of 1/ X = 0.58, about half the radius 
of the hydrogen atom. This may be a reasonable figure if we are interested 
only in valence electrons, but is totally unacceptable for the description of core 
electrons. For a factor ten in detail, which would still be insufficient except for 
very light atoms, the number of PWs per" point should increase by a factor 
1000! Unless one augments the PW set with some additional function (see section 
5 and Chapter 9) the use of PPs is mandatory. In practice, ultrasoft PPs are 
preferred for obvious reasons (section 2.3). 

The use of PWs makes most algebraic manipulations very simple and it 
is convenient to perform all calculations in the momentum representation. For 
example, consider the potential vH(r) = J p'(r')/Ir - r'ldr' generated at the 
general point r by the distribution of pseudo-valence electrons, which is one of 
the components of the KS Hamiltonian (equation 18). Since p'(r) is a periodic 
function in direct space, so is vH(r) and we can write, after setting to zero the 
average value of vH(r): 

p'(r) = LPK exp (aK. r) 
K 

and vH(r) = L VK exp (aK· r) 
K;!I!O 

(22) 

The coefficients, PK, are obtained immediately from the knowledge of the occu­
pied orbitals: 

tPi(r; ,,) = L Ci,K,,,cPK(r; ,,) -+ PK = 2 L L ICi,K,,,12 (23) 
K " 

and as a result of Poisson's equation: 

(24) 

we have: 
(25) 

9.9. Gaussian /unctions 

Two kinds of basis functions have been traditionally used in molecular cal­
culations: Slater-type orbitals (STOs) and GTOs. They are both the prod­
uct of spherical harmonics Ylm «(}, cP) by a radial function R( r). For STOs, 
R(r) = rn exp( -(r;, while for the basic form of GTOs (Gaussian primitives), 
R(r) = ,.t exp( -ar ). In spite ofthe fact that STOs reproduce much better the 
cusps of the wave-function in the proximity of the nuclei [it may be proven that 
in the vicinity of a point charge Z, the radial part of the one-electron ground 
state wave-function has the form: A(1 - Zr)], their use has become less and 
less frequent in favour of GTOs, for which the calculation of multi-center two­
electron integrals is essentially simpler. A few important characteristics of GTOs 
can be mentioned: 
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- In molecular applications, GTOs are usually constructed as a linear combina­
tion of Gaussian primitives gj(r), characterized by the same center (usually 
coinciding with a nucleus), the same angular numbers but different expo­
nents: 

PI' 

<pl'(r) = Ldjgj(r); gj(r):= g(r;c¥,t',m) = rl Ylm(O,¢) exp(-c¥jr2) (26) 
j=l 

These combinations are often called contracted Ga'Ussians, where C¥j repre­
sents exponents and dj , contraction coefficients. By a suitable choice of dj 
and C¥j, one can prepare basis functions which have, from the start, good 
characteristics (for example, they exhibit an almost correct cusp behavior at 
the core). Different conventions are used to denote the basis set. A common 
one can be exemplified with reference to a calculation by Rauk et al. concern­
ing NH3 [39]: (13s8p2d/8s2p) ~ [8s5p2d/4s1p]. The information in the round 
parentheses concerns primitives: for nitrogen, 13 of them are oftype s (t' = 0), 
8 of type p (t' = 1, m = -1,0,1),2 of type d (t' = 2, m = -2, -1,0,1,2); for 
hydrogen, 8 of type s, 2 of type p. The contracted set is reported in square 
parentheses; for hydrogen, the two p primitives have been contracted to one 
GTO, the eight s primitives participate in four GTOs; note that the two d 
primitives on nitrogen have remained uncontracted. 

- In solid state applications, a finite number (p) of GTOs are attributed to 
the various atoms in the reference zero cell (AI' will denote the coordinate 
of the nucleus on which <PI' is centered); the same GTOs are then associated 
with all translationally equivalent atoms in the crystal. In total, we have N p 
GTOs, from which we can construct N p Gaussian-type Bloch orbitals: 

¢I'(r; ,,) = L <Pl'(r - AI' - T) exp(z" . T) 
T 

('" = 1, ... ,p; " = 1, ... , N) 

(27) 
From experience with molecular calculations, a large number of proposals 
have emerged to help computational chemists in the preparation of efficient 
basis sets; excellent reviews exist of this subject [40,41]. Huzinaga's sets may 
be mentioned [42] as an example: for each atom, several options are proposed 
according to the required accuracy, differing in the number of GTOs, contrac­
tion coefficients and exponents. Molecular basis sets are not directly transfer­
able to crystalline applications. In particular, there are at least three reasons 
for avoiding the use of very diffuse primitives (low exponents) in solid state 
studies: first, the number of integrals to be explicitly calculated increases 
explosively; secondly, the accuracy of the calculation must be particularly 
high in order to avoid pseudo-linear dependence catastrophes; thirdly, dif­
fuse functions are not of much use in densely packed crystals, because their 
tails are found in regions where there is large variational freedom associated 
with functions on other atoms. These problems are re-considered in Chapters 
8 and 11. 

- With respect to PWs, the use of suitably contracted GTOs permits us to 
describe accurately electronic distributions both in the valence and in the 
core region with a limited number of basis functions. The price is the loss of 
orthogonality, of universality and the need for more sophisticated algorithms 
for the calculation of the required integrals. The latter are expressed in terms 
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of the primitivesj their evaluation is made simpler by the fundamental prop­
erty that the product of two Gaussians is a Gaussian (Boys' theorem). In 
particular for s-type primitives: 

g(r - Aja,O,O) g'(r - A'ja',O,O) = Kg"(r - A"ja",O,O) (28) 

with: a" = a+a' j A" = (aA+a' A')ja"j and K = exp(-aa'IA - A'I2 ja"). 
This result is easily generalized to higher quantum numbers. 

- The most complicated integrals that enter the calculations are the so-called 
two-electron, four-center integrals which result from calculating the Coulomb 
or exchange term in the Fock Hamiltonian (equation 16) or the corresponding 
energy term (equation 17), after having expressed the spin orbitals ,pier) in 
the GTO basis set: 

(#-,vllt.\) = f dr dr' {[cp~(r - A~ - T~) cpv(r - Av - Tv))] x 

x [cp,,(r' - A" - T ,,) cp~(r' - A~ - T~)]jlr - r'll (29) 

This kind of integral, as well as the simpler nuclear attraction ones, are 
obtained by starting from an auxiliary function of one variable: 

Fo(w) = Cds exp(-ws2) 
.0 

(30) 

with the help of powerful recurrence relations [43]. A large part of the success 
of GTOs in molecular and solid state QM applications is due precisely to the 
efficiency of the algorithms developed for integral calculation. 

- An additional advantage of GTOs is due to the fact that their Fourier trans­
form is another Gaussian [ Fp {exp(-ar2)} oc exp(_p2 j4a)], and their use 
in combination with PW techniques is therefore easy [29]. 

- A given set of GTOs, associated with atomic positions, usually performs bet­
ter when the atoms are close to each other than if they are far apart. This is 
a consequence of basis set incompletenessj the region between two atoms is 
better described if use is made of functions centered on both atoms. There 
is then an over-estimation of binding energies, which is called basis-set su­
perposition error (BSSE). BSSE can be very important with poor basis setsj 
the counterpoise technique for estimating this error gives usually reasonable 
results [41, 44]. 

4. Standard Methods of Solution 

4·1. It-factorization of the one-electron equations for crystals 

Although OF and HF schemes correspond to totally different approaches from 
a theoretical point of view, in practical applications there are profound similar­
ities between them. They are both specially designed for the GSES, and have 
little significance for excited statesj in both cases, the one-electron hamiltonian 
depends functionally on the GSES, and the equations must be solved through 
an SCF procedurej the basis set problems are similar. We describe in this section 
standard methods of solution for periodic systems in very general terms, without 



Ab-Initio Treatment of Periodic Systems 65 

specifying which one-electron Hamiltonian h we are referring to, except where 
needed. A more detailed description is provided in Chapters 8, 9 and 10. 

As shown in Chapter 2, BFs associated with different N. points within the first 
BZ belong to different irreducible representations of the group of one-electron 
Hamiltonians, h. It is then possible to factorize the problem into separate parts 
for each N.: 

a) Consider the p BFs, <pJ.I(r;N.), associated with N. (equation 21 or 23); 
b) Calculate the matrix elements: H::V = {<p~lhl<p~} S~II = {<p~I4>~} (the 

latter equals CJ.I,II in the PW set); 
c) Solve the p x p matrix equation: 

(31) 

where the diagonal matrix EN. contains the eigenvalues t;f', and the matrix 
eN. contains, columnwise, the coefficients of the crystalline orbitals (COs): 

p 

,pier; N.) = E c~ <pJ.I(r; N.). (32) 
J.I=l 

The above procedure should be carried on for the complete set of it points in 
the first BZ, so as to determine the complete set of COs (that is, the KS or HF 
spin-orbitals: see equations 11 and 16) with the precision granted by the basis 
set adopted and by the accuracy of the algorithms. There are, however, some 
points which need closer analysis: 

i) The problem of how many and which N. points should be considered is an 
extremely important one. In order to reconstruct the h operator and to cal­
culate the crystalline properties from the solution, we need all occupied spin­
orbitals, in principle. Due to the continuity of eigenvalues and eigenfunctions 
with respect to N. (see Chapter 2), it is, however, possible to derive the re­
quired information from the results obtained at a few suitably sampled N. 

points, as discussed in the next subsection. 
ii) In order to calculate H::V matrix elements, we must consider functions and 

operators which are extended to the whole crystalline structure. Except in 
particularly favorable cases, we are faced with a problem of summations 
over one or more indices associated with the different crystalline cells. The 
accurate and efficient handling of such series (lattice sums) often determines 
the final quality of a computational scheme (section 4.3). 

iii) It has been mentioned already that the process must be repeated until self­
consistency is achieved, that is, until eigenvalues and eigenvectors coincide, 
within a given tolerance, with those used for the reconstruction of h. This 
may be very difficult to achieve at times. All techniques that accelerate con­
vergence are valuable (section 4.4). 

iv) To solve the matrix equation 31, the diagonalization of p x p complex ma­
trices is needed. The time required is proportional to p3. With very complex 
systems, p can become very large, and the diagonalization step will be the 
slowest one, perhaps to the point where the system is untreatable. Different, 
non-standard procedures, which by-pass this step, may then become prefer­
able (section 5). 
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4.!!. Reciprocal space integration and interpolation 

From the knowledge of the eigenvalues, e:' and the eigenfunctions, tPi(r; K.), at a 
few, sample K. points (to be indicated in the following by ~), we want to obtain 
accurate estimates of quantities such as the number of states below a certain 
energy, i( e) and the matrix of integrated densities of states (mOS), I( e), which 
imply a sum over all K. points: 

i(e) = 2Vii L l dK. O(e - e:') 
i • BZ 

I;v(e) = 2Vii L l dK. c~* c~ exp(zK.· T) O(e - e:') (33) 
i • BZ 

The sum has been replaced with an integral over the BZ, due to the fact that 
K. points are uniformly distributed in reciprocal space (see Chapter 2); the con­
dition that only the orbitals of energy less than e are included in the sum is 
expressed by the presence in the integrand of the step function O( e - e:'), whose 
value is 1 if e:' is less than e, and is zero otherwise. The quantities i( e) and I( e) 
are very important. The Fermi energy, eF, is determined by imposing the con­
dition: i( eF) = 2n, that is, by requiring that there are exactly 2n spin-orbitals 
per cell with energy less than eF. As shown in Chapter 2, the total density 
of states (DOS): n(e) = di(e)/de and the mos derivative, N(e) = dI(e)/de, 
which is called the projected density of states (PDOS), give rich information 
on the chemical structure of the system and allow all one-electron properties to 
be obtained within the independent-electron approximation [27]. The value of 
I( e) at the Fermi energy, e F, is the P matrix [P = I( e F )]. When using a basis 
set of localized functions, the one-matrix, 'Yo(r, r'), (equation 3) corresponding 
to a detor constructed on the occupied HF or KS spin-orbitals, is conveniently 
expressed in terms of the P matrix: 

p 

'Yo(r,r') = L L p;;-T<p,,(r-A,,-T) <pv(r'-Av-T') 
",v=1 T,T' 

The determination of the Fermi energy, eF, is a delicate problem only in the 
case of metals (see Chapter 4 for details). For insulators, n bands are fully 
occupied, the others are void. The O( e - e:') function can then be dropped from 
the integrand and the sum over i is limited to the n lowest eigenvalues at each 
K. point. 

In summary, we must estimate integrals of the form: 

where e(K.) and e(K.) are well-behaved, periodic functions in reciprocal space, 
and BZ'(e) is the portion of BZ where e(K.) < e: it coincides with the whole 
BZ, if e(K.) is less than e everywhere and vanishes if e(K.) is always greater than 
e. 

If BZ'(e) = BZ, special points techniques may be used [45]. This means that 
one may select a special set of points { ~ } within the BZ, with a weight, w(~), 
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associated with each of them, evaluate eC~) at each of them and substitute the 
integral with a weighted sum: E ~ E~ w(~) e(~) . A discussion of these tech­
niques and a documentation of how good their performance can be is provided 
in Chapter 4. 

In the more general case (BZ'(e) =f BZ), the linear [46] or quadratic [47] 
tetrahedron techniques are usually adopted. The BZ is subdivided into tetrahe­
dral mini-cells: the integral will be the sum of sub-integrals over each of them. 
After evaluating e and c at the vertices of the tetrahedra, ~, a linear or quadratic 
approximation is obtained for both e(~) and c(~) inside the tetrahedron: the 
sub-integral is finally evaluated analytically using these approximate expres­
sions. An alternative method can be used for evaluating directly E integrals, 
starting from the value of e(~) and c(~) at a few special points,~: this is called 
the Fourier-Legendre expansion technique, because it is based first, on a Fourier 
representation of bands, second, on the expansion of the DOS associated with 
each band into an orthonormal set of Legendre functions [48, 27]. It is not as ac­
curate as the tetrahedron technique, but has the advantage of providing analytic 
expressions for the E dependence on e and of being much faster. 

4·3. Lattice sums 

The problem of Coulomb lattice sums is present in both DF and HF schemes 
and must be treated with extreme care, because the Coulomb series is only 
conditionally convergent. In HF theory, we have the additional problem of the 
exchange series, which is involved in the construction of the Fock hamiltonian, 
j (see equation 16), and gives a contribution, Ee:c, to the HF energy (see the 
last term in equation 17). Since both these problems are discussed explicitly in 
Chapter 8, we will not examine them here. 

4.4. The SCF problem 

In variational approaches like KS or HF, the SCF procedure can be viewed as a 
path in the space of the variational coefficients {cl'd == c (for simplicity, the ~ 
index is dropped). This path begins at some initial good (?) guess (c = Cst art) 

and ends, hopefully, at C = Cacf, where the minimum of the functional Eo[c] 
occurs, subject to the orthonormality condition of the spin-orbitals: 

p 

L C;iCV;SI'V = Oi; 
l',v=l 

At Csc!, the self-consistency condition is satisfied. On the other hand, self­
consistency does not necessarily imply that a minimum has been reached, al­
though this is always the case, in practice. The standard movement of the rep­
resentative point C in the coefficient space is as described in section 4.1. At the 
general n-th cycle of the SCF procedure, the current point Cn is used to generate 
the new hamiltonian, hn ; this in turn (equation 25) generates Cn +!, satisfying the 
orthonormality constraint. There is, however, no guarantee that the new point 
moves in the direction of Csc!. In fact, critical cases are frequent: oscillations in 
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energy occur, requiring a large number of steps in the procedure, sometimes of 
the order of hundreds or even ending in a numerical catastrophe. Many proce­
dures have been devised to accelerate the SCF procedure. Some of them simply 
damp oscillations by mixing quantities belonging to the current and preceding 
cycles before starting the new one (typically, the Hamiltonian matrix in HF cal-
culation and the density in DF calculations): 'lin .- a:hn - 1 +(I-a:)hn , where the 
mixing coefficient a may be larger than 0.5. More sophisticated procedures have 
been proposed in the field of molecular calculations, which try to obtain good 
guesses for c for use in subsequent cycles by extrapolation [49]. These techniques 
are just now beginning to be used in solid state applications. In the next section, 
we present briefly the Car-Parrinello technique, which combines the SCF prob­
lem with the problem of the optimization of nuclear coordinates in an original 
way. 

5. Non-standard Methods of Solution 

To give an idea of the variety of approaches that can be used for the ab initio 
treatment of periodic systems, a few of those in current practice are sketched 
here. 

KKR (Korringa-Kohn-Rostoker) 
There are some aspects of this powerful technique [50] which make it awkward to 
use for those accustomed to the ordinary tools and concepts of molecular quan­
tum chemistry (for simplicity, we consider its application to elementary crystals 
with one atom per cell, in the framework of DF theory). First, space is partitioned 
into atomic spheres centered on atoms, and a complementary interstitial regionj 
the atomic sphere is the largest that can be inscribed in the Wigner-Seitz cell. 
Secondly, a simplified form is assumed for VeJJ(r) (equation 13), that is, Vejj(r) 
is zero in the interstitial region and is a radial function [Veff(r) = V(r A)] inside 
the atomic spheres: this is called the muffin-tin (MT) approximation. Thirdly, 
for the solution of the KS equations, Green-function techniques are adopted, 
that is, the eigenfunction at a given K. point, corresponding to an eigenvalue 
e < 0, 1/I(K., r; e), is the solution ofthe Lippmann-Schwinger integral equation: 

1/I(K., rj e) = f dr' {[- exp( -Ir - r'I.r-e) / (411"1r - r'm Vejj(r') 1/I(K., r'j en (35) 

The expression in square brackets is the Green function for the free electron. 
The MT form of the potential and the fact that: 

for all lattice vectors, T, as a result of Bloch's theorem (see Chapter 2, equation 
41), are now taken into account. The Lippmann-Schwinger equation can then be 
recast in a very convenient form, where the integral is restricted to the interior 
of a single atomic sphere, in the reference zero cell. After expressing 1/I(K., r; e) 
as a linear combination of "partial waves", the eigenvalues, e, are obtained by 
looking for non-trivial80lutions, which correspond to the zeros of a determinant 
(11- G(e)VI = 0 : see Chapter 13, Appendix 1). A remarkable example of the 
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power of this technique is provided by the detailed study of the electronic prop­
erties of 32 elementary metals from hydrogen to indium, by Moruzzi, Janak and 
Williams [51]. 

APW(augmented plane waves) 
The partition of space between atomic spheres and the interstitial region is 
the characteristic feature of a whole family of techniques, derived from Slater's 
original proposal [52] through continuous improvements and transformations: 
APW, LAPW (linearized piane waves) [53], FLAPW (Full potential LAPW) 
[54]. Essentially, a plane-wave expansion is adop~ed in the interstitial region, 
while spherical harmonics multiplied by radial functions are used within the 
spheres; the continuity of the wave-function and its derivative across the bound­
ary is the principal condition to be obeyed. All restrictions concerning the form 
of the potential have been progressively removed, complicated crystalline struc­
tures can be treated without problems and linearized forms of the equations 
have been adopted which allow all eigenvalUes at a given K. to be found at the 
same time through matrix diagonalization. These techniques are specially suited 
to the study of properties related to the distribution of inner electrons, such as 
the electric field gradient at the nuclear positions [55]. The FLAPW method is 
discussed in detail in Chapter 9. 

Recursion 
This method shares with KKR the use of Green function techniques. Consider 
a system described by one-electron equations, and a representative basis set of 
localized functions tP p (r }. The originality of the recursion technique [56] lies in 
the fact that its aim is not the determination of eigenvalues and eigenfunctions, 
but rather, to determine the PDOS directly (section 4.2): 

Npl/(e) = E C~icl/ic5(e - t:i) 
i 

For each e, the sparse nature of the H and S matrices is exploited. Starting 
from a given "centre", tPP' one considers its neighbours (those that have non­
negligible matrix elements with tPp), then the next nearest neighbours, and so 
on. Through a continued fraction expansion, the PDOS is determined with pro­
gressively better precision and the procedure is truncated after considering a 
certain number of steps. An appealing aspect of this method is that it does not 
exploit translational symmetry, except for the determination of H and S matri­
ces, and is largely insensitive to boundary conditions: for these reasons, it can 
be applied quite naturally to the study of defects in solids. A drawback lies in 
the requirement of matrix sparseness, which has made difficult its use with ab 
initio Hamiltonians, until very recently [57]. 

CP( Car-Parrinello) 
The CP technique [58] differs from those described up to now because it treats 
the problem of the nuclear motion and that of the electron response to nuclear 
displacements contemporaneously. It is expedient to give a short a.ccount of this 
method which is gaining enormous importance in solid state physics; for more de­
tails, reference can be made to the review article by Remler and Madden [59]. As 
anticipated in section 4.4, the SCF process, which consists of finding the optimal 
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Ci coefficients of the basis functions defining the occupied COs, can be viewed 
as a motion of the system in the coefficient space towards the energy minimum, 
subject to an orthonormality constraint. Such problems of constrained motion 
can be treated in a classical Lagrangian formalism, by introducing a fictitious 
time, t, a fictitious mass, I' and a fictitious kinetic energy, 1'. Li(Ci)2 /2. At each 
time step, dt, the electronic variables evolve in a direction dictated by the acting 
forces (Fi = -8E[c]/8cd which drive the system towards lower total energy, 
subject to constraints and to inertial forces. Attrition terms are included in the 
Lagrangian, so that the system evolves towards an energy minimum, hopefully 
the absolute one. With fixed nuclei, this procedure is usually much less efficient 
than the standard one, described in section 4.4. 

The brilliant idea in the CP method was to include in the Lagrangian both 
the real nuclear motion in R-space and the fictitious electron motion in c-space, 
on the same footing. The system (nuclei + electrons) starts from a given initial 
configuration (R, R; c, c) and evolves in the phase space: the forces acting on 
nuclei are calculated using the Hellman-Feynman theorem [59]. This process is 
also called simulated annealing, because the initial configuration can be made to 
correspond to a given temperature, and the attrition terms are, therefore, "cool­
ing" the system by subtracting real and fictitious kinetic energy. With a proper 
choice of the time step dt, of the fictitious mass 1', and of the attrition terms, the 
nuclei are found to move close to the ever-changing Born-Oppenheimer energy 
surface, Eo(R) (see equation 2) and eventually to reach a local energy mini­
mum. At a stroke, both the electronic SCF problem has been solved and the 
equilibrium configuration has been reached, an achievement that could require 
painstaking calculations with standard techniques. A fringe benefit is that one 
obtains the electron response to nuclear motion automatically. 

The large majority of applications of the CP method are concerned with 
this energy minimization problem. However, the same technique can be used for 
studying real problems of molecular dynamics, such as the distribution of phonon 
frequencies (see for instance reference [60] concerning highly compressed water 
ice). In solid state applications, the standard ingredients of the CP method are: 

1) the DF-LOA Hamiltonian (derivatives are easily calculated); 
2) the super-cell technique (in the different super-cells, nuclei and electrons are 

moving identically; only the K. = 0 point is considered in integrations); 
3) the soft-core pseudo-potentials for core electrons and plane waves for valence 

electrons (these choices permit the use of a simple, orthonormal, universal 
basis set, and of highly efficient fast-Fourier-transform algorithms). 

GFMC and VMC (Green-Function Montecarlo and Variational Montecarlo) 
The impact of Montecarlo techniques in solid state physics is mostly due to 
the calculations by Ceperley and Alder, which have provided information of un­
precedented accuracy concerning the homogeneous and inhomogeneous electron 
gas at low densities [11] (see section 2.1). These techniques allow the 2n-electron 
closed-shell wavefunction, lVo, to be treated without the need for separation into 
the products of one-electron wave-functions. This is possible because integrals 
ofthe type (lVolifnrllVo) in 3n spatial co-ordinates are evaluated accurately and 
economically by a statistical sampling procedure, the so-called Metropolis algo­
rithm. There are two fundamental types of Montecarlo methods. According to 
GFMC, the evolution of the wave-function in imaginary time, T = zt, is followed 
using statistical techniques, starting from a trial function, lVT. For T - 00, all 
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components in the wave- function, except !lio, are damped because of the time 
evolution operator: exp(-sHt) = exp(-Hr). 

This procedure has been adopted, for instance, in the electron-gas calcula­
tions just mentioned. In VMC, the trial wave-function is made dependent on 
some variational parameter, q [!liT == !li(q)). The optimal value of the parameters 
is determined by minimizing the expectation value of the energy: 

E(q) = (!li(q)lhnrl!li(q»)/(!li(q)I!li(q») 

The trial function is usually written so as to include explicitly the most important 
part of the correlation. The form most often adopted is the product of a J astrow 
factor, J(q) [61], by a single determinantal approximate wave-function, usually 
the HF solution, perhaps with the introduction of adjustable scaling factors, q': 
!liT == J(q)!liHF(q'). The Jastrow factor is totally symmetric in the electron coor­
dinates (therefore,!liT is antisymmetric) and has the form Li>j[arij/(1+brij)], 
where a and b are variational parameters. Thanks to this factor, the trial wave­
function automatically contains electron-electron correlation C1J.SpS of the correct 
form, that is, each electron moves accompanied by a correlation hole. The main 
difficulty in the application of Montecarlo techniques to solid state problems, 
is that they are very inefficient in the case of heavy atoms where a large ma­
jority of the sampling points in the statistical integration would end in core 
regions, the most unintersting ones: computational requirements increase very 
rapidly with Z (oc Z5.5). The use of pseudo-potentials would allow us to get rid 
of core-electrons, but their non-local form (equation 19) makes their use with 
standard Montecarlo techniques very difficult. Nevertheless, interesting attempts 
have been made in this direction: pseudo-potential calculations of crystalline sil­
icon have been performed both using VMC [62], and GFMC techniques [63]. 

N-scaling 
When one considers such a bewildering variety of techniques, the question can 
be raised as to which one has best performance or if there is a theoretical limit 
to the efficiency of new techniques that can be devised. In a system containing 
N non-equivalent atoms, all physically relevant information is proportional to N 
(in the rest of this lecture, N designates the number of crystalline cells; here we 
use it in a different sense, to conform with standard nomenclature). However, 
standard schemes depend on N3, due to the necessity of determining a num­
ber of orbitals proportional to N, which involves diagonalization or inversion of 
(kN) x (kN) matrices (equation 31: the pre-factor k depends on the basis set 
size). Much work has taken place in recent years in the framework of DF-LDA 
approaches, aimed at devising algorithms which vary linearly with N, at least 
for very large N values. There is a variety of proposals, still at a rough stage 
of implementation [64]. When such tools become available, it will be possible 
to study very complex systems which are beyond the accessibility of ab initio 
schemes at present. 

6. From the Electronic Structure to the Crystalline Properties 

A large part of this book is devoted to the calculation of ground state crystalline 
properties: here, we make a few general remarks. Consider an observable quantity 
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0, depending on the electronic variables. Its average ground state value, oov, is 
given by the expression: 

(36) 

where the operator 6 is obtained from the classical expression of the observable 
0, via the correspondence principle: r - r·; p _ ,v (for instance: 
T = ~i IplU2 - - Ei VIU2). If 0 is a one-electron observable, that is, 
o == 0 = Ei 0i, which is often the case, then expression 36 can be simplified 
by making reference to the one-electron density matrix, 1o(r, r') (equation 3): 

Olov = f dr[O(r')'yo(r,r')]rt_r (37) 

In HF theory, !IlHF is an approximation of!Ilo in the form of an antisym­
metrized product of spin-orbitals. It is easily seen that: 

'YHF(r, r') = 2 L tPHF,i (r)tPHF,i (r') 
i 

for closed-shell systems, the sum being restricted to the n/2 occupied orbitals 
and we can write, for one-electron operators: 

oli;. = 2 L f drtPHF,i (r)o(r)tPHF,i (r) (38) 
i • 

A similar expression is obtained for two-electron observables. 0li;. will be af­
fected by a correlation error which can be estimated according to the usual 
techniques. 

When considering OF theory, Hohenberg and Kohn's first theorem (section 
2.2) insures that for each observable, a functional O([Po]j r) must exist such that: 

oov = f drO([po]jr)po(r) (39) 

However, there is no general and simple prescription for generating such func­
tionals. By considering the formal similarity of HF and KS procedures, it would 
be tempting to use equation 38 again, this time making reference to the KS 
pseudo-orbitals tPKs,i(r). This seems to be impossible because !IlKS is not an ap­
proximation of !Ilo. However, it turns out that it is, in fact, convenient to isolate 
such a contribution, and to write [65]: 

Olov = 2 L f drtPKS,i(r)o(r)tPKsi(r) + L:l0[p] (40) 
i • 

Different prescriptions are proposed to estimate the correction L:lOj in LOA: 

(41) 

where Oh(p) and o/(p) are the average value (per electron) ofthe observable 0, 
calculated for the homogeneous gas of interacting electrons and of free electrons, 
respectively. Similar expressions, with the addition of a SIC term (see section 
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2.2), have been used, for example, to calculate Compton profiles from KS pseudo­
wave-functions (see Chapter 13). 

There are important quantities, notably the macroscopic dielectric polariza­
tion, which cannot be expressed in the form of equation 36: in these cases, the 
availability of an approximate form of the wave-function, as provided by HF 
theory, allows a more satisfactory formulation of the theory (see Chapter 14). 

7. Conclusions 

There has been, in recent years, an explosive expansion in the field of ab initio 
techniques for the treatment of solid state problems. Very rapidly, new proposals 
emerge, existing schemes become obsolete, or conversely, receive new impetus 
from the efficient solution of a certain critical computational step. The solution of 
problems which appeared untreatable just a few years ago is now commonplace. 
For users not directly involved in the development of the methodologies and in 
the implementation of computer codes, such a rapid evolution may be disturbing. 
Getting accustomed to the use of one of these complex programs, knowing how 
to obtain answers to one's problems and how to interpret results involves an 
important human investment in terms of study, time and practice. The simplicity 
of input, the transparency of output and the quality of the documentation can 
be more important than a factor two, say, in speed. 

It is fortunate that both in the field of DF and of HF approaches, powerful, 
general-purpose programs are now available, which tend to incorporate in, con­
secutive releases, the natural evolution of techniques in the field. The "life-time" 
of these projects is becoming much longer (of the order of ten years at least) 
and justifies the effort required to become familiar with the programs. Another 
advantage of these public codes is that one can compare their performance over 
a variety of systems. Due to their ab initio nature, they should give comparable 
results when applied to the same system. There is now the trend to test these 
powerful codes with whole families of crystalline compounds. We may cite a 
few examples from recent literature: seventeen 111-V and IV-IV semiconductors 
(LCAO-HF) [66]; nine oxides (LCAO-HF) [67]; ten wurtzite crystals (LCAO­
LDA) [68]; carbides and nitrides of eight transition metals [69]; all hcp metals 
from Be to Cd [55]. This kind of documentation may help final users to make an 
unbiased, sensible choice. Having at least two codes based on different schemes 
available would be preferable, of course, because the optimal area of application 
is usually different for the different approaches. 

Acknowledgments 

This work was supported in part by the Italian MURST (fondi 40%), and by 
the Italian CNR. 

References 

1. A. SzabO and N .S. Ostlund, Modern Quantum Chemistry, McGraw-Hill, New York (1993). 
2. R.E. Moss, Advanced Molecular Quantum Mechanics, Chapman and Hall, London (1973). 



74 Cesare Pisani 

3. P.P. Singh, Phys. Rev. B 49, 4954 (1994). 
4. J.C. Inkson, Many-body Theory of Solid., Plenum, New York (1984). 
5. L. Hedin, Phys. Rev. 139, A796 (1965). 
6. P. Fulde, Electron Correlations in Molecule" and Solids, Solid-State Sciences, Vol. 100, 

Springer, Berlin (1993). 
7. S. Raimes, The Wave Mechanic" of Electron" in Meta"', North Holland, Amsterdam 

(1961). 
8. H.J. Monkhorst, Phys. Rev. B 20, 1504 (1979). 
9. J. Delhalle and J.L. Calais, J. Chem. Phys. 85, 5286 (1986). 

10. M. Gell-Mann and K.A. Bruckner, Phys. Rev. 106, 364 (1957). 
11. D.M. Ceperley, Phys. Rev. B 18, 3126 (1978); D.M. Ceperley and B.J. Alder, Phys. Rev. 

Lett. 45, 566 (1980). 
12. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 
13. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 
14. W. Kohn and L.J. Sham, Phys. Rev. 140, Al133 (1965). 
15. L.H. Thomas, Proc. Cambro Phil. Soc. 23, 542 (1927); E. Fermi, Z. f. Phys. 49, 550 (1928). 
16. L. Hedin and B.I. Lundqvist, J. Phys. C: Solid St. Phys. 4, 2064 (1971). 
17. J. C. Slater, Phys. Rev. 81, 385 (1951). 
18. C. Lee, W. Yang and R.G. Parr, Phys. Rev. B 37, 329 (1975); A.D. Becke, J. Chem. Phys. 

88, 1053 (1988); L.C. Wilson and M. Levy, Phys. Rev. B 41, 12930 (1990); J.P. Perdew 
and Y. Wang, Phys. Rev. B 45, 13244 (1991) 

19. O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976). 
20. M.R. Pederson and C.C. Lin, J. Chem. Phys. 88, 1807 (1988).E.S. Fois, J.I. Penman and 

P.A. Madden, J. Chem. Phys. 98, 6352 (1993). 
21. B.G. Johnson, C.A. Gonzales, P.M.W. Gill and J.A. Pople, Chem. Phys. Lett. 221, 100 

(1994); M. Biagini, Phys. Rev. B 49, 2156 (1994). 
22. M.L. Cohen, in St",cture and Bonding in C,",,,tal,,, Vol I (M. O'Keeffe and A. Navrotsky, 

eds), Academic, New York, p.25 (1981). 
23. J.M. Andre, L. Gouverneur and G. Leroy, Intern. J. Quantum Chem. I, 451 (1967); J.L. 

Bredas, J.M. Andre, J.G. Fripiat and J. Delhalle, Gazz. Chim. Ital. 108, 307 (1978). 
24. G. Del Re, J. Ladik and G. Bicz6, Phys. Rev. 155, 997 (1967). 
25. R.N. Euwema, D.L. Wilhite and G.T. Surratt, Phys. Rev. B 7,818 (1973). 
26. A.B. Kunz, Phyll. Rev. B 6, 606 (1972). 
27. C. Pisani, R. Dovesi and C. Roetti, Hartree-Focl: a6 initio 7reatment of Crystalline Sy,,­

tem", Lecture Notes in Chern. Vol. 48, Springer, Berlin (1988). 
28. R. Dovesi, C. Pisani, C. Roetti, M. Causa and V.R. Saunders, CRYSTAL 88, Program 

No. 577, QCPE, Indiana University, Bloomington, IN (1989); R. DOVlllli, C. Roetti, and 
V.R. Saunders, CRYSTAL 9f U.er Documentation, University of Torino, Torino (1992) 

29. S. Baroni, G. Pastori Parravicini and G. Pezzica,Phyll. Rev. B 32, 4077 (1985). 
30. R. Hott, PhYII. Rev. B 44,1057 (1991). 
31. P. Piecuch, S. Zarrabian, J. Paldus and J. Cizek. Phys. Rev. B 42, 3351 (1990). 
32. M.B. Lepetit, E. April, J.P. Malrieu and R. Dovesi, PhYII. Rev. B 46, 12974 (1992). 
33. M. Causa, R. Dovesi and C. Roetti, Phys. Rev. B 43, 11937 (1991). 
34. G.B. Bachelet, D.R. Hamann and M. Schluter, Phys. Rev. B 26, 4199 (1982); D.R. 

Hamann, Phys. Rev. B 40,2980 (1989). 
35. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 
36. P. Durand and J.C. Barthelat, Theor. Chim. Acta 38, 283 (1975); J.C. Barthelat, P. 

Durand and A. Serafini, Molec. PhYII. 33, 159 (1977). 
37. P.J. Hay and W.R. Wadt, J. Chem. PhYII. 82, 270; 284; 299 (1985). 
38. G. te Velde and E.J. Baerends, PhYII. Rev. B 44, 7888 (1991). 
39. A. Rauk, L.C. Allen and E. Clementi, J. Chem. Phyll. 52, 4193 (1970). 
40. S.F. Boys and F. Bernardi, Molec. Phys. 19, 553 (1970). 
41. E.R. Davidson and D. Feller, Chem. Rev. 86, 681 (1986). 
42. S. Huzinaga, Gaullllian Ba,i. Sets for Molecular Calculation., Elsevier, Amsterdam (1984). 
43. L.E. McMurchie and E.R. Davidson, J. Compo Phys. 26, 218 (1978); 44, 289 (1981); 

V.R. Saunders, in Method" in Computational Molecular Physics (G.H.F. Diercksen and S. 
Wilson, Eds.) Reidel, Dordrecht (1983). 



Ab-lnitio Treatment of Periodic Systems 75 

44. J. Tomasi, in Basi Teoriche ed Applicazioni Numeriche (R. Moccia and C. Pisani, Eds.) 
Polo Editoriale Chimico, Milano, p. 129 (1990). 

45. A. Baldereschi, Phys. Rev. B 7, 5212 (1973); D.J. Chadi and M.L. Cohen, Phys. Rev. B 
16,1746 (1977); H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976); C. Pisani 
and P. Ugliengo, Phys. Stat. Sol. (b) 96, 537 (1982). 

46. O. Jepsen and O.K. Andersen, Solid St. Comm. 9, 1763 (1971); G. Lehmann and M. Taut; 
Phis. Status Sol. (b) 54, 469 (1972). 

47. M.H. Boon, M.S. Methfesseland F.M. Miiller, J. Phys. C 19, 5337 (1986); G. Wiesenekker, 
G. te Velde and E.J. Baerends, J. Phys. C 21, 4263 (1988). 

48. G. Angonoa, R. Dovesi, C. Pisani and C. Roetti, Phil. Mag. 44, 413 (1981). 
49. I.H. Hillier and V.R. Saunders, Int. J. Quantum Chem. 4, 503 (1970); R. Seeger and 

J.A. Pople, J. Chem. Phys. 65, 265 (1976); P. Pulay, J. Compo Chem. 3, 556 (1982); J. 
Cioslowski, J. Chem. Phys. 89, 2126 (1988); H.B. Schlegel and J.J.W. Douall, Computa­
tional Advance" in Organic Chemistrt/, Kluwer, New York (1991). 

50. J. Korringa, Physica 13, 392 (1947); W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 
(1954). . 

51. V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated Electronic Properties oj Metal", 
Pergamon, New York (1978). 

52. J.C. Slater, Phys. Rev. 51, 846 (1937). 
53. O.K. Andersen, Phys. Rev. B 12, 3060 (1975). 
54. E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman, Phys. Rev. B 24, 864 (1981); P. 

Blaha, K. Schwarz, Intern. J. Quantum Chem. 23, 1535 (1983). 
55. P. Blaha, K. Schwarz and P.H. Dederichs, Phys. Rev. B 37, 2792 (1988). 
56. V. Heine, R. Haydock and M. Kelly, in Solid State Physics, Vol. 95 (H. Ehrenreich, F. 

Seitz and D. Turnbull, Eds.), Academic, New York (1980). 
57. A. Gibson, R. Haydock and J.P. LaFemina, Phys. Rev. B 47, 9229 (1993). 
58. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). 
59. D. Remler and P.A. Madden, Molec. Phys. 70, 921 (1990). 
60. C. Lee, D. Vanderbilt, K. Laasonen, R. Car and M. Parrinello, Phys. Rev. B 47, 4863 

(1993). 
61. R. Jastrow, Phys. Rev. 98, 1479 (1955). 
62. S. Fahy, X.W. Wang, G. Louie, Phys. Rev. B 42, 3503 (1990). 
63. X.-P. Li, D.M. Ceperley and R.M. Martin, Phys. Rev. B 44, 10929 (1991). 
64. W. Yang, Phys. Rev. Lett. 66, 438 (1991); S. Baroni and P. Giannozzi, Europhys. Lett. 

17, 547 (1992); G. Galli and M. Parrinello, Phys. Rev. Lett. 69, 3547 (1992); E.B. Stechel, 
A.R. Williams and P.J. Feibelman, Phys. Rev. B 49, 10088 (1994); W.Yang and T.S. Lee, 
J. Chern. Phys. 103, 5674 (1995). 

65. G.E.W. Bauer, Phys. Rev. B 27, 5912 (1983). 
66. M. Causa, R. Dovesi and C. Roetti, Phys. Rev. B 43, 11937 (1991). 
67. R. Dovesi, C. Roetti, C. Freyria-Fava, E. Apra, V.R. Saunders and N.M. Harrison Phil. 

Trans. R. Soc. London A341, 203 (1992). 
68. Y-N Xu and W.Y. Ching, Phys. Rev. B 48, 4335 (1993). 
69. J. Higlund, G. Grimvall, T. Jarlborg and A. FernAndez Guillermet, Phys. Rev. B 43, 

14400 (1991). 



Reciprocal Space Integration 
and Special-Point Techniques 

Andrea Dal Corso 

Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), IN-Ecublens, 
1015 Lausanne, Switzerland. 

May 17, 1996 

Summary. We describe the special-point technique to integrate a periodic func­
tion over the BZ. The method of Monkhorst and Pack for special-point genera­
tion is explained and an example of its application to the fcc lattice is discussed. 
Several convergence tests performed with the PWSCF code are presented. The 
problem of sampling the Fermi surface in metallic systems is briefly discussed. 
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1. Introduction 

Many calculations in crystalline materials involve the averaging over the BZ 
of a periodic function of the wave vector: the electronic charge density is the 
sum over the BZ of the square modulus of the Bloch wavefunctions and the 
band contribution to the total energy is the average of the eigenvalues of the 
KS [1] equations over the wave vectors [2]. In a finite solid, with N unit cells 
and periodic boundary conditions, the ,., points are a useful way of classifying 
the energetic levels of the electrons. The sum over N ,., points is actually an 
average over the electronic states. To compute the bulk properties of a crystalline 
material, it is necessary to perform the thermodynamic limit where N -!o 00. 

In this limit, the sum over N becomes an integral over a finite region of the 
reciprocal space: the BZ. In principle, it is possible to compute this integral by 
a standard numerical technique [3], but in practice, this approach requires the 
evaluation of the integrand function on a very large number of wave vectors. 
Since the cost of evaluating this function at any,., point is usually high, it is 
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important to perform the integration with a method which minimizes the number 
of such evaluations. 

For sufficiently smooth functions, it is possible to perform the integration by 
computing the function in a carefully selected set of a few points in reciprocal 
space. These points are called special points [4]. Several special-point sets exist 
for each Bravais lattice and for each point group symmetry. Historically, the use 
of the special points in electronic structure calculations was introduced in 1973 
by A. Baldereschi [5] who showed that the computation of the charge density 
of semiconductors could be performed by using a single point. Since then the 
method has been generalized in various ways. Nowadays, several points are used 
and many recipes are known to compute the special points of a lattice with 
a given point group. The technique is now a tool of paramount importance in 
many electronic structure calculations. Since the method is based on a Fourier 
expansion of the integrand function, it is particularly useful to integrate smooth 
functions in reciprocal space whose Fourier transform decays rapidly in real 
space. This fact does not create any particular problem when the special points 
are used in the study of semiconductors or insulators, but in the study of metals 
it is often necessary to integrate the Fermi distribution function. This function 
has a discontinuity at the Fermi energy and its Fourier transform is not localized 
in real space. Therefore, the application of the special-point method to metals 
requires particular care. 

The plan of this chapter is as follows. In Section 2, we present the theory 
necessary to understand the special-point technique. In Section 3, we describe 
the technique of Monkhorst and Pack [6] which is a simple and powerful method 
of finding sets of special points in a Bravais lattice which can then be enlarged 
in a systematic way. In Section 4, we illustrate the method by applying it to 
an fcc Bravais lattice. For this lattice, we give several series of special points 
which will be used in Chapter 4 to perform some calculations on Si, N aCI and 
AI. In Section 5, we discuss the application of the special-point technique to 
the computation of the charge density and of the band contribution to the total 
energy. Tests of convergence of the special-point sets are given in Section 6, using 
the Bloch orbitals of the PWSCF code [2]. One method to deal with metallic 
systems is briefly discussed in Section 7. Section 8 contains conclusions drawn 
from this work. 

2. The special-point theorem 

Let us start by recalling some well known facts about the symmetry properties 
of a solid (see Chapter 1 and reference [7]). The position of the atoms in a 
crystalline solid are determined by the Bravais lattice vectors, T 1.1 and by a 
finite set of vectors, d., which define the atomic positions inside the unit cell. 
The vectors, T 1.1' are defined by introducing three principal lattice vectors 8i: 

(1) 

where Tl.I,i are integer numbers. The most general symmetry operation which 
maps the crystal onto itself is a combination of a rotation (or pseudo-rotation) 
S"' plus a translation fm. The set of the symmetry operations is called the 
space group of the crystal. This group contains all the operations (S"'lfm) (m = 
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1 ... N s) such that, for each T I' and d" it is possible to find a direct lattice 
vector Tv and a vector dsm(,) such that: 

(2) 

and atom sm(s) is of the same type as atom s. The set of operations (smIO) is 
itself a group, called the point group of the crystal. We may define similarly the 
point group of the Bravais lattice. In general, the point group of the crystal is a 
subgroup of the point group of the Bravais lattice. In fact, a basis of Nat atoms 
per unit cell might lower the symmetry of the Bravais lattice. The special-point 
technique can be formulated without any hypothesis being made about the point 
group associated with the reciprocal lattice which may be the point group of the 
Bravais lattice or a subgroup of it. 

We are interested in the integral: 

- n [ 
1= (211")3 lBZ d" 1(,,) (3) 

where 1(,,) is a periodic function of the wave vector" with period given by the 
reciprocal lattice vectors and n is the unit cell volume. If 1(,,) does not have 
the same symmetry as the crystal, we can consider the symmetrized function: 

1 Ns 

Ir(,,) = N L I(sm,,) 
s m=l 

(4) 

The integral over the BZ of Ir(") is equal to 1 and Ir has the symmetry of the 
point group of the crystal. Therefore, it is possible to assume that 1(,,) has the 
same symmetry as the crystal. In Section 5, we show how to apply equation (4) 
in a practical case where this hypothesis is not valid. 

Let us expand 1(") in Fourier components. Since 1(") is periodic, with 
period given by the vectors of the reciprocal lattice, the expansion is over the 
vectors of the direct lattice T 1': 

1(") = L I(TI')e,"T,. (5) 
I' 

Furthermore, ifTI' and Til are related by a symmetry operation, I(TI') = I(T II ), 

because 1(") is invariant with respect to the operations of the point group. 
Therefore, we can divide all the direct lattice vectors into shells of symmetry 
related vectors: 

Cn = {Tm = smTo I m = 1,···, Ns} (6) 

where the index n is used to order the shells according to increasing modulus of 
their T vectors. In all the elements of a given shell, Cn , the Fourier transform, 
I(Tm), has the same value: I(Tm) = I(To) = In Therefore, it is possible to 
write the Fourier expansion of 1(,,) as 

00 00 

1(,,) = LIn L e'''T = LlnAn(") (7) 
n=O ITIEC" 0=0 

where: 
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1 
An (",) = -- E e''''T 

..;N;; ITlec" 
(8) 

Nn is the number of distinct vectors of the shell and in = ..;N;;ln. From the 
definition of An (",), it is easy to see that: 

f An (",) = 0 if ITI # 0 1Bz (9) 

This result shows that the integral over the BZ of 1("') is equal to 10. Let us 
now consider what happens when we evaluate 1("') in a point "'i. We have: 

00 

I("'i) = 10 + E in An ("'i) (10) 
n=1 

The value I("'i) differs from 10 by a quantity which depends on the values 
of An("'i). If we could find a single point, ",. such that An("'*) = 0 for each 
n # 0, we could have 10 = 1(,,·). If we choose a ". which gives An (",·) = 0 for 
n = 1,2, ... Np with the largest possible Np, we obtain the best approximation of 
10 with a single point. Note that, by the mean-value-point theorem, it is always 
possible to find a point ,,' inside the integration region such that 10 = 1("") but, 
in this case, the point ,,' depends on the integrand function. In the special-point 
method, ",* does not depend on the function I but only on the lattice and on the 
point group which is used to build An (,,). The number of shells, Np for which 
An (",) = 0, is limited by the compatibility between these equations. In general, 
we expect Np = 3 because there are three independent components of ",*. It 
might happen that this set of equations is incompatible. In this case, Np = 2 
and the point ",* can be defined as the one which minimizes A3(",) [5]. 

In order to integrate a generic function a single point does not suffice and 
it is useful to use larger and larger sets of points. Let us suppose that we could 
find a set of N", points and relative weights {"i, Wi} such that: 

N" 

N", 

LWi = 1 . 
i=1 

L WiAn("") = 0 n = 1, ... , Np 
i=1 

(11) 

(12) 

then we use these equations in the Fourier expansion of 1("'), equation (5) and 
we obtain: 

N" 00 N", 

E WiI("i) = 10 + E in E W,An("'i) (13) 
,=1 

In this case, we can approximate 10 with: 

N" 
10 ~ E wd(",,) (14) 

,=1 
the remaining error being: 
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00 NK. 

f: = - L in L wiAn(K.i) (15) 
n=N,,+1 i=l 

The magnitude of f: depends on the values of the Fourier transform In for n > 
Np • For sufficiently smooth functions, the values of In tend rapidly to zero as 
n becomes large; the precision of the calculation can be increased simply by 
increasing the number of sampling points and, therefore, of shells Np for which 
equation (12) is true. 

3. The special-point generation 

In principle, in order to determine the coordinates of a special-point set, it is 
sufficient to solve equation (12) with the constraints given by equation (11). 
Although this appears to be a formidable task because equation (12) is a non­
linear system, the periodicity and the point group symmetry of An (K.) lead to 
useful simplifications. Chadi and Cohen [8] have given a procedure to generate 
special-point sets and have presented sets for the cubic and hexagonal lattice. 
Monkhorst and Pack [6] have developed a more systematic prescription based on 
equally spaced points. At present, it is not clear which is the "best" method for 
K.-point generation but the Monkhorst and Pack scheme appears to be reliable 
and simple to use. In this Section, we describe their method. First, the number 
q which determines the size of the mesh is chosen. For this given q, the method 
is as follows: 
a) Define the sequence of q numbers: 

2r- q-l 
Ur = and r = 1,2, .. . q 

2q 
(16) 

b) Choose the following qa K. points: 

K.pr. = upbl + Ur b 2 + u.ba (17) 

where bi represents the principal reciprocal lattice vectors and up and u, are 
defined in the same way as Ur • 

c) Choose an irreducible zone of the reciprocal lattice. If a point K.pr. is inside 
this irreducible zone, it is considered to be a special point and its weight is set to 
1. If it is outside, we find the equivalent point inside the irreducible BZ (IBZ). If 
this point coincides with one of the special points already found, the weight of 
that point is increased by one, otherwise the point is considered as a new special 
point and its weight is set to one. 
d) Renormalize all the weights by dividing by qa. This procedure assures that 
equation (11) is verified. 

If the point group has a large number of symmetry operations, this procedure 
can significantly reduce the total number of points. 

We now show that we actually obtain a special-point set which fulfills equa­
tion (12) using this procedure. In order to do this, it is sufficient to show that 
the original mesh, K.pr" fulfills equation (12) because then the points obtained 
by a rotation of the point group symmetry or translated by a reciprocal lattice 
vector will also fulfill the same set of equations. In fact, from the definition of 
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An(K.) we have An(K. + G) = An(K.) and An(S""K.) = An(K.). We have to show 
that: 

II 

L An(K.pr.) = 0 (18) 
p,r,,=l 

for each n ~ Np and we have to compute Np. Actually, it is possible to show a 
more general relationship. Let us define: 

(19) 

We show that Smn(q) = 6mn if m < Np and n < Np. Equation (18) then follows 
as a special case with m = 0 and n =1= O. The demonstration is straightforward. 
We insert the definition of An(K.) into equation (19) and we note that: 

K.pr• T" = ~ [(2p - q - 1 )T",l + (2r - q - 1 )T",2 + (28 - q - 1 )T",3] (20) 

Then we can write: 

(21) 

where: 
II 

Wr(q) = ! Le(if)(2r- lI -l)(T.,i-Tc .;) 

q r=l 

(22) 

and where Ta,i is an integer number which expresses the component of To over 
the j-th principal vector. In equation (21), the sums over a = 1, ... , Nm and b = 
1, ... , N n are performed over the members of the stars Cm and Cn , respectively. 
The computation of Wr(q) requires the sum of a finite geometric series. We have 
the following possibilities: wt'(q) = 1 if ITh,i - Ta,i I = 0, 2q, 4q ... ; Wlb(q) = 
( -1 )11+1 if Inj - Taj I = q, 3q, 5q ... ; Wr( q) == 0 in all the other cases. It should 
be remembered that q, Taj and Thj are integers. If we consider only 11i1 < q/2, 
we have the result that ITa,i - n,il is always lower than q. In this case, Smn(q) 
is non-zero only when Ta,i = Tb,i' Therefore, Sm,n =1= 0 only if m = n and 
Smm(q) = 1. The value of Np depends upon the lattice. We discuss the case of 
the fcc lattice in the next section. 

4. Application to the fcc lattice 

In this section, we show an example of the application of the above technique to 
an fcc lattice. As the symmetry group, we choose the Oh [7] point group. This 
point group has 48 symmetry operations. There are six rotations of ±1r /2 about 
a coordinate axis, three rotations of 11" about the same axis, six rotations of 11" 

about a cube face diagonal and eight rotations of 11"/3 about a cube diagonal. 
Together with the identity operation, these represent all of the 24 proper group 
operations. Multiplying each operation by the inversion, we obtain the other 24 
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operations. For a cubic system, it is convenient to use even values of q. Using 
q = 2, we obtain 8 points in the mesh, n pra , with U r = -1/4,1/4. 

Table 1. Special-point coordinates of the fcc lattice obtained with the method of 
Monkhorst and Pack. 

q=2 
n:z; ny n z Wn 

1 1/4 1/4 1/4 2 
2 1/4 1/4 3/4 6 

6 points set 

1 1/6 1/6 1/6 2 
2 1/6 1/6 1/2 6 
3 1/6 1/6 5/6 6 
4 1/6 1/2 1/2 6 
5 1/6 1/2 5/6 6 
6 1/2 1/2 1/2 1 

q=4 

1 1/8 1/8 1/8 2 
2 1/8 1/8 3/8 6 
3 1/8 1/8 5/8 6 
4 1/8 1/8 7/8 6 
5 1/8 3/8 3/8 6 
6 1/8 3/8 5/8 12 
7 1/8 3/8 7/8 12 
8 1/8 5/8 5/8 6 
9 3/8 3/8 3/8 2 
10 3/8 3/8 5/8 6 

We choose an IBZ which is 1/48 ofthe BZ. One possible choice is given by 
the conditions: 

211' o ~ n:z; ~ K.y ~ K.z ~ - (23) 
ao 

311' 
~+~+~~- ~~ 

ao 
Reducing the points using the method described in the previous section, we 
obtain two distinct points which are given in Table 1 with the correct weight. 
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These points fulfill equation (12) up to Np = 7 and the first failure is at T = 
ao(2, 0, 0). 

The choice of q = 4 in equation (16) yields 64 points which are determined by 
the coordinates Ur = -3/8, -1/8, 1/8,3/8. They correspond to 10 distinct points 
in the irreducible zone. These points fulfill equation (12) up to Np = 39 and 
the first failure is at T = ao( 4,0,0). For simple semiconductors and insulators, 
they generally give converged values for many quantities, with the exception of 
the quantities which depend on an electric field such as the dielectric constant. 
Where necessary, it is possible to increase the precision by using q = 6 which 
corresponds to 28 points in the IBZ. These points satisfy equation (12) up to 
Np = 114 and the first failure is at T = ao(6, 0, 0). 

In Table 1, we report all the special-point coordinates in units 27r/ao. The 
weights are given before the normalization. Each weight corresponds to the num­
ber of points which are equivalent to the given point in the full BZ. For com­
pleteness, we report in the same table also an intermediate set of 6 points. These 
points are used in Chapter 10 to perform some calculations on silicon, NaCI 
and aluminum. They fulfill equation (12) up to Np = 20. The first failure is for 
T = ao(3, 0, 0). 

5. Symmetry of the charge density 

In some cases, the function f(n.) does not have the point group symmetry of 
the crystal. In the above discussion, we have avoided the problem by show­
ing that only the symmetrized function, fr(n.), contributes to the integral (see 
equation (4)). However, to compute the function fr(n.), we must evaluate the 
function f(n.) on all the symmetry related points, smn.. This means that we 
would have to compute f(n.) on a mesh of q3 points and the advantages of using 
the special-point method would be partially lost. Clearly, there is not a general 
solution to this problem. The solution depends on the function and can be illus­
trated on real examples. In many real cases, the value of the function f(n.) on 
the points sm n. can be inferred without actually evaluating it. We illustrate here 
the case of charge density. In this instance, the density at the point r is given 
by the integral over the BZ of the square modulus of the Bloch wavefunctions 
computed at the point r: 

(25) 

The sum v is over the valence bands. The integrand function is fv (n.) = 
ItPv(rj n.)12 which depends parametrically on the position r. We must evaluate 
the integral over the BZ for each point of the real space mesh. Although the 
Bloch wavefunctions are not invariant with respect to a point group rotation of 
the wave vector, they fulfill the following relationship [9]: 

(26) 

Furthermore, the time-reversal symmetry guarantees that tPv(rj -n.) = tPv(rj n.) 
so that even if the point group of the crystal does not contain the inversion 
symmetry, we can use a larger group, which does contain the inversion, in the 
computation of the charge density. These properties can be used to compute 
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the symmetrized function, Ir(n), without actually computing I(K) at a point 
K outside the IBZ. We have: 

1 Ns 1 Ns 
Ir(K, r) = N L: l1Pv(rj (sm)KW = N L: l1Pv«sm)-lr - fm j K)12 (27) 

S m=l S m=l 

Using this relationship, we write the density at a point r as: 

per) = (2~)a L: kz Ir,v(K,r)dK 
v 

= (2~)3 ~ L: f f l1Pv«sm)-lr-fm;KWdn (28) 
S v m=l JBZ 

In a practical computation, the sum over the BZ of the square modulus of the 
Bloch wavefunctions is first performed with special-point discretization, giving 
the unsymmetrized charge density: 

per) = L: L: wnl1Pv(r; K)12 (29) 
v KEIBZ 

and then equation (28) is used to symmetrize the result and to compute the 
total charge: 

1 Ns 
per) = N L: p«sm)-lr - rm) 

S m=l 
(30) 

In the following test, we also studied the convergence of the sum of the 
eigenvalues of the KS equation over the BZ with special-point sampling. This is 
the band contribution to the total energy (see equation (7) of Chapter 10). In 
this case, Iv(K) = fK,v. These eigenvalues must be invariant with respect to the 
point group symmetry of the solid [9] SO that no particular problem is present: 
Ir,v(K) = Iv{K). 

6. Test of convergence 

In this section, we show some examples of integration over the BZ performed 
with the special-point technique. We concentrate on two quantities: the band 
contribution to the total energy and the electronic charge density along the 
(111) direction. The band energy is defined as: 

EB = (2~)3 L: kz fn,v dK 
v 

(31) 

The charge density is computed as explained in the previous section and is 
plotted, taking the points r = ao(t, t, t) with 0 :5 t :5 1, as a function of Irl. 
To give some numerical values, we also consider the charge on the three points 
rl = (0,0,0), r2 = ao{1/2, 1/2, 1/2) and ra = ao(1/8, 1/8, 1/8). As an example, 
we studied the silicon crystal, which is considered in greater detail in Chapter 
10. Here, we simply note that it has an fcc Bravais lattice with two atoms per 
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cell. The point rl is on one silicon, the point r2 is at the center of the cell, while 
r3 is at the center of the bond which connects the two atoms. We computed these 
quantities using several special-point sets. We first performed a self-cousistent 
calculation with 10 special points in the IBZ and a 20 Ry cut-off (see Chapter 
10) to obtain a completely converged Hartree, exchange and correlation potential 
and then we performed the computations of the charge and of the energy with 
this fixed potential. In Table 2, we report the band energy and the charge density 
on rl, r2 and r3 obtained by using the points of Table 1. 

Table 2. Values of band energy and of the charge density of the silicon crystal. The 
energy is expressed in Ry while the charge is in 1O-3electrons per (a.u.)3. 

EB rl r2 r3 

2 pt. 0.57533 2.491 3.123 85.395 
6 pt. 0.56445 2.543 3.366 84.318 

10 pt. 0.56325 2.556 3.407 84.146 
28 pt. 0.56304 2.558 3.416 84.096 

0.1 

C"') 
( ..- 6n 10 pt . 0.004 
;j 6 pt. 
ed 2 pt . ........ 

............ 0.05 
..... 0.002 
(l) 

I=l - <J 
J..c --I=l 

0 0 

0 0.5 1 1.5 
ao a.u. 

Figure 1. Valence pseudo-charge density of silicon along the (111) direction and errors 
due to the finite IIUIlpling of the BZ. The total charge is indicated with a continuous line, 
the errors are indicated with dotted, dashed and long dashed lines. 

We also report in Table 2, the results obtained with 28 points, which we 
consider to be completely converged. It is interesting to note that the value of 
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the band energy obtained using 2 special points has already converged to within 
2% of the limit. In a total energy computation, a precision of the order of 1 mRy 
is required and in this case, 6 points are sufficient. The charge density, both on 
the maximum (r3) and on the minimum (rl) has converged within a few percent 
using only two" points. 

In Figure 1, we report with a continuous line the charge density along the 
(111) direction, computed both with 28 and with 2 special points. On the scale 
of the total charge, the two charges almost coincide. In the same plot, we show, 
on an enlarged scale to the right, the differences between the charge obtained 
with 2, 6 or 10 special points and the converged charge obtained with 28 points. 
For all practical purposes, 6 " points give a converged charge density. 

7. The case of metals 

In the study of metals, we wish to evaluate: 

- {} f 
1 = (211')3 JBZ d" 9(eF - £(,,»1(,,) (32) 

where eF is the Fermi energy and 9(:z:) is the step function 9(x) = 0 if:z: < 0 and 
9(:z:) = 1 if:z: > O. Since the integrand function is discontinuous in reciprocal 
space, its Fourier transform does not decay rapidly in real space. To reach suf­
ficient precision with the special-point technique a large number of points must 
be used. Furthermore, there is a second problem which may also cause instabil­
ities in an electronic structure calculation. If we approximate the integral as in 
equation (14): 

N" 
! = L: w;9(eF - £(,,;»)I(K.;) (33) 

;=1 

it may happen that, with a small change in the value of the Fermi energy, a K. 
point enters or exits from the Fermi surface, producing a discontinuous change 
of the values of f. This pathology can create a numerical instability in the self­
consistent cycle of an electronic structure code; 

One method to avoid these problems is to use the linear tetrahedron 
method [14] without special points. This procedure allows accurate values of the 
BZ integrals to be obtained, but requires many more " points. There are also 
simple methods to avoid these effects using the special-poin~ technique. One pos­
sibility is to introduce a sequence of continuous functions 9(Ll, :z:), parametrized 
by a parameter Llsuch that in the limit Ll-+ 0, O(Ll, x) becomes the step func­
tion. In this hypothesis, the integral over the BZ can be performed by substitut­
ing the discontinuous step function with 0 which is continuous. The convergence 
of the result can be checked by decreasing the value of Ll. If Ll is large the BZ 
integral converges with a small number of K. points, but-in general-to an in­
acurate result. As Ll is decreased, the integral tends to the correct result, but a 
larger and larger set of K. points is required to perform the integral. For a given 
Ll, after reaching convergence with the" points, the sampling error depends on 
the functional form of O(Ll, :z:). One of the most popular forms of 9(Ll, x) is due 
to Fu and Ho [10]: it consists in "smearing" the Fermi surface with a Gaussian 
distribution so that the step function is approximated by: 
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2 1#1/11 
8(.1,z) = . r.= exp(-y2)dy 

v 1r -00 

(34) 

The Fermi energy is determined by imposing the constraint of conservation on 
the number of electrons with the same .1: 

n f -
(21r)3 1BZ dK 8(.1,eF - f(K» = Ne/ (35) 

This approximation creates smooth integrand functions different from the true 
function by an error which depends on .1. When the technique is applied in a 
code which computes the total energy of a solid within DFT (see Chapter 10) it 
is possible to estimate this error and to add, to the total energy functional, a .1 
dependent correction [11, 12]. This procedure allows a correct value of the total 
energy to be obtained with a large .1 and a few K points. The smearing error can 
also be corrected in a few other cases but a correction valid for a general function 
f(K) is not yet available. Furthermore, the introduction of an additional term 
to the total energy functional creates some problems for the computation of the 
derivatives of the energy. 

A second possibility is to use a form of the functions 8(.1, z) which system­
atically corrects for the smearing error. A set of functions has been introduced 
by Methfessel and Paxton [13] and is briefly described here. The first step is to 
transform the BZ integral into an energy integral: 

where: 

F(f) = (2~)3 Lz dK 6(f - f(K»f(K) 

The error due to the use of 8(.1, z) is: 

(36) 

(37) 

(38) 

This in~egral is actually over the small energy interval around the discontinuity 
where 8(.1, z) differs from 8(z). If the function F(f) is sufficiently smooth in 
this interval, it can be approximated by a polynomial of degree P. In this case, 
a function 8p(.1, x) can be found for which 6/ is exactly zero. In particular, if 
F{f) is a constant in the interval, the choice of Fu and Ho is sufficient to give 
6f = O. A better approximation is to choose 8 so that 6/ = 0 even if F(f) is 
linear in f. In this case, we have: 

81(.1,z) = 2~ L#I~11 e-,2 dy+ 4~ ~ exp [- (~f] (39) 

Higher order functions are also available [13], but it is not possible to use a very 
high value of P, otherwise the functions (Jp coincide with the step function. In 
simple metals, the functions 81 (.1, z) are sufficient to give the correct value of the 
integral even with a large value of .1 and a few K points. One possible difficulty 
with this scheme is the fact that some states have a weight larger than two or 
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lower than zero. In systems having regions with low charge density (e.g. nearby 
surfaces), a negative charge density could be obtained with this method. Due to 
the fact that 01 (.1, x) is no longer monotonic, there is a non-unique definition 
of the Fermi energy. However, these problems do not occur in bulk calculations 
where the charge density is fairly uniform throughout the whole system. One 
example of the application of this technique is given in Chapter 10, where we 
compute the ground state of aluminum. 

