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Preface

Analysis and synthesis cosine-/sine-modulated filter banks are perfect reconstruc-
tion filter banks that are used for the time-to-frequency transformation of an
audio data block, and vice versa, many sub-band/transform-based schemes for
high-quality lossy/lossless compression of digital audio signals. These include the
modified discrete cosine and sine transforms, the modulated lapped transforms,
the extended lapped transforms, the low delay modified discrete cosine transform,
the modulated complex lapped transform, and various forms of (low delay) com-
plex exponential-modulated and real-valued cosine-modulated quadrature mirror
filter banks. The perfect reconstruction cosine-/sine-modulated filter banks are
fundamental processing components in many state-of-the-art international audio
coding standards and in proprietary audio compression algorithms, broadcast-
ing/speech/data communication codecs, and open-source royalty free audio/speech
codecs. In general, the computation of the complete perfect reconstruction analysis
and synthesis filter banks is the most time-consuming operation in audio/speech
coding schemes, and therefore, the fast algorithms for their efficient real-time
hardware and software implementation are very important.

Although many excellent (text) books have been published up to now (see
references in the introductory chapter), generally they are almost all devoted to
the theory and design of near-perfect and perfect reconstruction quadrature mirror
filter and modulated filter banks, to the theory of orthogonal lapped transforms,
to the detailed description of audio coding methods/algorithms/technologies (psy-
choacoustics principles and models, quantization, and perceptual audio coding
strategies), and to the detailed description of audio coding standards and proprietary
audio compression algorithms and their audio coding applications. However, in
these books, frequently the discussion about fast algorithms for their efficient
implementation is often limited, or they are discussed only marginally. On the other
hand, the research interest and activities in the efficient implementations of perfect
reconstruction cosine-/sine-modulated filter banks have much increased recently,
mainly owing to the existence of their many audio coding applications appearing in
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the consumer and professional electronics market (portable players, mobile phones,
and digital multimedia communication systems). This was the main motivation to
prepare the edition of this book, and the authors strongly believe that it will fill up
this gap.

This book is devoted essentially and exclusively to the theory and design of
fast algorithms for the efficient implementation of perfect reconstruction cosine-
/sine-modulated filter banks as well as to the theory of algorithm complexity.
It summarizes the research results achieved by the research community over
three decades in this hot research topic. The book covers various algorithmic
developments in the cosine-/sine-modulated filter banks including their general
mathematical properties in the time and frequency domains, their (block) matrix
representations, their fast algorithms employed in modern transform-based coding
technologies, and various local and global methods to their integer approximation
(integer-approximate cosine-/sine-modulated filter banks), being recently innovative
transform-based technologies for lossless audio coding.

The book Cosine-/Sine-Modulated Filter Banks: General Properties, Fast Algo-
rithms and Integer Approximations is aimed at students, engineers, researchers,
and scientists at research institutes, universities, and companies who are interested
in theoretical aspects (origin and general mathematical properties) and practical
aspects (fast algorithms and methods to integer approximation). The fervent hopes
and aspirations of the authors are that the book will serve both as an excellent
reference to perfect reconstruction cosine-/sine-modulated filter banks and as an
incentive/inspiration for further advanced research.

Bratislava, Slovakia Vladimir Britanak
Arlington, TX, USA K.R. Rao
April 2017
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Chapter 1
Cosine/Sine-Modulated Analysis/Synthesis
Filter Banks

1.1 Introduction

One of the topics in multi-rate digital signal processing is the theory and design of
M-band (or M-channel) analysis and synthesis quadrature mirror filter (QMF) banks
for sub-band signal decomposition and coding [3–5, 9–11]. They are also called
M-band maximally decimated critically sampled QMF banks. The analysis QMF
bank consists of M uniform and equally spaced channel filters to decompose the
input signal into M sub-band signals. The synthesis QMF bank consists of channel
filters to reconstruct the original signal exactly from sub-band signals, or to recover
a signal which is nearly perfect approximation of the original signal. Historically,
discovering the 2-band QMF banks [15] in 1976 stimulated and started research
activities leading to extending the theory of near-perfect and perfect reconstruction
QMF banks for arbitrary number of sub-bands, to developing a family of near-
perfect modulated filter banks (or pseudo-QMF banks) and perfect reconstruction
modulated filter banks based on the concept of time domain aliasing cancellation
[16–144].

Among studied pseudo-OMF banks and perfect reconstruction modulated filter
banks, the cosine-modulated filter banks gained widespread attention. It is not
surprising, they have many attractive features: a simple formulation and structure,
analysis and synthesis filters are of equal length, and in particular, they have a fast
implementation with low computational complexity. Indeed, in M-band pseudo-
OMF or perfect reconstruction cosine-modulated filter banks, the analysis and
synthesis filters are equally spaced, and they are cosine modulated versions of a
low-pass prototype filter. In a simplest common form, the set of analysis and the set
of synthesis filters are, respectively, expressed as

hk;n D wn ck;n;

gk;n D wn ck;n; k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ;L � 1;
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where wn is the low-pass prototype filter or windowing function of the length
L .L > M/, M is the number of sub-bands, and ck;n is the cosine modulation.
Obviously, the synthesis filters hk;n are related to the analysis filters gk;n by

gk;n D hk;L�1�n;

i.e., the synthesis filters are time reversed versions of the analysis filters. If the
windowing function satisfies certain constraints, the length L D 2M, and the cosine
modulation is chosen to be, for example, ck;n D cos

�
�
M .k C 1

2
/.n C M

2
C 1

2
/
�
,

then M-band cosine-modulated filter bank achieves the perfect reconstruction.
Importantly, such cosine-modulated filter bank has an efficient implementation.

This book is devoted essentially and exclusively to the theory and design of fast
algorithms for the efficient implementation of perfect reconstruction cosine/sine-
modulated filter banks used/employed in modern transform-based audio coding
technologies, and to the theory of algorithm complexity. It covers and summarizes
the research results achieved by the research community over three decades in this
hot research topic.

1.2 Additional References

An extensive list of references [1–144] has been appended to this introductory
chapter (almost not all are cited in subsequent chapters). No claim for completeness
of this list is made. Besides books devoted to multi-rate digital signal processing
[1–11], books on discrete cosine/sine (DCT/DST) transforms [12–14], the appended
references [15–144] reflect the retrospective research efforts and developments in
the theory and design of QMF filter banks.

1.3 Organization of the Book

The book is organized in terms of chapters starting with this introductory chapter.
Each chapter begins with Abstract and contains its own list of references.

In Chap. 2 perceptual transform-based audio coding schemes developed up to
now are briefly reviewed including the family of ISO/IEC MPEG audio cod-
ing standards, proprietary audio compression algorithms, broadcasting/speech/data
communication codecs, and open-free, patent royalty-free audio/speech codecs. The
discussion is concentrated especially on adopted near-perfect QMF (pseudo-QMF)
and perfect reconstruction cosine/sine-modulated filter banks, processing methods,
and specified transform block sizes.

The evenly and oddly stacked modified discrete cosine transform (MDCT) and
the corresponding modified discrete sine transform (MDST), the modulated lapped
transform (MLT), the extended lapped transforms (ELTs), and their biorthogonal
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versions are real-valued cosine/sine-modulated filter banks satisfying the perfect
reconstruction property. The modulated complex lapped transform (MCLT) is the
complex-valued filter bank whose real part is the MLT or equivalently, the oddly
stacked MDCT, and the imaginary part is the oddly stacked MDST. In Chap. 3,
definitions, general properties in the time and frequency domain, and matrix repre-
sentations of the MDCT/MDST, MLT, ELT, and MCLT filter banks are presented. In
order to an analysis/synthesis filter bank be perfect reconstruction, the necessary and
sufficient conditions imposed on the analysis and synthesis windowing functions
play an important role. Therefore, additionally the windowing procedure and perfect
reconstruction (biorthogonal) conditions in the case of identical and (nonidentical)
analysis and synthesis windowing functions are discussed. Further, design of a
windowing function including definitions of commonly windowing functions used
in audio coding applications, adaptive switching of transform block sizes and
windowing functions, and general perfect reconstruction conditions for the ELT
filter bank with multiple overlapping factor both for the orthogonal and biorthogonal
cases are derived and/or discussed in detail.

The MDCT/MDST, MLT, ELT, and MCLT are fundamental processing com-
ponents for the time-to-frequency transformation of an audio data block in many
audio coding schemes for high quality audio compression. Since the computations
of cosine/sine-modulated filter banks are the most time-consuming operations in
audio coding schemes, the crucial aspect for their applicability is the existence
of fast algorithms that allow their efficient software/hardware implementation
compared to the direct implementation via their corresponding analytical forms.
In Chap. 4, radix-2, even-length and mixed-radix fast algorithms for the efficient
implementation of the forward/backward evenly stacked MDCT/MDST, oddly
stacked MDCT/MDST, MLT, ELT, and MCLT block transforms are presented. The
emphasis is imposed particularly on basic steps, various tricks (trigonometric and
algebraic) and approaches leading to the derivation of final formulae of a fast
algorithm. For each fast algorithm complete formulae or a sparse block matrix
factorization of transform matrix, a corresponding generalized signal flow graph,
the total computational complexity, and a possible structural simplification of the
algorithm are presented.

The MPEG-1/2 audio coding standard for the time-to-frequency transformation
of an audio signal and vice versa, in layers I and II has adopted the pseudo-
QMF banks. In layer III (known as MP3) it has additionally adopted the MLT
or MDCT associated with the sine windowing function. Chapter 5 describes and
compares various efficient implementations of the forward and backward MLT
(MDCT) tailored directly on MP3 audio including the efficient implementation of
pseudo-QMF banks for completeness. The efficient MLT (MDCT) implementations
are discussed in the context of complete (fast) analysis/synthesis MLT (MDCT)
filter banks in the MP3 encoder and decoder. In general, for each efficient
forward/backward MLT (MDCT) block transforms implementation are presented:
Complete formulae or sparse (block) matrix factorizations, the corresponding signal
flow graph for short audio block and the total arithmetic complexity as well as the
useful comments related to improving the arithmetic complexity and a possible
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structural simplification of the algorithm. Finally, the fast analysis and synthesis
MLT (MDCT) filter banks for MP3 encoder and decoder are discussed in detail.

The Dolby Digital (AC-3) and the Dolby Digital Plus or Enhanced AC-3 (E-
AC-3) audio coding standards developed by the Dolby Labs are currently the key
enabling technologies for high-quality compression of digital audio signals. For the
time/frequency transformation of an audio data block, and vice versa, the AC-3
and E-AC-3 have adopted the oddly stacked MDCT. The AC-3 besides the MDCT
defines additional two variants of cosine-modulated filter banks called the first
and second short transforms. Moreover, the current AC-3 and E-AC-3 codecs for
better spectral estimation and for phase angle adjustment have adopted the oddly
stacked MDST which together with the MDCT forms a complex MCLT filter
bank. Chapter 6 is devoted to the perfect reconstruction cosine/sine-modulated
filter banks used in the Dolby AC-3 and E-AC-3 codecs. The definitions of the
analysis/synthesis AC-3 filter banks, their general symmetry properties both in
the time and frequency domains, and their efficient unified implementations are
presented. Matrix representations of AC-3 filter banks, their properties and relations
among transform (sub-)matrices provide the basis to derive relations between
the frequency coefficients and the time domain aliasing data sequences of AC-
3 transforms, and in particular, the basis for derivation of a fast algorithm for
conversion of frequency coefficients of AC-3 transforms directly in the frequency
domain. Finally, conversion methods of the MDCT to MDST frequency coefficients
directly in the frequency domain are discussed.

Spectral Band Replication (SBR) is an enhancement compression technology
which significantly improves the compression efficiency of perceptual audio and
speech coding schemes. Central to the operation of standard SBR and low delay
version of SBR are dedicated complex exponential-modulated and real-valued
cosine-modulated QMF banks as the basic mathematical tools to analyze and
synthesize audio signals. Chapter 7 presents the complete unified efficient imple-
mentations of complex exponential-modulated and real-valued cosine-modulated
QMF banks used both in the standard SBR and low delay SBR encoder and
decoder. For each QMF bank, definition in its equivalent block transform with
a common parameter M representing the number of sub-bands, its general sym-
metry property in the frequency or time domain, and the derivation of a fast
algorithm for its efficient implementation are presented. All the fast algorithms
are analyzed in detail in terms of the arithmetic complexity, regularity, and
structural simplicity for a potential real-time low-cost implementation in hardware
or software.

In order to achieve low algorithmic delay for bidirectional communication
systems, the MPEG-4 Advanced Audio Coding—Enhanced Low Delay audio
coding standard has adopted a perfect reconstruction analysis and synthesis low
delay MDCT (LD-MDCT) filter banks. In Chap. 8, definitions of the analysis and
synthesis LD-MDCT filter banks, their general symmetry properties in the time and
frequency domains, relations between the LD-MDCT and the oddly stacked MDCT
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both in the analytical forms and the equivalent matrix representations, and efficient
implementations of the even-length analysis/synthesis low delay MDCT filter banks
are discussed in detail. For each fast LD-MDCT algorithm the complete formulae
are derived. All the fast even-length LD-MDCT algorithms are investigated and
compared in terms of arithmetic complexity and structural simplicity.

Enabling technology for transform-based lossless audio coding is the integer
transform. Integer transform is a transform which maps integers to integers by a
reversible (invertible) way so that it preserves all mathematical properties of the
original real-valued transform, such as perfect reconstruction, energy compaction
property, and fast algorithm. Indeed, the IntMDCT or IntMLT enabled to design
and implement this innovative coding technology for scalable lossy to lossless
audio coding. In Chap. 9, the local and global methods to integer approximation
of perfect reconstruction cosine/sine-modulated filter banks and cosine-modulated
QMF banks are discussed in detail. They are based on computational methods of
linear algebra, matrix theory and matrix computations, and in particular, on the
(block) matrix decompositions. In fact, the scalar and block matrix decompositions
are powerful mathematical tools to construct the reversible (invertible) integer
transforms.

All chapters end with a summary, problems/exercises, and references. Prob-
lems/exercises reflect the contents of the corresponding chapters and are intended
for the reader in terms of refresh/review/reinforce their contents. Extensive defi-
nitions, principles, properties, signal flow graphs, derivations, and examples are
provided throughout the book for proper understanding of the strengths and
shortcomings of the spectrum of perfect reconstruction cosine/sine-modulated filter
banks.

1.4 Appendices

Appendices A through G review and present the important mathematical basics from
matrix theory and linear algebra (Appendix A), definition and symmetry properties
of odd-time odd-frequency DFT (Appendix B), fast DCT/DST computational
structures (Appendix C), optimized efficient short odd-length complex DFT, real-
valued DFT and (S)DCT modules (Appendix D), optimized efficient short-length
forward/backward MDCT modules (Appendix E), efficient implementations of
Givens-Jacobi rotations (Appendix F), and finally, definitions of symmetric/anti-
symmetric and periodic/anti-periodic sequences (Appendix G).

In general, Appendices provide both theoretical basics necessary for the deriva-
tion of fast algorithms and also practical tools, fast DCT/DST computational
structures efficient and optimized efficient short-length computational modules, and
tools necessary for completing efficient forward/backward MDCT/MDST, MLT,
ELT, and MCLT implementations.
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1.5 References

To retain the connectivity among the chapters of the book as much as possible,
each chapter in the book includes its own list of references related to the discussed
subject. Therefore, some references may appear in the lists of references of chapters
more than once.
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Chapter 2
Audio Coding Standards, (Proprietary)
Audio Compression Algorithms,
and Broadcasting/Speech/Data Communication
Codecs: Overview of Adopted Filter Banks

2.1 Introduction

In general, audio coding or audio compression algorithms are used to obtain
compact digital representation of high-quality audio signals for their efficient
transmission and storage. The central objective in audio coding is to represent
the signal with a minimum number of bits while achieving its transparent repro-
duction. Motivated by these demands considerable research activities have been
spent toward formulation of audio compression/coding schemes to satisfy simul-
taneously requirements of high compression ratios and transparent reproduction
quality of audio signals. As a result, a number of audio coding schemes were
developed/standardized for the high-quality audio coding [1, 2, 6, 11].

Besides speech coding schemes based on linear prediction methods which
are especially tailored for efficient speech compression, the developed perceptual
transform-based audio coding schemes gained a greater attention, particularly
for applications in consumer electronics. Typically, any transform-based audio
coding scheme utilizes a near-perfect quadrature mirror filter (QMF) and/or perfect
reconstruction cosine-modulated filter bank to obtain a block-wise representation of
the audio signal in the frequency domain. The obtained spectral coefficients after
quantization are then efficiently encoded into a compact form.

In this chapter, perceptual transform-based audio coding schemes developed up
to now are briefly reviewed including the family of ISO/IEC MPEG audio cod-
ing standards, proprietary audio compression algorithms, broadcasting/speech/data
communication codecs, as well as open-free, patent royalty-free audio/speech
codecs. The discussion is concentrated especially on adopted near-perfect QMF
and perfect reconstruction cosine-modulated filter banks, processing methods, and
specified transform block sizes. For more details about specific audio coding
standard/compression algorithm, an interested reader can find in the appropriate
official MPEG document(s), available web sites, or books [1, 2, 9, 11, 15].
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2.2 Family of ISO/IEC MPEG Audio Coding Standards

During more than 25 years, the MPEG committee in collaborative work with many
companies, universities, and research institutes worldwide developed and standard-
ized several audio codecs for high-quality compression of audio/speech coding.
From the viewpoint of adopted filter banks, processing methods, and specified
transform block sizes they are briefly reviewed in the following subsections.

2.2.1 MPEG-1/2 Audio Coding Standards

The MPEG-1 audio compression algorithm [6, 9, 11, 12], finalized in 1992, is
the first established international coding standard for high-quality compression of
digital audio signals. The MPEG-2 audio coding standard [6, 9, 11, 13], finalized in
1994, extends the multichannel capabilities not offered by MPEG-1 audio. MPEG-
1/2 algorithms involve three distinct layers for compression. Layer I forms the most
basic compression algorithm, while layers II and III are enhancements that use some
elements of layer I. Each successive layer improves the compression performance
but at the cost of greater encoder and decoder complexity [1, 9]. Essentially, layer III
of MPEG-1/2, known as MP3 standard, has become at that time key technology to
realize audio decoders for music distribution via Internet and consumer electronics
(portable MP3 players and multimedia systems).

For the time-to-frequency transformation of digital audio signals the MP3 stan-
dard [13] employs the hybrid filter bank consisting of a near-perfect reconstruction
cosine-modulated QMF bank referred also to as the pseudo-QMF bank [1, 9], and
the adaptive modulated lapped transform (MLT) [3, 4], or equivalently, the adaptive
oddly stacked modified discrete cosine transform (MDCT) [8] associated with the
sine windowing function [4]. The pseudo-QMF bank, common to all three layers
of MPEG-1/2 audio, decomposes the input audio signal into 32 equally spaced
frequency sub-bands, i.e., N D 64. Each sub-band is then coded either to single
groups of 12-sample blocks (in layer I) or to groups of three successive 12-sample
blocks (in layer II). For 32 sub-bands this results in two data frames of 32�12 D 384

and 32 � 36 D 1152 samples [1, 9].
In MP3 standard [13], the outputs of pseudo-QMF bank are further processed by

the MLT (MDCT) filter bank operating on the block of N D 12 samples (the short
block) or the block of N D 36 samples (the long block). The long block allows
greater frequency resolution for signals with stationary characteristics, while the
short block provides better time resolution for transient signals. Basic windowing
operation is defined for the long block and short block. During transient signals, the
long block is replaced by a series of three overlapped short blocks, thus maintaining
the same total number of samples as for the long block. Each of the three short
blocks is then windowed separately. Switching between long and short blocks is not
instantaneous. In order to ensure smooth transition between long and short blocks



2.2 Family of ISO/IEC MPEG Audio Coding Standards 15

and vice versa, transient blocks (long-to-short and short-to-long blocks having the
same size as the long block) are specifically defined and windowed [1, 9]. Both short
and long block sizes are not powers of two. Actually they are composite lengths of
the form 2m � q, where q is an odd integer. Specifically, 12 D 4 � 3 D 22 � 3 and
36 D 4 � 9 D 22 � 9.