8. Conclusions 

In this chapter, we discussed the special-point method for the integration of a 
periodic function over the BZ. We presented the special-point theorem and we 
illustrated the method of Monkhorst and Pack for the special-point generation. 
The method has been applied to an fcc lattice for which several special-point 
sets have been given. In insulators and semiconductors, the application of the 
method allows one to perform the BZ integral by using a very small number of 
sampling points. In the case of silicon, we have shown that 2 points are sufficient 
to give a charge density and a band energy which differs only by a few percent 
from the converged value. The treatment of metals with this technique is slightly 
more difficult due to the presence of the Fermi surface. Some possible solutions 
of this problem have been briefly discussed. 
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Summary. The generalization of Becke's numerical integration scheme to pe­
riodic functions is presented, which allows the LCAD-Kohn-Sham equations for 
crystals to be solved efficiently. The computational implementation of the scheme 
and its calibration are briefly discussed. 
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1. Introduction 

The application of the density functional (DFT) method (see references[I]-[6]) 
has become a powerful technique to study the electronic structure of atoms, 
molecules and solids. Due to the analytical complexity of the correlation and 
exchange energy formulas, its application requires numerical integrations to be 
performed. The integrands, usually analytic functions of the electron density and 
its derivatives, have a very inhomogeneous spatial distribution, with high cusps 
corresponding to the positions of the nuclei: this is true not only for All Electron 
(AE) calculations, but also for Effective Core Potential (ECP) calculations, in 
the small-core approximation (7). 

Becke [8] introduced a very powerful integration method, which subdivides 
the numerical integral into a set of integrals, each centered on a nucleus, recog­
nizing the essentially spherical nature of the cusps: this scheme has been suc­
cessfully applied to many molecular systems, including those using LCAO [9] as 
well as fully numerical schemes [10]. The HF-LCAO method for polymers, sur­
faces and bulk solids [11], developed in our laboratories and coded in the com­
puter program CRYSTAL [12], has been recently generalized to include DFT 
techniques, both in the hybrid HF /DFT [9, 13] and in the Kohn-Sham [14] ap­
proximations. The numerical integration of DFT energy functionals for periodic 
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densities presents the same difficulties as for molecules but is further compli­
cated by the infinite number of contributions to the integrand. This work aims 
to show the formal generalization of Becke's method to solids and its computa­
tional implementation and calibration, in order to find a reasonable compromise 
between numerical accuracy and computer time. 

2. Description of the method 

In the periodic DFT-LCAO method [15], the electron-electron interaction's con­
tribution to the energy must be calculated accurately by the following integra­
tion: 

EDFT = 1 cDFT(r)dr 
UNIT CELL 

(1) 

where cDFT (r) is the DFT energy density, representing exchange-correlation 
or correlation-only interactions. In AE calculations, the integrand has very high 
cusps, corresponding to the nuclear positions: the exchange energy density is pro­
portional to p4/3, while the correlation energy density is roughly proportional 
to p (where p is the electron density). The numerical integration method must 
take into account the cusp-shaped nature of the integrand functions. The ho­
mogeneous sampling methods that are applied successfully in LCAO crystalline 
calculations to integrate numerically the smoother reciprocal space quantities, 
cannot be used to integrate the highly inhomogeneous quantities defined in direct 
space. 

The atomic partition method, applied by Becke [10] and Savin [17] to molec­
ular systems, defines atomic domains and performs spherical integrations that 
concentrate many sampling points in the core cusp regions. The atomic domains 
are overlapping and therefore, any border discontinuity, which can make the nu­
merical quadrature processes difficult, is avoided. In the following, the formulas 
for a molecular case are derived, so the integration domain is extended to all 
space. 

The atomic domains are obtained after formally multiplying the integrand 
by a unit weight function: 

EDFT = J cDFT (r)dr = J E:DFT (r).l.dr = 

n atom. 

1: wA(r) 

= J gDFT(r) A dr 
n atom. 

1: wB(r) 

(2) 

B 

The introduction of the sum over n atoms in the unit weight function, allows 
the splitting of the integral into a sum of integrals: 
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n atom6 

== L J gDFT (r)WA (r)dr 
A 

(3) 

The atomic weight functions, w, are chosen so that the weights, WA, have the 
value of 1 near atom A and go to zero close to the other atoms. In this way, the 
integration space is partitioned into overlapping domains (each of the atomic 
integrals extends to all space) but the integrand function, gDFT(r)WA(r), has 
a cusp at atom A and goes rapidly to zero in the direction of the other atoms. 
Following Becke, the weight functions, w, are defined as follows: 

wA(r) II P A,C(r) where 
C¢A 

PA,C(r) f(flAC)' and 

flAC 
rA -rc (4) 

RAC 

The elliptical coordinate, fl AC' defines a projection of the point r along the 
segment, which connects the atoms A and C. The function, !(flAC )' is a step 
smoothed function that has the value of 1 up to the middle of the segment RAc 
and goes to zero approaching the atom C. The product of functions, !(flAC)' 
for each of the pairs AC1 , AC2, ... defines a polyhedron around atom A: the 
weight function, W A (r), is 1 inside the polyhedron. These Voronoi polyhedra 
fill all space. If smooth step functions, !(fl AC)' are used, the weight function 
goes smoothly to zero outside the polyhedra: this avoids numerical integration 
problems but atom pairs beyond nearest neighbours must be considered if a 
high accuracy is required. In addition, when calculating the weight functions, 
WA(r), following Becke's method, we need to compute sums of products of pair 
functions and this requires a high computational cost for large molecules and 
condensed systems. Simpler weights can be defined, following Savin: 

LCBe-(BrB 
(5) 

B 

The weight functions are simply exponential functions that roughly mimic the 
electron density around atom A: the exponential is normalized to the number 
of electrons that can be attributed to atom A following a Mulliken analysis 
and the exponential coefficient, (A' is defined to reproduce the atomic shape, 
taking into account the atomic or ionic dimensions. The evaluation of the weight, 
W A, requires only the summing of the exponential functions centered on the 
neighbours of atom A. This method can be applied to very complex molecules 
and crystals, and the loss of accuracy is less than 1 order of magnitude with 
respect to the weights as defined by Becke. 

These methods can be applied to periodic systems after some modification 
and careful calibration. The integration is then confined to the unit cell, which 
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is a finite solid for 30 periodic systems (crystals), a polyhedron infinite in 1 
dimension for 20 systems (slabs) and a cylinder with infinite radius for 10 
systems (polymers). The same transformation from a single integral to a sum 
of. atomic integrals as for molecules can be performed but infinite lattice sums 
arise: 

B,m 

= f 1 eDFT (r)WA .• (r) dr 
A,S CELL 

The integrand functions are periodic for lattice translations: 

eDFT (r - g) = eDFT (r) ; 

(6) 

(7) 

Then a translation of the coordinate r -+ r - g can be applied to each integral: 

f 1 eDFT (r)WA .• (r) dr = f f eDFT (r - g)WA.O(r - g) dr 
A,S CELL A,S JCELL 

•• '0"'. 
= '''f f eDFT(r)WA.O(r) dr (8) 

A JSPACE 

The infinite lattice sum of unit cell integrals has been transformed to a space 
integration, strictly analogous to the molecular case. The weight function, W, 
contains a lattice sum and can be truncated with the usual periodic LCAO 
techniques: ..good accuracy can be obtained by including neighbours within a 
radius of 8 A. The lattice sums, necessary to calculate the weights, are the only 
difference between the periodic and molecular sums: the analysis of the numerical 
approximation, which follows in section 4, will not distinguish between the two 
cases. 

3. Treatment of lattice sums in the weight function 

In the periodic case, the weight functions, W, contain lattice sums in the de­
nominator: 

(9) 

When Savin's exponential weight functions are employed, the lattice sums are 
truncated for exponentials smaller than a given threshold, Tw. In 0, 1 and 2 
dimensional periodicity, there are regions far from all atomic centres, where the 
limit of W is finite: 
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= 1 (10) 

In such regions, the electron density and its functionals decay exponentially. Very 
small thresholds must be used to reach an acceptable accuracy for the integrated 
charge. The treatment of the lattice sums is more complex when Becke's weight 
functions are employed. 

4. Numerical Quadratures of the spherical. atom-centred integration 

Considering the atomic, quasi-spherical shape of the integrand, efficient numer­
ical integration methods can be applied. Spherical coordinates can be used to 
separate the radial and angular integration. 

IA = f eDFT(r)WA,o(r) dr = f fer) dr = 
jSPACE jSPACE 

= 100 
drAr! J if( dwf(rA , fJA, I{JA) (11) 

Many quadrature techniques exist to evaluate I-dimensional integrals [18]: the 
numerical evaluation of multiple integrals is less common and is usually per­
formed by using direct products of I-dimensional quadratures, that is, by using 
a I-dimensional quadrature for each dimension. However, 2-dimensional quadra­
ture on the sphere surface has been fully exploited by Lebedev [19] who derived 
very efficient sets of sampling points: the richest set of 435 points can inte­
grate exactly a 3S-degree polynomial with angular coordinates (fJA,I{JA)' This 
is enough to integrate exactly the density function of atoms with angular quan­
tum number up to I = 6 and m = 6 (i function), which is enough to have, 
in principle, high accuracy for any atomic coordination. Lebedev's set of sam­
pling points has octahedral symmetry. We may readily select an irreducible set 
of points, using the local symmetry of each atomic site; no simple sampling 
technique in (" A, I{J A), based on I-dimensional- quadrature, can exploit the lo­
cal symmetry, which is relatively more important in condensed systems. As will 
be explained below, Lebedev's grids are adopted, together with products of 1-
dimensional quadratures for the angular integration; in both cases, the angular 
integral, 8(rA), is approximated as follows: 

IA = 100 drAr~8(rA) 

8(rA) = f if( dwf(rA,fJA,I{JA) 

Nang(rA) 

~ L wJ(rA, fJAi,I{JAi) (12) 
i=l 

The computational scheme and the parameters which control several features 
of the numerical integration method must be chosen to be the best compromise 
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between accuracy and computation time. In our case, the same criteria must 
be applied to periodic (crystals, slabs or polymers) and non-periodic systems 
(atoms and molecules). A set of about 20 systems has been used, including closed 
and open-shell atoms, molecules, polymers, slabs, covalent, semi-ionic and ionic 
crystals. Table 1 reports the systems and the relative computational conditions. 

Table 1. Systems used in the test, basis sets and computational conditions 

System Periodicity Basis Set Conditions 

Be atom Dunning (9/5) AE 
C atom Dunning (9/5) AE, open shell 
CO molecule ST0-3G AE 
CH4 molecule ST0-3G AE 
urea molecule 6-21G* AE 
SN polymer ST0-3G* AE 
Al203 slab 6-21G* AE 
Si crystal ST0-2G AE 
Be crystal 6-11G AE 
MgO crystal 8-61G (Mg); 8-51G (0) AE 
LiF molecule 6-1G* (Li); 7-31lG (F) AE 
LiF s3 slab 6-1G* (Li); 7-31lG (F) AE 
Si crystal 6-21G* AE 
Si crystal ECP-21G ECP 
NaF crystal 8-51lG (Na); 7-31lG (F) AE 
NaCI crystal 8-51lG (Na); 86-31lG (CI) AE 
Li polymer 3-1G* anti-fenomagnetic 
NiO crystal ECP-41(d)-21G (Ni); ECP-31G (0) ECP open shell 

Some information about the accuracy of the DFT energy integration can 
be obtained from the electronic charge density integration. The relative enor 
in the integrated charge with respect to the number of electrons, .d (per unit 
cell for the periodic case, usually expressed in parts per million (ppm», has 
been used to select the optimal computational conditions, even though the error 
in the energy integration is only weakly correlated to the error in the charge 
integration, as will be shown in the next section. The modulus of the relative 
error in the integrated charge, averaged over the 20 test systems « l.dl », is 
used to illustrate the influence of the computational parameters on the accuracy. 
The set of parameters, P, has been subdivided into homogeneous subsets: pa 
are the angular parameters; pr, the radial parameters; and pw, the weight 
parameters. One set of parameters has been varied at a time, starting from a 
set of parameters which resulted from a previous optimization, that we define 
as Po. 
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5. Radial integration 

In the first implementation of our method, the radial integration has been sub­
divided into several segments and a separate numerical quadrature has been 
employed in each. 

100 
f(r)dr = 

N n, n N +1 

- L L f(r~)Wk + L f(rDw: (13) 
.=1 k = 1 1=1 

Gauss-Legendre quadrature has been used to approximate the N finite inte­
grations and Gauss-Laguerre points have been used for the last semi-infinite 
quadrature. The upper limit of each interval was fixed by using an estimate of 
the atomic or ionic radius. Improved accuracy was obtained by employing three 
finite intervals with this method; the best choices for the upper limits of these 
intervals were, respectively: 0.5, 1.0 and 2.0 times the atomic radius. For each in­
terval, 20 quadrature points were used, so that the total number of radial points 
used was 80, considering the semi-infinite as well as the three finite intervals. In 
principle, with this method, the quadratures are limited to intervals in which the 
integrand function spans ranges smaller than the whole function range, resulting 
in faster convergence. Greater difficulties arise from the quadrature of the inte­
gration in a radial interval close to the nucleus, that is, within half of the atomic 
radius: here the integrand functions, which are functional of the electron density, 
have cusps spanning several orders of magnitude. As a result, high numbers of 
orthogonal polynomials are needed to produce a reasonable approximation and 
therefore, a high number of quadrature points are required in the calculation. 
For this reason, the most important characteristic of the radial integration is the 
degree (number of points) of quadrature for the cusps. Where the most internal 
radial quadrature has a high degree, there is no further computational advan­
tage in the subdivision into segments. The most recent implementation of our 
integration method contains a single interval radial quadrature. 

The semi-infinite, one-dimensional quadrature of the integrals of functions 
can be performed using the weights and nodes of orthogonal polynomials with 
exponential weight functions, such as the Laguerre polynomials. However, or­
thogonal polynomials on a finite interval can be used by mapping to a semi­
infinite interval by means of an appropriate transformation of the coordinate: 

100 11 dr 
f(r)dr = f(r(t»-d dt 

o -1 t 
(14) 

A logarithmic transformation of the coordinates allows the Gauss-Legendre 
quadrature to be used for a semi-infinite integration: 

r(t) = log (_2_) 
1-t 

(15) 

The Gauss-Legendre semi-infinite radial quadrature gives a better accuracy than 
that of Gauss-Laguerre or other methods proposed in the literature, such as those 
of Euler-McLaurin or Gauss-Chebyshev. 
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6. Angular integration 

At each stage of the implementation of our method, a different level of angular 
accuracy has been used for the various values of r, the radius. The angular ac­
curacy, and therefore, the number of points on the sphere, has been decreased 
near the nucleus, following the hypothesis that the electron density and its func­
tionals have spherical symmetry when the radius of the sphere is vanishingly 
small. 

A set of points for a spherical quadrature can be defined by the degree, L, of 
the angular polynomial that can be exactly integrated. Up to L = 35, Lebedev's 
octahedral grids can be used; for L ~ 35, a product formula can be applied. In 
this latter case, the Gauss-Legendre quadrature in fJ is directly multiplied by 
a trapezoidal quadrature in cp, where the points are equispaced: N fJ points by 
2N cp points integrate exactly spherical polynomials of N -th degree. 

Many scaling criteria have been tested for the angular degree, L: power, 
logarithmic and exponential functions gave poorer results, in terms of accuracy, 
than a simple linear scaling: 

L(r) = min (_r_, Latom) 
ratom 

(16) 

If L < 35, the next larger Lebedev grid is adopted. In this way, L is discon­
tinuously varied in the set: L = 9,11,17,23,27,29,35. If L ? 35, Legendre­
trapezoidal grids are used; values up to L = 60 have been explored with this 
method. 

log a 
60 

L 

50 

40 

20_ 
20 30 40 50 60 

R 

Figure 1. Isoline plot of the functions .6(R, L) (integration error in ppm) versus the angular 
degree L, and the number of radial points R. The surface is a spline interpolation over a grid 
with .6L and .6R equal to five. 
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Figure 2. (Left) The polynomial degree of the angular grid, Lmin, versus the number of radial 
points, R. The function reported in this plot is the path of minimum error, ~, calculated from 
the data reported in Fig. 1; (right) the average integration accuracy (relative to the electronic 
charge), ~min, versus the number of grid points per atom, o. 

7. Calibration of the method 

The choice of radial integration on a single, semi-infinite interval, with a number 
of points, R, and the introduction of linear scaling of the angular degree, L, 
simplifies the parameter space to be optimised. Figures 1, 2 (left) and 2 (right) 
show the steps of the optimisation path which was followed. 

AB a result of many integration tests for the systems contained in Table 1, 
the integration accuracy, « ILlI » (the modulus of the relative error in the 
electronic charge averaged over the test systems) and the cost of calculation, C 
(the number of grid points per atom, without symmetry) were measured and 
the functions Ll( R, L) and C( R, L) were interpolated. The function Ll( R, L) was 
resolved with respect to L, with the condition that Ll(R, Lmin) = min, in the 
form Lmin(R). In this way, the angular degree, L which gives the minimum 
integration error Ll was found for each value of R. 

Figure 2 (right) shows the most important function, Llmin(C), which gives 
the minimal error for a given number of points per atom: this relation makes 
choosing predefined sets of grid parameters very easy. The calculation of the 
density functional, self-consistent potential does not need a very high accuracy: 
integration errors of 100 ppm (10-4) are acceptable, corresponding to 4000 points 
per atom for the systems explored. The density functional energy calculation 
needs an accuracy of 10 ppm (10000 points per atom) and 1 ppm is required if 
the elastic properties are explored (33000 points per atom). 
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1. Introduction 

The local-spin-density (LSD) approximation [1, 2] of the density functional 
theory (DFT) and the Unrestricted Hartree-Fock (UHF) [3] approach of the 
Hartree-Fock formalism constitute two of the most widely used theoretical tools 
for the description of the electronic structure of magnetic systems. 

In the following sections, we will focus our attention on the UHF formalism; 
we will first describe the standard molecular formalism and then its natural 
extension to the periodic approach. 

The chapter concludes with the description of a few applications of the UHF 
method to crystalline systems, trying to compare UHF results with results ob­
tained with other theoretical methods. 

2. Hartree-Fock for Open-Shell systems 

For the description of systems containing unpaired electrons (such as molecules 
with an odd number of electrons, radicals, ferromagnetic and anti-ferromagnetic 

* Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle 
Memorial Institute under contract DE-AC06-76RLO 1830. 
Correllpondence to: E. Apra - E-mail: e..apra@pnl.gov 
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solids) a single determinant is not, in the most general of cases, an appropriate 
wave-function; in order to get the correct spin eigenfunction of these systems, 
it is necessary to choose a linear combination of Slater determinants (whereas, 
in closed shell systems, a single determinant always gives the appropriate spin 
eigenfunction) . 

The Restricted Hartree-Fock Open Shell (ROHF) [4] wave-function is, in the 
most general of cases, a sum of Slater determinants; each determinant contains 
a closed-shell subset, with doubly occupied orbitals and an open-shell subset, 
formed by orbitals occupied by a single electron. In one particular configuration, 
the ROHF wave-function reduces to a single determinant: that is, in the so-called 
half-closed shell cases, where it is possible to define two sets of orbitals, the first 
occupied by paired electrons and the second, by electrons with parallel spins. 

--+1 -- .,pn~+1 t ~!-.,p~~ 
---I1f---- .,p:Q 

t ./.0 ---I!-- .,p~rl -+-1 --11- .,pn~ ---I1f---- Y'nQ-l 

-+-1 ---11- .,pnr1 

--+-! ---It-.,p2 

--+-1 ---It- .,pI 

Figure 1. Molecular Orbital diagram for 
the Restricted Hartree-Fock Open Shell 
method 

1 .,pg 
1 t/J; 

! .,p: 
1 t/J: 

1 t t/Jf .,pr 

Figure 2. Molecular Orbital diagram for 
the Unrest.ricted Hartree-Fock method 

Nevertheless, it is possible to keep a mono-determinantal description by using 
the UHF method. In this theory, the constraint of double occupancy is absent; in 
this way, a electrons are allowed to populate orbitals other than those occupied 
by the {J electrons. En~rgy levels corresponding to a ROHF and UHF description 
are plotted in Fig. 1 and 2, respectively. 

The double occupancy constraint allows the ROHF approach to obtain s0-

lutions that are eigenfunctions of the spin operator, S2, whereas UHF solutions 
are formed by a mixture of spin states. The greater variational freedom allows 
the UHF method to produce wave-functions that are energetically more stable 



Spin-Polarized Crystals 103 

than the corresponding ROHF ones; another advantage of the UHF method is 
that it allows solutions with locally negative spin density (i.e. anti-ferromagnetic 
systems), a feature that ROHF solutions cannot possess. 

In the rest of this chapter, we will focus our attention on the UHF method, 
since it is the most widely used approach to the study of spin-polarized systems 
of chemical interest. 

2.1. Unrestricted Hartree-Fock 

In the standard derivation of the Hartree-Fock equations relative to a closed­
shell system, it is necessary to introduce the constraint that all the spin-orbitals 
are products of the kind: "p",Q and "p",{3; in other words, each molecular orbital 
is populated by two electrons (Restricted Hartree-Fock theory - RHF). 

However, in some situations, the removal of this constraint allows solutions 
at lower energy; in the UHF approach, the mono-determinantal wave-function 
is computed using na Molecular Orbitals (MOs), "pa and n{j MOs, "pfJ, corre­
sponding to the electrons with Q and {3 spin, respectively. The wave-function 
that describes a system with N electrons (N = na + nfJ) has the following form: 

I/F = (N!)-!det{ "pr(I)Q(I), ... , "p~,,<na)Q(na) . 

"pf(na + 1){3(na + 1), ... , "p~/J(N){3(N)} (1) 

The energy expression is given by the following formula: 

E = {I/FIHII/F} = 

= ENffh + ~(j - Ra)l"pf) + 

'" 
+ E{"p~lh + ~(j - RfJ)I"p~) (2) 

m 

where j, Ra and RfJ are defined as in the standard RHF equations, that is: 

E (J dr2"p;(r2)2-"pi(r2») "p(rt) 
i rn 

(3) 

E (J dr2"pf"(r2)~"p(r2») "pf(rt) 
. rn 
l 

(4) 

= E (J dr2"pf* (r2)2-"p(r2»)"pf (rt) 
i r12 

(5) 

2.2. LeAO approximation and Pople-Nesbet equations 

If we express the molecular orbitals, "pi, as a linear combination of a basis set of 
n atomic orbitals (AO) CPq, we can write: 
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or, in matrix form: 

..pOI = ",COl 

..pfJ = ",CfJ 

where the matrices C'" and CfJ have dimension n x N. 

Edoardo Apra 

(6) 

(7) 

We now introduce the definitions of spin a and spin {J density matrices (DM), 
respectively: 

no 
Pr~ = L(c~J:tc~J: J: 

nil 

P!. = L(~mtcem 
m 

pOI = C"'c"'t 
pfJ = CfJCfJt 

and of total density, ptot and spin density, p,pin: 

ptot = p'" + pfJ 

p,pin = p'" _ pfJ 

(8) 

(9) 

(to) 

(11) 

The total density matrix is used to get the expectation value of the operators that 
are spin-independent, according to the formula (where 8 is a generic operator): 

To get the energy expression as a function of the AO basis set, we introduce into 
equation 2 the definitions given in equations 6 and 7: 

E = L[L(C~J:).c~J:((~'lh+ ~J - ~K"'I~r»)+ 
k r, 

~ _8 .8 ( ~ 1 ~ 1 ~ fJ )j = + ~(C'6m) C;:m (~,Ih + 2J - 2K I~r) 

= L: [L(c~J:)·c~J:] [hr' + ~Jr. - K~'l + r. k 

+ L[E(~mtcem] [hr. + ~Jr' - Kt.j 
r, m 

In more compact, matrix notation, we can write: 
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E = Tr pah + !Tr paJ[ptotJ - !paK[paJ + 
2 2 

+ Tr P.8h +!Tr p.8J[ptotJ _ !P.8K[P.8] = 
2 2 

= Tr ptoth + !Tr ptotJ[ptot] + 
2 

-!Tr perK[per] - !Tr P.8K[P.8] (12) 
2 2 

To get the expression of the optimal UHF orbitals, we proceed as in the standard 
RHF case: we compute the first-order energy variation, then we introduce the 
orthonormality constraint of the basis set by means of the Lagrange multipliers 
method. What we get at the end are the Pople-Nesbet equations [3J: 

Fer Cf = Ef S Cf 
F.8 C~ = elf S C~ • • • 

(13) 

(14) 

where S is the overlap matrix and F is the Fock operator, which assumes the 
form: 

Fer = F-Z (15) 
F.8 = F+Z (16) 

where the matrices F and Z are defined as: 

F = h+G (17) 

Z = ! K[p6pin] (18) 
2 

G = J[ptotJ _ ! K[pfotJ (19) 
2 

We can express the energy (equation 12) as a function of the Fock matrix: 

(20) 

If we use the matrices G and Z, the energy expression has a more compact form: 

(21) 

2.3. Solution of the Pople-Nesbet equations 

In order to solve the Pople-Nesbet equations, it is necessary to adopt an iterative 
scheme. The reason is the following: the Fock matrix is computed using the 
density matrix as an input (see equations 17,18 and 19), defined in terms of the 
C coefficients, which is what we want to determine through the Pople-Nesbet 
equations. 

A possible scheme for the Self-Consistent Field (SCF) process for the solution 
of the Pople-Nesbet equations is based on the following steps: 

1. An initial "guess" at the density matrices per and p.8 must be made. 
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2. The values of J, K and, therefore, Fa and F" must be computed, according to 
the equation 15 and 16. Having obtained all of these quantities, it is possible 
to calculate the energy using expression 20. 

3. A set of coefficients must be determined by diagonalization of the Fock matrix 
(see equations 13 and 14) and subsequently, the density matrix must be built. 

4. The whole process must be repeated to self-consistency; the convergence 
criteria can consider either the density matrix or the total energy. 

In order to get spin-polarized solutions from a UHF calculation, it is necessary 
that, during the SCF process, the density matrices Q and {3 are different (see 
points 1 and 3 of the previous scheme). 

If pa = p" for the whole SCF process, the solution produced will not nec­
essarily have unpaired electrons, since, in the scheme just described, no element 
can break spin symmetry. In this scenario, we can see the RHF closed-shell s0-

lution as a special case of the UHF method, where the number of Q electrons 
coincide with the number of {3 electrons (na = n,,). 

On the other hand, if we are able to get pa '# p" (during step 1 or 3 of the 
process), we could have either spin-polarized solutions at the end of the SCF 
cycle or the spin polarization will vanish in the course of the SCF process. It is 
obvious that reaching a closed-shell solution from a spin-polarized starting point 
is favoured when the latter solution has lower energy. 

3. Extension of the UHF method to periodic systems 

In this section, we will briefly describe how the various contributions to the 
Pople-Nesbet equations change when applying the UHF method to the study of 
crystalline systems. In most cases, the only difference is that the matrix elements 
are no longer characterised by two indices, but by three; the third index identifies 
a particular vector, T, of the crystalline lattice. For further references to the 
Hartree-Fock treatment of crystalline systems, see ref [5],[6] and other chapters 
of this book. 

In a crystalline context, the Fock operator assumes the following form: 

(F'!:,,) a FT ZT ,. = p".+ P" (22) 

(F!,,)" = F!" - Z!" (23) 

where the F and Z matrices are defined as: 

ZT = ! KT [p,pin] 
P" 2 P" 

(24) 

G!" = J!" [plot] _ ~K!" [ptot ] (25) 

F!" = h!" + G!" (26) 

In the expression of the matrix elements J[P] and K[P], we have to introduce 
lattice sums: 

'E pfp ['E(I'O -\S I liT pS + Q)] 
S>.p h 

K!,,[P] = 'E pfp ['E(I'O -\S I pS + Q liT)] 
S>.p h 
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where the notation used for the bi-electronic integral is the following: 

(1'0.xS 11ITpS + Q) = 

We can now introduce the expression for the total energy: 

E = L (prll)tot hrll + ~ L (prll)tot Jrll[ptot] + 
TJJII TJJII 

- ~ E (prll t Krll [pa] - ~ L (prll y' Krll [PP] 
TJJII TJJII 

or, as a function of the Fock matrix: 

E = 

(28) 

If we use the matrix Z and G, we get the following energy expression: 

E = '"' (pT )tot hT + ! '"' (pT )tot GT + L..J JJII JJII 2 L..J JJII JJII 
TJJII TJJII 

_ ! '"' (pT ) .pin ZT 
2 L..J JJII JJII 

TJJII 

(29) 

Comparing this last equation with the equivalent one for molecular systems (eq 
21), it is evident that the trace operation extended to the AOs, which we find 
in equation 20, is now transformed, in eq. 28, into a sum over AOs (I' and 1I 

indices) and also over lattice vectors, T. 

9.1. Scheme of a periodic UHF program 

The scheme in Fig. 3 illustrates how the periodic UHF method is implemented 
in the computer code CRYSTAL [6]. If we compare this scheme with the cor­
responding one for the closed-shell case (see page 120 of ref [5]), we see that the 
most relevant quantities (Fock and density matrix, eigenvalues and eigenvectors) 
are duplicated, so that is possible to differentiate ex orbitals from f3 orbitals. The 
two sections of the code, corresponding to ex and f3 electrons, do not communi­
cate for most of the program and the only interactions happen during the Fermi 
energy calculation and the Fock build. 

It is necessary to consider some practical problems that arise when running 
periodic UHF calculations. In section 2.3, we have already hinted that, in an 
open-shell calculation, it is very important that the alpha DM differs from the 
beta DM. In order to get this spin unbalance, you can act on the starting guess 
needed at the beginning of the SCF cycle (step 1 in the scheme of section 2.3): 
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Figure 3. Scheme of the implementation of the UHF method in CRYSTAL 
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in CRYSTAL there exists an option to construct a DM formed by the super­
position of atomic solutions, where it is possible to assign a specific polarization 
(a, (3 or no polarization) to each atom of the system. Once the SCF process is 
started, it often useful to introduce some constraints on the populations of the 
a and {3 orbitals (point 3 of the SCF scheme of section 2.3). This is performed 
in CRYSTAL by ad hoc translations of the eigenValues spectrum, in such a way 
that the difference between the number of a and {3 electrons is equal to the value 
introduced in the input. 

It is well known from Hartree-Fock studies of molecular systems, that it 
is very common to have problems of SCF convergence when studying open­
shell systems; similarly, convergence problems are not rare in the Hartree-Fock 
treatment of spin-polarized crystals. A well-known technique for the solution of 
convergence problems, in the case of open-shell molecules, is the so-called level 
shifting method [7]; this approach has showed its effectiveness in the periodic 
HF context also, especially in the case of crystals containing transition elements. 

4. Applications 

In this section, we will illustrate the result of a UHF study of transition metal 
oxides. 

Many theoretical studies have examined the description of the electronic 
structure of these spin-polarized solids: we can find, in the literature, a consider­
able number of LSDA studies ([8]-[16]), whereas periodic UHF studies appeared 
only quite recently ([17]-[20)) . 
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Figure 4. Band structure of anti-ferromagnetic NiO 

From an experimental point of view, these materials are classified as magnetic 
insulators (where the magnetic character comes from being anti-ferromagnetic); 
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both LSDA and UHF are able to predict the insulating nature of these systems: 
in the band structure reported in Fig. 4, the large energy difference between the 
highest occupied energy level and the lowest unoccupied level (approximately 
15 eV) shows the evident insulating state of the UHF solution (note: this value 
does not correspond to the band gap, since the UHF is a ground-state method 
which describes only occupied levels, whereas unoccupied levels have no physical 
meaning, see Chapter 2). 

t~AM~ Total 

.A 

0 

..Iv>--. 

Nis 12v 
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! Nis e. 
!1 .A 

N", 12v 
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! N" e. 
..... 

-.80 -.40 E, -.20 .00 .20 • 40 .80 

Figure 5. Total and projected density of .tates of anti-ferromagnetic nickel oxide. Density 
corresponding to at and (j electrons is plotted with a solid and dashed line, respectively. The d 
orbitals of nickel are c1usified according to the crystal field description of an octahedral site. 
NiA and NiB identify the two nickel atoJllll in the AF2 double cell. 

There is less agreement between the two methods for the attribution of the 
last occupied energy levels: UHF wave-functions show a predominant oxygen p 
nature for the top valence band (see Figure 5), whereas DFT methods appear 
to give a stronger metal d character to these bands. A possible explanation of 
this discrepancy is the following: DFT and HF generate spectra of eigenvalues 
with different physical meanings, therefore no direct comparison is possible. 

For the prediction of bulk properties, such as the lattice parameter or bulk 
constant, HF results reach reasonable accuracy, with errors of the order of a 
few percent with respect to experiment (see [18, 19, 20]). Following the trend of 
studies of other metal oxides, HF tends to overestimate the volume of transition 
metal oxides; a post-SCF inclusion of correlation effects (by means of correlation 
functionals) allows the reduction of the calculated volume [21], therefore reducing 
the disagreement with experiment. 

The UHF method also seems able to describe some of the features of the mag­
netism of the transition metal oxides: it correctly predicts the anti-ferromagnetic 
solution to be the ground state for systems such as MnO and NiO, gives magnetic 
moments (extracted from the Mulliken population analysis of the spin density) 
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Figure 6. Spin density distribution in anti-ferromagnetic NiO. The contribution of the d 
orbitals to the spin polarization is evident. Iso-density lines are drawn at intervals of 0.01 
(bohr)-3 j (-) positive values, (- - -) negative and (- . -) zero. 

close to the measured ones and the relative stability of the ferromagnetic and 
anti-ferromagnetic solutions can be successfully related to the Curie temperature 
of these materials (see Fig. 7 and ref. [21, 19]). Another aspect of the magnetic 
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Figure 7. Hartree-Fock Energy difference between the anti-ferromagnetic and ferromagnetic 
solutions of NiO as a function of lattice parameter. 

character of these compounds that HF accurately describes is the predominant 
metallic character of the spin polarization: Fig. 6 clearly shows that the spin 
density is localized on the d orbitals of the transition metal. 
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Summary. We provide an overview of the current state of the art in the com­
putational realisation of quantum theory. 
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1. Introduction 

In this Chapter, we provide a brief introduction to the problems involved in 
achieving an efficient computational implementation of quantum theory in peri­
odic systems. Particular emphasis will be placed on the use of parallel computers 
since it is with this architecture that high performance is obtained currently. This 
is a large and rapidly developing field so a complete survey is not possible. We 
hope to provide an insight into the current state of computer hardware and the 
potential benefits which will arise from using it optimally. 

In principle, quantum theory may be used to predict the properties of ma­
terials, given information about their composition and likely structure. As is 
apparent from other Chapters in this book, the application of the theory is com­
putationally expensive and may be applied only after certain approximations 
have been made. In this Chapter, we will examine the implementation of two 
radically different schemes for solving the electronic problem in periodic mate­
rials. One scheme is based on the OFT Hamiltonian and the other, on the HF 
approximation (see Chapters 2, 8, 9 and 10). In each of the techniques we con­
sider here, the wavefunctions are first expanded in a set of basis functions. The 
computational task is to choose the set of expansion coefficients which solve the 
equations. Before discussing the properties of these techniques in detail, we will 
examine the computers on which they must be implemented. 

Correspondence to: N. Harrison: E-mail N.M.Harrison@dl.ac.uk 
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2. Computer Hardware 

There is a limit to the number of computations that a single computer chip 
can perform in one second. This limit is imposed by two physical constraints. 
Information cannot move faster than the speed of light and device length scales 
are limited by quantum interference effects. From these facts, one may estimate 
that a single computer processor has a maximum speed of about 1011 operations 
per second. That is 100 Gflops. 1 This is a (very) rough estimate of peak single­
CPU performance. 

Computer Performance 1950-1994 
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Figure 1. Representative peak computer performance for the period 1945-94 

In Figure 1, the actual performance realised on some of the best computers 
available over the past 40 years is displayed. The first thing to notice is that 
the scale is almost logarithmic and that roughly every 5 years or so computer 
performance increases by a factor of 10. Up to the mid 1980's, these dramatic 
improvements were obtained using single processor machines (the Illiac IV in 
1972 being a rare exception, 20 years ahead of its time). In the 1980's, machines 
with several processors accessing the same memory were successfully introduced. 
These shared memory parallel machines (Cray XMP, YMP, and C916 in Figure 

lOne Hop is one Hoating point operation per second. 
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1) allowed performance figures to continue rising rapidly. The sudden leap in 
power over the last few years has been due to the introduction of massively 
parallel machines with thousands of processors, each of which addresses a local 
memory (distributed memory machines, the Intel Delta and Paragon in Figure 
1). The fastest available computers in 1994 are running at almost 1000 Gflops, a 
performance which seems to be inaccessible to a single processor machine. The 
Cray C916 is a shared memory machine with 16 processors each yielding about 
1 Gflop: 16 Gflops in all. The Intel Paragon machine has 2048 processors, each 
with its own memory and each performing at about 0.07 Gflops: 140 Gflops in 
all. It is much easier to write a computer programme to make efficient use of the 
shared memory machine but the potential benefit of using the massively parallel 
machines is enormous. 

Undoubtedly computer performance will continue to rise exponentially (at 
least in the short term) and these improvements will be achieved by using parallel 
processing. It is difficult to use these machines optimally. On the sequential 
(vector processing) machines available in the 1980's, a reasonable fraction of the 
peak performance (say 20-30%) is achieved using straightforward coding in a 
high level language (FORTRAN, C). For parallel computers, algorithms must 
be redesigned to make use of the many processors available, for as much of the 
time as possible. A great deal of effort has been expended on this problem over 
the past 10 years with some notable success, but many applications have not 
yet been redesigned for use on parallel machines. In the next two sections, we 
describe the parallel implementation of two widely used techniques in electronic 
structure theory. 

3. A Replicated Data Approach 

In this section, the implementation of the CRYSTAL code [1] on distributed 
memory hardware is described. The strategy adopted was designed for use on 
machines with up to (about) 64 processors, each of which has fast access to 
memory and disk storage. High inter-processor communication· rates are not 
required. 

The replicated data approach is probably the first strategy one would think 
of for using a parallel computer. A complete copy of the code is run on each 
processor. One then imagines the code to consist of many independent compu­
tational tasks and each processor becomes responsible for performing a certain 
number of tasks. Of course, in practice, a code rarely consists of completely 
independent tasks and thus the individual processors must, at some stage, com­
municate results to each other. The art of designing an efficient algorithm is 
to minimise communications while having enough tasks to keep as many of the 
processors working as possible (load balancing). A useful method for distributing 
tasks to processors is the synchronous global index. This is a counter which may 
be interrogated or updated by any processor and is used to count the number of 
tasks which have been completed. Using such an index, it is a simple matter to 
allocate an initial set of tasks to the processors and then when a task is finished 
the processor uses the index to identify the next task which must be performed. 
This strategy has the benefit of being comparatively simple to implement and 
will balance the computational load as long as the number of tasks is much 
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larger than the number of processors. The main disadvantage is that memory is 
inefficiently used since all major data structures are stored on each node. 

The computational details of the CRYSTAL package are given in Chapter 8. 
The basic features are common to any technique which uses a basis set consisting 
of local functions and which solves the many-electron problem in a one-electron 
approximation using self consistent field (SCF) iterations. 

3.1. The CRYSTAL code 

In a periodic system, the single particle orbitals may be labelled with a band 
index n, and a crystal momentum, k. The Hamiltonian is represented as matrix 
elements between these orbitals. If each tPn,k is expanded in local atom-centred 
functions, ¢i,R (where i labels the local function within a unit cell and R labels 
the cell), then the direct space representation of the single particle Hamilto­
nian in the Hartree-Fock approximation will require the computation of many 
integrals of the form: 

As discussed in Chapter 8, the first stage (part 1) is to calculate and store all of 
the integrals required, while the second stage (part 2) consists of SCF iterations. 
The integrals are used to produce a Hamiltonian matrix, H~j, which must be 
diagonalised at a number ofk-points in order to compute the new orbitals, tPn,k. 

These orbitals may then be used to construct a new H~i. This process must 
be iterated (from an initial guess) until the wavefunctions are self-consistent: a 
process which usually takes a few tens of cycles. 

For parallelisation, the independent tasks in part 1 are taken to be blocks of 
integrals labelled with a common (iO,jR). In a typical computation, one might 
expect there to be a hundred basis functions per cell and the range of interactions 
to be such that about ten R values must be considered. There will thus be 105 

independent tasks. Each processor will then be able to store locally the subset of 
integrals which it computed. There is no need for any communication between 
processors once the tasks have been defined and therefore, one would expect this 
to be a highly efficient operation. 

In part 2, the parallelisation is achieved in two steps. Firstly, in the genera­
tion of the Hamiltonian matrix, each processor can only generate a partial copy 
from the integrals which it has stored locally. As each node may act indepen­
dently, this process is naturally performed in parallel and only suffers from the 
possibility that the load balancing may be poor. All nodes must complete this 
task before the calculation can proceed, and thus, some nodes may lie idle for 
a period. A complete copy of the Hamiltonian must then be assembled on each 
processor by passing messages containing partial copies of the matrix: a process 
best represented as a global summation of the data. 

The final step is to diagonalise the matrix. The diagonalisation at each k­
point is independent, so this is a natural choice for the basic computational task. 
There are usually a few tens of k-points and therefore, this choice limits the num­
ber of processors on which the algorithm will run efficiently. On machines with 
many hundreds of processors, most will lie idle. After the diagonalisations are 
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complete, the eigenvectors (tPn,k) must be communicated to all processors in 
order to generate the next version of H. This simple strategy has the advan­
tage that it requires a limited number of modifications of the sequential code 
but successfully distributes the major computational and disk accessing tasks. 
A limitation of this strategy is that copies of all main memory-resident data 
structures are stored on each processor, so that the maximum problem size is 
limited by the node with the smallest memory. These restrictions are lifted if 
a distributed data strategy is employed at the expense of more communication 
between processors. A strategy of this form will be examined in the next section. 

9.e. The performance of CRYSTAL 

As this strategy requires each processor to have fast access to disk storage and 
does not require fast communication between processors, it is able to take ad­
vantage of an environment in which the computers are rather weakly coupled. 
A cluster of workstations linked by a standard network is adequate. 

In Figure 2, the performance of CRYSTAL on a workstation cluster is pre­
sented. The case considered is the computation of the electronic structure at 

CRYSTAL: Integral Generation CRYSTAL: SCF Iterations 
a.-ondCPU .... EIIpood ond CPU .... 
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Figure 2. The performance of the CRYSTAL package on A cluster of 4 HP /735 workstations 
linked on Ethernet 

the surface of corundum (AI20 s) represented as a 2D periodic slab. There are 
10 atoms in each unit cell, with 100 electrons, described by 86 local basis func­
tions. Eight irreducible k-points were used. This is a small calculation by modern 
standards and takes only a few minutes on a single workstation. 



118 Nicholas M. Harrison 

During integral generation, the elapsed and CPU times scale rather well as 
the number of machines is increased. The elapsed time is reduced by a factor 
of 3.7 when 4-nodes are used: about 90% efficiency. The small communication 
overhead in part 1 does not increase with system size and almost perfect scal­
ing would be achieved in larger calculations. The elapsed times during the SCF 
cycles are reduced by a factor of 3.3 on 4-nodes: about 80% efficiency. Two fac­
tors limit the efficiency of part 2. As noted above, the load balancing may not 
be ideal as the distribution of the Hamiltonian matrix .construction tasks are 
determined by part 1. In this test, four identical computers were used and there­
fore, this problem is small; it would be more pronounced on a heterogeneous 
workstation cluster. Another factor limiting the efficiency is the communication 
of the partial Hamiltonian matrices to all processors. This step scales as N2 
where N is the number of basis functions. The CPU-time required in diagonal­
isation scales as N3 and therefore, the communication overhead becomes less 
significant in studies of larger systems. For larger systems, we would also expect 
the efficiency of part 2 to improve. Unfortunately, for very large systems, the 
number of k-points required is reduced, and thus, the algorithm will not be able 
to make efficient use of a large number of processors. The other feature of part 
2 is that the elapsed and CPU times are rather different. This is due to the 
large amount of disk access operations performed; as the stored integrals are 
read from disk, the CPU lies idle. On the workstation cluster, each processor 
has local disk storage, and as a result, the aggregate disk-access speeds improve 
with CPU performance during parallel operation. A scalable disk system is a 
vital component of any parallel computer and is not provided by the massively 
parallel machines currently available. 

4. A Data-Parallel Algorithm 

In this section, the implementation of the CETEP code [2] achieved by the 
groups at the University of Cambridge and the Edinburgh Parallel Computer 
Centre is described. The algorithm is designed for use on purpose-built parallel 
computers with high communication speeds between processors. As an alterna­
tive to a self-consistent field procedure, one can solve the SCF problem using 
direct minimisation (see Chapter 3, section 5). The basic idea of this method is 
that the total energy of the system may be written as a function of the set of 
single particle orbitals, that is: 

E[tPi] = ~ jdrtPi(r)HtPi(r) 
I 

(2) 

and that the total energy is minimised by the orbitals which solve the Kohn­
Sham equation (see Chapter 3, Section 2.2). If the orbitals are expanded in a 
set of basis functions, and this time we choose plane waves, so that: 

tPi(r) == tPnk(r) = L:CKkexp[l(k+K) ·r] (3) 
K 

then the energy is a complicated function of the many expansion coefficients, 
C. Subject to the constraint that the single particle orbitals are orthogonal, 
we may now determine the coefficients by direct minimisation of the energy. A 
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plane wave basis set is only adequate for representing rather smooth functions. 
In calculations of this type, the core electrons are removed from the problem 
and replaced by a pseudo-potential; therefore, only the more gently varying va­
lence wave functions are represented by the plane waves. Even so, many basis 
functions are required. Typical values for the number of plane waves (NK), num­
ber of bands (Nb) and number of It-points (Nk) for a system containing Nat_. 
atoms are: 

NK 1000 * Nat_. 

Nb 10 * Natom• 
Nk 10 / N at_. 

If the Hamiltonian matrix is generated in this representation and diagonalised, 
the computational cost would be of order Ni, operations. In the 1980's, pow­
erful algorithms were developed which allowed the minimisation process to be 
achieved in a number of operations of the order Nl NK [3]. The saving of roughly 
4 orders of magnitude in the number of operations quickly led to these and sim­
ilar algorithms being used in all calculations using large plane wave basis sets. 
The full details of these methods are given in the literature [3]. Here, we de­
scribe a data parallel algorithm which allows such a calculation to be performed 
efficiently on a parallel computer (for further details, see reference [4]). 

In a plane wave baSis set, the calculation H.,p in equation 2 may be per­
formed without ever storing the full H matrix. This is true because H may be 
split into two parts: one diagonal in (direct) R-space and the other diagonal 
in (reciprocal) K-space. This means that the product, H.,p, may be built effi­
ciently if .,p is available in both reciprocal and direct space representations. The 
main computational task in the minimisation process is, therefore, to change 
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Performance of CETEP on Intel iPSC/860 
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Figure 4. The performance of the CETEP package on the Intel iPSC/860 

the representation of the wavefunction from reciprocal space to direct space us­
ing a 3-dimensional Fast Fourier transform (3D FFT). As the 3D transform is 
built from the repeated application of ID FFTs, it is possible to perform this 
operation with the wave function distributed over many processors. 

One possible algorithm, similar to that used in CETEP, is as follows. In direct 
space, R == (~, fly, Rz ), the wavefunction is stored as (~, fly) planes of data 
with each processor responsible for a certain range of Rz • In reciprocal space, 
K == (Ks, Ky, Kz), the data is stored in columns; each node is responsible for 
a column of Kz values for some range of (KII:' Ky). This is illustrated in Figure 
3. The parallel 3D FFT from direct space to reciprocal space proceeds by the 
following steps: 

1. Each processor performs 2D FFTs on the (RII:' fly) stored locally. I~ now has 
data (KII:' Ky, Rz) for some range of Rz. 

2. Data is communicated between processors until each has a set of complete 
columns of data in the z-direction, that is, (KII:' Ky, Rz) for some range of 
(KII:,Ky). 

3. Each node performs aID FFT, in the z-direction, for the columns it stores 
and the 3D FFT is complete. 

The performance of the CETEP code for a calculation of the cubic 8-atom 
unit cell of diamond using 64000 plane waves is displayed in Figure 4. The calcu-
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lation was performed on an Intel iPSCj860. The parallel efficiency is not perfect 
as the communication of the data is a significant overhead. The computational 
cost scales with system size somewhat faster than the communication time so 
greater efficiency would be expected for larger calculations. For this application, 
the parallel computer also represents a large step forward in the amount of mem­
ory which can be dedicated to a single task. On the Intel iPSCj860, for instance, 
each processor has 16 MB2 of memory; on 64 nodes over 1000MB of memory is 
available. The Intel Paragon machine has 2048 nodes. 

The data parallel algorithm has the advantage that the memory of the par­
allel computer is used efficiently. The communication time involved in passing 
data between processors is significant and for a given system, size will limit the 
scalability of the algorithm. The algorithm is best suited to closely coupled pro­
cessors with fast communications, found in purpose-built parallel computers. It 
is worthy of note that the speed of inter-processor communication is increas­
ing much more rapidly than processor speed. Applications which suffer from 
communication bandwidth problems will benefit from this in the near future. 

5. Visualization of results 

Figure 5. The structure of the defective MgO(l00) surlace 

In this section, we briefly review some of the software and hardware available 
for the visualization of scientific data. 

It is not only the processing power of computers which has grown rapidly 
over the past ten years; the rate at which complex images can be rendered has 

21MB = 106 bytes 
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also risen dramatically. In addition, the software used to generate images from 
scientific data has improved so that now, for a small investment of effort, it is 
possible to visualize complex data structures. 

The hardware in a relatively inexpensive graphics workstation (Silicon Graph­
ics Ltd Indy or equivalent) is quite remarkable. Most of the data that we wish 
to interpret can be visualized as coloured lines or polygons. The complexity in­
volved in rendering a single coloured polygon to a screen is enormous and yet 
it is typical for purpose built hardware to be able to render several million such 
polygons per second. This allows one to generate spectacular images tha.t move 
in real time. 

Figure 6. An isovalue surface of the charge density above the defective MgO(100) surface: 
p(r) = O.01Iel/(lIu)3 

A limitation on our ability to do this with scientific data is the difficulty in 
mapping the data to suitable images. The data presented in this section was 
computed using the CRYSTAL code and the pictures were generated using DIS­
PLAY [5] a visualization package developed at Daresbury Laboratory. Similar 
techniques may be applied with a modest investment of effort using the com­
mercial packages AVS or Explorer. All of the images shown can be generated 
rapidly and then manipulated in 3D (rotated, translated and scaled) on a graph­
ics workstation. By far the best way to understand this is to sit at a workstation 
and play. 

The visualization of data becomes more difficult as we move to higher dimen­
sions. Even 2D data, represented as contours and surface plots, may be hard to 
understand. For 3D da.ta, there is a need for tools which allow one to apply many 
different rendering techniques to the same data in order to build up a mental 
image of its structure and relevance. It may also be vital to see the data in con­
text; for our purposes, this often means plotted along side a structural model. 
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Figure 1. Isovalue and contour surface representations of the difference density: p( r) - Pion. (r) 
above the defective MgO(l00) surface. 

As examples from some recent research, I have included three slides. In the first, 
the structure of a surface is plotted (Figure 5). Complex crystal structures can 
be difficult to understand. A computer which allows us to render a simple ball 
and stick picture and spin it around on the screen can help a lot. In this case, 
the structure is rather simple. It is the surface of a cubic crystal; the (100) sur­
face of MgO. The large spheres represent the 0 ions and the small spheres the 
Mg ions. The image is reproduced in grey scale from a colour original. The top 
panel shows the surface unit cell of this structure and the irreducible atoms. 
In the lower panel, the pattern has been repeated by a few lattice vectors to 
reveal more of the surface. This is not the ideal (100) surface; a "line" of MgO 
units has been removed to make a primitive model of a step defect. It takes a 
few minutes on a workstation to solve the SCF problem for this simple model. 
The resulting wavefunctions may then be used to compute various quantities of 
interest. The charge density is a 3D scalar field. We can represent this in many 
ways. In Figure 6, a surface of constant charge density has been evaluated and 
plotted. This is analogous to a ID contour line cut from 2D data; it is a 2D con­
tour surface cut from 3D data - an isovalue surface. The surface is at a rather 
low value of the charge density and essentially, follows the outline of each site. 
This helps to confirm the rather simple idea of large negative 0 2- ions bound 
to smaller Mg2+ ions. The total density contains a large term due to the core 
electrons: a density more responsive to the local environment is obtained if we 
subtract the charge density of individual ions. A charge density difference map 
is plotted in Figure 7. In the upper panel, a 2D slice is taken from the 3D data 
and rendered using normal contour levels. The continuous lines indicate regions 
that have been depleted of charge and the dashed lines regions where charge has 
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accumulated (relative to unperturbed ions). In the lower panel, the same data is 
rendered using 3D isovalue surfaces. It is clear that the 0 ions at the step edge 
are polarised strongly. From this plot, the regions of strong polarisation can be 
quickly identified and examined in more detail. 
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Summary. The structure of the CRYSTAL code is analysed. This code per­
mits the calculation of the wavefunction and properties of crystalline systems, 
using a Hartree-Fock Linear-Combination-of-Atomic-Orbitals (HF-LCAO) ap­
proximation. Both the theory and the practical implementation of the equations 
are discussed. 
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1. Introduction 

The CRYSTAL program permits the calculation of the wavefunction and prop­
erties of crystalline systems, within the Hartree-Fock Linear-Combination-of­
Atomic-Orbitals (HF-LCAO) approximation. 

The code was developed initially by the Theoretical Chemistry Group of the 
University of Torino at the end of the seventies [1, 2]. Since 1981 there has been 
a close collaboration on the project with V.R.Saunders (Daresbury Laboratory, 
UK) [3, 4]. The first public version was released in 1988 [5]. CRYSTAL92 [6] 
is now available as a FORTRAN source code, fully portable. The development 
of the current version of CRYSTAL has been greatly assisted by the constant 
support and interest of C. Pisani and by contributions from M. Causa, N. M. 
Harrison, E. Apra and R. Orlando. The User's Manual includes 28 test cases, 
including both input and output, which provide examples of the wide range of 
program capabilities available. 

A new release of the program is expected to appear in 1996. It is more 
efficient and has additional capabilities with respect to the current version, but 
the essential philosophy and techniques, which will be presented in this Chapter, 
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have remained unchanged. A discussion of the present scheme in relation to 
other approaches, was presented in Chapter 3. In the following sections, the 
equations are presented for the closed-shell casej extension to the open-shell 
case is discussed in Chapter 6. 

2. Theoretical framework 

CRYSTAL is an ab initio Hartr~Fock CO-LCAO program for the treatment of 
periodic systems. 

CO-LCAO, in the present case, means that each Crystalline Orbital (CO), 
tPi(rj k), is a linear combination of Bloch functions (BF), tPp(rj k), defined in 
terms of local functions, ipp(r) (here referred to as Atomic Orbitals, AOs). 

tPi(rj k) = E Qp,i(k)tPp(rj k) 
p 

tPp(rj k) = E ipp(r - Ap - T) i k.T 
T 

(1) 

(2) 

Ap denotes the coordinate of the nucleus in the zero reference cell on which ipp 

is centred, and the LT is extended to the set of all lattice vectors, T. 
The local functions are expressed as linear combinations of a certain number, 

nG, ofindividually normalized Gaussian type functions (GTO) characterized by 
the same centre, with fixed coefficients, dj and exponents, OJ, defined in the 
input: 

no 
ipp(r - Ap - T) = Edj G(ojjr - Ap- T) (3) 

j 

The AOs belonging to a given atom are grouped into shells, ..\. The shell can 
contain all AOs with the same quantum numbers, n and i, (for instance 3s, 2p, 
3d shells), or all the AOs with the same principal quantum number, n, if the 
number of GTOs and the corresponding exponents are the same for all of them 
(mainly 8p shellsj this is known as the sp cons~raint). These groupings permit a 
reduction in the number of auxiliary functions that need to be calculated in the 
evaluation of electron integrals and therefore, increase the speed of calculation. 

A single, normalized, s-type GTO, G),., is associated with each shell (the 
adjoined Gaussianofshell..\). The ° exponent is the smallest of the OJ exponents 
of the Gaussians in the contraction. The adjoined Gaussian is used to estimate 
the AO overlap and select the level of approximation to be adopted for the 
evaluation of the integrals. 

The expansion coefficients of the Bloch functions, ap,i(k), are calculated by 
solving the matrix equation for each reciprocal lattice vector, k: 

F(k)A(k) = S(k)A(k)E(k) (4) 

in which S(k) is the overlap matrix over the Bloch functions, E(k) is the diagonal 
energy matrix and F(k) is the Fock matrix in reciprocal space: 

F(k) = EFT eik.T 
T 

(5) 



The CRYSTAL code 127 

The matrix elements of FT, the Fock matrix in direct space, can be written as 
a sum of one-electron and two-electron contributions in the basis set of the AO: 

(6) 

The one-electron contribution is the sum of the kinetic and nuclear attraction 
terms: 

(7) 

In core pseudopotential calculations, Z includes the sum of the atomic pseu­
dopotentials. 

The two-electron term is the sum of the Coulomb and exchange contributions: 

BT - CT + XT - (8) 12 - 12 12 -

L:L:P~~)(<P~<P1' I <p:<p:+Q) - 4(<p~<p: I <P1'<p:+Q)] (9) 
3,4 Q S 

The Coulomb interactions, that is, those of electron-nucleus, electron-electron 
and nucleus-nucleus, are individually divergent, due to the infinite size of the 
system. The grouping of corresponding terms is necessary in order to eliminate 
this divergence. 

The pQ density matrix elements in the AOs basis set are computed by inte­
gration over the volume of the Brillouin zone (BZ), 

P~4 = 2 ( dkeikoQ L: ain(k)a4n(k)8(fF - fn(k» (10) 
'JBZ n 

where ain denotes the i-th component of the n-th eigenvector, 8 is the step 
function, fF, the Fermi energy and fn, the n-th eigenvalue. 

The total electronic energy per unit cell is given by: 

o E e1ec _ 1 ""'''"' pT(HT + BT) (11) - 2" ~~ 12 12 12 
1,2 T 

Chapter 11 presents a discussion of the different .contributions to the total energy. 

e.l. Remarks on the evaluation of the integrals 

The approach adopted for the treatment of the Coulomb and exchange series is 
based on a few simple ideas and on a few general tools, which can be summarized 
as follows: 

1. Where possible, terms of the Coulomb series are aggregated so as to reduce 
the number of integrals to be evaluated; 

2. Exchange integrals which will combine with small density matrix elements 
are disregarded; 

3. Integrals between non-overlapping distributions are approximated; 
4. Approximations for large integrals must be very accurate; for small integrals 

large percentage errors can be accepted; 
5. Selection must be very efficient, because a large number of possible terms 

must be checked (adjoined Gaussians are very useful from this point of view); 
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t.t. 1reatment of the Coulomb series 

For the evaluation of the Coulomb contributions to the total energy and Fock 
matrix, correct coupling of electron-nucleus and electron-electron interactions is 
essential. The computational technique for doing so was presented by Dovesi et 
al. [3] and by Saunders et al. [7]. It may be summarized as follows. 

Consider the Coulomb bielectronic contribution to the Fock matrix (G1;) 
and to the total energy : 

E~:'" = ~ L L P~ L L P~ L[(cp~cpi I cp:cp:+Q) (12) 
1,2 T 3,4 Q S 

Seven indices are involved in equation 12; four of them (1, 2, 3 and 4) refer 
to the AOs of the unit cell; in principle, the other three (T, Q and S) span 
the infinite set of translation vectors: for example, cpi(r) is AO number 2 in 
cell T. P is the density matrix; the usual notation is used for the bielectronic 
integrals. Due to the localized nature of the basis set, the total charges, q1 and 
q2, associated with the two overlap distributions: {GIO G 2T} and {G3S G4S+Q}, 
decay exponentially to zero with increasing ITI and IQI (for example, G1 is the 
adjoined Gaussian of the shell to which CP1 belongs). 

A Coulomb overlap parameter, Sc, can be defined in such a way that when 
either q1 or q2 are smaller than Sc, the bielectronic integral is disregarded, and 
the sum over T or Q truncated. The ITOL1 input parameter is defined as 
ITOL1=-loglO Sc. The same parameter value is used for selecting overlap, ki­
netic and multipole integrals. 

The problem of the S summation in equation 12 is more delicate, S being 
related to the distance between the two interacting distributions. The multipolar 
expansion scheme illustrated below is particularly effective when large unit cell 
or low dimensionality systems are considered. 

The electron-electron and electron-nuclei series (C~ and z~ ) can be rear­
ranged as follows: 

1. Mulliken shell net charge distributions are defined as : 

p~(r-S) == py == {>.}-z~ = L L P~ CP3(r-S) cp4(r-S-Q)-Z~ (13) 
3e~ 4Q 

where Z~ is the fraction of nuclear charge formally attributed to shell >., and 
P} is the electronic charge distribution of shell >.. 

2. Z and C contributions are reordered: 

C?; + Z?; = LL J dr.dr'cp~(r) cpi(r) Ir - r' - SI-1 p~(r' - S) (14) 
~ S 

3. For a given shell >., there is a finite set of S vectors, B~, which the two 
interacting distributions overlap; in this B~ zone (bielectronic zone), all the 
bielectronic integrals are evaluated explicitly. In the outer, infinite region 
which we define as M~, complementary to B~ (the monoelectronic zone), p~ 
can be expanded in multipoles and the series can be evaluated to infinity 
analytically, using Ewald's method combined with recursion formulae [7]. 
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The resulting expression for the Coulomb contribution to the Fock matrix is: 

B,. 

C~ + Z~ = L{L[LLLP3~(<P?<pi I <p:<p~+Q) 
>. s 3E>' 4 Q 

- L "Yr(A>.; {A})4>i(12T; A>. + S)] + (15) 
l,m 

+ LL"Yr(A>.;{A},)4>i(12T;A>. + S)} 
S l,m 

where: 

"Yr(A>.;{A}) = J drp>.(r-A>.)NiXl(r-A>.) and (16) 

4>r(12T; A>. + S) = J dr<p?(r)<pi(r)Xr(r - A>. - S)lr - A>. - SI-2l- 1 (17) 

The Xl functions entering in the definition of the multi poles and field terms 
are real, solid harmonics and Ni, the corresponding normalization coefficients. 

The advantage of using equation 15 is that many four-centre (long-range) 
integrals can be replaced by a smaller number of three-centre integra:Js. 

The attribution of the interaction between P1 = {102T} and P>. either to 
the exact, short-range or to the approximate, long-range zone is performed by 
comparing the penetration between P1 and P>. with the ITOL2 input parameter 
(if ITOL2> -logS!>., then P>' is attributed to the exact B>. zone). 

The multipolar expansion, in the approximate zone, is truncated at L = 
f."ltJz. The default value of Lis 4; the maximum possible value is 6, the minimum 
suggested value, 2. 

2.9. The exchange series 

The exchange series does not require particular manipulations of the kind dis­
cussed in the previous subsection, but needs a careful selection of the terms 
contributing appreciably to the Fock operator and to the total energy [4]. The 
exchange contribution to the total energy can be written as follows: 

Eez = ~ LLP~ [-~ LLP~L(<p?<p: I <pi<p!+Q)] (18) 
12 T 34 Q S 

where the term in square brackets is the exchange contribution to the 121' 
element of the direct-space Fock matrix. Eez has no counterpart of opposite 
sign as the Coulomb term has; hence, it must converge by itself. 

The S summation can be truncated after a few terms, since the { <p? <p~} over­
lap distribution decays exponentially as S increases. Similar considerations apply 
to the second charge distribution. In CRYSTAL, the S summation is, therefore, 
truncated when the char.e;e associated with either {G10 G3S} or {G2T G4S+Q} 
is smaller than 1O-ITOL3. 

The situation is more complicated when T and Q summations are anal­
ysed. Let us consider the leading terms at large distance, corresponding to 
<P1 =<P3 , <P2=<P4, S = 0 and Q = T: 



130 Carla Roetti 

(19) 

(Here, pT indicates the dominant P matrix element at long-range). Since the 
number of terms per unit distance of this kind increases as ITld- 1, where dis 
the dimensionality of the system, it is clear that the convergence of the series 
depends critically on the long-range behaviour of the bond order matrix. 

Cancellation effects, associated in particular with the oscillatory behaviour of 
the density matrix in metallic systems, are not predominant at long-range. Even 
if the actual behaviour of the P matrix elements cannot be predicted because it 
depends, in a complicated way, on the physical nature of the compound [8], on 
orthogonality constraints and on basis set quality, the different range of valence 
and core elements can be exploited by adopting a pseudoverlap criterion. This 
consists in truncating T summations when the f drtpfvif overlap is smaller than 
a given threshold, defined as P~ (where ITOL4 = -Iogto (P~» and also trun­
cating the Q summation when f drtpgtp~ overlap is smaller than the threshold, 
P~ (ITOL5 = -log10 (P~». 

Despite its partially arbitrary nature, this criterion presents some advantages 
with respect to other, more elaborate schemes: it is similar to the other trunca.­
tion schemes (ITOLl, ITOL2 and ITOL3) and so the same classification tables 
can be used; it is, in addition, reasonably efficient in terms of space occupation 
and computer time. 

This truncation scheme is symmetrical with respect to the T and Q summa.­
tions. However, if account is not taken of the different role of the two summations 
in the SC (Self-Consistent) stage, distortions may be generated in the exchange 
field, 88 felt by charge distributions tp1tpT, where T labels the largest (in mod­
ulus) T vector taken into account according to ITOL4. This distortion may be 
variationally exploited and unphysically large density matrix elements build up 
progressively along the SC stage, eventually leading to catastrophic behaviour 
(see Chapter 11.5 of reference [2] for a discussion of this point). In order to over­
come this problem, the threshold, P~ (ITOL5) for Q summation must be more 
severe than that for T summation (ITOL4). In this way, all the integrals whose 
second pseudocharge f drtpgtp~ is larger than P~ are taken into account. A dif­
ference in the two thresholds ranging from three to eight orders of magnitude is 
sufficient to stabilize the SC behaviour in most cases. 