In Chap. 5, a number of various efficient implementations of the pseudo-QMF
and MLT (MDCT) filter banks tailored directly to the MP3 audio coding standard
are discussed in detail.

2.2.2 MPEG-2/4 Advanced Audio Coding (AAC) Audio
Coding Standards

MPEG-1/2 standards discussed in the previous subsection involve practical audio
compression algorithms for high-quality coding of monophonic and stereophonic
material. By the early 1990s, the demand for high-quality coding of multichannel
audio at reduced bit rates had increased significantly. Therefore, MPEG group
started in 1994 standardization activities for developing a higher quality
multichannel non-backwards compatible advanced audio coding system [1, 11].
This effort with collaborative effort among worldwide companies, universities, and
research institutes (Dolby Laboratories, Sony Corporation, AT&T Bell Laboratories
or Lucent Technologies, Fraunhofer Institute and University of Hannover)
led to the adoption of the MPEG-2 Non-Backwards Compatible/Advanced
Audio Coding (NBC/AAC) standard [14]. The MPEG-2 NBC/AAC was later
renamed MPEG-2 AAC and finalized in 1997. The AAC technology made
use of all the advanced audio coding methods available at the time of its
development [1, 11, 15].

The MPEG-2 AAC standard is organized as a set of modular coding tools. Based
on a trade-off among desired quality coding, channel resources, and memory/power
processing requirements, the MPEG-2 AAC system allows to select from three
complexity profiles: Main Profile, Low Complexity (LC) Profile, and Scalable
Sampling Rate (SSR) Profile. Each profile recommends a specific combination of
coding tools. In the Main Profile configuration, the MPEG-2 AAC provides the best
audio quality at any given data rate. Memory and processing power requirements in
the Main Profile configuration are higher than those in the LC Profile configuration.
In the SSR Profile configuration, the gain control tool is used. It consists of a
Polyphase QMF (PQMF) filter bank of order 96, gain detectors and gain modifiers.
The PQMF filter bank splits each audio channel input signal into four frequency
bands of equal width. Then each PQMF filter bank output is processed by the
oddly stacked MDCT [8] to produce 256 spectral coefficients (i.e., N D 512), for
a total of 1024 coefficients. The gain control can be applied to each of four bands
independently [1, 14, 15].
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The MPEG-2 AAC coding algorithms constitute the kernel of the MPEG-4 AAC
audio coding standard (version 1 finalized in 1999 and version 2 finalized in 2000)
[16]. These MPEG-4 AAC versions include several additional functionalities such
as scalability, error resilience, technology for coding general audio (speech and
synthetic audio), and some additional spectral processing tools. The MPEG-4 AAC
was targeted for a wide number of applications including wired, wireless, streaming,
digital broadcasting, interactive multimedia, telephony and mobile communication,
and high-quality audio/video [1, 11].

Fundamental component of MPEG-2/4 AAC encoder is the conversion of time
domain signals into frequency representation by applying of the time-variant oddly
stacked MDCT filter bank [8]. With the adaptive block size switching procedure,
quasi-stationary audio segments are analyzed/synthetized with 2048-sample long
data block (N D 2048), while transient signals are analyzed/synthetized with a
series of eight 256-sample short data blocks (N D 256) to reduce pre-echo effects.
Since the windowing function has a significant impact on the MDCT filter bank
frequency response, the MPEG-2/4 AAC allows a dynamical switching between
two distinct windowing functions (adaptive switching procedure of windowing
function) to best adapt to signal characteristics. The sine windowing function [4]
or a parametric Kaiser–Bessel Derived (KBD) windowing function [45, 49] is used.
We note that the adaptive switching of windowing function is employed on the 2048-
sample long data blocks only [1, 14].

2.2.3 MPEG-4 AAC-Low Delay (AAC-LD) Audio
Coding Standard

Although, in general, MPEG-2/4 AAC perceptual audio codecs provided high
sound quality even at low bit rates for broad range of signals, the total delay
of encoder/decoder chain was still considerably high, than can be acceptable for
upcoming high-quality interactive bidirectional communication applications such
as telephony, Voice over Internet (VoiceIP), and teleconferencing. Therefore, it was
concluded that a novel coding scheme has to be designed/introduced combining the
advantages of perceptual audio coding with the low delay operation required for
interactive bidirectional communication [17, 19].

As the first step, a general overview over the structure of existing perceptual
audio coding schemes (MPEG-2/4 AAC, MP3) has to be performed followed by
an analysis to identify the primary sources of algorithmic delay inherent in the
encoding/decoding chain of such schemes. It is noted that the algorithmic delay
is defined as the theoretical minimum delay allowed by an algorithm. Then, the
total algorithmic delay can be derived as the sum of delay contributions of coding
algorithms [17]. Based on the detailed analysis [18], the following main sources
contributing to the total algorithmic delay have been identified [19]:



2.2 Family of ISO/IEC MPEG Audio Coding Standards 17

• Block-based processing associated with data block size—due to the use of a
block transform, a certain amount of time is needed to collect all samples
belonging to one block.

• Filter bank algorithmic delay—due to the overlap/add procedure of the filter bank
with 50% overlap to previous and subsequent data blocks, a delay of one data
block is caused by the filter bank.

• Look-ahead time for data block size switching procedure—in transition from the
long to short data blocks and vice versa, the so-called transition blocks (labeled as
“start” and “stop”) have to be constructed to preserve the perfect reconstruction
property of filter bank in the overlapped part.

As a result of this analysis, the so-called MPEG-4 AAC Low Delay (AAC-LD)
was derived from MPEG-4 AAC general audio object type (MPEG-2 AAC-LC plus
some additional coding tools) and optimized for very low delay operation [17, 19].

The following modifications on the standard MPEG-4 AAC algorithm have
been performed in order to achieve the low delay operation in MPEG-4
AAC-LD [17, 19]:

• Data block size has been reduced from N D 2048 to N D 1024 or N D 960 sam-
ples. This leads to a delay of 512 or 480 samples. The MDCT analysis/synthesis
filter banks cause a further delay of the same size. Note that the data block size
N D 960 is a composite integer of the form 2m � q, where q is an odd integer.
Specifically, 960 D 26 � 15.

• Block size switching procedure has been deactivated.
• The AAC-LD has allowed the use of two different windowing functions for

windowing procedure depending on signal characteristics. Besides the sine
windowing function applied to the stationary signals, the AAC-LD uses a
low overlap windowing function between subsequent data blocks in the case
of transient signals (see Figs. 8 and 9 in [17]). This dynamic adaptation of
windowing function does not imply any additional delay.

Thus, the MPEG-4 AAC-LD represents the modified MPEG-4 AAC codec
fulfilling requirements of the total low algorithmic delay for full-duplex commu-
nication applications. Moreover, it filled the gap between existing low delay speech
coding schemes (such as ITU-T G.722.1 Annex C [60, 68]) and perceptual high-
quality audio coding schemes, as well as provided a baseline for development of the
low delay coding in MPEG-4 codec family [19].

2.2.4 MPEG-4 High-Efficiency AAC (HE-AAC) Audio
Coding Standard

The rapid development of digital communication has opened numerous opportu-
nities for new multimedia services such as terrestrial- and satellite-based digital
audio broadcasting as well as wireless music downloads to cellular phones [21]. In
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2001, MPEG committee identified two areas for improved audio coding technology
and issued a call for proposals [20] for: Improved compression efficiency of audio
or speech signals by a bandwidth extension method, which is forward and back-
ward compatible with existing MPEG-4 technology, and improved compression
efficiency of high-quality audio signals by a parametric stereo coding method. Based
on the MPEG-2/4 AAC architecture, the work item led to standardization in the
form of amendments, at first in 2003 of the MPEG-4 High-Efficiency AAC (HE-
AAC) audio coding standard (known also as AACPlus), and subsequently in 2004
to standardization of the MPEG-4 HE-AAC version 2 (known also as AACPlus v2).
MPEG-4 HE-AAC is the combination MPEG-2/4 AAC and integrated bandwidth
extension method, the so-called Spectral Band Replication (SBR) compression
technology, which enables to reconstruct high-frequency band based on low-
frequency band data. The MPEG-4 HE-AAC v2 is the combination of MPEG-4
HE-AAC and Parametric Stereo (PS) coding tool which achieves a significantly
increased coding efficiency for stereo signals when compared to HE-AAC operating
in normal stereo mode [20, 21]. The MPEG-4 HE-AAC (v2) standards are targeted
on low bit rate applications with higher coding efficiency such as mobile music
and TV, digital radio and TV broadcasting, Internet streaming, and consumer
electronics.

The SBR compression technology significantly improves the compression effi-
ciency of perceptual audio and speech coding schemes. SBR always operates in
conjunction with a conventional codec, a core codec (it is not a stand-alone coder).
The SBR acts as pre-processing at the encoder, and as post-processing at the decoder
[20, 21]. SBR is based on the fact that in most cases there is strong correlation
between the characteristics of lower and higher frequency content of an audio signal.
Consequently, the high frequency part can be reconstructed from the low frequency
part, or in other words, the SBR is able to recreate the missing high frequency
components of a decoded audio signal in a perceptually accurate way by re-using
signal information from the decoded low frequency part, thus allowing a much
higher audio quality at low data rates. Therefore, transmission of the high frequency
part is not necessary, only the low frequency part and a small set of control data
need to be carried in the bit stream to guarantee an optimal reconstruction of high
frequencies. Essentially, SBR-enhanced codecs have the major advantage of being
backward and forward compatible to the core codec. This fact permits to integrate
the SBR technology to existing systems, thus enabling a smooth transition from a
conventional audio coder to its more efficient SBR-enhanced version. In general,
the SBR can be combined with any conventional (even not necessarily perceptual)
audio/speech codec [23].

Central to the operation of standard SBR compression technology used in the
MPEG-4 HE-AAC [22] are dedicated complex exponential-modulated and real-
valued cosine-modulated QMF banks as the basic mathematical tools to analyze
and synthesize audio signals. Standard SBR for the encoder defines only one
complex exponential-modulated analysis QMF bank, while standard SBR for
the decoder defines two types of analysis/synthesis QMF banks depending on
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the application. Specifically, complex exponential-modulated QMF banks forming
the high quality SBR (HQ-SBR), and real-valued cosine-modulated QMF banks
forming the low power SBR (LP-SBR). The main difference between HQ-SBR and
LP-SBR is how the data is represented during the SBR process. In the HQ-SBR all
subsequent calculations are realized in complex arithmetic. The LP-SBR operates
with real-valued cosine-modulated analysis and synthesis QMF banks, and hence in
real-valued arithmetic to reduce the computational complexity. In situations, where
a lower sampling rate is sufficient, for example in portable devices, the SBR can
run in a down-sampled mode and down-sampled versions of complex and real-
valued synthesis QMF banks can be employed. The complex exponential-modulated
QMF banks are intended for use in applications requiring the best possible audio
quality at a given bit rate, while the real-valued QMF banks are intended to be
lower complexity versions that still produce acceptable results in terms of audio
quality and bit rate. The modulation stages of QMF banks in the ISO/IEC MPEG
document [22] are defined by matrix-vector products with the number of sub-bands
being 64 or 32, i.e., audio data blocks of sizes N D 128 or 64, and with fixed
values of time shift factors in the transform kernels. The symmetric prototype filter is
of order 640.

Complex exponential-modulated and real-valued cosine-modulated analysis and
synthesis QMF banks used in the standard SBR technology of MPEG-4 HE-AAC,
their general symmetry properties in the frequency or time domain, and their
efficient implementations are discussed in detail in Chap. 7.

2.2.5 MPEG-4 AAC-Enhanced Low Delay (AAC-ELD)
Audio Coding Standard

The MPEG committee in 2008 has completed the development and standardization
process of an audio communication codec, the MPEG-4 Advanced Audio Coding—
Enhanced Low Delay (AAC-ELD), targeted towards the high-quality real-time
(interactive) bidirectional communication applications such as audio and video
conferencing [24]. Essentially, the MPEG-4 AAC-LC, HE-AAC, and AAC-LD
codecs form the basis of AAC-ELD. In order to achieve the high coding efficiency
and low algorithmic delay, the AAC-ELD combines a low delay-optimized SBR
compression technology [24, 26, 26] known from the HE-AAC [22], and a perfect
reconstruction low delay cosine-modulated filter bank [10, 26, 27]. In 2011 the
MPEG completed the standardization of a Low Delay MPEG Surround as a para-
metric stereo coding tool for enhancing the AAC-ELD codec [25]. The combination
of both technologies, the Low Delay MPEG Surround and AAC-ELD, is also known
as the AAC-ELD v2. The applications of AAC-ELD v2 involve broadcasting and
mobile videoconferencing.
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The low delay version of SBR (LD-SBR) compression technology was integrated
into AAC-ELD [24]. Since the LD-SBR is derived from the standard SBR [22] (see
also Sect. 2.2.4) with some modifications, similarly, the LD-SBR for the encoder
defines also only one low delay complex exponential-modulated analysis QMF bank
and two types of low delay analysis and synthesis QMF banks for the decoder
forming the high quality LD-SBR (HQ-LD-SBR) and low power LD-SBR (LP-
LD-SBR). Similarly, in situations where a lower sampling rate is sufficient, the
LD-SBR can operate in a down-sampled mode using down-sampled versions of
low delay complex and real-valued synthesis QMF banks. The modulation stages
of low delay QMF banks in the ISO/IEC MPEG document [24] are defined with
the number of sub-bands being 64 or 32, i.e., audio data blocks are of sizes
N D 128 or 64.

Low delay complex exponential-modulated and real-valued cosine-modulated
analysis and synthesis QMF banks used in the LD-SBR compression technology,
their general symmetry properties in the frequency or time domain, and their
efficient implementations are discussed in detail in Chap. 7.

On the other hand, now it is well known that the MPEG audio coding standards,
such as MPEG-4 AAC-LC, HE-AAC, and AAC-LD, utilize for the time-to-
frequency transformation of an audio data block and vice versa, the oddly stacked
MDCT which is based on the concept of time domain aliasing cancellation (TDAC)
[8]. However, the AAC-ELD has adopted a perfect reconstruction low delay filter
bank, called the Low Delay MDCT (LD-MDCT) [10]. The purpose of the LD-
MDCT is to reduce the reconstruction delay independent of the prototype filter
length, while still maintaining the perfect reconstruction property. The LD-MDCT
has a similar cosine modulation kernel as TDAC MDCT, but substantial delay
reduction is achieved by utilizing an asymmetric analysis windowing function with
a low reconstruction delay and with multiple overlap (four succeeding data block
are overlapped). This cannot be accomplished with TDAC MDCT which employs
a symmetric windowing function and thus has an algorithmic delay identical to the
block size minus one [26, 27]. The AAC-ELD defines for the LD-MDCT the data
block size to be 2N with N D 1024 or 960 [24]. Note that 960 D 26 � 15 is
the composite length. The low delay analysis windowing functions for N D 1024

and 960 are tabulated in the explicit form in ISO/IEC MPEG document [24]. Note
that the first N

8
values of windowing functions are implicitly equal to zero. Since

the low delay analysis windowing function is asymmetric, the low delay synthesis
windowing function is the time-reversed version of the corresponding analysis
windowing function [10, 26, 27].

Definitions of the analysis and synthesis LD-MDCT filter banks used in the
AAC-ELD, their general symmetry properties in the time and frequency domains,
relations between the LD-MDCT and TDAC MDCT, as well as efficient LD-MDCT
implementations are discussed in detail in Chap. 8.
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2.2.6 MPEG-4 Scalable Lossless Audio Coding (SLS)
and High-Definition AAC/SLS (HD-AAC/SLS)
Audio Coding Standards

Almost all perceptual audio coding schemes discussed in this chapter are based
on the transform-based approach, i.e., they employ sub-band filter banks to obtain a
block-wise representation of the audio signal in the frequency domain. They operate
in floating-point arithmetic, and therefore are lossy in nature [1]. Due to increasing
demand of delivery of high sampling rate and high resolution digital audio at
lossless quality for high-quality applications, such as audio archiving systems,
the lossy compression became inappropriate since every bit in the original audio
signal has to be preserved. On the other hand, the transition from lossy to lossless
coding by a scalable way would facilitate the digital audio services to interchange
compressed audio across various application domains using scalable lossy to
lossless compressed formats. Thus, a scalable to lossless audio coding technology
that will support both lossy and lossless audio compression simultaneously was
desirable [28]. Responding to these demands, the MPEG audio standardization
group decided to start a new work item to explore a new relevant innovative
technology for lossless and near-lossless coding of audio signals in 2002. For the
extension to lossless operation, the lossy MPEG-4 AAC codec has been used as a
core codec [28, 31].

Research and standardization efforts of MPEG audio group led to the specifica-
tion of SLS (scalable lossless coding solution) technology in the form of amendment
to the MPEG-4 audio standard [28, 30–32]. As the extension of MPEG-4 AAC
perceptual audio codec, the MPEG-4 SLS codec includes a scalable lossless audio
coding solution that integrates the functionalities of high-compression, lossless
audio coding, perceptual audio coding, and fine granular scalable audio coding
into a single coder, while simultaneously provides the backward compatibility to
existing MPEG-4 AAC codec at the bit stream level [31]. An enabling technology
for the scalability in the frequency domain is the Integer MDCT (IntMDCT), being
an integer approximation of the oddly stacked MDCT filter bank [8] or equivalently,
the integer MLT (IntMLT) with the sine windowing function. In order to achieve
backward compatibility to existing MPEG-4 AAC codec, the MPEG-4 SLS adopts
two-layer structure to code IntMDCT spectral coefficients: the AAC core layer, and
a lossless enhancement layer working on the top of AAC architecture. These two
layers in the encoder generate the core layer bit stream which is MPEG-4 AAC
compliant, and the lossless enhancement layer bit stream providing the scalability
from lossy to lossless coding. AAC compliant bit stream is embedded in the final bit
stream. Bit-exact reconstruction of the input original audio signal in the decoder is
independent to the implementation accuracy of the AAC core codec. Since MPEG-
4 SLS provides the fine granular bit rate scalability from lossy to lossless coding,
it becomes a universal compression system for digital audio applications which up
to now required different audio coding technologies. Moreover, the need for any
transcoding is completely eliminated [31]. Similarly, other AAC coding tools such
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as Mid/Side (M/S) stereo coding and Temporal Noise Shaping are considered and
implemented in an invertible integer way on the IntMDCT spectral coefficients. An
interested reader can find an overview of the MPEG-4 SLS standard, its application
scenarios, structure, and description of coding tools in [31].

In 2007 the MPEG audio group has successfully concluded the standardiza-
tion process on enhanced SLS technology for lossless coding of high-definition
(HD) audio signals—ISO/IEC MPEG-4 High-Definition Scalable Advanced Audio
Coding (MPEG-4 HD-AAC/SLS) [29]. HD-AAC/SLS audio coding technology
provides a fine grain scalable lossless extension of the MPEG-4 AAC perceptual
audio coder up to fully lossless reconstruction at word lengths and sampling rates
typically used for HD audio. In the context of HD audio applications it is frequently
to achieve lossless signal reconstruction at higher sampling rates as the MPEG-
4 AAC operates. In this case, the MPEG-4 HD-AAC/SLS can operate in the
so-called “oversampling factor” mode by using longer IntMDCT transform sizes
such as N D 4096 or even N D 8192 samples. Using the longer IntMDCT
provides a better lossless performance for stationary signals than the transform size
N D 2048. Enhanced HD-AAC/SLS technology generates a universal digital audio
format for a variety of (HD) applications including digital audio archiving, network
audio streaming, portable audio players, digital VCD and DVD media, consumer
electronics, and digital broadcasting [29].

The MPEG-4 SLS and MPEG-4 HD-AAC/SLS audio coding standards combine
local and global methods to construct the integer approximate MDCT (MLT) filter
banks. They are discussed in detail in Chap. 9.

2.2.7 MPEG-D Unified Speech and Audio Coding (USAC)

All previously discussed MPEG audio coding standards, such as MPEG-4 HE-
AAC v2, achieve high subjective sound reproduction quality at low bit rates for
music signals. However, psychoacoustic models in the spectral domain used in such
audio coding schemes do not perform well on speech signals at low bit rates. On
the other hand, existing speech coding schemes, such as extended Adaptive Multi-
Rate Wide-Band (AMR-WB+) [63, 65], use the time domain source filter to closely
model speech process and consequently, perform very well for speech signals at
low bit rates, but they show poor quality for music signals. This is main reason
why the speech and music signals have been encoded separately using different
coding schemes to achieve their high-quality reproduction [35, 37, 40]. Moreover,
in many applications areas, such as broadcasting, audio books, and audio video
playback, the content is highly variable and is not restricted to speech or music only
[33]. Motivated by these facts, the MPEG initiated standardization process for a
new codec with consistent high quality coding of speech, music and mixed content
over broad range of bit rates, or other words, a single coding scheme which can
encode both speech and music signals without any degradation of quality. MPEG
standardization process with the working title of “MPEG-D Unified Speech and
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Audio Coding (USAC)” started in 2007. After issued Call for Proposals on USAC
as a new technology, a first reference model architecture (RM0) was developed
and presented in 2009 [38, 39] which already combined all advantages of state-
of-the-art speech and general audio coders. In the subsequent collaborative phase
of Fraunhofer Institute Erlangen, further enhancements were integrated into the
system from companies worldwide: VoiceAge Canada, Dolby Sweden, Philips,
Sony, Panasonic, Samsung, NTT DOCOMO Japan, Audio Research Labs USA,
and International Audio Laboratories Erlangen. The MPEG-D USAC standard was
finalized in early 2012. Main applications of the MPEG-D USAC are multimedia
downloads to mobile devices, digital radio, mobile TV, and audio books and in
general, applications dealing with a mixed content of speech and music signals
[36, 40, 41].

The MPEG-D USAC architecture combines improved/enhanced/refined coding
methods and algorithms of MPEG-4 HE-AAC v2 codec [22], and the speech
AMR-WB+ codec with Algebraic Code Excited Linear Prediction (ACELP) speech
compression technology [63, 65] by means of switching between the core coders of
two standards. High performance of USAC arises from the intelligent interaction
between two coding schemes controlled by a signal classification module. Two
coding schemes share common innovative technologies: a parametric enhanced
SBR (eSBR) compression technology and a parametric stereo coding based on
MPEG Surround technology [40, 41].

The USAC transform-based core coder supports a larger set of the oddly stacked
MDCT transform sizes. Specifically, additional transforms sizes N D 1024 and 512
complement the AAC N D 2048 and 256-sample data blocks, thus providing a
more suitable time-frequency decomposition for variety of signals [35, 36]. Further
flexibility is achieved by allowing 768-sample windowed data block. In this mode
all above mentioned transform sizes are reduced to 3

4
th of their original ones, i.e.,

N D 2048 is reduced to N D 1536 D 29 � 3, N D 1024 is reduced to N D 768 D
28 � 3, N D 512 is reduced to N D 384 D 27 � 3, and N D 256 is reduced to
N D 192 D 26 � 3.

In USAC transform-based core coder the MDCT filter bank is designed to
be more flexible [40, 41]. It is well known that the MDCT has a good energy
compaction property especially for harmonic tones with constant fundamental
frequencies. However, when the fundamental frequency is time-varying, typically
for voiced speech, the energy is spread over several spectral coefficients, and
the voiced speech portions are not represented accurately at low bit rates. This
fact leads to a loss of coding efficiency. In order to overcome this problem,
the USAC introduced a new filter bank, the so-called time-warped MDCT (TW-
MDCT) [33, 40]. By means of a continuous fundamental frequency estimation,
a time varying resampling (time warping) is applied locally within every audio
data block prior to the MDCT. The windowing functions have also need to
be adapted accordingly to preserve the perfect reconstruction property of the
MDCT. The resampling (time warping) ideally leads to a constant fundamental
frequency within audio data block, and thus the TW-MDCT filter bank can adapt
its spectral representation for a better energy compaction of voiced speech signals
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compared to the conventional MDCT. When the fundamental frequency in USAC
transform-based core coder is set to zero, the TW-MDCT becomes the conventional
MDCT [33].

Since USAC core codec is switching between the AAC transform-based and
linear prediction (LP) speech coder, a special attention was paid for a fast adaptation
to either speech, music, or mixed content without blocking effects, and a smooth
transition between the signal types without additional overhead leading to the design
of new transition windowing functions in transition regions for AAC coding mode
[39]. These “start” (transition from the MDCT domain to LP time domain) and
“stop” (transition from the LP time domain to MDCT domain) windowing functions
are similar to regular AAC transition ones, with either the KBD or sine windowing
function on the appropriate half side of AAC transformed signal. They consist of a
flat top region of 448 or 576 samples equal to 1, respectively, followed by the sine
windowing function of size 64 or 128 samples, respectively, and consecutive number
of zero samples. In particular, due to a requirement on constant framing, for the
transition from LP speech to transform-based coder the right side of the windowing
function is completed with 64 zero samples. Consequently, the transform block size
is enlarged from N D 2048 to N D 2304 D 28 � 9. For more details see transition
schemes shown in Figs. 2 and 3 of Neuendorf et al. [39].

The eSBR is derived from the standard SBR compression technology (see
Sect. 2.2.4) with many incorporated new functionalities and tools, such the harmonic
transposer, predictive vector coding, and inter-sub-band-sample temporal envelope
shaping [37, 40]. The standard SBR was initially designed as a 2W1 system, i.e.,
at first 1024 low frequency coefficients from the core coder are fed into 32-band
analysis QMF bank (N D 64). After reconstructing the high frequency content,
the signal is transformed back to the time domain using a 64-band synthesis QMF
bank (N D 128) resulting in 2048 time domain samples. For USAC, the standard
SBR was extended by two additional operating modes. For lower sampling rates the
first mode 4W1 uses 16-band analysis QMF bank (i.e., N D 32) instead of 32-band
analysis QMF bank. In the second mode the eSBR is capable of operating in an 8W3
mode. In this case, a 24-band analysis QMF bank (i.e., N D 48 D 24 � 3) is used
[40]. Complex exponential-modulated and real-valued cosine-modulated analysis
and synthesis QMF banks with a common parameter representing the number of
sub-bands which are used in the standard SBR, their general symmetry properties
in the frequency or time domain, and their efficient implementations are discussed
in detail in Chap. 7.

MPEG Surround and unified stereo coding in USAC codec employ complex
exponential-modulated QMF banks which are shared with the eSBR compres-
sion technology [40]. In order to improve the signal compaction property of
stereo (mid/side) coded channel spectra, the USAC provides a complex-valued
stereo prediction tool operating directly in the MDCT domain of encoder/decoder
[34]. Left and right channels of stereo signal represented in MDCT domain
are first converted to mid and side (sum and differences) spectra, and required
complex-valued down-mix spectrum is obtained via a real-to-imaginary transform



2.3 Proprietary Audio Compression Algorithms 25

(in USAC labeled as R2I), whose real part is the MDCT and imaginary part is the
corresponding modified discrete sine transform (MDST). R2I transform actually
constructs the modulated complex lapped transform (MCLT) [5] directly in the
frequency domain from given MDCT spectra. Exact and approximation conversion
methods to construct the MCLT directly in the frequency domain for arbitrary
symmetric windowing function are discussed in detail in Chap. 6.

The MPEG-D USAC is the first codec that merges the speech and audio coding
into unified form and it represents the new state-of-the-art coding technology for
speech, music, and mixed content signals at low bit rates. This makes USAC the
most efficient codec for all signal categories and moreover, it can be considered as
the 4th generation MPEG audio codec [40, 41].

2.3 Proprietary Audio Compression Algorithms

Besides the family of MPEG audio coding standards, the international companies
such as Sony, AT&T Bell Laboratories (Lucent Technologies), and Dolby Labs
developed their own audio compression algorithms which are their property. From
the viewpoint of adopted filter banks, processing methods, and specified transform
block sizes they are briefly reviewed in the following subsections.

2.3.1 Family of Sony R� ATRAC/SDDS/ATRAC2/ATRAC3/
ATRAC3plus and ATRAC Advanced Lossless
Digital Audio Compression Systems

The ATRAC (Adaptive TRansform Acoustics Coding) digital audio compression
system developed by Sony [53] was originally intended for a low-cost, battery-
powered consumer electronics equipment, its rewritable MiniDisc portable player
[54]. The ATRAC combines sub-band and transform coding methods to achieve
nearly CD quality audio coding. Using a cascaded two-stage QMF analysis bank,
the ATRAC encoding process first splits the input signal into three sub-bands: low-,
mid-, and high-frequency. Then, each sub-band is transformed into the frequency
domain by the signal adaptive oddly stacked MDCT analysis filter bank [8] with a
symmetric identical analysis and synthesis windowing functions [2]. The adaptive
switching of transform block sizes is employed based on the signal characteristics
in each sub-band. There are two block-size modes, the long mode and short mode.
The transform block size switching procedure works as follows. During stationary
(steady-state) periods, the high resolution MDCT analysis filter bank is attained
using long 512-sample data blocks, i.e., N D 512. During transient periods, short
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blocks are used, specifically, N D 256 for the high-frequency band, and N D 128

for the low- and mid-frequency bands to cancel pre-echo artifacts [6, 11]. The
ATRAC mapping structure can be found in [2]. It is noted that Sony during the
ATRAC development was active in MPEG-2 AAC research and standardization
process [14].

The ATRAC digital audio compression algorithm has been adopted as a core of
Sony’s digital cinematic sound system, the so-called Sony Dynamic Digital Sound
(SDDS). The SDDS integrates 8 independent ATRAC modules to carry information
for each left, right, left center, center, right center, subwoofer, left surround, and
right surround channels typically present in a modern theater [2, 6, 11].

ATRAC2 digital audio compression algorithm is an enhanced version of the
ATRAC containing two new coding tools: First, based on a time-frequency anal-
ysis in the encoding process, the ATRAC2 extracts psychoacoustically important
tone components from the input signal spectrum which are efficiently encoded
separately from less important spectral data. Secondly, ATRAC2 prevents pre-
echoes adaptively by using the so-called gain modification coding tool. ATRAC2
performs a signal analysis using combination of a polyphase quadrature filter (PQF)
bank and fixed-length MDCT with different analysis and synthesis windowing
functions. The PQF bank splits the input signal into four sub-bands. Each sub-band
is then transformed by the MDCT with a frequency resolution being twice that of
ATRAC, i.e., the block size is N D 1024. The ATRAC2 mapping structure can be
found in [2].

The structure of ATRAC3 is very similar to that of ATRAC2. ATRAC3 uses the
cascaded two-stage QMF bank, similarly as ATRAC, but the input signal is split
into four sub-bands. The main reason for employing the QMF banks instead of
PQF bank is to facilitate direct transformation between the bit stream of ATRAC
and that of ATRAC3 [2]. ATRAC3plus supports the multi-channel coding (max.
64) and provides twice the coding efficiency of ATRAC3 by using the following
technologies: The PQF divides stereo input signal, left and right channel, each is
split into 16 sub-bands which is four times the number of sub-bands in ATRAC3.
The MDCT transform size is twice that of ATRAC3, i.e., N D 2048. The
ATRAC3plus mapping structure can be found in [2].

Finally, for the lossless audio coding applications, Sony developed a scalable
lossy to lossless encoder/decoder, the ATRAC Advanced Lossless codec [2]. The
ATRAC Advanced Lossless codec consists of a base layer and an enhancement
layer. In the base layer, the ATRAC3 or ATRAC3plus encoder encodes the input
audio signal into the base-layer bit stream. Subsequently, the base-layer bit stream
is decoded by the deterministic ATRAC3 or ATRAC3plus decoder to restore a large
portion of the original audio signal. The residual signals which are the difference
signals between the original and restored signals of the deterministic decoder, are
encoded by the enhancement layer encoder. Both the base-layer and enhancement-
layer bit streams are transmitted in the lossless enhancement bit stream [2].
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2.3.2 Lucent Technologies PAC/EPAC/MPAC Audio Coders

Audio compression algorithm, the Perceptual Audio Coder (PAC), was originally
developed by AT&T Bell Laboratories [50, 51]. Historically, AT&T and Lucent
Technologies separated after the Multichannel PAC (MPAC) algorithm was eval-
uated for MPEG-2 NBC/AAC testing, and the PAC algorithm subsequently became
proprietary to Lucent Technologies. AT&T, meanwhile, has become active in
MPEG-2 AAC research and standardization process. The low-complexity profile
of AAC, MPEG-2 AAC-LC has become the AT&T coding standard. Lucent PAC
algorithm is flexible in that it supports monophonic, stereophonic, and multiple
channel modes [2, 6, 11].

The original PAC is an adaptive audio compression algorithm. For the time-to-
frequency transformation of an audio signal the PAC has adopted the signal adaptive
oddly stacked MDCT filter bank [50, 51]. A long data block of 2048 samples (N D
2048) is used during stationary segments. In the presence of transient segments, a
series of short 256-sample data blocks (N D 256) is used to eliminate pre-echo
effects. In contrast, for example, to the ATRAC system, the original PAC relies on
the MDCT alone rather than incorporating MDCT analysis into a hybrid filter bank
structure [6, 11].

One of the major enhancements in the Enhanced PAC (EPAC) algorithm
was improving the quality at lower bit rates of signal with transients [52]. In
EPAC, a signal adaptive switched filter bank is used which switches between
the high spectral resolution MDCT and a nonuniform (tree structured) wavelet
filter bank based on time-varying characteristics of the signal. Stationary audio
segments are processed by the MDCT, while transient segments by the wavelet
filter bank. Finally, the MPAC algorithm extends the capabilities of the stereo PAC
algorithm to the coding of multiple audio channels. A more comprehensive descrip-
tion of Lucent PAC/EPAC/MPAC audio compression algorithms can be found in
[2, 6, 11].

2.3.3 AC-2 (AC-2A), Dolby R� Digital (AC-3) and Digital Plus
(E-AC-3) Audio Compression Systems

Since the late 1980s up to now, the Dolby Labs developed three generations of
digital audio compression systems, specifically, a family of AC-2 (AC-2A), the
Dolby R� Digital (AC-3), and the Dolby R� Digital Plus or Enhanced AC-3 (E-AC-
3). Sony and AT&T Bell Laboratories (Lucent Technologies), the Dolby Labs also
actively participated in MPEG-2 AAC research and standardization process.
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2.3.3.1 AC-2 (AC-2A)

In 1991 Dolby Labs introduced the family of AC-2 (AC-2A) digital audio com-
pression algorithms [42, 43, 47, 48]. AC-2 (AC-2A) codecs were designed as
single-channel coding systems with complete channel independence when used
in two-channel configurations. Four AC-2 variants were available. The first two
variants were designed for low-complexity and low-delay applications, while the
other two ones for higher quality at the expense of increased complexity and delay.
In all AC-2 variants, the input audio signal was mapped into the frequency domain
by the evenly stacked MDCT filter bank [7] with a parametric KBD windowing
function [6, 11].

In variant 1, fixed 128-sample MDCT filter bank was used, i.e., N D 128. Variant
2 used the same filter bank, but it exploited the time redundancy across block pairs.
Variant 3 used fixed 512-sample filter bank, i.e., N D 512, to improve the coding
gain for stationary audio segments. Finally, variant 4 (the AC-2A algorithm) [42, 47]
employed an adaptive switched 512=128-sample MDCT filter bank (N D 512 or
128) to improve coding quality for transient signals.

2.3.3.2 Dolby R� Digital (AC-3)

Based on the design experience of AC-2 (AC-2A) core technology, the Dolby Labs
developed a digital audio compression system of next generation, the Dolby R�
Digital (AC-3) multichannel audio compression algorithm [44, 45, 48] designed
for digital media delivery to consumer electronic products. AC-3 is capable of
delivering one to 5:1 discrete audio channels for simultaneous presentation, and
it is the first multichannel surround sound codec offered to the broadcast market.
First released in 1991 for cinema industry needs and standardized in 1995 by
ATSC (Advanced Television Systems Committee) [45], the AC-3 went through
many stages of refinements, improvements, and fine-tuning. The resulting algorithm
is currently in use in a number of standard applications in consumer electronics
including the North American HDTV, the DVD-Video, Digital Video Broadcasting
(DVB), and Blue-ray Disc standards [1, 2, 6, 11]. The time-to-frequency transfor-
mation of audio blocks is realized as follows.

Compared to AC-2 (AC-2A), the AC-3 for the time/frequency transformation of
an audio data block has adopted the oddly stacked MDCT filter bank [8] with the
parametric KBD windowing function. In general, the AC-3 defines the analysis and
synthesis filter banks with a variable parameter ˛ [45]. Besides a long transform
being the MDCT, AC-3 defines additional two variants of cosine-modulated filter
banks called the first and second short transforms. They are actually real-valued
polyphase filter banks, where all channels are shifted versions of the same prototype
low-pass filter (windowing function), and these filter banks are derived directly from
the type-IV discrete cosine/sine transform (DCT-IV/DST-IV) kernels [1, 11].

Unlike the MPEG-2 AAC approach [14], the AC-3 maintains the perfect recon-
struction of filter banks while avoiding transitional blocks. In the AC-3 transform
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block-size switching procedure [45], a long block of N D 512 samples or two
short blocks each of N D 256 samples can be employed. The windowed long
block is transformed when the spectrum remains stationary, or varies only slowly
with time resulting in 256 unique nonzero frequency coefficients. During transients,
when the signal changes rapidly in time, shorter blocks are constructed to reduce
pre-echo effects by taking windowed long 512-sample block and splitting it into
two adjacent half segments each containing 256 samples. The first half of long
block is transformed separately from the second half of that block. Each half-
block produces 128 unique nonzero frequency coefficients. This is identical to the
number of frequency coefficients produced by a single long block, but with two
times improved temporal resolution. Frequency coefficients from those two half-
blocks are interleaved together on a coefficient-by-coefficient basis to form a single
audio block of 256 coefficients being processed identically.

In the current architecture of AC-3 [44, 49] blocks of frequency coefficients
are grouped into continuous frames. The AC-3 frame length is fixed at 1536
frequency coefficients per input channel corresponding to six 256-coefficients
blocks. Transformed blocks are then quantized and transmitted as the so-called
spectral envelope with the associated side information. A similar, mirror image
procedure is applied in the decoder during signal reconstruction. The current AC-3
encoder obtains better spectral power estimation in terms of improving the fidelity
through the power energy summation of the MDCT frequency coefficients and
frequency coefficients of the corresponding MDST [44, 49]. The MDCT as the real
part and MDST as the imaginary part compose a complex MCLT filter bank [5].

2.3.3.3 Dolby R� Digital Plus (E-AC-3)

The Dolby R� Digital Plus or E-AC-3 is essentially the advanced version of AC-
3 providing increased coding efficiency, flexibility, and wider range of supported
bit rates, expanded channel formats (up to 15:1 channels) and reproduction cir-
cumstances while preserving a high level of compatibility and interoperability with
existing AC-3 system [2, 44, 46, 49]. The E-AC-3 preserves frame structure of six
256-coefficients blocks while also allows for shorter frames composed of one, two,
or three frequency coefficients blocks. This feature enables to transport audio at data
rates in formats limiting the amount of data per frame, such as DVD.