1.-1. Bipolar expansion approximation 0/ Coulomb and exchange integrals 

We may now return to the partition of the S summation in the Coulomb series, 
shown in equation 12. Consider one contribution to the charge distribution of 
electron 1, centred in the reference cell: pO = tpf tp'f; now consider the charge 
distribution p>.(S) ofshell A, centred in cell S (equation 13). For small lSI values, 
P>. and pO overlap, so that all the related bielectronic integrals must be evaluated 
exactly, one by one; for larger values of lSI, P>. is external to pO, so that all the 
related bieleetronic integrals are grouped and evaluated, in an approximate way, 
through the multipolar expansion of P>' • 

However, in many instances, although P>. is not external to pO, the two-centre 
tp~tp:+Q contributions to P>' are external to po = tpftp'f; in this case, instead 
of exactly evaluating the bielectronic integral, a two-centre, truncated, bipolar 
expansion can be used (see Chapter 1I.4.c in reference [2] and references therein). 
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In order to decide to which zone a shell may be ascribed, we proceed as 
follows: when, for a given pair of shells ,W Ai, shell A~ is attributed to the B 
(bielectronic) zone, the penetration between the products of adjoined Gaussians 
G?Gi and G~G~+Q is estimated: the default value of the penetration parameter 
is 14, and the block of bielectronic integrals is attributed accordingly to the be 
(exact) or to the bb (bipolar) zone. The set of S vectors, defining the B zone of 
po= {I2T} and p>.. == {A3}, is then split into two subsets, which are specific for 
each partner A~ of A3. 

A similar scheme is adopted for the selected exchange integrals (see previous 
section) whose pseudocharges do not overlap appreciably. The default value of 
the penetration parameter is 10. 

The total energy change due to the bipolar expansion approximation should 
not be greater than 10-4 Hartree/atom; exact evaluation of all the two-electron 
integrals (obtained by setting the penetration parameter value > 20000) in­
creases the computational cost by a factor of between 1.3 and 3. Multipolar 
expansion is very efficient, because the following two conditions are fulfilled: 

1. A general algorithm is available for reaching high l values easily and eco­
nomically [3,7]. The maximum allowed value is 1=6. 

2. The multipolar series converges rapidly, either because the interacting dis­
tributions are nearly spherical (shell expansion) or because their functional 
expression is such that their multipoles are zero above a certain (low) 1 value. 

2.5. Exploitation of symmetry 

Translational symmetry allows the factorization of the eigenvalue problem in 
periodic calculations, because the Bloch functions are a basis for irreducible 
representations of the translational group. 

In periodic calculations, point symmetry is exploited to reduce the number 
of points for which the matrix equations are to be solved. Point symmetry is 
also explicitly used in the reconstruction of the Hamiltonian, which is totally 
symmetric with respect to the point group operators of the system. 

In the HF-CO-LCAO scheme, the very extensive use of point symmetry al­
lows us to evaluate bieletronic and monoelectronic integrals with saving factors 
as large as h, in the number of bielectronic integrals to be computed or h2 , in 
the number of those to be stored for the SCF part of the calculation, where h 
is the order of the point group. The main steps of the procedure [11] can be 
summarized as follows: 

- The set of Coulomb and exchange integrals, whose indices 3 and 4 (3,4) iden­
tify translation ally equivalent pairs of AOs, so that the associated element 
of the density matrix P34 is the same, are summed together to give Dl234 

elements: 

D1,2T;3,4Q = L[(IP?IPi I IP:IP~+Q) -I/2(IP?IP~ I IPiIP~+Q)] (20) 
Q 

- The products of AOs IPl IP2 (and IP3IP4) are classified in symmetry-related 
sets; using the fact that the Fock matrix is totally symmetric, only those 
quantities are evaluated whose indices 1 and 2 (1,2) refer to the first member 
of a symmetry set. The corresponding saving factor is as large as h. 
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- Using the symmetry properties of the density matrix, DM, quantities refer­
ring to 3,4 couples belonging to the same symmetry set (and with the same 
1, 2T index) can be combined, after multiplication by appropriate symmetry 
matrices, so that a single quantity for each 3,4 symmetry set is to be stored, 
with a saving factor in storage of the order of h. . 

- The symmetry P~ = P43Q is exploited. 
- The symmetry Fl; = F21T is exploited. 

e.6. Reciprocal space integration 

The integration in reciprocal space is an important aspect of ab initio calcu­
lations for periodic structures. The problem arises at each stage of the self­
consistent procedure, when determining the Fermi energy, fF, when reconstruct­
ing the one-electron density matrix and, after self-consistency is reached, when 
calculating the density of states (DOS) and a number of observable quantities. 
The P matrix in direct space is computed following equation 10. The technique 
adopted to compute fF and the P matrix in the SCF step is described in refer­
ence [1]. The Fourier-Legendre technique presented in Chapter 11.6 ofreference 
[2] is adopted in the calculation of total and projected DOS. The Fermi energy 
and the integral in equation 10 are evaluated starting from the knowledge of 
the eigenvalues, fn(lI:) and the eigenvectors, al'n(II:), at a certain set of sampling 
points, {II:}. In 3D crystals, the sampling points belong to a lattice (called the 
Monkhorst net, [9]) with basis vectors ht!Sl, b21s2, h3/s3, where hi> h2 and h3 
are the ordinary reciprocal lattice vectors; 81> s2 and S3 (input as lSI, IS2 and 
IS3) are integer shrinking factors. Unless otherwise specified, IS1=IS2=IS3=IS. 
In 2D crystals, IS3 is set equal to 1; in 1D crystals both IS2 and IS3 are set equal 
to 1. Only points of the Monkhorst net belonging to the irreducible part of the 
Brillouin Zone (BZ) are considered, having associated geometrical weights, Wi. 

In the selection of the II: points for non-centrosymmetric crystals, time­
reversal symmetry is exploited (fn(lI:) = fn(-II:». 

The number of inequivalent sampling points, lI:i, is given asymptotically by 
the product of the shrinking factors divided by the order of the point group. In 
high symmetry systems and with small 8i values, it may be considerably larger 
because many points lie on symmetry planes or axes. 

Two completely different situations (which are automatically identified by the 
code) must now be considered, depending on whether the system is an insulator 
(or zero-gap semiconductor) or a conductor. In the former case, all bands are 
either fully occupied or vacant. The identification of fF is elementary and the 
Fourier transform expressed by equation 10 is reduced to a weighted sum of 
the integrand function over the set {lI:i} with weights Wi, the sum over n being 
limited to occupied bands. 

The case of conductors is more complicated: two additional parameters, ISHF 
and ISP, enter into play. ISHF is the number ofsymmetrized plane waves, Am(k), 
used for representing the k dependence of the eigenvalues. ISP (or ISP1, ISP2, 
ISP3) are Gilat shrinking factors which define a Gilat net [10], completely analo­
gous to the Monkhorst net. The value of ISP is larger than IS (by up to a factor 
of 2), giving a denser net. Each point, II:~, has a small sphere, Sj, attached, 

centred at II:~ and with volume v = VBZ/(81S2S3), that is, equal to the inverse 
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density of GHat points: the spheres are, therefore, partially overlapping. In a 
conductor, one or more bands are partially occupied. Suppose, for simplicity, 
that there is only one such band (the n-th, say). A truncated Fourier expansion 
of fn(k) is considered: 

ISHF 

fn(k) ~ fn(k) = L fnAm(k) (21) 
m=l 

with expansion coefficients, In, obtained from the knowledge of fn(K) at the 
Monkhorst sampling points. We next consider a further approximation: fn(k) 
of fn(k), corresponding to linearly expanding In(k) around each GHat point K.~ 
within its own sphere, Sj. Using this approximation for fn(k), it is possible to 
obtain fF easily and then to define appropriate weights, w;n' for each Monkhorst 
point and each band. The integral [10] is expressed, as before, as a weighted sum, 
but with weights w;n instead of Wi. The accuracy of this procedure increases with 
increasing IS, ISP and ISHF. 

In high symmetry systems, it is convenient to assign IS magic values such 
that all low multiplicity (high symmetry) points belong to the Monkhorst lattice. 
Although this choice does not correspond to maximum efficiency, it gives a safer 
estimate of the integral. 

The values assigned to ISHF and ISP are irrelevant for non-conductors. How­
ever, a non-conductor may give rise to a conducting structure at the initial stages 
of the SCF cycle, owing, for instance, to a very unbalanced initial guess at the 
density matrix. The ISHF and ISP parameters must therefore be defined in all 
cases. 

2.7. Basis set selection 

The problem of selecting appropriate basis sets of contracted GTOs, for HF 
calculations of crystals, has many features in common with the corresponding 
one for molecules; yet, some aspects are markedly different in the two cases. 

Diffuse Gaussian orbitals (exponent coefficient < 0.1 ) playa critical role in 
HF-CO-LCAO calculations of periodic structures, especially three-dimensional 
ones. 

The number of integrals to be calculated increases dramatically with decreas­
ing exponent. The risk of pseudo-linear dependence increases rapidly, demanding 
higher precision in order to avoid catastrophic behaviour. On the other hand, 
very diffuse AOs are much less important in three-dimensional, densely packed 
crystals than in atoms or molecules, where they serve to describe the tails of the 
electronic distribution towards the vacuum. Another effect of the much higher 
density of atoms in crystals, with respect to molecules, is that relatively poor 
basis sets provide larger variational freedom in the former case, since valence 
orbitals are, in fact, shared among a large number of neighbours and reaching 
the HF limit becomes easier. 

Problems may arise when the binding energy is estimated by subtracting the 
total crystal energy per unit cell from the sum of HF energies of the isolated 
atoms. Using the same AOs for the isolated atoms as are used in the crystal 
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necessarily overestimates the HF binding energy (Basis Set Superposition Error, 
BSSE). In order to allow for this, counterpoise corrections may be used. 

As a general rule, atomic basis sets optimized for molecules can be the best 
starting point to build a basis set for an atom in a given crystal and in a given 
chemical bonding scheme. For instance, three different basis sets must be used 
(and optimized) for oxygen in MgO and H20 (ice) [12, 13]. 

2.8. Calculation of observable quantities 

The total electronic energy is the fundamental observable. However, comparing 
energy data requires some care. It is customary to extrapolate formation ener­
gies to zero temperature, to subtract nuclear-zero-point-motion effects and to 
add isolated atom energies to obtain values which may be compared with the 
experimental total electronic energy of the crystals. This procedure implicitlyas­
sumes the validity of the Born-Oppenheimer separation of nuclear and electronic 
motion. Such an approximation is a relatively minor one, when compared with 
the other errors that affect calculated HF energies, due to basis set incomplete­
ness and numerical approximations. These errors strongly affect the absolute 
value of the total energy, but they cancel, to a large extent, when the energies 
of systems containing the same atoms in different configurations are compared. 

The Hartree-Fock energy can be corrected for the neglect of correlation terms 
a posteriori, through a functional of the charge density [14, 15]. 

CRYSTAL can compute the following quantities, from a HF-CO-LCAO SCF 
wavefunction: 

- Band structure; density of states 
- Electronic charge density; charge density gradient; x-ray structure factors 
- Atomic multipole and spheropole; Mulliken population analysis; topological 

analysis of charge density [16] 
- Electron momentum distribution; Compton profiles and related quantities 
- Electrostatic potential; electric field and electric field gradient 

3. Structure of the code 

The CRYSTAL code consists of a suite of three programs: 
I integrals I, I SCF I and I properties I. The current version allows direct SCF 
execution. 

The structure of the code closely follows the theory and is similar to those 
of molecular programs. In the flow diagram on the following page,th~ peculiar 
features of periodic Hartree-Fock are in bold-face. 

Program communication is provided by means of a common filing system. 
Unformatted sequential data sets are used. Interfaces to molecular graphics pro­
grams and quantum molecular programs are supplied. 

The s, p (in the order x, y and z) and d (in the order 2z2_x2_y2, xz, yz, x 2_ 
y2, xy) shells of GTF can be used. Shells of the type sp are also available (s and 
p shells, sharing the same set of exponents). The use of sp shells can give rise to 
considerable savings in CPU time. 
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Definition of geometry 
Definition of translational symmetry 

Calculation of symmetry information 

Molecular graphics 
, 

Specification of basis set 

Molecular programs 

Classification and selection 
Computation of one- and two-electron integrals 

Coulomb and exchange series 
Symmetry transformation of block of integrals 

6) Calculation of 
Fermi energy 

pT reconstruction 

l 
Q) Reconstruction of FT and 

Calculation of Total Energy 

1) Diagonalization of F(k) 

1 
Properties 

{J) Fourier 
transform of 
FT 

Figure 1. Flow chart of the CRYSTAL code. 
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The program can automatically handle space symmetry (230 space groups, 
80 two-sided plane groups, 99 line groups, 45 point groups are available). In the 
case of polymers, it cannot treat helical structures (translation followed by a 
rotation around the periodic axis). However, when commensurate rotations are 
involved, a suitably large unit cell can be adopted. Point symmetries compatible 
with translation symmetry are provided for molecules. 

The program can perform closed-shell, restricted Hartree-Fock, Restricted 
Open Shell (ROHF) and Unrestricted Open shell (UHF). calculations. 

All-electron and valence-only basis sets with core pseudo-potentials are al­
lowed. 

9.1. Limits of applicability 

The code is written in FORTRAN, standard ANSI77 and it has been tested on 
a large number of computer systems, from PCs to work-stations and CRAYs. It 
is readily portable. The distribution tape contains a makefile for Unix systems, 
to generate the executable files. No external libraries are required. 

All the key dimensions are parameterized; in principle, it should be possible 
to run a system with as many atoms and basis functions as allowed by numer­
ical accuracy, with good computational parameters. However, there are many 
dimensions which are very difficult to predict, as they depend in a correlated 
way on the number of symmetry-related atoms, the size of the basis set, the 
number of points in the reciprocal lattice used to compute Fermi energy and the 
required accuracy as specified by various tolerances. There are many checks on 
the dimensions of the system and suggestions are printed before the program 
stops, if such checks indicate an error condition. It is, therefore, difficult to de­
fine, in a few words, the maximum size of the systems that can be handled by 
CRYSTAL (see [6], Appendix F ). 

4. The cost of the wavefunction calculation 

The cost of the calculation depends on many factors. Some of them can be 
controlled by adjusting the computational parameters, according to the precision 
required in the results. Information, such as formation energy, charges and band 
structure, do not require severe conditions. When looking for phase transitions 
or calculating the elastic properties, more severe conditions are required as total 
energy derivatives are computed numerically (the analytical gradient code is not 
yet implemented). 

The cost of the integrals step is related to the number of integrals. evaluated 
exactly and depends, therefore, on the following parameters: 

- The number of basis functions in the unit cell. 
Given a basis set, the number of two-electron integrals evaluated exactly, 
depends almost linearly on the cell size, while the number of monoelectronic 
integrals has a quadratic dependence. 

- Symmetry of the system. 
In high symmetry systems only a small fraction of integrals are' actually 
evaluated, all the others being generated by symmetry transformations. 
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- Exponents of the valence Gaussians. 
The selection criteria of the integrals to be computed is based on the overlap 
of the lowest exponent Gaussians. Avoid very diffuse functions (exponents 
0.1 Bohr-2 or less). 

- Type of basis functions. 
d orbitals are much more expensive to use than sand p orbitals; sp shells 
are much less expensive than split sand p shells. 

The disk space to be allocated can be estimated by using a test-run option; the 
SCF direct program eliminates the storage of the bielectronic integrals that are 
computed at each SC cycle. 

In the SCF step, most ofthe time is spent in matrix algebra operations, such 
as matrix multiplication and matrix diagonalization, which scale as the third 
power of the number of basis functions, when traditional numerical techniques 
are adopted. SCF time is proportional to i) the number of SCF cycles; ii) the 
number of reciprocal lattice points, "', at which the Fock matrix is diagonalized 
(for the calculation of Fermi energy and the density matrix). 
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Summary. Band structure calculations based on density functional (OF) the­
ory using the full-potential linearized augmented plane wave (FP-LAPW) method 
as implemented in the WIEN95 code are discussed, mainly in terms of available 
features but including a few examples. Recent improvements over the local den­
sity approximation (LOA), in the form of generalized gradient approximations 
(GGAs), are mentioned. The calculation of atomic forces allows relaxation of 
atomic positions and molecular dynamics simulations, in systems with compli­
cated crystal structures, including metallic systems. 
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Augmented Plane Wave (LAPW) - Atomic forces 

1. Introduction 

The basic concepts of ab initio calculations for solids were discussed in Chapter 
3, which gives an overview of different approaches. Here, we focus on applications 
within density functional theory (OFT) which is the basis of many first princi­
ples calculations. In OFT, the complicated many-body problem is replaced by 
effective one-electron equations which can be solved efficiently and lead to reli­
able electron densities and derived quantities, such as the total energy or forces. 
In this paper, the emphasis is on the full-potential linearized augmented plane 
wave (FP-LAPW) method, as implemented in the program package WIEN95, 
which was developed in our group. Two commonly used approximations (LOA 
and GGA) are discussed in section 2 and a few representative results (all corre­
sponding to T=O) will be given in section 4.1. 

Corre6,ondence to: K.Schwarz - E-mail: kschwarz@email.tuwien.ac.at 
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2. Density functional theory (DFT) 

The most important quantum mechanical (QM) schemes that can be used to 
study solids have already been discussed in Chapter 3, where OFT is compared 
with other QM treatments, such as HF theory, so that one can judge the advan­
tages or disadvantages of the different approaches. Here, only a short summary 
of OFT is given. The foundation of OFT was laid by Hohenberg and Kohn [1], 
who showed that the total energy is a functional of the electron density. This 
means that one does not need to know the complicated many-electron wavefunc­
tion, but only the electron density, in order to determine the total energy of a 
system or other ground state properties. Therefore, the density, p(r), is the key 
quantity in density functional theory. Although this is an extremely important 
theorem, one cannot solve the corresponding equations, since the functional is 
not known. For that purpose, Kohn and Sham [2] expressed the total energy 
(written for an atom, with an obvious generalization to molecules and solids): 

J 1 J p(r) p(r') , 
Etot = To[P] + Ve~t(r) p(r) dr + 2 Ir _ r'l dr dr + E~c[P] (1) 

in terms which are easy to compute, namely: 1) To, the kinetic energy of non 
interacting particles; 2) the interaction between nuclei and electrons given by 
the external potential, Ves,(r), and the electron density p(r), respectively; 3) 
the Coulomb interaction between electrons at r and r' represented by their 
respective densities, p(r) and p(r'); and finally, 4) a term that contains everything 
else, namely, Esc[P], the exchange-correlation energy, which is defined by this 
equation. 

t.1. Local density approximation (LDA) 

Kohn and Sham (KS) used available information on the homogeneous electron 
gas [2] method, which treats the actual inhomogeneous system as being locally 
homogeneous with an exchange-correlation energy, ~sc, that is accurately known 
(the leading term is proportional to pl/3), giving: 

(2) 

Thus Kohn and Sham [2] introduced the so-called local (spin) density approxima­
tion (LOA or LSOA) where, in magnetic systems, spin polarization is allowed 
and the exchange-correlation energy (Esc) becomes a functional of the local 
electron-spin densities, Pt and Pl: 

(3) 

By writing Etot in this form, one can now apply the variational principle and 
derive the following one-electron KS equations: 
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where J.l.zc is given by the functional derivative of Ezc with respect to the density. 
In this method, one replaces the many-body problem by a set of effective one­
electron KS equations which can be solved. In the KS scheme, the electron 
density is obtained by summing over all occupied states, i.e. by filling the KS 
orbitals according to the Aufbau principle (with increasing energy): 

p(r) = L: l4>i(rW (5) 
i occupied 

This version of the DFT leads to a (spin) density that is close to the exact 
density provided the LDA is sufficiently accurate. 

2.2. Generalized gradient approximation (GGA) 

Despite its simplicity, LDA calculations often yield results in close agreement 
with experiment but there are also cases where they fail or show large dis­
crepancies. In such cases, it is quite natural to take the next step beyond the 
homogeneous electron gas (the basis for LDA) and include gradient corrections, 
so that Ezc is a function of the spin densities and their gradients: 

(6) 

By imposing certain conditions, which, for example, the exchange (correlation) 
hole density must satisfy, generalized gradient approximations (GGAs) have been 
developed to improve the quality of LDA results; the GGA version suggested by 
Perdew and Wang [3] and Perdew [4] is one example. A series of tests on various 
systems [5] showed promising results, some of which will be illustrated in section 
4.1. 

3. Full-potential Linearized Augmented Plane Wave method 

There are several methods that can solve the KS equations within LDA or GGA, 
where especially the latter requires high numerical precision. One of the most 
accurate schemes is the full-potential linearized augmented plane wave (FP­
LAPW) method but other schemes of comparable quality are available too, e.g. 
modern pseudopotentials or other full-potential methods. In this context, the 
reader is referred to an excellent book by D. Singh [6]. There are also sim­
plified versions of electronic structure calculations, such as the linear-muffin­
tin-orbital (LMTO) or augmented-spherical-wave (ASW) method in which, in 
addition to LDA, the atomic sphere approximation (ASA) is made, i.e. within 
the self-consistency cycle, a spherically-averaged potential and charge density is 
assumed around each atomic site. Although these latter schemes are computa­
tionally faster, they often do not provide high enough accuracy to study such 
points as small energy variations as they occur, for instance, in phase transitions 
or diffusion. . 

The FP-LAPW method, as embodied in the WIEN95 code, has been devel­
oped in our group [7] and is frequently used worldwide. The original version 
(WIEN) was the first LAPW code that was published and thus, made available 
for other users. It is a scalar-relativistic version without spin-orbit coupling, 
where exchange-correlation is treated within DFT, using LDA or GGA. 
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9.1. Basis functions 

In the LAPW method, the unit cell (as sketched in Figure 1) is partitioned 
into (non-overlapping) atomic spheres centered around the atomic sites (type I) 
and an interstitial region (II). For the construction of the basis functions, the 

Figure 1. Schematic partitioning of the unit cell into atomic spheres (I) and the interstitial 
region (II). 

muffin-tin approximation is used (Figure 2), according to which the potential is 
assumed to be spherically symmetric within the atomic spheres (I) but constant 
outside (in region II). Different basis sets are used in these respective regions. 

In the interstitial region, plane waves form a complete basis set: 

1 Ok 
~L = - e' .. r. with kn = ~ + Kn 5" ~ , (7) 

where ~ is a wave vector in the Brillouin zone, Kn is a reciprocal lattice vector 
and n is the volume of the unit cell. 

Inside each atomic sphere, the solutions for a spherically symmetric potential 
are atomic basis functions which consist of radial functions, tll(r, E), multiplied 
by spherical harmonics (equation 8). 

For a typical valence state with azimuthal quantum number, I, the radial 
function is regular at the origin and varies with energy (Figure 3). 

At the bottom of the band, Ebotfom, uI(r.E) has a zero slope (bonding state) 
but it has a zero value (antibonding state) at the top of the band, E top • This 
energy dependence is linearized by selecting an expansion energy, E" near the 
center of the band and writing the atomic function as: 

~k .. = ~[Almul(r, E,) + B,m1.&l(r, EI)]Yim(r) (8) 
1m 

where UI is the solution of the radial Schrodinger equation and 1.&, is its energy 
derivative, both of which are computed numerically. For each atom and 1m, 
there are two free coefficients, A'm and B'm, which are chosen such that (at the 
sphere boundary) the plane wave with wave vector, kn , joins continuously onto 
the atomic function in value and slope. 
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<a> (b) 

Figure 2. Crystal potential of a square two-dimensional lattice: a) actual (full) potential; b) 
muffin tin potential. 
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Figure 3. Schematic energy dependence of UI(r, E) and the correspondhig density of states 
(DOS). The radius, r, goes up to the muffin tin radius, RUT, which defines the atomic sphere. 
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These linearized augmented plane waves (LAPWs) form the basis for ex­
panding the crystalline orbitals (Bloch states) and provide a rapidly converging 
series (50 to 100 plane waves per atom in the unit cell): 

(9) 

All low-lying core states are included as thawed core states (k-independent, 
but self-consistent), i.e. they are computed by solving an atomic DFT Dirac 
equation with the potential of the current iteration. 

Sometimes, it is necessary to extend the LAPW basis set with so-called local 
orbitals (LOs), as introduced by Singh [8] and illustrated below. With such 
an extension, higher level semi-core states can be treated, together with the 
valence states, in one LAPW calculation instead of two (for valence and semi-core 
states, using two energy windows). This LO scheme avoids the problem of non­
orthogonality, that can occur in calculations in which the semi-core states are 
either frozen or treated in a separate energy window. An LO is chosen such that 
it vanishes in value and slope at the muffin tin radius and includes an additional 
radial function, corresponding to a different principal quantum number: 

The LO is then added to the usual LAPW basis set in equation 9. For example, 
one needs to include both the 3p semi-core, as well as the 4p valence orbitals, 
in order to describe Ti wavefunctions accurately. The use of LOs is illustrated 
in Figure 4, taken from Dufek [9], who showed that the 3p function at about 
-1.9 Ryd is not completely confined within the atomic sphere of RTi=2 a.u. 
However, by constructing an LO as a proper linear combination of the standard 
LAPW radial functions of 4p character (expanded around E1= +1 Ryd) and a 
new function at E2 = -1.9 Ryd: aLO * u(r, E1) + bLO * u(r, Ed + CLO * u(r, E2), 
a corresponding LO is formed, which has mainly 3p character and vanishes at 
RMT. The inclusion of LOs makes the computation of matrix elements somewhat 
more difficult but one has a better model and saves computer time, since no 
semi-core states need to be calculated in a separate LAPW run. 

In contrast to LCAO type schemes, where the basis functions are centered on 
atomic sites and may have a far reaching tail, methods based on atomic spheres 
(muffin tin or full potential) use a spatial decomposition of the wave functions. 
For example, if the tail of an orbital from a neighboring atom enters an atomic 
sphere, it must be represented by the basis set used within that sphere (in the 
LAPW method, it must be expanded in partial waves). Therefore, basis sets have 
a different meaning in the two cases and consequently quantities, which depend 
on the decomposition of the wave functions, such as partial charges, are affected 
by this conceptual difference. For example, a d-like charge in an LAPW calcu­
lation corresponds to an integrated charge density, found in the corresponding 
atomic sphere, which is derived from a d-like partial wave inside that sphere, 
while in LCAO, the analogous quantity represents the weight (Mulliken pop­
ulation) of a d-like function, centered on that atom, irrespective of its spatial 
extent. 
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Figure 4. Construction of a local orbital (LO) resembling a Ti-3p state. The LAPWs of the 
4p states, u and u, are expanded at El =1 Ryd, while for the LO E2 = -1.9 Ryd and aLO= 

0.128, bLO= 1.566 and CLO= 1.200. 

3.2. Full potential and general charge density 

The muffin tin approximation (MTA) was frequently used in the seventies and 
works reasonably well in highly coordinated (metallic) systems, such as face­
centered cubic (fcc) metals. However, for covalently bonded solids or layered 
structures, MTA is a poor approximation and leads to serious discrepancies 
with experiment. In every case, however, a full-potential treatment is essential. 
In the FP-LAPW method, the potential and charge density are expanded (a) 
into lattice harmonics (inside each atomic sphere) and (b) as a Fourier series 
(in the interstitial region) and thus, they are completely general, so that such a 
scheme is termed a full-potential calculation: 

(11) 

In order to have few LM values in the lattice harmonics expansion of equation 
(11), a local coordinate system for each atom sphere is defined, according to the 
point symmetry ofthe corresponding atom. This specifies a rotation matrix that 
relates the local to the global coordinate system of the unit cell. 

Figure 5 shows the density of the spin-up electrons in the anti-ferromagnetic 
compound FeF2 which crystallizes in the rutile structure. This diagram illus­
trates that a density, which is represented analogously to equation (11), is con­
tinuous, although different representations are used inside the atomic spheres 
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and in the interstitial region. In this example, the spin density around Fel and 
F is spherically symmetric, while that at Fe2 has a large anisotropy. 

Figure 5. Spin-up density of FeF2 in the (110) plane (from Dufek [9]). 

9.9. SCF cycle 

The effective potential in the KS equations (equation 4) can be found, provided 
the density is known, but conversely, the density can be obtained according to 
equation 5, by solving the KS equations which requires the knowledge of the 
potential. Such a case can only be solved iteratively by the well known SCF 
scheme, which is illustrated in Figure 6 for the LAPW scheme. 

The WIEN95 package consists of several independent programs which per­
form different tasks and are linked via C-shell scripts, in an Unix environment, 
where communication is achieved by use of co~mon files. One starts the LAPW 
calculation with an atomic calculation that generates the starting electron den­
sities from atomic data. Then a self-consistency cycle is initiated and repeated 
until certain convergence criteria are met. The cycle consists of the following 
steps: 

- LAPWO (POTENTIAL) 
LAPWI (BANDS) 

LAPW2 (RHO) 
CORE 

- MIXER 

-generates potential from density 
-calculates valence bands 
(eigenvalues and eigenvectors) 
-computes valence densities from eigenvectors 
-computes core states and densities 
(fully relativistically) 
-mixes input and output densities 

Either during the SCF cycle or after self-consistency is reached, additional 
quantities are obtained, such as total energy, forces, density of states (DOS), 
charge (or spin) densities, partial charges, structure factors, electric field gradi­
ents (EFG), among others. 
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For magnetic systems, spin-polarized calculations can be performed, where 
some steps are performed for spin-up and for spin-down electrons separately, 
controlled by C-shell scripts for ferromagnetic, anti-ferromagnetic or fixed spin 
moment calculations [10]. 

9 . ../. Forces within the FP-LAPW Method 

In the literature, there are two different ways to obtain forces within the LAPW 
method, namely, one by Yu, Singh and Krakauer [11] and the other by Soler and 
Williams [12]; both have been successfully implemented in WIEN. Here, we will 
briefly describe the basic equations of the first approach, which was originally 
programmed by Kohler et al [13] and was then modified and implemented in 
WIEN95 by us. 

To find the atomic forces on atom a, we displace this atom by a small amount, 
OTa and calculate the change in the total energy: 

Fa = - ~E = Fi}F - f-(L niofi - jp(r)OVellr) (12) 
uTa uTa . , 

FHF is the Hellmann-Feynman force, which is equal to the electrostatic force 
on the nucleus. The other terms represent corrections, necessary because of ba­
sis set incompleteness, to the Hellmann-Feynmann force, the existence of which 
was first shown explicitly by Pulay [15]. In equation 12, ni are the occupation 
numbers corresponding to the Kohn-Sham eigenvalues, fi and Vel I is the ef­
fective total potential. Within the LAPW method, where the basis functions 
depend on the atomic positions and the second derivative of the basis functions 
is not continuous across the sphere boundary, we have both a core and a valence 
correction to the Hellmann-Feynmann-force: 

(13) 

The different contributions are: 

(14) 

(15) 

F:al = 1 Veff(r)VaPtlal(r)dr + L ni L C;(K')Ci(K) x 
a Id K,K' 

[(K2 - fi) f ~idr)~K(r)dSa - i(K - K')(~K'IH - fil~K}a] (16) 

The first two terms are calculated at almost no extra cost but the third 
term requires careful programming, since a summation of matrix elements over 
all occupied states is involved. However, in our implementation, the extra time 
spent for computing the forces is almost negligible with respect to the SCF 
cycle. In several test cases, we compared the calculated forces with the respective 
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derivative of the total energy and found high numerical stability. There was no 
need to increase internal convergence parameters. 

Now we are in a position to minimize the total energy of a system with respect 
to the internal atomic coordinates within the unit cell and thus, can determine 
the atomic equilibrium positions. The simplest scheme for this purpose is the 
method of steepest descent in which the next geometry step is taken along the 
direction of the forces. There are more sophisticated schemes such as the variable 
metric method or a damped Newton dynamics which may be more efficient [13J. 

Another area where forces are indispensable is the field of molecular dynamics 
simulations, which can be performed within the LAPW method, even for metallic 
and magnetic systems, containing transition metals or 4f elements. 

4. Applications and examples 

4·1. LDA versus GGA calculations 

During the last twenty years, numerous solid state calculations have demon­
strated that the LDA yields reliable results in many cases, but, sometimes, 
they are in contradiction with experiment. One example is iron, where the 
spin-polarized generalization of LDA, i.e. the local spin-density approximation 
(LSDA), finds that nonmagnetic fcc-Fe has a lower total energy (about 6 mRy) 
than ferromagnetic bee-Fe, which is the experimentally observed ground state. 
GGA calculations, however, led to the correct ground state [16J. The improved 
quality of GGA total energies changed the attitude of quantum chemists to using 
DFT-GGA calculations as a cost-effective, general procedure for studying physi­
cal properties oflarge molecules [5], instead of the traditional Hartree-Fock (HF) 
plus post-HF correlation procedures (e.g. second-order Moeller-Plesset theory). 
Recently, we have demonstrated ([17]) that GGA in the PW-II version (see [3] 
and [4]) can also partially cure another well-known difficulty of LSDA calcu­
lations, namely, that some anti-ferromagnetic (AFM) solids, for example CoO, 
are calculated to be metallic, instead of insulating, as experiment finds. This 
has led to the notion that such oxides are Mott or charge-transfer insulators, 
which cannot be described within band theory. Our recent work has shown that 
GGA enhances angular correlations according to orbital polarizations and thus, 
causes a band splitting that leads to insulating behaviour. One case where that 
works well is the AFM rutile compound FeF2, which GGA calculations show to 
be insulating, agreeing with experiment, while LSDA studies imply that it is a 
metal. Another case is NiI2 which, under pressure, undergoes a phase transition 
from an AFM insulator to a non-magnetic metal [18]. Presently, the improve­
ment of DFT functionals or the combination of HF with DFT is an active field 
of research. 

4.2. Total energy and phase transitions 

Perovskites are very common among minerals and show a variety of phase tran­
sitions, which can also be studied by DFT calculations [19]. The basic build­
ing block is an octahedron which can have various distortions. One example of 
present interest is BaBiOs, since it can be considered as a parent compound for 
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the high Tc superconductors but one that contains no copper (see e.g. Blaha et 
al [20] and references therein). By partially replacing Ba with K (or Bi with Pb), 
Bal_zKzBi03 becomes superconducting. The undoped material is a semicon­
ductor in which the perovskite structure is unstable with respect to a breathing­
like distortion of the oxygen octahedra (corresponding to a disproportionation 
of BiH into the two inequivalent Bi valences Bi3+ and Bi5+) and a rotation 
of these octahedra, leading to a monoclinic structure [20]. Substitution removes 
these distortions and leads to an ideal perovskite (simple cubic structure) and 
to superconductivity. Several ab initio calculations have been performed but the 
stability of BaBi03, with respect to the breathing distortion, was found to vary, 
depending on the method used and on the computational details, mainly in 
connection with the treatment of the Bi and Ba semi-core states. Such results 
illustrate two things: firstly, that such a delicate balance between two valences 
can be described within DFT, but, secondly, that an accurate representation of 
the electronic structure (treating the semi-core states with LOs) is required in 
order to reliably compute such small energy differences. 

4·9. Electric field gradients and chemical bonding 

The electric-field gradient (EFG) can be measured by various experimental 
methods which yield the nuclear quadrupole-interaction constant, which involves 
the product of the nuclear quadrupole moment, Q, multiplied by the EFG. For a 
better understanding of experimental results, a theoretical determination of the 
EFG is highly desirable, but, until recently, experimentalists had to interpret 
their results mainly on the basis of simple point charge models with additional 
Sternheimer antishielding corrections. We can determine the EFG, in solids, 
from first principles, since FP-LAPW calculations provide the electronic charge 
density, including all polarization effects. By numerically solving Poisson's equa­
tion, we obtain the Coulomb potential, in a form that allows computation of the 
EFG directly. 

The general expression for the principal component of the EFG tensor, arising 
from a (nuclear plus electronic) charge density, p(r), is defined as: 

'T - f () 2P2(c6s(O» d 
Yzz - P r 3 r 

r 
(17) 

where P2 is the second-order Legendre polynomial. Once the charge density of 
a system is known to high precision, the EFG can be obtained numerically from 
equation (11) without further approximations (such as Sternheimer antishielding 
factors, assumptions about ionicities or specific charge distributions). 

This new approach has been applied to various solids with very different 
chemical bonding and the relationship between the EFG and bonding is dis­
cussed in the following examples: 

- Insulators and fairly ionic systems, such as Li3N [21], CU20 [22], Ti02 [23] 
or mercury(I) and (II) halides [24]. 

- Metals, such as hcp metals [25], and the pressure (cIa ratio) dependence of 
Be [26] or bee-In, hep-Zn and hcp-Ti [27]. 

- High-temperature superconductors, such as YBa2Cu307 [28] and YBa2CU40S 
[29]. 
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- Antiferromagnets, such as MnF2 and NiF2 [30]; or NiI2 [18]. 
- Molecular crystals, such as Ch, Br2, and h with covalent bonds within the 

molecule, where we studied solid state effects [311. 

Recently, we summarized the main EFG results for a representative example 
of each class [32]. For further details (computation, references and interpreta­
tions), the reader is referred to the original literature. Good overall agreement 
between our theory and experimental data has been obtained for the princi­
pal EFG component, the orientation and the asymmetry parameter, although 
these systems have extremely different chemical bonding. The LAPW calcula­
tions gave not only good results, but provided new insight into the origin of the 
EFG. It was found that the asymmetry of the valence electron distribution close 
to the nucleus, rather than core polarizations, causes the EFG. Sometimes, this 
asymmetry can be visualised by difference-electron densities or, after spatial in­
tegration, by symmetry-decomposed partial charges, quantities directly related 
to chemical bonding. The EFG is much more closely related to covalent bonding 
or polarizations than to charge transfer, so that an interpretation of EFGs, in 
terms of the point charge model (which relies on assumed ionicities), is highly 
questionable. Further analysis of the EFG allowed a distinction to be made be­
tween contributions from p- and d-like wavefunctions, where the former were 
found to contribute substantially to the EFG, even though they often represent 
only a small fraction of all the valence electrons, as, for example, in transition 
metals or their compounds. The reason for this is the r3 denominator, which en­
hances the region close to the nucleus and the r' behaviour of the corresponding 
radial wavefunctions, which favours contributions stemming from p over those 
from d functions. 

The overall good agreement between theory and experiment gave us enough 
confidence to determine, recently, the nuclear quadupole moments by comparing 
our theoretical EFG results with experimental quadrupole splittings, e.g. for 
57Fe, the most important Moessbauer isotope [33]. 

The ab initio method presented here requires high precision quantum­
mechanical calculations and large computational effort, but is capable of cal­
CUlating reliable EFGs in crystalline solids and provides insight into the physical 
origin of the EFG. 

4 . ..j. WIEN95 package 

Our computer program was first published as WIEN-code, where additional 
references to the LAPW method can be found. In 1993, we released a first update 
to this program package, WIEN93 and, two years later, we, in collaboration with 
other groups, have implemented new features and have developed a user-friendly, 
improved version WIEN95 [7], which runs on Unix workstations, as well as on 
host computers. In addition, its use by non-experts is made easier by a written 
User's Guide. Interested users should contact the author, preferably bye-mail. 
WIEN95 can handle crystal structures with unit cells containing up to about 30 
atoms (on a fast computer with 128Mb or more memory). 
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5. Future outlook 

In the present paper, several points were illustrated, which playa role in quantum 
mechanical calculations based on density functional theory. It is important to 
know both the merits and limitations of the LDA or GGA computations, in order 
to judge the accuracy that can be achieved with such calculations. Since small 
energy differences occur in many cases, an accurate computational method with 
good convergence is needed. Otherwise, basis set effects dominate the results, 
which do not correspond to the DFT limit and thus, cannot help us to understand 
the underlying physical principles. One of the most accurate schemes is the FP­
LAPW method which presently can handle systems up to about thirty atoms per 
unit cell. The advantage of an all electron method and the use of numerical basis 
functions has been mentioned. These allow, in particular, the computation of 
quantities close to the atomic nucleus like EFGs, hyperfine fields or isomer shifts, 
where pseudopotential methods fail or schemes using Gaussian basis functions 
may not be sufficiently accurate. 

Computational aspects will affect the future development of such schemes 
by improving computer codes that make use of efficient methods, such as fast 
Fourier transforms (FIT), iterative schemes versus diagonalization of large ma­
trices, use of workstations, clusters, multiple processor machines or even mas­
sively parallel computing. With increasing computer power and the develop­
ment of adapted algorithms, the a6 initio DFT calculations, by the FP-LAPW 
method, should be able to bring new insight into many areas of solid state 
physics, chemistry or material sciences. 
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Summary. We analyze the PWSCF code. This code solves the self-consistent 
Kohn and Sham equations, obtained for a periodic solid, in the framework of 
density functional theory (DFT) using the local density approximation (LDA). 
The orbitals are expanded in a plane wave basis set and the cores are described 
by norm-conserving pseudopotentials. The theory and the implementation of the 
equations are discussed. We present three examples of applications to solids: a 
semiconductor, silicon; an insulator, NaCI; and a metal, aluminium. For each 
system, we compute the total energy, the band structure and the electronic 
charge density. Examples of calculations of the lattice constants and of the bulk 
modulus are also given. Several practical issues which were encountered in these 
calculations are discussed. 

Key words: Density Functional Theory (DFT)- Local Density Approximation 
(LDA)- Plane Waves (PW) Code - Pseudopotentials (PP) 

1. Introduction 

The program PWSCF was originally developed by S. Baroni and P. Giannozzi; it 
has received, over the years, important additions and variants by several authors, 
including S. de Gironcoli, P. Pavone, A. Dal Corso, A. Debernardi, C. Bungaro, 
K. Stokbro and R. Valente. One of the latest, simplified versions of the code 
is available on the public server itncpl. science. unitn. it in the directory 
/pub/PHOIOI and can be obtained by anonymous ftp [1]. Together with the 
code, there is a complete documentation. Part of this chapter is based on the 
unpublished notes which are distributed with the program. 

Corre.pontlence to: A. Dal Corso - e-mail dalcorso@eldpa.epfl.ch 
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Several advanced features have been implemented over the main body of the 
program. These will not be discussed here: a non-exhaustive list includes calcula­
tion of phonon spectra [2], of macroscopic stress [3], of linear-response properties 
[4], of the macroscopic polarization by a Berry phase [5] j implementations of the 
nonlinear-core correction [6,7] and of the gradient correction are available [8, 9]. 
Only one part of the publicly available version will be discussed here, namely 
the part which uses PPs in the Bachelet, Hamann and Schliiter (BHS) form. 
The use of fully separable PPs is also possible but it is not described here. 

The PWSCF code computes the electronic band structure, the electronic 
charge density and the total energy of a periodic crystal, with a given Bravais 
lattice and a given space group symmetry. The algorithm is based on OFT in 
the local density approximation (LOA) [10]. It computes the solution of the self­
consistent KS equations [11], which describe a valence electron in the potential 
created by the periodic lattice of the pseudonuclei (described by norm-conserving 
PPs [13]) and by all the other valence electrons. The KS orbitals are expanded 
over a finite plane wave basis set [14] which allows the transformation of the 
partial differential KS equations into an algebraic eigenvalue problem which is 
solved by iterative techniques [15]. The program exploits the point group sym­
metry of the solid to reduce the number of operations necessary to compute the 
charge density and the total energy. The computation of these quantities allows 
the study of structural (lattice constants, bulk modulus and elastic ('onstants) 
and dynamical (zone-centre phonon frequencies) properties, the study of struc­
tural phase transitions and of the effect of pressure on the solid. Furthermore, 
by using the supercell approach, defects, interfaces and surfaces can be studied. 

Here, we give three examples of the application of the code: a semiconduc­
tor, siliconj an insulator, NaClj and a metal, aluminium. These systems are 
sufficiently simple to allow a complete control of the numerical noise, allowing 
us to test the physical approximations used in the code on some real exam­
ples. The computations performed on these systems should allow the reader to 
compare between the density functional theory [11] (OFT) in the local density 
approximation (LOA), implemented with PPs and a PW basis set [12], with 
other methods which are currently used in the study of solids. 

In our computations, there are two physical approximations. One is the LOA, 
which is used to give an explicit form to the. exchange-correlation energy, the 
other is the frozen core approximation [16] which is used to substitute the core 
electrons with a fixed PP. Only the ground state energy of the valence electrons 
is computed by expanding the Kohn and Sham orbitals [11] in a PW basis set. 
In many interesting cases, these two approximations are well justified and the 
use of the code allows us to predict many quantities to within a few percent of 
the experimental values. 

The LOA approximation is a simple physical approximation of the exchange­
correlation energy which does not require any empirical parameter, being based 
on the exact quantum Monte Carlo calculation of the exchange-correlation en­
ergy of the uniform electron gas [17]. It gives very good results in covalent and 
metallic systems, and. in general, it is one of the most powerful tools of the 
ab initio investigations of condensed systems whether in the liquid, amorphous 
or crystalline phases. The frozen core approximation is a necessary hypothe­
sis to describe the charge density with PWs. This basis has several numerical 
advantages but it is not possible to represent the strong oscillations of the all­
electron wavefunctions close to the nucleus with a reasonable number of basis 
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functions. It is necessary to substitute the nuclear potential with a different po­
tential which represents both the nucleus and the core electrons. The remaining 
valence charge is a smooth function which, in several solids, can be described by 
a treatable number of PWs. The number of electrons which are considered as 
valence electrons, depends only on the physical problem, so that, in principle, it 
is always possible to introduce, into the valence states, all the electrons which 
are important in a given computation. In practice, it is necessary to avoid very 
localized charges which are difficult to describe with PWs. 

There are, however, some cases where the systematic errors due to physi­
cal approximations are more important and physically relevant. For example, 
it is known that if the Kohn and Sham eigenvalues are interpreted as energy 
bands and compared with photoemission data, the LDA gap of semiconductors 
and insulators is underestimated. The errors of the theoretical lattice constants 
are systematic: all the bond strengths are overestimated in LDA. This error is 
usually very low in covalent and metallic systems, but it can be substantial in 
solids where the Van der Waals bonds or the hydrogen bonds [18] are important. 
The weak bonds which are responsible for cohesion in molecular crystals are too 
strong when computed using the LDA [8, 19]. Being a mean-field approxima­
tion, the LDA cannot provide correct information in those cases where strong 
correlation effects are significant. 

It is important not to add spurious effects, due to the numerical noise, to the 
physical errors. There are two major sources of numerical noise which must be 
accurately monitored in each calculation: 
a) Incomplete basis set. 
The number of PWs used in the calculation is not sufficient to represent correctly 
the wavefunctions and the charge density. The number of PWs is a critical 
parameter in solids which contain localized charge (see the example of NaCI) 
or which have a very large unit cell. In these cases, a compromise must be 
made between the CPU-time, memory requirements and the precision of the 
calculation. 
b) Poor sampling of the Brillouin zone (BZ) 
The number of special points is not sufficient to compute accurately the BZ 
integrals. Usually this problem manifests itself in the computation of particular 
physical quantities (such as the dielectric constant) where the integrand function 
is not smooth. In the case of metals, the special-point technique has to be used 
with care: it is important to describe correctly the Fermi energy surface. 

We performed our tests on small systems, where it is possible to control the 
convergence of all the results. In the case of aluminium, we also checked the 
convergence with respect to the smearing parameter [20, 21] which is used to 
deal with the presence of a Fermi surface. 

This chapter is organized as follows. In section 2, we present the theoretical 
framework of DFT and the plane wave formulation of the KS equations. In 
section 3, we summarize the organization of the code, giving a short description 
of the main routines. In section 4, the dimension parameters are explained and 
the CPU-time and memory requirements are discussed. A description of the 
input parameters and an example input file are given in section 5. In section 
6, we describe the computations performed on silicon. We start by analyzing 
the convergence of several properties with respect to the number of PWs and of 
special points used. We compute the total energy, the theoretical lattice constant 
and the bulk modulus. We show examples of the band structure computed at 
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the experimental and at the theoretical lattice constant; finally, we show some 
plots ofthe electronic charge density computed on the (100) and (110) planes. In 
section 7, we present similar results for N aCI. In section 8, we discuss the case 
of aluminium. Some problems related to the description of the Fermi surface are 
addressed in this section. Section 9 contains the conclusions drawn from this 
work. 

2. Theoretical framework 

In the formulation of DFT by KS, the total energy of an interacting electronic 
system, in an external potential Vext(r), is given by the following relationship: 

Etot = -~ ~ J tPi(r)V2tPi(r)dr (1) 
I 

+ J p(r)Vext(r)dr + ~ J PI~~~? drdr' + J p(r)fxe(p(r))dr 

where per) is the electronic charge density and f xe is the exchange-correlation 
energy which, within the LDA, is a function of the density [17]. The kinetic 
energy of the system is written as the kinetic energy of a gas of independent 
electrons, with the same density as the interacting system. This is achieved by 
the introduction of KS orbitals, tPi (r), which fulfill the orthonormality constrains: 

J tPi (r)tPj (r)dr = bij (2) 

These orbitals are obtained by minimizing the total energy of the system. The 
minimization problem is equivalent to the solution of the KS equations: 

[-~ V2 + Vext(r) + J I:~'~'I dr' + I'xe(p(r))] tPi(r) = fitPi(r) (3) 

where the exchange-correlation potential, I'xe, is given by: 

d 
I'xe(p(r)) = dp (Pfxe(P)) 

The charge density is related to the KS orbitals by the relationship: 

per) = L ItPi(rW 

with the constraint: J p(r)dr = N 

(4) 

(5) 

(6) 

where N is the number of electrons of the system. The number of occupied states 
can be computed by using equation 6 and the Fermi statistics. In an insulator 
or a semiconductor, the number of occupied states is n/2; in a metal, equation 6 
defines the Fermi energy of the system and hence, the occupied orbitals. The 
PWSCF code solves equation 3 to compute the KS orbitals, uses equation 5 
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to compute the charge density and finally, computes the total energy of the 
system. For this purpose, it uses a formula equivalent to equation 1, which is 
more convenient from a numerical point of view. This formula can be obtained 
by mUltiplying the KS equations by ,p;(r): 

~ 1 J p(r)p(r') , J ( ) Etot = ~ is - 2 Ir _ r'l drdr + p(r) ixc(p(r» - I'xc(p(r» dr 
I 

(7) 

where the sum over i is performed over the filled states. 

2.1. The self-consistent loop 

The KS equation for ,pi(r) is formally equivalent to a Schrodinger equation for 
one electron, where the external potential is an effective potential which depends, 
in a self-consistent way, on the solutions of all the other equations. The solutions 
of these equations are obtained by iteration. Starting from an arbitrary choice 
of initial potential, V;~O)(r), the code solves the following iteration: 

[_~ yr2 + V;~n)(r)] ,p~n)(r) = i~n),p~n)(r) 

p<n)(r) = ~ 1,p}n)(r)12 

(8) 

(9) 

J p(n)(r') 
Vo<:2(r) = Vext(r) + Ir _ r'l dr' + I'xc(p(n)(r» (10) 

From this solution, a new initial potential is created, V;~n+1), so that the sequence 
of V;~n) and vo<:2 converges to the self-consistent potential, Yael, which is defined 

as the potential for which Yin = Vout . The simplest iteration V;~n+1) = vo<:2, 
usually makes the problem unstable and no self-consistent solution is reached. 
A better solution is to miz input and output potentials: 

v(n+1) = (1 - (3)V(n) + (3v.(n) 
In In out (11) 

where {3 is a number between 0 and 1. Even if the linear mixing is usually 
sufficient to cause convergence, a more efficient strategy is the Anderson method 
[22], where more than one preceding iteration is used. In the simplest form, the 
iteration is the following: 

where (}n is defined by the condition that the norm: 

11(1- (} ) (V(n) _ v.(n»)+0 (V(n-l) _ v.(n-l») 112 
n In out n In out (13) 

is a minimum. The parameter (3 can be quite large for small systems (~0.7) but 
it must be reduced in systems where the convergence is more difficult. 
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2.2. The KS equations 

We consider, from now on, a periodic system with N cells and n electrons per cell. 
At each iteration of the self-consistent loop, the KS equations at fixed potential 
must be solved. This problem can be transformed into an algebraic eigenvalue 
problem on a finite basis set. The code PWSCF implements these equations in 
the case of a periodic crystal with a lattice R, a unit cell of volume fl which 
contains Nat atoms of Ntyp different types in the positions d 6 • Each type of 
atom is characterized by a valence charge, ZII(3) and a PP, VII(3). We use K to 
indicate the reciprocal lattice vectors. The Bloch theorem allows us to classify 
the electronic states by the vectors K. in the BZ. These states are expanded in 
plane waves IK. + K) which have the appropriate translational symmetry: 

th(r) -+ tPv(r; K.) = L .¢K,v(K.)IK. + K) where IK. + K) = v-te'(K.+K)r (14) 
K 

and where V is the total volume of the crystal. We assume that there are N -+ 00 

unitary cells with periodic boundary conditions. The total volume of the solid 
is V = Nfl, the total number of electrons is N E[';;; ZII(i) and there are N 
discrete values of K. in the BZ. The index v is a band index which, in the case 
of an insulator or a semiconductor, identifies Nb = n/2 bands, each of them 
occupied by two electrons. 

The wavefunctions are expanded in a finite PW basis set. The number of 
PWs, Npw, is computed introducing a kinetic energy cutoff, E cut and using the 
PWs that fulfill the relationship (K.+K)2 :5 Ecut, where Ecut is sufficiently large 
to assure a good representation of the wave functions. The solution of the KS 
equation for a given K. is equivalent to an eigenvalue equation of dimension Npw : 

L H(K. + K, K. + K').¢K',v(K.) = (K.,v.¢K,v(K.) 
K' 

where H is the following matrix: 

H(K. + K, K. + K') _ < K. + KIHIK. + K' > 
1 2 411" Ip(K - K')I 
"2(K. + K) OKK' + {i IK _ K'12 

+iixc(K - K') + L e-t(K-K')d. x 
i 

( V~(MK - K') + L VII(h,,< K. + K, K. + K'») 
I 

and where we have defined the Fourier coefficients as: 

a(K) = L f a(r)e-tKrdr and 
fl in a(r) = La(K)etKr 

K 

(15) 

(16) 

(17) 

It is worthwhile to note that E cut is fixed independently of K., so that N pw is a 
function of K.. In the last term, i.e. in the matrix elements of the PP, we have 
separated a local term from a non-local contribution. The exact expression of 
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the matrix elements depends on the PP type. The program uses semilocal PPs 
of the Bachelet, Hamann and Schliiter (BHS) type: 

'MAX 

Vext,p{r) == VJOC(r) + L P'V:'!(r) 
'=0 

where P, is the projector upon the states of I angular momentum: 

+, 
P, = L ym,(r)Y':,(r')6(r - r') 

m=-' 

2.9. The self-consistent potential 

(18) 

(19) 

The sum over the BZ needed for the computation of the charge density, per), 
at each iteration, is approximated very efficiently by a sum over a discrete set 
of points. This technique is known as the special-points technique and has been 
discussed in more detail in Chapter 4. Given a set, NK., ofspecial points {K.} in 
the irreducible part of the BZ (IBZ), with the correct weights, WK. (equal to the 
number of equivalent points in the total BZ), the total charge density is obtained 
in two steps. First an unsymmetrized charge density is obtained by adding all 
the points in the IBZ: 

per) = L L wK.ltPlI(rj K.W 
K.EIBZ II 

and then this object is symmetrized: 

1 Ns 
per) = N L p«sm)-1r - fm) 

S m=1 

(20) 

(21) 

where (sm Ifm) are the N s symmetry operations of the space group of the crystal. 
A very efficient way to compute the charge' density and the LDA potential 

uses the discrete Fourier Transform, in particular the algorithm of the Fast 
Fourier-Transform (FFT). For this purpose, a mesh in K space is introduced: 

(22) 

where h 1, h2 and ha are the principal reciprocal lattice vectors and where: 

N1 N1 N2 N2 Na Na 
ml = -2'''''2-1 ; m2 = -2""'2-1 ; ma = -2""'2-1 (23) 

with even values of Nj • Then we introduce a mesh in real space within a unit 
cell: 

(24) 

where a1, a2 and aa are three primitive vectors which generate the direct lattice 
and: 

m1 = 1, ... , N1 j m2 = 1, ... , N2 j ma = 1, ... , Na (25) 
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The integer numbers N1 , N2 and Ns define the mesh in real space and equiva­
lently, the corresponding one in recipr.ocal space. They must be sufficiently large 
so that the vectors Km1 •m:a.ma contain all the vectors K :- K', defined by the 
basis set. 

Given a function in K space, defined on the mesh pointsi<ml. m2, ms) == 
f(Kml.m:a.ma), its three dimensional Fourier transform can be obtained by a 
3D-FFT: 

f(ml, m2, ms) = EEE i<lt,12 , Is) x e,2'1rll m l/N l x e'2'1rl:am:a/N :a x e'2'1rlam a/N, 

II l:a la 
(26) 

The use of FFT to switch from real to reciprocal space is very efficient and is 
used whenever possible. To compute the charge density, one computes the KS 
orbitals, ¢K.tI(Ie), on the mesh ~tI(ml' m2, ms, Ie) in reciprocal space, then with 
an FFT one converts to real space, where the square of the wavefunctions and 
the total charge are computed. Then #'xc is computed in real space, while the 
Hartree potential is obtained by converting back to reciprocal space. 

3. Structure of the code 

The structure of the code closely follows the theory just explained. The main 
routines of the code are the following: 

routine 

readin 
setup 

openfil 
s1maary 

hinit 

calls 

latgen 
recips 
ggen 
hexsya 
cubicsya 
sgama 

setlocal 
setab 
setnlpot 

... continued overleaf 

descriptions 

reads input data and PP 
variable initialization 
generates the vectors 81,82, as, computes {} 
generates bl. b2, bs 
generates the vectors K and the FFT indices 
generates symmetry operations 
generates symmetry operations 
check the compatibility among special points, 
atomic positions and point group symmetry 
opens necessary files 
writes information on input data and initial 
variables 
initializes the Hamiltonian 
computes the local part of the PP 
computes a bidimensional table for BHS PP 
computes K + K and puts the BHS PP into 
the Hamiltonian 
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routine 

potinit 

wfcinit 

pwscf 

punch 
closfil 

calls 

sumatom 

h..fill 
cdiagd 

c-.bands 
sum-.band 
v-<>f...rho 
delta-EI 
dmixp 

descriptions 

computes the initial potential 
computes the charge as a sum of atomic 
charges 
initializes the wavefunctions 
fills the Hamiltonian with a small matrix 
diagonalizes with EISPACK [23] routines 

controls the self-consistent loop 
computes the wavefunctions 
computes the charge density 
computes the new potential 
computes some terms of the total energy 
computes the new input potential 

save results on disk 
closes all the files 
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There is an initial part where the input parameters are read from a file, and 
several useful quantities are computed. These are the direct and reciprocallat­
tice, the list of the K vectors and the local and non-local PP. Then a guess at the 
initial wavefunctions and at the Hartree and exchange-correlation potential are 
obtained from the Hamiltonian at a small cutoff energy. After these preparatory 
computations, the self-consistent cycle is repeated up to the convergence of the 
potential. At each iteration, the total energy is computed. The routine c-.bands 
uses the routine cegter for the iterative diagonalization. This routine calls h_psi 
to compute the products H"p. At the end, the self-consistent potential, the KS 
wavefunctions and eigenvalues are saved on the disk for further analysis. 

4. Use of the program 

The code is composed of several files. The file pwscf . f contains the main pro­
gram and all the routines which depend on the commons and on the dimensions 
of arrays and matrices. The routines which do not depend on the commons and 
on the array dimensions are contained in the file pwlib.f. The commons and 
the definitions of the global variables are contained in the file pwcom. inc. The 
dimensions of the matrices and array are contained in the file pwpar. inc. 

At run time, the program also requires a file which contains the parameters 
of the PP. The file pseudop.dat, distributed with the code, contains several 
examples of PPs for the most common atomic species. Ref. [13] contains a table 
with the parameters of the PPs of all atoms. 

4.1. Dimensions 

The file pwpar. inc contains the array and matrix dimensions which are used to 
define the memory size of the program. These dimensions depend on the system 
under study. Therefore, this file must be written before the compiling phase. A 
typical format for the file pwpar. inc is the following: 
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parameter ( mxhc=300, IDXVC= 32, mxhO=100, nu= 2, ntypx= 2, 

lcorx=1, npsx=2, nrx1=16, nrx2=16, nrx3=16, 

muter= 60, npk=60) 

paraaeter ( qmax = 6.0, dq= .034) 

where the parameters have the following meaning: 

HIRC 
HIVC 

HIRO 
IAI 

ITYPI 

IPSI 
LCORl 
IRl1,IRl2,IRl3 
HAlTER 
IPI 

QHAI 

DQ 

maximum number of plane waves (HIRC ~ Npw ) 
a number proportional to the number of bands Nb. It 
must obey HIVC ~ 4N6 (for good performance, HIVC 
!:::! 7 - SN,,) 
maximum dimension of the initial hamiltonian 
maximum number of atoms in the unit cell (lAX ~ 
Na,) 
maximum number of different types of atoms 
(ITYPI~ NtIlP ) 

maximum number of different PPs 
maximum 1 in the non-local PPs 
maximum values in Nl , N2, N3 in the FFT mesh 
maximum number of self-consistent iterations 
maximum number of" points for integration on the 
IBZ (IPI~ N,,) 
maximum length, in a.u., of the vectors" + K: QHAX 
> I"+KI 
step for the bidimensional table of the non-local PPs. 

".2. Libraries, memory and time requirements 

The linking of the program requires some auxiliary routines which can be found 
in the libraries BLAS, BLAS2, BLAS3, EISPACK and LINPACK. These libraries 
are available on many machines, however, an auxiliary file library.1. contains 
the Fortran sources of the required routines. If this file is used, the performance 
of the code may be slightly reduced because these routines are not optimized for 
any machine. 

The CPU time, Tcpu , is proportional to the number of atoms in one unit cell 
and can be approximately estimated as 

Tcpu ,... NiterN" x (O(N6 N;w) + O(N6Npw log Npw ) +O(NlNl'w» 
(27) 

where Niter is the number of iterations needed to achieve self-consistency (typ­
ically 5-20). The RAM memory can be estimated as (in bytes): 

Mram = 16HIRC2 + 16HIRC * HIve + 91RlX (2S) 
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where IRXX=IRX1*IRX2*IRXS. The program uses some disk space in scratch files 
which are deleted at the end of the run. This space can be estimated, in bytes 
as: 

5. Input Data 

The file which contains the input data has the following format: 

Title (max. 75 characters) 
Name of the Crystal (max. 20 characters) 
tinput variables in the namelist ... tend 
dl,JL(l) 

dNa., JL(Nat ) 
atom(l), np.(l), (jp,(l, i), :l:p,(l, i), i = 1, np,(l)) 

atom(Ntyp ), np,(Ntyp ), (jp,(Ntyp , i), xp,(Ntyp , i), i = 1, np,(Ntyp )) 
NK 

Kl,WKl 

(29) 

where atom(JL) is the name of the atom of type JL (max 3 characters), jp, and 
xp • are used to specify the PP by which a given atom is described. Normally, 
np• = 1, xps = 1 and jps numbers the PP. 

The set of K-points should be appropriate to the point group of the Bravais 
lattice. If the input atomic positions are incompatible with the assumed symme­
try, the program finds the true point group and adds other K points updating 
the weight of each point. Therefore, the value of NK can be larger that the input 
value. 

The variables which appear in the input namelist are divided into two types. 
In the first, there are the variables which do not have any default value and must 
be specified by the user: 

ibrav 
indpg 
celldm(i) 
nat 
ntyp 
zpsx(i), i = 1, NP8 

nri. nr2. nrS 
ecut(O) 
ecut(i) 

index of the Bravais lattice 
index of the point group 
parameters of the lattice 
number of atoms, Nat, in the unit cell 
number of different types of atoms, Ntyp 
atomic numbers of the PPs 
FFT dimensions N1 , N2 , N3 
cutoff Ecut, in Rydberg, for the initial diagonalization 
cutoff Ecut, in Rydberg, for the following iterations 

The first celldm(l) is the lattice parameter ao; ibrav and celldm(i), i > 2 
are explained at the beginning of the program. 

The second type of variable is optional and has a default value. 
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npseu 
ngauss 

degauss 
niter 
beta 
id 

tr2 
nbnd 

sUllat 

lsd 

input..pot 

output-pot 

filpun 

filpsd 

Andrea Dal Corso 

number of PPs Np •• Default: npseu=ntyp. 
for metals, this gives the interpolation order in the Gaussian 
broadening [24]. ngauss=O (default) is the normal Gaussian 
broadening. 
value, in Rydberg, of the Gaussian broadening. 
maximum number of iterations. Default: 20. 
mixing factor in the Anderson algorithm. Default: 0.7. 
type of Anderson algorithm: id=1 simple mixing; id=2 
uses the result of the previous itera.tion; id=3 (default) 
uses the results of the two previous iterations. 
precision of self-consistency. Default: 10-12• 

number of bands to be computed. Default for a semicon­
ductor is the number of filled bands. For a metal, two more 
bands are computed . 
. true. (default) means that the starting potential is ob­
tained from the sum of atomic charge densities. . false. 
sets the initial potential to zero . 
. true. (default) causes self-consistent computation to be 
performed. . false. means band computation with a fixed 
potential. 
name of the file which contains the self-consistent potential. 
Default: no potential is read. 
name of the file where the SCF potential is written. Default: 
no potential is written. 
file where all the other quantities are saved. Default: No 
quantity is written. 
file with the parameters ofthe PP. Default: pseudop.dat. 

The following is an example of input data, for silicon in an Icc Bravais lattice, 
with two atoms per unit cell and two special points in the BZ. 

Silicon at 12 If cutoff and 2 special points in the IBZ 

Si 

ainput ibrav=2. indpg=31. cellda(1)=10.26. nat=2. 

ntyp=1. npseu=1. zpsx(1)=14.0. nr1=16. 

nr2=16. nr3=16. ecut(O)=4.0. ecut(1)=12.0. 

filpun=' carica' • input_pot='sipotin'. 

output_pot=' sipotout'. lforce=. false .• 

lstres=.false .• kvrite=1. tr2=1.0e-14. 

filpsd='PSEUDOP', sUllat=.f. 
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aend 

0.00 0.00 0.00 1 

0.26 0.26 0.26 1 

'Si' , 1, 1, 1.0 

2 

0.26 0.26 0.26 1.0 

0.26 0.26 0.76 3.0 

6. Silicon 

The electronic configuration of the silicon atom is [N e]3s23p2. Crystalline sil­
icon is a group IV covalent semiconductor, with an experimental energy gap 
of 1.17 e V. Each atom is tetrahedrally coordinated and connected to its neigh­
bours by a covalent bond derived from sri' hybrid orbitals. The electronic valence 
charge density is concentrated on the bonds. The charge is described by a smooth 
function of the position which can be represented with a small number of PWs. 
The neon-like cores are tightly bound to the nuclei and do not relax appreciably 
when the atoms form the solid. The LDA approximation is particularly good in 
the case of Sp3 covalent bonds and the PP approximation does not introduce 
substantial errors. Silicon is the most studied material in the framework of DFT­
LDA [25]. Nowadays, a large amount of well established theoretical results are 
available for most of its properties. 