The E-AC-3 utilizes new powerful coding tools such as an improved filter bank,
improved quantization, enhanced channel coupling with phase preservation, spectral
bandwidth extension, and transient pre-noise processing. The improved filter bank is
an adaptive hybrid transform (AHT) composed of two linear transforms connected
in cascade [49]. The first transform is identical to that of employed in AC-3:
the windowed long (MDCT) transform producing 256 unique nonzero frequency
coefficients. For frames containing audio signals which are stationary, a second
linear transform can optionally be applied by E-AC-3 encoder, and inverted by the
decoder. It is a non-windowed, non-overlapped type-II discrete cosine transform
(DCT-II). When the DCT-II is applied, six 256-coefficients blocks are converted to
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a single 1536-coefficients block thereby increasing the frequency resolution and
resulting in the significantly improved coding efficiency and perceptual coding
performance for stationary audio signals [49]. Enhanced channel coupling process
in the encoder and decoder requires the phase information for angle adjustment and
therefore, besides the MDCT the corresponding MDST, i.e., complex MCLT filter
bank, is also generated. The transient detector is similar but more sensitive to that
of employed in the standard AC-3 encoder. However, although the E-AC-3 in the
presence of a transient can be switched into AC-3 block switching mode, the E-AC-
3 decoder processes transient segments in a different way by the transient pre-noise
coding tool [49]. The E-AC-3 bit streams are similar in nature to AC-3 bit streams,
but are not backwards compatible, i.e., they are not decodable by AC-3 decoders.
Annex E of [46] specifies E-AC-3 the bit stream syntax for decoding process.

Excellent overviews of the current AC-3 and E-AC-3 codecs are presented in [1,
2, 44, 49]. In particular, in Chap. 6 the perfect reconstruction cosine/sine-modulated
filter banks used in the Dolby R� Digital (Plus) digital audio compression systems
are discussed in detail including their definitions, general properties in the time and
frequency domains, their efficient implementations, their matrix representations,
relationships between them, and the latest achieved research results.

2.4 Broadcasting/Speech/Data Communication Codecs

Digital Audio Broadcasting (DAB) is a digital radio standard which has been
developed in 1990s by the Eureka 147/DAB project [59]. The DAB has been
designed as a universal multimedia broadcast system with the aim to replace the
existing AM and FM audio broadcast services. The original DAB system is based on
the MPEG-1/2 layer II audio coding standard, where the input signal is transformed
from the time to frequency domain by a 32-band pseudo-QMF bank, i.e., N D 64

[12, 13]. The advanced DAB system (DAB+) [59] has adopted a newer audio coding
standard as a source coder, the MPEG-4 HE-AAC v2 [22, 23] being the combination
of MPEG-4 AAC, the SBR compression technology and Parametric Stereo coding
tool. Recall that the standard MPEG-4 HE-AAC v2 or aacPlus standard employs the
oddly stacked MDCT filter bank on block sizes N D 2048 (long block) or N D 256

(short block) with the sine or parametric KBD windowing functions. However, in
the DAB+ system the block sizes have been changed to N D 1920 or N D 240,
which are not powers of two. Actually both block sizes are composite lengths of
the form 2m � q, where q is an odd number. Specifically, 1920 D 27 � 15 and
240 D 24 � 15.

The MPEG-4 HE-AAC v2 as a source coder has been adopted by the Digital
Radio Mondiale (DRM), universal openly standardized digital broadcasting system
[58], as well as by the XM Satellite Radio broadcasting system [70] being one of
two satellite-based digital radio services (XM Satellite Radio and Sirius Satellite
Radio [66]) used in United States and Canada. In July 2008, XM Satellite Radio
and Sirius Satellite Radio merged forming Sirius XM Radio. Further, the MPEG-4
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HE-AAC v2 as the source coder has also been adopted by the extended AMR-WB+
speech coder [63, 65].

On the other hand, issued ITU-T G.722.1 [60, 68], ITU-T G.722.1C [68], G.719
[69], G.718 and G.729.1 [62, 64] speech codecs, 3GPP2 EVRC-WB [55] vocoder,
and ITU-T G.EV-VBR standard [61, 67] have adopted the oddly stacked MDCT
filter bank or equivalently, the MLT of the length N D 640 with the sine windowing
function [4]. Compared to ITU-T G.722.1, in the ITU-T G.722.1C speech codec the
transform size is doubled to N D 1280. Similarly, the block sizes are composite
integers, i.e., 640 D 27 � 5, and 1280 D 28 � 5.

Recently, filter bank multicarrier (FBMC) [56] and lapped-OFDM (Orthogonal
Frequency Division Multiplexing) [57] multicarrier transmission schemes for the
efficient modulation, transmission, and asynchronous access in future wireless
digital data communication systems such as the mobile telephony and cognitive
radio have been proposed. For the time-to-frequency transformation of an input
signal the approach in the FBMC scheme [56] is based on the complex MCLT filter
bank with the sine windowing function [5], whereas the approach in the lapped-
OFDM scheme [57] is based on the MLT [4]. In the performed simulations the
transform sizes have been set to N D 2M, where M D 256 [56, 57].

2.5 Open-Source and Patent/Royalty-Free Audio/Speech
Codecs

At present time, there exist several professional general purpose perceptual
transform-based audio/speech codecs developed by the Xiph.Org Foundation which
are completely open-source and patent/royalty-free distributed.

Perhaps the most famous is the Ogg Vorbis (or Vorbis I) multichannel audio
codec [77, 78] intended for the high-quality audio and music compression. For the
time-to-frequency transformation of an input audio signal, and vice versa, the Vorbis
codec has adopted the oddly stacked MDCT filter bank [8] with own originally
introduced the Vorbis windowing function [77, 78]. Based on signal characteristics,
the Vorbis codec employs the transform block-size switching procedure. A long
block of N D 2048 samples is used when the signal spectrum is stationary. During
transients, when the signal changes rapidly in time, short blocks of the size N D 512

are constructed to reduce pre-echo effects. In general, in the Vorbis codec the legal
block sizes to be allowed are also sizes being powers of two in range of 64–8192
samples [77].

Typically, the algorithmic delay in existing perceptual transform-based audio
codecs is equal to the transform block size. Constrained-Energy Lapped Trans-
form (CELT) audio codec [72, 73, 75, 76] provides high-quality coding, while
maintaining a very low delay. Thus, it is suitable for communication applications
where both high-quality and low delay are desired like the real-time interactive
teleconferencing, VoiceIP, and remote live stereo music performances across the



32 2 Audio Coding Standards, (Proprietary) Audio Compression Algorithms: : :

Internet [72]. In order to minimize algorithmic delay, the CELT combines the oddly
stacked MDCT filter bank [8] applied to short data blocks of size N D 256 with
a low overlap windowing function (the so-called power complementary windowing
function with reduced overlap). The windowing function with reduced overlap is
constructed from the basic 512-sample Vorbis windowing function [77, 78] by zero-
padding 64 values on each side, and inserting ones in the middle (128 samples) such
that the resulting windowing function still satisfies the power complementarity (see
configuration shown in Fig. 1 of Valin et al. [73] or in Fig. 3 of Valin et al. [75]). For
this windowing and overlapping configuration the data block size to be processed
is 256 samples with only 128 overlap and 64 look-ahead samples resulting in the
total algorithmic delay of 384 samples. To avoid pre-echo effects, after detecting
the transient the (long) data block is split into two smaller blocks and the MDCT
is applied to each smaller block. The obtained spectral coefficients of two smaller
MDCTs are interleaved and coded as if only one (long) MDCT was used. The last
version of CELT codec provides also an optional support for other sampling rates
as well as the block size of 128-sample blocks with 64 look-ahead samples [72]. In
general, the CELT originally supported all even block sizes from 64 to 512, although
powers of two were recommended and most CELT development was done using the
block size N D 256. The original stand-alone CELT codec has been integrated into
one layer of the OPUS codec [71, 74], and therefore it is important to note that this
is now obsolete [72].

The OPUS interactive speech and audio codec [71, 74] is intended for the
real-time interactive speech and music transmission over the Internet, and also
for storage and streaming applications. In order to achieve good compression of
both speech and music, the OPUS is a hybrid codec. One layer is based on linear
prediction coding methods (especially for speech coding), while the second layer is
based on the CELT compression algorithm (for music coding). Since OPUS codec
incorporates Skype’s SILK audio compression format, it is a modern standard for
wide-band voice applications such as Skype.

2.6 Summary

Perceptual transform-based audio coding schemes developed up to now including
the family of ISO/IEC MPEG audio coding standards, proprietary audio com-
pression algorithms, broadcasting/speech/data communication codecs, as well as
open-free, patent royalty-free audio/speech codecs have been briefly reviewed.
In discussion, the emphasis has been imposed particularly on the adopted near-
perfect QMF and perfect reconstruction cosine-modulated filter banks, processing
methods, and specified transform block sizes. One can see that the employed cosine-
modulated QMF banks (complex-valued or real-valued), and perfect reconstruction
cosine-modulated filter banks such as the MDCT, MDST, MLT, MCLT, and LD-
MDCT are applied to audio data blocks with various sizes being either a power
of two (32; 64; 128; 256; 512; 1024; 2048, 4096 and even 8192), or they are
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mixed-radix or composite lengths of the form 2m � q, where m > 0 and q is an odd
integer, specifically q D 3; 5; 9 and 15. Importantly, for a real-time implementation
of each employed cosine-modulated QMF bank and perfect reconstruction cosine-
modulated filter bank fast algorithm(s) are required.
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Chapter 3
MDCT/MDST, MLT, ELT, and MCLT Filter
Banks: Definitions, General Properties,
and Matrix Representations

3.1 Introduction

Multirate analysis/synthesis critically sampled, maximally decimated filter banks
involving near-perfect (pseudo) and perfect reconstruction quadrature mirror filter
(QMF) banks [75, 79], have received widespread attention in speech and audio sub-
band coding. In general, the analysis filter bank splits the input signal into a number
of sub-bands via the analysis filters, while the synthesis filter bank recombines the
sub-band signals via the synthesis filters to (approximately or exactly) reconstruct
the original signal in the overlapped part of adjacent data blocks. The theory and
design methods of critically sampled, maximally decimated filter banks are covered
in [79].

Among the QMF filter banks, the cosine/sine-modulated filter banks [1–14], [79]
and the cosine-modulated pseudo-QMF banks belonging to the class of modulated
filter banks [5, 6, 8, 14] have been studied extensively. Due to their attractive
features (simple structure, analysis and synthesis filters are of equal length, low
computational complexity), they have received a great interest in audio coding
applications. In fact, the cosine-modulated pseudo QMF and cosine/sine-modulated
filter banks with perfect reconstruction property are employed in the international
speech and audio coding standards and proprietary audio compression algorithms
[32, 38, 41]. The modulated filter banks achieving the perfect reconstruction
property can be obtained by cosine or sine modulation of a linear-phase prototype
filter or equivalently, of a windowing function, when certain constraints are imposed
on the prototype filter [6]. On the other hand, by properly choosing the phases
of modulation cosine/sine functions in a pseudo-QMF bank and assuming that the
length of analysis/synthesis filters is to be twice the number of sub-bands, whereby
analysis filters are time-reverse versions of the synthesis filters, the pseudo-QMF
bank will achieve the perfect reconstruction property [6, 63]. It is worthwhile here
to get into the reader attention for further inspiration the unified or generalized
forms of cosine-modulated filter banks [3, 4], a family of extended unique filter

© Springer International Publishing AG 2018
V. Britanak, K.R. Rao, Cosine-/Sine-Modulated Filter Banks,
DOI 10.1007/978-3-319-61080-1_3

39



40 3 MDCT/MDST, MLT, ELT, and MCLT Filter Banks: Definitions, General. . .

banks containing all known M-band modulated filter banks [9, 10], as well as a
universal approach to the description of modulated filter banks, specifically, the
real-valued cosine- and sine-based versions defined via the generalized discrete
cosine transform (GDCT) and the corresponding generalized discrete sine transform
(GDST) [1, 2].

The oddly and evenly stacked modified discrete cosine transform (MDCT) and
the corresponding modified discrete sine transform (MDST), the modulated lapped
transform (MLT), the extended lapped transforms (ELTs), and their biorthogonal
versions are real-valued cosine/sine-modulated filter banks satisfying the perfect
reconstruction property. The modulated complex lapped transform (MCLT) is the
complex-valued filter bank whose real part is the MLT or oddly stacked MDCT,
and the imaginary part is the oddly stacked MDST. All these filter banks, except the
evenly stacked MDCT/MDST, belong to the class of lapped transforms, and can also
be viewed as block transforms, in which the basis functions overlap the adjacent
blocks by 50%. In this chapter, definitions, general mathematical properties, and
matrix representations of the MDCT/MDST, MLT, ELT, and MCLT filter banks are
presented. Principally, for each analysis/synthesis filter bank the chapter presents:

• Its original derivation and definitions in the form of block transforms.
• General and special mathematical properties of forward/backward block

transforms both in the time and frequency domains including relationships
between/among them.

• (Block) matrix representations, which are powerful and rigorous mathematical
tools to investigate structure, properties, and efficient implementations, generally,
of any filter bank.

In order to obtain the perfect reconstruction property of an analysis/synthesis filter
bank, the necessary and sufficient conditions imposed on the analysis and synthesis
windowing functions play an important role. Therefore, additionally the following
are derived and/or discussed in detail:

• Windowing procedure and perfect reconstruction conditions in the case of
identical analysis and synthesis windowing functions.

• Design of a windowing function including definitions of commonly used win-
dowing functions in audio coding applications.

• Biorthogonal conditions for perfect reconstruction in the case of nonidentical
analysis and synthesis windowing functions.

• Adaptive switching of transform block sizes and windowing functions.
• General perfect reconstruction conditions for the ELT filter bank with multiple

overlapping factor both for the orthogonal and biorthogonal cases.

Thus, this chapter provides the complete information for designing and constructing
the cosine/sine-modulated analysis/synthesis filter bank satisfying perfect recon-
struction for audio coding applications.
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3.2 MDCT and MDST Filter Banks

The MDCT and corresponding MDST are perfect reconstruction cosine/sine-
modulated analysis/synthesis filter banks based on the concept of time domain
aliasing cancellation (TDAC). Therefore, they are frequently called the TDAC
transforms, or alternatively, the critically sampled single-sideband (SSB) anal-
ysis/synthesis filter banks providing perfect reconstruction of a signal from a
set of critically sampled analysis signals by a weighted overlap/add method
[18, 24].

Princen, Bradley, and Johnson defined two types of the MDCT, specifically for an
evenly stacked [17, 18] and for an oddly stacked analysis/synthesis system [23, 24].
Both systems are very similar. The main difference lies in transform operations. In
general, the MDCT/MDST for the evenly stacked system is defined by a transform
kernel

cos
h�
2

m � !k .n C n0/
i
; !k D 2�k

N
; (3.1)

while the MDCT for the oddly stacked system is defined by a transform kernel

cos Œ!k .n C n0/� ; !k D 2�

N

�
k C 1

2

�
; (3.2)

where N is the length of a data block, n is the time index, k is the frequency index, m
is the index of the data block, and !k denotes the center frequencies of channels. For
both systems cosine modulation functions in (3.1) and (3.2) include a time phase
factor n0 having a value of N

4
C 1

2
which is necessary for perfect reconstruction.

The terms “evenly” and “oddly” stacked systems come simply from the fact that
the center frequencies !k of the system (3.1) indicate the even channel stacking
arrangement, while the center frequencies !k of the system (3.2) indicate the odd
channel stacking arrangement.

The evenly and oddly stacked MDCT/MDST filter banks can also be viewed
as block transforms, in which the basis functions overlap the adjacent data blocks
by 50%. The oddly stacked system has some advantages compared with the
evenly stacked system. It is uniform, i.e., it has equally spaced bands of equal
bandwidth, and its computational structure though more complex, requires the
application of the MDCT only, while the evenly stacked system is nonuniform
(it has half width bands at normalized frequencies of 0 and �), and moreover,
alternate applications of the MDCT and corresponding MDST are required. For
these reasons, the oddly stacked system is preferred in the audio coding applications
[23, 24].
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3.2.1 Evenly Stacked MDCT/MDST Filter Banks

The evenly stacked, critically sampled SSB analysis filter bank has been originally
derived as a block transform operation in the following form [17, 18]

X
.m/

k D .�1/mk cos
��m

2

� P�1X

rD0
x
.m/

mMCr hP�1�r cos

�
2�k

N
.r C n0/

	

C .�1/mk sin
��m

2

� P�1X

rD0
x
.m/

mMCr hP�1�r sin

�
2�k

N
.r C n0/

	
;

k D 0; 1; : : : ;N � 1; M D N

2
;

N

2
� P � N; (3.3)

where fX
.m/

k g are channel signals, and fx
.m/

k g are samples of the mth data block.
fhP�1�rg is a time reversed finite impulse response filter of the length P, or the
analysis windowing function. The value of P in (3.3) indicates that an overlap
occurs between adjacent data blocks (P D N implies the maximum overlap). Cosine
and sine modulation functions cos

�
2�k
N .r C n0/

�
and sin

�
2�k
N .r C n0/

�
in (3.3) are

referred to as the evenly stacked MDCT and MDST transform kernels, respectively.
It can be seen that for a given value of the block index m only one of the terms in
(3.3) is nonzero. When m is even, the channel signals are defined by the MDCT
of windowed data sequence and modified by .�1/mk. When m is odd, the channel
signals are defined by the MDST of windowed data sequence and modified by
.�1/mk [18].

The evenly stacked, critically sampled SSB synthesis filter bank has been
originally derived as a block transform operation in the following form [17, 18]

Ox.m/r D cos
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� 1
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rD0
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.m/

k sin

�
2�k

N
.r C n0/

	
;

r D 0; 1; : : : ;N � 1; (3.4)

where fOx.m/r g are time domain aliased samples of the mth data block. From (3.4) and
with respect to (3.5), one can see that when m is even, then fOx.m/r g is the windowed
backward MDCT of the modified channel signals, while when m is odd, it is the
windowed backward MDST of the modified channel signals.

After applying the analysis MDCT/MDST filter bank followed by the synthesis
MDCT/MDST filter bank, the time domain aliasing distortion is introduced.
Assuming that the perfect reconstruction conditions hold (see Sect. 3.2.4), then for
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the phase factor n0 D N
4

C 1
2
, the time domain aliasing is canceled and the original

data sequence fx
.m/

r g is recovered (i.e., the TDAC is achieved) from two adjacent
time domain aliased data sequences fOx.m/r g and fOx.mC1/

r g by the so-called windowing
and overlap/add procedure as [18]

x
.mC1/

r D x
.m/

N
2 Cr

D g N
2 Cr Ox.m/N

2 Cr
C gr Ox.mC1/

r ; r D 0; 1; : : : ;
N

2
� 1; (3.5)

where fgrg is the synthesis windowing function. For simplicity, in applications the
modifications by .�1/mk in the analysis and synthesis MDCT and MDST filter banks
are removed. More technical details about the evenly stacked system can be found
in [18].

The windowing procedure and perfect reconstruction conditions imposed on the
analysis and synthesis windowing functions fhrg and fgrg are discussed in detail in
Sect. 3.2.4. The design of windowing functions is discussed in Sect. 3.2.5.

3.2.1.1 MDCT and MDST Block Transforms

In general, when investigating general mathematical properties of the analysis and
synthesis filter banks both in time and frequency domains, or when developing
fast computational structures for their efficient implementation, they are frequently
considered as the block transforms applied to a single windowed data block.
Consequently, without loss of generality the superscript m denoting the data block
index is omitted. In the following the evenly stacked forward and backward MDCT
and MDST block transforms are defined, and their basic symmetry properties both
in time and frequency domains are investigated.

Let fxng; n D 0; 1; : : : ;N�1 represent a windowed input data sequence, and N is
assumed to be an even integer. Based on (3.3) and (3.4), the forward and backward
MDCT block transforms are, respectively, defined as [18]
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(3.6)
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while the corresponding forward and backward MDST block transforms are,
respectively, defined as [18]
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OxE�MDST
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; n D 0; 1; : : : ;N � 1; (3.9)

where fc
E

k g/fs
E

k g are MDCT/MDST transform coefficients. The notations OxE�MDCT

n in
(3.7) and OxE�MDST

n in (3.9) emphasize the fact that the data sequences recovered by
appropriate backward transforms do not correspond to the original data sequence.
In the context of TDAC analysis/synthesis filter banks the distorted sequences
fOxE�MDCT

n g and fOxE�MDST

n g are said to be time domain aliased [18].
We recall that in evenly stacked system alternate MDCT/MDST computations

are required. The MDCT can be recognized as the transform operation when the
time index m of a data block is even, while the MDST can be recognized as the
transform operation when the time index m of a data block is odd.

3.2.1.2 Symmetry Properties of the MDCT and MDST Block Transforms

In order to investigate the symmetry properties of evenly stacked MDCT and MDST
block transforms, let us substitute N � k for k into (3.6) and we get
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The expression .2n C 1C N
2
/ in cos
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under the sum of (3.10) may
be odd or even depending on a value of N

2
being even or odd, respectively. Thus, we

have
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(3.11)

implying that the MDCT coefficients have either the odd anti-symmetry property
when N

2
is even, or the odd symmetry property when N

2
is odd. The odd symmetric

and anti-symmetric sequences are defined in Appendix G.1.
On the other hand, substituting N � k for k into (3.8), we get
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: (3.12)
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Similarly, the expression .2n C 1 C N
2
/ in cos

�
�.2n C 1C N

2
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under the sum of
(3.12) may be odd or even depending on a value of N

2
being even or odd, respectively.

Thus, we have

s
E

N�k D

8
<̂

:̂

s
E

k ; if .2n C 1C N
2
/ is odd; k D 1; 2; : : : ; N

2
� 1;

� s
E

k ; if .2n C 1C N
2
/ is even; k D 1; 2; : : : ; N

2
� 1;

(3.13)

implying that the MDST coefficients have either the odd symmetry property when
N
2

is even, or the odd anti-symmetry property when N
2

is odd. Knowing a priori that

c
E

N
2

D s
E

0 D 0, then from (3.11) and (3.13) it follows that only N
2

C 1 MDCT/MDST

coefficients are unique, whereby N
2

MDCT/MDST coefficients are nonzero.

The time domain aliased data sequences fOxE�MDCT

n g and fOxE�MDST

n g recovered by
the backward MDCT/MDST have the following local symmetries

OxE�MDCT
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The symmetry properties (3.14) and (3.15) can be simply verified by proper
substitution into (3.7) and (3.9). It can be seen that fOxE�MDCT

n g exhibits the even
symmetries both in the first and second half, whereas fOxE�MDST

n g exhibits the odd
symmetries both in the first and second half. From an algorithmic point of view
this means that it is sufficient to compute only the time domain aliased samples
fOxE�MDCT

n g, fOxE�MDCT

N
2 Cn

g and fOxE�MDST

n g, fOxE�MDST

N
2 Cn

g for n D 0; 1; : : : ; N
4

� 1 by the

backward MDCT/MDST. Note that N must be integer divisible by 4.
For a correct matrix representation taking into account properties (3.11) and

(3.13), the evenly stacked MDCT and MDST block transforms are redefined by
introducing scaling factors �k and �k into (3.7) and (3.9), respectively. The forward
and backward MDCT block transforms are, respectively, redefined as [15]
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where �0 D 1, and �k D 2 for k D 1; 2; : : : ; N
2

� 1. The corresponding forward and
backward MDST block transforms are, respectively, redefined as [15]
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where � N
2

D 1, and �k D 2 for k D 1; 2; : : : ; N
2

� 1.

3.2.1.3 Relation Between the MDCT and MDST Block Transforms

In order to obtain the relation between the evenly stacked MDCT and MDST block
transforms, let us substitute N

2
� k for k into (3.16), and we get [16, 19]
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Equation (3.20) implies that the MDST coefficients fs
E

k g can be simply obtained
from the MDCT ones only by sign changes applied to odd-indexed samples in the
original data sequence, and after the MDCT computation, the MDST coefficients
are in reverse order. The relation between the MDCT and MDST block transforms
results in a simple method to compute alternating MDCT/MDST using only one fast
algorithm for the MDCT computation.

Similarly, substituting N
2

� k for k into (3.18), we get
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Note that for correct relation between the MDCT and MDST block transforms in
(3.20) and (3.21) N must be integer divisible by 4.
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3.2.1.4 Relation Between the MDCT/MDST and DFT

The evenly stacked N-point MDCT and MDST block transforms are closely
related to N-point complex DFT, or its fast implementation, FFT. The forward
and backward MDCT/MDST transform kernels can be expressed as a DFT with
appropriate pre- and post-twiddle (rotation) operations. Exploiting the fact that
FFT operates on an array of complex components, by packing one windowed data
block in the real part of the FFT and the other in the imaginary part, two adjacent
overlapped data blocks can be transformed simultaneously as [16, 17]
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N�1X

nD0
.xn C i xnC N

2
/ e�i 2�nk

N ; i D p�1; k D 0; 1; : : : ;N � 1:
(3.22)

After the FFT computation and post-twiddle operations, the MDCT and MDST
coefficients are given by

c
E

k D �1
2
.<e ffN�kg � <e ffkg/; c

E

0 D f0;

s
E

k D 1

2
.<e ffkg C <e ffN�kg/; s

E

0 D 0; k D 1; : : : ;
N

2
: (3.23)

Equations (3.22) and (3.23) immediately also define an algorithm for the implemen-
tation of simultaneous computation of the MDCT and MDST block transforms via
the complex FFT.

3.2.1.5 Matrix Representations of the MDCT and MDST Block
Transforms

An alternative way to represent the MDCT and MDST block transforms is in
matrix-vector form. Matrix representations are very powerful tools to analyze
MDCT/MDST characteristics of the single windowed data block both in time and
frequency domains. In particular, on the basis of matrix representations the concept
of TDAC is better understood.

Consider the evenly stacked MDCT and MDST block transforms defined by
(3.16) and (3.18), respectively. The symmetry properties (3.11) and (3.13) imply
that only N

2
rows of MDCT and MDST matrices are linear independent. Therefore,
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N
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N
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vectors, and xT , Œc
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E
�T their corresponding column representations. Then
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Eqs. (3.16) and (3.18) for the forward MDCT and MDST block transforms can be,
respectively, written in the equivalent matrix-vector form as
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E
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N
2 �N

xT ; Œs
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�T D S

E

N
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xT ; (3.24)

while Eqs. (3.17) and (3.19) for the backward MDCT and MDST block transforms
without the normalization factor 1

N can be, respectively, written as
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For the products of MDCT/MDST matrices and their transposed versions the
following relations hold [15, 19]
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(3.28)

where 0 is null matrix, I N
2

is the identity matrix, and J N
2

is the opposite diagonal

identity matrix, all of order N
2

. It is clear that the MDCT and MDST matrices in
(3.26)–(3.28) have the same full rank (see Appendix A.1), i.e.,

rank .C
E

N
2 �N

/ D rank .S
E

N
2 �N

/ D N

2
:

Let us denote their transposed matrices by ŒC
E
�C and ŒS

E
�C. Using the relations

(3.26)–(3.28) it can be verified that they satisfy Moore–Penrose conditions, and
therefore, they are called to be generalized inverses or pseudoinverses of their
corresponding matrices [15] (generalized inverse or pseudoinverse matrix is defined
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in Appendix A.1). Hence, the matrices representing the forward and backward
MDCT/MDST block transforms are actually pseudoinverse pairs.

The pseudoinverse matrix and its properties provide an elegant mathematical tool
to characterize the MDCT/MDST block transforms in a matrix representation. There
is the following interpretation of equations in (3.25). If we consider the forward
MDCT/MDST in matrix representation given by (3.24) to be systems of linear
equations, then the time domain aliased data sequences fOxE�MDCTg and fOxE�MDSTg
in (3.25) for given MDCT/MDST coefficients can be interpreted as least squares
solutions, i.e., solutions with minimum norm [76–78]. Moreover, we can derive
the time domain aliased data sequences for the backward MDCT and MDST block
transforms explicitly in terms of the original data samples [15]. Indeed, substituting
Eq. (3.24) into (3.25), i.e., performing the forward and backward MDCT/MDST
block transforms and using relations (3.27) and (3.28) we have
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From Eqs. (3.29) and (3.30) it follows that the time domain aliased data samples
fOxE�MDCT

n g can be derived explicitly in terms of the original data samples fxng as
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(3.31)

while the time domain aliased data sequence fOxE�MDST

n g can be derived explicitly as
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(3.32)

In Eqs. (3.31) and (3.32) we can clearly observe the recovered time domain aliased
data sequences including their forms both in terms of the original data samples and
their symmetry properties given by (3.14) and (3.15). With Eqs. (3.31) and (3.32)
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in mind we can compute exactly the results of applying the forward and backward
MDCT and MDST block transforms.

Finally, consider the relations (3.20) and (3.21) between the evenly stacked
MDCT and MDST block transforms. Then, they can be represented in the matrix
products, respectively, as
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4 J N

2
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E

N
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DN ; (3.33)

where JN is the opposite diagonal identity matrix, and DN D diag f1;�1; 1; : : : ;�1g
is the diagonal odd sign changing diagonal matrix, both of order N.

3.2.2 Oddly Stacked MDCT Filter Bank

The development of oddly stacked system follows closely that of the evenly stacked
system. The oddly stacked, critically sampled SSB analysis filter bank based on
TDAC has been originally derived in the form of a block transform operation as
[23, 24]
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;

k D 0; 1; : : : ;N � 1; (3.34)

where fX
.m/

k g are channel signals, and fx
.m/

k g are samples of the mth data block.
fhN�1�rg is a time reversed low pass prototype filter of the length N, or
equivalently, the analysis windowing function. The cosine modulation function
cos

�
2�
N .k C 1

2
/.r C n0/

�
under the sum of (3.34) is referred to as the oddly stacked

MDCT kernel. From (3.34) it can be seen that the channel signals are defined by the
MDCT of windowed sequence and modified by cos.� mk/. Compared to the evenly
stacked system requiring the alternate applications of the MDCT and corresponding
MDST, the oddly stacked system requires application of the MDCT only.

The oddly stacked, critically sampled SSB synthesis filter bank has been
originally derived as a block transform operation in the following form [24]

Ox.m/r D 2

N

N�1X

kD0
cos.� mk/ X

.m/

k cos

�
2�

N

�
k C 1

2

�
.rCn0/

	
; r D 0; 1; : : : ;N�1;

(3.35)

where fOx.m/r g are time domain aliased samples of the mth data block. From (3.35) and
with respect to (3.5), the data sequence fOx.m/r g is actually the windowed backward
MDCT of the modified channel signals. The modifications by cos.� mk/ in (3.34)
and (3.35) can usually be ignored since they result in odd channels being inverted
in frequency.
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Similarly, after applying the analysis MDCT filter bank followed by the synthesis
MDCT filter bank the time domain aliasing distortion is introduced. However, if the
perfect reconstruction conditions hold (see Sect. 3.2.4), then for the phase factor
n0 D N

4
C 1

2
, the time domain aliasing is canceled, and the original data sequence

fx
.m/

r g is recovered from two adjacent time domain aliased data sequences fOx.m/r g
and fOx.mC1/

r g by the windowing and overlap/add procedure defined by (3.5). More
technical details about the oddly stacked system can be found in [24].

Similarly as for the evenly stacked system, the windowing procedure and
perfect reconstruction conditions imposed on the analysis and synthesis windowing
functions fhrg and fgrg are discussed in detail in Sect. 3.2.4, while the design of
windowing functions is discussed in Sect. 3.2.5.
Note 1: Based of the SSB DFT filter bank [75], the oddly stacked, critically sampled
SSB analysis and synthesis filter banks can be derived, respectively, in alternative
forms as [22]

X
.m/

k D .�1/mk 2 <e

(
N�1X

rD0
x
.m/

m N
2 Cr

hN�1�r e�i 2�N .kC 1
2 /.rCn0/

)

; i D p�1;

k D 0; 1; : : : ;N � 1; (3.36)

and

Ox.m/r D gr
1

N
<e

(
N�1X

kD0
.�1/mk X

.m/

k ei 2�N .kC 1
2 /.rCn0/

)

; r D 0; 1; : : : ;N � 1:

(3.37)

Rearranging Eq. (3.36) and omitting factor .�1/mk compensated in the synthesis
filter bank we get [22]

X
.m/

k D 2 <e

(

e�i 2�N .kC 1
2 /.n0� 1

2 /

N�1X

rD0
x
.m/

m N
2 Cr

hN�1�r e�i 2�N .kC 1
2 /.rC 1

2 /

)

;

k D 0; 1; : : : ;N � 1: (3.38)

The transform kernel under the sum on the right-hand side of (3.38) is recognized
as the odd-time odd-frequency DFT (O2DFT). The definition of O2DFT and its
properties are presented in Appendix B.1.

3.2.2.1 MDCT and MDST Block Transforms

Since the oddly stacked MDCT is preferred in audio coding applications, the
forward and backward MDCT block transforms are defined and their properties
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in the frequency and time domains are investigated in more detail. Additionally,
the corresponding forward and backward MDST block transforms are defined and
similarly, their properties are investigated. Without loss of generality the superscript
m denoting the data block index is omitted.

Let fxng; n D 0; 1; : : : ;N�1 represent a windowed input data sequence before its
transformation, and N is assumed to be an even integer. Based on (3.34) and (3.35),
the forward and backward MDCT block transforms are, respectively, defined as [24]

c
O

k D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; k D 0; 1; : : : ;N � 1;

(3.39)

and

OxO�MDCT

n D 4

N

N�1X

kD0
c

O

k cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; n D 0; 1; : : : ;N � 1:

(3.40)

The corresponding forward and backward MDST block transforms are, respec-
tively, defined as [21]

s
O

k D
N�1X

nD0
xn sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; k D 0; 1; : : : ;N � 1;

(3.41)

and

OxO�MDST

n D 4

N

N
2 �1X

kD0
s

O

k sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; n D 0; 1; : : : ;N � 1;

(3.42)

where fc
O

k g/fs
O

k g are MDCT/MDST coefficients, and fOxO�MDCT

n g/fOxO�MDST

n g are time
domain aliased data sequences recovered by the backward MDCT/MDST. The data
sequences fOxO�MDCT

n g in (3.40) and fOxO�MDST

n g in (3.42) recovered by appropriate
backward transforms do not correspond to the original data sequence. In the context
of TDAC analysis/synthesis filter banks the distorted sequences fOxO�MDCT

n g and
fOxO�MDST

n g are said to be time domain aliased.
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3.2.2.2 Symmetry Properties of the MDCT and MDST Block Transforms

In order to investigate the symmetry properties of oddly stacked MDCT and MDST
block transforms, let us substitute N � k � 1 for k into (3.39), and we get

c
O

N�k�1 D
N�1X

nD0
xn cos

�
�

�
2n C 1C N

2

�	
cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;N � 1: (3.43)

The expression .2n C 1C N
2
/ in cos

�
�.2n C 1C N

2
/
�

under the sum of (3.43) may
be odd or even depending on a value of N

2
being even or odd, respectively. Thus, we

have

c
O

N�k�1 D

8
<̂

:̂

� c
O

k ; if .2n C 1C N
2
/ is odd; k D 0; 1; : : : ; N

2
� 1;

c
O

k ; if .2n C 1C N
2
/ is even; k D 0; 1; : : : ; N

2
� 1;

(3.44)

implying that the MDCT coefficients have either the even anti-symmetry property
when N

2
is even, or the even symmetry property when N

2
is odd. The even symmetric

and anti-symmetric sequences are defined in Appendix G.1.
On the other hand, substituting N � k � 1 for k into (3.41), we get

s
O

N�k�1 D �
N�1X

nD0
xn cos

�
�

�
2n C 1C N

2

�	
sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;N � 1: (3.45)

Similarly, the expression .2n C 1 C N
2
/ in cos

�
�.2n C 1C N

2
/
�

under the sum of
(3.45) may be odd or even depending on a value of N

2
being even or odd, respectively.

Thus, we have

s
O

N�k�1 D

8
<̂

:̂

s
O

k ; if .2n C 1C N
2
/ is odd; k D 0; 1; : : : ; N

2
� 1;

� s
O

k ; if .2n C 1C N
2
/ is even; k D 0; 1; : : : ; N

2
� 1;

(3.46)

implying that the MDST coefficients have either the even symmetry property when
N
2

is even, or the even anti-symmetry property when N
2

is odd. From (3.44) and
(3.46) it follows that only N

2
MDCT/MDST coefficients are unique.

The time domain aliased data sequences fOxO�MDCT

n g and fOxO�MDST

n g recovered by
the backward MDCT/MDST have the following local symmetries

OxO�MDCT

n D � OxO�MDCT

N
2 �1�n

; OxO�MDCT

N
2 Cn

D OxO�MDCT

N�1�n ; (3.47)
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OxO�MDST

n D OxO�MDST

N
2 �1�n

; OxO�MDST

N
2 Cn

D � OxO�MDST

N�1�n ; n D 0; 1; : : : ;
N

4
� 1:

(3.48)

The symmetry properties (3.47) and (3.48) can simply be verified by proper
substitution into Eqs. (3.40) and (3.42). It can be seen that fOxO�MDCT

n g exhibits
odd/even symmetries in the first/second half, whereas fOxO�MDST

n g exhibits even/odd
symmetries in the first/second half. From an algorithmic point of view this means
that it is sufficient to compute only the time domain aliased samples fOxO�MDCT

n g,
fOxO�MDST

N
2 Cn

g and fOxO�MDST

n g, fOxO�MDST

N
2 Cn

g for n D 0; 1; : : : ; N
4

� 1, by the backward

MDCT/MDST. Note that N must be integer divisible by 4.
Exploiting the symmetry properties (3.44) and (3.46), the oddly stacked forward

and backward MDCT block transforms are, respectively, expressed as [20]

c
O

k D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1;

(3.49)

and

OxO�MDCT

n D 4

N

N
2 �1X

kD0
c

O

k cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; n D 0; 1; : : : ;N�1;

(3.50)

while the oddly stacked forward and backward MDST block transforms are,
respectively, expressed as [20]

s
O

k D
N�1X

nD0
xn sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1;

(3.51)

and

OxO�MDST

n D 4

N

N
2 �1X

kD0
s

O

k cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; n D 0; 1; : : : ;N�1:

(3.52)

It is noted that the normalization factor 4
N in the backward MDCT and MDST

defined by (3.50) and (3.52), respectively, is very frequently uniformly distributed
between the forward and backward MDCT/MDST block transforms in the form
of
q

4
N .
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3.2.2.3 Periodicity Properties of the MDCT/MDST Transform Kernels

Periodic and anti-periodic data sequences are defined in Appendix G.2. Denoting
the elements of oddly stacked MDCT and MDST kernels in (3.49) and (3.51),
respectively, as [20]

t
.c/

k;n D cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

t
.s/

k;n D sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; (3.53)

and substituting n C N, and then n C 2N for n into (3.53) we obtain

t
.c/

k;n D � t
.c/

k;nCN ; t
.c/

k;n D t
.c/

k;nC2N ;

t
.s/

k;n D � t
.s/

k;nCN ; t
.s/

k;n D t
.s/

k;nC2N ; 8 k: (3.54)

Equation (3.54) implies that the MDCT and MDST transform kernels are anti-
periodic sequences with period N, and periodic sequences with period 2N.

3.2.2.4 Symmetry Properties of the MDCT/MDST Basis Vectors

For a given N, consider the MDCT and MDST transform kernels given by (3.53).
One can observe that the MDCT and MDST basis vectors exhibit the following local
symmetries [20]:

t
.c/

k; N
2 �1�n

D � t
.c/

k;n; t
.c/

k; N
2 Cn

D t
.c/

k;N�1�n;

t
.s/

k; N
2 �1�n

D t
.s/

k;n; t
.s/

k; N
2 Cn

D � t
.s/

k;N�1�n; 8 k; n D 0; 1; : : : ;
N

4
� 1:
(3.55)

The symmetry properties of the MDCT and MDST basis vectors (3.55) can be
simply verified by proper substitution into Eq. (3.53). Note that they are quite similar
to those of the time domain aliased data sequences fOxO�MDCT

n g and fOxO�MDST

n g given
by (3.47) and (3.48), respectively.