The crystal can be described by an fcc Bravais lattice with two atoms per 
unit cell. The atomic positions are fixed by the choice of the origin. If one atom is 
placed on the origin, the other is at d = 00(0.25,0.25,0.25) where 00 is the edge. 
of the conventional cubic cell. The experimental value of 00 is 00 = 10.26 a.u. 
Silicon has 8 electrons per unit cell, which fill the four valence bands. 

We start by computing the total energy of the system as a function of the 
kinetic energy cutoff and of the number of special points in the irreducible BZ 
(IBZ). We have explained in Chapter 4 how to derive sets of special points with 
the method of Monkhorst and Pack. We use here the points reported in Table 1 
of that chapter. 

In Table 1, we report the total energy of the system. All the computations 
were performed at the experimental lattice constant. The absolute value of the 
total energy is given (in parenthesis, in Rydberg) in the last row and column 
of the table. This value has converged to within 1 mRy; the other entries of 
the table are the differences with respect to this value. These differences. are 
expressed in mRy. It is interesting to note that all the entries in the table are 
positive. The decrease of the energy, with an increase kinetic energy cutoff and 
therefore, of the dimension of the basis set, is due to the fact that we are looking 
for the minimum of the total energy functional: an increase of the subspace of the 
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sampling functions improves the estimate of the minimum. On the other hand, 
the decrease of the energy with the increase of the number of sampling points 
is not a general feature: it is simply a property of silicon. A second observation 
concerns the efficiency of the special-point technique. Passing from the r point 
to 2 special points, the error is reduced by two orders of magnitude. To have a 
convergence error lower than 2 mRy per atom it is necessary to use 6 "'-points 
and a cutoff of 30 Ry. As the LDA and the PP approximations introduce errors 
of this order of magnitude, or higher, this precision is sufficient in all practical 
cases. 

Table 1. Errors in the total energy of silicon due to different cutoffs and special-point 
sampling, at the experimental lattice constant. The differences are in mRy. The converged 
value of the total energy is also reported in Ry (in parenthesis). 

E r 2 pt. 6 pt. 10 pt. 

4 Ry 1809.2 517.70 485.11 483.47 
12 Ry 1306.7 52.87 40.78 40.11 
20 Ry 1263.8 18.78 7.78 6.57 
30 Ry 1256.4 14.93 3.87 2.65 
40 Ry 1254.8 12.35 1.22 ( -15.88870) 

In real applications, the absolute convergence of the total energy is not very 
important. The most important quantities are the energy differences between 
different states of the solid. Generally, it is possible to obtain a precision higher 
than 2 mRy, with a cutoff lower than 30 Ry, because the energy differences 
converge more rapidly than the energy itself. 

To illustrate this point, we studied the convergence of two structural proper­
ties: the lattice constant and the bulk modulus. These quantities are related to 
the form of the function E( il) around ilo. Here, il is the volume of the unit cell 
and ilo is the volume which minimizes the total energy. The theoretical lattice 
constant has the value, ao, which corresponds to ilo, while the bulk modulus is 
related to the curvature of the energy curve at the minimum: 

(30) 

Both the lattice constant and the bulk modulus depend on the difference between 
total energies at different volumes but not on the absolute value of the energy. 
The total energy curves computed at various cutoffs differ from one another by 
a rigid shift but they have the same form. This is the reason why the energy 
differences converge much faster than the energy itself. 

The values of ao and Eo can be computed by evaluating the total energy 
for several values of aoand interpolating these values with the equation of state 
of the solid. When the volume is changed the number of PWs, which are used 
to describe the density and the wavefunctions, changes as well if the cutoff is 
kept constant. There are, therefore, two conceptually different ways of plotting 
the curve E(il). In one case, the number of PWs is kept constant; in the other 
case, the kinetic energy cutoff is kept constant. Experience shows that the latter 
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method results in a faster convergence of the lattice constant and the bulk modu­
lus and therefore, we used this method. This faster convergence can be explained 
by noticing that a constant kinetic-energy cutoff means, in fact, a constant reso­
lution in real space. After the computation of E( ni), it is necessary to choose an 
interpolating formula. There are many choices for the interpolating curve. Close 
to the minimum, the curve is a parabola, but the points deviate rapidly from the 
quadratic law and, at a larger distance from ao, it is necessary to fit the points 
to something more sophisticated. One of the most popular fitting curves is the 
Murnaghan equation [26] which depends upon three parameters: no (the volume 
of the cell), Bo (the bulk modulus), B6 (the derivative of the bulk modulus with 
respect to pressure): 

noBo [ 1 no B' 1 n ] E(n) = -B' -, -( -n) 0- + n + const 
o Bo -1 uo 

E( Ry ) 

-15.82 

-15.84 

-15.86 

Figure 1. Total energy of silicon for different values of the lattice constant. 
The numerical values (squares) are interpolated with a Murnaghan equation 
(continuous lines). The two curves correspond to a cutoff of 12 and 20 Ry. 

(31) 

In Figure 1, we show the energy as a function of the lattice constant, for 
6 "-points, with 12 and 20 Ry cutoffs and the interpolation obtained by using 
equation 31. In Table 2, we report the values of ao and Bo which have been 
obtained for silicon. The value at 6 ,,-points and 20 Ry is already converged 
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and therefore, we do not report the other calculations. The lattice constants are 
given in a. u. and the bulk moduli are given in kbar. 

Table 2. Lattice constant and bulk modulus of silicon, ao - Bo as a function of cutoff 
and number of special points (n pt.): the lattice constant is expressed in atomic units and 
the bulk modulus in kbar. The experimental values are 10.26 - 990. 

cutoff 

4 Ry 
12 Ry 
20 Ry 

2 pt. 

9.65 - > 2000 
10.16 - 952 
10.17 - 953 

6 pt. 

10.08 - 1586 
10.19 - 976 
10.16 - 960 

This table shows that it is possible to obtain meaningful results for the struc­
tural properties, studying silicon with even a 12 Ry cutoff, a cutoff is sometimes 
used in simulations with large unit cell. 

10 

-10 

r xw L r K 

Figure 2. Band structure of silicon along several symmetry lines. The lowest 
8 bands are plotted. 

We now study the energy band structure of silicon. Although the eigenvalues 
of the Kohn and Sham equations are not to be considered as the energy of the 
electrons, it is a common practice to compare these eigenvalues with the results 
of photoemission experiments. In many cases, the results are good. While the 
energy gap of semiconductors and insulators is underestimated, the form of the 
bands and their width is correct. Experimentally, the energy bands of a solid are 
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known to a precision of the order of 0.1 eV. In silicon, the eigenvalues converge 
within this error, as fast as the total energy. Our results have been obtained 
with 6 "-points and 20 Ry. 

In Figure 2, we show with a cO,ntinuous line, the energy eigenvalues of the 
lowest 8 bands along several symmetry lines. The computations are performed 
at the theoretical lattice constant. The direct gap is 2.5 eV, the indirect gap is 
0.4 eV, less than one half of the experimental value. 

(100) (110) 

Figure 3. Electronic pseudo-charge density of silicon, in the (100) and (110) planes. 

The pseudo-charge density of this system, in the (100) and (110) planes, is 
shown in Figure 3. This charge density has been plotted on a contour map by 
dividing its range of variation into 10 equal values. The charge in the (110) plane 
shows several maxima, corresponding to the covalent bonds between the atoms. 

1. NaCI 

NaCI is an ionic crystal, composed of an alkaline metal, sodium, whose atom 
has an electronic configuration [N e]3s1 and a halogen, chlorine, with electronic 
configuration [N e]3s23p5. Each sodium atom gives an electron to a chlorine 
atom, thereby becoming a positive ion and transforming the chlorine into a 
negative ion. The ions attract each other by Coulomb forces. The equilibrium 
distance is given by the balance between the long-range Coulomb interactions 
and the short-range repulsion between closed-shell ions. These short-range forces 
are due to the interaction of the neon-like core of sodium with that of the chlorine 
ion. 

The PP of sodium given in Ref. [13] is generated assuming that only the 3s1 

is a valence electron. It is clear that, with this approximation, the PP calculation 
cannot provide a correct value for the lattice constant and bulk modulus, as it 
does for silicon. In fact, the short-range repulsion, which balances the long-range 
Coulomb forces, involves the 2p electrons of sodium, which are missing in this PP 
scheme. To study an ionic crystal composed of an alkaline metal and a halogen, 
it is necessary to use a PP for the metal atom which includes part of the core in 
the valence charge. With this technique, phonon spectra of some alkali halides 
have also been computed [27]. 
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In this example, we limit ourselves to the use of the PP of Ref. [13]. We 
studied the convergence of the total energy, the band structure of the system and 
the electronic charge density. We performed our calculations at the experimental 
lattice constant. 

The NaCI crystal can be described by an fcc Bravais lattice, with two atoms 
per unit cell. One atom is at the origin while the other is at d = ao(0.5, 0.5, 0.5). 
We put the sodium atom at the origin. There are 8 electrons per unit cell, and 
they fill the four valence bands which are mainly derived from chlorine 3s and 
3p levels. The experimental value of ao is 10.66 a.u .. 

We start with the convergence of the total energy of the system, as a function 
of the kinetic energy cutoff and of the number of special points. In Table 3, we 
report the results up to 80 Ry cutoff and up to 10 ,,-points in the IBZ. 

Table 3. Errors in the total energy of NaCl due to different cutoffs and special-point 
sampling. The differences are in mRy. The converged value of the total energy is also reported, 
in Ry (in parenthesis). 

E r 2 pt. 6 pt. 10 pt. 

12 Ry 787.22 368.07 367.59 369.14 
20 Ry 440.37 78.93 78.89 
40 Ry 387.43 7.62 
60 Ry 371.25 2.86 
80 Ry 368.82 (-30.81859) 

The total energy converges very slowly as a function of the kinetic energy 
cutoff. Note the different scale of the kinetic energy cutoffs, with respect to 
Table 1. At the experimental lattice constant used here, a cutoff of 80 Ry corre­
sponds to about 3700 PWs for the wavefunctions and 27000 PWs for the charge 
density. On the other hand, NaCI is an ionic solid and the energy bands are very 
flat and close to atomic-like levels. Therefore, all the quantities converge rapidly 
with respect to ,,""point sampling. In this table, we have not reported all the 
entries relative to 10 and 6 special points because they coincide with the results 
obtained with 2 ,,-points. 

The lowest 8 energy bands of the system, along several symmetry lines in the 
BZ, are shown in Figure 4. The bands have been produced with a cutoff energy 
of 60 Ry and 2 points in the IBZ. 

As expected, the energy dispersion of the valence bands is very low, when 
compared with the dispersion of a covalent solid like silicon. The gap is direct 
at the r point. Its theoretical value is 4.7 eV. 

In Figure 5, we show the electronic charge density in the (100) and (110) 
planes. As expected, the chlorine is perfectly spherical, while the sodium is not 
visible on the plot because no valence charge is left on it. 
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Figure 4. Band structure of NaCl along several symmetry lines. The lowest 
8 bands are plotted. 

8. Aluminium. 
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The electronic configuration of the aluminium atom is [N e]3s23pl. Crystalline 
aluminium is a group IlIA metal. Its Fermi surface is close to the free electron 
surface for an fcc Bravais lattice with three conduction electrons per atom. It 
has one filled s band and partially filled p bands. The electronic charge density 
can be described by a smooth function, which is represented quite efficiently 
by PWs. The neon-like core is tightly bound to the nucleus so that the frozen 
core approximation is justified. The LDA approximation works well in the case 
of metallic bonds and the PP-PW technique Can be used efficiently to study 
this system. The main difficulty, here, is the description of the Fermi surface: 
the special-point technique must be used with care, in this case. However, this 
problem is common to all techniques used to study a metal. 

The aluminium crystal can be described by an fcc Bravais lattice with one 
atom per cell. One parameter, the edge of the conventional cubic cell, is sufficient 
to specify the dimensions of the Bravais lattice. Experimentally, ao = 7.66 a.u. 
A good PP for aluminium can be obtained from the parameters of Ref. [13]. 

We illustrate this system with the same approach used for silicon. We start 
with the study of the convergence of the total energy as a function of the cutoff 
energy and of the special-point sampling. For a metal, it is necessary to use a 
smearing parameter to avoid the effects of the Fermi surface. We used the method 
explained in Ref. [21] and briefly summarized in Chapter 6. With this method, 
it is possible to obtain a converged value of the energy with a large smearing 
parameter, without adding any correction term to the total energy functional. 
Tables 4 and 5 give the convergence of the total energy. In both tables, we report 
the difference of the energy, in mRy, with respect to the converged value which 



114 Andrea Dal Corso 

(100) (110) 

• 
Figure 5. Electronic pseudo-charge denaity of N.Cl in the (100) and (110) p1an~. 

is given in Ry in the last row and column of each table. In the first case, we use 
a value of the smearing parameter Ll (see section 7 of Chapter 6) equal to 0.2 
Ry (this value is also used in actual computations). In this case, the total energy 
converges rapidly with respect to the number of Ie-points. 

Table 40. Errors in the total energy of aluminium due to different cutoffs and special­
point samplins. The differen~ are in mRy. The converged value of the total energy is also 
reported in Ry (in parenthesis). The calculatioDB have been performed with ..::1=0.2 Ry. 

E 

12 Ry 
20Ry 
30 Ry 

6 pt. 

2.09 
0.83 

-1.98 

10 pt. 

4.38 
1.49 
0.34 

28 pt. 

4.09 
1.14 
0.00 

60 pt. 

4.05 
1.13 

(-4.20680) 

Table 5. Errors in the total energy of aluminium due to different cutoffs and special­
point samplins. The differen~ are in mRy. The converged value of the total energy is also 
reported in Ry (in parenthesis). The calculatiou have been performed with ..::1=0.01 Ry. 

E 

12 Ry 
20 Ry 
30 Ry 

6 pt. 

-4.02 
-6.89 
-8.04 

10 pt. 

8.03 
5.19 
4.06 

28 pt. 

4.91 
1.99 
0.86 

60 pt. 

4.03 
1.14 

(-4.20725) 
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-4.18 

~ 
~-4.19 

-4.2 

-4.21 

Figure 6. Total energy of aluminium for different values of the lattice constant. The 
numerical values (squares) are interpolated with a Murnaghan equation (continuous 
lines). The cutoffs are indicated on the figure. 
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In practice, 10 special points gave the same value for the energy as 28 or 60 
points. For the first time, we found some negative values for the total energy 
differences. We have already noted that the variational properties of the total 
energy functional guarantee only that the energy decreases with increasing num­
ber of basis functions. Aluminium is a system where an increase in the number 
of special points may increase the energy. 

In Table 5, we report the values of the total energy obtained with Ll = 0.01 
Ry. The energy is converged also with respect to the smearing parameter at this 
value. In this case, the convergence with respect to the number of n-points is 
worse. 

The converged values of the total energy, in the two cases, differ by 0.45 
mRy but, using a large Ll, we can perform the calculations with only 10 special 
points. 

We then studied the convergence of the lattice constant and of the bulk 
modulus of this system, performing all the calculations with Ll = 0.2 Ry. We 
used the same method already explained for silicon. 

The results are reported in Table 6. In Figure 6, we show the interpolations 
of the total energy as function of the lattice parameter with the Murnaghan 
equation. 
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Table 6. Lattice constant and bulk modulus of aluminium, ao - Bo as a function of 
cutoff and number of special points (n pt.): the lattice constant is expressed in atomic units 
and the bulk modulus in kbar. 

n pt 

6 
10 

............ 
:>-
Q) 
'-' 

Pi! 

12 Ry 

7.39- 901 
7.43 - 845 

10 

0 

-10 

r XW 

20 Ry 

7.39 - 900 
7.42 - 853 

Al 

L r 

30 Ry 

7.39 - 900 
7.41 - 857 

K 

Figure 7. Band structure of aluminium along several symmetry lines. The lowest 10 bands 
are plotted. 

The convergence of these quantities with respect to the cutoff energy is very 
fast, but at least 10 special points are necessary to obtain convergence of the bulk 
modulus. The agreement with respect to experiment is quite good. The error on 
the lattice constant is only 2%. The experimental values of the bulk modulus are 
in the range 720 < Bo < 880 kbar. Our result is within the experimental range. 
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(100) (110) 

Figure 8. Electronic pseudo-charge density of aluminium, in the (100) and (110) planes. 

We then studied the band structure of the solid at the theoretical lattice 
constant. In Figure 7, we show the energy eigenvalues of the lowest 10 bands 
along several symmetry lines in the BZ. The energy zero is set at the Fermi 
energy. The bands have been obtained by a self-consistent calculation with 60 
special points, Ll = 0.2 Ry and 30 Ry cutoff. . 

The pseudo-charge density of this system, in the (100) and (110) planes, is 
shown in Figure 8. This charge density has been plotted on a contour map by 
dividing its range of variation into 10 equal values. 

9. Conclusions 

We have described the PWSCF code and we have given examples of its appli­
cations to three physically different solids: a semiconductor (Si), an insulator 
(NaCI) and a metal (AI). After describing the theoretical framework on which 
the code is based, we have presented a description of the main routines and of 
the input data. We have shown that, for all systems that we have considered, 
the code can compute the ground-state electronic properties. This is the starting 
point for the computation of other physical properties whose evaluation can be 
performed very efficiently with a PW basis set. We have shown that, by a care­
ful study of the convergence, it is possible to reduce the numerical noise due to 
the finite basis set and the discrete sampling of the BZ, below the experimental 
error. All the remaining discrepancies between theory and experiment are due to 
the physical approximations, which are used in the theoretical formulation of the 
electronic problem. These errors must always be accounted for in the study of a 
given system, but the results of a DFT-LDA computation can be considered as 
a physically meaningful starting point which, without any empirical parameters, 
can give important insights into the physics and chemistry of materials. 
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1. Introduction 

The ground-state total energy and its derivatives are among the most important 
properties that can be obtained from ab initio quantum mechanical methods 
when applied to solids; many aspects of the crystalline behaviour can be under­
stood when the total energy of the system is known, or, more often, when the 
energy difference between two or more electronic or nuclear, competitive config­
urations is known as a function of some parameters. The energy differences of 
interest are, as a rule, very small (of the order of 1 kcal/molor less), whereas 
the total electronic energy of the system can be five to nine orders of magnitude 
larger; the problem of the accuracy in the determination of the total energy of 
the system (and its derivatives) is then of crucial importance. Some aspects of 
this problem will be discussed in the next section. In section 3, the use of the 
total energy for the calculation of many quantities of interest, such as the forma­
tion energy of a crystalline compound or the relative stability of the ferro- and 
antiferromagnetic phases of a magnetic insulator, is discussed. Derivatives of the 
total energy of the system with respect to some parameters are also very im­
portant. In section 4, results concerning the equilibrium geometry are reported; 
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section 5 contains a discussion on how to obtain the equation of state of a crys­
talline compound and how to compare the enthalpy H = E + PV of two phases 
as a function of pressure; this section is of particular relevance for the simulation 
of problems of geological interest. Among the properties related to energy second 
derivatives, the elastic constants and vibrational spectrum are the most impor­
tant. In section 6, examples of calculated bulk moduli and elastic constants are 
reported, while vibrational properties (phonons) will be discussed in Chapter 12. 
In section 7, some aspects of the correlation problem are discussed; section 8 is 
devoted to the basis set and section 9 to numerical problems encountered when 
performing calculations with the Hartree-Fock LCAO program CRYSTAL. Fi­
nally, in section 10, some problems involved in the comparison of calculated with 
experimental results are tackled. 

The numerical results to be presented have been obtained with the codes 
CRYSTAL92,and CRYSTAL95 (see Chapter 8). Energy derivatives have been 
calculated numerically, point by point. It is possible to evaluate, analytically, 
energy derivatives within the Hartr~Fock (HF) or the density functional (OF) 
formalism and this is a standard rule in molecular quantum mechanics [1]. In 
periodic programs and in plane-wave OF codes, such as the PWSCF program 
discussed in Chapter 10, such an implementation is relatively trivial, while it 
is more difficult for codes which use a different basis set: this facility has just 
been introduced in WIEN (Chapter 9), and its implementation in CRYSTAL 
(Chapter 8) is still in progress. 

2. The problem of numerical accuracy 

The total energy of the system, as obtained with a quantum mechanical program, 
such as WIEN, PWSCF or CRYSTAL, is affected by errors that, schematically, 
can be classified into four types. 

The first source of error is related to the choice of the Hamiltonian; in WIEN 
and PWSCF, where a OF scheme is adopted, different values of the total energy 
are obtained, according to the selected exchange-correlation functional: many 
different options are possible (see, for example, [2] for a list of these). The relative 
merits and limitations of the various functionals is still under discussion (see 
for example [3, 4] for applications to solids and [2, 5] for molecules) and the 
residual error with respect to the "exact" total energy in solids is not easily 
defined, due to the presence of other sources of error. In the case of the HF 
approach, the deficiency is due to the so-called correlation effects, that is, to lack 
of correlation in the motion of different electrons (in the HF scheme, each electron 
moves in the mean field created by the other electrons). This error affects all the 
computational quantities; it is particularly large when bonds are broken, that is, 
when a closed-shell configuration is compared with an open-shell one, as is the 
case for the evaluation of the binding energy of a molecule or a crystalline solid 
from atoms. Many-body techniques are used in molecular quantum chemistry [1, 
6] for improving the HF results, which are not yet available for periodic systems. 
An a posteriori (that is after the HF -SCF cycle) estimate of the correlation 
energy with a correlation-only functional [7], using the HF charge density is 
usually adopted in CRYSTAL, which recovers most of the correlation effects 
in the crystalline formation energies [8, 9, 10]. As will be discussed below, this 
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correction is less useful in the calculation of other energy-related properties, such 
as the equilibrium geometry or the bulk modulus [9]. 

The second source of error is related to the use of a finite variational basis 
set. Convergence of the total energy and related properties, as a function of the 
number of plane waves is discussed in Chapter 10, where the PWSCF code is 
presented. As expected, the convergence is very fast for metals (core electrons 
must be eliminated by using pseudopotentials), but very slow for ionic systems. 
However, when Bloch functions constructed with atomic orbitals (AOs) are used, 
a reasonable description of delocalized electrons is very expensive and, in some 
cases, difficult, due to problems related to the non-orthogonal nature of the 
basis functions (see the discussion in section 11.8 of reference [11]), whereas 
localized electrons (including core electrons) are easily described by relatively 
small numbers of Gaussian functions. Some examples will be given concerning 
ionic and semi-ionic compounds. 

The third source of error is related to the numerical approximations intro­
duced in the solution of the HF or OF equations. In each computational scheme, 
numerical integrations are performed and series expansions are truncated that 
influence to some extent the results. In the CRYSTAL implementation of the 
HF-LCAO scheme, for example, terms of the infinite Coulomb and exchange 
series are approximated, in different ways according to their importance and 
small terms are neglected. The reciprocal space integration necessary for the 
calculation of the density matrix, at each cycle of the SCF process, is performed 
numerically, with reference to a finite set of reciprocal space points. A more ex­
plicit description of these aspects is given in Chapter 8, where the CRYSTAL 
code is discussed. The influence of the computational features on the calculated 
quantities is documented in section 9; other examples can be found in refer­
ences [12, 11]. 

The last source of inaccuracy is related to real errors in the computer codes 
("bugs"); this aspect is often underestimated, probably because it is the most 
trivial one. In this area, however, we are still not too far from the pioneering 
stage of "one researcher, one program"; most of the programs are not public, 
and are under continuous modification; among the (very few) public codes, cross 
checks are impossible, because they dIffer in the hamiltonian and/or type of basis 
set adopted, as is the case of the three codes discussed in this book. 

The absolute error in the total energy, resulting from the above four possible 
sources is much larger than the relevant energy differences for many chemical and 
physical transformations. Fortunately, in many cases most of the errors cancel in 
performing these energy differences; the most trivial example is the error related 
to an approximate (but reasonable) description of inner (core) electrons, whose 
wavefunction remains essentially unalterated through any chemical modification 
involving the atoms to which they belong. 

We report in Table 1 the lattice parameter and the bulk modulus (see below) 
of NaCI resulting from ab initio calculations performed in the last decade, as an 
example of the possible range of calculated values which may be produced, for 
simple properties of a model system, even when the same Hamiltonian is used. 
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Method Functional Ref. year a(A) B(GPa) 

LDA-PS-PW Wiper l~3J 1986 5.52 31.2 
LDA-FLAPW Hedio-Lundqvist [14] 1986 5.64 30.4 
LDA-LAPW Wiper [15] 1987 5.54 28.7 
LDA-LAPW Hedio-Lundqvist [15] 1987 5.47 31.4 
LDA-Numerical Ceperley-Alder [16] 1991 5.48 31.5 
LDA IONIC Ceperley Alder I!~ 1991 °5.75 23.2 
LDAASA+E Hedio-Lundqvist 1992 5.49 33.0 
HF- AIPI 

1~~J 
1992 6.11 14.8 

HF- LCAO 1993 5.80 22.8 
HF - LCAO+P91 [20j 1993 5.54 30.1 
ExperimeotaJ. [21] 1972 5.57 28.5 

Table 1. Calculated lattice parameter and bulk modulus of NaCi &om recent papers. For the 
meaning of the acronyms, lee the indicated references 

3. The formation energy and other energy differences 

In Table 2, some of the energy differences of interest are listed, with appropri­
ate references, where examples and comparison with experimental data may be 
found. It should be noted that, in many cases, systems of different dimension­
ality (D) are involved: 3D and 2D for the evaluation of the surface energy, 2D 
and OD for the chemisorption on a surface, 3D and OD for the binding energy of 
a molecular or ionic crystal and so on. In performing calculations, the question 
must be raised concerning the above-mentioned cancellation of errors of different 
origin for the two systems to be compared. 

With reference to the examples reported in Table 2, and to the CRYSTAL 
code, the following comments can be made: 

i) The accuracy of the code is approximativelythe same for 3D, 2D, ID and OD 
systems, so that errors of the third type (see previous section) are negligible. 

Computed System 1 System 3 Example Reference 
Energy 
Binding bulk atoms iowes,covalent I~!J: l:~) Binding bulk molecule Urea, Ice 
surface bulk slab MgO (25) 
surface re1ax slab slab MgO (25) 
adsorption sIab+molecule s1ab,molecule eo onLiF [26] 
substitution defective lOUd lOUd, atoms e in Si [2'1] 
superexchauge AFM bulk FMbulk NiO [28] 
soUd state bulk bulk MgO+ AI20 a (29) 
reaction -MgAI20 , 

Table 3. Examples of total energy differences and related references. In all cases cited here, the 
CRYSTAL code has been used for the calculation. AFM and FM stand for aotiferromagnetic 
and ferromagnetic, respectively. 
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N .t" As lSb 
E % J!j '70 J!j '70 J!j '70 E % 

HI" 9.1 -33.1 6.6 -36.7 5.6 10.4 -30.8 
B HF+c 13.1 -3.8 10.2 -1.9 9.2 14.7 -2.4 C 

Expt. 13.6 -- 10.4 -- 15.1 --
HF 5.7 -32.4 4.9 -38.3 4.0 -39.5 6.3 -34.0 

AI HF+c 8.7 +3.3 7.9 -1.3 6.8 +3.0 9.5 -0.7 Si 
Expt. 8.4 -- 8.0, -- 6.6 -- 9.5 --

HI<' 4.2 -41.4 3.5 -47.3 3.0 -50.2 4.4 -43.5 
Ga HF+c 7.2 +0.0 6.5 -2.8 5.8 -3.2 7.5 -4.2 Ge 

Expt. 7.3 -- +6.6 -- +6.0, -- 7.8 --
HI<' 3.9 -41.5 3.5 -44.5 2.8 -49.6 4.2 -34.2 

In HF+c 6.7 +1.0 6.3 -0.2 5.5 -0.9 7.1 +10.7 Sn 
Expt. 6.6 -- 6.3 -- 5.6 -- 6.4 --

Table 3. Calculated and experimental binding energies (in eV) of the III-V (left) and IV-IV 
(right) semiconductors with the zincblende (or diamond) structure. Percentage errors with 
respect to experiment are given in the columns headed "%". HF+c is the Hartree-Fock energy 
corrected a po3teriori with the P86 functional [7]. For the basis sets and other computational 
details see ref [22]. 

ii) Errors of the fourth type can reasonably be excluded. 
iii) The total energy per formula unit is very stable when evaluated with unit 

cells of increasing size (for example, the total energy of MgO bulk is the same 
to the fifth decimal figure whether evaluated with unit cells containing 2, 8, 
16, 32, 64 or 128 atoms [30]); this aspect is very important (but often under­
estimated) for the evaluation of defect formation energies with the supercell 
scheme [30, 27] and when the relative stability of different magnetic phases 
is computed [31, 28]. 

iv) The accuracy for a given set of computational parameters is NOT the same 
for ionic, covalent and metallic systems (see sections 11.4 and 11.5 of [11]). 

v) The efficiency of a given basis set changes with the local symmetry and the 
dimensionality of the system; so, for example, in the evaluation of the binding 
energy of N aCI, two different basis sets are used for atoms and for bulk; as a 
rule [9], the same basis set is used for inner electrons, whereas extra functions 
must be added to the Na+ bulk basis set for an accurate description of the 
valence electron of the isolated N a atom. This point is discussed in section 
8. 

vi) In each process involving the formation and breaking of bonds, correlation 
effects, disregarded at the HF level, entail systematic errors (about 30% for 
the formation energy of covalent systems) which may be corrected, as dis­
cussed above. More generally, the correlation error affects all the observables 
evaluated at the HF level; the error, as will be discussed below, is in some 
way systematic, although of varying importance for different properties and 
for different families of compounds. 

In Tables 3, 4 and 5, the calculated formation energies of covalent and 
ionic crystalline compounds are compared with the corresponding experimental 
results. As anticipated, the HF formation energy is always smaller than the ex­
perimental one, the percentage error ranging from -20% to -50%. The error is 
larger for heavy atoms for two reasons. Firstly, because dispersion effects (not 



184 Roberto Dovesi 

taken into account at the HF level) are larger, and secondly, electrostatic effects 
(correctly described at the HF level) are less important, due to larger lattice 
parameters. The a posteriori correlation correction with the P86 or P91 func­
tionals (they provide very similar results) recovers most of the missing energy, 
and the final error is never larger than 10%. 

F CI Br I 
E % E % E % °E % 

HF 6.74 -23.2 5.66 -20.5 4.95 -23.9 4.25 -23.4 
Li HF+c 8.47 -3.6 7.40 H.O 6.59 +1.4 

Expt. 8.78 7.12 6.50 5.55 
HF 5.93 -23.3 5.41 -18.2 4.83 -20.6 4.23 -18.5 

Na HF+c 7.54 -3.8 6.93 H.8 6.30 +3.6 
Expt. 7.83 6.61 6.08 5.19 
HF 5.54 -27.0 5.54 -17.3 5.20 -16.7 4.56 -16.0 

K HF+c 7.12 -6.2 6.97 H.O 6.48 +3.8 
Expt. 7.59 6.70 6.24 5.43 
HF 5.29 -30.4 5.41 -18.2 4.94 -20.8 4.48 -17.3 

Rb HF+c 6.74 -11.2 6.80 +2.9 6.27 +0.5 
Expt. 7.60 6.61 6.24 5.42 

Table 4. Calculated and experimental binding energies (in e V) of alkali halides with the NaCl 
structure. Percentage errors with respect to experiment are given in the columns headed "%It . 
HF+c is the Hartree-Fock energy corrected II po.tenon with the P86 functional [7]. For the 
basis sets and other computational details see references [9, 10]. 

System Ref Binding Energy 
HF ""lK HF+ c % Expt. 

BeO Il:1 9.22 -24 11.59 -4 12.14 
MgO 7.32 -29 9.69 -6 10.28 
CaO [8] 7.59 -30 10.10 -7 10.86 
CaC03 [32] 20.76 -30 27.35 -7 29.58 
MgC03 [33] 19.48 -31 26.12 -8 28.24 
Al20 3 [29] 23.65 -26 30.54 -5 32.14 
MgAl2 0 , [29j 31.67 -26 40.50 -5 42.71 

Table 5. Calculated and experimental formation energies(in eV) of simple oxides. Percentage 
errors with respect to experiment are given in the columns headed "%" . HF +c is the Hartree­
Fock energy corrected II poatenori with the P91 functional [7]. 

4. The equilibrium geometry 

In Tables 6 and 7, the calculated equilibrium geometry for the families of semi­
conductors and alkali halides, discussed in the previous section, are reported. In 
both cases, the energy minimization is simple, because only one parameter (the 
cell edge) must be optimized. 

In the case of semiconductors, the lattice parameter is always overestimated; 
the error ranges between 0 and +2%; it is negligible for BN and diamond; then it 
remains roughly constant going down the periodic table from Al to In and from 
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N p As ~b 

a '70 a '70 a '70 a '70 a '70 
B Hi" 3.62 0.0 4.60 +1.3 4.83 +1.0 3.58 +0.3 C 

Expt. 3.62 4.54 4.78 3.57 
AI Hi<' 5.52 +1.3 5.76 +1.8 6.22 +1.5 5.46 +0.6 Si 

Expt. 5.45 5.66 6.13 5.43 
Ga HF 5.56 +2.0 5.76 +1.9 6.23 +1.8 5.79 +2.3 IGe 

Expt. 5.45 5.65 6.12 5.66 
In Hi" 5.93 +1.0 6.15 +1.5 6.56 +1.4 6.49 0.0 Sn 

Expt 5.87 6.06 6.47 6.49 

Table 6. Calculated and experimental lattice parameter a (in A) ofthe 111-V (left) and IV-N 
(right) semiconductors with the zincblende (or diamond) structure. Percentage errors with 
respect to experiment are given in the columns headed "%" . For experimental references, basis 
sets and other computational details, see ref [22]. 

1" CI Br I 
a '70 a '70 a '70 a % 

Hi" 4.02 +0.8 5.28 +4.1 5.73 +5.7 6.32 +6.9 
Li HF+c 3.85 -3.5 5.03 -0.8 5.44 +0.4 

Expt. 3.99 5.07 5.42 5.91 
Hi<' 4.63 +1.3 5.80 +4.1 6.23 +5.6 6.79 +6.3 

Na HF+c 4.44 -2.8 5.52 -0.9 5.92 +0.3 
Expt. 4.57 5.57 5.90 6.39 

Hi" 5.49 +3.0 6.59 +5.6 7.03 +7.7 7.53 +7.9 
K HF+c 5.20 -2.4 6.23 0.0 6.59 +0.9 

Expt. 5.33 6.23 6.53 6.98 
HF 5.92 +5.9 7.00 +6.7 7.43 +9.3 7.95 +9.7 

Rb HF+c 5.63 +0.7 6.65 +1.3 7.02 +3.2 
Expt. 5.59 6.56 6.80 7.25 

Table T. Calculated and experimental lattice parameters (in A) of alkali halides with the 
NaCI structure. Percentage errors with respect to experiment are given in the columns headed 
U%". HF+c is the Hartree-Fock energy corrected It posteriori with the P86 functional [7]. For 
basis sets and other computational details, see ref [9, 10]. 

P to Sb. The lattice parameter is also overestimated, in the case of the alkali 
halides; the trend along the series from light to heavy atoms is however very 
different from that shown by semiconductors. The error increases systematically 
with increasing size of the cation and the anion (from +0.8% for LiF to +9.7% 
for RbI). The reason for this difference is the much higher relative importance 
of dispersion and polarization contributions in alkali halides with respect to 
semiconductors; the former systems are characterized by very flat energy versus 
cell volume curves, with bulk moduli (see section 6) ranging from 77 (LiF) to 
13 (RbI) GPa, whereas for semiconductors, the extremes are at 440 (diamond) 
and 46 (InSb) GPa. 

In semiconductors, the equilibrium geometry and the stiffness of the E(V) 
curve is determined by strong covalent bonds, which are reasonably well de­
scribed at the Hartree-Fock level; the overestimation of 1-2% is in line with the 
Hartree-Fock results for molecular systems, characterized by essentially covalent 
bonds. In alkali halides, the main contribution to the attractive part of the E(V) 
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System Ref. a c fractionary coord. 
calc. expo % calc. expo ~ type calc. expo 

MgO 
!~:j 

4.191 4.195 -0.1 
CaO 4.864 4.811 +1.1 
MnO [28] 4.526 4.445 +1.8 
NiO [28] 4.265 4.168 +2.3 

MgAhO. [29] 8.056 8.060 -0.1 Os 0.264 0.262 
MgC03 [32] 4.618 4.632 -0.3 15.114 14.991 +0.8 Os 0.275 0.278 
CaC03 [32] 5.045 4.995 1.0 17.504 16.920 +3.5 Os 0.252 0.257 

a-AI2 0 3 [29] 4.742 4.750 -0.2 12.936 12.96 -0.2 Os 0.306 0.306 
AI .. 0.353 0.352 

a-Fe20 3 [34] 5.112 5.035 +1.5 13.820 13.747 +0.5 Os 0.302 0.306 
Fez 0.354 0.355 

Si02 [35] 4.126 4.177 -1.2 2.6896 2.6651 +0.9 0", 0.305 0.306 
MgSi03 [35] 4.713 4.720 -0.01 13.454 13.520 -0.3 Si .. 0.156 0.158 
ilmenite Mg .. 0.360 0.360 

Os 0.320 0.321 
011 0.036 0.036 
0 .. 0.240 0.241 

Table 8. Calculated and experimental equilibrium geometry (in A) of simple oxides. % is the 
percentage elTOrj Si02 data refer to the stishovite phase. 

curve comes from electrostatic interactions, which, however, are not extremely 
large, because only ±1 charges and relatively large distances are involved. As 
the atomic number of the ions increases, interelectronic and intraelectronic cor­
relation effects, disregarded at the Hartree-Fock level, become more important 
due to: 

- the larger polarizability of the ions, resulting from their larger dimension; 
- the larger distance of the valence electrons from the nucleus, resulting from 

the screening of and orthogonality to inner shells, while electrostatic forces 
become less important, as a consequence of the large cation-anion distance. 

In Table 8, the calculated equilibrium geometry of a number of ionic or semi­
ionic oxides is reported; the error for linear parameters is, in all but two cases, 
smaller than 2%.The results for oxides agree much better with experiment than 
do those for alkali halides, for the following reasons: 

a) Charges are larger (for example, ±2 in MgO, CaO and NiO), so that electro­
static forces, correctly described at the HF level, playa more fundamental 
role with respect to dispersion effects. 

b) The ions present low polarizability (all the cations appearing in Table 8 
belong to the first three rows of the periodic table). 

c) Some of the systems of Table 8 show partially covalent character. 

As a matter of fact, the geometrical structure of most important families of com­
pounds, such as simple and transition metal oxides, silicates and semiconductors, 
can be described using the HF method, with a relatively high accuracy. 
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5. Equation of state and phase transitions. 

In many cases, it is interesting to explore the behaviour of crystalline systems as a 
function of pressure or volume. In geophysics, for example, simulation (quantum 
mechanical or semi-classical) is used to investigate the relative stability and 
possible solid-state chemical reactions of many silicates, which are supposed to 
be the most abundant components of the earth's mantle [36], extending to a 
depth of about 2900 Km. Pressure increases with depth and is believed [37] to 
vary from 10 to 30 GPa in the very important transition zone between the upper 
and lower mantles; at the lower mantle edge, it is supposed to be as large as 150 
GPa. There is no direct experimental information on the chemical composition 
and phase-stability order in the transition zone (extending roughly from 400 
to 700 Km) and lower mantle, because erupted materials come from depths of 
the order of 100 Km only. Most of our knowledge is, therefore, indirect and 
comes from high pressure experiments with diamond anvil cells and computer 
simulation. The two techniques, whose reliability is limited by many factors of 
different origin, must be considered complementary tools for the investigation of 
the high pressure behaviour of minerals. In high pressure experiments, P and T 
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Figure 1. Hartree-Fock total energy of MgSi03 perovskite, as a function of the cell volume. 
Grolllle6, open and full triangles refer to the orthorhombic, tetragonal and cubic cells, respec-
tively. Symbols indicate calculated energy points. . 

are the independent variables. In calculations, however, the independent variable 
is the volume V (and T = 0); for a given volume, ~, the total energy of the 
system is minimized, by optimizing all the remaining geometrical parameters 
(cell parameters and fractionary coordinates). This process is then repeated for 
a limited number of volumes (6 to 15 in general); the E versus V curve is fitted to 
an analytic function (polynomial, or one of the many equations of state proposed 
in the literature), which is then differentiated: 

P=-oE/oV (1) 

It is now possible to represent P as an analytic function of V, P == P(V) or, 
conversely, V == Yep) and E == E(P). Under experimental conditions, the con­
trolled variables are N (number of atoms), T and P, so that the thermodynamic 
function of interest is the Gibbs free energy: 
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Figure 2. Equation of state for the three phases of MgSi03 perovskite. Solid, IOllg-dad,ed 
and ,Aorl-da,Aed lines are used for the cubic, tetragonal and orthorhombic cells respectively. 
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Figure 3. Enthalpy of the cubic, tetragonal and orthorhombic phases of MgSi03 perovskite. 
Lines as in Fig. 2. 

G=TS+E+PV (2) 

The most stable phase is the one with the lowest Gibbs free energy at given 
values of N, T and P. 

Calculated data refer to the static limit (T = 0 and frozen nuclear motion); 
G reduces then to H, the enthalpy (H = E + PV) and the function of interest 
is then: 

H::H(P) (3) 

which is easily obtained because both functions E:: E(P) and V:: V(P) have 
been obtained in an analytic form. It must be noted that in this process only 
the first derivative of the energy has been evaluated numerically. The numerical 
accuracy of the CRYSTAL code (see section 9) and of many periodic quantum 
mechanical codes, is high enough to give accurate numerical first derivatives of 
the energy, with respect to a geometrical parameter. 

An example of this process is given in Figures I, 2 and 3, which refer to 
three phases of MgSiOs perovskite. Perovskite is known to be the most stable 
phase of magnesia-silicates above 21.5 GPa at T = 0 [38, 36]. In the range 
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of pressure and temperature explored experimentally, it is orthorhombic [39] 
and can be described as being formed by (nearly) regular octahedra rotated by 
about 8 degrees with respect to the band c cell edges (see [40] for a discussion 
of the octahedral structure in perovskites). It has, however, been proposed [41] 
that tetragonal (null rotation with respect to b) or cubic (perfectly ordered, 
untilted arrays of regular octahedra) MgSiOa perovskite structures might exist 
in particular T - P regions. A related question concerns the possible increase 
or decrease of orthorhombic distortion [40] in MgSiOa with pressure. Vagi et al 
[42] argued that the cubic form should be favoured at high pressure, whereas 
according to other authors [43], [44] [45] the distortion should increase with 
pressure. 

The calculated energy points [35] for the three phases and for several vol­
umes are shown in Figure 1. It must be noted that the unit cells of the cubic 
(e), tetragonal (T) and orthorhombic (0) phases contain 5, 10 and 20 atoms, 
respectively; in order to obtain the E == E(V) curve, for a given volume, the 
energy of the system has to be optimized with respect to all the geometrical pa­
rameters (there are 0, 2 and 9 of them for the e, T and 0 phases, respectively). 
Obtaining the E(V) curve for the e phase is then very cheap (five atoms, just 
one parameter to explore); for the 0 phase (20 atoms, 10 geometrical parame­
ters), however, the computational effort is extremely demanding and a medium 
size basis set had to be adopted [35]. Figures 2 and 3 show the P(V) and H(P) 
curves obtained from the E(V) curve, as described above. The result is that 
the H(P) curves for the three phases run nearly parallel in the explored pres­
sure interval, the stability order being 0 > T > e. The question which can be 
asked is then: what is the influence of the many approximations implicit in the 
calculation on this result, namely: 

a) basis set limitations; 
b) lack of interelectronic correlation; 
c) temperature effects and 
d) zero point energy? 

As will be shown later, each of these approximations can alter the relative sta­
bility of the various phases, so that a careful analysis of their importance must 
be performed. Single-energy-point test calculations and a comparative analysis 
of the behaviour of other systems indicate, however, that the errors associated 
with points a) to d) above cancel nearly exactly in the case of e, T and 0 phase 
perovskite, due to the fact that they are very similar structures. As regards the 
influence of pressure on the rotation of octahedra, in [35] it is shown that, for 
both the T and 0 phases, the rotation angles increase with increasing P. 

As a second example of pressure-driven phase transition, let us consider the 
relative stability of MgSiOa perovskite (Pv; orthorhombic), ilmenite (n; trigo­
nal; 10 atoms per unit cell; 6 geometrical parameters to be optimized) and the 
assemblage of the two simple oxides, MgO perielase (Pe; cubic; 2 atoms per cell; 
1 geometrical parameter) and Si02 stishovite (St; 6 atoms per cell; 3 geometrical 
parameters) [46]. As anticipated, II is believed to be the most stable polymorph 
of MgSiOa between 23 and 27 GPa in the temperature range 0<T<1500 (see 
Figure 2 in [36]). The II - Pv phase transition has been explored by Ito and 
Takahashi [38] with a diamond anvil apparatus at various temperatures. The 
phase boundary can be described by a straight line given by: 
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Figure 5. As in Fig. 4, with the high lJualit, basis set. 

P(GPa) = 26.8 - 0.0025T(OC) (4) 

which gives the 0 K value of 27.5 G Pa mentioned above. There is no experimental 
evidence of a stability zone for the Pe+St assemblage in the explored interval, to 
our knowledge. As in the previous example, the bottleneck of the calculation was 
represented by MgSi03 perovskite (20 atoms/cell; only 8 symmetry operators 
in the point group; 10 geometrical parameters to be optimized). The equation 
of state was then obtained with the same medium-size basis set (see Table 1 in 
[35]) that was shown to be sufficiently flexible for the description of the relative 
stability of the C, T and 0 perovskite phases. In the present case, however, 
additional variational freedom was exploited, in quite a different way, by the 
four systems (see Table 17), characterized by different point symmetry, atomic 
coordination, bond lengths and ionicity. As a matter of fact, the addition of 
a set of d polarization functions on Mg and 0 and of an sp valence shell on 
both atoms, lowered the total energy at calculated minima by 24.4, 33.6, 19.7 
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Figure 6. As in Fig. 4, with the high qU4/ity basis set and including correlation corrections. 

millihartree for Pv, II and (Pe+St), respectively, altering the relative stability 
of the three phases obtained at P = 0 with the poorer basis set. 

The interelectronic correlation energy, as estimated through the a posteriori 
correction mentioned above, was also shown to give different contributions to 
the three phases (at P = 0, Pv is stabilized by 5.7 millihartree with respect to 
II and II by 1.4 millihartree with respect to Pe+St). If it is supposed that the 
main effect of basis set improvements and inclusion of correlation is a nearly 
rigid downwards shift of each of the E(V) curves for the four systems, the H(P) 
curves shown in Figure 4 (and obtained with the medium size basis set, and 
full optimization of the geometry at each volume) can be corrected as shown in 
Figures 5 and 6. Figure 4 shows that, at the medium quality basis set level, the 
Pe+St assemblage is the most stable phase in all the explored interval. When 
the high quality basis set is used (Figure 5), II is the stable phase below 36 GPaj 
between 36 and 46 GPa the assemblage is more stable than Pv. Finally, when 
correlation contributions are taken into account (Figure 6), the assemblage is 
always less stable than II or Pv. The II to Pv transition, is now at 29 GPa, not 
too far from the T = 0 experimental result (27.5 GPa). 

6. Bulk modulus and elastic constants. 

The properties considered so far refer to the total energy and its first derivatives 
with respect to volume, V (or pressure, P). Other important properties are 
related to second derivatives of the total energy of the system with respect to 
1) volumej 2) the parameters of the unit cell (the lattice parameters a, b, c 
and the angles between them a, {3, "( )j and 3) the fractional coordinates of the 
atoms. The related observables are the bulk modulus, the elastic constants and 
vibrational properties, respectively. . 

Tables 9-11 report the bulk moduli (B) evaluated for the semiconductors, 
alkali halides and simple oxides already discussed in sections 3 and 4. Hartree­
Fock results for semiconductors, in line with molecular experience on covalent 
systems, overestimate the experimental B value by 0-10%. For alkali halides, 
the error ranges from -1% (LiF) to -42% (RbI). This large underestimation is 
due to the increasingly large overestimation of the lattice parameter, when going 
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N P As Sb 
J:J ~ B ~ B ~ Ii ~ J:J ~ 

.B Hi" 416 - 171 -1.2 149 - 471 +6.6 C 
Expt. 173 442 

AI HF 96 +11.6 79 +2.6 61 +5.2 109 +10.1 Si 
Expt. 86 77 58 99 

Ga Hi" 95 +4.4 77 0.0 59 +5.4 85 +11.8 Ge 
Expt. 91 77 56 76 

In HF 76 +5.6 64 +10.3 50 +8.7 56 +5.7 Sn 
Expt 72 58 46 53 

Table 9. Calculated and experimental bulk modulus, B (in GPa) of the III-V (left) and IV­
IV (right) semiconductors with the zincblende (or diamond) structure. Percentage errors with 
respect to experiment are given in the columns headed U%" • For experimental references, basis 
sets and other computational details, see ref [22]. 

F CI Br I 
B % B ~ B % B % 

HF 75.9 -1.3 30.0 -18.7 21.4 -28.9 15.4 
Li HF+c 99.6 +29.5 40.8 +10.6 31.0 +3.0 

Expt. 76.9 36.9 30.1 
HF 51.1 -5.0 22.3 -22.0 16.6 -30.3 12.3 -33.8 

Na HF+c 69.9 +29.9 32.3 +12.9 23.5 -1.3 
Expt. 53.8 28.6 23.8 18.6 
HF 30.0 -15.5 15.1 -27.4 11.8 -32.2 9.0 -35.3 

K HF+c 45.0 +26.8 24.0 +15.4 17.0 -2.3 
Expt. 35.5 20.8 17.4 13.9 

HF 23.4 -26.0 13.0 -30.5 10.5 -34.0 7.4 -42.6 
Rb HF+c 38.0 +16.8 22.0 +17.6 15.1 -5.6 

Expt. 31.6 18.7 15.9 12.9 

Table 10. Calculated and experimental bulk modulus (in GPa) of alkali halides with the 
NaCI structure. Percentage errol'tl with respect to experiment are given in the columns headed 
"%". HF+c is the Hartree-Fock energy corrected a po.tenon with the P86 functional [7]. For 
experimental data, basis sets and other computational details, see ref [9, 10]. 

from light to heavy atom systems, because the bulk modulus is evaluated from 
the second derivative of the energy at the calculated equilibrium geometry. 

When smaller ions and larger electrostatic effects are involved, as in the 
case of the oxides (formal charges ±2 or 3; see Table 11), the calculated bulk 
moduli are more reasonable: as for semiconductors, in all but one case, there is 
an overestimation of between 7 and 12% with respect to experiment. 

The bulk moduli reported in Tables 9-11 have been obtained as follows: the 
total energy of the system has been evaluated at various volumes, lti, (usually 
9-11 points are used); the energy points are interpolated with a polynomial 
curve, which is then differentiated in order to obtain B. All the geometrical 
parameters of the unit cell which can be varied, while keeping lti constant, must 
be optimized, in each case; in the corundum case, for example, where the unit 
cell is completely defined by a, c (lattice parameters), Xo and ZAI (fractionary 
coordinates of oxygen and aluminium), the cia ratio and the two fractional 
coordinates must be optimized. For MgSi03 perovskite in the orthorhombic 
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System Ref B 
BF % Expt 

SeO 
11:1 

253 +12 224 
MgO 186 +11.4 167 
CaO [8] 128 +6.7 120 
CaC03 [32] 75.3 -5.8 79.9 
MgC03 [33] 125 +6.8 117 
Al20 3 (29] 287 +10 261 
MgAl2 0 4 1 [29] 227 +10 206 

Table 11. Calculated and experimental bulk modulus (in GPa) of simple oxides; percentage 
errors with respect to experiment are given under %. 

phase (see previous section), nine geometrical parameters must be optimized for 
each Vi volume. 

Regarding elastic constants, we refer to a standard textbook [47] for def­
initions and to previous papers [12, 48, 49, 50] for the strategy adopted in 
CRYSTAL for their numerical evaluation. The quality of Hartree-Fock results 
for elastic constants is, roughly speaking, similar to that documented above for 
bulk moduli. In Table 12, we report examples, referring to three simple oxides. 
As expected, overestimation of about 10% with respect to experiment is usually 
observed. 

System Ref. Cll Cn Cu 
calc. Expt. % calc. Expt. % calc. Expt. % 

Li20 15iJ 234 216 +8.3 22 25 -12.0 68 67 +1.5 
MgO [52] 326 314 +3.8 111 94 +18.1 183 160 +14.4 
CaO [53] 245 240 +2.1 69 60 +15.0 95 83 +14.5 

Table 12. Calculated and experimental elastic constants (in GPa) of simple oxides. 

7. Some conclusions on the Hartree-Fock energy and energy 
derivatives and on their a posteriori correlation correction. 

Table 13 summarizes the results of a statistical analysis performed on the 
three families of compounds considered here, namely semiconductors, alkali 
halides and simple oxides. The effect of an a posteriori correction on the bind­
ing energy, lattice parameter and bulk modulus (the last two properties for 
alkali halides only) through a density-functional, gradient-corrected formula 
is also analyzed. The statistics have been performed on the data reported in 
Tables 3,6 and 9 for semiconductors (with results for SiC taken from refer­
ence [22]), in Tables 4, 7 and 10 for alkali halides, and in Table 5, 8 and 11 for 
oxides (note that for Table 8, only the a and c columns have been considered, 
because fractional coordinates are not dimensionally homogeneous). 

The underestimation of the binding energy ranges from 30% to 50% for semi­
conductors, from 16% to 30% for alkali halides and from 24% to 30% for simple 
oxides; trends along the series are regular and systematic. Most of the error may 
be attributed to the HF Hamiltonian, rather than to basis set inadequacy or to 
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Semiconductors Alkali halides Oxides 
BE 40 B BE BEl 40 B BE 40,C() B 

max.:1% -50.2 +2.3 +11.8 -30.4 -13.6 +9.7 -42.6 -31 +3.5 H2 
min.:1% -30.3 0.0 0.0 -16.6 -1.2 +0.7 -1.3 -24 -1.2 -5.8 

HF (1.:11) 39.2 1.2 6.5 21.2 7.2 5.7 26.6 28 0.9 9.0 
t1 6.7 0.7 3.6 3.8 3.1 2.4 11.4 2.7 1.2 27.8 
N 16 17 15 16 16 16 15 7 17 7 

max.:1% HO.7 +4.8 +5.7 +3.2 +29.9 -8 
min.:1% -4.2 -11.2 -5.7 -3.5 -5.6 -4 

HF+c (1.:11) 2.6 3.3 2.9 1.4 12.8 4 
t1 2.5 1.5 1.8 1.2 10.0 1.4 
N 16 12 12 12 12 7 

Table 13. Statistical analysis of the calculated Hartree-Fock results with (HF +c) and without 
(HF) the 4 po.tenon correlation correction, for the III-V and IV-IV semiconductors and for 
alkali halides, when compared to experiment. BE and BEl are the binding energies evaluated 
with respect to neutral atoms and to ions, respectively; 40 is the lattice parameter and B 
is the bulk modulus. Maximum (max.:1%), minimum (min.:1%), mean «1.:11» and standard 
deviation (t1) of the percentage errors are reported. N denotes the number of systems included 
in the statistics. 

numerical inaccuracy. The error is larger in semiconductors, due to the greater 
importance of correlation effects in coupling electrons, during the formation of 
covalent bonds. It is always larger when heavy atoms are involved, because of 
the greater importance of intra-atomic and inter-atomic correlation effects. 

It is interesting to compare the BE and BEl columns for alkali halides. Since 
BE is evaluated from atoms and BEl from ions, the difference is, therefore, a 
measure of the correlation energy involved in transferring one electron from the 
cation (where a single electron in an s shell has essentially no correlation with 
inner electrons) to the anion (where the new electron strongly correlates with 
the 5 electrons already present in the p shell). The table shows that the largest 
part of the BE error is due to this electron transfer; the BEl error is a measure of 
the interionic correlation, that is, the error due to dispersion forces, reciprocal 
polarization of the ions and increasing intra-atomic correlation., resulting from 
contraction of the electronic cloud in the formation of the crystal. 

In the case of oxides, the error range is obviously narrower (24-31%); its 
mean value is larger than for alkali halides, because roughly two electrons are 
transferred from the cation to the anion; it is, however, substantially smaller than 
for semiconductors, because bonds remain essentially ionic. In all cases, the a 
posteriori correction improves the binding energy dramatically; the maximum 
error is now as small as 2.6, 3.3 and 4% for the three families of compounds. 

The error in the lattice parameter ranges from 0 to 2%, and from -1.2 to 
+3.5% for semiconductors and oxides, respectively; for alkali halides, where dis­
persion forces play a more important role for the heavy terms of the series, 
the maximum error can be as large as +9.7%. The mean absolute error is 1.2, 
0.9 and 5.7% for semiconductors, oxides and alkali halides respectively, a result 
which is, on the whole, satisfactory, considering the large set of compounds taken 
into account. The gradient-corrected, a posteriori correction has been applied 
systematically only in the case of alkali halides. In most cases, the calculated 
lattice parameter improves dramatically; there is a systematic reduction of dis­
tances, the correction being larger when the error is larger; when the HF result 
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is essentially correct, the a posteriori corrected lattice parameter is shorter than 
the experimental one. The error for correlated alkali halide lattice parameters 
ranges from -3.5% to +3.2% and the absolute mean error is very small, 1.4%; 
the dispersion is also small ( 0"=1.2), about 50% of that obtained at the HF 
level. 

The results for bulk moduli are, in part, influenced by the error in the geome­
try, because B is evaluated as the second derivative, at the calculated minimum. 
For semiconductors, the results are in line with those from molecular calcula­
tions: the error ranges from 0 to 12%, the mean value being 6.5%. In the case 
of oxides, the situation is similar, with errors ranging between -6 and 12%; for 
alkali halides, a systematically large underestimation is observed, as a conse­
quence of the large overestimation of the lattice parameter. The improvement 
of lattice parameters due to the a posteriori correction entails an improvement 
of bulk moduli, where the mean absolute error decreases from 27% to 13%; the 
dispersion remains, however, essentially the same: 0":11.4 and 10.0, respectively. 

In summary, the a posteriori, gradient-corrected formula in the Perdew 91 [7], 
Perdew 86 [7] or Colle-Salvetti forms [54] appears to be a very useful tool for im­
proving systematically the HF binding energies. It can be used to correct the 
HF geometries, when dispersion forces play an important role in determinating 
the equilibrium geometry, as is the case of heavy cation/anion alkali halides, 
silver halides, molecular crystals and layered compounds (graphite, brucite [55] 
MgCh [56]). When covalent bonds, small ions or large electrostatic effects are 
involved, its usefulness is less clear (sometimes the results improve, sometimes 
not) and the present author prefers to work at the uncorrected HF level. For sec­
ond energy derivatives (bulk moduli, elastic constants, vibrational frequencies), 
a real improvement of the HF results can be obtained, in the author's opinion, 
only through a scheme improving the HF wavefunction, in a self-consistent way 
and not just the energy, as in the a posteriori scheme adopted here. 

8. Basis set effects. 

In this section, some examples of the effect of basis set on total energy, and 
related properties, are reported and discussed. The examples refer to ionic, semi­
ionic and covalent situations. As anticipated in section 2, when Bloch functions 
built on localized functions (AOs) are used, convergence with the basis set size is 
faster for ionic, than for covalent, compounds; for metals (not considered here), 
it is very slow. 

The quality of the basis sets adopted for a given system can be judged on 
the basis of general considerations and comparison with similar compounds. The 
size of the selected basis set is a compromise between the cost of the calculation, 
the accuracy of the results and the risks of numerical instabilities. As a first 
example, let us consider bulk KMnF3 [57], described with the basis set reported 
in Table 14. 

Since the system is fully ionic, the basis set for bulk calculations has been 
derived from basis sets optimized for the isolated K+, Mn2+ and F- ions. The 
exponents of the most diffuse single-Gaussian sp and d shells have been reopti­
mized in the bulk. The basis set of Table 14 is expected to be reasonably good: 
there are three valence sp shells on the anion and two on the cation (the 4s 
orbital of K and Mn is nearly totally empty); d electrons are described by two 
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Shell Mn K F 
exponents coefHclents exponents coefHclents exponents coefHclents 

s(d) p s(d) p s(d) p 
s 292601 0.000227 172500. 0.000220 13770. 0.000877 

42265 0.0019 24320. 0.00192 1590.0 0.00915 
8947.29 0.0111 5140. 0.01109 326.5 0.0486 
2330.32 0.0501 1343.9 0.04992 91.66 0.1691 
702.047 0.1705 404.5 0.1702 30.46 0.3708 
242.907 0.3691 139.4 0.3679 11.50 0.41649 
94.955 0.4035 54.39 0.4036 4.76 0.1306 

39.5777 0.1437 22.71 0.1459 
sp 732.14 -0.0053 0.0086 402.0 -0.006030.00841 19.000 -0.1094 0.1244 

175.551 -0.0673 0.0612 93.5 -0.0805 0.0602 4.530 -0.1289 0.5323 
58.5093 -0.1293 0.2135 30.75 -0.1094 0.2117 1.387 1.0 1.0 
23.129 0.2535 0.4018 11.92 0.258 0.3726 
9.7536 0.6345 0.4012 5.167 0.684 0.4022 
3.4545 0.2714 0.2222 1.582 0.399 0.186 

sp 38.389 0.0157 -0.0311 17.35 -0.0074 -0.0321 0.440 1. 1. 
15.4367 -0.2535 -0.0969 7.55 -0.129 -0.062 
6.1781 -0.8648 0.2563 2.939 -0.6834 0.1691 
2.8235 0.9337 1.6552 1.19 1.08 1.500 

0.674 1.03 1.060 
sp 1.2086 1.0 1.0 0.389 1. 1. 0.179 1. 1. 
sp 0.4986 1.0 1.0 0.216 1. 1. 
d 22.5929 0.0708 

6.1674 0.3044 
2.0638 0.5469 
0.7401 0.5102 

d 0.249 1.0 

sp - - - 0.4017 1.0 1.0 - - -
sp - - - 0.2216 1.0 1.0 
sp 0.067 1.0 1.0 0.0281 1.0 1.0 0.150 1.0 1.0 

Table 14. Exponents and coefficients of the Gaussian-type functions adopted for the study of 
KMnF 3. In the lower part of the table, the first two rows give the exponents and coefficients of 
the functions modified in the atom with respect to the ion in the bulk; the last row refers to the 
two outer sp functions, added to describe the atomic tails. The atomic basis set is used for the 
evaluation of the binding energies given in Table 15. The symbol "=" stands for "unmodified". 

shells: a contraction of four Gaussians for the inner part and a single Gaussian 
for the outer part. The calculation with this basis set is cheap (about 30 minutes 
per energy point on a medium size workstation), because: 

a) the unit cell contains 5 atoms only; 
b) the system has high symmetry; 
c) the external Gaussians of the two cations have large exponents (0.50 and 

0.22 bohr-2 for Mn and K, respectively) and that of the anion is not too 
diffuse (0.18 bohr- 2). 

In fact, the cost of calculation, with the CRYSTAL code, increases dramati­
cally with decreasing exponent of the most diffuse Gaussian. Note also that an 
all-electron basis set is used. Pseudopotential calculations are only marginally 
cheaper than all-electron calculations, for a system like the one considered here, 
because: 
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case basis set N t BE ao B i1E C •• Cll-Cn 
a) Table 14 83 1.00 0.604 4.280 64.6 0.293 30.9 91.8 
b) 5 - let instead of 4 - let 83 1.18 0.605 4.280 64.1 0.292 30.8 90.9 
c) b) +sp Mn (a=0.25) 87 1.55 0.606 4.284 63.3 0.334 30.3 91.3 
d) c) +et on F (a=0.7) 102 2.12 0.608 4.280 63.5 0.319- 30.2 89.8 

ei dt +d on K (a=0.4) 107 2.54 0.609 4.276 63.9 0.325 29.6 94.8 

Table 15. Basis set effects on bulk properties of KMnF3. BE, &0, i1E, B, Cu, Cll and C12 

are the binding energy (hartree), the lattice paraIlleter (A), the energy difference between the 
ferro- and the antiferromagnetic phases (millihartree), the bulk modulus and elastic constants 
(GPa). N is the number of atomic orbitals in the basis set; t is the CPU time with respect to 
case a). 

a) Inner shells require the calculation of a very small number of bielectronic 
integrals, so that the cost of the INTEGRAL (see Chapter 8) step is nearly 
unchanged. 

b) With a unit cell of this size, the cost of the SCF part of the calculation is not 
dominated by the diagonalization (about 50% of the time in SCF is spent in 
the reconstruction of the Fock matrix; INTEGRAL and SCF require about 
the same CPU time). 

The basis set of Table 14 can be improved in many ways: polarization func­
tions (d orbitals) can be added to K+ , and F-; for Mn, an additional diffuse sp 
valence shell can be added; the 4-1G contraction, used for d electrons, can be 
substituted by a 5-1G one, which allows a better description of both the core 
and valence region. The results of this progressive improvement of the basis set 
are shown in rows 2-5 of Table 15. It turns out that all the quantities are very 
stable with respect to basis set improvements; only in the case of LlE, the energy 
difference between the ferro- and the antiferromagnetic states, is the maximum 
variation of about 15% observed. This result is a consequence of the fully ionic 
nature of KMnF3 , and of its highly symmetric structure: the electron charge 
distribution of K+ and F- is essentially spherical, so that polarization functions 
are nearly useless; the 4sp shell of Mn is empty, so that the additional sp shell 
at 0.25 bohr-2 is not used. 

In order to document the relationship between basis set flexibility, polariz­
ability of the ions and symmetry of the system, let us consider the influence 
of d polarization functions on another two ionic compounds, namely N a20 and 
K20 [48]. In Table 16 some bulk properties are reported, obtained with and 
without d functions on the cation. It turns out that d functions have negligible 
influence on all but one property of the two compounds, namely, the C44 elas­
tic constant, where reductions of 10 and 42% are observed when d orbitals are 
introduced. 