3.2.2.5 Special Properties of the MDCT/MDST Block Transforms

Studies of the MDCT block transform and its implications to audio coding and
error concealment have been presented in [27–29]. In these, characteristics of the
MDCT of a single data block both in time and frequency domains are analyzed
(symmetry and non-orthogonal properties, energy-compaction capability, and the
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concept of TDAC), and their impact on audio coding performance are discussed. In
particular, based on Fourier frequency analysis the authors formulate conditions in
which MDCT coefficients become zero even with nonzero time domain samples in
the single data block. Also, conditions are derived in which the original time domain
samples can be perfectly reconstructed by performing forward and backward MDCT
block transforms without even applying an overlap/add procedure. These conditions
constitute special or the so-called peculiar properties of the MDCT block transform.

Claim 1 If the input data sequence fxng exhibits a local symmetry such that

xn D x N
2 �1�n; x N

2 Cn D � xN�1�n; n D 0; 1; : : : ;
N

4
� 1; (3.56)

then the MDCT coefficients are degenerated to zero, i.e., c
O

k D 0 for k D
0; 1; : : : ; N

2
� 1.

In order to prove this property, let us split the forward N-point MDCT block
transform given by (3.49) into two sums as
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;

and substituting N
2

� 1 � n for n into both sums we get
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2n C 1 � N

2

�
.2k C 1/

	
: (3.57)
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Now, the special property stated by Claim 1 immediately follows from Eq. (3.57).
The property also illustrates that the MDCT block transform does not fulfill
Parseval’s theorem [29]. Note that the N-point MDCT block transform has been
decomposed into two N

4
-point MDCT block transforms.

Claim 2 If the input data sequence fxng exhibits a local symmetry such that

xn D � x N
2 �1�n; x N

2 Cn D xN�1�n; n D 0; 1; : : : ;
N

4
� 1; (3.58)

then by the forward and backward MDCT block transforms, the original input
data sequence will be perfectly reconstructed without the need for an overlap/add
procedure, i.e., OxO�MDCT

n D xn for n D 0; 1; : : : ;N � 1.
This property immediately follows from (3.47) and (3.57). The properties stated

by Claims 1 and 2 are very special theoretical cases which rarely occur in real audio
coding applications, especially after the proper windowing operation. Nevertheless,
in both cases the time domain aliased samples can still be perfectly reconstructed
by the overlap/add procedure. However, based on Claim 1 if the input signal is
close to (3.56) then the MDCT spectrum will show an unwanted and unrecoverable
behavior. For completeness, additional properties are presented in the following text
as partial cases of Claim 2.

Claim 3 If the input data sequence fxng exhibits a local symmetry such that

xn D x N
2 �1�n; x N

2 Cn D xN�1�n; n D 0; 1; : : : ;
N

4
� 1; (3.59)

then after applying the forward and backward MDCT block transforms, the first
half of the recovered data sequence will be equal to zero, i.e., OxO�MDCT

n D 0, n D
0; 1; : : : ; N

2
� 1, and the second half of the original data sequence fx N

2 Cng will be

perfectly reconstructed without an overlap/add procedure, i.e., x N
2 Cn D OxO�MDCT

N
2 Cn

,

n D 0; 1; : : : ; N
2

� 1.

Claim 4 If the input data sequence fxng exhibits a local symmetry such that

xn D � x N
2 �1�n; x N

2 Cn D � xN�1�n; n D 0; 1; : : : ;
N

4
� 1; (3.60)

then after applying the forward and backward MDCT block transforms, the first half
of the original input data sequence fxng will be perfectly reconstructed without the
need for an overlap/add procedure, i.e., xn D OxO�MDCT

n , n D 0; 1; : : : ; N
2

� 1, and the

second half of the recovered data sequence will be equal to zero, i.e., OxO�MDCT

N
2 Cn

D 0,

n D 0; 1; : : : ; N
2

� 1.
Properties stated by Claims 3 and 4 also follow from (3.47) and (3.57).

Note 2: The special properties of the MDST can be derived in a similar way.
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3.2.2.6 Relation Between the MDCT and MDST Block Transforms

In order to obtain the relation between the oddly stacked MDCT and MDST block
transforms, let us substitute N

2
�k�1 for k in (3.49) and (3.51), and we, respectively,

get [20, 21]

c
O
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2 �k�1 D .�1/ N

4

N�1X

nD0
.�1/n xn sin
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�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1: (3.61)

and

s
O

N
2 �k�1 D .�1/ N

4

N�1X

nD0
.�1/n xn cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; (3.62)

Equations (3.61) [and (3.62)] imply that the MDST coefficients fs
O

k g (MDCT
coefficients fc

O

k g) can be simply obtained from the MDCT (MDST) ones only by
sign changes applied to odd-indexed samples in the original data sequence, and after
the MDCT (MDST) computation, the MDST (MDCT) coefficients are in reverse
order.

The relations between the MDCT and MDST block transforms result in a simple
method to compute MDST (MDCT) using only one fast algorithm for the MDCT
(MDST) computation.

3.2.2.7 Relation Between the MDCT/MDST and O2DFT

Based on (3.38), the oddly stacked MDCT and MDST block transforms can be
expressed in terms of the O2DFT as follows [22, 26]:

Xk D e�i �4 .2kC1/
N�1X

nD0
xn e�i 2�4N .2kC1/.2nC1/

D
N�1X

nD0
xn cos
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2N

�
2n C 1C N

2

�
.2k C 1/

	

�i
N�1X

nD0
xn sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;N � 1: (3.63)
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From (3.63) one can see that the MDCT is the real component of O2DFT while
the MDST is the imaginary component of O2DFT. The definition of O2DFT and its
properties are presented in Appendix B.1, and its fast algorithm in Appendix B.2.
It is noted that the arguments of MDCT/MDST kernels can alternatively be
written as

�

2N

�
2n C 1C N

2

�
.2k C 1/ D �

2N
.2n C 1/.2k C 1/C �

4
.2k C 1/: (3.64)

3.2.2.8 Relation Between the MDCT/MDST and DFT

To derive convolution (linear filtering) algorithms in the MDCT/MDST domain, the
oddly stacked MDCT and MDST block transforms have been expressed in terms of
the DFT as follows [25, 26].

Consider an N-point windowed data sequence fxng. Then, its unnormalized N-
point DFT and the corresponding real part are, respectively, given by

f
N

k D
N�1X

nD0
xn e�i 2�nk

N ; <e
n
f

N

k

o
D

N�1X

nD0
xn cos

�
2�nk

N

	
; k D 0; 1; : : : ;N � 1:

(3.65)

If in the real part of (3.65) we replace n with 2n C 1 C N
2

, k with 2k C 1 and N
with 2N, we obtain the expression for MDCT. Replacing n with 2n C 1 C N

2
in

xn is equivalent to up-sampling fxng by a factor 2 followed by shifting N
2

samples.
Similarly, replacing k with 2k C 1 is equivalent to subsampling by a factor 2 in the
frequency domain. Changing N to 2N results in 4N-point DFT instead of N-point
DFT. It means that the MDCT of fxng is equal to the real part of the subsampled
4N-point DFT of fyng, n D 0; 1; : : : ; 4N � 1, where fyng is obtained from fxng by
up-sampling and shifting [25], i.e.,

y2nC1C N
2

D



xn; n D 0; 1; : : : ;N � 1;
0; otherwise:

(3.66)

Then, the MDCT coefficients are expressed in terms of the DFT ones as [26]

c
O

k D <e
n
f
4N

2kC1
o
; k D 0; 1; : : : ;

N

2
� 1; (3.67)

where ff
4N

2kC1g is the 4N-point DFT of fyng given by (3.66). The first 2N values of the
4N-point DFT provide the full spectrum of the N-point signal. By the symmetry of
the DFT, the first 2N values are equal to the second 2N values, but sign changed [25].
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Following the similar steps, the MDST coefficients are expressed in terms of the
DFT ones as [26]

s
O

k D � =m
n
f
4N

2kC1
o
; k D 0; 1; : : : ;

N

2
� 1: (3.68)

Note 3: A method for the DFT spectrum estimation from the MDCT and MDST
spectra has been developed in [31]. Specifically, based on matrix analysis, a sparse
matrix representation for the conversion to and from the DFT has been derived.

3.2.2.9 Matrix Representations of the MDCT and MDST Block
Transforms

Consider the oddly stacked MDCT and MDST block transforms defined by (3.49)
and (3.51), respectively. The symmetry properties (3.44) and (3.46) imply that
only N

2
rows of MDCT and MDST matrices are linear independent. Therefore, let

C
O

N
2 �N

and S
O

N
2 �N

, be the N
2

� N MDCT and MDST matrices, respectively. Then

ŒC
O

N
2 �N

�T D C
O

N� N
2

and ŒS
O

N
2 �N

�T D S
O

N� N
2

, where T denotes transposition. Next,

let x D Œx0; x1; : : : ; xN�1�, c
O D Œc

O

0 ; c
O

1 ; : : : ; c
O

N
2 �1�, and s

O D Œs
O

0 ; s
O

1 ; : : : ; s
O

N
2 �1� be

row vectors, and xT , Œc
O
�T , and Œs

O
�T their corresponding column representations.

Then (3.49) and (3.51) for the forward MDCT and MDST block transforms can be,
respectively, written in the equivalent matrix-vector form as

Œc
O
�T D C

O

N
2 �N

xT ; Œs
O
�T D S

O

N
2 �N

xT ; (3.69)

while (3.50) and (3.52) for the backward MDCT and MDST block transforms
without the normalization factor 4

N can be, respectively, written as

ŒOxO�MDCT
�T D C

O

N� N
2

Œc
O
�T ; ŒOxO�MDST

�T D S
O

N� N
2

Œs
O
�T : (3.70)

For the products of MDCT/MDST matrices and their transposed versions, the
following relations hold [15, 19]

C
O

N
2 �N

ŒC
O

N
2 �N

�T D S
O

N
2 �N

ŒS
O

N
2 �N

�T D N

2
I N
2
; (3.71)

ŒC
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N
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�T C
O

N
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D N

4
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@
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4
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4

0 0
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4
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4
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4
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4

0 0 J N
4
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4
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CCCC
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D N

4

 
I N
2

� J N
2

0

0 I N
2

C J N
2

!

;(3.72)
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ŒS
O

N
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�T S
O

N
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D N

4
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BBB
B
@

I N
4

J N
4

0 0

J N
4

I N
4

0 0

0 0 I N
4

�J N
4

0 0 �J N
4

I N
4
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C
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D N

4

 
I N
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C J N
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0

0 I N
2

� J N
2

!

;(3.73)

where 0 is null matrix, I N
2

is the identity matrix, and J N
2

is the opposite diagonal

identity matrix, all of order N
2

. Now it is clear that the MDCT and MDST matrices
in (3.71)–(3.73) have the same full rank (see Appendix A.1), i.e.,

rank .C
O

N
2 �N

/ D rank .S
O

N
2 �N

/ D N

2
:

Let us denote their transposed matrices by ŒC
O
�C and ŒS

O
�C. Using the relations

(3.71)–(3.73) it can be verified that they satisfy Moore–Penrose conditions, and
therefore, they are called to be generalized inverses or pseudoinverses of their
corresponding matrices [15] (generalized inverse or pseudoinverse matrix is defined
in Appendix A.1). Hence, the matrices representing the forward and backward
MDCT/MDST block transforms are actually pseudoinverse pairs.

Similarly as for the evenly stacked system, we can derive the time domain
aliased data sequences for the oddly stacked backward MDCT and MDST block
transforms explicitly in terms of the original data samples [15]. Indeed, substituting
Eq. (3.69) into (3.70), i.e., performing the forward and backward MDCT/MDST
block transforms and using relations (3.72) and (3.73) we have

ŒOxO�MDCT
�T D C

O

N� N
2

Œc
O
�T D C

O

N� N
2

C
O

N
2 �N

xT D N

4

 
I N
2

� J N
2

0

0 I N
2

C J N
2

!

xT ;

(3.74)

ŒOxO�MDST
�T D S

O

N� N
2

Œs
O
�T D S

O

N� N
2

S
O

N
2 �N

xT D N

4

 
I N
2

C J N
2

0

0 I N
2

� J N
2

!

xT :

(3.75)

From Eqs. (3.74) and (3.75) it follows that the time domain aliased data samples
fOxO�MDCT

n g can be derived explicitly in terms of the original data samples fxng as

OxO�MDCT

n D xn � x N
2 �1�n; OxO�MDCT

N
2 �1�n

D � OxO�MDCT

n ;

OxO�MDCT

N
2 Cn

D x N
2 Cn C xN�1�n; OxO�MDCT

N�1�n D OxO�MDCT

N
2 Cn

; n D 0; 1; : : : ;
N

4
� 1;

(3.76)
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while the time domain aliased data sequence fOxO�MDST

n g can be derived explicitly as

OxO�MDST

n D xn C x N
2 �1�n; OxO�MDST

N
2 �1�n

D OxO�MDST

n ;

OxO�MDST

N
2 Cn

D x N
2 Cn � xN�1�n; OxO�MDST

N�1�n D � OxO�MDST

N
2 Cn

; n D 0; 1; : : : ;
N

4
� 1:

(3.77)

In Eqs. (3.76) and (3.77) we can clearly observe the recovered time domain aliased
data sequences including their forms both in terms of the original data samples and
their symmetry properties given by (3.47) and (3.48). With Eqs. (3.76) and (3.77)
in mind we can compute exactly the results of applying the forward and backward
MDCT and MDST block transforms.

Finally, consider the relations (3.61) and (3.62) between the oddly stacked
MDCT and MDST block transforms. Then, they can be represented in the matrix
products, respectively, as

S
O

N
2 �N

D .�1/ N
4 J N

2
C

O

N
2 �N

DN ; C
O

N
2 �N

D .�1/ N
4 J N

2
S

O

N
2 �N

DN ; (3.78)

where JN is the opposite diagonal identity matrix, and DN D diag f1;�1; 1; : : : ;�1g
is the diagonal odd sign changing diagonal matrix, both of order N.

3.2.2.10 Consequences of MDCT/MDST Matrix Representations

From a viewpoint of terminology used in the literature the matrix representations of
the MDCT and MDST block transforms imply two very important facts:

1. Contrary to the discrete trigonometric transforms (various versions of DCT
and DST transforms) [74] which are represented by square invertible orthogo-
nal/orthonormal matrices of order N (therefore forward and inverse transform),
the MDCT and MDST block transforms are represented by non-square N

2
� N

matrices for which matrix inversions are not defined (actually, there exist their
pseudoinverses [15]). Consequently, the notion of “inverse MDCT/MDST,”
frequently used in the literature, is vague from a standpoint of matrix theory. The
more comprehensive notion to be used is “backward MDCT/MDST” (preferred)
or “reverse MDCT/MDST.” The second argument supporting such a conclusion
is that compared to discrete unitary transforms, the MDCT/MDST do not fulfill
Parseval’s theorem, i.e., its time domain energy is not equal to its frequency
domain energy. There exist several published papers pointing out and discussing
this topic [27–30].

2. Further, the discrete trigonometric transforms [74] for input data sequences
of length N generate N unique frequency coefficients (therefore N-point
forward and inverse transform). Hence, the notion of “N-point” is naturally
associated with the length of a input data sequence. In the case of the
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MDCT/MDST, the forward MDCT/MDST block transforms for input time
domain sequences of lengths N generate N

2
unique frequency coefficients

while the backward MDCT/MDST for N
2

input frequency domain coefficients
generate N time domain aliased samples. Therefore, we would use the notions
N-point forward MDCT/MDST and N

2
-point backward MDCT/MDST block

transforms.

3.2.2.11 Relations and Products Among MDCT/MDST Block
Sub-matrices and Their Properties

Consider the matrices C
O

N
2 �N

and S
O

N
2 �N

in (3.69) representing the forward MDCT

and MDST block transforms, respectively. Since C
O

N
2 �N

and S
O

N
2 �N

are non-square

matrices, we know that their inverse matrices do not exist. However, together
with their corresponding transposed versions provide pseudoinverse pairs (see
Appendix A.1).

Let the matrices C
O

N
2 �N

and S
O

N
2 �N

be split into the following two square blocks

sub-matrices:

C
O

N
2 �N

D
�

K N
2

L N
2

�
; S

O

N
2 �N

D
�

P N
2

Q N
2

�
; (3.79)

where K N
2

, L N
2

and P N
2

, Q N
2

are square nonsingular sub-matrices of order N
2

.

Splitting the matrices C
O

N
2 �N

and S
O

N
2 �N

into two block square sub-matrices is

very useful in a solution of many problems represented in the block matrix form,
and plays a key role in the derivation of a relation between MDCT and MDST
coefficients directly in the frequency domain (see Chap. 6). Based on the relation
(3.78), the sub-matrix pairs K N

2
, P N

2
and L N

2
, Q N

2
are closely related as

P N
2

D .�1/ N
4 J N

2
K N

2
D N

2
; Q N

2
D .�1/ N

4 J N
2

L N
2

D N
2
; (3.80)

where the elements of K N
2

and L N
2

are, respectively, given by

fK N
2
gk;n D cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

fL N
2
gk;n D cos

�
�

2N

�
2n C 1C 3N

2

�
.2k C 1/

	
;

k; n D 0; 1; : : : ;
N

2
� 1: (3.81)
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According to (3.80) the elements of P N
2

and Q N
2

are, respectively, given by

fP N
2
g N
2 �1�k;n D .�1/nC N

4 cos

�
�

2N

�
2n C 1C N

2

�
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2
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�
�

2N

�
2n C 1C 3N

2

�
.2k C 1/

	
;

k; n D 0; 1; : : : ;
N

2
� 1: (3.82)

Then, the transposed matrices ŒC
O

N
2 �N

�T D CN� N
2

and ŒS
O

N
2 �N

�T D SN� N
2

in the block

form are, respectively, given by
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A ; (3.83)

and the row vectors of K N
2
=L N

2
and P N

2
=Q N

2
become the column vectors of K

T

N
2

=L
T

N
2

and P
T

N
2

=Q
T

N
2

. For clarity, the sub-matrices K N
2

and L N
2

defined in (3.79) in explicit

form for N D 8 are given by
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and the sub-matrices P N
2

and Q N
2

in explicit form for N D 8 are given by
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:

From the explicit forms of sub-matrices immediately we can observe between pairs
K4, Q4 and L4, P4 the following basic relations:

• Even-indexed row vectors of K4 are the same as even-indexed row vectors of Q4,
while odd-indexed row vectors of K4 are equal sign changed odd-indexed row
vectors of Q4.



3.2 MDCT and MDST Filter Banks 65

• Odd-indexed row vectors of L4 are the same as odd-indexed row vectors of P4,
while even-indexed row vectors of L4 are equal to sign changed even-indexed
row vectors of P4.

Indeed, the above-mentioned basic relations can be expressed in the matrix forms as
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2
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(3.84)

In general, investigating the symmetry properties of row vectors of K N
2

, Q N
2

, P N
2

,
and Q N

2
we obtain matrix forms given by
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(3.85)

implying that row vectors of K N
2

and Q N
2

have the even anti-symmetry property,
while row vectors of L N

2
and P N

2
have the even symmetry property (see

Appendix G.1).
From (3.71) to (3.73), using block forms (3.79) and (3.83) we obtain properties

of (the sum) products of K N
2

, L N
2

and P N
2

, Q N
2

. Specifically, from (3.71) we get
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indicating that the matrix products K N
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ric matrices. Further, from (3.72) and (3.73) we get

K
T

N
2

K N
2

D Q
T

N
2

Q N
2

D N

4

�
I N
2

� J N
2

�
;

L
T

N
2

L N
2

D P
T

N
2

P N
2

D N

4

�
I N
2

C J N
2

�
; (3.87)

and
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2
: (3.88)



66 3 MDCT/MDST, MLT, ELT, and MCLT Filter Banks: Definitions, General. . .

Matrix products in (3.88) are based on the fact that the scalar products of
row/column even anti-symmetric/symmetric or even symmetric/anti-symmetric
nonzero vectors are always equal to zero. Finally, knowing the symmetry properties
of row vectors given by (3.85) the same properties hold for the matrix products:
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2

P
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2
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2

K
T

N
2

D 0 N
2
;

L N
2

Q
T

N
2

D Q N
2

L
T

N
2

D 0 N
2
: (3.89)

3.2.3 Relation Between the Evenly and Oddly Stacked MDCT

The relations between the MDCT and corresponding MDST block transforms both
for the evenly and oddly stacked systems given by (3.20) and (3.61) allow us to
concentrate on the MDCT block transforms only.