These results can be interpreted as follows. The cations are in a high sym­
metry position; when the unit cell is modified according to the deformations 
required for the evaluation of B, Cll and Cll-C12, their local symmetry re­
mains cubic, so that d orbitals are used essentially for describing the breathing 
of the ion, which, however, can also be described by the sand p functions of 
the valence shells. For these quantities, the difference between K (variation of 
the order of 3%) and Na (1%) is due to the larger polarizability of the former 
ion, or, in other words, to the smaller energy difference between valence sand 
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Na20 K2 0 
no d d .:1% no d d .:1% 

E tot -398.693 -398.695 -0.002 -1273.184 -1273.193 -0.010 
ao 5.498 5.487 -0.2 6.550 6.466 -1.3 
B 58.7 58.7 0.0 33.3 34.6 +3.5 

Cll 127.3 126.14 -0.9 71.8 74.1 +3.1 
C12 23.9 23.8 -0.4 14.2 14.8 H.l 
Cu 37.8 34.4 -10.2 19.7 13.9 -41.7 

Table 16. Effect of d polarization functions, when added to the cations, on bulk properties 
of simple oxides . .:1% is the percentage difference between the calculation with and without d 
functions (in the Etot case, it is the absolute difference). 

virtual d levels. The deformation required for the evaluation of the C44 elastic 
constant, however, drastically reduces the atomic point symmetry: the cation 
is no longer in a centrosymmetric position and the ion can undergo a dipolar 
relaxation, for which the combination of p and d orbitals is required. This effect 
is less dramatic for the Na compound, because the ion is less polarizable. 

Type Basis set liE lEI IE2 
Definition NlMg) N(O) Pv n St Pe 

BSO 9 9 - - - - 14.5 15.5 
BS1 BSO+d(Mg) 14 9 5.7 6.1 - 3.8 14.9 13.6 
BS2 BSO+d(O) 9 14 11.6 17.3 11.2 1.0 20.2 16.1 
BS3 BSO+S"t(Mg) 13 9 4.3 3.2 - 2.0 13.4 13.2 
BS4 BSO+S"t(O) 9 13 7.7 10.8 2.4 2.4 17.6 12.6 
SUM 29.3 37.4 13.6 9.2 22.6 9.0 
BS5 BSO+S"t+d on both 18 18 24.4 33.6 11.6 8.1 23.7 10.8 

Table 17. Basis set effects on the total energy of MgSi03 perovskite( Pv), MgSi03 ilmenite( IQ, 
MgO periclase(Pe) and Si02 stishovite(St); .:1E is the energy decrease (in millihartree) due 
to the indicated modification with respect to the reference BSO basis set (8-5-10 contraction 
for oxygen and 8-6-10 for magnesium; see ref (46)); the BSO reference energies (in Hartree 
per molecular units) are -713.5207(Pv), -713.5352(IQ, -438.8721(St) and -274.6641(Pe). The 
SUM entry gives the sum of the energy decrease resulting from the BS1 to BS4 entries. The 
comparison with BS5 shows that basis set effects are approximatively additive. N(Mg) and 
N(O) are the number of atomic orbitals on the atoms. 5El and 5E2 are the energy differences 
(in millihartree) Pv minus II and Pv minus (St+Pe) respectively. 

The last example describes the relative stability of MgSiOa perovskite, 
MgSiOa ilmenite and the assemblage of the two oxides, MgO periclase and Si02 
stishovite, at P = 0 [46]. The relative stability of the three phases, as a function 
of pressure, has been discussed in section 5. Table 17 shows the effect of basis set 
improvements of a given atom in different conditions of ionicity, point symme­
try at the atomic site and coordination. The energy gain obtained for the four 
systems when a set of d functions is added to oxygen and magnesium and the 
double (single for Mg) valence sp shell is split in three (two) shells (8-411G basis 
instead of 8-51G for oxygen, and 8-5-11G instead of 8-6-1G for magnesium; the 
first shell is s type, the others are sp) is reported. It turns out that the effect 
of the improvements is relatively modest, of the order of a few millihartrees, 
but varies for the different systems, so that the relative stability of the three 
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phases changes at the different levels of improvement of the reference basis set. 
The energy gain obtained with a further splitting of the valence sp shell or the 
inclusion of a second shell of d functions, is one order of magnitude smaller and 
has no influence on the relative stability of the three phases. 

9. Numerical accuracy and numerical derivatives. 

In this section, the influence of the computational parameters on total energy 
and energy related properties is documented with a few examples. In the CRYS­
TAL code [12, 11], numerical approximations are introduced in the treatment 
of the Coulomb and exchange, infinite, bielectronic series', which enter into the 
definition of the Fock matrix and the reciprocal space integration, ~hich is re­
quired at each cycle of the SCF process, for reconstructing the density matrix. 
Input parameters (Tl, T2, T3, T4, T5 and IS: see Chapter 8 and Users' Man­
ual [12]) permit us to increase or reduce the accuracy of the calculation: high 
values of the Tx parameters correspond to evaluating, exactly, a large number of 
four-centre bielectronic integrals (otherwise evaluated through one- or two-centre 
multipole expansions), with a corresponding increase of cost. The IS parameter 
controls the number of reciprocal space points, K., at which the Fock matrix is 
diagonalized, with a direct influence on the cost of the calculation. 

Cue Tx Molecule Bult 
'1'.15 KlS t TlS KE t 

1 22224 unstable - - unstable 
2 44448 -223.18039 223.48430 96 -223.83341 223.49628 841 
3 666612 -223.18152 223.50083 132 -223.84090 223.50944 3501 
4 111114 -223.18155 223.50054 139 -223.84101 223.50854 5518 
5 888816 -223.18184 223.50151 162 -223.84142 223.50965 8043 
6 999918 -223.78833 223.50407 170 -223.84192 223.51210 11836 
7 1010101020 -223.78833 223.50413 178 -223.84311 223.51330 16845 
8 202020 20 26 -223.78840 223.50425 195 

GAUSSIAN92 -223.78840 223.50426 --- --- --- ---
Table 18. The influence of the computational parameters of the CRYSTAL program on 
total(TE) and kinetic(KE) energy (in hwtree) of molecular and crystalline urea. Parameter t 
is the cost in CPU time on a medium-size workstation. A 6-21G** basis set is used ([58]). The 
last entry refers to a calculation performed with the GAUSSIAN92 program [1]. 

Roughly speaking, there are three aspects of the numerical problem that 
mulit be discussed in connection with the CRYSTAL code: a) the catastrophic 
threshold; b) the exact limit; and c) the problem of numerical derivatives of the 
energy, required for evaluating equilibrium geometry, pressure, bulk modulus, 
elastic constants and vibrational frequencies. 

a) In some situations,the calculation can have a catastrophic behaviour and a 
totally unphysical wave function is obtained. There is always a lower limit 
for the Tx and IS tolerances, below which the catastrophic behaviour may 
be obtained (see Tables 18 and 19); this limit, however, depends on many 
factors, the most important of which is the basis set quality: very diffuse 
Gaussian functions generate numerieal instability. As diffuse functions are 
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required for the description of delocalized valence electrons, it turns out that 
numerical problems are more frequent in metals than in semiconductors, and 
in semiconductors than in ionic compounds; or, stated differently, while it is 
possible to use high-quality fully-optimized basis sets for ionic compounds, 
for metals, only low- or medium-quality basis sets are allowed. Many exam­
ples related to this problem can be found in [11]. In Table 18, the total energy 
of the isolated [58] urea molecule and of the urea molecular crystal are re­
ported for different sets of computational parameters. Both for the molecule 
and the bulk, Casel tolerances are poor enough to generate an unphysical 
wavefunction and total energy. Catastrophic behaviour is also observed for 
KMnF3 (Table 19) with very poor tolerances. Values of 7 7 7 7 14 for the 
Tx parameters will be considered in the following as good computational 
parameters for a CRYSTAL calculation. 

b) The second question concerns the absolute error with respect to the exact 
total energy (within a given hamiltonian and basis set), and the speed of 
convergence towards this value. It is not easy to give qualitative answers, 
because, in general, we are not able to generate the exact total energy. Two 
possible partial answers are the following: 
i) In the case of molecular systems, a comparison with the energies produced 

by (very accurate) molecular codes is possible; if we suppose that the 
error for a given molecule and for the corresponding molecular crystal 
is roughly the same, then we can guess the order of magnitude of the 
numerical error for infinite systems also; 

ii) Convergence of the total energy can be explored in a relatively narrow 
range of values, from which extrapolation to infinite accuracy can, in 
some cases, be performed. 

In Table 18, convergence for bulk and molecular urea is shown; for the set of 
tolerances 7 7 7 7 14, the residual error with respect to the exact molecular 
result is of the order of one millihartree; taking into account the (vaguely) 
parallel trend for the molecule and the bulk, the absolute error for the latter 
is expected to be roughly the same. Table 19 shows similar data for KMnF3, 
which is fully ionic. The extremely rapid convergence of the total energy with 
respect to IS is to be noted. The energy trend with respect to Tx parameters is 
very similar to that in Table 18, and the previous conclusions on the absolute 
error remain valid. When metallic systems are considered, the convergence, 
both with respect to Tx parameters (see the discussion in [11] concerning 
the exchange series) and with respect to the number of sampling points in 
reciprocal space, is much slower. 

c) In most cases, the real problem is the relative numerical error, rather than the 
absolute error discussed above. This is the case when numerical differentiation 
of the total energy of the system with respect to some geometrical parameter 
is performed to obtain properties such as the pressure versus volume curve, 
the elastic tensor or when the relative stability of different phases is inves­
tigated. The problem is particularly delicate in a direct space approach, as 
used in CRYSTAL: all the truncation criteria work on the basis of overlaps 
between functions and distances between atoms, so that the number of mono­
and bielectronic integrals, evaluated at each level of approximation, for two 
different geometrical configurations of the system, are completely different. 
Strategems have been implemented in the CRYSTAL code (see the GEOM 
option in Users' Manual [12]) that permit us to have, essentially, the same 
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numerical error along the E( 6) curve, where 6 represents the set of explored 
geometrical variables. 

Case Tx. IS Total energy .tiE t 
~!IA_ AXi\.1 

1 22224 4 unstable unstable - -
2 44448 4 -2047.65452 -2047.65473 0.210 0.29 
3 555510 4 -2047.64004 -2047.64020 0.166 0.45 
4 666612 4 -2047.63984 -2047.64014 0.297 0.69 
5 777714 4 -2047.64309 -2047.64338 0.293 1 
6 888816 4 -2047.64316 -2047.64346 0.297 1.29 
7 999918 4 -2047.64312 -2047.64349 0.298 1.74 
8 10 10 10 10 20 4 -2047.64473 -2047.64502 0.289 2.28 
9 777714 4 -2047.64309 -2047.64338 0.293 1 
10 777714 8 -2047.64308 -2047.64338 0.297 1.24 
11 777714 12 -2047.64308 -2047.64338 0.297 1.76 

Table 19. The influence of computational parameters of the CRYSTAL program on total 
energy(in hartree) of the ferro- (FM) and antiferromagnetic phases (AFM) of KMnF3. tlE 
is the energy difference per molecular unit in millihartree; t is the CPU time relative to the 
reference case (777 7 14, 4). IS=4, 8, 12 correspond to to, 35, 84 IC points respectively. 

Pol. Number of points 
degree 11 9 7 5 

2 128.00 127.00 126.17 125.56 
3 127.78 126.78 126.00 125.39 
4 124.89 124.89 124.94 

C ll 5 124.89 124.83 124.89 
6 124.83 124.94 
7 124.83 124.94 
2 31.07 30.99 30.93 30.94 
3 31.07 31.00 30.95 30.97 
4 30.84 30.99· 31.03 

CH 5 30.84 30.89 31.04 
6 30.99 31.14 
7 30.98 31.16 
2 92.75 92.36 91.89 91.36 
3 92.72 92.33 91.86 91.33 
4 91.25 90.86 90.41 

Cll - C12 5 91.22 90.86 90.44 
6 90.41 90.00 
7 90.41 90.02 
2 66.39 65.79 65.31 64.95 
3 66.62 65.91 65.35 64.92 
4 64.58 64.58 64.S6 

B 5 64.56 64.57 64.56 
6 64.58 64.55 
7 64.57 64.56 

Table 20. Bulk modulus and elastic constants of KMnF3 (in GPa) obtained from a best fit 
of the indicated number of energy points to polynomial functions of various degree. 
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As a first example, let us consider the problem of the numerical evaluation of 
second-order derivatives of the total energy of the system. The results of fitting 
E(o) are shown in Table 20, where 0 indicates the deformation performed to 
obtain the bulk modulus B and the elastic constants Cn , Cn - C12 and C44 
of KMnF3 . The set of Oi values have been selected according to the following 
criteria: 

a) They are regularly spaced. 
b) The interval omoll: - Omin must be small enough to explore the region where 

the E( 0) curve can be fitted with a simple function and the perturbation is 
small. 

c) omoll: - Omin must be such that IE(omoll:) - E(Omin)1 is much larger than the 
numerical noise. 

The compromise between points b) and c) requires that IE(omoll:) - E(Omin)1 is 
roughly between one and twenty millihartree (it has the values 1, 4, 2 and 22 
millihartree for the four curves to which Table 20 refers). 

Very often, the E( 0) curve is not parabolic in this interval, but includes 
important third- and fourth-order components, as is easily seen going down the 
first columns of the table (for Cn -C12 , there is also a sixth-order contribution 
of about 0.8 GPa). The columns with 9, 7 and 5 points have been obtained 
by dropping the external points, that is, by reducing the interval, so that the 
contribution from high-order components is less important. The best calculated 
values of the second-order derivatives in the minimum are easily identified in the 
table (all the values falling within a 1 % interval of the selected value are indicated 
in boldface); the numerical noise can then be considered nearly constant along 
the curves. When lower-order derivatives are involved (the total energy in the 
minimum or equilibrium, geometry) the uncertainty in the calculated values, 
resUlting from the fitting procedure, is much smaller, as expected. 

As a last example, let us consider the energy difference between the ferro­
and antiferromagnetic phases of KMnF 3, which is of the order of 0.3 millihartree; 
the variation with the computational parameters, reported in Table 19, is very 
small when computational conditions more severe than the standard ones are 
used (777 7 14, 18=8)). The ferro-/antiferromagnetic energy difference remains 
stable with respect to computational conditions, even at larger lattice parameter, 
where it may be reduced by an order of magnitute, that is, of the order of 10-5 

hartree (see Figure 7.1 in ref [57], and Figure 2 in ref [31]). 

10. Comparison with experimental data. 

There is a last point that deserves some comment. The energy differences, re­
ferred to in Table 2 and the other energy related properties, discussed in previous 
sections cannot, in general, be compared directly with corresponding experimen­
tal quantities, because the latter refer to processes or reactions which are, in 
some respect, different or that take place in conditions which are different, from 
those the calculations try to mimic. 

The most trivial example, which we will discuss in some detail, is the follow­
ing: quantum mechanical calculations refer to the static limit (T = 0 and frozen 
nuclei), whereas experiments refer, obviously, to finite T. Manipulations of the 
calculated or experimental data are then required, in order to perform a proper 
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comparison. In the following, we discuss how to correct a) binding energies, b) 
lattice parameters and c) elastic constants, for these two effects. The examples 
of these three corrections all refer to alkali halides because high-quality experi­
mental data are available for these systems at various temperatures; this is not 
a common situation for other families of crystalline compounds. 

As a first example, we report below the Born-Haber cycle which connects 
calculated and experimental binding energies of N aCl. 

Nale) + 1/2CI~g) 
6 

NaClle) 298K 
-98.268 

+~ ,I '.'93" 7 J .,.", 

Nale) + 1/2C4g] NaClle] OK 

t I·"." , I·"'·" +. 
Nalg) + Cllg) 

1 
NaClle) OK 

Figure 7. The Born-Haber cycle for NaCl 

The calculated energy refers to step 1 (formation energy of the crY8tai at OK 
from the isolated atoms, disregarding zero point effects~, whereas the standard 
way experimental data are quoted refers to step 6 (LlH~ 8 = -98.268 kcal/mol). 
However, all but one step of the cycle are available experimentally: the dissoci­
ation energy of Ch (28.68 kcal/mol; the inverse of step 3) and the sublimation 
enthalpy of Na (25.71 kcal/mol; the inverse of step 2); the enthalpy difference 
between OK and 298K of solid Na (1.54 kcal/mol; the inverse of step 4) and NaCI 
(2.536 kcal/mol; the inverse of step 7) are all known. The enthalpy difference 
between OK and 298K of Ch is evaluated in the hypothesis of ideal behaviour 
(2.193 kcal/molj twice step 5). All the experimental data for reactions 2-7 are 
tabulated in ref. [59] (section 5, p. 16-59). Step 8 refers to the zero point energy 
(co) which is usually not available experimentally. For its calculation, we used 
the Debye model (see for instance ref. [60], p. 100) in which co is related to the 
Debye's temperature eD, through the equation: 

(5) 

where kB is the Boltzmann's constant. Debye temperatures for alkali halides 
can be found in ref. [47], p. 459. The resulting co value for NaCI is 1.4 kcal. The 
experimental static lattice energy, reported in Table 1, is the sum of steps 2-8: 

BE. tatie = (2) + (3) + (4) + (5) + (6) + (7) + (8). (6) 
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Syst. a298 Go ~ 6 
LiF 4.03& 3.99 0.04 0.018 
NaF 4.62& 4.57 0.05 0.018 
KF 5.34& 5.29 0.05 0.016 
LiCI 5.13& 5.07 0.07 0.022 
NaCI 5.64b 5.57 0.06 0.019 
KCl 6.28& 6.20 0.08 0.020 

Table 21. Lattice parameters at 298 K and at the static limit. Ii is the zero point contribution, 
whereas .d includes also temperature effects. All values in A. a from reference [66]; b from 
reference [67]. 

The temperature dependence of lattice parameters and elastic constants is es­
sentially linear, over a wide range of temperatures, but, at low temperature, an­
harmonic effects become negligible and the slope of the line becomes zero [61]. 
The extrapolation of the high temperature data to the static limit [61] requires 
the knowledge of the experimental data, at a given temperature and of their 
temperature dependence, in the high temperature (linear) region. It is not diffi­
cult to find quite accurate room temperature x-ray measurements of the lattice 
paramenter of alkali halides in the literature; the data reported by different au­
thors are often in good agreement and no significant differences have been found 
between very early and more recent results. The room temperature experimental 
data we selected, for six compounds, are reported in the first column of Table 21. 

However, only one paper has been found [62] that provides temperature­
dependence data for the whole set of alkali halides we are discussing. In ref [62], 
the temperature dependence of the lattice constant, a(T), is given in the form 
of a linear expansion coefficient, a(T): 

da(T) 6 
a(T) = --;:rr- = C1 + C2T + ... + C6T , (7) 

from which (knowing the lattice constant at a given temperature) it is easy to 
obtain an explicit relationship of the form [62, 10]: 

a(T) = Bo + BIT + B2T2 +.... (8) 

a(O) values obtained from equation 8 are not static limit values, because, obvi­
ously, experimental C coefficients include zero point effects. Rather, the lattice 
constant at the static limit (ao) can be obtained [61, 63, 10] as an intercept of 
the tangent to the a(T) curve at some point, Ti, on the a axis in the linear high 
temperature region, that is: 

a(Ti) = ao + DTi, (9) 

where D is the first derivative of the a(T) curve at Ti. The ao values obtained in 
this way are reported in the second column of Table 21; the third and the fourth 
columns of the same table provide the difference between the lattice parameter 
at room temperature and at the static limit (.1) and between a(O) and ao (6), 
that is, the effect of zero point motion on the lattice parameter. It turns out 
that .1 can be as large as 1%, whereas 6 is always smaller (0.5 %). 

The manipulation of the elastic constants, in order to obtain the static limit 
data, is similar to that for the lattice parameter and will not be discussed 
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here [61, 10, 63]. Several papers are available that provide room temperature 
elastic constants for the alkali halides, but only a few also provide tempera­
ture dependence (64]. By far the most complete set of data has been provided 
by Haussiihl (65], who measured both the temperature dependence and the high 
temperature Cij, for the whole set of alkali halides. Haussiihl's room temperature 
data for Cll , Cl2 • C44 and B are reported in Table 22. Where available, other 
data from different authors [64] have been compared with those by Haussiihl, 
and no significant differences emerged from this comparison. The static limit 
data can be quite different from room temperature data [10]. In particular, Cu 
can vary as much as 25%, as is shown in Table 22. Note also that the correction 
for CI 2 is positive in nearly all cases, whereas it is negative for Cll and C44 • 

The effect of zero point motion is small but not negligible: for example, Lewis et 
al [64] report 0.1, 1.4 and 0.8 GPa differences between the static limit and 4K 
elastic constants (in the order Cll , CI2 and C44) for NaCl. Although Table 22 
indicates that it is important to refer to static limit data, in many cases the 
comparison between calculation and experiment is performed with reference to 
the room temperature or low temperature data only. 

Note however that: 

a) T and zero point effects are smaller for covalent systems or for ionic com­
pounds with larger ionic charges, than for alkali halides; for example, the 
room temperature and the athermallimit values for the CaF2 [49] lattice 
parameter are 5.463 and 5.445 A respectively (0.3% difference). 

b) In most cases, the T-dependence of the investigated quantity is not available, 
so that it is impossible to correct for a proper comparison with the calculated 
data. 

B C 11 C12 C44 
298 ..1 298 ..1 298 ..1 298 ..1 

LiF 68.8 -8.1 111.3 -24.5 47.6 +0.2 63.5 -5.2 
NaF 48.5 -5.3 97.0 -18.4 24.3 +1.3 28.1 -1.7 
KF 30.2 -5.3 65.6 -14.1 14.6 +1.2 12.5 -0.8 

LiCI 31.6 -5.3 49.4 -13.8 22.8 -1.0 24.6 -3.0 
NaCI 25.1 -3.5 49.4 -11.7 12.9 +0.6 12.6 -1.0 
KCl 18.2 -2.6 40.8 -10.1 6.9 +1.1 6.3 -0.4 

Table 22. Experimental bulk modulus (B) and elastic constants (at;) in GPa at room tem­
perature (298) and correction..1 to be applied for obtaining the static limit value. Data from 
ref. [65]. 

11. Conclusions 

In Chapter 8, 9, and 10, three reliable public ab initio programs for the study 
of periodic systems are presented. The pioneering stage characterized by there 
being only a few, secret, home-made ab initio programs, with uncontrolled and 
unclear accuracy, seems overcome. In this Chapter, many results have been pre­
sented concerning the total electronic energy and related properties of crystalline 
compounds, obtained with the CRYSTAL code. Many tables have been reported, 
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aimed at documenting the stability of the results with respect to computed fea­
tures of the code and size of the basis set; many different properties have been 
explored, and large families of crystalline compounds have been considered, in 
order to give an overall indication of the quality of the results produced by the 
code. The result is that useful information on many chemical and physical prop­
erties of crystalline compounds can be obtained at a relatively low cost, with 
a medium-size workstation. Much additional work is obviously required (and is 
actually in progress) in order to overcome some of the many important limita.­
tions characterising the present all initio codes, to obtain better agreement with 
experiment and to be able to tackle more complicated crystalline structures. 
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Summary. The dynamical properties of atoms in crystalline solids are re­
viewed, in the framework of the quasi-harmonic approximation for the Born­
Oppenheimer potential energy hypersurface. Model interatomic potential func­
tions, fitted to either theoretical or experimental data, are discussed. Methods 
and results of calculations of phonon spectra and thermodynamic functions, both 
by use of model potentials and of ab initio approaches, are presented. 
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1. Introduction 

A major part of the interest, in this series of contributions, is focused on all 
possible outcomes of a quantum-mechanical calculation of the ground-state total 
energy for a system of electrons in the field of atomic nuclei arranged periodically, 
according to the rules of space group symmetry. As is well known for molecular 
systems also, the information provided concerns not only the strictly electronic 
and chemical bonding features but also the mechanics of nuclear motion. This 
is due essentially to the validity of the Born-Oppenheimer (BO) approximation. 
We recall that, owing to the much higher velocity of the electron with respect to 
nuclear motion, the dynamical state of the electronic system can be thought of 
as conforming instantaneously to a change in the relative positions of the nuclei, 
so that the motions of the two subsystems (electrons and nuclei) are uncoupled. 
Therefore, the total energy, ip, of the system depends on the positions of the 
nuclei (which are denoted collectively as R) in a parametric way: 

ip = ipee + ipen + ipnn == ip(R) (1) 
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This function, which was denoted in Chapter 3 as Eo(R), represents a hyper­
surface in the multidimensional space of the geometrical configurations of the 
system of atomic nuclei and can be determined, in practice, by sampling a num­
ber of points in that space and performing a full quantum-mechanical calculation 
of the total energy for each point. The function, ~(R), has, thus, the meaning 
of a classical potential energy, which is able to describe the statics and the dy­
namics of the system of atomic nuclei, in the framework of the formalism of 
Newtonian mechanics. The application of classical mechanics is, of course, lim­
ited by some conditions, which will be touched upon below, but which are not 
very severe for heavy particles, such as nuclei. 

It should be emphasized that ~(R) has been derived by intrinsically static 
methods, corresponding to conditions at the athermal limit T = 0 K. There­
fore, following this line of development leads one to introduce thermal effects on 
the nuclear motion, by some kind of a posteriori assumption, which, at least, 
overcomes the problem of a temperature-independent static potential energy. 
Further, the BO function of type ~(R) could have been obtained by quite differ­
ent means with respect to that outlined above: typically, by the use of euristic 
formulae of the model potential kind, where parameters optimized on empirical 
properties appear. A mixed method is very often used, based on euristic model 
potentials whose parameters are optimized not on empirical quantities but on 
quantum-mechanically computed energy values. In that case, the model poten­
tial simply takes the meaning of a numerical interpolation formula; the ab initio 
calculations are usually carried out, not directly on the solid phase of interest but 
on one or more molecular fragments which simulate reasonably well, the most 
important chemical interactions within the unit cell. No matter by what method 
the ~(R) function was obtained, from now on, the considerations concerning its 
use apply on the same footing. 

The energy potential function can be utilized from a purely static point of 
view, in order to determine the structural configuration, 8.0, which is stable 
at 0 K: this means searching for the minimum of ~(R). Such an operation 
may seem to be very simple and to require the knowledge of ~(R) only in a 
small range about the minimum point. This is often not the case, however, for 
at least two reasons. Firstly, to be certain that the point concerned is really 
a minimum and not a saddle or pseudo-equilibrium point, it is necessary that 
not only the equation V~(8.o) = 0 holds, but also that the Hessian matrix of 
second derivatives of E is positive and definite. Secondly, while finding a local 
minimum point is relatively easy, finding the absolute minimum in the presence 
of several secondary minima may be a very complicated process. On the other 
hand, the systems with many energy minima (i.e., many possible metastable 
structure configurations, in addition to the stable one) are generally the most 
interesting to study. Apart from the problem of the most appropriate numerical 
method (among others: steepest descent, conjugated gradients, Newton-Raphson 
in the local minimum case, simplexus or simulated annealing for the absolute 
minimum), searching for an absolute minimum may require the exploration of 
a large domain in the R space. However, if, for instance, an ab initio method of 
Hartree-Fock type with a basis set of localized Gaussian functions is used, the 
same optimized parameters of the basis set will surely not be satisfactory in all 
points of the domain. It should be added that a very important by-product of 
the static problem is the determination of the stability conditions of the solid 
phase at variable pressure (at 0 K) and also of the athermal equation of state 
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p = p(V). Further, the elastic constants of the phase can also be derived from a 
knowledge of suitable components of the Hessian matrix of the energy, ~(R). 

The really challenging problem is, however, twofold: modelling the local dy­
namics of the periodic atomic system by introducing the variable, time and 
representing its average thermodynamic behaviour by use of the variable, tem­
perature. This can be done in two different ways, starting in both cases from 
the knowledge of the interatomic potential energy function, ~(R). The first, 
more direct way is to employ the method of Molecular Dynamics (MD). That 
means applying, straightforwardly, the Newtonian equations of motion of clas­
sical dynamics to the atoms of the system, in the potential energy field, 4>(R). 
Actually a "box" of limited size (say, 100-10,000 atoms) is considered, removing 
the translational symmetry inside and applying periodic boundary conditions 
outside. The equations of motion are integrated numerically with respect to 
time, by the method of finite differences, choosing appropriately the finite time 
step and the starting dynamical conditions. As a result, the time evolution of 
positions and velocities of all atoms in the box are obtained, for as many time 
steps as allowed by computational resources. In principle, therefore, all local 
information on the microscopic dynamics of the single atomic particles is pro­
vided by this kind of calculation. Moreover, the atomistic dynamics are linked 
in a natural way to macroscopic thermodynamics by equating the ~otal time­
averaged kinetic energy, 1/2Li mi(vt}, to 3/2NkB(T}, where (T) is the mean 
temperature. Similarly, the total average potential energy can be computed by 
summing the contributions from all particles and thus, the total energy (equal 
to the standard internal energy, E) is obtained as the sum of the kinetic and 
potential terms. A straightforward connection is therefore established between 
temperature and the velocities of atomic motion, so that the initial temperature 
of the MD simulation can be changed by simply rescaling the starting velocities 
of all particles. According to standard concepts of statistical thermodynamics, 
the calculation can be performed for a microcanonical ensemble (called NVE, 
because the number of particles N, the volume and the energy are kept constant), 
for a constant pressure ensemble, (NpH) [1], for canonical (NVT) or constant 
pressure canonical (NpT) ensembles [2]. The cases at constant pressure allow 
the unit-cell geometry and the symmetry of the crystal to change during the 
simulation, so as to study, for instance, structural phase transitions in the solid 
state. 

The MD simulation technique is very powerful and turns out to be partic­
ularly appropriate for dealing with heavily disordered systems, which may be 
characterized by high atomic mobility (e.g. ionic conductors) or with systems 
at very high temperature, where the anharmonic effects become important. Ex­
cluding such conditions, however, a second method for simulating the dynamics 
and thermal effects in solids can be used with equal, or sometimes greater, suc­
cess [3]. This is called historically lattice dynamics (but we should specify, in 
the quasi-harmonic approximation) and is based on approximating the poten­
tial energy, 4>(R), by the first non-zero quadratic term of the Taylor expansion 
about the equilibrium configuration, Ro. Thus, the classical dynamical problem 
can be solved, straightforwardly, in an analytical way, in the form of normal 
modes of vibration oscillating sinusoidally. Furthermore, as the problem of the 
harmonic oscillator is solvable exactly by quantum-mechanical methods, the to­
tal energy of the normal vibration modes can be dealt with on a quantum basis. 
This allows us to reproduce correctly the crystal dynamics at low temperature, 
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where the classical formula of the energy equipartition is insufficient and thus, 
methods like molecular dynamics are quite unsatisfactory. The temperature is 
introduced simply through Boltzmann's statistical mechanical formulae, so that 
analytical expressions can be derived immediately for all thermodynamic func­
tions. Summarizing, the attractive features of lattice dynamics are the following: 
simple, analytical solutions of the dynamical problem, instead of tables of nu­
merical results; a correct quantum formulation of the total energy working in 
the low temperature regime. It should be added that the quadratic coefficients of 
the potential energy Taylor expansion (force constants) can be calculated, not 
only by numerical differentiation of ~(R) but also directly by first-principles 
quantum-mechanical methods, as will be discussed in the sections below. 

Before entering into the details of mainstream lattice dynamics and in or­
der to conclude this short overview of theoretical methods for studying nuclear 
motions in solids, the Car-Parrinello a6 initio molecular dynamics [4] should 
be mentioned, too. This method differs from all those previously discussed for 
a fundamental reason: no knowledge of the potential energy function, ~(R), is 
required as a starting point, but rather, the problems of electronic and nuclear 
motions are tackled and solved at the same time. Briefly, the classical newtonian 
equations of motion for the nuclei are written together with fictitious newtonian 
equations, where the role of position coordinates is played by the orbital-like 
monoelectronic functions, which are the unknowns of the self-consistent-field 
electron problem. The latter is typically formulated within the scheme of the 
Kohn-Sham equations of the density functional theory. In the pseudo-newtonian 
equations, the variable, time, has no real physical meaning, but rather labels 
all possible orbital functions, among which the variational method has to deter­
mine those which minimize the energy, considered as their functional. Thus, at 
each time step, the electron problem is solved and the time evolution of nuclear 
positions and momenta (as in classical MD) is computed contemporaneously. 

2. Model potential functions 

In the most general case, the potential energy function, ~(R), can be represented 
as the sum of terms depending on interatomic distances, rij (a two-body poten­
tial), on bond angles lPiji (a three-body potential), on torsional angles Oijil (a 
four-body potential) and so on: 

~(R) = L Eij(rij) + L Eiji(lPiji) + L Eijil(Oijil) + . . . (2) 

ij iji ijil 

Three- and four-body potentials express interactions of an essentially covalent 
type, while the two-body ones may have either covalent, ionic or dispersive char­
acter. The fundamental question is to choose an approximate but realistic model, 
including in (2) only the most significant terms on physico-chemical grounds, in 
relation to the nature of the crystalline phase studied. The next problem is to 
determine explicit values for the parameters, contained in the chosen poten­
tial formulae (5) and this will be discussed below. Typical expressions used for 
two-body potentials follow [6]. 

The Born-Mayer (or Buckingham) potential, despite its simplicity, works well 
in a variety of situations where the bonding may be partially ionic, dispersive 
and covalent: 
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2ZiZj (rij) Cij Eij = e - + Bij exp -- - 6"" 
rij Pij rij 

(3) 

In particular, the partially covalent character of the two-body interaction may 
be accounted for by letting the atomic charges Zi take empirical values smaller 
than the ideal fully ionic ones. The dispersive coefficients can be derived from 
experimental refractivity data, through the London formula, or may be consid­
ered as empirical parameters. The repulsive coefficients are also often written 
as 

Bij = exp __ 1 __ ) ( ro+ro) 
Pi; 

(4) 

where the ri lengths are called repulsive radii and their relative values are roughly 
similar to ionic radii. Repulsive radii and hardness parameters, Pi;, have to be 
determined by a fitting procedure. 

The harmonic (quadratic) and Morse potentials, effective for covalent bonds, 
have the following forms, respectively: 

(5) 

and: 
(6) 

In the first, the parameters rfJ and kr represent, respectively, the equilibrium 
bond distance and the harmoDlc force constant for the bond length deformation. 
In the Morse potential, Dij corresponds to the two-body bond energy and a is, 
again, related to the force constant of the bond. Thus, these parameters may 
either be taken directly from experimental data (bond lengths, bond stretch­
ing frequencies and bond energies) or they may be fitted to experimental or 
theoretical energy-related properties. 

The three-body angular potentials are usually of harmonic type: 

1 0 )2 Eij" = 2"k."(CPij,, - CPij" (7) 

The two parameters appearing in this expression are related to the bond-bending 
force constant and to the equilibrium bond angle. 

A further way to define the potential energy function, using a fully empirical 
approach, is the following: for each two-body atom-atom interaction, two param­
eters are given, corresponding to the bond force constant (Ai; = 824)(R)/8rlj) 
and to the residual bond force (Faj = 84>(R)/8rij). The energy derivatives are 
calculated at the equilibrium interatomic distances and the net forces on every 
atom must vanish. 

The interatomic potentials examined so far correspond to a rigid ion or rigid 
atom model, since the ability of atoms to polarize their electron density is not 
taken into account. Therefore, the dielectric and optical properties of the crystal 
cannot be reproduced at all. One way to overcome such limitations is to use 
the dipole shell model [7], according to which the i-th atom is considered to be 
made up of a core (the nucleus plus the core electrons) and a shell (the valence 
electrons). Core and shell are characterized by their own charges Xi and y;, 
respectively, with the obvious condition that Xi + Y; = Zi. Further, they are 
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located at a distance di from each other and interact elastically by a harmonic­
type law, with energy: 1/2kid~. The atomic polarizability is given by the formula 
ai = 1i2 / ki. The model parameters l'i, ki and di have to be determined by fitting 
to experimental dielectric properties. Further refinements and improvements are 
given by the breathing shell [8] and quadrupolar shell [9] models. 

The undetermined parameters, contained in the above potential expressions, 
are optimized, in some cases, on empirical properties, in other cases, on BO 
energy functions calculated by quantum-mechanics. Mixed empirical-theoretical 
schemes have also been proposed. The empirical properties are usually the ex­
perimental equilibrium crystal structure and the elastic constants [10][11]; in 
the case of the shell model, dielectric properties also have to be included. The 
structure depends on the first derivatives of the potential energy with respect 
to unit-cell constants and atomic coordinates, which must be vanishingly small. 
The elastic constants are related to the energy second derivatives according to 
ChI!: = (I/V)82~(R)/8TJh8fJl!: , where the strain components TJh(h = 1, .. ·,6) are 
related to changes in the six unit-cell constants, due to lattice strain. The struc­
tural relaxation induced by the unit-cell deformation must be taken into account, 
too, so that second derivatives with respect to atomic coordinates are needed as 
well [11]. Examples of parameter optimization for potentials of the type given in 
equations 3-7 are given in references [12] and [13]. In more accurate work, the vi­
brational frequencies (see section 3), obtained from spectroscopic measurements, 
can also be included in experimental data, used for the parameter fitting [14]. 

A number of studies have been carried out by fitting the parameters of model 
potentials to theoretical ~(R) hypersurfaces, in the case of a-quartz and other 
polymorphs of Si02. Molecular clusters such as H4Si02, H6Si207 or H12Sis016 
have been used, employing both HF (Hartree-Fock) [15, 16, 17] and LDF (local 
density functional) [18] quantum-mechanical approaches. The potential formulae 
applied range from the Born-Mayer (equation 3) to force-field-type expressions, 
such as those in equations 5-7 and combinations of these, some including the 
shell model. Different fitting strategies are used: the "observed" quantities are, 
sometimes, the numerical theoretical profiles of the energy against a single gener­
alized coordinate of the molecular cluster, while, in other cases, they are simply 
the theoretical second derivatives of ~(R) with respect to two atomic displace­
ments or two internal coordinates. The mixed theoretical-empirical approach of 
reference [17], where experimental information, as well as quantum-mechanical 
energy results, on H4Si04 are included in the fitting, has proved particularly 
successful. Some insufficiency of theoretical results coming from molecular clus­
ters has been claimed by some authors, so that using calculations on periodic 
systems instead might improve substantially the quality of the fitted potentials. 

3. Lattice dynamics 

9.1. Harmonic approximation 

The motion of atoms around their equilibrium positions in the crystal is ap­
proximated as harmonic vibrational motion [3, 19], depending on time with 
sinusoidal-like behaviour. This result follows necessarily from the form which 
the potential energy, ~(R), is given, by truncating, to second-order, its Taylor 
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expansion around the equilibrium configuration, Ro. Let every atom in the crys­
tal be labelled by the s index (s = 1,··· ,p), identifying it among the p atoms 
in the unit cell and by the lattice vector, T, identifying the unit cell contain­
ing the atom. The translational symmetry which rules the equilibrium atomic 
positions is expressed by the relation: R~T = R~ + T , where, by omitting the 
T index, the reference unit cell is understood. The dynamical variables are the 
vectors U,T(t), expressing the shifts of atoms from their equilibrium positions 
as functions of time. Clearly, the relation: R'T(t) = R~T + U,T(t) holds. Thus, 
the harmonic approximation gives ~(R) the following form: 

(8) 

where the j index means the Cartesian component (j = 1,2, 3). ~(R) is the 
potential energy referred to a unit cell of the crystal and ~(Ro) is its static 
component (u = 0). The harmonic truncation of the ~ function is valid in 
so far as the atomic shifts u are very small with respect to interatomic dis­
tances. This approximation is, of course, used to represent the atomic vibra­
tional motion in molecules also. The second derivatives of the potential energy, 
(a2~/a Uj,a Ujl,/T)u=O == \tjjl(S,S', T), take the meaning of force constants, 
which couple the shifts for pairs of different atoms in the crystal and can be 
calculated, either analytically or numerically from the knowledge of the ~(R) 
function. By consideration of the newtonian equations of motion for atoms: 

m,iij , = -~/aUj, = - L: \tjj/(S,S', T)Uj"/T 
j"/T 

(9) 

a set of second-order differential equations is obtained, which have solutions in 
the form of travelling waves of the type: 

Uj,T(t) = Uj, exp[t(k . T - wt)] (10) 

These are called vibration normal modes and are characterized by the following 
features: all atoms oscillate harmonically with the same angular frequency, w 
and with amplitudes, Uj" which depend on the type of atom in the unit cell but 
not on the unit cell itself; atoms related by a lattice vector, T, undergo a phase 
shift equal to k . T. 

The wave vector k, identifying the travelling direction of the wave and con­
trolling the phase shifts of atoms belonging to different unit cells, plays a central 
role in all the formalism of lattice dynamics. It arises only from the translational 
symmetry of the system and not from the specific assumptions of the physical 
model. In fact, the phase factor exp( tk . T) appearing in the oscillating shift of an 
atom when it is translated by the lattice vector T, is identical to the phase factor 
induced in the electronic wave function when the electron position is subjected 
to the same translation (Bloch's theorem: see Chapter 2). This is simply related 
to the group-theoretical result that the irreducible representation of the group 
of translations contains elements of type exp(tk. T). For the same reason, the 
independent wave vectors k are only those contained in the unit cell of the recip­
rocallattice (or, equivalently, in the first Brillouin zone). The vibration modes 
characterized by k ~ 0 (.\ = 211"/lkl-+ 00) correspond to very large portions of 
the crystal where all atoms oscillate in-phase; this resembles totally symmetrical 
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solutions in which the translational symmetry holds not only for equilibrium Ro 
but also for instantaneous atomic positions, R. On the other hand, when k is 
close to the boundary of the first Brillouin zone, the wavelength, A, takes its 
minimum values (of the order of a few unit cells), so that phase shifts operate 
at very short range. It should be observed finally that the Uj 6 quantities are 
actually complex amplitudes, comprising a phase factor which is relative to the 
motion of atoms belonging to the same unit cell: Uj6 = IUj6\exp('<pj.). 

3.2. Born matrix and dispersion relation 

If the travelling wave (equation 10) is substituted into the Newtonian equations 
(given in equation 9), it turns out to be an acceptable solution only on condition 
that the following homogeneous linear equations, in the complex amplitudes, 
Uja, are satisfied: 

3 P 

L L[Bjj,(s,s',k) - maw2 6jj' 666 , Wj'a' = 0 (11) 
j'=1 a'=1 

where the quantities Bjj'(s,s',k) = LT"'ij'(s,s',T)exp(ak.T) are Fourier 
transforms of the force constants. It is convenient to contract the pair of indexes 
js into a single one; thus, the amplitudes can be considered to be components of 
a 3p x 1 column matrix U and the Bjj'(s,s',k) quantities to be components of 
the 3p x 3p square matrix B(k). The latter is called dynamical or Born matrix, 
and can be shown to be hermitian. Thus, equation 11 can be rewritten in matrix 
form as (B - mw2)U = 0 and the condition to obtain a non-zero U solution is 
that the generalized secular equation holds: 

det[B(k) - mw2] = 0 (12) 

The 3p x 3p mass diagonal matrix, m, has components mj 6j', , m,6j j ,6l1 ,. 

Therefore, a travelling wave is not an acceptable solution to the equations of 
motion, unless its frequency w is related to the wave vector k by equation 12. 
The latter is an algebraic equation of order 3p, in the squared angular frequency 
w, which then gives solutions of type w1(k),··· ,wn(k),··· ,w3p(k). These 3p 
functional relationships between wand k are called branches of the dispersion 
relation, w(k). In other words, in the normal modes of vibration the frequency 
and the wavevector are not independent quantities, but are related by a multi­
valued (3p-valued) function called the dispersion relation. 

Three branches of the dispersion relation share a peculiar behaviour: the 
frequency goes to zero linearly as \kl approaches zero, along any direction in 
the Brillouin space. These are called acoustic branches, because, for' small Ik\ 
values, the corresponding vibration modes behave as long-wavelength acoustic 
waves (frequency inversely proportional to wavelength). All other branches of the 
dispersion relation show finite non-zero frequencies at the Brillouin zone centre 
and are known as optic modes. These correspond to vibrations with large phase 
shifts between atoms in the same unit cell, so that the unit-cell dipole moment 
may oscillate, too and give rise to interaction with electromagnetic radiation. 

By using periodic boundary conditions, the finite dimensions of the crystal 
(N unit cells) can be accounted for, without introducing the symmetry-breaking 
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defect of surface. As a consequence, the only values inside the Brillouin zone al­
lowed, for the wave vector k, are those satisfying the relation k = Lj (nj / Nj )bj , 
where NINaN3 = N, nj is any integer number and bj is a vector of the recipro­
cal lattice basis (see Chapter 2). Therefore, the total number of vibration modes 
is 3p (the number of eigenfrequencies, wn ) xN (the number of allowed wave 
vectors, k) and is then equal to the number of degrees of freedom of the crystal. 
Every normal mode of vibration is identified by means of the index n (running 
from 1 to 3p) of the dispersion relation branch and of the wave vector k (among 
the N values allowed by the periodic boundary conditions). 

By substitution of the dispersion relation into equation 11, the homogeneous 
linear equations in the complex amplitudes Uj 3 can be solved and thus, the eigen­
vectors, U, of the dynamical matrix are determined except for a scale factor. For 
each eigenvalue, wn(k), there is one normalized eigenvector, en{k) and so their 
number is equal to that of vibration modes. The conditions of orthonormality 
hold: 

(13) 
j 3 

The most general solution of the classical harmonic vibrational dynamics of 
atoms in the crystal is given by a linear combination of all normal modes, 
weighted by appropriate coefficients, An(k): 

Uj3T(t) = LLAn(k)ej3,n(k) exp{z[k· T - wn(k)t]} (14) 
n k 

Of course, the absolute complex amplitudes are given by: 

(15) 

9.9. Experimental methods and empirical fitting 

The dispersion relation, w(k), contains the most important information concern­
ing vibrational motions of atoms in the crystal. It is, therefore, worthwhile to 
present briefly some experimental methods to obtain the spectrum of oscillation 
frequencies of a solid substance. First, the classical vibrational spectroscopies 
(infrared and Raman), which are also used to study molecular systems, in the 
gaseous or liquid phase, should be recalled. These techniques, however, when ap­
plied to solids present a fundamental limitation: only vibration modes with k ~ 0 
may be revealed, so that just a small part of the eigenfrequencies spectrum (that 
at the centre of the Brillouin zone) can be explored. In fact, the interaction be­
tween radiation and matter produces a detectable intensity only if a sufficiently 
large number of unit cells vibrate in-phase; that means very large wavelengths 
and thus, a vanishing wave vector. For k appreciably far from the zone centre, 
on the other hand, a destructive interference arises from out-of-phase motions of 
small clusters of unit cells and the spectroscopic signal is destroyed. Infrared and 
Raman spectra of crystals are, however, very useful, because of the importance 
of frequency data close to zone centre and because the relative experimental 
equipment is easily accessible. 

In order to measure the frequencies corresponding to non-zero wave vectors, 
inelastic neutron scattering should be used [19]. Neutrons interact with the nor­
mal modes of vibration of the lattice (or phonons, see section 4.1), according to 



218 Michele Cath 

two fundamental conservation laws. In the very important case of one-phonon 
scattering (absorption), these laws take the following form: 

E' - E = liwn(k) 
p' -p = Iik+K 

(energy conservation) 
(crystal momentum conservation) 

where K is any vector of the reciprocal lattice. 

(16) 
(17) 

The initial (incident beam), final (scattered beam) energy and the momentum 
of the neutrons are easily measured from their velocity and direction. Thus, 
the energy and momentum transferred to the vibrating crystal lattice can be 
derived; for different directions and velocities ofthe scattered beam, several wave 
vectors, k, are explored and the corresponding frequencies, w(k), are obtained. 
It should be observed, however, that such experiments need a very powerful 
neutron source (nuclear reactor or spallation source), expensive equipment and 
large single crystals (about 1 cm3 of volume) as samples, so that measuring a full 
phonon spectrum along a few " directions may be a hard task to accomplish. 

An example of phonon dispersion relations determined by neutron scattering 
for CaF2 (fluorite) [20] is shown in Figure 1. 
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Figure 1. Phonon dispersion relations for CaF2 in the [001], [110] and [111] directions (see 
ref. 20). 

Three directions are explored in the wave vector reciprocal space: [001], (110] 
and [111]; the diagram is divided in three parts correspondingly. Frequency val­
ues from neutron scattering measurements are marked as circles and triangles; 
squares correspond to infrared and Raman zone-centre data. The broken and full 
curves denote calculated dispersion curves from a rigid-ion and a shell-model po­
tential, respectively. Parameters of the potentials included bond force constants 
Aij and residual forces Fij for Ca-F, Ca-Ca, Fl-Fl and FI-F2 interactions. One 
single and two degenerate acoustic branches are observed, together with four 
optic branches, in the dispersion relation. The shell model potential appears to 
account for optic frequencies better than the rigid-ion model does. 
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3 . ./. Quantum-mechanical derivation of force constants 

The lattice dynamics in the harmonic approximation can be coupled with a6 ini­
tio treatments of the electronic properties of the solid in two ways. The simplest 
one is to derive the Fourier transforms offorce constants, Bjj/( S, s' , k), by second­
order differentiation of the 4'(R) function, obtained as a ground-state total en­
ergy for different structural configurations R. For k #= 0, it is necessary to devise 
'suitable supercells, in order to account for the lowering of translational symmetry 
and this may raise the computational cost very much. For zone-centre vibrational 
modes, on the other hand, structural deformations preserve the full lattice peri­
odicity and calculations are much simpler. Further, in some favourable cases, the 
problem can be formulated, straightforwardly, in "normal coordinates" , so that 
at least part of the Bom matrix at k = 0 is obtained in diagonal form, yielding 
the eigenfrequencies directly. This is the case for two zone-centre optic modes of 
fluorite, CaF2 [21]. In the Raman active mode, two centrosymmetrical fluorines 
vibrate along the cubic cell diagonal against the fixed Ca atom at the origin. The 
normal coordinate, u, is the change in the F-F distance and the reduced mass 
is M = mF /2. In the infrared active mode, the two F atoms vibrate in-phase, 
with the same displacement; the normal coordinate is the change in the F - Ca 
distance and the reduced mass is M = 2mFmCa/(2mF + mea). By polynomial 
fitting of the total energy 4> against u, the force constants B can be derived 
as d24'/du2 and the corresponding frequencies are given as 1/ = (B/M)1/2 for 
each case. In the quoted study, where the total energy, 4>, was computed by the 
periodic Hartree-Fock approach, the results llRaman=1O.1 THz and Ilinfrared=8.1 
THz were obtained, in very good agreement with the experimental values of 9.9 
and 8.3 THz, respectively. 

The other way to obtain the harmonic force constants, quantum-mechanically, 
is based on the analytical theory of linear response [22]. By straightforward appli­
cation of the Hellmann- Feynman theorem, the force associated with an atomic 
displacement, Uj,T, is: 

~ = jn(r)8 V(r)dr 
8Uj,T 8Uj,T 

(18) 

where nCr) and VCr) are the electron density and the bare external potential 
acting on the electrons, respectively, at the position r. If nCr) is expanded to 
linear order against the atomic displacement and the force is integrated, an 
expression of 4' to second-order in the atomic displacements is obtained, whose 
bilinear coefficients are the force constants requested: 

Vjj'(S,s', T) = 

= f [8n(r) 8V(r) + no(r) 82V(r) ] dr (19) 
8 Uj, 8 Uj.T 8uj,8uj/,/T 

The Fourier transforms of force constants (components of the Born matrix) can 
be derived by introducing oscillating displacements (of the type given in equa­
tion 10) into the above expression. It is, therefore, clear that, if the response 
of the electron density to oscillating atomic shifts is known, the dynamical ma­
trix can be calculated directly. The linear response theory has been developed, 
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thoroughly, in the framework of the density functional (DFT) approach, by ap­
plication of first-order perturbation theory to the change in the electron density, 
induced by changes of the SCF-DFT electron potential energy, which, in their 
turn, are caused by atomic displacements. The matrix elements with respect to 
a plane-wave basis set are expressed by analytical formulae. 

The linear response theory formalism has been applied to the calculation of 
phonon dispersion curves in semiconductors, i.e. Si, Ge and several members 
of the 111-V family[22]. In Figure 2, results are shown for Si and GaAs, over a 
number of directions in the first Brillouin zone. Comparison with experimental 
data (diamonds) shows that this a6 initio calculation within the harmonic model 
is very successful. 
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Figure 2. Phonon dispersions for Si (above) and GaAs (below) from all initio calculatioDB 
(see ref. 22). 

4. Thermodynamic properties 

4·1. Energy quantization and phonons 

Within the framework of the purely classical theory of harmonic lattice dynamics 
summarized above, the total (kinetic + potential) vibrational energy per unit 
cell, corresponding to a given nk normal mode, is equal to: 
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EVib(nk) = 4W~k L rn, L IUjsl2 = 4w~kA2(nk) L rn, L lej,(nk)12 . (20) 
, j , j 

In the most general case, a superposition of appropriately weighted normal 
modes is present and the total energy depends only on the squares of these 
weights or excitation degrees of the vibration modes. The average values of the 
A(nk) coefficients are related to temperature by the formulae of classical statis­
tical mechanics and by means of these, one may obtain the classical value of the 
average total vibrational energy (Evib(nk)) = 3pNkBT. This expression repro­
duces the experimental data only for temperatures very far from absolute zero. 
On the other hand, the harmonic approximation leads to a very simple dynamic 
problem (the harmonic oscillator), which can be tackled successfully even on a 
quantum-mechanical basis, as is well known. All of the theory concerning the 
decomposition of motion into normal modes of vibration holds quite well in the 
quantum formulation. What changes is simply, the formula for the total energy, 
which becomes, for the single nk mode: 

EVib(nk) = (4 + link) nwnk (21) 

The degree of excitation of the normal mode is now expressed by the vi­
brational quantum number nk, instead of by the continuous variable A(nk). 
Boltzmann statistics can be applied, deriving the average value of the vibra­
tional quantum number for each mode and then summing over all modes to 
obtain the average total vibrational energy: 

1 
(22) 

(23) 

It can easily be shown that the latter expression is equivalent to its classical 
counterpart in the limit of very large T, including the quantum zero-point term. 

Equation 22 is very important because it leads in a very natural way to a 
particle interpretation (phonons) of lattice vibrations, which parallels the wave­
like view of normal modes (travelling waves). Thus, a phonon of energy nwnk is 
associated with the normal mode of angular frequency Wnkj the quantum num­
ber link represents the number of phonons with energy nwnk and the formula, in 
f'quation 22, gives the average number of such phonons. This particle interpre­
tation shows that equation 23 represents the statistical distribution function of 
phonons with respect to their energy nwnk, according to the well known Bose­
Einstein formulation. Phonons are, therefore, particles belonging, like photons, 
to the statistical species of bosons. 

4·2. Thermodynamic functions and density of states 

The quantity (Evib) given in equation 23 represents the vibrational contribu­
tion to the thermodynamic, macroscopic internal energy of the solid system. 
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Analogously, the vibrational terms of all other thermodynamic functions can 
be calculated from a knowledge of the full Wnk frequency spectrum. The most 
important formulae concern F (Helmholtz free energy), S (entropy) and Cv 
(constant-volume heat capacity): 

{S"i6} = L {-kB In [1- exp (~~;k)] + ~ t:" k) } (25) 
nk B exp T's¥ - 1 

2 2 exp(~) 
(Cv) ; E ~ WT~ [ ( 'y ]' (26) 

nk B exp t'i - 1 

In practice, the sums over all normal modes, nk, are calculated by taking into 
account all branches of the dispersion relation, but only a very limited number 
of the N allowed wave vectors. There are suitable ways to select a few tens or 
hundreds of k points in the Brillouin zone, so as to obtain quite satisfactory 
results. 

There is perhaps a more convenient way to calculate the thermodynamic 
functions, which is based on use of the density of vibrational (phonon) states 
g(w) = En gn(w). This function gives the number of normal modes (phonons) 
with angular frequency (energy) in the range between wand w + dw (~+ d( ~ » 
and is computed numerically by a simple count, within the set of wave vectors 
explored for each branch term gn (w). By knowledge of the density of states, any 
thermodynamic function, f, can be calculated through the formula: 

f = J f(w)g(w)d.w (27) 

where f(w) is the contribution to f from the single mode of frequency wand the 
integral is approximated by a sum over the eigenfrequencies, obtained as solu­
tions of equation 12. The density of phonon states is very important, because it 
provides an overall picture of the whole phonon energy spectrum and contains 
implicitly all information on the thermodynamic behaviour of the solid. A quite 
similar role is played by the density of electron states in the theory of electron 
energy bands. The density of phonon states can be determined by an inelas­
tic neutron scattering experiment more simply than the full phonon spectrum, 
resolved in the k space, can be: in fact, a polycrystalline sample is sufficient, 
instead of a very large single crystal which needs to be oriented according to the 
different k directions. 
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Table 1. Parameters of the rigid ion (RIM, first section) and shell model (SM, second section) 
potentials optimized for CaC03 (calcite) (see ref. 14). 

0-0 Ca-O C-O 

Bij(eV) 14683.5 1870.3 54129 X 10' 
20431.8 1605.4 13258 X 10' 

pij(A) 0.2107 0.2893 0.0402 
0.2127 0.2965 0.0415 

ci;(eVA6 ) 3.47 0 0 
3.47 

zo(e) -0.995 
-1.095 zOo = -2.662 ZOe = 1.567 

k.,.(eVrad-2) 2.550 
2.881 

k.(eVA -2) 0 
177.4 

-1.9. Quasi-harmonic model 

From the expression of the vibrational Helmholtz free energy (equation 24), 
by differentiation with respect to volume, a formula can be derived for the vi­
brational pressure: 

( BFvi6) 1" Evi6 
Pvi6 = - BV = V L- 'Ynk nk 

T nk 
(28) 

where: 

( V) Bwnk 
'Ynk = - Wnk BV (29) 

is called the Grueneisen parameter of the nk normal mode. Hence, the thermal 
expansion coefficient is also obtained (K is the "elastic bulk modulus): 

a= ~ (~)p = ~ (:)v = (:v)~'YnkCv.nk (30) 

However, rigorously speaking, the harmonic model would not allow the fre­
quencies to depend on volume. The force constants, V;j'(S, 8', T), are defined as 
second derivatives of the potential energy at the equilibrium structure config­
uration and thus, cannot have a volume dependence; neither can the eigenfre­
quencies, which are related to force constants through equation 11. Therefore, 
all Grueneisen parameters, the vibrational pressure and the thermal expansion 
would be vanishingly srnall in a strictly harmonic approximation, which would 
then fail to account for some fundamental properties of solids. This difficulty is 
overcome by simply assuming that Taylor expansions of the potential energy, of 
the type given in equation 8, can be performed in the proximity, not only of the 
equilibrium structure but also of deformed configurations (corresponding to dif­
ferent values of the volume). The quasi-harmonic model is, thus, obtained [23], in 
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Table 2. Some thennodynamic properties of calcite (heat capacities at constant volume and 
pressure, bulk elastic modulus, coefficient of thermal expansion and Grueneisen parameter) 
calculated by the RIM and SM potentials (first and second lines, respectively) and compared 
to experimental values (third line) at three different temperatures ( in K; see ref. 24). 

T(K) 0 300 500 

Cv(JK-lmol-1 ) 0.0 16.03 19.91 
0.0 15.89 19.70 

16.69 20.56 
Cp(JK-lmol-1 ) 0.0 16.13 20.17 

0.0 16.05 19.91 
16.69 20.56 

K(GPa) 72.07 71.59 69.92 
73.52 72.91 71.29 

73.1 67.9 
a(10-SK-l) 0.0 2.51 3.19 

0.0 2.34 2.86 
1.93 2.08 

0.830 0.841 0.845 
0.725 0.798 0.776 

0.624 0.509 

which a central role is played by the Grueneisen parameters, 'Ynk, of vibrational 
modes; these can be computed by performing Born matrix diagonalizations at 
several volumes (relaxing the corresponding structural configurations), and by 
differentiating, numerically, the eigenfrequencies according to equation 29. 

At T values much smaller than the melting temperature, the evolution of 
the crystal structure as a function of T and p can be simulated successfully 
by the quasi-harmonic approximation. The most straightforward way is to set 
temperature and pressure to given values and to minimize the Gibbs free energy 
G = F+pV with respect to changes in the structural variables (lattice constants 
and atomic ccordinates). The procedure is actually not simple: for a number of 
values of the volume, the atomic coordinates have first to be relaxed and a full 
lattice-dynamical calculation has to provide the set of eigenfrequencies. Then the 
pressure can be calculated and compared to the external one; in order to balance 
the difference, the volume has to be changed and the whole cycle repeated, until 
the difference between internal and external pressure is vanishingly small. This 
scheme has been implemented in the computer code PARAPOCS [23], where 
the anisotropy of lattice strain is also taken into account. 

As an example of application of the quasi-harmonic model, the study of cal­
cite CaCOa (space group R3e) can be referred to [14, 24]. A potential including 
terms given in equations 3 and 7 (for the O-C-O bond angle) (RIM) and an­
other one supplemented by the shell model for oxygen atoms (SM) were fitted to 
the equilibrium structure, the elastic constants and the zone-centre infrared and 
Raman vibrational frequencies. The parameters obtained in each case are re­
ported in Table 1. By use ofthese two potentials, full quasi-harmonic structural 
equilibrations of calcite were carried out at three different temperatures (0, 300 
and 500 K). All relevant thermodynamic quantities were obtained as functions 
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of temperature; a few (heat capacities per atom in the formula unit, elastic bulk 
modulus, thermal expansion coefficient and Grueneisen parameter) are reported 
in Table 2 and compared to the corresponding experimental values. It turns out 
that the agreement is very good for properties related to the purely harmonic 
model (heat capacity and bulk modulus), while it appears less satisfactory for Q' 

and r, which depend on the quasi-harmonic regime. In the latter case, the SM 
potential performs better than the RIM one. The simulated properties depend 
on the whole phonon dispersion spectrum, while only the zone-centre frequencies 
were used for the fitting of potential parameters. 

It should, therefore, be stressed that it is critical to simulate the correct value 
for the thermal expansion behaviour of solids, even at low temperature where 
intrinsic anharmonicity should be quite negligible. In this respect, a consider­
able improvement can be expected, in the future, by use of potential functions 
reproducing the theoretical BO energy hypersurface, rather than a small set of 
selected empirical data. 
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Summary. The use of periodic techniques for the study of crystalline surfaces 
(slab model) and oflocal defects in crystals (supercell model) is discussed. Special 
attention is given to projected band structures and to the possible appearance of 
surface or defect states. The (111) surface of silicon and substitutional impurities 
in silicon are used as examples. 
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1. Introduction 

Three-dimensional (3-D) translational symmetry has been exploited in the pre­
vious chapters to calculate the structure and properties of ordinary crystals. 
This is obviously a mathematical artifact: real crystals are limited by surfaces 
and contain various kinds of defects in their interior. As long as the number of 
crystalline atoms in the vicinity of such imperfections is a vanishingly small frac­
tion of the total, the average crystalline properties should not differ appreciably 
from those that can be determined on the basis of the perfect crystal assumption. 
On the other hand, these special features are a subject of great theoretical and 
practical interest on their own. Surface science is concerned with phenomena and 
processes that occur at· the interface between a condensed phase and the vac­
uum; heterogeneous catalysis is an example of the importance of this discipline. 
A recent, special issue of the journal Surface Science, provides an informative 
overview of topical problems and research tools in this field [1]. As concerns 
defects, their nature and distribution is often critically important to determine 
the structural and electronic properties of crystals [2]; the controlled doping of 
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semiconductors is an obvious example. The study of the reference perfect crys­
tal, to be denoted in the following as host crystal (HC), is closely related to 
that of its imperfections. The HC electronic structure determines the boundary 
conditions of the defect zone; in turn, the quantum-mechanical (QM) study of 
defects permits us to better qualify our initial statement about the ratio between 
the number of atoms in the vicinity of the defect and that of "proper" crystal 
atoms. For the study of the thermodynamic properties of surfaces and defects, 
the knowledge of the energetics of the HC is an essential reference. This chapter 
considers a few selected aspects of this vast subject. 

In reviewing techniques used, we will not consider in detail the use of the clus­
ter model, an extremely popular model because of its simplicity and flexibility [3]. 
In this approach, a piece of the material is ideally cut out from its surroundings 
to siJDulate a portion of the surface or a defect zone within a crystal. This cluster 
of a few atoms is treated with the standard techniques of molecular quantum 
chemistry. Simple devices are sometimes adopted for eliminating spurious effects 
related to the limited cluster size and to the presence of the boundary. For in­
stance, dangling bonds at the frontier are saturated with hydrogen atoms or the 
whole cluster is immersed in an electrostatic non-homogeneous field to simulate 
crystalline field effects. The cluster model can provide useful information if the 
cluster is properly designed and if the results are critically interpreted: in par­
ticular, it allows the use of high quality basis sets and permits us to investigate 
electron correlation effects. On the other hand, the results are often critically 
dependent on cluster size and geometry. 

Two instructive studies can be cited for this purpose. In the first one, the 
importance of a proper design of the cluster in adsorption studies on metals 
is documented by Zonneyville et al with reference to the adsorption of carbon 
monoxide at different sites of the (111) face of cobalt [4]. When the cluster was 
simply "cut out" from the metal, preserving its geometry, both the absolute 
value of the adsorption energy and the relative order of stability on the different 
sites were found to depend very much on the cluster symmetry, size and shape. 
More sensible and more stable results were obtained by adopting a model where 
the cluster was a fully optimized droplet of 12+ 1 cobalt atoms, whose central 
atom exhibited the same coordination as in bulk cobalt. Adsorption at the sites 
of interest (top, bridge and hollow) was simulated by letting CO approach the 
droplet in correspondence to a surface Co atom, to the midpoint of an atom-atom 
bond or to the centre of a triangle of Co atoms. In the second study of interest, 
Teunissen et al calculated the protonation energy of ammonia in a cage of acidic 
chabazite [5]. Four different clusters were cut out of the crystal, with dangling 
bonds saturated; the largest one comprised 60 atoms. The results were compared 
with those of periodic calculations, where the full three-dimensional structure of 
the crystal was taken into account; the interaction between different ammonia 
molecules in the periodic structure was found to be negligible. This comparison 
showed that convergenc.e of cluster results with increasing cluster size, to the 
limit provided by the periodic calculation, is slow and somewhat erratic. This is 
especially true for the· data concerning the ammonium ion, where the effect of 
the Madelung field is very important. 

In accordance with the scope of this book, we shall treat here, in some detail, 
only QM periodic approaches which adopt the same computational tools as used 
for the treatment of perfect crystals. With such approaches, size and shape 
problems which plague cluster techniques are either totally absent or are much 
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less critical; on the other hand, the model is less flexible and computationally 
more demanding. 

Regarding the kind of problems that can be the object of investigation, the 
present discussion will be limited to ideal, or quasi-ideal, surfaces and to local 
defects. Let us clarify these points. 

INFINITE CRYSTAL --> cut and relaxation .... + .... reconstruction 

SEMI-INFINITE CRYSTAL 
• • • • • • 
• • • • • • • • • • • • •• •• •• 
• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 

> multiple cut and spacing ....... MULTI-SLAB 

double cut • • • • • • 
U • • • • • • 

SLAB • • • • • • 

• • • • • • • • • • • • 
• • • • • • • • • • • • 
• • • • • • • • • • • • 

• • • • • • 
• • • • • • 
• • • • • • 

Figure 1. Models for simulating surfaces starting from a perfect 3-D crystal. 

Surfaces: 
By cutting a 3-D crystal through a crystalline plane (hkl), we generate two 
ideal semi-crystals, each limited by an ideal surface. Each semi-crystal preserves 
2-D periodicity parallel to the selected face but loses all symmetry elements 
which involve displacements in a perpendicular direction (conventionally, the 
z-direction). The ideal surface may undergo relaxation, without loss of trans­
lational symmetry, or exhibit partial reconstruction, whereby the 2-D unit cell 
becomes larger. This is a typical jinite+injinite problem: a subsystem consist­
ing of a few layers close to the surface, whose properties we are interested in, 
is connected to the rest of the semi-crystal, an infinite system whose electronic 
structure is known. Green function (GF) techniques are ideal for studying prob-
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lems like these (see Appendix A) and have been applied, in fact, to the study of 
semi-crystals, both with reference to approximate [6] and ab initio [7] Hamilto­
nians. A different technique, the slab model, is considered here: a slab (or thin 
film) is created, formed by a few atomic layers, parallel to the (hkl) surface; re­
laxation or partial reconstruction can be taken into account. The unit cell of this 
periodic 2-D structure comprises a finite number of atoms and can, therefore, be 
studied using the same techniques as for the perfect crystal. Note that, at vari­
ance with the semi-crystal, the slab may possess symmetry elements (a mirror 
plane, a glide plane, a 2-axis parallel to the surface, an inversion center) which 
involve displacements in the z-direction. In the multi-slab approach, an infinite 
number of identical slabs is considered, regularly spaced along the z-direction: 
a typical separation is 10 a.u. We have now a 3-D crystal, whose unit cell com­
prises a finite number of atoms across the slab, and a portion of the vacuum 
region separating two neighboring slabs. The multi-slab model is particularly 
advantgeous for computational schemes based on the use of PWs and soft-core 
PPs (see Chapter 3, section 3.2) [8]. Figure 1 represents schematically the three 
different models In section 2, we discuss a few topics concerning surfaces, with 
reference to the slab technique [for some of these questions, the (111) surface of 
silicon is taken as an example]: 

- What kind of surfaces are physically possible and worthy of investigation? 
- How are the band-structures of the slab and of the HC related to each other? 
- What are surface states and how can they be recognized and characterized? 
- How thick must the slab be to provide a satisfactory model of the surface? 
- How can the interaction with a regular overlayer be studied and interpreted? 
- What quantities are of interest in studying the energetics of surface processes? 

Local defects: 
A great variety of defects may exist in crystals. Reference can be made to special­
ized literature for a classification and a general discussion of their characteristics 
[2]. Defects can be macroscopically extended in two dimensions (for example, 
stacking faults) or in one dimension (dislocation lines). We limit ourselves to 
considering local (point) defects, such as substitutional or interstitial impurities, 
self-interstitials and vacancies: in this case, the geometry and chemical com­
position of the HC are changed only in a small region about the defect. An 
important class of point defects are local imperfections at surfaces; the HC here 
is the semi-infinite crystal or a 2-D slab. As an example, we can cite the case of 
a catalytic process taking place near a vacancy at an otherwise perfect surface. 
We consider explicitly, in the following, only local defects in 3-D crystals but all 
considerations can be applied to the 2-D case. The presence of the p~int defect 
completely destroys the translational periodicity of the HC; only some point op­
erations may be left. We are, again, in the presence of a finite+infinite problem 
and again, GF techniques can be adopted (Appendix A). For the application of 
these techniques, the HC solution is usually an essential pre-requisite. This is the 
reason why ab initio embedding codes for the study of point defects have become 
operational only recently, both in the framework of the density functional (DF) 
[9], and of the Hartree-Fock (HF) [10] approximation. The discussion of these 
methods is outside the scope of this book. Here, we limit ourselves to recalling 
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that among the non-standard methods adopted for the study of perfect crystals, 
there is one, the recursion method, [l1J which is ideally suited to point defects 
because it does not exploit translational periodicity (see Chapter 3, section 5). 
For the application of standard crystalline methods to the solution of the point­
defect problem, it is essential to restore 3-D periodicity. For this purpose, the 
supercell (SC) model can be adopted. This rather artificial trick consists of in­
troducing super-unit-vectors, Ai ,A2 and As, which are linear combinations of 
integer coefficients, h,h and is, with the original unit vectors of the HC, aI, 
a2 and a,. The point defect is then reproduced identically within each SC. The 
system can now be treated as a perfect crystal usillg standard crystalline meth­
ods. Of course, the model is more acceptable the larger the distance between 
defects, that is, the longer the super-unit-vectors, but the computational cost 
increases rapidly with SC size, that is, approximately proportional to (hhh)3 
(see Chapter 3, section 5). In section 3, we address briefly two important ques­
tions concerning the local defect problem: 
- How can charged defects be treated with the SC model? 
- How rapidly do calculated defect properties converge with increasing SC size? 

2. Crystalline surfaces 

2.1. The stability of ionic crystal surfaces 

Not all crystalline surfaces are physically stable or worthy of investigation. This 
is specially true for ionic or semi-ionic crystals. We summarize, in this section, 
the analysis carried out by Tasker concerning this point [12]. Consider a certain 
(hkl) plane, and construct a slab parallel to this plane. The slab will be composed 
of a certain number of repeat units which are, in turn, composed of atomic layers 
parallel to the selected face. The resulting structure can be classified in one of 
three categories (Tasker types): type 1 consists of neutral layers, each with the 
same stoichiometry as the host crystal; type 2 consists of charged layers, arranged 
symmetrically so that the repeat unit presents no net dipole perpendicular to 
the surface; type 3 consists of charged layers alternating in such a way that 
the repeat unit has a net dipole per unit area,d, normal to the surface. While 
surfaces of type 1 and 2 may exist, those of type 3 are unstable and can only 
be prepared with substantial reconstruction or with the adsorption of charged 
species. In fact, if we consider a slab of type 3, consisting of n repeat units, 
a net potential difference builds up across the slab: 6V = 21rdn, which would 
correspond to a huge surface energy for macroscopically large n. 

Following Tasker, we reproduce, in Figure 2, the schemes of a few low-index 
faces of the rocksalt, zincblende and fluorite structures, which show the three 
types just discussed. Note that, in some cases, the surface may be "possible" or 
"impossible" according to the chosen termination. 

2.2. Two-dimensional Band Structure and Surface States 

The electronic structure of a thick slab will be very similar to that of the HC but 
will contain, in addition, characteristic surface features which become particu­
larly evident in the band-structure. A 3-D perfect crystal can be viewed as an 
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Rocksalt (N aCI) 

(100) {1} (110) {1} (111) {3} 

[ -X-M-X-M- [-X-M-X-M- [-M-M-M-M-
-M-X-M-X- -M-X-M-X- -X-X-X-X-
-X-M-X-M- -X-M-X-M- -M-M-M-M-
-M-X-M-X- -M-X-M-X- -X-X-X-X-
-X-M-X-M- -X-M-X-M- -M-M-M-M-
-M-X-M-X- -M-X-M-X- -X-X-X-X-

Zincblende(ZnS) 

(100) {3} (110) {1} (111) {3} 

[-M---M--- [ -X-M---X- [ -M---M---
-X---X--- ---X-M--- ---X---X-
---M---M- -X-M---X- ---------
---X---X- ---X-M--- ---M---M-
-M---M--- -X-M---X- -X---X---
-X---X--- ---X-M--- ---------

Fluorite (CaF2) 

(100) {3} (110) {1} (111) {2or3} 

[-M---M--- [ -X-M-X-X- -X-X-X-X-
-X-X-X-X- -X-X-M-X-
---M---M- -X-M-X-X-
-X-X-X-X- -X-X-M-X-
-M---M--- -X-M-X-X- -X-X-X-X-
-X-X-X-X- -X-X-M-X- -M-M-M-M-
-X-X-X-X- -X-X-M-X- -X-X-X-X-
-M---M--- -X-M-X-X- ---------

Figure 2. Representation of stacking sequences corresponding to different ionic structures 
and different crystal planes. The Tllder tllpe of the sequence is indicated in braces (see text); 
the set of square brackets indicates the basic repeat unit (the proper repeat unit, as defined in 
Appendix B, may contain a number of basic repeat units, each associated with a fractionary 
translation parallel to the selected face). In the fluorite structure, the M species has twice the 
charge of the X species. 
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infinitely extended slab, with no limiting surfaces. In this picture, the general", 
vector of the Brillouin Zone (see Chapter 2) is conveniently decomposed into a 
parallel component, parallel to the selected face and into a perpendicular compo­
nent: '" = "'II + "'.1.. Appendix B shows how to obtain a projected band-structure, 
that is one where all eigenvalues ei("'11 +"'.1.) are attributed to "'II, independently 
of "'.1.. For a given "'II, allowed (black) energy intervals appear, corresponding 
to eigenvalues associated with extended crystalline states, alternating with for­
bidden (white) energy intervals. Overall, the projected band-structure looks like 
a mixture of white and black lenses and layers. When comparing the HC pro­
jected structure with that of a slab of finite thickness, interesting similarities 
and discrepancies appear (for this discussion, reference is made to Figure 3): 

- The first impression is one of strict correspondence between the projected 
band-structure and those of the slabs, after performing a rigid shift along 
the energy axis by a finite amount, ee, which is small in the present case 
(De ~ -0.08 Hartree) but can be much larger. What does this mean? The 
potential zero can be arbitrarily chosen in an infinite, perfect 3-D crystal. 
In a semicrystal or a slab, it is customary to set to zero the potential at an 
infinite distance from the surface (in a slab, two different zeros may be chosen, 
if the slab itself has non-zero electric dipole moment in the z-direction). 
This choice determines the position of all one-electron levels. Within a one­
electron model, the general eigenvalue of the slab will correspond to the 
energy required to extract an electron from the associated eigenstate and 
bring it outside the crystal over the selected face. In the case of a metal, 
the Fermi energy, ep, determined with this convention, corresponds to the 
workfunction relative to the selected face. The band-structure of the HC can 
be adjusted to that of the slab, by shifting all HC eigenvalues by an amount, 
De, equal to the difference between a core level of an atom at the center of 
the slab and the corresponding one in the bulk. 

- Instead of black and white lenses and layers, the slab band-structure exhibits 
a discrete set of bands, which may run very close to each other in the neigh­
bourhood of "'II points where the HC projected band structure exhibits short 
black segments, separated by large white intervals. This is an obvious con­
sequence of the finite slab thickness: for each "'II point, the number of slab 
eigenvalues equals the size of the basis set (the number of basis functions in 
the unit 2-D cell) and is proportional to the slab thickness. 

- With increasing slab thickness, the similarity with the HC becomes clearer, 
and the black-white structure makes itself evident. At the same time, there 
are some peculiar features which remain practically constant and have no 
counterpart in the HC. There may be, in particular, some bands which cross 
the white lenses, corresponding to energy eigenvalues which are forbidden 
in the HC for functions of that symmetry and are clearly associated with 
the presence of the surface. The corresponding eigenstates are called surface 
states. They are localized in proximity to the surface and their amplitude 
decreases exponentially with increasing distance from the surface. A surface 
resonance is a state which is also predominantly localized at the surface but 
its eigenvalue lies in an allowed interval of the HC band-structure for the same 
"'II and, therefore, has an oscillatory tail which extends to infinite distance 
inside the crystal. 
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- Surface states and resonances are particularly sensitive to surface relaxation. 
Occupied surface states are often considerably stabilized by relaxation and 
eventually, transform into resonances; the opposite is true for virtual surface 
states. The fact that the position of surface states does not change with 
increasing slab thickness, is a good indicator that the slab is thick enough 
to represent a good model of the selected crystalline face. We also note that 
in thin slabs limited by two equivalent surfaces, the bands corresponding 
to surface states are doubled, indicating a bonding-anti bonding interaction 
between states at the two faces; the extent of the splitting is reduced rapidly 
with increasing slab thickness. 

- The chemical characterization of surface states is often obvious from an ex­
amination of the projected band-structure and of the associated density of 
states [13]. 

Figure 3. Band-structureeohilicon with reference to (111) lIlll'faces. Top left: (111)-projected 
band-structures for bulk Si; top right: band-structure for a 2-layer slab; bottom left: same as 
in preceding plot for a 6-layer slab; bottom right: same for a 12-layer slab, with H saturation 
of lIlll'face dangJing bonde. The thin horizontal line in the last three plots is the Fermi level. 
The inset shOWl the path followed in the 2-D Brillouin zone (BZ): see Appendix B. Energies 
are in Hartree. The calculatioDl have been performed with CRYSTAL (Chapter 8), using 
pseudopotentiala and a double-. baeia set for valence electrone. 

1.9. Regular Chemisorption at Surfaces 

Perhaps the most common application of the slab model is the study of the 
regular adsorption of molecular or atomic species at crystalline surfaces. In the 
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simplest case, a monolayer (M) of the adsorbed species is considered, which has 
the same 2-D periodicity as the slab (S). Lower coverages can be studied by using 
a SC model, where the two unit vectors ofM are multiples of those ofS. M can be 
positioned either over one of the two surfaces of S (M-S) or symmetrically over 
both faces (M-S-M). The new 2-D crystal can be treated with the same standard 
tools as used for S alone. By changing the distance of M from the surface, the 
internal geometry of M and possibly, that of the crystalline atoms closer to the 
surface, relatively complicated adsorptive or catalytic processes can be studied, 
such as the interaction of water with zirconia [14]. Rather than documenting 
this kind of studies, we discuss briefly how to obtain useful information from an 
analysis of the band-structures of the two interacting systems, M and S. The 
excellent booklet by Hoffmann can be very useful to go deeper in this subject, 
starting from concepts of current use in molecular organic chemistry [15]. 

Consider first the two non-interacting systems, M and S. While S has a 
physical meaning, the isolated M system is usually an unphysical structure, 
since the periodic arrangement of the constituent species takes place only on 
adsorption. Nonetheless, M may be viewed as resulting from a rigid displacement 
of the adsorbate to a large distance away from the surface. From another point 
of view, it can be useful to have an estimate of the energetic cost of ordering 
the overlayer, which must be compensated by the formation of bonds with the 
surface. Since M and S are characterized by the same translational symmetry, the 
two BZs coincide and the two band-structures can be legitimately super-imposed: 
the resulting band-structure will be referred to as M+S. In this case, there is no 
arbitrariness in the absolute location of the bands, since the two potential zeros 
coincide (at a large distance above S and below M). Only one-electron states 
with the same symmetry (in particular, with the same "II ) can interact. Also, 
as is known from molecular chemistry, the two functions tPiM("II) and tPjs("II) 
must be close in energy, in order to interact appreciably. In summary, we can 
expect that the band-structure of the M-S system will be similar to M+S, except 
where there is crossing or near-crossing of bands of the two sub-structures. A 
large modification of the independent energy levels will be an index of strong 
chemical interaction. There is still an important point to be taken into account, 
however: namely, the relative geometric position of the two subsystems, both 
concerning vertical distance and horizontal displacement. The M+S structure 
will be independent of these parameters but, for a bonding interaction to take 
place, it is also essential that the two interacting wave-functions [tPiM("II) and 
tPjs("II)] are located with respect to each other, in such a way that appreciable 
overlap takes place between them with the correct phase. To ascertain this point, 
it is important to know the chemical composition of the two orbitals and it can 
be useful to sketch a simplified scheme of their periodic structure, by taking into 
account the phase factor ezp(a"U . Til) associated with a displacement by a 2-D 
lattice vector Til (see Chapter 2). 

Figure 4 represents the simple case of H on (111) silicon. The valence band 
structure of the isolated H monolayer (M) essentially consists of a semi-occupied 
band of moderate width because the distance between neighbouring hydrogens 
is large (3.86 A). When super-imposed on the band-structure of the 6-layer 
silicon slab, the M band results in the same energy range as the bands associ­
ated with dangling bonds (db) of silicon. For each "II' the two wave-functions, 
tPM("II) and tPd"("II), have exactly the same structure. The best bonding in­
teraction is then found when hydrogens are located above surface silicons, at a 
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distance such that there is best overlap between s H orbitals and surface Spz 
hybrid orbitals. This result confirms elementary chemical considerations. More 
complicated cases may occur when M interacts primarily with surface states or 
resonances, resulting from a combination of SP:t:,lI hybrid orbitals: see, for in­
stance, references [15] and [16]. 

r~.. ~K ~r·.IO~r ~M ~I( ~r 
Figure 4. Band-structures concerning the symmetric adsorption of atomic H on a 6-1ayer 
(111) slab of silicon. Left: Superposition of the two non-interacting structures; the H band 
is the heavy line. Right: band-structure for the interacting systems, with H on top of the 
silicon surface. The calculations have been performed with CRYSTAL, using a pseudopotential, 
double-z basis set; both band-structures correspond to a cl08ed-shellsolution. Symbols and 
units are as in Figure 3. 

e . ..f. Energy parameters in Surface Studies 

Table 1 illustrates, schematically, important energy data which can be obtained 
from periodic slab investigations. The table is self-explanatory. Some care must, 
however, be taken when applying these formulae, because they often correspond 
to small differences between large quantities. If the computations do not adopt 
exactly the same computational technique, the same cut-off parameters and the 
same numerical accuracy, the final result may be affected by substantial relative 
errors. This may happen, in particular, when calculating the surface formation 
energy, by combining information coming from a 3-D calculation (0") and a 2-D 
calculation (1). Boettger has recently discussed the risks involved in using such 
formulae and he has suggested, instead, the use of a procedure whereby both 
the 0" parameter and the surface formation energy are determined from a series 
of 2-D calculations, corresponding to different film thicknesses [17]. 

3. Local defects 

3.1. The Supercell Model and the Problem of Charged Defects 

A major problem for the application of the SC model to the study of local defects 
consists of the spurious interaction between defects in neighbouring SCs. Each 
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Table 1. Reference systems and energy parameters of interest in surface studies. HC denotes 
the perfect host crystal; S the (hkl)n-slab; M the ad-layer. 

E Reference system 

a Bulk HC 
f3 S (unrelaxed) 
-y S (relaxed) 
8 S (relaxed,reconstr.) f,. isolated ad-species 
( M(isolated) 
'1 M-S (optimized) 
9 M-S-M (optimized) 

Energy expression 

b - na)/(2nA) 
(f3 - -y)/(2A) 
(8 - t-y)/(2A') 
Uf,. - '1 
(2L: /Lf,. - 9)/2 
(-'I 
(2( - 9)/2 

Conventional unit Chemical composition 

3-D unit cell 

~r 2-D unit cell, area A n vX" 
2-D unit cell, area A n vX" 
2-D supercell, area A' =tA tn vX" 
atom or molecule Y,. 
2-D supercell, area A" =uA L: /LY,. 
2-D supercell, area A" un t vX" + fiY" 
2-D supercell, area A" un vX" + 2 /LY,. 

Quantity 

surface formation E per unit area (no reconstruction) 
surface relaxation E per unit area (no reconstruction) 
surface reconstruction E per unit area 
adsorption E with respect to isolated atoms or molecules 
adsorption E with respect to isolated atoms or molecules 
adsorption E with respect to the isolated M monolayer 
adsorption E with respect to the isolated M monolayer 

defect causes a disturbance in its proximity, consisting of a rearrangement of 
the electron distribution and a displacement of nuclei. In many important cases, 
defect states may be present as well, analogous to the surface states described 
in section 2.2: however, while surface states may appear within "white lenses" 
with specific 11:11 values, no translational symmetry is left in a crystal with a local 
defect, so defect states may be present only in band gaps of the HC. The size of 
the SC must be sufficiently large that the perturbed zone created by each defect 
is contained within its SC (this statement must be interpreted in a broad sense; 
for instance, one-electron wavefunctions associated with defect states should be 
essentially localized within the cell). In the next section, we shall show through 
an example that accurate ab initio SC defect studies are feasible with present-day 
computational tools, in the case of simple neutral defects. 

With charged defects, the problem is much more difficult. In this case, it is 
not possible to use the SC technique directly, because the infinite repetition of 
the charged unit leads to unphysical divergent contributions to the Hamiltonian 
and to the total energy. The usual trick for solving this problem consists of 
compensating the charged defect with a uniform background of opposite charge. 
Operationally, this requires no modification of the computer code if the Ewald 
technique is adopted for the treatment of the long range Coulomb terms (Chapter 
8): in this method, each fraction of the unit cell charge is implicitly compensated 
with a background charge, to insure charge neutrality. The description of the 
system is now as follows: in each SC, we have a local defect (for instance, a 
cation vacancy) plus the uniform background of opposite charge. However, the 
electrostatic field created in the reference SC by the compensated defects in all 
other cells is far from negligible and can influence the electronic distribution and 
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the ionic relaxation. Leslie and Gillan [18] proposed a correction E" for the SC 
formation energy of a charged defect in a cubic lattice, that cancels, to some 
extent, the interaction between the periodic array of compensated point defect 
charges: 

E" = _aQ2 / goL 

where L is the lattice parameter of the SC, a is the appropriate Madelung 
constant, Q is the charge of the point defect and go is the static dielectric constant 
of the He. The proposed correction seems to work reasonably well for ionic 
systems: it has been used in conjunction with DF [19] and HF [20] ab initio 
studies of vacancies in MgO. However, it is far from satisfactory from a general 
point of view: 

i) the correction is specific to cubic lattices; 
ii) it is, in a way, semi-empirical, because the experimental dielectric constant 

is used; 
iii) the correction is performed a posteriori: it is then implicitly assumed that 

ionic and electronic relaxation effects due to the presence of the other defects 
are unimportant. 

In a sense, the vast field of charged defect investigations is still in its infancy, 
as far as ab initio approaches are concerned. This is probably one of the cases 
where useful information can be gathered through a critical comparison between 
the results of SC and embedded cluster studies [20]. 

9.f. Convergence 0/ Calculated De/ect Properties with SC size: Substitutional 
Carbon in Silicon 

In this sub-section, we present, in summary, the results of a recent SC study 
by Orlando et al [21] concerning a carbon substitutional impurity in silicon. 
The calculations have been performed with the HF CRYSTAL code (Chapter 
8). Pseudopotentials have been adopted for core electrons of both C and Si; for 
valence electrons, a good split-valence plus polarization set was used. The cases 
S8, S16, S32 and S64 were considered, where the number after "S" indicates 
the number of HC unit cells in each SC. Stars of atoms near the substitutional 
impurity, and within the SC were allowed to relax; the number of such stars is 1, 
1, 3 and 4 in the four cases. In all cases, the cubic symmetry is maintained: S8 and 
S64 are simple cubic, S16 is face-centered, S32 is body-centered. Substitutional 
defect energies are calculated with respect to energies per atom of perfect silicon 
and diamond. Correlation contributions to defect formation energies have been 
estimated a posteriori using the DF formula by Perdew (see Chapter 11). 

Table 2 summarizes the most important results of this study. The following 
conclusions can be drawn. The relaxation of silicon atoms around the defect is 
expected to depend on their electrostatic interaction with the negatively charged 
defect (C is appreciably more electronegative than Si) and on the propagation of 
the displacement of the four first neighbours towards the C atom (C is noticeably 
smaller than Si). The results show that the latter, "covalent" effects dominate 
the relaxation process, while electrostatic effects are quite short-ranged and are 
completely screened by first neighbour Si atoms. The C-Si bondlength reduces 
from 2.36 to 2.12 A; second- and third-neighbour silicon atoms relax, in turn, to 
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minimize the deviation of the Si-Si bond-length from the perfect crystal value. 
The relaxation energy is very high (about 2eV). SCs containing at least 32 atoms 
are necessary in order to describe relaxation properly. 

Table 2. Defect formation energies and net Mulliken charges for & carbon substitutional impu­
rity in silicon, &8 & function of SC size. Energies in parentheBe8 include correlation corrections 
(see text). Sil and SiII are first and second neighbours of the C impurity, respectively. Net 
cha.rges are referred to fully relaxed structurell. . 

Substitution energy (eV) Net Mulliken charges 
SC Unrelaxed Relaxed C Si l Sill 

S8 3.93 (4.98) 2.86 (3.74) -1.085 0.341 -0.094 
S16 3.94 (5.00) 2.81 (3.68) -1.101 0.361 -0.049 
S32 3.93 (4.98) 2.06 (2.87) -1.201 0.375 -0.022 
S64 3.92 (4.98) 2.01 (2.83) -1.202 0.376 -0.025 

4. Conclusions 

The use of periodic models for the study of surfaces and local defects has gained 
importance in recent years. The periodic approach is, in a sense, in an interme­
diate position with respect to molecular duster models and the GF approach. 
With respect to both techniques, the periodic approach will remain a reliable, 
dearly defined reference of fundamental importance for calibrating methods and 
for testing approximations. 
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A. Green Function Techniques for the Study of Imperfections in 
Crystals 

The purpose of this Appendix is to give an idea of how GF techniques can be 
applied to the study of surfaces and point defects in crystals. For a general 
introduction to GFs and their application in physics, excellent textbooks exist 
[22]. 

For a given crystal, let us denote a set of localized basis functions by {tP,..} and 
the corresponding Hamiltonian and overlap matrix, by H and S. For a complex 
energy value z = e + IS, the Green matrix: 

G(z) = (zS - H)-l (1) 
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is defined everywhere except at those z values where the secular equation is 
satisfied: det(zS - H) = 0 and the matrix inversion in equation 1 is not possible. 
Since Sand H are both Hermitian, the secular equation is satisfied only for real 
z = ej values. These are, of course, the one-electron eigenvalues corresponding 
to eigenfunctions tPj(r), that is: 

2:, HI'IICll j ej 2:,SI'ACAj 
II A 

tPj(r) = 2:, Cl'j¢l'(r) (2) 
I' 

The ej values may be either isolated or they may fill energy intervals (bands). In 
the former case, they are called poles of G(z)j in the latter case, they are said to 
belong to an analiticity cut. For a A value within the cuts, the eigenfunctions are 
denoted as: tP(rj A) = LI' CI'(A)¢I'(r). The Green matrix elements GI'II(Z) are 
polynomials in z and are, therefore, analytic functions of z everywhere except at 
poles or along cuts. A number of important properties derive from this simple 
fact. In particular, a strict relationship is easily shown to exist between the Green 
matrix and the density of states (DOS) N(e) (see Chapter 3, section 4.2): 

(pole.) (cut,) 

NI'II(e) = ~ C~jcllj6(e - ej) + J dA C~(A)CII(A) 6(e - A) 
J 

(2z1rr 1 lim [GI'II(e - 2S) - GI'II(e + 2S)] (3) 
,-+0 

where GI'II(Z) = i: deNI'II(e)j(z - e) (4) 

Relation 3 is used in the recursion method (Chapter 3, section 5) for obtaining 
the crystalline DOS, after calculating, approximately, the inverse of (zS - H) by 
a continued fraction technique, which exploits the quasi-diagonal matrix of H 
and S. Vice versa, after solving the periodic problem by a standard technique, 
we can obtain from the DOS the crystalline GF according to equation 4. 

The power of GF techniques becomes evident when considering the effect of 
perturbations on a reference system whose solution is available. In the present 
case, the reference system is the HC: all corresponding quantities will be denoted 
with a zero subscript. For simplicity, we will consider only the case where the 
basis set is the same for the perfect and the imperfect crystal (for more general 
cases, see, for instance, references [23]). Let us denote by V the perturbation 
matrix: 
V = H - HO, whence: [G(Z)]-l = [GO(z)J-l - V. From elementary matrix 
algebra, the identity is obtained: 

(5) 

If VI'II is different from zero only when both I' and v belong to a finite subset (C) 
of the representative basis set (in other words, when the perturbation is local), 
the useful relationship (embedding equation) is immediately obtained: 

(6) 
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which permits us to determine the electronic structure in the defect region, by 
limiting the computation to that region, while taking into account exactly the 
boundary conditions. The above equation was derived and applied to the study 
of defects in crystals for the first time by Koster and Slater [24J. Among the 
enormous number of applications possible, we can cite its use for the study of 
surfaces by Kalkstein and Soven [6]: the HC is cut in two by setting to zero 
all matrix elements of H between functions belonging to the two halves, that 
is: V,." = - H~", if J.' and 11 belong to two different halves of the crystal. V is 
different from zero in a region C, comprising few layers near the cut. Equation 
6 can then be used; due to translational 2-D symmetry, the problem can be 
factorized into a separate one for each "II value. In summary, the sequence of 
steps to be taken for a standard GF approach to the problem of imperfections 
in crystals is as follows: 

a) Use a standard procedure for solving the HC problem; 
b) From the HC DOS, obtain GO(z) (equation 4); 
c) Individualize the C zone; 
d) Construct the Vc matrix; 
e) Solve equation 6; 
f) Reconstruct the local DOS Nc, according to 3. 

Steps d) to f) must be solved to self-consistency 

B. Projected Band-Structures 

The cartesian components of the three vectors a1, a2 and a3, which define the 
primitive cell of the HC may be arranged columnwise in a 3x3 matrix A (a1 = 
aui + a2ti + a31k, etc.) ; the volume of the cell is V = I det(A)I . Consider 
now a new cell defined by three translation vectors a'l, a' 2 and a' 3 ; the first 
two belong to a plane n, parallel to the selected face, the third one points in a 
perpendicular direction (this is the most common case, though not the general 
one). We can write: 

A'=AL (7) 

where the matrix A' contains columnwise the cartesian coordinates of the vectors 
a'1, a' 2 and a' 3 and L is a matrix of integers: a' j = 11j a'l + 12j a' 2 + 13j a' 3. The 
volume of the new cell (let us call it the P-cell) is V' = nV, with n = I det(L)\. 
We shall be specially interested in a triplet a'l, a' 2 and ag , corresponding to 
the lowest value of n, nO = I det(LO)li if nO = 1, then the new cell is equivalent 
to the original one. If we choose a' 3 = mag, the corresponding cell contains 
n = mno crystalline units, arranged in a sequence of m repeat units stacked in 
a pile perpendicUlar to n (see Figure 5). 

From the definition of the fundamental vectors of the reciprocal lattice [61 = 
(211'/V)a2 x a3, etc.: see Chapter 2] we have easily: 

B'=BM (8) 

with 

(9) 
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Vectors b'l and b'2 lie in a plane parallel to Pj b'3 equals bg/m and is perpendic­
ular to II (Figure 5). The general vector k ofreciprocal space can be expressed 
as follows: 

k = EZjbj = Ezjb'j - Ik} = Biz} = B'lz'} (10) 

where Ik} is the column vector of the cartesian co-ordinates of k and the column 
vectors Iz} and Iz'} contain its fractionary co-ordinates with respect to the two 
basis sets. From equations 8 and 10 the relation is obtained: 

Iz} = Mlz'} (11) 

which allows us to express the "old" fractionary co-ordinates in terms of the 
"new" ones. Two k points are equivalent with respect to the conventional cell 
(or to the II-cell), if the corresponding Iz} (and respectively, Iz'» differ by a 
vector Ii} with integer components. Following the definition of a parallel and a 
perpendicular component of k, introduced in section 2.2 (k = kU +kJ.), it is clear 
that k points, characterized by the same kU and kJ. = jb'3(j = 0,1, .'" n - 1), 
correspond to the same point in the JI-BZ but are inequivalent with respect to 
the original BZ. 

. . . . 
I • 

• I • 
.•• I e • . . . . . . . . 

Figure 5. Schemes of direct and reciprocal unit cells, for the calculation of l1-projected band. 
structures. . 

In summary, the procedure for drawing a II -projected band-structure is as 
follows: 

a) Select the triplet a'l, a'2 and ag, and construct the corresponding Lo matrixj 
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b) Choose an appropriate integer n = mno and construct the M matrix (equa­
tion 9); 

c) Choose a path in the plane kU = 0, formed by segments connecting some 
special points 5, each characterized by fractionary coordinates Ix"O} = 
(x~', x~, 0); 

d) For each s.., construct n displaced points 5i +-+ Ix"i} = (x~', x~, j), with 
j = 0,1, ... , n - 1 and obtain the corresponding IX'i } using equation 11; 

e) For each j, calculate the HC band structures along the displaced path 
which joins in a sequence the 5i points and superimpose all of them: the 
black/white structure, described in section 2.2, will appear for m large 
enough. 

As an example, consider the case of the (111) surface of silicon, an fcc lat­
tice. From the standard definition [al = (a/2)(j + k); a2 = (a/2)(i + k)j aa = 
(a/2)(i + j)] we have: 

a(0111\ 
A=2 ~ ~ ° I 

I 

(12) 

The triplet a'l, a' 2 and ag can be chosen, as follows: a'l = -a2 + a3, a' 2 = 
al - aa, ag = al + a2 + aa (and a'a = mag), that is: 

( ° 1 1 \ 
La = -1 ° 1 I 

1 -1 1 
I 

v = (~1 ~ ;: \ -+ nO = 3 ; n = 3m 
1 -1 m 

I 

(13) 

A' = AL = ~ (~ ~~;: \ ; M = i (-211 -~ ~~;: \ (14) 
2 1 -12m I -1 l/m I 

The vectors b\ = (211/3a)(-2i + 4j - 2k) and b'2 = (211/3a)(-4i + 2j + 2k) 
which define the projected unit cell in reciprocal space, are immediately seen 
to form an angle a = arccos[(b't . b'2)/(lb'tl!b'21)] = arccos(0.5) = 1f/3. The 
BZ is an hexagon. A suitable path for constructing the projected band struc­
ture is r - M - K (see Figure 3), where the three points are defined by: 
r = ° b\ + ° b'2 ; M = ° b\ + (1/2) b'2 ; K = (1/3) b'l + (1/3) b'2. The 
fractionary co-ordinates of the displaced points are: 

ri +-+ Ix,rj) = (O,O,j) +-+ Ixrj } = (J,J,J) 
M~ +-+ Ix,Mj) = (O,l,j) +-+ IxMj ) = (1 + J, _1 + J, -i + J) 
K' +-+ Ix,Kj} = (~,tj) +-+ IxKj ) = (i+J,-I+J,J) 

where j = 0, ... , 3m - 1 and J = jf(3m). 
With CRYSTAL, after choosing a shrinking factor IS=6m, the integers which 
define the three line extremes are: (2j, 2j, 2j); (2m+2j, -m+2j, -m+2j); (2m+ 
2j, 2m + 2j, 2j), for each j. The P-projected band-structure is shown in Figure 
3, top left plot, for m = 6. 
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One-Electron Density Matrices and Related 
Observables 
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Summary. In this Chapter the concept of density matrices and especially of 
the reduced one-electron density matrix is reviewed with their various properties, 
among which phase space, chemical bonding, the relation to observables and the 
experimental access to density matrices are particularly emphasised. Among the 
observables, electron position and momentum densities play the most important 
part, whence the state of the art of experimental determination of those densities 
is sketched with the aim to give some feeling for the potential and the reliability 
of modern experimental data. A number of entrance points to literature are 
given. 

Key words: Density Matrix - Reduced Density Matrices - Phase Space -
Wigner Function - Moyal Function - Electron-Electron Correlation - Natu­
ral Spin Orbitals - Hartree-Fock Orbitals - Kohn-Sham Orbitals - Localisation 
- Delocalisation - Translational Symmetry - Chemical Bonding - Electron Posi­
tion Density - Electron Momentum Density - Form Factor - Structure Factor -
Compton Profile - Reciprocal Form Factor - Reconstruction of Density Matrices 

1. Introduction 

The Hartree-Fock program CRYSTAL explores the energy eigenstate of a solid 
variationally. The resulting expectation value forms an upper bound for the true 
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energy of the solid and is invariant against small variations of the state, i. e. 
of the quality of the wave function. The same is true for the eigenvalues and 
eigenfunctions of the one-electron Hartree-Fock equation. 

For an optimum theoretical description of the solid it is therefore desirable 
not only to fulfil the necessary criterion of energy minimisation, but also to assess 
the quality of the wave function by comparison with experimental data for ob­
servables that do not commute with energy and hence are sensitive to variations 
of the state already in first order. In properly designed 'experiments it is even 
possible to determine probability (density) distributions for those experimental 
data and therefore to obtain some information about the orientation of the state 
vector of the solid in the appropriate Hilbert space. 

With these ideas in mind, the aim of this Chapter is to present a brief 
overview of the theoretical background as well as of the state of the art of 
experiments that determine electronic density distributions, both in order to 
give the reader some insight and feeling for the power and the limitations of 
the comparison and the analysis of such experimental and theoretical data. The 
analysis particularly involves concepts of chemical bonding. 

Because of the brevity of the overview, the Chapter can only facilitate the 
access to the pertinent literature, not replace it. The citations are for the same 
reason far from being complete. The author hopes that the attempt to summarise 
some insights he has gained over the years will nevertheless be useful for the 
reader. 

2. Density matrices 

Solids are systems with a very large number N of electrons. The goal of obtaining 
information about the orientation of the state vector in Hilbert space would 
therefore require experiments that determine N-electron density distributions. 
We do not have such experiments and have rather to be content with single­
electron or at most two-electron density distributions. It is therefore not only 
Hartree-Fock (as well as density functional) theory that necessitates to consider 
the relationships between the N -particle and the single-particle picture. 

The most transparent connection between quantum states and probability 
distributions at the N -particle and the few-particle level is provided by density 
matrix theory ([1.2]-[1.6], [1.8], [1.9]), which in addition offers the bonus of 
a joint description of position and momentum density distributions. 

Single-electron density matrices are used in CRYSTAL in order 

to save the computing time for mUltiplying and adding the expansion coeffi­
cients of the crystal orbitals again and again, 

Pil = E Cij nj Ckj 
j 

with i, k = basis-function indices, nj = occupation number of orbital j, 



One-Electron Density Matrices and Related Obeervables 241 

- and to exploit the range of interatomic interactions for the truncation of 
infinite series. 

Apart from those two features, density matrices have many more important 
properties. Some of them are indicated in the following subsections. 

2.1. Density matrices as general information carriers 

Density matrices r are an equivalent alternative to wave functions tP for the 
description of pure quantum states, 

r(z, z') = tP(z) tP*(z') 

with z as a (set of) position or momentum coordinate(s). The prime indicates 
that z' can take any value independently from the value of z. In contrast to wave 
functions, density matrices possess the additional feature to be superimposable, 

with i = number of a quantum state with mole fraction Xi, for the quantum­
mechanical description of microcanonical ensembles (ideal gas, spin gas etc. with 
thermal excitation and/or molecular mixture etc.). From their definition it fol­
lows that density matrices are Hermitian, 

rt = tP*(z')tP(z) = tP(z)tP*(z') = r , 

that their diagonal is positive definite and represents the probability density p( z) 
to find the system at the point z, 

p(z) = r(z, z) = tP(z) tP*(z) 

(hence the name 'density matrix'), and that their trace is their norm, 

Trr= J r(z,z)dz= J tP(z) tP*(z) dz . 

In the following we will first stay with the more familiar position repre­
sentation. When considering phase space, the momentum representation will 
come into play again, ud the second set of primed coordinates will gain a much 
deeper meaning. For the sake of simplicity in the present context, we furthermore 
specialise to N -electron systems in the Born-Oppenheimer approximation right 
from the beginning. 
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2.2. Reduction of density matrices 

Density matrices can be rigorously reduced from the N-particle level, 

with Xi == (ri' O"i), ri = position coordinate, O"i = spin coordinate, to the two­
particle level 

as well as to the one-particle level 

by equating Xi = xl and integrating over Xi for all i > /I for rev) to yield a 
simpler description of quantum systems (pure state or ensemble) for all physical 
two- and one-particle observables. 

Since we are considering electrons, which are indistinguishable, the (~) dif­
ferent possibilities of selecting /I electrons out of N to reduce r yield the same 
partial r~~~ial == D(v). If r is normalised to Tr r = 1, the reduction process 
to a particular set of /I electrons does not change that norm, i. e. Tr D(v) = 1 
(McWeeny normalisation [1.5 D. All these partial D(v) are combined to the total 
rev) given above, which therefore has the properties 

Trr(v) = e) . 
(Lowdin normalisation [1.2D. Both normalisations, D(v) and rev), are found in 
literature; we adhere to the more widely used latter one. 

2.3. Eigenvalues and eigenfunctions of density matrices 

The eigenfunctions of the reduced density matrices provide a rigorous definition 
of two-particle wave functions = natural spin geminals ej (Xl, X2) (NSGs) with 

r(2)(Xl, X2; xL x~) = 1: ej (Xl, X2) nJ2) e; (x{, X~) 
j 

and one-particle wave functions = natural spin orbitals tPj(x) (NSOs) with 

r(X,X') = 1:tPj(x)nj tP;(x') 
j 

in an N-electron system. The corresponding eigenvalues 0 $ ny) $ [N/2] and 
o $ nj $ 1 (all real because of the Hermiticity of density matrices) are the 
occupation numbers of the NSGs and NSOs, respectively, and fulfil the trace 
relationships 
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since traces are invariant against the unitary transformation of the density ma­
trix to its diagonal eigenvalue matrix. 

2.4. Orbitals and electron-electron correlation 

Hartree--Fock orbitals are a special case of NSOs with 

. _ {O for unoccupied (virtual) spin orbitals 
nJ - 1 for occupied spin orbitals 

and an 'idempotent' one-electron density matrix 

(independent-particle model). 

In real electronic systems, however, electronic motion is correlated. Using 
the Hartree--Fock orbitals as a starting point, the (in the Hartree--Fock sense) 
'occupied' NSOs have occupation numbers 

nj < 1 

and the 'virtual' NSOs have 
nj > O. 

As a perturbationally justified rule of thumb, the respective deviation from 1 
and 0 is the larger the closer the orbital energy Cj of the related Hartree--Fock 
orbital lies to the Fermi energy Cp. 

In atoms and molecules, the Fermi energy is cp = (CHOMO + CLUMO)/2 or 
cp = CSOMO' Correspondingly it is located in the middle of the band gap of 
insulators and semiconductors. Hence, as another rule, correlation effects are 
the larger the smaller the band gap or CLUMO - CHOMO is. 

In perturbationally first order only the nj differ from the Hartree--Fock ap­
proximation, whereas in second and higher order also the NSOs are no longer 
Hartree--Fock orbitals. There are infinitely many NSOs with nj close to 0 in a 
rigorous sense, and the one-electron density matrix of real electronic systems is 
not idempotent, 

-y2 < -y • 

Another (additionally) possible reason for non-idempotency of -y is that its 
parent r belongs to an ensemble. Given a non-idempotent -y, there is still no way 
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of differentiating whether it originates from a pure quantum state with electron­
electron correlation (' N -representable') or from an ensemble of quantum states 
('ensemble-representable'). Non-idempotency with fulfilled bounds for the eigen­
values thus ensures ensemble represent ability, but not N -represent ability. Only 
idempotent density matrices are necessarily N -representable (Hartree-Fock-rep­
resentable, e. g.). 

f.5. Phase space 

Density matrices provide the quantum-mechanical phase-space density, as it be­
comes clear when considering then transition from the position to the momentum 
representation (see, e. g., Refs. [3.5] and [3.6]). 

For a transparent notation of the phase-space relationships it is useful to 
change the notation of the coordinates slightly. For each particle i, the row coor­
dinate (argument of !Ii) is now denoted by xl, the column coordinate (argument 
of !Ii.) by xl'. For electrons in matter, each coordinate is a four-dimensinal vector 
(position plus spin), and the algebraic operations with the vectors are defined 
in that 4D space. 

Since the density matrices contain two such independent vectors per particle, 
the matrices are defined in a space with eight dimensions per particle. In other 
words, that matrix space is spanned by [4 (4D) x 2 (',") X 11 (particles)] mutually 
perpendicular (unit) basis vectors. The special property of the diagonal (a 411-
dimensional subspace) to contain the probability density distribution suggests 
a coordinate transformation such that half of the new basis vectors span the 
diagonal and the other half the subspace perpendicular to the diagonal. That 
separation is achieved by forming the average and the difference for each pair of 
single-primed and double-primed coordinates, i. e. vectorially [3.5] 

Xi = xl + xl' 2 = (ri,O'i) ('extracule coordinate') , 

lli = x/, - x: = (Si,O'i) ('intracule coordinate') . 

As emphasised, the vector addition and subtraction are done in the 4D space of 
particle i, and the components of the resulting vectors provide then the lengths 
for the components in the new (Xi, lli, i = 1, ... ,11) coordinate system. Geomet­
rically the transformation is a rotation by 45° with subsequent compression of 
Xi and dilation of Ui by a factor of J2 (cf. Fig. 1). The diagonal xl = xl' = Xi 
(i = 1, .. . 11) of r(lI) is the spin-plus-position density 

(11)( ) - r(II)( • ) P Xl, ... , XII - Xl, ... , XII, Xl. ... , XII 

and the off-diagonal p.art xl -:1= xl' contains t~e Fourier-Dirac-transformed spin­
plus-momentumdenslty tt7(II)(Yl"",YII) With Yi == (Pi,O'i), Pi = momentum 
coordinate, in the direction Ui, spin-plus-position resolved parallel to the diag­
onal along Xi, 
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Figure 1. Interrelationships between the continuous representations of density matrices, ex­
plicitly given for the single-particle (= one-electron~ case. 3D and 6D stand for the dimension­
ality of the Fourier-Dirac transformations. i and -y are expressed in the coordinate systems 
r, s and p, ~ rotated relative to r', r" and p', p", respectively. By multiplying the number of 
coordinates and the dimensionality of the Fourier-Dirac transformations by II, the interrela­
tionships hold at any II-particle level. 

Fourier-Dirac transformation along each rj of all Uj thus yields a true phase­
space density, the Wigner function l 

W(")(xt. .. . ,X,,;Y1, ... ,y,,) = 

(2d)-sII f··· J r(II)(X1, ... , XII; Ut. ... , u,,) exp (i i:,Pi.Si/Ii) dT' l •• ·dT,,, 
.=1 

in a mixed position-momentum representation. There are also a pure momentum 
t t · r-(II)(' ,." ") d . dee t t represen a Ion Y 1 , ... , Y "' Y 1 , ... , y" an a mlXe 10rm-Iac or represen a-

tion A(II)(Ul, ... , UII ; Vl, ... , VII) (Moyal function, with Vi = y/, - Y! = (:ti, (Ti) 
as the second intracule, viz. the momentum intracule coordinate) of density 
matrices. 

1 Here and in the remaining part of the Chapter, Ii, me and e are retained for pedagogical 
reasons and in adherence to recommended rules. For the same reason, lengths are given in 
multiples of ao, linear momenta in multiples of po, etc., rather than using the indifferent 
notion 'atomic units'. The particular benefit of retaining Ii is the clear distinction between 
wave vectors k. '" and linear momenta p = Iik. ~ = iii'- later in the text. Wave vectors are 
reciprocal to position with respect to Fourier transformation. whereas linear momenta are 
reciprocal to position with respect to Fourier-Dirac transformation. 
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Only the diagonals of r(II) and r(II) are positive-definite; the otherwise pos­
sible negative regions of density matrices in those four representations are a 
puzzling feature and a result of the Pauli principle, which forces electrons into 
oscillatory single-particle wave functions with nodes. 

~. 6. Density operators 

AB a matter offact, the concept of a density matrix is independent of any repre­
sentation in the same way as a quantum-state vector 11'). The representation-free 
density matrix is also called 'density operator' t. In Dirac notation one can write 

for pure quantum states and 

t = L: X>.I~)(~I = L: I~)(~IX>. = L: I~)X>. (~I 
>. >. >. 

for ensembles of systems in states ~. 

~. 7. Ezpectation values of observables and reduction 

The expectation values of observables with operator 0 are calculated as 

(.a) = Trot = Tr to , 

in analogy to (.a) = (1'1011'). 

The reduction of density matrices with respect to the particle number means 
forming the trace beforehand over those particles or particle coordinates that 
are not acted on by a class of operators O. Bence, r(2) contains the complete 
information about the quantum-state (or ensemble) for two-electron operators 
(Coulomb repulsion, e. g.), as does "( for one-electron operators (kinetic energy, 
nuclear attraction, dipole moment, polarisability, susceptibility, chemical shift 
etc. etc.). For spin-independent operators the spin coordinates can also be traced 
out, leading to spin-free density matrices such as r(2)(r{,r~;rf',r~'), ,,(r',r"), 
etc. 
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2.8. Continuous and discrete representations 

So far four different continuous representations have been considered, the coun­
terpart to wave functions lli(z) = {zip} (position representation) and !P(y) = 
{yip} (momentum representation). Discrete basis sets {Ii}}, {cPi{Z) = {zli}}, 
z = z or y, lead to discrete representations: 

Ii} = L: li){ili} = L: Ii} Cij , 

with the transformation relation 

llij(z) = E cPi(Z) Cij 
i 

Cij = (iii) , 

into a continuous representation for vectors Ii}, and 

f = E li}{ilflk}{kl = E li)rik{kl , 
i,A: i,A: 

with the transformation relation 

i,A: i,A: 

for density operators/matrices. 

2.9. Density matrices in CRYSTAL 

The density matrix P = [PiA:] in CRYSTAL is such a discrete representation ofthe 
one-electron density matrix 'Y(r " r"). Only the row block with row numbers i 
belonging to the reference unit cell m' = 0 is used because of the so-called 
cyclicity of P that originates from the translational symmetry (only m" - m' 
matters, not the absolute positions m " m" of the unit cells). Furthermore, the 
spin coordinates (1" , (1''' are traced out (hence 'Y{ r " r"» in the restricted (closed or 
open-shell) Hartree-Fock of CRYSTAL92, whereas in the unrestricted Hartree­
Fock (UHF) scheme of. CRYSTAL95 two different P are maintained: Pa with 
(1" = (1''' = ~ and Pp with (1" = (1''' = -~j off-diagonal (1" ::j:. (1''' (giving rise to 
PaP = P;a) is neglected in common UHF with the idea of a spin quantisation 
direction common to the whole crystal, thus limiting the possible patterns of 
magnetic structure. 
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2.10. Two-electron density matrix in Hartree-Fock 

In the Hartree-Fock approximation as an independent-particle model, the two­
electron density matrix can be expressed in terms of the one-electron density 
matrix, 

The pair distribution function P(r12) calculated from that two-electron density 
matrix reflects the Fermi hole owing to the Pauli principle ('exchange hole'), but 
does not contain any Coulomb hole. 

2.11. Localisation and delocalisation in H artree-Fock 

The degeneracy of the eigenvalues nj of the one-electron density matrix in the 
Hartree-Fock approximation leads to the fact that the density matrices of any 
order v and hence all measurable quantities are invariant against unitary trans­
formations of the set of occupied spin orbitals (all nj = 1). 

The most important type of unitary transformation of the set of occupied 
orbitals is localisation of the completely delocalised canonical orbitals of the 
Hartree-Fock eigenvalue equation (canonical molecular orbitals = CMOs, Bloch 
functions) to localised molecular orbitals (LMOs) or Wannier functions and vice 
versa. The program CRYSTAL makes ample use of such transformations. The 
same holds formally for the set of unoccupied orbitals (all nj = 0), which do not 
contribute to density matrices and measurable quantities at all. 

Mixing of occupied and unoccupied orbitals, however, changes density ma­
trices and observables, as it does in the case of the non-degenerate true (spin) 
orbitals of the real, correlated electronic systems. 

2.12. Kohn-Sham orbitals 

In the approach of the Kohn-Sham orbitals [2.2], which are the basis of any 
nowadays' implementation of density-functional theory [2.1]-[2.7], there is an 
important inherent restriction that cannot be emphasised enough. 

The Kohn-Sham equation with its exactly N orbitals 'IJIr(r) for N electrons 
are constructed such that the true one-electron density per) and hence the diago­
nal 'Y(r, r) of'Y is perfectly reproduced as r:f=l 1'IJI;S(r)12 and that simultaneously 
the energy functional E[p(r)] is minimised. 

This yields correct results for any observable that depends solely on the 
position coordinate r, but gives systematically incorrect results for observables 
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that contain the momentum coordinate p such as momentum densities w(p) or 
angular momentum r x p. 

The reason is the contradiction between an exact position density Per) and 
njS = 1 for j = 1,2, ... , N, njS = 0 for j > N, since the exactly described 
electronic system has infinitely many NSOs with nj > O. Another way of stating 
this contradiction is the finding that any p( r) can be generated with an idem­
potent density matrix1(r',r") [2.8]-[2.10], whereas the true density matrix is 
not idempotent. 

Thus, the Kohn-Sham approach is even unable to describe the interacting 
homogeneous electron gas with its occupation function 1 > n(k) > 0 (= oc­
cupation numbers of NSOs tPk). Lam and Platzman [2.3] have introduced a 
first-order correction for this situation, later treated more generally and rigor­
ously by Bauer [2.4]. 

In summary, the Kohn-Sham approach is correct for per) and the form factor 
F(X) equal to the corresponding three-dimensionalsubspaces 1(r, r) of 1(r " r") 
and A(X,O) of A(X, s), but incorrect for the other parts of the density matrix 
in these two representations. In the Wigner and in the pure momentum repre­
sentation it provides only correct projections of the density matrix into the {r} 
and {X} subspaces, respectively. 

e.19. Range of interactions in molecules and solids 

Because of the immunity of density matrices against localising or delocalising 
transformations of the orbitals of independent-particle models, they are an ideal 
tool to determine the true range of electronic interactions and hence chemical 
bonding in a molecule or solid. This feature becomes particulariy useful when 
considering 1(X',X") rather than any basis-set dependent P. The assignment to 
atoms and pairs of atoms can be done simply by analysing the volume of 1 at 
or around r " r" equal to the atomic positions [ 1.10], [1.11]. 

It is this feature, together with the interest to investigate electronic phase 
space, that makes it so worthwile to calculate density matrices theoretically or 
even to obtain them from experiments. 

To my knowledge the first position-representation density matrix of a solid, 
viz. of LiB, has been presented and discussed in Ref. [1.10], based on results 
from the program CRYSTAL. That density matrix reveals that the electronic 
structure shows interionic coupling only between direct neighbours in any of the 
directions (100), (110) and (111). The coupling, however, can involve more than 
a pair of ions. A more detailed analysis with corrected normalisation and an 
extension to LiF and LiFHF is about to appear [1.12]. 
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2.14. Density matrices and scattering experiments 

Density matrices are closely related to scattering experiments that probe the 
electronic structure of a material [3.1]-[3.6]. 

X-ray and electron diffraction yield the position density per), i. e. the diagonal 
r' = rtf = r of 'Y(r', rtf) (in conjunction with circularly polarised photons or 
spin-polarised electrons even the spin-position densities Pa(r) and pp(r), i. e. 
'Y(x', x") with x' = x" = x). 

Neutron diffraction enables one to determine the spin-position difference den­
sity (usually simply called 'spin density') Pa(r) - pp(r), although sometimes 
contaminated with magnetic orbit contributions. 

Deep inelastic scattering of photons and electrons (Compton scattering), po­
larised or unpolarised, gives access to a projection B(u) = J 'Y(x, x+u) dT~ of the 
off-diagonal part of 'Y(x', x"), analogously with or without spin, respectively.2 
In a crystal of sufficient perfection one can finely tune the position of a stand­
ing wave field of X-rays by small tilts within the width of each Bragg or Laue 
reflection. Compton scattering of such standing waves offers even the direct de­
termination of the off-diagonal parts of.:y because of the position discrimination 
in the experiment [8.12]-[8.14] (probing phase space). 

Finally, .inelastic scattering also at low momentum transfer provides infor­
mation about the electron-pair distribution function and hence a piece of the 
diagonal of r(2). 

2.15. Reconstruction of density matrices 

The close relationships between experiments and density matrices have led to at­
tempts to reconstruct density matrices from measured data (see also Section 10). 
These attempts are increasingly successful, particularly during the last few years, 
and promise to give experimental insight into the 'real internals' of an electronic 
quantum system. 

3. Densities and form factors 

At the one-electron level, four observables are the key quantities: the position 
density per) (often unsystematically called 'charge density'), the form factor 
F(It) = F(X) with x= IiK. of diffraction work, the momentum density w(p) 
and the reciprocal form factor B(s). For the sake of simplicity, from now on a 
spin-free formulation is used. 

2 Positron annihilation experiments yield a ID or 2D projection of the momentum density 
distorted by the positron wave function. They are not considered here because of their greater 
theoretical complexity. 
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The densities p and tv are the diagonals of the density matrix in the pure 
position representation, -y, and in the pure momentum representation, i\ re­
spectively. The form factor F is the 3D Fourier-Dirac transform of p and the 
reciprocal form factor B the one of tv: 

F(X) = J per) exp( iX·r / li) dTr , 

B(s) = J tv(p) exp(-ip.s/li)dTp . 

Since -y(r', r") and .y(p', p") are related by a 6D Fourier-Dirac transforma­
tion, 

-y(r', r") 

.y(p', p") 

(211"1i)-3 J J .y(p',p") exp [i(p'·r' - p"·r")/Ii] dTpl dTpll , 

(211"1i)-3 J J -y(r', r") exp [-i (p'.r' - p ".r")/Ii] dTr' dTrll , 

both form factors are projections 

F(X) J .y(p, p + X) dTp , 

B(s) = J -y(r,r+ s)dTr 

parallel to the diagonals p and r, resp., into the subspaces {xl and {s l orthog­
onal to the respective diagonal. 

When decomposing the density matrix into its NSO contributions, 

and 

-y(r', r") = L tPj(r') nj tPj(r") 
j 

.y(p', p") = L {Jj (p') nj{Jj (p") , 
j 

each orbital contribution to the form factors B(s) and F(X) can be interpreted 
as an orbital autocorrelation function: 

B(s) ~ njBj(s) = ~ nj J tPj(r) tPj(r + s) dTr , 
) ) 

F(X) = ~njFj(X) = ~nj J {Jj(p){Jj(p+x)dTp . 
) ) 

Since the form factors 'look' at the off-diagonal parts of -y and .y in a pro­
jection, they can 'see' negative regions, provided these are not compensated by 
positive regions when projected. The form factor F experiences such a compen­
sation regularly because of the dominance of the contribution of the nodeless Is 
orbital of every atom, whereas the reciprocal form factor B can show rich nodal 
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Figure 2. Interrelationships between the position density p, the momentum density U1, the 
form factor F, the reciprocal form factor B and the various representatiom of the one-electron 
demity matrix (cf. Fig. 1). FD stands for a 3D Fourier-Dirac transformation (on the one hand 
between p and F, on the other hand between U1 and B), S for the selection of a subspace, P 
for the projection into a subspace. Recomtruction means to overcome the loss of information 
on selection and/or projection. 

structure. As an example: The naive Madelung-type ionic picture LiB = Li+ + 
B- with two only rigidly Coulomb-interacting Is orbitals would yield a positive­
definite B(s), falsified by the experiment with pronounced negative parts of B 
at larger 8 [5.8]. 

4. Experiments 

The four observables p, W, F and B are, however, not the primary experimental 
quantities. The experiments measure intensities proportional to the differential 
scattering cross-sections. 

4.1. Diffraction 

Only the direction of the solid angle n is discriminated: 
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d { W(K)I dynamical limit 
d~"'" IF(K)la(,,) reality, 1 < et(K) < 2 

IF(K)\2 kinematical limit 

with (T = cross-section, K = scattering vector k2 - kl' kl and k2 being the 
wave vectors of the primary and the scattered beam with normalisation kl = 
k2 = 27r/>', ,,= 47rsinfJ/>', fJ = Bragg angle. From the overwhelming amount of 
literature on X-ray diffraction Refs. [4.1 ]-[ 4.4] are particularly useful for a first 
overview with respect to accurate structure factors F(K) and position densities 
per). 

4.2. Compton scattering 

The energy 1iw2 of the scattered particle (mostly photon) is discriminated in 
addition, and within the sudden-impulse approximation 

d2(T 

dndw2 ,..., J(q) 

holds with J(q) = Compton profile = ID distribution ofmomentumoomponents 
= projection 

J(q) = ! w(p) . c5 (p~q - q) d'Tp 

of w(p) on a line q parallel to the scattering vector K, q = initial momentum 
component of the struck electron in the direction of K with 

q = mec . (W2 _ WI + IiwlW2 (1 - cos f/J») , 
cl"\ mec2 

where f/J is the scattering angle and cl"l = v'w~ +wi - 2WIW2 cos(f/J). A small, 
rather personal selection ofliterature in this field are Refs. [5.1 ]-[ 5.20]. 

4·3. ',,(, e'Y' or 'X, eX' experiments 

Recent experiments that detect and analyse also the ejected electron from a thin 
solid film in coincidence with the Compton-scattered photon [5.22 ]-[ 5.24] yield 
coincidence intensities 

or even 
. d40' 

I(n2,w2, na,wa)"'" dn2dw2dnadEa 

with na and Ea = solid angle and energy of the outgoing electron, resp., and 
thus can measure also other components of the initial electron momentum at 
the same time, though still with only modest precision. 
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../ . ../. (e,2e)-experiments 

The analogous (e, 2e )-experiments [5.28], [5.29] are already performed since 
more than twenty years on gases and since recently also on thin solid films. 
They permit high-resolution discrimination in angles and energies and thus to 
discriminate final states, described as hole states plus outgoing electron, which 
in some approximation project out the (in the case of gases radial) momentum 
density of the orbital originally filled in the ground state. The impressive data for 
svlid films map energy-dependent momentum densities w(p, c) and thus bands 
[5.29] with, however, an only semi-quantitative accuracy because of strong mul­
tiple scattering . 

../.5. The multiple-scattering problem lor electrons as probes 

In the description of the ('Y, ey) and (e, 2e )-experiments one notices that the 
electrons as projectile or observed particles restrict the investigated systems to 
gases or thin solid films. This is due to the ,,-4-dependence of the Rutherford 
or Mott cross-section for the scattering of electrons by other charged particles, 
which reduces the mean-free-path of electrons by strong forward scattering to the 
order of 10 to 100 A and limits such experiments seriously in their universal use. 
In the diffraction of electrons on solids (i.e. the (e,e')-experiment = LEED or 
RHEED), the small mean-free-path can be converted into a virtue for studying 
surfaces; in the inelastic coincidence experiments, however, one of the particles 
has to come from or to go into the bulk because of momentum conservation, 
thus making strong multiple scattering unavoidable. 

5. Form factors and structure factors 

For the evaluation ofthe form factor F(K.) = 1F(K.)I·exp(i<p(K.» (or, for crystals, 
of the discrete 'structure factors' F(K.hkl) == Fhkl = IFhkd . exp(i<phkl» from 
diffraction data, the phase problem has to be solved. As an empirical rule - since 
for systems with inversion symmetry and with the position origin put to a centre 
of inversion, <p(K.) can only be 0 or 11" - the phases resulting for centrosymmetric 
systems are much more reliable than those for non-centrosymmetric ones, if there 
are positional parameters in the structure that are not fixed by symmetry. Such 
parameters have eventually to be determined by a fit to a finite set of form-factor 
or structure-factor values. 

Moduli and phases of form factors and structure factors are often distorted by 
resonance ('anomalous dispersion') and multiple-diffraction ('Umweganregung' 
and 'Aufbellung') contributions. The former effect, being essentially of atomic 
nature, can be taken into account to some extent in the subtraction of an atomic 
model ('promolecule', see below) with complex atomic form factors Ij = Ii +i/j', 
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whereas the latter has to be ruled out experimentally by rotation of the sample 
around the scattering vector. Publications are to be read carefully with respect 
to these points. 

Our visual and conceptual preference of position space makes it desirable 
to transform F(,,) into per). However, because of the finite set of experimental 
F(,,) up to a certain II:max given by the wavelength utilised in the experiment 
or by thermal vibrations, that transformation can be done only by modelling 
(usually a multi-centre multipolar expansion of p(r) , smeared by thermal vibra­
tions), with or without prior subtraction of a model of superimposed free atoms 
(the already mentioned promolecule). Therefore it is strongly recommended to 
compare experimental and theoretical data in ,,-space in order to enjoy full ac­
curacy and least bias, although even then the experimental data have already 
been modified by correcting for the model-dependent thermal vibrations. The 
modelling transformation to per) can still be done, if the origin of discrepancies 
is to be attributed to certain positions in the structure of the system. 

Another source of experimental uncertainty in diffraction work on crystals is 
'extinction', i. e. whether the scattering cross-section is (almost) proportional to 
IFhA:" (dynamic diffraction = complete mUltiple diffraction of a standing wave 
field in a perfect crystal) or (almost) proportional to IFhkd2 (kinematic diffrac­
tion = independent diffraction by small units, as it is true for gases and liquids 
and as it is hoped to be the case for sufficiently imperfect crystals). 

The proportionality factors between measured intensities and the differential 
scattering cross-sections, and consequently the c:onversion factors from intensities 
to the desired quantities related to the electronic structure of the samples, viz. 
F(,,) and J(q), have to be determined by a normalisation procedure. In the case 
of F, this is F(O) = Z, Z being the number of electrons per formula unit or per 
unit cell. Unfortunately, F(O) is experimentally unaccessible (scattered beam = 
primary beam), whence the 'scale factor' has to be determined by modelling 
F(,,) for small 11:. Only the completely different Pendellosung experiment on 
perfect crystals can yield structure factors free from that uncertainty. 

In total, carefully measured and corrected structure factors of favourable 
samples can have an accuracy of ~ 1%, but quite often different data sets can 
deviate by as much as 5%. 

Most of the remarks about X-ray diffraction apply also to neutron diffraction. 
Neutrons interact with the nuclei and with the internal magnetisation density 
of the sample. The latter effect is separated by forming the difference between 
measurements with opposite external field ('flipping ratio'), leading to magnetic 
structure factors. 