Consider the evenly stacked MDCT block transform defined by (3.16), and the
oddly stacked MDCT block transform defined by (3.49). The oddly stacked MDCT
coefficients fc

O

k g satisfy the following relation [19]

c
O

k C c
O

k�1 D c
E

k for k > 0;

2c
O

0 D c
E

0 ; (3.90)

where fc
E

k g are evenly stacked MDCT coefficients. In fact, using the trigonometric
identity cos.˛Cˇ/ D 2 cos.˛/ cos.ˇ/�cos.˛�ˇ/ and setting ˛ D �

N .2nC1C N
2
/k,

ˇ D �
2N .2n C 1 C N

2
/, the oddly stacked MDCT given by (3.49) can be written in

the form
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k D 0; 1; : : : ;
N

2
� 1: (3.91)

The transform kernel under the sum of (3.91) is recognized as an N-point evenly
stacked MDCT of the modified input data sequence. Hence, the N-point oddly
stacked MDCT is converted to the evenly stacked MDCT of the same size with
additional N pre-multipliers and N

2
�1 recursive post-additions. The relation between

oddly stacked MDCT and evenly stacked MDCT is quite similar to that of between
the DCT-IV and DCT-II (see Appendix C.3). From (3.91) we have

c
O
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nD0
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�
�
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�
2n C 1C N

2
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O
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2
� 1;

(3.92)
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where

yn D 2xn cos

�
�

2N
.2n C 1C N

2
/

	
; n D 0; 1; : : : ;N � 1; (3.93)

and

2c
O

0 D c
E

0 ; if k D 0;

c
O

k D c
E

k � c
O

k�1 for k > 0; (3.94)

The relation between the oddly stacked MDCT and evenly stacked MDCT given by
(3.92) can be equivalently represented by the matrix product
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where B N
2

is a lower triangular matrix of order N
2

given by
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On the other hand, the matrix B N
2

and diagonal matrix on the right-hand side
of (3.95) are nonsingular and therefore, their inverse matrices exist. Performing
matrix multiplications on both sides of (3.95), i.e., left-multiplying by B

�1

N
2

, then

right-multiplying by inverse diagonal matrix, we get
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where B
�1

N
2

is the lower bidiagonal matrix of order N
2

given by
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and the computation of evenly stacked MDCT can be realized via an existing fast
oddly stacked MDCT algorithm only by pre- and post-processing of input and
output data sequences.

3.2.4 Windowing Procedure and Perfect Reconstruction
Conditions

We discussed so far both the evenly and oddly stacked systems in the forms of block
transforms or alternatively in matrix-vector representations and we investigated
their general properties in time and frequency domains. But the complete TDAC
evenly and oddly stacked systems include the windowing procedure to eliminate the
blocking artifacts. On the other hand, to achieve the TDAC, i.e., the original data
sequence will be perfectly reconstructed by the synthesis filter bank, the analysis and
synthesis windowing functions have to satisfy the so-called perfect reconstruction
conditions [18, 24].

Let fx
.m/

n g and fx
.mC1/

n g be two adjacent overlapped data blocks. Transform these
data blocks by the forward MDCT followed by the backward MDCT block trans-
form. Assuming that no changes are made in data blocks during the transformation,
we find that the original signal in the overlapped part is perfectly reconstructed even
without windowing. Indeed, according to the overlap/add procedure given by (3.5)
and using (3.31), (3.32) for the evenly stacked system or (3.76) for the oddly stacked
system, whereby in the overlapped part the following relations hold: x

.mC1/

n D x
.m/

N
2 Cn

and x
.mC1/

N
2 �1�n

D x
.m/

N�1�n for n D 0; 1; : : : ; N
2

� 1, and we have
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/ D 2x
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; n D 0; 1; : : : ;
N

4
� 1;

(3.99)

and the second half of the original data sequence f2x
.m/

N�1�ng in the overlapped part

can be obtained from the symmetry properties of proper fOx.m/N
2 Cn

g and fOx.mC1/

n g.

The main objective in audio compression applications is to represent the trans-
formed audio signal by fewer bits, while keeping the audio quality at an acceptable
level. In modern encoders, signal parts that are not audible are removed resulting
in a loss of information. Consequently, after coding and decoding the transformed
signal is changed slightly and we can no longer expect a perfect reconstruction
compared with the original audio signal. Of course, the remaining information that
is passed should be analyzed and synthesized without errors. A serious problem
here is that when data blocks are obtained using rectangular windows, sudden
signal changes (“discontinuities”) at the block boundaries are to be expected, that
will affect the coded data in an unrecoverable way. To eliminate these so-called
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“blocking artifacts,” each data block is multiplied by a windowing function such
that the data block ends smoothly at both boundaries, while keeping overall gain
constant during the block transition. In order to accomplish this while keeping the
perfect reconstruction property for the analysis/synthesis process, the windowing
functions are applied to both the input and output of the transform procedure as
follows.

Let h
.0/

n and h
.1/

n be the windowing functions applied to the input data blocks m

and m C 1, respectively. Assume the windowed data blocks fh
.0/

n x
.m/

n g, fh
.1/

n x
.mC1/

n g,
n D 0; 1; : : : ;N � 1, are transformed by the forward MDCT block transform. Let
g
.0/

n and g
.1/

n be the windowing functions applied to the outputs after performing the
backward MDCT block transform. Then from (3.99) we have
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In order to recover the original data sequence fx
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g, n D 0; 1; : : : ; N
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� 1, we

need the coefficient of x
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N
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to be one and the coefficient of x
.m/

N�1�n to be zero. In

other words, the perfect-reconstruction conditions for windowing functions have to
be satisfied as follows
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Usually, the same windowing functions are used for all data blocks, so we can drop
the superscripts, i.e., hn D h

.0/

n D h
.1/

n and gn D g
.0/

n D g
.1/

n . If hn D gn is identical
both for the analysis and synthesis MDCT filter banks, then from (3.100) the perfect-
reconstruction conditions in the overlapped part are given by

h
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n C h
2
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D 1;

hn D hN�1�n; or h N
2 Cn D h N

2 �1�n; n D 0; 1; : : : ;
N

2
� 1: (3.101)

Equation (3.101) implies that the windowing function fhng has to be symmetric.
The reader is referred to a draft document [30] where mathematical properties of
the oddly stacked MDCT are proved using basic trigonometry only.
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3.2.4.1 Matrix Representation of the Windowing Procedure

Denote by fwng, n D 0; 1; : : : ;N � 1, a symmetric windowing function identical for
the analysis and synthesis filter bank. Let WN be a diagonal matrix with elements
fwng on the main diagonal defined as

WN D
0

@
W

.1/

N
2

0

0 W
.2/

N
2

1

A ; (3.102)

where W
.1/

N
2

and W
.2/

N
2

represent the first and the second half of the windowing

function, respectively. In order to ensure TDAC, windowing functions of two
succeeding data blocks have to satisfy the perfect reconstruction conditions (3.101)
which are defined in the matrix form by Britanak and Arriëns [20]
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where I N
2

is the identity matrix, and J N
2

is the opposite diagonal identity matrix,

both of order N
2

.

3.2.5 Design of a Windowing Function

Since a windowing function has a significant impact on the MDCT filter bank
frequency response [32, 33] motivated by results described in [35], an important
problem in MDCT-based perceptual audio codecs has been the design of an
additional windowing function (or prototype finite impulse response low-pass filter)
satisfying the perfect reconstruction conditions.

Smoothing windowing functions, in general, are characterized in the frequency
domain by the normalized DFT spectrum [35, 36, 42]. The frequency log-magnitude
response of a windowing function consists of the main-lobe and sidelobes with
increasing frequency. The reduced level of monotonically decreasing sidelobe
magnitudes is related to the reduction of audible blocking artifacts (leakage
attenuation or stop-band attenuation), while the width of main-lobe is related to the
accurate frequency identification (frequency resolution) of the windowing function.
However, a trade-off exists between the level of side-lobe magnitudes and main-
lobe width. As the magnitude of side-lobes is decreased, the main-lobe width is
increased. This is consistent with the reciprocal relationship between the frequency
and spatial domains, i.e., narrow frequency bandwidths correspond to wide spatial
functions [32, 42]. On the other hand, it was shown that the shape of windowing
function determines the degree of frequency separation of the MDCT filter bank
[35]. Thus, some major factors in the design of filter banks for audio coding are the
ability to maximize their frequency separation and the ability to minimize spectral
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leakage. Two parameters of the windowing function are directly linked to these
properties: selected size of the data block and the shape of windowing function.
Generally, the best choice of windowing function is application-dependent [32].

3.2.5.1 Commonly Used Windowing Functions in Audio Coding

Frequency selectivity of the MDCT filter bank is dependent on a windowing
function [32, 33]. In the following, commonly used symmetric windowing functions
in audio coding applications satisfying perfect reconstruction conditions (3.101) are
presented.

• The rectangular windowing function defined as [32]

wn D 1p
2
; n D 0; 1; : : : ;N � 1: (3.104)

This windowing function is not often used in audio codecs because it produces
an MDCT filter bank with poor frequency resolution.

• The sine windowing function is defined as [32, 38, 41, 63]

wn D sin

�
�.2n C 1/

2N

	
; n D 0; 1; : : : ;N � 1: (3.105)

It produces good frequency separation (in particular, DC energy is concentrated
in a single coefficient) and it is asymptotically optimal in terms of coding gain
(efficiency). Therefore, its properties are typically referred as the performance
benchmark when a new windowing function is proposed. The sine windowing
function is used in the MP3 [32] and MPEG-2 AAC [32, 33] audio coding
standards. A plot of the sine windowing function for N D 2048 is shown in
Fig. 3.1.

• The coding efficiency of MDCT filter bank can be improved replacing the sine
windowing function by a windowing function having better leakage attenuation
property for some class of signals. Such a parametric, the so-called Kaiser–Bessel
Derived (KBD) windowing function, was constructed by Dolby Labs [32, 38, 41].
The parametrized KBD windowing function is derived by a numerical procedure
from the parametrized symmetric modified zeroth-order Kaiser–Bessel function
[32] (see also Chap. 6). In general, a parametric windowing function leaves
much flexibility in controlling its shape and hence, desired frequency resolution
(mainlobe width) and leakage attenuation property (level of sidelobe magnitudes)
by adjusting its free parameter. The KBD windowing function is employed in the
Dolby Digital (Plus) AC-3 audio compression algorithms with parameter ˛ D 5,
while in the MPEG-4 AAC with ˛ D 4 (long windowing function) for stationary
signals, and with ˛ D 6 (short windowing function) for transient signals [33].
Plot of the KBD windowing function for N D 512 and ˛ D 5 is shown in
Chap. 6 (see Fig. 6.1).
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Fig. 3.1 Plot of the sine windowing function for N D 2048
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Fig. 3.2 Plot of the Ogg Vorbis windowing function for N D 2048

• The Ogg Vorbis audio compression algorithm (fully open, nonproprietary,
and patent royalty-free distributed) uses the windowing function defined by
Wright [30]

wn D sin
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2
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�.2n C 1/
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; n D 0; 1; : : : ;N � 1: (3.106)

A plot of the Ogg Vorbis windowing function for N D 2048 is shown in Fig. 3.2.

The Ogg Vorbis windowing function, but defined in a low overlap form (the
so-called power complementary windowing function with reduced overlap), is used



3.2 MDCT and MDST Filter Banks 73

in the royalty-free Constrained-Energy Lapped Transform (CELT) audio codec
[46, 47] with especially low algorithmic delay intended for applications, where
high-quality and low delay are desired. The original stand-alone CELT codec has
been integrated as a one layer into the open, royalty-free hybrid OPUS interactive
speech and audio codec [45, 48].
Note 4: In general, any customized windowing function for the MDCT filter
bank satisfying perfect reconstruction conditions (3.101) can be derived from a
parametrized initial symmetric nonnegative kernel function of the length M C 1.
The resulting windowing function fwng is generated by applying a transformation
of the form [32, 41]
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; n D 0; 1; : : : ;M � 1; (3.107)

where fvjg represents the symmetric nonnegative kernel. The resulting identical
analysis and synthesis windowing function fwng is of the length M and symmetric.
The simple parametrized and symmetric Landau nonnegative kernel function is
reported in [39]. It is defined in the analytical form as

v.x/ D .1 � x2/ˇ; x 2 < �1; 1 >; (3.108)

where ˇ is the free parameter. Taking a discrete version of (3.108) as an initial
symmetric nonnegative kernel given by
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; (3.109)

and by applying the normalization procedure defined by (3.107) we obtain a
customized, the so-called Landau Designed (LD) windowing function.

3.2.5.2 Low (Reduced) Overlap Windowing Functions

The primary sources of algorithmic delay inherent in the encoding/decoding chain
of MDCT-based audio coding schemes is the block-based processing associated
with data block size and filter bank algorithmic delay due to the overlap/add
procedure of the filter bank with 50% overlap of previous and subsequent data
blocks. We note that the algorithmic delay is defined as the theoretical minimum
delay allowed by an algorithm [43, 44].

In order to minimize the total algorithmic delay of MDCT-based audio coding
schemes, the transform block size is reduced and it is combined with a low (reduced)
overlap windowing function. As an example, the low (reduced) overlap symmetric
windowing function [46–48]. is constructed as follows. The 512-sample MDCT



74 3 MDCT/MDST, MLT, ELT, and MCLT Filter Banks: Definitions, General. . .

data block is divided into 256-sample frames, with each block composed of two
frames. To reduce the delay, the overlap is only 128 samples, with a 128-sample
constant region in the center (samples are equal to 1), and 64 zero samples on each
side. For the overlap region the Ogg Vorbis windowing function is constructed [see
Eq. (3.106) for N D 128]. Thus, the effective overlap is reduced with the zeros on
each side, while still maintaining the perfect reconstruction property. This results in
an algorithmic delay of 384 samples for 256-sample frame size with 128 samples
look-ahead (see Fig. 1 in [46], or Fig. 3 in [47]). The same windowing function is
used for the analysis process and overlap/add synthesis process.

3.2.5.3 Biorthogonal Conditions for Nonidentical Windowing Functions

Although in the most audio coding applications the identical windowing functions
both for the analysis and synthesis TDAC filter banks are used, this assumption is not
necessary to maintain the perfect reconstruction property. The perfect reconstruction
can be maintained also in the case, when the analysis and synthesis windowing
functions are nonidentical [40]. Relaxing the constraint on windowing function
shape allows an additional degree of freedom for controlling the shape of windowing
function and frequency domain selectivity of a filter bank. Such TDAC filter banks
are called biorthogonal. In the following the biorthogonal conditions are derived
which enable us to generate the so-called biorthogonal TDAC filter banks [58, 65].

Let fhng and fgng be the analysis and synthesis windowing functions, respec-
tively. Consider (3.100) defining the perfect reconstruction conditions for noniden-
tical windowing functions, where hn D h
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n D h
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n and gn D g
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n D g
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n . Assuming a
symmetric analysis windowing function fhng, i.e., hn D hN�1�n or h N
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� 1, the second equation in (3.100) can be rearranged to give
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and from (3.110) we have
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Substituting (3.111) into the first equation in (3.100) we get
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which is simplified to
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Finally, from (3.113) we obtain the complete description of the synthesis windowing
function with respect to the analysis windowing function defined as [40]
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where the generated synthesis windowing function fgng is also symmetric. Equation
(3.114) defines the biorthogonal conditions which guarantee the perfect reconstruc-
tion of TDAC filter banks with nonidentical analysis and synthesis windowing
functions. The incorporation of biorthogonality into TDAC filter banks allows for
greater flexibility in the design of analysis and synthesis windowing functions by
increasing the number of degrees of freedom. Essentially, this fact has an impact on
the proper implementation of psychoacoustics modeling [58].

As an example, however, with exchanged roles of analysis and synthesis win-
dowing functions, the synthesis windowing function for biorthogonal filter banks
has been proposed in [65], and it is defined by

gn D
1 � cos

h
�
�

nC1
2N

˛iC ˇ

2C ˇ
; n D 0; 1; : : : ;

N

2
� 1; (3.115)

where the analysis windowing function is defined by (3.114). The parameter ˛
controls the width of the windowing function, whereas ˇ controls its end values.
Plots of the analysis and synthesis windowing functions can be found in [65].

3.2.6 Adaptive Switching of Transform Block Sizes and
Windowing Functions

Some of the major factors that play a key role in the design of filter banks for
audio coding is the ability to minimize the effects of audible blocking artifacts
and to maximize the frequency separation of the filter bank. Two parameters of
the data block are directly related to these properties, specifically, the selected
transform block size and shape of windowing function. The perfect reconstruction
conditions involve the overlapped parts between two adjacent data blocks. If we
use a single windowing function and constant block size, the perfect reconstruction
conditions actually refer to the right and left half sides of consecutive data
blocks [32].

In the following subsections the methods for adaptive switching of transform
block sizes and adaptive switching of windowing functions including the corre-
sponding perfect reconstruction conditions in the overlapped part are discussed.
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3.2.6.1 Adaptive Switching of Transform Block Sizes

Transform block size switching is an effective tool for adapting the time/frequency
resolution of the filter bank during the signal coding without losing the perfect
reconstruction property. Such filter banks are also called the time-varying filter
banks. The windowed long block is transformed when the signal spectrum remains
stationary, or varies only slowly with time. During transients, when the signal
changes rapidly in time, shorter blocks are more suitable to reduce pre-echo effects.
In transition from the long to short block(s) and vice versa, the so-called transition
blocks (labeled as “start” and “stop”) have to be constructed to preserve the perfect
reconstruction property in the overlapped part [34, 37].

Let N long and Nshort be the lengths of long and short data blocks, respectively.
Assume a (“start”) transition block from the long to short block. Then, the right
half side of long block is first divided into three regions and the analysis/synthesis
windowing function is redefined in each region as follows [34]: The Nlong

4
� Nshort

4

values of the windowing function in the first region of transition block (which do
not overlap with the short block) are set to one. Nshort

2
values at the second region

correspond to the right half side of short windowing function. The last Nlong

4
� Nshort

4

values in the third region of transition block are set to zero. The (“stop”) transition
block from short to long block is defined as the time reversed version of the “start”
transition block. Structure of the transition block from long to short block is shown
in [32, 34]. The construction of transition blocks results in asymmetric windowing
functions for the long blocks.

As an example, the basic windowing function utilized by MP3 audio coding
standard is the sine windowing function given by (3.105). The MP3 specifies two
different block sizes: the long block (N D 36) and the short block (N D 12). The
windowing function for transition from the long to short block (“start” transition
block) is defined as [32]
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while the windowing function for transition from the short to long block (“stop”
transition block) is defined as [32]



3.2 MDCT and MDST Filter Banks 77

wn D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂
:̂

0; n D 0; 1; : : : ; 5;

sin
�
�
12
.n � 6C 1

2
/
�
; n D 6; 7; : : : ; 11;

1; n D 12; 13; : : : ; 17;

sin
�
�
36
.n C 1

2
/
�
; n D 18; 19 : : : ; 35:

On the other hand, in the MPEG-2 AAC audio coding standard the transform
block size can be set to either N D 2048 (the long block) or to N D 256 (the short
block) [32, 33]. We note that the long block corresponds to eight short blocks.

3.2.6.2 Adaptive Switching of Windowing Functions

We recall that the windowing function has the significant impact on the filter bank
frequency response. Therefore, no single windowing function is optimal for all
signals. Given a certain block size for the input data to the filter bank, the selection
of shape of windowing function determines the degree of spectral separation of the
filter bank. Thus, depending on the characteristics of the input audio signal changing
the windowing function may provide better frequency resolution for the signal
representation [32]. The conditions for perfect reconstruction in the overlapped part
are derived as follows.