6. Compton profiles . 

The normalisation of Compton profiles by 

1: J(q)dq = Z 
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is much less critical, provided the experimentally finite range of q is so large 
that the contributions of all valence electrons are included (typically Iql ~ qrnax, 
qrnax ~ 5 Po, Po = Ii/ao = meca = 1 Dumond = 1 'atomic unit of momentum'). 
In that case a theoretical partial norm 

j +flD&Z 

J (q) dq = Zpartial < Z 
-tmax 

can be used, since the core contributions at Iql > qrnax will be hardly affected 
by the molecular or crystal environment and can therefore be calculated from 
high-quality atomic wave functions. 

Experimental Compton profiles can be (slightly) distorted by two other im­
portant effects. 

The first one is partial failure ofthe 'sudden-impulse approximation', which 
underlies the proportionality of the scattering cross-section to J (q). It ap­
proximates the electronic system by a quasi-free electron gas with the mo­
mentum distribution of the real system, but with no binding potential be­
cause of its cancellation between initial and final state in the extremely fast 
scattering process (tit of the order of attoseconds, Franck-Condon princi­
ple with respect to electronic motion). The faster the process the better the 
approximation, which means high energy transfer relative to the electron 
binding energy and high momentum transfer to be preferred ('deep' inelastic 
scattering), verified by back scattering of high-energy photons (or, only for 
molecules and thin solid films, low-angle scattering of high-energy electrons). 

The second experimental distortion is contamination by multiply scattered 
photons or electrons from the sample with non-zero volume (or non-zero 
number of scatterers) and has some similarity to the extinction problem 
of diffraction. Such photons or electrons do not have the proper informa­
tion from a single well-defined elementary scattering process and form a 
background that for somewhat complicated reasons can partially coincide 
in position with the Compton band in the observed spectrum of scattered 
particles and form a band with a slightly larger width. All experimentalists 
minimise the multiple-scattering contribution as much as possible by Monte­
Carlo simulations or extrapolation of experimental data for differing numbers 
of scatterers (variable sample thickness or gas pressure) to zero number of 
scatterers. Nevertheless, some residual contamination usually remains, to a 
large extent masked by the normalisation procedure. 

Both effects influence the data for high-atomic-number materials much more 
than for 'light' materials, as a general rule. 

Some recent experiments with synchrotron radiation and a Cauchois-type 
analyser show another uncertainty that is overcome in most of the other ex­
periments, viz. from the background to be subtracted. One can hope that this 
problem will be reduced in the near future. 

Since Compton experiments are based on spectral resolution of the scattered 
particles, the degree of spectral resolution influences the extracted Compton 
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profile J(q). It differs from the infinitely-high-resolution true J(q) by a convolu­
tion with the so-called 'residual instrumental function', RIF - residual, because 
every experimentalist tries to get rid of some of the distortions by the primary 
resolution in the processing of the data. We discriminate the convolved JC(q) 
from the true J(q) by the superscript 'c' and use a pure Gaussian function of 
standardised width very close to the width of the primary experimental resolu­
tion in the q-scale as our RIF with the idea that the information content of an 
experiment cannot be increased by artificial resolution enhancement and that 
the RIF should be mathematically simple. Other authors prefer more compli­
cated RIFs for an improvement of the overall shape of the Compton profile. 
All theoretical data have to convolved with the RIF of the experimental data 
they are to be compared with. Typical resolutions reported in literature range 
from 0.6 down to (most recently for very light metals) O.Olpo full width at half 
maximum (FWHM), depending on which type of analyser has been employed, 
which, in turn, is a question of the available photon flux and the sample size. 
For insulators, modest resolution can be quite satisfactory and good statistical 
precision is much more important, whereas metals make very high resolution 
desirable for details of the Fermi surface. 

With circularly polarised photons, usually generated in synchrotrons or stor­
age rings, spin densities in momentum space are accessible. The spin-compen­
sated background is separated by forming the difference between measurements 
with opposite magnetisation. This area enjoys increasing interest [5.17], [5.25] 
since the first experiments about twenty years ago [5.26], [5.27]. 

7. Reciprocal form factors 

The reciprocal form factor B(s) as the position representation of the momentum 
density ro(p) [5.3]-[5.10] is directly accessible from Compton profiles J(q) by 
a ID Fourier-Dirac transformation [5.4], [5.5], 

1+00 

B(s)= -00 J(q)exp(-iqsjli)dq, s \I q. 

In practice, the integration range is finite (-qmax ... + qmax). The termination 
error is small for sufficiently large qmax and can be further reduced by adding 
theoretically calculated atomic-core wings for Iql > qmax and increasing the 
integration range. Theoretical data should be subject to the same procedure for 
a full-precision comparison with the experiment. 

Since the termination error occurs only in the contribution of the core elec­
trons to the Compton profile, and since the corresponding contribution to the 
reciprocal form factor is localised to the range 0 ~ s < 1 A ~ 2 ao, it is strongest 
in this range. However, if a sharp step or bend occur at ±qmax (where the 
implicit periodic repetition units of the discrete Fourier transformation touch), 
their Fourier transform spreads as an artefact also into the pure valence-electron 
region s > 1 A ~ 2 ao. In order to minimise that artefact we smooth such features 
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with a convolution function of varying width before the transformation (maxi­
mum width at Iql = qmax, going linearly to zero with Iql- qmax - Ipo). Again, 
such a procedure has also to be applied to theoretical data to be compared with 
the experiment. 

The finite resolution of the experiment leads to a multiplicative attenuation 
of B(s) to 

where 

s = 4v1n21i . 
aqFwHM 

The attenuation factor is t at a distance 

and lo at 

4 In 21i 
81/2 = S v'ln 2 = -:"A-­

UqFWHM 

- S ~l 10 _ 4Jln21n 101i 
81/10 - V 1D 1U - A , 

UqFWHM 

i. e. 2.93 A = 5.54 ao and 5.35 A = 10.11 ao, resp., for aqFwHM = 0.5 Po as an 
example. All these relationships assume a purely Gaussian resolution function, 
to which the experiment can be brought by appropriate data processing. Other 
authors prefer different 'residual instrumental functions' with a hence different 
mUltiplicative transfer function of 8 from B(s) to BS(s). Because of the merely 
multiplicative effect of experimental resolution in the {s }-domain, adaptation to 
and changes of the resolution of experimental or theoretical data are most easily 
performed for or via B(s) in either case. 

The distance parameters for a particular momentum resolution provide the 
quantitative scale for the range of interatomic and interelectronic interactions 
that can be covered by the experiment under consideration. The parameters have 
to be compared with interatomic distances in the case of closed-shell systems and 
of molecules, and with the range of the Fourier transform of the Fermi sphere 
[5.4 ], 

B () - 3Zcond [sine kF 8) _ (k)] 
FS 8 - (kF8)2 kF 8 cos F8 , 

in the case of metals. In both cases one obtains theoretical and experimental in­
sight into the range of electronic interactions whithout the artefact of the infinite 
range of the canonical orbitals (CMOs and Bloch functions) of singie-electron 
eigenValue problems ala Hartree-Fock or Kohn-Sham. The contributions of the 
various canonical orbitals cancel in the observable reciprocal form factor B( s) 
(as well as in the density matrix -y(r',r"» to the extent they are unphysical. 
Localised orbitals (LMOs and Wannier functions) yield exactly the same B(s). 

The most serious sources of residual errors in Compton profiles, viz. cross­
section, multiple scattering, and - in experiments with Cauchois-type analysers 
- background, have the fortunate property that their influence is localised in 
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B(s) to the range 0 $ s < 2A ~ 4ao. Thus they distort the core-plus-valence­
electron part 0 $ s < 1 A ~ 2 ao and the valence-electron part 1 A ~ 2 ao < 
s < 2 A ~ 4 ao including the maximum next-nearest-neighbour interactions (a 
challenge to reduce the residual errors further), but not the valence-electron 
range s > 2 A ~ 4 ao - apart from a multiplicative normalisation error in the 
case of excessive multiple scattering. It is that range, where theoretical data 
can be compared with experimental ones at full experimental precision with the 
described precautions. The precision can be as high as 10-4 Z and thus, e. g., a 
milli-electron for water with Z = 10, which enables one to study even hydrogen 
bonding in detail. 

The nodes in B(s) deserve special interest, although generally they are the 
result of various compensations in the projection of r(r', r"): within the statis­
tical error their position is not influenced by the experimental resolution or by 
normalisation errors (owing to multiple scattering, e.g.). Therefore, deviations 
of the nodes of theoretical curves are serious deficiencies and cannot be wiped 
under the experimental carpet. 

Other two reasons for observing the nodes in B( s) apply to solids: 

For a Fermi sphere with radius PF = IikF and the nodes of its B(s), the 
relationship tan(kFs) = kF8 holds. It is applicable to 'ideal' metals and a re­
warding experiment for students: alkali metals yield one conduction electron, 
aluminium three of them. 

Furthermore, in the independent-particle model, the occupation function (i. e. 
the occupation numbers of Bloch NSOs) is 

n(k) = L: w(1ik + lig) 
g 

with g = 2?r . (ha* + kb* + le*) as reciprocal-lattice vectors and k E 1st BZ. 
This relationship clarifies the often ignored difference between the occupation 
function n(k) and the momentum density w(p) and leads to 

n(k) = L: B(m) exp(ik·m) 
m 

with m = ua + vb + we as another interesting relationship, which allows 
to calculate experimental occupation functions from B(s) [5.6], [5.7]. Each 
band contributes such an occupation function to the total one. Filled bands 
have constant spin-traced n(k) = 2 over the whole first Brillouin zone and 
therefore merely a share of 2 electrons from B(O) = Z. Only a partially filled 
band possesses B(m) ¥- 0 for m ¥- O. The Fourier sum of B(m), i.e. of B(s) 
with s at the points m of the translational lattice, thus yields the Fermi 
body on top of the constant contribution of all the filled bands. Insulatold 
and semiconductors have only filled bands and therefore B(m) = 0 for all 
m ¥- 0 - the second reason for looking for the nodes of B( s) of solids. If 
a theoretical independent-particle calculation for a crystalline insulator or 
semiconductor does not reproduce these nodes, it contains errors. 
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The virial theorem states rigorously that the (positive) kinetic energy (T) 
of a system of particles interacting via Coulomb forces is equal to the negative 
total energy of the system with respect to the separated particles, -E. In terms 
of the momentum density w(p), 

is the trace of the tensor r ofthe second moments of w(p) divided by 2me [6.1]. 
The tensor r, in turn, is equal to the negative tensor of the second derivatives 
of B(s) at s = 0 divided by 2me, i.e. in summary 

E= AB(s) I 
2me .=0 

holds, if the relatively small kinetic energy of the nuclei is neglected. Variational 
optimisation of basis sets thus improves the reciprocal form factor around s = 0, 
but not necessarily for larger 8. Experimental B(s) with their high accuracy 
at large 8 can for this reason be a very sensitive tool for improving basis sets 
beyond the necessary energy criterion for theoretical calculations. 

8. Momentum densities 

In the case of spherical symmetry (atoms, liquids, glasses, powders), there 
are particularly simple relationships between the momentum density w(p), the 
Compton profile J(q) and the reciprocal form factor B(8): 

J(q) 1.00 1 100 
= 2'11" pw(p) dp = -Ji B(8) COS(q8/Ji) d8 , 

If I 'II" 0 

w(p) = __ 1_ dJ(q) I = _1_ [00 82 B(8) sin(p8/1i) d8 
2'11"p dq f=P 2('II"Ji)2 10 p8 

w(o) 1 d2 J(q) I 1 100 
2 - 2 d2 = 2 2Ji3 B B(8) d8 , 

'II" q f=O 'II" 0 

B(8) = 100 sin(pB/Ii) 1+00 

4'11"Ji p2w(p) dp = J(q) COS(q8/Ji) dq . 
o pB -00 

The reconstruction of w(p) from its experimental projection J(q) is therefore 
straightforward, although connected with a substantial deterioration of the sig­
nal-to-noise ratio by differentiation or, via B(8), by weighting with 82. That 
deterioration is particularly strong for p = O. In practice, the increase of noise is 
limited by a finite discrete q-grid or, equivalently, by a finite integration range 
over 82 B(8). 

In the case of non-spherical symmetry (molecules and crystals), the recon­
struction of w(p) is more involved; the various approaches as of 1976 have been 
summarised by Mijnarends in Chapter 10 of Ref. [5.1]. The most transparent 
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and most versatile method utilises the reciprocal form factor B. B(s) - ob­
tained along various lines s from directional Compton profiles J (q), s II q, by 
10 Fourier-Dirac transformation - can be converted into the 30 momentum 
density w(p) by a 30 Fourier-Dirac transformation, 

w(p) = (21r1i)-3 J B(s) exp(ip·s/Ii) dr, . 

Since the data along a set of lines s do not fill {s }-space completely, a sensible in­
terpolation scheme is required. As a vector-space quantity, B(s) is single-centred, 
and the data points possess the same s-grid in all directions, if (as usual) qrnax is 
the same. The angular interpolation of the data set on spheres with each s-value 
as its radius in a spherical coordinate system is therefore the natural choice. 
That interpolation is done by a least-squares fit with spherical harmonics that 
are symmetry-adapted to the Laue class of the crystal (polyhedral harmonics 
XL(8" tP,), L = (/, [linear combination of] m), often also called 'lattice har­
monics' in spite of the absence of any translation [5.13]). The resulting radial 
coefficients b L ( s) of 

B(s) = LbL(S)XL(8"tP,) 
L 

have then to be 10-Hankel transformed (kernel j,(ps/Ii» into 

WL(p) = 2~2 i' 100 
bL(S)j,(ps/li) s2 ds 

for 
W(p) = L WL(p) XL(8p, tPp) . 

L 

The least-squares method enables one to keep track of the experimental errors, 
which is absolutely necessary because of the complicated nature of all the trans­
formations. The resulting momentum density has, grosso modo, radially the 
momentum resolution of the Compton experiment and angularly. the resolution 
given by the set of q -directions. Statistical errors pile up in regions not sup­
ported by such a direction. Reconstructed momentum densities with reasonable 
angular resolution are still the exception in experimental Compton work because 
of the very time-consuming data collection [5.11]' [5.21]. 

The series expansion into polyhedral harmonics is also a general means to 
calculate the spherical averages W(p) , J(q) and B(s) as the I = 0 terms from 
three-dimensional w(p), J(q) and B(s), resp. - either analytically or numeri­
cally. 

9. Integrals 

The matrix elements ni ,'" of the operator matrices ni are operator integrals 
over pairs of the basis functions tPJ:(r) or ¢J:(p) of the particular representation 
used for the density matrix ('Y(r',r"), r(p',p"), W(p,r), or A(X,s». 
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It is unfortunate that formulae for such integrals are scattered over litera­
ture. A very good systematic compilation of some of those integrals is due to 
Kaijser and Smith [7.1], and 'scattering integrals' with Gaussians are presented 
in Ref. [7.2]. 

If the q,J:(r) are Slater-type orbitals (STOs), the ~J:(p) are higher-order Lo­
rentzians, whereas Gaussian q,J:(r) lead to ~J:(p) that are also Gaussian. The 
densities p and 1%7 as well as the density matrices '1 and .y are best calculated 
simply via basis-function products, whereas (conventional and reciprocal) form 
factors have the options of Fourier(-Dirac) transforms of basis-function products 
in the reciprocal representation or of overlap integrals in the same representation 
(with X or s as additional shift vectors for the second centre). Momentum-space 
overlap integrals for F(X) are an exotic species, whereas position-space over­
lap integrals for B(s) are standard, both for STOs and GTOs. The calculation 
of B(s) also circumvents the truncation error of the numerical projection of 
momentum densities to Compton profiles J (q) in those cases where analytical 
projection integrals are unavailable. 

Spherically averaged J(q), however, are better calculated via the momentum 
density 1%7(p), whenever it can be analytically averaged to w(p). 

A yet unsolved challenge (except by very slowly convergent series) are the 
'scattering integrals' (Fourier transforms) of two-centre STO products, as needed 
for the form factors F and Wigner functions W of molecules and solids. Because 
of the GTO representation of the program CRYSTAL, however, all integrals can 
there be solved analytically. 

10. Experimental density matrices 

For systems governed by quantum mechanics the traditional way is to compare 
the results of a theoretical calculation with the data sets of each type of exper­
iment. Calculated wave functions as the theoretical information carrier are the 
only common denominator, which, however, may suffer from deficiencies ofthe 
theoretical model employed and - most importantly - are, at least hitherto, 
experimentally inaccessible. 

Density matrices have principaliy the same property, but are much closer 
to experiments and do not complicate the relationship between observables and 
information carrier with the construct of a system of information vectors with 
arbitrary common orientation in single-particle Hilbert space. Particularly the 
possibility to study the range and the nature of interactions of an electronic 
system by means of '1( r " r") in the pure position representation is a great con­
ceptual and practical advantage. Furthermore, we have found an efficient way 
to reconstruct density matrices from observables with a finite model and thus to 
provide a quantum-mechanically correct unified picture for all experimental re­
sults [8.4]-[8.10]. The approach of reconstruction is supplemented by the direct 
experimental determination of .y(p', p") with off-diagonal Compton profiles in 
the case of perfect crystals [8.12]-[8.14]. Once the density matrix is determined, 
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the natural spin orbitals as the system of information vectors can be obtained 
by solving the eigenvalue equation of the density matrix, if desired. 

The first approach to the reconstruction of density matrices dates back to 
1969 (8.1], (8.2] and is based on McWeeny's formula (1.4] 

P,,+l = 3 P~ - 2 P~, II -+ 00 , 

for the iterative restoration of the idem potency of a density matrix in conjunction 
with a least-squares fit to observables in which boundary conditions were satisfied 
by a set of Lagrangian multipliers. Apart from the restriction to idempotency 
(and thus to independent-particle models) as well as from the restriction to 
only one coordinate space (mostly {r }-space) and hence - as we know in the 
meantime - to an incorrect treatment of phase space, that approach suffered 
from extremely slow numerical convergence or even divergence. Therefore there 
was only slow progress over the years in spite of the power of the pioneering 
idea. A recent impressive example is the work of Howard et al. on formamide 
[8.3]. 

When trying to extend that approach to the simultaneous fit of position­
and momentum-space data in 1986, we encountered the convergence problem 
and were forced to find a new way ofreconstruction [8.4]. 

It utilises the eigenvalue equation 

P = CnCt 

in a finite discrete representation oflength M (which is the 'model') with unitary 
transformation matrices C from the diagonal density matrix n in its eigenrepre­
sentation (= occupation-number matrix) to the density matrix P of the energy 
eigenstate or of the (e. g. thermally excited) ensemble and determines C and n 
such that the least-squares functional 

E == L: Wi (Oi - Tr niP)2 
i 

is minimised. There, ni is the operator matrix corresponding to the experimental 
data point Oi, and Wi is its inverse variance, thus scaling and weighting the 
terms in the sum properly. The trace relationship Ej nj = N is maintained by 
shifting electrons between NSOs rather than varying the occupation numbers nj 

individually, and the shifts are limited such that neither of the two nj leaves the 
interval (0,1] to ensure ensemble representability. Idempotency is a special case 
easily introduced by leaving the nj at the initial values of N times 1 and M - N 
times 0 for the first stage of the fitting procedure. Any method for constructing 
unitary C matrices is permitted; we have started' with a decomposition into 
planar Jacobi rotations (which allows subtle strategies of rotating pairs of NSOs), 
and Eulerian angles for a single rotational transformation in M - N to M­
dimensional space have also been implemented in the meantime [8.10]. The 
method not only provides P, which can be transformed into any of the continuous 
representations "(, :y, W, and A, but simultaneously also C as the matrix of the 
NSO vectors. 
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After successful tests with recovery of the information carrier from theoreti­
cally calculated observables in a number of atomic cases [8.4]-[8.10], where we 
could experience numerically that the density information from only one space 
hardly supports the correct density matrix beyond the incorrect Kohn-Sham­
type idempotent one, we are just attempting to apply the method to a solid 
(GaAs) with real experimental data (structure factors and Compton profiles) 
for the first time and to compare the resUlting density matrix with the one 
calculated with the program CRYSTAL [8.11]. 
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Summary. A modern theory of macroscopic polarization in crystalline di­
electrics has been recently founded. Within this theory, polarization occurs as a 
geometric quantum phase of the crystalline Bloch orbitals. This modern theory 
only concerns polarization differences in zero electric field and cope, therefore, 
with lattice dynamics, piezoelectricity and ferroelectricity. So far, the geometric­
phase theory has been formulated and implemented within the density functional 
theory of Kohn and Sham. In this Chapter I outline the whole theory, focussing 
on a formulation within the Hartree-Fock framework and discussing a possible 
implementation in a localized basis set. The final section of this Chapter ad­
dresses a somewhat separate issue, namely the computation of a macroscopic 
dielectric constant from linear-response theory, in a periodic solid. 

Key words: Polarization - Dielectrics - Infrared charges - Piezoelectricity -
Ferroelectricity - Dielectric permittivity - Hartree-Fock - Electronic states -
Geometric phases. 

1. Introduction 

In a phenomenological description of dielectric media, the concept of macro­
scopic polarization is the basic one [1]: it is, therefore, quite a surprise to discover 
that-at the microscopic level-this quantity is even incorrectly defined in all 
textbooks. If one assumes the polarization elements as discrete, a. la Clausius­
Mossotti, then the polarization mechanism can be safely understood: but such 
an oversimplified picture does not apply to a real dielectric, where the electronic 
distribution is continuous and often very delocalized. Typically, textbooks at­
tempt to explain polarization via the dipole moment of a unit cell or something 
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of the kind [2, 3]. If this were correct, one could imagine that the macroscopic 
polarization is trivially accessible to electronic structure theory: in fact, the 
microscopic charge distribution is nowadays routinely available from standard 
computational techniques [4,5], for crystalline solids at least. But this is not the 
case at all and macroscopic polarization remained a major challenge for many 
years [6]. 

In 1992, there was a breakthrough [7]; in the following year, a modern the­
ory of macroscopic polarization in crystalline dielectrics has been completely 
established [8, 9]. According to the modern viewpoint, polarization is a physical 
observable completely independent from the periodic charge distribution of the 
polarized dielectric. In fact-when periodic boundary conditions are used-the 
charge is obtained from the square modulus of the wavefunctions, whereas po­
larization is a basic property of their phase. A comprehensive account of the 
modern theory, together with a review of the early calculations, has recently 
appeared [10]. For an oversimplified outline (in Italian), see [11]. 

To begin with, let me stress the most fundamental fact: The "absolute" 
macroscopic polarization of a material has never been measured as a bulk prop­
erty, independent of sample termination. Instead, the genuine observable bulk 
properties are typically polarization derivatives or even-in the case of ferroelec­
tric crystals-finite differences of polarization between two states of the same 
solid. The modern theory also concems polarization differences, £1P and avoids 
defining absolute polarization at all. 

At this point, it is convenient to clearly distinguish between two cases, which 
prove to be very different from a theoretical standpoint. Case one concerns polar­
ization in an electric field and is, of course, needed to define the dielectric tensor. 
Case two concerns, instead, polarization in zero field, under which circumstances 
the piezoelectric tensor [12), the Born effective charge tensor for lattice dynam­
ics [13] and the ferroelectric effect [14] are most usually defined. In both cases 
the polarization difference £1P induced by a given perturbation coincides with 
the integrated macroscopic current density, which traverses the sample while 
the perturbation is switched on. The theory addresses precisely this same cur­
rent, but the state-of-the-art tools available to deal with the two cases are very 
different. Case two is, by far, the one in much better-I dare say, definitive­
shape and the one to which most of the present Chapter is devoted. As for case 
one, there is still room for important theoretical developments [15, 16]: here, I 
present (in the last section) only the "traditional" linear-response approach to 
the polarization induced by a macroscopic electric field. 

As illustrated above, the main problem is to define and compute a macro­
scopic current. In quantum mechanics, the current is basically a property of the 
phases of the wavefunctions. In the case of vanishing electric field, the mod­
em theory allows us to express the electronic contribution to £1P as a Berry 
(alias geometric) quantum phase [17). In [10], the theory is presented at a for­
mally exact level, within the scope of the density functional theory of Kohn and 
Sham [18, 19]; calculations performed, so far, use the local-density approxima­
tion. A generalization, which applies to many-body correlated wavefunctions, 
has recently appeared [20]. Here, I present the aspects of the theory which are 
most relevant for its implementation at the Hartree-Fock [5] (HF) level. Needless 
to say, the density functional formulation of [10] applies almost unchanged to 
the HF case, upon straightforward replacement of the Kohn-Sham orbitals with 
the HF ones. However, there is an important conceptual difference: within den-
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sity functional theory, the many-body wavefunction remains undetermined [18], 
while within HF, an explicit variational many-body wavefunction is at hand, in 
the form of a Slater determinant [21]. Furthermore, the non-locality of the HF 
potential deserves some special attention. In this Chapter, I will present a com­
prehensive account of the whole theory, in its HF formulation, though relying 
on [8, 10] to abridge some mathematical passages. The logic of the presenta­
tion will be reversed with respect to [9, 10], and will remain close, instead, to 
the historical development of the theory, which was born with [7, 8]. Units and 
normalizations will be different from previous papers. 

The plan of this Chapter is as follows. In section 2, I define precisely the 
induced macroscopic polarization in zero field, using as a prototypical example 
the polarization of a zone-centre transverse-optic phonon in a polar crystal. In 
section 3, I discuss some features which are peculiar to the HF formulation of 
the mean-field electronic-structure theory. In section 4, I outline how a polar­
ization difference-alias an integrated macroscopic current-can be evaluated 
in a boundary-insensitive way in the thermodynamic limit. In section 5, I show 
how the integrated macroscopic current is transformed into a geometric quan­
tum phase [17], using a simplified one-band one-dimensional formulation and I 
discuss some unusual features of the physical observable so defined. In section 6, 
I provide three alternative and formally equivalent, geometric-phase expressions 
for the polarization difference, .t:1P, in a crystalline solid, whose grou'nd state is 
known at the HF level. In section 7, I discuss the numerical algorithm used in 
actual implementations, which have been performed within a density functional 
theory framework (and not within HF) so far. In section 8, I give the explicit 
expressions to be evaluated when the crystalline eigenstates are expanded over 
a localized basis set. In the final section of this Chapter, section 9, I outline 
a quite different theoretical approach-established well before the modern the­
ory discussed in the other sections-which allows evaluation of the macroscopic 
polarization linearly induced by any perturbation, even in presence of a macro­
scopic field: the calculation of a macroscopic dielectric constant is used as the 
illustrative example. 

2. Polarization differences in zero field 

To focus on these ideas, I refer to a specific example: the polarization difference, 
.t:1P, induced by a relative sublattice displacement in a polar crystal. If the dis­
placement is rigid, the perturbation is, in fact, a zone-centre optic phonon. If, 
furthermore, one chooses the boundary condition of vanishing macroscopic field, 
then the crystalline potential remains periodic at any values of the displacement: 
this applies to a transverse optic phonon in the long-wavelength (zone-centre) 
limit. To linear order in the displacement, this .t:1P defines the Born (or trans­
verse) effective charge tensor [13, 22]. General considerations [23] show that the 
Born tensor equivalently defines the force which a macroscopic field exerts, to 
linear order, upon a given (undisplaced) atom. Therefore, the Born tensors al­
low evaluation of the infrared activity of zone-centre phonon modes. The Born 
tensors are the simplest application of the present theory. 

The molecular analogues of the Born tensors go under the name of displace­
ment polar tensors, alias dipole-moment derivatives [24]. Not surprisingly, even 
in molecules, these yield the infrared activity and they are sometimes expressed 
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as the bare nuclear charge times a "shielding tensor" [25]. However, this obvious 
analogy gives me occasion to stress, instead, the paramount difference between 
a molecule and a solid, as far as macroscopic electrostatics is concerned. When 
the charge distribution is finite, there is a one-to-one correspondence between 
charge distribution and electrostatic potential, since the solution of Poisson's 
equation is unique, under the hypothesis that the potential vanishes at infinity. 
If one considers, instead, a periodic charge distribution, extended to all space, 
then the charge density alone does not uniquely determine the solution of Pois­
son's equation. Additional boundary conditions must be explicitly assumed. If 
we choose (as usual) the periodic solution of Poisson's equation, then we are 
assuming vanishingly small macroscopic field: other choices are in principle pos­
sible. Incidentally, it is worth noticing that even when the field is taken as zero, 
the crystal potential remains undetermined by an arbitrary constant (see e.g. 
p. 18 in [5]). Of course, the concept of an infinite solid is an idealization and 
one could find disturbing and unphysical the need to deal with the macroscopic 
field as with an additional boundary condition. But, in fact, this is not the case, 
since, in many experimental circumstances, it is precisely the field which is un­
der experimental control. In particular, the field is zero whenever the solid is 
perturbed while being kept inside a shorted capacitor and polarization differ­
ences are, in fact, measured via the currents flowing across the shorting wire 
[11]. Under such circumstances, one is, indeed, studying a bulk property of an 
open system, where charge is injected from one face and drained from the oppo­
site one. I stress once more that the most fundamental definitions of the Born 
tensors [13], of the piezoelectric tensor [12], and offerroelectric polarization [14] 
are given at zero field. 

In view of the above considerations, our main object of investigation is the 
polarization difference, LlP, between two states of the same solid, assuming that 
the perturbation conserves crystal periodicity. Within the Born-Oppenheimer 
approximation, we may separate the nuclear and electronic contributions as: 

LlP = LlP nucl + LlP el (1) 

The former term refers to point charges and is trivial: therefore, we focus only on 
the latter term, in the following. It is, however, worth noticing that each of the 
two terms in equation 1 depends on the choice of the origin in the crystal cell, 
while only their sum is a macroscopic (i. e. origin-independent) bulk observable. 
The two states of the solid are connected by a continuous transformation of the 
electronic Hamiltonian, which I parametrize with a dimensionless scalar variable 
A, chosen to have the values of 0 and 1 at the initial and final states, respectively. 
In the above example, A parametrizes the phonon amplitude in convenient units. 
In a more general case, A can be thought of as defined in a multidimensional 
parameter space. 

3. Aspects of the Hartree-Fock method 

We work within the HF scheme; atomic Hartree units are adopted throughout. 
The effective periodic potential in the Fock operator depends on A, both in its 
bare (electron-ion) and self-consistent (Coulomb and exchange) terms: 

F()..) = ~p2 + V()..), (2) 
2 
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where V(>') is non-local due to exchange and possibly to pseudopotentials as well 
[4]. The HF orbitals have the Bloch form at any A: 

(3) 

where the u's are cell-periodic functions of r. We assume the "p's and the u's 
are normalized to one over the crystal cell. It is, furthermore, convenient to 
choose the phases in such a way that "p~>')(r; ,,) is a periodic function of " in the 
reciprocal lattice: besides this, the phases of the Bloch functions at different " 
points are unrelated and completely arbitrary. This fact is usually referred to as 
gauge freedom. 

The Fock operator, equation 2, is usually diagonalized one" vector at a 
time: at a fixed ". the spectrum is discrete and only the lowest n/2 states are 
relevant to the crystalline ground-state. We make in fact the explicit hypothe­
sis that our solid remains an insulator-in the sense that its HF gap does not 
close--for any A value: supposing there are n electrons per unit cell, we have 
then n/2 doubly occupied bands at any". As usual in quantum mechanics, the 
spectrum of an operator is determined by the boundary conditions. Diagonal­
ization of equation 2 at a given" simply means that we impose quasi-periodic 
conditions at the elementary-cell boundary. This secular problem can be mapped 
into an equivalent one, involving the u's instead of the "p's: in fact, the u's are 
eigenfunctions of the effective Fock operator: 

(4) 

with the same eigenvalues f~>')(") as the "p's. The periodic potential is not the 
same because of non-locality: the explicit relationship is: 

(5) 

I wish to point out, however, the dual role of the boundary conditions under 
such transformation. At a given ". the "p's are eigenstates of a ,,-independent 
operator, equation 2, with ,,-dependent (quasi-periodic) boundary conditions; 
the u's are instead eigenstates of a ,,-dependent operator, equation 4, with ,,­
independent (periodic) boundary conditions on the elementary cell. 

Since we will be interested in the current, we need to discuss the velocity 
operator: it has, of course, a different form depending on whether it acts on the 
"p's or the u's. Furthermore, because of the non-local potential, the HF velocity 
even depends on A: 

v(>') = i[F(>') , r] = p + i[V(>') , r] 

v(>')(,,) = i[P(>'), r] = p +" + i[V(>')("), r] 

(6) 

(7) 

Notice that, in the above equations, p = -iV r is the canonical momentum op­
erator in the Schrodinger representation. One further identity is easily verified 
and will be most useful in the following: 

(8) 

In the rest of this Chapter, the u's play the most fundamental role. The 
(spin-integrated) reduced one-body density matrix is then written as: 
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(9) 

where n is the cell volume and BZ is the Brillouin zone, whose volume is 
(21r)3 / n. The one-body observables of the crystalline electronic ground state, 
at a given A, are simply expressed in terms of 1'(~). Macroscopic polarization is 
a notable exception, in that it is one-body but it is not a·function of 1'(~) in the 
usual sense. Essentially, one would like to express LlP el in terms of 1'(1) - 1'(0), 

but this is impossible since the relevant phase information is destroyed in the 
wavefunction products of equation 9. In fact-when periodic boundary condi­
tions are adopted-LlP el is not the expectation value of any quantum-mechanical 
operator! 

In practical implementations of the HF method to a solid, all BZ integrations 
are approximated as a finite sum over a discrete ~-point set. This heuristic 
approach has some significance as a matter of principle. 

Suppose we use an uniform mesh with N=N1N2N3 points along the primi­
tive hi vectors in reciprocal space: 

then the discretization is: 

(11) 

and the density matrix of equation 9 becomes identical to the one of a large finite 
system, made of N cells and nN electrons, with overall periodic boundary con­
ditions and whose nondegenerate ground eigenfunction is taken as a single Slater 
determinant [21}. We may also write this wavefunction 1/1 as the antisymmetrized 
product of N small determinants of size n, i.e:: 

I/I(~) - _1_ A IT 1·1·(~)(n· . . ):;:<~)(~. . .) .• I.(~) (~. . . ):;:<~/) (n· . ')1 -..".r,i! . . . Y'1 Jl.}2,Ja Y'1 Jl.)2,Ja·· Y'n/2 :1IoJ2.J3 Y'n 2 )1.)2.)3 

Jl.}2.Ja 

(12) 
where A is the antisymmetrizer and the electron coordinates are omitted, from 
now on, to simplify the notation. The determinants of the 1/J functions are simply 
related-through the plane-wave factors of equation 3-to determinants of the 
u's. Since I will need these Slater determinants in the following, I introduce a 
special notation for them: 

where the u's are the n/2 lowest periodic eigenfunctions of equation 4. 
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4. Polarization difference as a macroscopic current 

As stressed in the Introduction, we evaluate the electronic polarization difference, 
LlP eI. as an integrated macroscopic current. Explicitly, if the perturbation is 
adiabatically switched on in a time Llt, i.e. ~=~(t), with ~(O)=O and ~(Llt)=1, 
then: 

{1 lilt 
LlPel= Jo d~P~I(~)= Jo dtj(t) (14) 

with j(t)=P~I(~(t»~'(t). Therefore, without loss of generality, we may think of 
~ as an adiabatic time in appropriate units, such that j = P~I' When we attempt 
to evaluate such current, we discover that the mean value of the current on the 
adiabatic istantaneous crystalline ground state vanishes at any ~. In fact from 
equation 8 we have: 

(u~.\)(K)1 V(.\)(K) IU~.\)(K») = (u~.\)(K)1 VKF(.\)(K) IU~.\)(K») = VK4.\)(K) (15) 

where the second equality is due to the Hellmann-Feynman theorem, applied 
to the Fock operator. Because of the time-reversal symmetry (K -+ -K), the 
Brillouin-zone integral of equation 15 vanishes. It should be realized that this is 
the fundamental reason why r(.\) does not provide the macroscopic polarization, 
while it provides, instead, the more common adiabatic one-body observables. 

We have, therefore, to consider the next leading term in the adiabatic ex­
pansion, which requires us to use time-dependent perturbation theory [26] or 
similar means [7, 10]. The result takes the form of a so-called Kubo formula: 

where the v index runs from 1 to n/2 and the c index, from n/2+1 to 00. Again, 
due to time-reversal symmetry, the BZ integral. is purely imaginary. What is re­
markable in equation 16 is the fact that the integrated value of this nonadiabatic 
current is geometric in nature, in that it does not depend on the actual time 
evolution, but only on the the path traversed in ~-space (either one- or multi­
dimensional). If we now substitute equation 8 into equation 16, the sum over 
the virtual HF orbitals can be eliminated; in fact: 

IV (.\)(») _ '" I (.\)( ») (u~~)(K)1 V KF(.\)(K) IU~.\)(K») 
KU. K - L.J U.I K (.\) (.\) 

,'ib E, (K) - E,I (K) 
(17) 

After a few manipulations, one transforms equation 16 into the much simpler 
expression: 

We thus cast equation 14 as a four-dimensional integral in the (K,~) space: 
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(19) 

5. Outline of the Berry phase formulation 

The following step requires a further nontrivial transformation [8J. For the sake 
of simplicity, I will illustrate it on the ultrasimplified one-dimensional case, with 
only one doubly occupied band: equation 19 then takes the form: 

(20) 

where a is the one-dimensional lattice periodicity. Equation 20 represents a two­
dimensional integral in the (IC,'\) plane, over the domain shown in Fig. 1. 

Fig. 1. Integration domain in 
the ("'..\) plane used in equa­
tion 20. Using Stokes's theorem, 
the integral is transformed into a 
circuit integral over the bound­
ary, equation 26. 

The integrand can be identically expressed as the curl of a vector field, i.e.: 

1m (;IC u(>')(IC)I;,\ U(>')(IC)} = 

= -~ [~(u(>')(IC)I~u(>')(IC)} 
2 OIC 0'\ 

- ;,\ (u(>')(IC)1 ;IC U(>')(IC)}) (21) 

This immediately suggests the exploitation of Stokes's theorem, upon defining · 
the linear differential form: 

Such a differential form is known as a Berry connection [17] and gives the phase 
variation of U(>')(IC) for an infinitesimal variation of IC and '\. This property is 
~asily verified. For instance, taking a IC variation at constant A, the phase change 
IS: 
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(U().)(II: )lu().)(I1:+..111: ») 
I(U().)(II:)lu().)( 11:+..111:») I 

= 1m In (u().)lu().)(II:+..1I1:») 
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(23) 

(24) 

Supposing cp is a differentiable function of 11:, and using the conservation of the 
norm, one gets: 

dcp = -t(u().)1 :11: U().) (11:») dll: (25) 

to be compared with equation 22. 
We thus arrive at recasting equation 20 as the circuit integral of the con­

nection, equation 21, over the boundary of the two-dimensional domain of Fig. 
1: 

..1Pel = -~ f dcp (26) 

Circuit integrals of the kind in equation 26 are known as Berry phases [17]. 
Finally, it can be proved that the contributions of the two vertical sides in Fig. 
1 cancel and therefore, the polarization difference can be written as: 

L1Pel = .!: 1~ dll: [(u(O)(II:)I~u(O)(II:») - (u(l)(II:)I~u(l)(II:»)] (27) 
~ _% 811: 811: 

• 
This is the outstanding major result of [8] and is the basis of the present ap­
proach. We notice that it is a two-point formula, in that it involves only the 
wavefunctions at the initial and final values of A and not at the intermediate 
ones, at variance with all the formulas considered above. 

I have previously observed that-because of gauge freedom-the phase differ­
ence between wavefunctions at different II: values is completely arbitrary, except 
when the II: vectors differ by a reciprocal lattice vector. Therefore, the integrand 
in equation 27 has a large arbitrariness and is nonphysical, while its integrated 
value is instead a physical observable. This is a common feature when dealing 
with quantum geometric phases (alias Berry phases) [17], whose archetype is the 
well-known Aharonov-Bohm phase [27], discovered in 1959. The occurrence of 
nontrivial geometric phases in the band structure of solids was first discovered 
in 1989 by Zak [28]. From a mathematical standpoint, the situation is the same 
as in classical electromagnetism, where the vector potential has a large gauge 
freedom and is nonphysical, while its circuit integral along a given contour is, 
instead, gauge-invariant and observable, being equal to the flux of the magnetic 
field across a surface enclosed by the contour. 

6. Polarization as a geometric quantum. phase 

The Berry phase transformation has been illustrated, in the previous sec­
tion, for the ultrasimplified one-dimensional case. Applying this finding to the 
three-dimensional, multi-band case, one starts from the four-dimensional inte­
gral of equation 19 and-using Stokes's theorem-transforms it into a three­
dimensional integral. The analogue of equation 27 is then: 

2 l n/2 
..1Pel = -(2:)3 dK. I: [(u~1)(K.)IVK.U~1)(K.») - (u~O)(K.)IVK.u~O)(K.»)] (28) 

BZ 11=1 
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This expression can be transformed into a more elegant one, where a Berry 
connection between many-body states explicitly appear. I will, in fact, prove 
that equation 28 is identical to: 

LlPel = - (2:)3ia/" [(4)(l)(,,)IV,,4>(l)(,,)) - (4)(O)(,,)IV,,4>(O)(,,))] (29) 

where 14>(~)(")} are the single-determinant wavefuctions defined in equation 13, 
built up of n lattice-periodicalspinorbitals. Incidentally, equation 29 provides the 
link between the HF theory of polarization presented here and its generalization 
to the correlated case, which is due to Ortiz and Martin [20]. 

To proceed with the proof, a good starting point is to define the phase differ­
ence between two many-body determinants, thus generalizing equation 24. For 
a " variation at constant .\, the phase change is: 

Ll<p = 1m In (4>(~)(")I4>(~)(" + Ll,,)} (30) 

Supposing 14>(~)(")} is a differentiable function of ", the differential of equa­
tion 30 is: 

dIP = -t{4>(~)(")IV,,4>(~)(")} . d" (31) 
which defines the relevant (many-electron) Berry connection. I now wish to ex­
press this Berry connection in terms of the u orbitals, starting from equation 30. 
In that equation, we have the overlap between two Slater determinants, each 
built out of an orthonormal set, but where the two sets overlap. According to a 
well-known theorem, the overlap between the two determinants equals the de­
terminant of the overlap matrix between the two sets of orbitals. We have, here, 
a minor complication, since the 14>}'s are determinants of n spinorbitals, while I 
wish to use the n/2 x n/2 overlap matrix S(", " + Ll,,) amongst space orbitals, 
whose elements are: 

~~,(",,, + Ll,,) = (u~~)(")lu~~)("+Ll")} = f dr u~~)·(r; ,,)u~~)("+Ll", r) Jedl 
(32) 

The identity is, therefore, written with a second power: 

(4>(~)(")I4>(~)(" + Ll,,)} = det2 S<~)(",,, + Ll,,) (33) 

I now exploit another well-known identity [29], valid for any matrix A: 

det exp A = exp tr A (34) 

which, when applied to A = In S, transforms equation 30 into: 

Ll<p = 2 1m In det S<~)(",,, + Ll,,) = 2 1m tr In S<~)(",,, + Ll,,) (35) 

Taking the gradient with respect to Ll" and noticing that S<~)('" ,,) coincides 
with the identity, we find that equation 29 is equivalent to: 

LlPel = -(22t)3 f d" tr {V",S<l)(",,,') - V",S<°)(",,,'nl . (36) ~ ~ w_ 
Using the definition of the overlap matrices S, we can immediately verify that 
equation 36 is also identical to our starting expression, equation 28, thus complet­
ing our proof. I anticipate that the overlap matrices, S, are the key ingredients of 
numerical implementations. Let me end this section by stressing once more that 
the integrands in equations 28, 29 and 36 are gauge-dependent and unphysical, 
while the integrated values are gauge-invariant and physically observable. 
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7. The numerical algorithm 

In practical calculations, the BZ integral must be replaced with a discrete sum, 
as in equation 11. Typically, eigenfunctions, at a given 1(, are obtained by nu­
merical diagonalization over a finite basis: the phase is then chosen essentially at 
random by the diagonalization routine. It is, therefore, of paramount importance 
to choose an algorithm where such phase arbitrariness is harmless. 

We observe that the BZ integrations can be performed equivalently over 
a unit cell in the reciprocal lattice; furthermore, in order to use the mesh of 
equation 10, we perform the linear change of variables: 

(37) 

The component of LlP el along h3, say, is then, from equation 29: 

h3' LlPel = -.!:. jd(ld(2d(3 [(4)(l)(')I~4)(l)(,)} - (4)(O)(')I~4)(O)(,)} ] n 8(3 8(3 
(38) 

and the integral is performed over the unit cube in the , variable. We perform 
such an integral as an integral in the «(1,(2) plane and an integral along (3, in 
succession. It is easy to realize that the inner integral is a line integral of the 
Berry connection, equation 31, in the, variable, over a suitable segment of unit 
length: 

(39) 

We approximate the differential as a finite phase difference, among states 14)} 
at the neighbouring points 'j1 . Ja and 'j j2Ja+1: we use equation 30 and we 
introduce the notation for the pL2ase differe~~e at neighbouring points of the grid 
(at fixed ~): 

Lltp~~f1.ja = 1m In (4)(~)('hJ2.jll)I4)(>')('h.hJlI+1)} (40) 

and the obvious analogues for the remaining two components with i =F 3. With 
these notations, the discretization of the three-dimensional integrals in equa­
tion 38 is simply: 

(41) 

generalized to an arbitrary component. This is the expression which is actually 
coded in the calculations performed so far (in the framework of density functional 
theory), where the phase difference among two determinants at different, points 
(alias I( points) is evaluated as the phase of the determinant ofthe overlap matrix 
amongst the single-particle orbitals, as in the first equality in equation 35. 

Next I am going to show why equation 41 is not affected by the strong gauge 
arbitrariness discussed above. Let us consider again the component i = 3 and 
focus on the sum over i3 at fixed values of (j1,h). Further, I use the simplified 

notation 14)(~)('j1.j2JlI)} = 14)~~)}: a typical sum over is is, therefore: 
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Na-l Na-l Na-l 
~ (>.,3) ~ (>.) (>.) II ( (>')1 (>.) ) 
L..J ilrp;l';2Ja = L..J 1m In (~;a 1~;a+1) = 1m In ~;a 4);a+1 (42) 
;a=O ;a=O ;a=O 

The very crucial step is that only N3 independent diagonalizations, not N3+1, 
must be used: otherwise, the random phase introduced by the diagonalization 
routine destroys the result! The key point is that Bloch states, whose index differ 
by exactly N3, correspond to" vectors differing by exactly the reciprocal vector 
b 3 . Since the Bloch orbitals .p are taken as periodical in reciprocal space, we 
have the important relationship for u: 

u~>')(ri ,,+b3 ) = e-'ba·ru~>')(ri ,,) 

This implies the identity: 

(~(>') I~(>')} = (~(>') le-'ba.rl~(>')} 
Na-l Na Na-l 0 

(43) 

(44) 

where the shorthand notation means that the monoelectronic operator acts upon 
all the singl~particle orbitals in the many-electron determinant I~}. The rela­
tionship in equation 44 must be numerically exploited in order to guarantee 
meaningful results. equation 42 is then equivalent to: 

1m In (~~>')I~~>')}(~~>')I~~>')} ... (~~1_1Ie-'ba.rl~~>')} = 

= 1m In tr {e-'ba.rl~~>')}(~~>')I~~>')}(~~>')1 ... 1~~1-1)(~~1-11 } (45) 

where the trace involves products of operators, such as I~<~)}(~}~\ Each of 
them is nothing other than the projector over the occupieJ spinorbitals, at a 
given" and is, therefore, unique (gauge-invariant) and unambiguous. 

8. Localized basis sets 

The calculations performed 80 far have implemented the previous equations di­
rectly, where the overlap matrices, equation 32, have been obtained from the 
self-consistent local-density crystalline orbitais in a reciprocal-space mesh. Fur­
thermore, the variational basis sets which have been used, 80 far, are either simple 
plane waves in a pseudopotential framework [4] or linear augmented plane waves 
(LAPW) [30,31]. Here, I give the explicit formulation in the case of a localized 
basis set. It is also understood that the crystalline orbitals in the present case 
are the eigenstates of the self-consistent Fock operator [5]: it is not necessary to 
use the same reciprocal mesh for the Berry calculation as is used in achieving 
self-consistency. 

According to the discussion in the previous section, the main quantities to 
be evaluated are overlap matrices of the kind in equation 32. Suppose we are 
expanding the crystalline HF orbitals in the localized basis set, rp,,(r) centred 
at sites s,,' where J.& = 1, ... , M is a basis label in the primitive cell. If Tm is a 
generic lattice translation, the occupied Bloch HF orbitals have the form: 

M 

.p~>')(ri ,,) = L cr~~(,,) L e,"·T"'rp,,(r - s" - Tm) (46) 
,,=1 m 
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where the a-coefficients are provided by the diagonalization routine at a given 
IC. A typical overlap matrix element is, therefore: 

M 

(u~>')(IC)lu~~)(IC+L1IC») = L a~~~·(IC)a~~!,AIC+L1IC) 

x Le&C"+.:1IC)·T", (IPp(r - sp)1 e-&.4IC·r IIPpl(r - Spl - Tm)} (47) 
m 

Besides the a-coefficients, the basic ingredients are, therefore, the matrix ele­
ments of suitable plane waves over the localized basis. 

9. Macroscopic fields and dielectric constants 

The problem of an extended solid in a finite macroscopic field is a very diffi­
cult one-even as a matter of principle [32]-and is presently an active area 
of research [15, 16]. The difficulty can be traced back to the fact that, in the 
presence of a macroscopic field, the electrons are in a nonperiodic self-consistent 
potential and therefore, the orbitals no longer have the Bloch form. Even worse, 
the Hamiltonian is no longer bounded from below and the spectrum undergoes 
a nonanalytic qualitative change. Notice that such a statement applies not only 
to a solid, but even to an isolated hydrogen atom! 

At the moment of writing, the well-established theoretical methods and the 
first-principle calculations rely heavily on linear-response theory and therefore, 
they concern only crystal properties which are linear in the field magnitude: 
this is the case for calculations of the macroscopic dielectric constants [33, 34]. 
Basically, it is possible to perform self-consistent calculations for a crystal in a 
macroscopic field, which are correct to first-order in the field magnitude, without 
trading away the major simplification of dealing with pure Bloch states. These 
methods have been developed earlier than the geometric phase approach dis­
cussed above but have a close link with it. I stress, however, that linear-response 
calculations do not presently involve the evaluaiion of a geometric phase. 

So far, linear-response methods in solids have only been used in the frame­
work of density functional theory: I refer to [35] for a comprehensive account 
of the most powerful approach, amongst the severaI which have been proposed 
and implemented in recent years. In these notes, I give an abridged presentation, 
focussing on the features of a possible HF implementation and discussing only 
the special case of the macroscopic response to a macroscopic field: the linear­
response methods have been proven capable of dealing with more general cases 
as well (phonon spectra [35], piezoelectricity [36] amongst others). 

The key idea is essentially the same as in the so-called coupled HF schemes, 
quite common in quantum chemistry for dealing with finite systems (atoms and 
molecules) [37,24]. Let us start, therefore, with a large and finite system, having 
discrete HF orbitals tPi, which vanish outside the system: the thermodynamic 
limit will be taken only at the end. We write the electronic charge density as: 

(48) 
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where Ii is an occupancy factor (either 2 or 0), selecting the doubly-occupied 
HF orbitals. 

The crystalline observable of interest is the macroscopic dielectric tensor, 
defined as*: 

lJPel 
eoo = 1 + 411" lJE (49) 

where P is the macroscopic electronic polarization linearly induced by the 
(screened) field Ei in a cubic material, such a tensor obviously reduces to a 
constant. Using equation 48, we wish to evaluate: 

(50) 

where V is the volume of the finite sample. It proves useful to transform the 
dipole matrix elements, using the identity: 

(51) 

where fi are the HF eigenvalues and the HF velocity operator v is the same as 
in equation 6. Straightforward manipUlations transform equation 50 into: 

(52) 

where I have exploited the fact that IlJtPi/ lJE) may be chosen as orthogonal to 
ItPi). Notice that equation 52 is precisely the finite-system analogue of the Kubo 
formula previously displayed in equation 16 for an infinite periodic system (and 
for a lattice-periodical perturbation). 

In order to proceed further, we need a self-consistent scheme providing the 
derivatives of the HF orbitals and of the HF potential with respect to the per­
turbation. The first step consists of writing the first-order corrections to the 
orbitals as: 

~tPi = L tPi (tPi 14 V ItPi) 
.J,. Ei - fj 
J~I 

(53) 

As a second step, we look for an independent relationship providing instead 
~ V in terms of the orbital variations ~tPi: iterating over these two steps, the 
self-consistency goal is reached. As usual, I split the self-consistent HF potential 
into: 

V = Vext + VH + Vx (54) 

where Vext is the bare potential due to the ions and to the (unscreened) per­
turbation, while VH and Vx are the usual Hartree and exchange self-consistent 
terms, respectively. Within HF, the exchange potential is non-local. The two 
self-consistent terms are quadratic in the HF orbitals and therefore, their linear 
variation has a very simple form. For instance, the first-order Hartree term is: 

* I discuss here eco, which accounts for the purely electronic component of dielectric screen­
ing. In solid state textbooks, eoo is usually referred to as the "static high-frequency" dielectric 
constant: this means measured at frequencies much higher than the lattice vibrations and 
much lower than electronic excitations. 
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..1VH(r) = 4= Ii f dr' Ir ~ r'1 [,p;(r')..1,pi(r') + c.c.] (55) 
I 

When a macroscopic field E acts on the solid, it proves useful to write the 
self-consistent HF perturbation potential, ..1 V, in a slightly different way from 
equation 54, explicitly separating the macroscopic field from the microscopic 
components. The potential of the screened macroscopic field-due to both the 
bare and the self-consistent terms in equation 54-is written as -eE . r, while 
the remaining microscopic term is a lattice-periodical (though non-local) opera­
tor in the thermodynamic limit. Therefore, we write the first-order variation of 
equation 54 as: 

..1V = -eE· r + ..1v(micro) (56) 

At this point, we may take the thermodynamic limit of all the above expres­
sions. In fact, all of the equations which are needed in order to implement the 
method have a simple and well-defined expression for the infinite periodic crystal 
in the thermodynamic limit, where the index i is identified with the band index 
and the Bloch vector altogether and the orbitals are expanded over a given basis 
set. The self-consistent loop is performed cycling over equations 56 and 53, while 
the value of the screened field E is kept constant during the iteration. Whenever 
equation 56 is inserted in equation 53, the matrix elements of rare transforI.Ded 
to the velocity form, using equation 51 again, while the elements of ..1 v(mlcro) 
are directly evaluated from the Bloch orbitals, as e.g in equation 55. 

As anticipated above, linear-response methods have not been implemented so 
far in a periodic solid at the HF level, while a rather large experience has been 
gathered on implementations within a density functional framework instead, 
both at the local-density-approximation level [33, 35] and beyond [34]. In most 
calculations, a plane-wave expansion of the orbitals is used; in a few recent 
papers, other basis sets are used as well [38, 39]. 

In atoms and molecules, linear-response methods have a well-established 
record of implementations at the HF level and beyond [24]. No major com­
plications are expected for a crystalline solid, by analogy with similar density 
functional implementations, when the formulation presented in this work is used. 
For the particular case of computing a macroscopic dielectric constant, linear re­
sponse is essentially the only viable tool (for an alternative, though less effective, 
approach, see [40]). 
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Summary. We discuss concisely how the conventional Hubbard model and its 
generalizations (including phonons) might be good candidates for an explanation 
of high Tc superconductivity, reviewing its properties both on crystals defined 
by conventional point groups and on non-Euclidean lattices. We also study the 
metal-insulator transition of the Hubbard model by treating the hopping term 
between adjacent I-D chains in the frame of a fermionic linearization scheme and 
keeping the full model on the chains. A general equation for the critical point 
is worked out in terms of correlation functions of the one-dimensional model, 
assuming that the transition is second-order, at zero temperature. 

Key words: High Tc superconductivity - Hubbard model - Metal-insulator 
transition - Non-Euclidean lattices 

1. The Hubbard model 

In the so-called tight-binding scheme, the hamiltonian for electrons of the band 
generated by the atomic shell of ¢q (where ¢q (r - Rj) denotes the orbital wave 
function for a (conduction) electron of spin u (u = i , ! on the atom in lattice site 
j (at Rj)) writes: 

(1) 

where: 

t~;) =< i, u/h(r)/i, u >= J dr¢;(r - Rt)h(r)¢,,(r - Rj) (2) 
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is the hopping amplitude [h(r) == - :2 L1r + V(rj {Rd) denotes the single­

particle electronic hamiltonian, V being Wte potential "seen" by a single electron 
in the lattice]. The first term in equation 1 is then nothing but the customary 
band hamiltonian, whereas: 

~~j;::) = < i,tTj i,tT'lVc(r,r')lk,tTj itT' > 

- e2 J dr dr' ~:(r -~) ~:,(r' - Rj) 

1 
x I 'I~cr(r - Rt) ~cr,(r - Rt) r-r 

describes instead coulomb interaction between electrons. 

(3) 

The conventional wisdom [1] is to make a first, drastic approximation of 
equation 1 which consists of assuming, on the one hand, that the values of t~;) 
differ from zero only if sites ~ and Rj are nearest neighbours in the lattice /1, 
independent of tT (i.e. the probability amplidute is the same for electrons with 
spin up or down), and all equal (translation invariance)j and on the other hand, 
in keeping only those interaction terms corresponding to i = i = k = i, assuming 
that these are equal while all others are negligible. The resulting hamiltonian is 
usually referred to as the Hubbard hamiltonian [2, 3]: 

H = -t E E (al,craj,cra]'crai,cr ) + U E "j,t"j,! 
<i,j> cr j 

(4) 

where -t (the minus sign is conventional) represents the common value of all 
non-vanishing t~;), whereas, analogously, U is the value of the V's assumed to be 
non-zero. In view of the Pauli principle and of the assumed strong localization 
of electrons, among the latter one finds, of course, only terms with tT' = -tT. 

In a seminal paper, in which the model, which has ever since borne his name, 
was proposed in its full extension, Hubbard [4] performs a detailed analysis of the 
most general hamiltonian suitable to describe a system of itinerant interacting 
electrons in a d-dimensionallattice A of N sites. In doing so, he puts into play 
five parameters describing as we shall see, respectively: 

i) the density-density interactions: U =< i, tTj i, -tTlVc{r) Ii, tTj i, -tT > and 
V =< i, tTjj, tT'lVc(r, r')li, tTjj, tr' >j 

ii) the density-bond interactions: X =< i, tTj i, -tTlh(r)li, tTjj, tT »j 
iii) the bond-bond interactions j =< i, tTjj, tT'lh(r) Ii, tT'jj, tT > and 

), =< i, tTj i, -tTlh(r)!j, -tTjjtT >j 

where i and j are assumed to be nearest neighbours (n.n.) in A. 
The resulting hamiltonian has the form: 

H' = -t L: L: (al,craj,cr + a1.cral,cr) + U L: "l,t"I,~ 
<IJ> cr i 

+ V L: L: "I,cr"j,cr' + X E E (al,craj,cr + a1.crai,cr) (nl,-cr + nj,-cr) 
<lJ> cr,q' <IJ> cr 
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-"" t t +J L-, L-, allaaJla,alla,aJ,a 
<IJ> (T,a' 

+j' E (al.1tal.~aJI~aJ.t + a1.1ta1.~all~all1t) 
<lJ> 

(5) 

where the index tr labels the electron spin (tr E { t , l} ). The d-dimensional 
lattice A of N = N1N2 ... Nd sites, is assumed to be cubic. The operators 
al,a and al,a are fermionic creation and annihilation operators ({ al,a, aJ,a' } 
= 0 , {al,(T' aJ,(T'} = 61J 60', 0", nl,a == al.aal,a) over A; < i,j > denotes (n.n.) sites 
in A. 

The extended hamiltonian in equation 5 provides, on the one hand, a more 
realistic description of the hopping processes, by attributing different probability 
amplitudes to hops carrying an electron from a doubly-occupied site to an empty 
site, from a doubly- to a singly-occupied site, from one singly-occupied state 
to another and from a singly-occupied state to an empty site; on the other 
hand, Coulomb interaction is accounted for not only locally, but in its long­
range features (we shall, in the following, consider only a range equal to the 
nearest neighbour distance). 

All of this implies that two parameters are no longer sufficient Md at least 
four more are needed: besides t and U, we define an amplitude to describe long­
range Coulomb interactions, V =< i, tr j j, tr' I Vc(r, r/)li, tr j j, tr' >j a parameter 
accounting for different hopping probabilities for different site occupation: 

x _ <;, tr j i, -trlh(r)li, tr; j, tr > 

- J dr,,:(r-Ri)h(r)"a(r-Rj)I"_a(r-Rj)12 

and two for second-order hopping processes: exchange (an electron hops from 
site i to site j while simultaneously another electron jumps from site i to site i): 

j _ < itr j j, rr'lh(r)li, tr' j j, tr > 

- J dr,,:(r - Ri),,:,(r - Rj)h(r)"a,(r - Ri),,:(r- Rj) 

and pair hopping (two electrons hop "together" from a doubly-occupied to an 
empty neighbouring site) 

jl _ < itr j i, -trlh(r)lj, -tr j j, tr > 

- J dr,,:(r - Ri)":a(r - Ri)h(r)"a(r - Rj )"_a(r - Rj) 

One assumes, for simplicity, that those, among the above coefficients, which 
involve two sites i and.} are zero, unless i and j are nearest neighbours in A. 

The possibility of a realistic description of the system spectrum relies, of 
course, on an accurate estimate of the parameters t, U, V, j and jl. 

By a thorough analysis of the data, Hubbard estimated that U ranges b~ 
t!"een 20 and 30 e V, V between 2 and 3 e V, X is ofthe order of 0.5 e V and J, 
J' are of the order of 0.025 eV. It is for this reason that he confirms the claim 
that it should be sufficient, at least in the study of transition metals, to keep 
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only U, suggesting a hamiltonian of the form given by equation 4 (i.e. the first 
line in equation 5). In view of its use in the frame of a grand-canonical ensemble, 
we shall add to such a hamiltonian, the term -JJNe , where JJ is the chemical 
potential and Ne = 2: 2: ni,O", the total number of electrons: 

I 0" 

HHu6 = -JJ 2: 2: nl,O" - t 2: 2: (at,O"aj,O" + a1.O"al,O" ) + U 2: ni,1tni,Jj. (6) 
I 0" <IJ> 0" i 

The "standard" Hubbard model, given by equation 6, provides the simplest 
description of a system of itinerant interacting electrons on a lattice, by as­
suming that the itinerant electrons interact only via an on-site Coulomb repul­
sion term U. With the discovery of the novel high-Tc superconductors, such a 
model was universally considered to be a good candidate to describe two of their 
most important features: antiferromagnetism and the possibility of undergoing a 
correlation-induced Mott-Hubbard [4, 5) metal-insulator transition (MIT). The 
latter was expected solely on the basis of the competition between the two phases 
with dominant repulsion (insulator) and hopping (metal) terms. On the other 
hand, an exact solution of the model is known only for the ground state in one 
dimension [6), in which case the system has been shown to be insulating - at 
half-filling (we define filling as the average number of electrons, of any spin, per 
lattice site, no == < Ne >/N, so that half-filling means no = 1) - for any U > O. 

In dimensions greater than one, the MIT transition has to be studied by ap­
proximate treatments, non-perturbative in the interaction. Different approaches 
have been proposed [4, 7, 8), supporting the appearance of a continuous metal­
insulator transition at T = 0 as a function of U. Also in the limit of infinite 
dimension, numerical calculations [9, 10) show that there is a MIT for finite 
and non-vanishing U. Nevertheless, none of these methods is capable, at the 
same time, of matching the exact result in the limit where the number of di­
mensions becomes one. Moreover, there is no description available of the phase 
space for generic filling and for non-vanishing temperature. In the final part of 
this paper, we shall show how the latter goals can be achieved by considering 
a d-dimensional Hubbard hamiltonian and using one of the above schemes (re­
ferred to as CFLS: cluster fermionic linearization [11)) only to approximate the 
hopping between neighbouring 1-D chains, the hamiltonian of the latter being 
complete and treated exactly. 

The first goal we deal with is, naturally, that of finding the spectrum of 
equation 6. We do that by resorting to one of the most important tools of 
quantum mechanics, that of exploiting the symmetry properties of the system 
to more easily derive its features. 

At half-filling, the model defined by equation 6 has an 8u(2) EEl 8u(2) global 
symmetry algebra [12, 13) (more precisely, the symmetry group is 80(4) ...-
8U(2) ® 8U(2)/'ll2, because locally the Casimir operator of 8u(2) is propor­
tional to the Cartan element of 8u(2), and analogously, the Casimir of 8u(2) is 
proportional to the Cartan of 8u(2), which implies that, in every state, spin and 
pseudo-spin are either both integral or both half-integral), generated by: 
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1 
Jz = 2 E (nl,lt - nl,.u.) for magnetic su(2) 

I 

(number-preserving) and: 

and K_ = Ee-iG·jaj,.u.aj,1t = (K+)t 
j 

293 

(7) 

for superconductive su(2) (8) 

(spin-conserving), where G is a vector whose d components are all equal to 11'. It 
is immediate to check that the two su(2) algebras above are mutually orthogonal, 
i.e. [Ja , Kp] = 0 , 'Vn, (3 = ±, z. Moreover, the algebra 2Z2 , which is generated 
by: 

T = _1_ '" ei G·I (a + at) eill'nl .• ..(fi ~ 1,11' 1,11' (9) 

simply interchanges the two algebras: 

Taj,ltT - 1 = at and Taj .u.T - 1 = eiG.j at j,lt ' j,.u. 

The symmetry described amounts to saying that for JJ = !U (the condition for 
half-filling) both [Ka, HHu66] = 0 and [Jp, HHu66] = o. 

Resorting to such symmetry Yang [14] constructed eigenstates of the Hub­
bard hamiltonian characterized by off-diagonal long-range order (ODLRO), la­
belled in terms of two quantum numbers, one of which is related just to the exis­
tence of superconductivity. Such eigenstates, however, were shown to have energy 
higher than that of the ground state. On the other hand, Korepin et al. [15] were 
able to prove, by using this symmetry, that the lowest weight states of the al­
gebra, annihilated by the lowering operators of su(2) and su(2), are of the type 
introduced in the solution to the one dimensional model by Lieb and Wu [6] re­
sorting to a Bethe Ansatz. They proposed, therefore, an "SO(4)-extended" Bethe 
Ansatz for the Hubbard model, whereby a complete set of states is generated 
by application of the raising operators to such lowest weight states. It is worth 
mentioning also that the very general model, described by eq'!,ation 51.. has itself 
a global symmetry, holding in the special case when t = X = J = - !J' = -4V, 
realized by the superalgebra u(212) and, thanks to the latter, is then exactly 
solvable in one dimension [16]. The local superalgebras whereby such global 
symmetry is generated had been earlier introduced by Montorsi, Rasetti and 
Solomon [U], just in connection with the possible interpretation of the super­
conductive phase transition in the novel high-Tc copper-oxide compounds as a 
spontaneous breaking of supersymmetry. 

Returning to the customary Hubbard model, it so happens that switching 
on a phonon field, although breaking the 8u(2) symmetry, may restore it as a 
quantum group Ug(Bu(2» '" [su(2)]g symmetry, where the deformation param­
eter q is related to the strength A of the electron-phonon coupling. Moreover, 
the filling at which symmetry is restored depends on A and the symmetric eigen­
states of the hamiltonian (which exhibit ODLRO) have energy lower than both 
the corresponding (rrpaired) states of Yang and the usual BeS states. 
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In order to prove this intriguing feature, we note first that the grand­
canonical hamiltonian HHub has the form HHub = H~:oc) + H~~oP). The first 
factor represents the local contributions to the electrons energy: 

H~:oc) = L (-I-'( nUl' + nU.) + U nUtnj,~) 
jeA 

whereas the second is the non-local kinetic part of the energy: 

He(h, op) = -t ~ ~ (t + t ) L.J L.J aj,/7ak,/7 a k,/7aj,/7 
<j, k> /7e{1t,~} 

(10) 

(11) 

We shall focus our attention on the amplitude t. This parameter (actually tlJ, 
assumed to be bond-independent in view of the system's translational invariance) 
is the hopping integral of the band electrons, given by: [2] 

where fjJ(r - Rj) is the atomic wave function for an electron of mass m with 
respect to the ion at Rj in A and VCr, {RI}), the single electron potential. 

By inclusion of phonons, treated here simply as an ensemble of independent 
Einstein oscillators [17] with frequency w, describing the ionic vibrations, the 
Hubbard hamiltonian becomes: 

H = H(Ioc) + H + H(hop) 
el ph el-ph (13) 

where: 

~(pl 122) 
Hph = 7 2M + 2Mw Zj 

(14) 

with M denoting the ionic mass and Zj and Pj, the local ion displacement and 
momentum operators, respectively ([Zj, Pk] = iMj,k), commuting with the fermi 
operators. Once more: 

H~~~l = L L (tj,k a L,/7aj,/7 + h.c.) (15) 
<J,k> /7 

but with tj,k, given by the obvious generalization [18] of equation 12, taking into 
account the fact that the orbitals should now be centered at the displaced ion 
sites: 

and can no longer be assumed bond-independent. 
The novel feature here is that the hopping amplitude, tj,k, defined by equa­

tion 16 is itself an operator, depending on the phonon degrees of freedom and 
commuting with fermionic operators. 

The hopping hamiltonian equation 15 appears thus to be itself the sum of two 
t H (hop) H(Ioc) H(non-Ioc) Th fi d h d' 'b . erms: el-ph = el-ph + el-ph . e ormer, ue to t e nect contn utlOn 



The Hubbard Models and Superconductivity 295 

of VCr, {RI}) to equation 16, consists of purely local terms (of which, for the 
sake of simplicity, but with absolutely no loss of generality, we keep only the 
first [19, 20]): 

H!:~~h ~ -.\ 2)nJ,1I' + nJ,~) ZJ 
J 

which describes the coupling between electrons and ion dipoles induced by 
phonons, with strength: 

.\1 = - f dr¢/'(r - Rj - Zj) (V RJ VCr, {RI}» tfJ(r - RI - ZI) ~ .\ 

Note that .\ :I: 0 dynamically breaks the 8u(2), not the 8u(2) symmetry. 
H!?_o;;'oC) contains instead the contribution of the ion displacements to the 

hopping amplitude tj,k induced in equation 16 by the Laplacian: 

(17) 

(18) 

In equation 18, the explicit exponential asymptotic form of tfJ(r-RIt) from the 
ion core, was used at the r.b.s. The constants ( and ". are real, depending on the 
single particle potential VCr, {RIl) and on the interatomic distance 6 = IRj-Rkl. 
The former simply gauges the exponential decay of the wave function tfJ(r) in 
the overlap region, from the ion cores (where the oscillatory behaviour of the 
wave-function, together with the exponentially small value of the n.n. orbital, 
give instead a negligible contribution to the integral). The factor, (pj - PIE), 
obviously, accounts for the relative variation of the electron momentum with 
respect to that of the vibrating ions. One has thus: 

H!?_o;;'oc) = tEE ( exp {( (Zj - Zit)} exp {i". (pj - PIE)} aL,aj,O' + h.C') 
<j,lt> 0' 

. (19) 
Before discussing fully the quantum symmetry, to which this interaction 

leads, we consider a somewhat reduced problem - which is, however, very inspir­
ing with respect to the more general question - dealing only with the hamiltonian 
first: 

iI = H + H(loc) + H(hop) + H(loc) 
ph el el el-ph (20) 

which one obtains by neglecting non-local electron-phonon terms. Only later on 
shall we explicitly take into account both of the contributions to H!~~l. It is 
interesting to point out that the hamiltonian in equation 20 coincides with the 
one considered e.g. in [21], to account for the role possibly played by phonons in 
giving rise to pairs (bipolarons) in superconductors. 

The spectrum of equation 20 is typically investigated [21] by resorting to the 
so-called Lang-Firsov [22] transformation: 
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which formally "rotates away", for a suitable choice of the parameter e, the 
local electron-phonon interaction term. n leaves the pure phononic part Hph 

unchanged, while it leads to a new electronic effective hamiltonian H~, of the 
form: 

H~, = -J.l.' l)nj,1t + nj,.u.) + u' L: nJ.1tnj,.IJ. 
j j 

-t L: {exp [-~(Pj - Pk)] a1.uak,u + h.c.} (21) 
<j,k>,u 

~2 ~2 ~ 
where J.l.' = J.l. + 2Mw2 ' U' = U - Mw 2 and e now has the value e = IiMw 2 

(note that e -+ 0 when ~ -+ 0). The hopping operator in H~, is customarily dealt 
with by solid state physicists by treating the phonon-dependent term within a 
mean-field scheme [21], namely by replacing exp [-~(Pj - Pk)] with e-g~, for 
some real 9 to be determined self-consistently. One may note that, even though 
such an approximation manifestly restores the full 80(4) symmetry, in that it 
recovers a renormalized Hubbard model, it hides completely the dynamical effect 
ofphonons. 

On the other hand, upon defining the new nilpotent operators: 

the hamiltonian in equation 21, after setting Vj,u = f.J~ufJ.u (the number operator 
for fJ.u) reads: 

j j 

-t L: L: (tJ,ufk'u + h.c.) 
<J,k> u 

This latter form for H~, is suggestive, in that it has once more the same formal 
structure as the Hubbard hamiltonian, but with the operators fJ.u replacing the 
electron operators aJ,u. The set fJ,u on the other hand, has the properties of 
fermions only in part. Indeed, the relations connecting them are the following: 

fJ,ulk,u 1 + lJ.i,k Ik,u l flu = c5j,k c5u, u' 
fJ.u Ik,u l + lJ.i,k Ik,u l fJ.u = 0 (22) 

where qj,k = exp [ie(PJ - Pk)] is an operator (which, however, commutes with 
all values of Au and can, therefore, be dealt with as a c-number). Relations of 
the type in equation 22 generate a fermionic version of the Gel'fand-Fairlie [23] 
quantum algebra and reduce to the usual anticommutation relations for fermions 
only in the limit e -+ o. It is intriguing that they reproduce the deformed 
commutation relations of anyonic oscillators [24] on a lattice, which coincide 
with those of fermions only for j = k (IJ.iJ == 1). 

On the basis of the above considerations, we conjectured that a global sym­
metry of the model, described by the complete H in equation 13, might be 
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restored at the quantu_m level. We looked, therefore, for a global symmetry al­
gebra of the form 8u(2) $ [8u(2)]q. This could indeed be done, by adopting a 
scheme essentially identical to that used by Yang and Zhang in [12], namely 
constructing first the local [8u(2)j]q, j E A, and requiring that each commutes 
with the j-th term of the local hamiltonian: 

H(loe) = H + H(loc) + H(loc) 
ph el el-ph 

then extending these successively to a global [8u(2)]q generating - if possible -
a novel symmetry of the whole hamiltonian H. The complete proof of existence 
of such a global quantum symmetry, intended in the sense of deformation of 
the universal enveloping algebra of the symmetry algebra 80(4), dealt with as a 
full-fledged Hopf algebra, is given in references [25, 26]. We review it here, with 
only a few additional comments on the algebraic structure. 

Dealing first with the local symmetry generators, we set: 

(23) 

The three operators Ki"Y) , "I = ±, Z, generate a quantum [8u(2)]q algebra as well 
[27}: 

sinh (2aK~Z») 
[K(z),K(±)] = ±K(±) and [K(+),K~-)] = . J == [[2aK!Z)]] (24) 

j j j j J smh(a) J q 

with q = e-a , a E (: arbitrary, as a 8u(2) Lie algebra (a = OJ in which case, the 
r.h.s. of equation 24 equals 2KY». 

We can immediately check that Hi'oe) commutes with all Ki"Y) "I = ±, Z, 

provided the following two relations are satisfied: 

1 ( 2A2 ) 2A p.="2 u- Mw 2 and¢= IiMw 2 ==2e 

(observe that, for A = 0, the latter leads to the realization of the 8u(2) of Yang 
and Zhang, whereas the former reduces to the condition of half-filling). Other-
wise, the local hamiltonian commutes only with KJz) and the local symmetry 
reduces to u(l). 

Extension of the above local algebras to the whole lattice, gives rise to a 
physically non-trivial symmetry of H only in the quantum algebra case. 

If the system, described by hamiltonian H, is assumed to be endowed with 
a symmetry equipped with true Hopf algebraic structure, then this implies that 
the correct global extension of the local (whether quantum or not) algebras 
should be performed in terms of coproduct. As in the general Lie-Hopf case, for 
[8u(2)]9' the Cartan element K(z) is also primitive and its coproduct is simply 
given by: L1(K(z» = ][® K(z) + K(z) ®][, whereas for the off-diagonal elements: 

.d(K(+» = eaK(') ® K(+) + K(+) ®e-a O K (') and L1(K(-» = [.d(K(+»], 
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contrary to the non-deformed case, where they are primitive as well. 
The extension to the whole A of the local [8u(2)], is then given by the iter-

ated coproduct («-r) = L1(II)(K(-r» , 7 = ±, z (where L1(l) == .1 (L1(l-I») , l ~ 2; 

.1(1) == Ll. Explicitly: 

(«z) = ~ I ® ... 1 ® K(z) ® 1· .. ® I = ~ Kjz) (25) 
J J 

(«+) = ~ eiG'JeoKCa) ® ... ® eoKCa) ® K(+) ® e-o • KCa) ® ... ® e-o· KCa) 

j 

= ~eiG'J II eoK~a) Kj+) II e-a·K~a) (26) 
J k<J k>J 

The tensor products in equation 25 [see equation 26] consist of N factors, the 
only one of which not equal to the identity I [or to the exponential of K(z)] is 
at p08itionj. Moreover, the notation k > j or k < j refers to the same arbitrary 
order of the lattice sites adopted in the product. 

The algebra [8u(2)]" defined in equations 25 and 26, commutes with H(loc). 

In order for H to have the whole 8u(2) En [8u(2)], global symmetry, it should be 

[H~~~;'OC), [8u(2)],] = O. Due to equations 25 and 23, («z) always commutes 

with H. The q-symmetry then holds if [H~~_o;;'OC), {«±)] = O. Explicit calcula­

tion finally shows that this happens if the parameter a has a non-vanishing real 

part Rea = 2~1e and Ie = -e. Note that' = 0 implies a = 0, thus the quantum 

symmetry can be ignored only if the effect of ion displacements on the hopping 
amplitude is neglected. It should be remarked, on the other hand, that setting 
, = 0 would generate a hamiltonian which, by a simple unitary transformation 
(essentially the inverse of Lang-Firsov's), could be mapped into one describing 
uncorrelated phonons and electrons. It should, moreover, be emphasized that 
the conditions for q-symmetry are not very stringent in that they impose only 
two constraints among four physical parameters: A, U, wand rio (::f:. 1, through 
1'), via the two atomic parameters, and Ie. The parameter' alone has the role 
of fixing the quantum group deformation parameter q. 

We consider first the family of'l-paired states 11/In >, the analog of Yang's 
paired states [14], of the form: 

11/In >= )n; ('1t)n Ivac > 

with N" -1 = (;!~~)! ' but with the operator '1, depending on the set of vari­

ational parameters w and {17J}, given by: 

ftt - ~ ei'Jat at eiwPJ where w 17J E m. ., - L..J J.t J.' ' 
J 

Direct calculation shows that the state, among 11/In >, which minimizes the 
energy expectation En =< 1/InlHI1/In > with respect to w, has w = 2e (== 4J) and 
the same energy expectation value as the q-symmetric eigenstates: 
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1<1> >- _1_ (k(+»)n lvac > of H with ,N-l _ [n),' [N),' 
n - VJl ,- [N-n),' (27) 

Both Yang's '1-paired state [14] and the BeS ground state (corresponding to 
2~2 

W = 0 and "J = 0, Vj E A) have, therefore, energy £n + Mw2 larger than £no 
Moreover, if the symmetry does not hold (for example if the filling has a dif­

ferent value than that required by the condition for 1'), yet [H, k(±)] = 6£ k(±), 

with 6£ = U - 21' - 41:" and starting from any eigenstate 1£ > of H one can 
construct a sequence 0 eigenstates in the (unnormalized) form: 

with energy eigenvalues: 

£~ = £ +n6£« e 

provided that I' + 2 M:2 > ~U). It is very interesting that this condition is 
the same that guarantees UeJ J negative in the approach of Ranninger et &1. of 
reference [17). 

Finally, as in the case analyzed by Yang, the state l<I>n > exhibits ODLRO 
[28], in that, for large (O(N»lr - sl, the expectation value 

< <l>nla!.1l'a! • .u.ar • .u.ar.1l'I<I>n > equals: 

The states l<I>n > manifestly have pairing. The degenerate eigenstates l<I>n > of 
the hamiltonian in equation 13, when the q-symmetry condition is satisfied by 
the parameters, have energy lower than '1-paired and BCS states (which are not 
eigenstates of H). Switching off the phonon field thus raises the paired states 
energy indeed. . 

2. Itinerant Interacting Electrons on Non-Euclidean Lattices 

In one dimension, the algebra, generated by relations of the type in equa­
tions 7 and 8, is a sub-algebra of the more extended structure realized by the 
operators: 

e~n) 
J - aJ.1l'ai+n • .u. 

.1in) 
J - aJ..u.ai+n.1l' 

ll~n) 
J - aJ.1l'ai+n.1l' - aJ..u.ai+n • .u. (28) 

together with those obtained from these by the canonical transformation in 
equation 9 - that we shall denote here by a tilde. We can immediately check 
that: 
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j j j 

and: 

- ~ -(0) _ - _ ~ ;.(0) - ~ -(0) 
K+ == &0 == L..J&j , K_ =:Fo = L..Jrj and Kz == 2110 == L..J 1lj 

j j j 

It was shown by Uglov and Korepin [29] that the set of six operators {&.\, 
:F.\, 1l.\} .\=0,1' with: 

&1 ~ (CP) _ C{-l») _ U ~ (&~0)1l(0) _ &{0)1l~0») 
- L..J J J 2tL..J I J J I 

j i<j 

'1 ~ (.1"51) - .1"5-1») + u ~ (:FJO)1l(O) _ :F~0)1l~0») 
- L..J J J 2tL..J I J J I 

j i<j 

11, " ~ [~ (1Ij') -1Ij'») + ~ ~ (EI')r,') - Ej'):FI'») ] (29) 

provide a faithful representation of the Bt(2)-Yangian [30], with deformation 

parameter e = (~) 2 : 

• {&o,:Fo,1lo} generate Bt(2): 

[&0, :Fo] = 2110 , [1l0, &0] = Co , [1l0, :Fo] = -:Fo j (30) 

• {&1o :Fl, 1111 form a vector representation of equation 30: 

[&O,:Fl] = 21£1. [:Fo,&l] = -21£1. [1l0,&1] = &1, 
[&0,1l1] = -&1, [:FO,1l1] =:F1o [1l0,:Fl] = -:Fl, 
[&0, &1] = 0, [:Fo, :Fl] = 0, . [1l0,1l1] = OJ 

• the deformed Serre relations hold: 

[1l1o [&1, :Fl]] = e {{1lol&ol:Fl} - {1lol:Fol&11) 
[&1. [1l1o&1]] = e({&ol1lol&11- {Col&011l1}) 

[:Flo [1l1, :Fl]] = e {{:Fol1l01:F1} - {:Fol:Fol1l1}) 

2[1l1o [1l1, &1]] + [&1, [&1, :Fl]] = e (2 {1l011l0ICl}-2 {1l01&011l1} 

+ {&o 1&0 l.rl} - {&ol:Fol&l}) 

2[1l1, [1l1, :F1]] + [:Fl, [:Fl, &1]] = e( 2 {1l011l01:Fl}-2 {1lol:Fol1ld 

+ {:Fol:Fol&l} - {:Fo 1&0 l:Fl} ) 
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where we have introduced the curly bracket symbol to denote the fully sym­

metrized product: {Od02103} == :, L 0"'(1)0,..(2)0,..(3), 'P indicating the 
,..E'P 

set of all inequivalent permutations of the three operators Oa , Cl' = 1,2,3. 
The generators with tilde satisfy exactly the same relations and commute 
with those without tilde. 

It is an interesting feature of the Hubbard model at half - filling in 1-D: 

H~~f,;) = -t L L (aL,aj+1.u + aJ+1.uaj.u) 
j u='ft' • .u. 

+U L (nj.'ft' - ~) (nj . .u. - ~) 
j 

(31) 

that H~~f,;) commutes with all the sixxtwo operators generating the Yangian 
symmetry {C>., .1">., 'H>.,E>.,}:>., 'H>'I A = 0, I}. Thus, at least in one dimension, a 
quantum global symmetry characterizes the Hubbard model, even in the absence 
ofphonons. 

Such quantum symmetry survives and plays a particularly interesting role 
when the Hubbard model is defined over finite lattices whose generating group 
of translations is not abelian. Before discussing the Yangian quantum symmetry 
of these systems, we briefly review some basic notions concerning such lattices 
(it is a slight abuse of language to refer to these structures as lattices, because 
they are finite: for example, the fullerene, that belongs to this family, and of 
which it is the forefather, is in fact a molecule, not a lattice. However, provided 
no confusion arises, we shall adopt that term in all cases). 

It is the recent discovery of superconductivity in the fullerenes [31, 32], in 
particular in doped C60, together with the growing interest in the physical prop­
erties of this new allotropic form of carbon that has revived the interest in 
studying both the dynamical properties - electronic and vibrational - of sys­
tems defined over non-Euclidean lattices [33] and the possible existence of novel 
crystallographic structures with non-abelian symmetry. 

Among the non-Euclidean lattices, the truncated icosahedron, characteristic 
of C60 is the first to play a relevant role. The main feature of such a lattice, 
common, incidentally, to all lattices of the hierarchy to be described in the 
following, is that it is both a finite, finitely presented group (more precisely, 
the Sylvester graph of a group) and a manifold (namely, a discrete collection 
of points embedded in a differentiable variety). In the case of C60, the group 
will be denoted here as g60 and the manifold as E60 (a truncated icosahedron 
embedded in the sphere 8(2». The former property means that the points of E60 

are in one-to-one correspondence with the elements of g60 and can be obtained 
from each other, by discrete transformations of 8(2), generated by "words" in 
g6o(forming a discrete subgroup of the continuous group of automorphisms of 
8(2) itself, isomorphic with the group of automorphisms of E6o , i.e. a discrete 
subgroup of 8U(2». 

The fullerene structures can be generalized [33], to both open and closed 
lattices retaining the same high regularity (namely, they are Sylvester graphs 
of finite, finitely presented groups), yet having different topology. It is plausible 
that such lattices exist in nature, possibly in forms where the global symmetry is 
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partially broken, or embedded in periodic or pseudo-periodic tubular structures, 
obtained by extending the generating group bya non-trivial homology. This has 
been recently confirmed by numerical simulations. 

The icosahedral lattice can be thought of as an element of a hierarchy of non­
Euclidean lattices identifiable with the Sylvester graphs of finitely presented, 
finite groups [34]. The notion of non-Euclidean lattices belongs to a generalized 
view of crystallography, defined over curved space, quite different from that 
familiar to physicists and crystallographers. 

The concept of tesselation of non-Euclidean (non-flat) space has played an 
important role in mathematics ever since the pioneering work of Felix Klein 
[34, 35]. A tesselation is a covering of the ambient space, without gaps and 
overlaps, by tiles. In the Euclidean case, these are polytopes (polygons in 2-
D) congruent with each other. The notion of congruence naturally relates the 
concept of tesselation to the existence of a group T of rigid motions, mapping 
the space onto itself. It is through such a group-theoretical view that tesselation 
can be defined over non-Euclidean space. The applications which have been 
relevant, so far, for the physics of non-Euclidean tesselations were related to the 
groups of motions referred to as triangular elliptic groups [36]. We shall show 
how hyperbolic triangular groups can also play a role in dealing with the new 
structures of the fullerene family. 

The triangle groups have reflections along the sides of triangular plaquettes 
as generators. Such plaquettes are the elementary tiles whereby any tesselation 
of the non-Euclidean plane can be constructed. 

First, one associates a triangle, 6., with angles '!rll, '!rIm and '!rln with any 
triple of integers ~ 2, say {I, mandn}. Clearly, if 6 = (III + 11m + lin) - 1 is 
zero, the triangle is Euclidean, whereas it is spherical for 6 > 0 and hyperbolic 
if 6 < O. We denote the operations ofreflection along the side of 6. opposite to 
the angle '!rll, '!rIm and '!rln by L, M and N, respectively. Note that while ihe 
triangle sides are straight lines in the Euclidean case, they are geodesics if 6 -# O. 
The triangle group T#(/,m,n) is the group generated by L, M and N. 

The subgroup T(/, m, n) of T#(/, m, n) consists ofthe orientation preserving 
motions in T#. The symbol, 6., denotes the basic triangle of T# and it is 
the canonical fundamental region of both T# and T. Canonical refers, here, 
to the property that every tile of the corresponding tesselation is the image of 
a particular fixed tile under the action of exactly one element of g. We shall 
discuss, in the following, two lattices, related respectively with T(2, 3, 5) (g60) 
and T(2, 3, 7) (g16S)' 

The triple {2, 3, 5} gives deficit 6 = 2- > 0 and T#(2, 3, 5) is, therefore, an 

instance of spherical triangle group. It ~as shown by Klein that its subgroup 
T(2, 3, 5) consists of all orientation preserving rotations of the sphere S(2) which 
carry the icosahedron inscribed in S(2) into itself. It follows that T(2, 3, 5) has 
order 60, is isomorphic with the alternating group over 5 symbols As and is 
generated by rotations u and v, defined by u = LM, v = LN, uv = M N, which 
satisfy US = v2 = (uV)3 = id. 

Analogously, for {2, 3, 7}, the deficit is 6 = - 412 < 0 and the correspond­

ing triangle group T#(2, 3, 7) is hyperbolic. T#(2, 3, 7) is defined by the lo­
cal relations L2 = M2 = N2 = id. and (LM)2 = (M N)3 = (N L? = id. 
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The subgroup T(2, 3, 7), is generated by u == N L, v == LM, with relations 
u7 = v2 = (uv)3 = id. 

The above structure of finite, finitely presented group characteristics of the 
triangular groups, induces a connection with the theory of Riemann surfaces. The 
property one has to keep in mind, for this purpose, is that if g is a discontinuous 
group of non-Euclidean motions in two dimensions, with a canonical fundamen­
tal region D, and 1£ is a subgroup of index j in g, then the fundamental region 
of 1£ consists of the disjoint union of j congruent replicas of D. T(2, 3, 7) has a 
normal subgroup of lowest index, whose index in T itself is 168, isomorphic with 
the fundamental group, 4>3, of a Riemann surface of topological genus 9 = 3. The 
fundamental region D3 of 4>3 is, therefore, tesselated by 168 replicas of the trian­
gular fundamental region of T(2, 3, 7) . D3 is, in the Poincare disk [34] realization, 
the regular 14-gon in the shown in Fig. la. The corresponding Riemann surface 
of genus 3, which is closed and orientable, is obtained by identifying the sides of 
D3 in pairs, according to the rule (2v + 1) ~ (2v + 6) [mod 14] , v = 1, ... ,14 
(Fig. 1b shows the step-by-step construction of the surface). The quotient T /4>3 
is isomorphic with the simple group PSL(2,717 ) (where tlr == 7l/771 is the 
Galois field of order 7, i. e. the field of integers modulo 7). 

The above scheme leads quite naturally to the following general construction, 
which allows us to deal in a unified way with both the elliptic and the hyperbolic 
cases. 

The modular group M is isomorphic with PSL(2,71) "'" SL(2, 7l)/ ± H, 
where SL(2,71), the crystallographic group on the psuedosphere, is a discrete 
subgroup of SU(1, 1). M is the group of 2x2 matrices with integer entries and 
unit determinant: 

M = { M = (: ~) la, b, e, d E 7l; ad - be = 1 } 

(71 denotes the ring of integers), acting as a group of transformations on the 
Lobachevski'i plane, of which the Poincare disk is a conformal image: 

c = { z = x + iylz E <C, y > 0, ds2 = dx2; dy2 } 

via fractional linear (Mobius) transformations (which we denote by the same 
symbol): 

M - (a b) M _ az + b - d <==> oz- d 
C ez + 

M is obviously discrete and therefore, discontinuous in C, which is mapped onto 
itself by its elements. Therefore, M can also be thought of as the group with 
presentation [37, 38]: 

(32) 

where the generators: 
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• 

Figure 1. (a) The fundamental region D3 of ~3. Each triangle is a copy of the fundamen­
tal region of T(2,3, 7); (b) Step-by-step folding of D3 in r3. The sides of D3 are labelled 
successively counterclockwise from 1 to 14. 
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correspond, respectively, in the Mobius realization, to: 

1 
V : z -. -- and U: Z -. Z + 1 

Z 

305 

P SL(2, 'll) is, therefore, isomorphic to the triangle group T(2, 3, 00) also. M 
has a principal congruence of invariant subgroups 
{Mp '" PSL(2, 'llp) Ip = odd prime} defined by: 

Mp = { Mo E MIMo = (~1 ~1) (modp) } 

One can define the factor between M and Mp: 

a finite group of order w, gw == M/Mp which is { a Sylvester graph, Ep , embedded in a manifold rg 

where: 

w=!p(p2-1) 
2 

is both the number of elements of gw and the number of points of Ep, and: 

1 
9 = 4! (p + 2)(p - 3)(p - 5) 

is the topological genus of the differentiable manifold rg • In other words, the 
Sylvester graph Eg is nothing but the orbit under gw of an arbitrary point in 
the canonical fundamental region of the triangle group, T, corresponding to the 
tesselation of rg , induced by T#(2,3,p). 

Recalling now Euler's theorem, which states that for any polyhedron with 
V vertices, :F faces, £ edges, embedded in a surface of topological genus g, the 
relation: 

V+:F-£=2(1-g) 

holds; together with the second of relations in· equation 32 - whereby Eg has 
to be made in part of hexagons - one can easily obtain, for given 9 and w, the 
presentation of gw from purely combinatorial considerations. 

The case corresponding to p = 5, in this scheme, is the icosahedral group 
g60, whose graph, E5, provides a regular non-abelian lattice (a truncated icosa­
hedron) on the sphere S(2) (g = 0). For w = 60 and 9 = 0, due to the definition of 
M 5 , another type of plaquette is necessary, besides the hexagon: the pentagon; 
the total number of pentagons is 12, whereas there are 20 hexagons arranged in 
such a way that each pentagon is surrounded by 5 hexagons and each hexagon 
is adjacent to 3 pentagons and 3 hexagons, alternating. Based on equation 32, 
there follows that g60 has the presentation: 

(33) 

Fig. 2 shows the lattice ofC6o , E5, embedded in m3 , with the action of the gen­
erators explicitly indicated (it is obviously the relation U 5 = ][ which generates 
the pentagons). Such a structure was to be expected noticing that 6 > 0 implies 
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Figure 2. The graph 1:". characteristic of the fullerene Cso. 

positive curvature, as may also be argued from observing that ro consists in the 
disjoint union of 30 adjoining pairs of spherical triangles of equal deficit, 310' or 
of 12 spherical caps (each consisting of a pentagonal plaquette plus the 5 bonds 
emerging from each vertex), anyone of which spans a solid angle i and has 
positive curvature. 

A similar construction for g168 with the application, once more, of the Eu­
ler's theorem, straightforwardly shows that the lattice IJ7 has 24 eptagonal and 
56 hexagonal plaquettesj each eptagon being surrounded by 7 hexagons. The 
presentation of g16s is, therefore: 

(34) 

It is worth noticing that, as the group manifold has genus h!gher than 0, yet the 
group is finite, a new global relation appears, (VU4 )4 = H, which guarantees 
the closure of the homology group of r3 (which is isomorphic with the surface 
shown in Fig. 1b). If one constructs the lattice - as in the case of g60 - from an 
elementary constituent, in this case an eptagonal plaquette with 7 extra bonds, 
emerging from each vertex, it exhibits negative curvature. 

The lattice E7 is obtained from the disk of Fig. 1a by selecting an arbitrary 
point and finding its orbit under the whole gl68 [the orbit consists on one 
point in each of the 168 copies of the fundamental region of T(2,3, 7)], and 
then folding the resulting structure, as in Fig. lb. E7 cannot be isometrically 
and conformally embedded in IR3 , therefore, a real molecule with 168 carbon 
atoms with the full symmetry gl68 is likely to be found in nature, only if 
the proximity-induced interactions generated when the surface r3 is allowed 
to have self-intersections, preserve the topology of the set of points of E7. yet 
leading to a physical configuration with minimal free energy. Nonetheless, the 
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Figure 3. An orbit of Yred isometrically and conformally embedded in 1Ra. 

Figure 4. The graph of Fig. 3 after implementation of the identifications (A) in the scheme 
of Fig. lb. 
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isometric and conformal embedding in ffi3 of the fundamental region D3 of 
T(2,3,7) (i.e. the lattice generated by fired =< U, V I V 2 , (UV)3, U1 >, with no 
identifications of the sides of D3 ) has the shape shown in Fig. 3. Therefore, if one 
performs only the first step (A) of the folding of D3 into F3 (see Figs. la and Ib), 
generating the structure shown in Fig. 4, one can easily check that this shape 
can be obtained with a minimum amount of isometric and conformal distorsion. 
Thus, it appears plausible that, instead of single "molecules" , tubular structures 
of the scbwartzite type may exist. The latter would require a simple cobordism 
operation, inducing the extension of fired by the appropriate homology group. 
The homological structure generated by the latter would result in replacing the 
last of the relations in equation 34 by a set of relations imposing the closure 
of an extended fundamental region in the covering space of fi168 - consisting of 
several copies of D3 - in a manifold of more complex topology. 

For example, a fundamental region consisting offour copies of the (tesselated~ 
polygon D3 of Fig. la, and the extension of fired by the relation (U3VU2V) 
generate the basic structural element of Fig. 5. Four of these elements fill the 
primitive cell of a complex lattice structure shown in Fig. 6 - whose skeleton is 
a "superdiamond" three-dimensional lattice. The basic unit of such a structure 
can be thought of as being obtained from E1 itself by identifying four cycles in 
fi168 generated by the relations (U2V)4 and cutting F3 along these cycles. The 
construction of the tubular infinite lattice is finally realized by glueing different 
units along the cycles themselves, which thus become generators of the homology 
of the new structure. Analysis of the lattice dynamics shows that this structure 
is more stable than the fullerene molecule in that the specific excess formation 
energy per atom, necessary to create it, is substantially !ower than for C60. 

We return, once again to the Hubbard model, defining it over "lattices" A 
of the hierarchy Ep. In the case p = 5, solution of this model would be directly 
relevant to the electronic physics of the fullerene, while the case of p = 7 would 
provide the necessary insight into the problem of establishing the stability of 
complex tubular lattices of the form described above. The fact that A is the 
Sylvester graph Ep of fi..., implies that its sites are in one-to-one correspondence 
with the elements of fi..." considered as a group. One can, therefore, perform 
harmonic analysis on any dynamical variable defined on A, expanding it in terms 
of a complete set of irreducible representations of the group itself. In particular, 
the fermionic annihilation operators read, setting j E A == 9 E fi..., (note: 9 will 
henceforth denote group elements, not topological genus): 

= "dJ)(g)a(J). = "TrJ {n(J)(g)a(J)} L...J >., iJ iJ ,>. ,(1 L...J (1 

J;>'.iJ J 

a~~;(1 = L D~~l· (g) ag ,(1 (35) 
gE(Jw 

where n(J)(g) denotes the matrix (of rank dJ = 2J + 1 and elements Di~~(g» 
representing 9 in the J-th unitary irreducible representation. One should note 
that the most convenient representation here is not that customarily adopted 
in crystallography, but the representation, obviously unitarily related to the 
standard one, naturally generated by the group presentation (for instance, in 
the case of fi60 , such representation is given in reference [39]). In equation 35, 
the sum over J ranges over all bosonic irreducible representations of fi..." whereas 
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indices .\ and I' range from 1 to dJ. The set {Di~~(g)} is normalized, in such a 
way that completeness and orthogonality relations read: 

:E D~~·(g)Di~~(g') = b"" 
J;>',p 

Due to equation 36, the transformed operators a~~jU (matrix elements of a~J» 
are, of course, fermionic themselves: 

{ (J) (J')t} _ 
a>',I'jU ,a>."I";u' - { (J) (J') }_ 

a>.,I';U' a>",p'jU' - 0 

[ (J) ] 2 _ (J) 
n >',I'jU - n >',1';17 (36) 

{ill} has a central extension g2w, whereby one could deal with the spin content 
of the fermionic operators as well. 

Harmonic analysis, of course, does not, in general, lead to an exactly solv­
able model in dual space. Indeed the hamiltonian in the dual space variables 
a~t;u' has the same complexity in the interaction term as the hopping term has 
in ambient space. However, it is worth reporting the form of H in the group 
representation space, in that it has a suggestive, as well as intriguing, structure: 

H = E TrJ {( -l'rJ) - tLl(J») (xf) + xV») } 
J 

+u ETrJ {.1[{ia}]a¥1)ta¥2)a~8)ta~·)} (37) 
J 

where the rank-8 tensor .1 is defined, in terms of the 3-i symbols of {ill} (these 
are known, at present, only for {i6o(40)), by: 

.1{>'.,P'Y}[{ia)] = 

= (it h J ). (i1 
.\1 .\2.\ 1'1 

h J) (is i4 J ). (is i4 : ) 
1'2 I' .\3.\4.\ 1'3 1'4 ,.. 

(here ct, f3 and "( range from 1 to 4; .\a, I'a denote the matrix indices of a<j"') 
(or its conjugate) and sum over repeated indices is implied), while: 

X (J) - (X(J») _" (J)t (J) 
>',I'jU = 17 >. P - L...J a",>.;ua",pjU 

, " 
and: 

2,d<J) = n(J)(V) + n(J){V-1) + n(J)(S) + h.c. 

The form of the hamIltonian in equation 37, is the equivalent for the Sylvester 
graph lattice gil} of the customary Fourier transformed form of the hamiltonian 
(see equation 6), holding for Euclidean lattices. A promising feature of the non­
abelian lattice structures, considered above, is that the construction starting 
with equation 28, valid there only for infinite 1-D lattices, can be extended to 
them. The two basic ingredients are the following. One defines first: 
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Figure i. Two different views of the basic structural element, of order 168, of the 
"superdiamOllci" tubular lAttice shown in Fig. 6. 
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(38) 

where g, go E gw. The operators analogous to equation 29 can then be easily 
written in the space dual to gw of harmonic transforms (see equation 35), in 
that one has: 

where: 

Ygo •q == L a~.qa900g._q 
gEO ... 

= 
J ;>..1' " 
L1'rJ (D(J)(go)y~J») 

J 

Of course, an analogous relation holds for: 

Even though we do not report here the whole algebraic structure, which is 
much more complex than that corresponding to the Yangian, which holds in 
one dimension (see reference [41] for a detailed analysis of the complete set of 
relations and tensor representations pertaining to equation 38), we indicate that 
such algebraic structure is generated by relations of the type: 

[Ygo •q, Yg1.ql] = 

= 6q ._q l EJ TrJ (D(J)(go)D(J)(91)X~) - D(J)(gdD(J)(go)X~J) 

Once more a deformation of the Serre relations can be found, generated now 
not only by the fermionic nature of the representation adopted but also by 
the intrinsic curvature of the lattice, such that, at fixed filling, the Hubbard 
hamiltonian defined over gw (see equation 37) commutes with the whole algebra 
generated by equation 38. This symmetry has a very high degree of complexity, 
yet the simplifications in the problem of finding the spectrum of H', to which it 
leads, are dramatic. To this effect, one should keep in mind that not only does 
the lattice group introduce partial block diagonalization of the hamiltonian (for 
example, in the case of g60 the existing representations have dimensions 2, 2, 4, 
6, only, so that the maximum number of fermions one has to deal with is not 
60, but 36), but that it is the stringent q-symmetry, induced by the generalized 
Yangian, which factorizes the Hilbert space of states into sectors of reasonably 
low dimension. This leads us to hope that an exact numerical diagonalization of 
the Hubbard model for the fullerene molecule may be soon achieved. 
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Figure 6. Two layers of the superdiamond tubular lattice. 

3. Fermionic Linearization and Mott-Hubbard Transition 

In this section, we shall show how the free-energy of the fermi -linearized Hub­
bard model in dimension d ~ 2, first expressed as a series expansion in the vari­
ational parameter of the theory, can be evaluated explicitly at the MIT point -
assuming only that the transition is of the second-order, which is believed to be 
the case, at least for zero temperature [8, 9, 10] - in terms ofl-D correlation 
functions. This approach allows us, in principle, to discuss the phase space of the 
model at any temperature; however, for the sake of simplicity, we shall consider, 
in the last part of the paper, only the paramagnetic case at T = O. In particular, 
we shall show that for d ~ 2 a transition may occur only at half-filling, in which 
case Uc ~ 10. The system entropy will be shown to playa subtle but extremely 
relevant role in the transition onset, which justifies the constraint it imposes on 
filling. When applied to the Hubbard hamiltonian, the CFLS amounts to replac­
ing the hopping term between neighbouring clusters of sites, which is bilinear in 
fermionic operators, with a linear form in the same operators, whose coefficients 
are variables in a Clifford [42, 43] algebra, anticommuting with the fermionic 
operators. Explicitly, for a given covering of A with non-overlapping clusters r: 

E al,<7 aj,<7 -. E { E al,<7 aj,<7 + E .jqi ( al, <71Ji, <7 + ;n,<7a l,<7 ) } (39) 
<IJ> rCA.. <IJ>er lear 

with ar denoting the boundary of rand qi the number of sites nearest neigh­
bours of i not in r . In equation 39, we introduced the auxiliary fermionic mean 
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field: 
1 

'1l,0' =..;qi E < aj,O' > (40) 
qi J= •.•. (I) 

Jer 

where < aj,O' > stands for equilibrium expectation value of aj,O'. 
The above scheme, in its simplest version, for which r coincides with a single 

site, reproduces [42] the Brinckmann-Rice [7] result for the metal-insulator tran­
sition at zero temperature in the Gutzwiller approximation, if the values of 11k are 
chosen to satisfy the fermion algebra, {ijt,O', '1j,O"} = e26iJ60',O'" {'1i,0" '1j,O"} = 0, 
as well as {ijt,O',aj,O"} = 0 = {'1i,O',aj,O"}' The variational parameter e is to be 
determined by self-consistently implementing equation 40. In fact, e coincides 
with the discontinuity in the single-particle occupation number at the Fermi 
surface and hence, is a natural parameter for describing the MIT. Moreover, the 
approximation implied by assuming values of'1j,O' to generate a Clifford algebra 
becomes exact in the limit of infinite dimension of the lattice [43] with the choice 
e = 1. 

We shall now study the hamiltonian, given in equation 6, approximating 
the hopping term between neighbouring chains by equation 39, and keeping it 
unchanged within each single chain. In other words, we shall use a version of the 
CFLS where the clusters are whole single 1-D chains, r == Al . The linearized 
hamiltonian reads: 

H = E (H(Al) _ eH(Al») 
Hub e 

{AleA} 
H(Al) 

e - t ' E E(a],iJj,O' + 9j,O'aj,0') (41) 
JEAl 0' 

where, assuming A cubic and therefore, CJj = 2(d - 1) Vj and t' = ty'2(d - 1). 
Moreover, we limit ourselves to the paramagnetic phases, setting '1j ,0' == e(Jj ,0' , V j 
E Al . The new variables, 9j,0' , now satisfy the (anti-) commutation relations: 

{9j ,0' , OJ ,0" } = 6"J60',O" and {(Jj,O' , OJ,O''} = 0 

The above approximation appears to be particularly well designed to characterize 
the metal-insulator transition by letting e - O. In fact, the vanishing of e implies 
that, to all effects, there is no hopping between different chains, 80 that the 
system becomes a sum of non-interacting linear chains with no external field 
and hence - at half-filling - an insulator. This is necessarily the case in d = 1, 
where t' = o. 

We shall assume also that the MIT is second-order, as suggested by numerical 
calculations, and - according to Landau theory - discuss the transition through 
the behavior of the free energy f (constrained by the self-consistency condition 
for e) around the critical point e = O. 

In order to evaluate f explicitly, we must first work out the partition function: 

Zd = Trd {exp(-PH~~,,)} ==> (tr{ exp-PH(Al)} )Nc 
P being, as usual, the inverse temperature and Ne the number of chains in A. 
The trace, Trd, is to be intended over the Fock space pertaining to the whole d­
dimensional system, but, due to the approximation in equation 41, it reduces, in 
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fact, to the evaluation of the trace tr over the single-chain Foa space, in which 
Hh,!:llives, and over the space spanned by the Clifford number-operators OJ,cr 9j,cr 
(assuming values 0, 1). We express Ztl as a series expansion in the variational 
parameter c, by the customary integral representation of the exponential of a 
sum of non commuting operators [44, 45]. Besides, from now on, we restrict for 
simplicity our attention to d = 2. Explicitly: 

with: 

where Lln = HUj}, j = 1, ... ,n\UI:_l ~ UI: ~ l;k = 1, ... ,n;uo = O}, ad 
denotes the adjoint action and we measure energy in units oft. Direct calculation 
shows that: 

Ej({J) = L exp[-{JUj(Unl:,-cr -1')] 

00 

XLI,(2{Juj) L (al+f"cr9I:,cr+OI:,crai:+f"cr) (42) 
,=0 f=±l 

with I.(z) denoting the modified Bessel function of the first kind, of order 8. 

Upon performing the trace over the Clifford variables, 91:,cr, one easily recognizes 
that, in fact, only the terms even in c give anon-vanishing contribution to the 
free energy. If the MIT is of second-order, the transition is determined by the 
vanishing of the coefficient Q:2({J) of c2 in /. We obtain, after some algebra and 
using the invariance of Tr under cyclic permutations of its arguments: 

(43) 

where: 

Pj(Z,I',U) = [eF - (-)ie-F ] Cj 

+ [(e-U• - l)e"· - (-)j (eu• - l)e-".] 7j (44) 

Here, denoting the thermodynamic expectation value of any operator, ., for the 
one dimensional Hubbard model by: 



The Hubbard Models and Superconductivity 315 

<. > - ;1 Trl [.exp(-PHk~t)] 

Cj / ~l ~ (al+j,uai ,u + a1,uaHj,u)) 
\ ',17 

is the correlation function for two points at distance j, whereas: 

7j = / 2~1 ~ (nHj,-u + ni,-u) (aI+j,uai,u + a1.uaHj,u)) 
\ ',17 

The equation 0:2(P) = 0 - which provides in 2-D, for finite p, the transition 
critical temperature or, in the limit P -- 00, the critical value Uc of U, above 
which the system is always an insulator - is thus reconducted to evaluating 
only properties (correlation functions) of the one-dimensional Hubbard model. 
It should be noted that the equations fixing the system filling and entropy (which 
will have to be used later on) also reduce to their I-D version, when c = O. If 
T i= 0, correlations Cj and 7j are not presently known, however, the generalized 
Bethe Ansatz equations for finite temperature given by Takahashi [46] lead to 
a recursive scheme from which they can be obtained. Work is in progress along 
these lines. In particular, the critical equation for infinite temperature 0:2(0) = 0 
can be easily seen to have no solutions. 

In what follows, we shall consider, for the sake of simplicity, only the case T --
0, for which the exact solution of Lieb and Wu [6] provides the free energy f}t~~. 
We shall consider, therefore, exactly those correlations, which can be obtained 
from such a solution, as derivatives of the free energy. The other correlations 
entering 0:2 (00) will in turn be approximated by their random phase value: 

10(C) ifj>l; f(C) ifj>l; alAI) 
-~ ifj=l; nCl ifj=l; 

(45) Cj = at 7j = alAI) alAt} 4~=4p ifj=O; 
-2~ ifj=O; au -

01' 

evaluated, of course, at T = O. In equation 45, j > 1 is simply the random 
phase value obtained within the Clifford fermionic linearization, which gives no 
relevant contribution to 0:2, because 0:2 is itself the coefficient of the term of 
order c2 in the Landau scheme. 7i. is the Hartree random phase value, where 
n denotes the average electron number per site (i. e. the filling). Implementing 
the equation fixing the filling -af/al' = n, one finds, at c = 0, n = 1/2Co• 
Moreover, p is the average number of doubly occupied sites. 

We now insert equation 45 into equations 43-44 and study the resulting 
equation 0:2(00) = 0: 

lim 1\1- x){(n - 2p)sinh(pl'x) - 2psinh(p(U -I')X) + Cl (l- n) 
/3-00 0 

1 } e2/3x 
cosh(Pl'x) + nCl cosh (P(U -I')x) - "2e/3/Jx [2 - n (1 - e-/3UX)] ..(i dx = 0 

(46) 
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where I' is to be thought of as given by the filling equation. Equation 46 shows 
that, depending on whether the value of I' is greater than, equal to or less than 
!U, one must analyze three different regimes, corresponding respectively to n 
greater than, equal to or less than 1. When n < 1, equation 46 becomes p = inCl, 
Resorting to the known results on the limiting behaviour for both U - 0 and 
U - 00 of p and Cl in I-D [46, 47], one can check that equation 46 has no 
solution in U, because p turns out to be always < inCl' Analogously, one finds 
no solution for n > 1, in which case equation 46 becomes p = Hn - 1)(2 - Cd 
while p is now found to be larger than i( n - 1)(2 - Cd for any U. This suggests 
that there may exist a solution only at I' = ! U. 

Indeed, at half-filling, equation 46 leads to a critical value Uc , as one can 
derive by the following analysis. To begin with, the equation for filling at T = 0 
determines I' only up to an extra term, linear in T, I' -1'0 + sT. In fact, if elt: 
is the spectrum of the system hamiltonian, then: 

for any s. Here: 

ddle 
DJ: = (211")d 

is the measure over the reciprocal space and V denotes the set {klelt: -1'0 < OJ). 
One can easily check that for 1'0 #; !f the factor s does not affect equation 46, 
whereas, at 1'0 = iU, it changes equation 46 into: 

This latter equation is naturally to be considered at n = 1, where it reduces to: 

(47) 

however, it is instructive to write it, as was done above in equation 47, for generic 
n, because that form shows explicitly how, for s -- -00 and s - 00, it formally 
reproduces the equations for n < and > 1, respectively. 

The important feature in equation 47 is that s is a function of U: in fact, 
it is simply the entropy at zero temperature. Actually, as the grand-canonical 
thermodynamic potential n now reads: 

n = -T f DIt: In(1 + e·e-P(e.-I'o» (48) 

recalling that S = - (an/aT) 1" one infers: 

SIT=O = +~ -(~~) 1'0 = S 
(49) 

The entropy S, at T = 0, can be obtained resorting, once more, to the solution 
of Lieb and Wu [6], 



The Hubbard Models and Superconductivity 317 

s= - (1:1r 
dkU(k)ln U(k)-l:" dkuo(k)lnuo(k») 

(1: dAu(A) In u(A) - 1: dAuo(A) In uo(A») (50) 

where: 

U(k) = ~ {1 + 2cosk [00 dw cos(w sink) Jo(W)} 
211" Jo 1 + exp (!wU) 

(51) 

u(A) = 2~ 100 
sech (~wu ) cos(wA)Jo(w) (52) 

po(k) _ .!.O(!. _ Ikl) and uo(A) == ~ 0(1 -IAI) 
7r 2 27r v'f'=A2 

These last two equations denote p(k) and u(A) evaluated at U = 0; JII(w) is 
the Bessel function of the first kind, of order v. The entropy in equation 50 is 
defined so as to be zero at T = 0, for the non-interacting system (U = 0). Upon 
evaluating s, by equations 50-52 and recalling that~ 

p = [00 d JO(W)Jl(W) 
Jo w 1 + cosh UwU) 

100 [4 1] dwJo(w)J1(w) + U 1 
o W (1 + etwu ) 1 + cosh (2wU) 

equation 47 can be solved for U. In order to evaluate Ue , one could perform a 
purely numerical analysis. We estimate Ue ,instead, by resorting to the asymp­
totic form of the various factors in equation 47. Solution of the resulting equation 
gives: 

7r 
Ue = In ~ 10.03 

1I"- 2v 2 . 
(53) 

which is in remarkable agreement with the value 32/7r ~ 10.18 obtained by 
Brinkmann and Rice [7] and is also comparable with the result Ue ~ 13.5 in 
d = 00 derived in [9, 10] and with the exact value Ue = 8 for certain simplified, 
extended Hubbard models [48, 49]. It is interesting to note that the system 
entropy, which plays a significant role in the onset of the transition, has to be 
high. This is not surprising, because the ground state is highly degenerate, when 
the system is an insulator, for any non-vanishing T. 

Summarizing, there may exist a metal-insulator transition for the Hubbard 
model in d ~ 2. The equation derived for the critical point holds, in principle, for 
generic T and U, assuming that the transition is second-order. Even though so 
far we have solved it explicitly only at T = 0, in which case the critical value is 
Ue ~ 10, we conjecture that this value represents a good estimate of the critical 
U for the MIT transition in d ~ 2 in that, in the scheme proposed, c becomes zero 
in correspondence to such value, implying in two different ways that the metal 
(c i= 0) becomes an insulator. On the one hand, it corresponds to the vanishing 
for U = Ue , of the discontinuity in the single-particle occupation number at 
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the Fermi surface. On the other hand, when c is identically zero (U > Uc), 

the d ~ 2 model is faithfully mapped on the standard I-D model, which is 
known to be insulating for any U i= 0 at half-filling. The case T i= 0, which is 
controlled by the same conceptual scheme, leads to more involved analytical and 
numerical calculations, but preliminary results of work now in progress [50] are 
very promising. 
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Subject Index 

acceleration techniques 68, 159 
acoustic mode 216 
adsorption, see chemisorption 
adjoined Galllllian 126 
alkali halides 184, 185, 192, 204 
aluminium 173 

made 184, 186, 193 
angular integration 98 
anomalous dispersion (in diffraction) 260 
anti-ferromagnetic materials 109, 150, 197, 

201, 292 
asymmetric unit 19 
atomic forces 148 
atomic orbital 126 
atomic partition method 92 
atomic units 48 
atomic weight function 93 
atomic sphere apprmamation 141 
Autbau and anti-Autbau 41, 141 
augmented plane wave 69 

(full-potential) linearised 49, 139-153 
augmented spherical wave 141 

Bachelet, Hamann and Schliiter 
pseudopotentials 156 

band gap 39, 110, 157 
band structure 39, 170, 173,176 

projected 233, 241-243 
two-dimensional 231 

Bardeen, Cooper and Schrieffer states 293 
basis lattice vectors 1 
basis set 61, 157, 181 

criteria for selection 133 
effects on results 181, 190, 195-199 
incompleteness 64, 157 
superposition error 64,134 

Becke integration technique 92 
Berry phase 280-282 
beryllium 150 

made 184 
bipolar expansion of two-electron 

integral. 130 
Bloch theorem 33 
Bloch function 35,37,126,254 
Born effective charge tensor 274,275 
Born-Haber cycle 203 
Born (or dynamical) matrix 216 
Born-Mayer (or Buckingham) potential 212 
Born-Oppenheimer apprmdmation 47,209, 

276 
Born-Von Karman boundary conditions 36 
branches (of phonon dispersion relation) 216 
Bravais lattice 12 
Brillouin zone, first 18, 33, 215 

sampling 157,200 
bugs in programs 181 
bulk modulus 168, 191-195,201 

calcium 
carbonate 184, 186, 193, 223, 224 
fluoride 218 
oxide 184, 186, 193 

Car-Parrinello technique 69, 212 
cell 

multiple or centred 3, 15 
primitive 2 
unit 2 
Wiper-Seitz 17 

CETEP code 118 
Chadi-Cohen special point technique 81 
charge density, see position density 
chemisorption 234 

energy 237 
Clausius-MOI8Otti 273 
cluster linearization scheme 292,312 
cluster model of .urfaces and defect. 228 
cobalt made 149 
Compton profile 259, 261-263 
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Compton scattering 256, 259 
computer performance 114 
copper oxide 150 
correlation of electronic motions 56, 58, 71, 

180,249 
density functional expressions 58, 134, 

180-185,193-195,238 
in the electron gas 52 
interionic 194 
intra-atomic 194 

Coulomb hole 254 
Coulomb series 128 
counterpoise technique 64 
coupled-cluster techniques 58 
coupled Hartree-Fock methode 285 
CRYSTAL code 91, 125-137, 179-207, 236, 

238,245,253 
parallelization 115 

crystalline orbital 32, 65, 126, 144 
system 11 

crystallographic 
axes 2 
directions 4 
planes 4 

current density 274,279 
cutoff (in PW expansion) 61, 160, 168-175 

Debye temperature 203 
defect 227-244 

charged 236 
formation ener&Y 183, 238 
state 237 

density functional theory 53,91, 140, 158, 
180, 212, 220, 254 

density matrix 49, 245-272 
eigenvalues and eigenfunctions 248 
reconstruction 256,268 

density of states 44, 52, 66 
Fourier-Legendre expansion 67,132 
integrated 66 
projected 44, 66, 69, 132 

density of vibrational states 222 
density operator 252 
dielectric polarization 273-288 
dielectric tensor 274, 286 
dipole moment derivatives 275 
disordered systems 211 
dispersion forces 183, 185, 194, 213 
dispersion relation (phonon) 216 
displacement polar tensor 275 
distributed data approach 118 
distributed memory 115 
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dynamical matrix 216 

elastic constants 191-193,214 
electric field gradient 146, 150 
electron ditfraction 256, 258 
electron gas 51 
electron-phonon coupling 293 
electrostatic effects 184, 186 
embedding techniques 230 
enantiomorphic objects 7, 10 
energy 

binding 193-195 
derivatives 148,180, 193-195 
electronic, per unit cell 127, 179-207 
minimization 149,210 
vibrational 221 

ensemble 
canonical (NpT) 211, 
constant pressure (NpH) 211, 
constant pressure canonical (NpT) 211, 
microcanical (NV E) 211, 247 

enthalpy 188 
or formation 203 

entropy 222 
equation of state 169, 187,210 
equilibrium geometry, see lattice parameter 
exchange-correlation functional 53,140 
exchange hole 254 
exchange series 129 
extinction (in diffraction experiments) 257 
extracule coordinates 250 

fast Fourier transform 120, 161 
Fermi energy 45,66,87, 158 
Fermi surface 45,87, 157 
Cermionic linearization 312 
ferro-antiferromapetic transition 197,201 
ferroelectric crystal 274 
force constants 212 
form factor 256-258, 260 
Fourier -transform 79, 161 
Fourier-Dirac transformation 251 
fractional coordinates 3 
free energy (Gibbs) 188 
frozen core approximation 156 
frozen nuclear motion, see static lattice energy 
fullerene 301 
full-potential, see augmented plane wave 

Gaussian type orbital 61,122 
Gau.Laguerre quadrature 97 
Gau.Legendre quadrature 97 



generalised gradient approximation, see 
gradient-corrected functional 

geometric (quantum) phase, see Berry phase 
geophysics 187 
Gilat net 132 
global summation 116 
gradient-corrected functional 56, 58, 141 
Green-function techniques 58, 68-71, 229, 

239-241 
Grueneisen parameter 223 

halides 184-192 
harmonic approximation 214-216 
harmonic potential, see model potential 
Hartree-Fock 51,56-59, 125-137, 179-207, 

219, 276-278 
in dielectric polarization theory 273-288 
eigenvalues 58 
energy 193-195 
orbitals and density matrix 249 

heat capacity 222 
Hellmann-Feynmann 

force 148 
theorem 279 

Helmoltz free energy 222 
hopping 

amplitude 290 
exchange process 291 
pair process 291 

Hubbard models 289-319 
hybrid HF IDFT method, 91 

ideal surface, see surface 
idempotency of one-matrices 249 
ilmenite 189, 198 
indices 

of plane (Miller indices) 5 
of row 4 

indium 150 
inelastic scattering 256, 259-260 
infrared charges 275 
infrared vibrational spectra 217 
integrals (two-electron) 127 
interstitial region 142 
intracule coordinates 250 
ionic conductors 211 
iron 149,13 

oxide 186 
fluoride 149 

irreducible representation 32 
itinerant interacting electrons 290, 292, 299 

J astrow factor 71 

Korringa-Kohn-Rostoker technique 68 
Kohn-Sham 
equations, see density functional theory 

orbitals 254 
Kubo formula 279 

lattice 
constant 2, 168 
direct 6 
dynamics 209-225,274 
nodes 2 
parameter (calculated) 184-186 
reciprocal 6, 32 
sums 106, 128, 129 

Laue classes 11 
Lebedev grid 98 
linear dependence catastrophe 63, 133, 199 
linear response methods 274,285 
lithium 

halides 184, 185, 192, 204 
nitride 150 
oxide 193 

load balancing 115 
local approach 59 
local defect, see defect 
local density approximation 54, 140, 156 
local orbital 144 
local spin density approximation 101, 140 
localised orbitals, see Wannier functions 

macroscopic bulk observable 276 
magnesium 

carbonate 184, 186, 193 
oxides 184, 186, 189, 193, 198 
silicate 186-191, 198 

magnetic properties 109, 148, 149, 197 
manganese 

ftuoride (KMnF3) 150, 195-197,201 
oxide 186 

mercury halides 150 
metal-insulator transition 292 
metastable configurations 210 
metric tensor or matrix 5, 6 
model potential 212-216 
Moeller-Plesset method 58 
molecular crystals 151 
molecular dynamics 211 
momentum density 256, 266 
Monkhorst net 132 
Monkhorst-Pack special points 81 
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Montecarlo techniques 70 
Morse potential, see model potential 
Mott-Hubbard transition 292, 312 
Mott insulator 149 
Moyal density function 251 
muffin-tin approximation 68, 142 
multiple diffraction 260 
multi-slab model 230 
Murnaghan equation 169 

natural spin geminals 
natural spin orbitals 
Neumann principle 
neutron diffraction 

248 
248 

11 
256,261 

neutron scattering vibrational spectra 217 
nickel 

halides 149, 150 
oxide 186 

non-Euclidean lattices 299 
tesselation 302 

normal modes (of vibration) 211,215 
norm-conserving pseudopotentials 156 
N-scaling techniques 71 
nuclear quadrupole interaction 

constant 150 
numerical approximations 181, 199-202 
numerical integration 91-100 

observable (ground-state 
expectation value) 71, 134 
phase-dependent 278 

off-diagonal Ions-range order eigenstate 293 
one-matrix, see density matrix 
open-shell systems 102 
optic mode 216 
origin (choice of) 26 
oxides 183-195 

parallel processor 115 
PARAPOCS code 224 
periodic boundary conditions 36, 216 
perovskites 149, 187, 198 
phase space density 250 
phase transition 149, 189 
phonon 218, 220 

field 293 
transverse optic 275 

piezoelectric tensor 274 
plane wave 61, 142, 156 
point group 9, 79 
Poisson equation 62, 276 
polarizability 186 
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polarization 185 
derivative or difference 
linear response approach 
theory 273-288 
zero-field 274-276 

274 
274, 287 

polarization functions 197 
Pople-Nesbet equations 103 
position density 256 
potassium 

fluoride (KMnF3) 195-197,201 
halides 184, 185, 192, 204 
oxide 198 

potential energy surface (or function) 210 
preasure (vibrational) 223 
pseudo-potentials 59, 156, 181, 196 
PWSCF code 78,155-178 

quartz (Q) 186,214 
quasi-harmonic model 223 

radial integration 97 
Raman vibrational spectra 217 
reciprocal form factor 256,263-266 
reciprocal space integration 66, 77-89, 132 
recursion technique 69 
reduced density matrices 248 
relativistic effects 48,62, 141, 146 
repeat(ing) unit 1 

(in crystalline slabs) 231 
replicated data approach 115 
residual instrumental function 263 
restricted open-shell Hartree-Fock 102 
rigid ion model 224 
rubidium halides 184, 185, 192 

scalar-relativistic approximation 141 
scattering experiments 256,258-263 
screened macroscopic field 287 
self-consistent-field procedure 54, 67, 135, 

147, 159 
self-interaction correction 56 
semiconductors (IV-IV, III-V) 183,185,192, 

220 
setting (in space groups) 17,19 
shared memory 114 
shell model 213, 224 
silicon 86, 167, 183, 185, 220 

oxide 186, 214 
(Ill) surface 234 

slab model 230 
Slater type orbital 62 
sodium 



chloride 171, 182, 203 
halides 184, 185, 192, 204 
oxide 198 

space group 18, 78 
symmorphic, non-symmorphic 21 

special point techniques 66,77-89,161, 176 
spin density 104,256 

in momentum space 263 
spin eigenfunction 102 
spin-free density matrices 252 
static lattice energy 188, 203 
statistic:al mechanics 212 
stishovite 189, 198 
structure factor, see form factor 
supercell 183, 219, 231, 236-239 
superconductivity (high Tc) 289-319 
superconductor (high Tc) 149, 150 
surface (crystalline) 227-244 

formation energy 229,237 
of ionic crystals 231 
relaxation 229, 237 
reconstruction 229, 237 
stability 231 
state 231 

symmetry 
axis (rotation, rotoinversion, screw) 8, 9 
cl_ 9 
element 7 
exploitation 131, 156 
inversion 9 
operation (proper, improper) 9, 10 
plane (reflection and glide) 8 
translational 1 

synchronous global index 115 

Tasker type (of ionic surface) 231 
temperature effects 203,209-225 
tetrahedron method 67, 87 
thermodynamic functions 221 
thermodynamic properties 209-225 
three-body potential, see model potential 
tight-binding scheme 289 
titanium oxide 150 
transition metal compounds 109, 150,186 
travelling wave 215 
triangular groups (elliptic, hyperbolic) 302 
two-body potential, see model potential 

unrestricted Hartree-Foc:k 103 
urea 199 

vector processor 115 

velocity operator 277 
vibration modes, see normal modes 
vibrational spectroscopy 217 
virial theorem 266 
visualization 121 
Voronoi polyhedron (cell) 17,93 

Wannier functions 254 
Wigner density function 251 
Wigner-Seitz cell 17 
WIEN code 139-153 

X-ray diffraction 256, 258-259 

zero-point energy 203 
zinc 150 
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Appendix C 

List of Acronyms 

AFM - Antiferromagnetic 
AO - Atomic Orbital 
APW - Augmented Plane Wave 
ASA - Atomic Sphere Approximation 
ASW - Augmented Spherical Wave 
a.u. - atomic units 
BCS - Bardeen, Cooper and Schrieffer 
BF - Bloch Function 
BHS (PP) - Bachelet, Hamann and Schluter 

(Pseudo-Potentials) 
BO - Born-Oppenheimer (approximation) 
BSSE - Basis Set Superposition Error 
BZ - Brillouin Zone (first) 
CC - Coupled-Cluster 
CFLS - Cluster Fermionic Linearization 

Scheme 
CMO - Canonical Molecular Orbital 
CO - Crystalline Orbital 
CP - Car-Parrinello 
CPU - Central Processing Unit 
DF(T) - Density Functional (Theory) 
DM - Density Matrix 
DOS - Density of States 
ECP - Effective Core Potentials 
EFG - Electric Field Gradient 
FFT - Fast Fourier Transform 
FLAPW or FP-LAPW - Full-potential 

Linearised Augmented Plane Wave 
FM - Ferromagnetic 
FWHM - Full Width Half Maximum 
GC - Gradient-Corrected 
GFMC - Green-Function Montecarlo 
GGA - Generalised Gradient Approximation 
GS(ES) - Ground State (Electronic Structure) 
GT(O) - Gaussian Type (Orbital) 
KS - Kohn and Sham 

HC - Host Crystal 
HF - Hartree-Fock 
IDOS - Integrated Density of States 
IR - Irreducible Representation 
KKR - Korringa-Kohn-Rostoker 
LAPW - Linearised Augmented Plane Wave 
LCAO - Linear Combination of Atomic 

Orbitals 
LDA - Local Density Approximation 
LMO - Localised Molecular Orbital 
LMTO - Linear Muffin-Tin Orbital 
LO - Local Orbital 
LSDA - Local Spin Density Approximation 
MD - Molecular Dynamics 
MIT - Metal-Insulator Transition 
MO - Molecular Orbital 
MT(A) - Muffin Tin (Approximation) 
NSG - Natural Spin Geminal 
NSO - Natural Spin Orbital 
ODLRO - Off-Diagonal Long-Range Order 
PDOS - Projected Density of States 
PP - Pseudo-Potential 
PW - Plane Wave 
QM - Quantum Mechanics 
RIM - Rigid Ion Model 
ROHF - Restricted Open-shell Hartree-Fock 
RHF - Restricted Hartree-Fock 
RIF - Residual Instrumental Function 
SC - Supercell 
SCF - Self-Consistent-Field 
SIC - Self-Interaction Correction 
SM - Shell Model 
STO - Slater Type Orbital 
TG - Translation Group 
UHF - Unrestricted Hartree-Fock 
VMC - Variational Montecarlo 
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