Let fhng and fgng be two different symmetric windowing functions applied to
two adjacent data blocks m and m C 1, respectively. Then, based on overlap/add
procedure given by (3.99) incorporating the windowing procedure we have
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By algebraic rearranging the expression on the right-hand of (3.116) we get
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In order to recover the original data sequence fx
.m/
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g, n D 0; 1; : : : ; N
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� 1, we need

the coefficient of x
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2 Cn

to be one and the coefficient of x
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N�1�n to be zero in (3.117),

i.e., the perfect-reconstruction conditions for windowing functions in the overlapped
part are satisfied when it holds [34]
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Equation (3.118) defines the general perfect reconstruction conditions for the
adaptive switching of windowing functions in the overlapped part of two adjacent
data blocks. Switching of the windowing function is accomplished by designing
a pair of “transition” windowing functions for which one side of each overlaps
correctly with the previous windowing function, while the other side of each
overlaps correctly with the following windowing function. It means that the right
half side of windowing function for the data block m is mirror symmetric to the
left half side of subsequent windowing function for the data block m C 1 in the
overlapped part. We note that the windowing function applied to the data block m
becomes asymmetric.

As an example, in the MPEG-2 AAC audio coding standard the windowing
function can be varied dynamically (sine or KBD windowing function) as a function
of the signal characteristics. Thus, the change of windowing function shape allows
the MDCT filter bank to efficiently separate spectral components for a wider variety
of input signals, and at the same time maximizing coding efficiency. In fact, the
sine windowing function ensures better close-selectivity because the main-lobe is
narrower, while the KBD windowing function has better stop-band attenuation
because it has lower level of side-lobe magnitudes. The adaptive switching of
windowing function in the MPEG-2 AAC is used for the long blocks only,
and is applied to the second half of windowing function, since the first half is
constrained by the shape of windowing function from the preceding data block
[32, 33].

The adaptive switching of transform block sizes and windowing functions
allows us to change from the series of long transform blocks into a series of
shorter transform blocks and vice versa, or from a series of one windowing
function to a series of different windowing functions provided that we appro-
priately handle the perfect reconstruction conditions for each overlapped part. In
summary, by adapting the transform block sizes and the windowing functions to
the characteristics of input signal, the performance of an audio coding scheme is
significantly improved. Illustrative figures of just discussed methods can be found
in [32–34, 37].
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3.3 Lapped Transforms

A class of lapped transforms including the lapped orthogonal transform (LOT)
[49, 52, 53, 55–57, 63], a modified version of LOT, the pseudolapped orthogo-
nal transform (PseudoLOT) [54], the modulated lapped transform [59, 63, 66],
biorthogonal and nonuniform lapped transforms [58, 65], and the extended lapped
transform [60–64, 66] has been applied in transform/sub-band coding and studied
independently with respect to the oddly stacked MDCT and MDST filter banks
discussed in previous sections. We recall that the evenly stacked MDCT/MDST
system is not a lapped transform [63].

3.3.1 Lapped (Orthogonal) Transform

The main motivation in the original developing the LOT was the reduction of
blocking artifacts in transform coding, i.e., the reduction of discontinuities in the
reconstructed signal at the block boundaries. The idea was to extend the basis
functions beyond the block boundaries, creating an overlap, in order to eliminate
these blocking artifacts [52, 55]. Thus, the basis functions of a lapped transform
(LT) overlap consecutive data blocks.

With the LT, L-sample data block is mapped into M transform coefficients,
where L is the length of basis functions, whereby L > M. In order to keep the
total sampling rate, M new transform coefficients are computed for every new M
input samples, i.e., there exists an overlap of L � M samples in the computation
of transform coefficients of consecutive data blocks. Compared to standard block
transforms, like the type-II DCT (DCT-II), where the orthogonality guarantees
perfect reconstruction, with LT however, the orthogonality of basis functions is not
sufficient due to their overlapping. There are additional orthogonality constraints
among overlapping portions of the basis functions formulated in the time domain
[56, 57, 63] (see matrix representation of LTs). Historically, the term LT is a general
lapped transform with orthogonal basis functions, whereas the LOT is a special case
of an LT with L D 2M, i.e., two adjacent data blocks are overlapped by M samples,
and the basis functions have even/odd symmetry. The theory of lapped transforms
and their properties are discussed in detail in [53, 63].

3.3.1.1 Matrix Representation of Lapped Transforms

An elegant matrix representation of the forward and backward LT with a common
overlapping factor (or the number of overlapping data blocks) have been presented
in [31, 56, 66], and it is worthwhile to review here.
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In general, the LT is a linear projection from RKM onto RM , where K > 1 is the
overlapping factor being a positive integer, L D KM, and M is the block length.
To realize LT, the input signal is first partitioned into M-point data blocks as

xi D .xiMC0 xiMC1 : : : xiMCM�1/T : (3.119)

Then, K consecutive data blocks are grouped into KM � 1 vector as
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which is linearly mapped into a spectrum of M transform coefficients
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M , l D 0; 1; : : : ;K�1 are block square sub-matrices of order M. The inverse
transform of (3.121) consists of matrix multiplication and overlap/add procedures
defined by
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where 0 is null matrix. The necessary and sufficient condition to be Oxi D xi or
Oxg

i D x
g

i is [31]
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(3.124)

where ım is the Kronecker delta function and IM is the identity matrix of order M.

Basis vectors of the matrix PM�KM D
�

P
.0/

M P
.1/

M : : : P
.K�1/

M

�
are constructed either

from the DCT-II and type-IV DCT/DST (DCT-IV/DST-IV) basis vectors for the
LOT [55, 59] and for PseudoLOT [54] (when K D 2), or they are generated by a
recursive optimization procedure in order to maximize the coding gain [63].
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The lapped transforms defined by (3.121) and (3.122) correspond to an
M-channel KM-tap critically sampled perfect reconstruction filter bank, whose
kth channel filter response is given by

hk;rClm D fP
.l/gk;r; r D 0; 1; : : : ;M � 1; l D 0; 1; : : : ;K � 1: (3.125)

Hence, LTs and multirate filter banks are actually the same, although they have
been studied independently in the past. In fact, the LT is a filter bank in which
the impulse responses of the synthesis filters are the LT basis functions, and
the impulse responses of the analysis filters are the time-reversed basis func-
tions. The equivalence between LTs and multirate filter banks is discussed in
[53, 63].
Note 5: The lapped transforms defined by (3.121) and (3.122) can also be viewed
as a class of lapped orthogonal transforms with extended overlap, the so-called
generalized linear-phase lapped orthogonal transforms (GenLOT) [50, 51, 56, 57].
The basis vectors of matrices P

.l/

M , l D 0; 1; : : : ;K � 1 are constructed by a recursive
procedure from the DCT-II basis vectors which have even/odd symmetry property
[74]. Thus, in this formulation the orthogonal DCT-II transform is the order-1
GenLOT, hence when K D 1, the LOT is the order-2 GenLOT when K D 2, etc.,
for any filter length that is an integer multiple of the block size.

3.3.2 Modulated Lapped Transforms

The modulated lapped transform (MLT) [59, 63] and the extended lapped transform
(ELT) [60–64] are perfect reconstruction cosine/sine-modulated filter banks devel-
oped on the concept of a modulated filter bank. Modulated filter banks are a class of
QMF banks, where all impulse responses of filters pk;n are obtained from modulated
versions of a single low-pass filter prototype, or equivalently, of a single windowing
function. The perfect reconstruction is actually achieved by proper choices of phases
of the cosine and sine modulation and the low-pass filter prototype.

3.3.2.1 MLT Filter Bank

The first original MLT definition was based on the LOT using the following
consideration: Another way to obtain a good set of basis functions for a lapped
transform is to define an appropriate low-pass filter prototype in a modulated filter
bank structure. If the length of the low-pass filter prototype is chosen to be equal
to 2M, it is possible to achieve not only aliasing cancellation, but also the perfect
reconstruction with identical analysis and synthesis filters [59].
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With respect to (3.125), the impulse response of kth synthesis filter pk;n of the
modulated filter bank is based on the construction [59]
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; if k is odd;

k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ; 2M � 1; (3.126)

where L is the length of the low-pass filter prototype fwng, and M is the number

of sub-bands or transform coefficients. The normalization factor
q

2
M is necessary

to generate an orthogonal transform implementation [59]. In order to keep the
orthogonality of matrix PM�2M generated by (3.126), the L-length low-pass filter
prototype fwng must satisfy the perfect reconstruction conditions given by (3.101).
The filter bank defined by (3.126) with L D 2M is called the MLT since it belongs
to the class of lapped transforms. For the MLT, the low-pass filter prototype fwng
in (3.126) is the sine windowing function given by (3.105). It is important to note
that the filter impulse responses of the MLT do not have even/odd symmetry, like
the LOT. With the synthesis filters of the MLT defined by (3.126), the outputs of the
analysis filter bank can be written as a block transform [59]

c
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k D
2M�1X

nD0
xmMCn pk;2M�1�n; k D 0; 1; : : : ;M � 1; (3.127)

because the impulse responses of the analysis filters are equal to the time-reversed
impulse responses of the synthesis filters. The term m in (3.127) denotes the data
block index. Equation (3.127) is equivalent to [59]
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; if k is even;
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; if k is even;

k D 0; 1; : : : ;M � 1: (3.128)
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Finally, after some algebraic manipulations, (3.128) can be expressed in a common
block transform form as [59]
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k D 0; 1; : : : ;M � 1; (3.129)

where

�k D

8
<̂

:̂

.�1/ kC2
2 ; k is even;

.�1/ k�1
2 ; k is odd:

(3.130)

Equations (3.129) and (3.130) constitute the first original definition of the analysis
MLT filter bank. The synthesis MLT filter bank is defined as
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n D 0; 1; : : : ; 2M � 1; (3.131)

where fOx.m/n g is the time domain aliased data sequence.
An alternative derivation of the MLT is based on the near-perfect reconstruction

M-band QMF bank, or equivalently, the pseudo-QMF bank with the synthesis filters
fk;n defined by Malvar [63]

fk;n D wn cos
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n � L � 1
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C �k

	
;

k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ;L � 1; (3.132)

where the parameters �k control the relative phases of the modulating cosines. The
analysis filters hk;n are obtained by time-reversing the synthesis filters in the form

hk;n D fk;L�1�n: (3.133)

Assuming that L D KM, the phases of modulation cosine functions leading to the
perfect reconstruction are given by

�k D
�

k C 1

2

�
.K C 1/

�

2
: (3.134)
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Denoting pk;n D fk;n with the phases �k given by (3.134), and introducing the

normalization factor
q

2
M to normalize the basis functions, the MLT basis functions

can be written in the form [63]
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;

k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ; 2M � 1: (3.135)

Again, the low-pass filter prototype fwng in (3.135) is the sine windowing function
given by (3.105). Then, the analysis MLT filter bank as a block transform is
defined as
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k D 0; 1; : : : ;M � 1; (3.136)

while the synthesis MLT filter bank as a block transform is defined as
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n D 0; 1; : : : ; 2M � 1: (3.137)

One can see that the factor �k in definitions of the analysis and synthesis MLT filter
banks given by (3.129) and (3.131), respectively, has been eliminated in those of
(3.136) and (3.137). The MLT is similar to the LOT in the sense that the basis
functions have length L D 2M, i.e., the overlapping factor K D 2, where M is the
number of sub-bands. On the other hand, historically, the MLT is a special case of
the PseudoQMF bank with the filter length L D 2M [32, 63].

By substituting N D 2M into (3.49) and comparing the MLT given by (3.136)
with the oddly stacked TDAC MDCT given by (3.49) after substitution, we find that
they are identical. Thus, the MLT is the oddly stacked MDCT being associated with
the sine windowing function given by (3.105). Consequently, general mathematical
properties in the time and frequency domains including special properties, relation-
ships, matrix representations, and the perfect reconstruction conditions imposed on a
windowing function for the oddly stacked TDAC MDCT are also valid for the MLT.
On the other hand, the oddly stacked TDAC MDCT filter bank actually corresponds
to a lapped transform, since all perfect reconstruction filter banks with identical
analysis and synthesis filters (within time reversal) are lapped transforms (the evenly
stacked TDAC filter bank is not a lapped transform) [63].
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Biorthogonal versions of the MLT, the modulated lapped biorthogonal transform
(MLBT) and the nonuniform modulated lapped biorthogonal transform (NMLBT)
[65], are obtained simply by applying the biorthogonality conditions (3.114) for
nonidentical analysis and synthesis windowing functions fhng and fgng, respectively,
with the symmetric analysis or synthesis windowing functions. Such a windowing
function is defined by (3.115).

3.3.2.2 ELT Filter Bank

As we have seen, the MLT is a perfect reconstruction M-channel multirate filter
bank with the analysis filters being cosine-modulated versions of a low-pass filter
prototype of length L D KM, where K D 2, and with the synthesis filters being the
time reverse of the analysis filters. The ELT was developed as a generalization of
the MLT with longer basis functions, i.e., L > 2M, in such a way that the perfect
reconstruction is preserved [60–63]. The basis functions of the ELT are defined by
the same cosine modulation function as in the MLT, but they are arbitrarily longer
defined as [61, 63]

pk;n D wn
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k C 1

2
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n C M C 1

2

�	
;

k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ;L � 1; (3.138)

where L D KM, K > 2. It is clear that the basis functions in (3.138) correspond to
the general form of (3.132) with the modulation phases given by (3.134). The perfect
reconstruction requires that the phases of the modulating cosines be related by

�kC1 � �k D .2r C 1/
�

2
; (3.139)

where r is an integer. Comparing (3.139) with (3.134) we get K D 2r and L D 2rM,
where r is the overlapping factor. Thus, the length of basis functions must be an even
multiple of the number of sub-bands. The overlapping factor r actually specifies how
many pairs of input data blocks are used to compute the spectral coefficients of the
ELT. Similarly as for MLT, the windowing function fwng in (3.138) is assumed to
be symmetric, i.e., wL�1�n D wn. Now a problem is to find a windowing function
fwng with the length L D 2rM that leads to the perfect reconstruction [61, 63].

3.3.2.3 General Perfect Reconstruction Conditions: Orthogonal Case

Assume that the analysis and synthesis filters have lengths equal to L D KM,
K D 2r, where r is the overlapping factor. Thus, the original MLT is actually an
ELT with r D 1.
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With respect to (3.121), let us define the block matrix
�

P
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where sub-matrices P
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M of order M represent the ELT basis vectors given by
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k; n D 0; 1; : : : ;M � 1; l D 0; 1; : : : ;K � 1: (3.140)

Further, let the quasi-diagonal block matrix WKM D diag fW
.0/

M W
.1/

M : : : W
.K�1/

M g of
order KM represent the windowing function fwng, n D 0; 1; : : : ;KM � 1, where

W
.l/

M D diag fwlM;wlMC1; : : : ;wlMCM�1g: (3.141)

Then, the ELT matrix PM�KM representing (3.138) can be written in the block matrix
form as [62]
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(3.142)

A fundamental property of sub-matrices P
.l/

M , l D 0; 1; : : : ;K � 1 is [62]
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P
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M ŒP
.pC2mC1/

M �
T D 0; (3.143)

where IM is the identity matrix and JM is opposite diagonal identity matrix, both
of order M. 0 is null matrix. Equation (3.143) shows that the row vectors of
P
.p/

M are orthogonal to all rows of P
.pC2mC1/

M . Using (3.143), after some algebraic
manipulations, we get the following relation:
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Since the ELT matrix PM�KM will be a lapped transform only if (3.124) is satisfied,
applying (3.124) to (3.144) we get [62]

K�2m�1X
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M D ım IM; m D 0; 1; : : : ; r � 1; (3.145)

where ım is the Kronecker delta function. The scalar form of (3.145) is given by
Malvar [62]
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(3.146)
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The set of nonlinear equations in (3.146) represents the necessary and sufficient
conditions on the windowing function fwng for the generation of an ELT. When
r D 1; K D 2, the ELT becomes an MLT and perfect reconstruction conditions
imposed on fwng are identical to those of (3.101). When r D 2; K D 4 we get the
following perfect reconstruction conditions:

w4M�1�n D wn; n D 0; 1; : : : ; 2M � 1;
w
2

n C w
2

MCn C w
2

2MCn C w
2

3MCn D 1; n D 0; 1; : : : ;
M

2
� 1;

wn w2MCn C wMCn w3MCn D 0; n D 0; 1; : : : ;
M

2
� 1:

A smooth windowing function identical both for the analysis and synthesis ELT
filter banks satisfying the above conditions is defined as [63]

wn D � 1

2
p
2

C 1

2
cos

�
�

M

�
n C 1

2

�	
: (3.147)

It is important to note that based on a linear algebraic interpretation of the mod-
ulated filter bank, the necessary and sufficient conditions for perfect reconstruction
have been derived in [66] for K > 1 being arbitrary positive integer. It is a more
general case compared to [62, 63] that constrained K to be even integer.

3.3.2.4 ELT Block Transform

The analysis ELT filter bank for the mth data block as a block transform is defined
as [61, 63]
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while the synthesis ELT filter bank as a block transform is defined as
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where fOx.m/n g is the time domain aliased data sequence and fwng is given by (3.147).
The theory, properties, and design methods of the modulated lapped transforms can
be found in [63].



88 3 MDCT/MDST, MLT, ELT, and MCLT Filter Banks: Definitions, General. . .

3.3.2.5 General Perfect Reconstruction Conditions: Biorthogonal Case

Signal representations used in the current audio coding algorithms can be improved
by the incorporation of biorthogonality into the ELT. Relaxing the requirement on
analysis and synthesis windowing functions to be identical leads to the loss of
orthogonality; however, the filter bank can still achieve the perfect reconstruction.
The resulting filter bank is referred to as biorthogonal. Biorthogonality allows
more flexibility in the design of the analysis and synthesis windowing functions
by increasing the number of degrees freedom [58].

Let fhng and fgng be the analysis and synthesis windowing functions, respec-
tively, and let K D 2r, where r is the overlapping factor. Then, general perfect
reconstruction conditions imposed on fhng and fgng are defined as [58]
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gmMCn h.mC2s/MCn D ıs;
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.�1/m gmMCn h.mC2s/MC.M�1�n/ D 0;

s D 0; 1; : : : ; r � 1; n D 0; 1; : : : ;M � 1; (3.150)

where ıs is the Kronecker delta function. When the overlapping factor r D 1, then
K D 2, only adjacent data blocks overlap, and we have the MLT. For this special
case the prefect reconstruction conditions in (3.150) reduce to [58]

gn hn C gMCn hMCn D 1;

gn hMCn � gMCn hn D 0; n D 0; 1; : : : ;
M

2
� 1: (3.151)

For comparison see also Eq. (3.100). Assuming the analysis windowing function
fhng to be symmetric, i.e., hn D h2M�1�n, n D 0; 1; : : : ;M � 1, and using (3.114),
the synthesis windowing function fgng is obtained as

gn D hn

h
2

MCn C h2n
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2

MCn C h
2

n ¤ 0; n D 0; 1; : : : ;M � 1:
(3.152)

When the overlapping factor r D 2, then K D 4, and we have the ELT. The
perfect reconstruction conditions imposed on fhng and fgng are reduced to the
following set of equations [58]

gn hn C gMCn hMCn C g2MCn h2MCn C g3MCn h3MCn D 1; n D 0; 1; : : : ;
M

2
� 1;

gn h3MCn � gMCn h2MCn C g2MCn hMCn � g3MCn hn D 0; n D 0; 1; : : : ;
M

2
� 1;

gn h2MCn C gMCn h3MCn D 0; n D 0; 1; : : : ;M � 1;
(3.153)
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and

hn h2MCn C hMCn h3MCn D 0; n D 0; 1; : : : ;
M

2
� 1: (3.154)

One way of designing the windowing function satisfying the above conditions is to
construct first the analysis windowing function fhng under the constraint in (3.154).
Once fhng is constructed, equations in (3.153) form a set of linear equations than
can be solved to obtain the synthesis windowing function fgng [58]. Alternatively,
an algorithm for the design of an ELT windowing function can be found in [63].

3.4 Complex MCLT Filter Bank

The modulated complex lapped transform (MCLT) is a complex filter bank map-
ping overlapped data blocks of real-valued signal into blocks of complex-valued
transform coefficients [71, 73]. Originally, the MCLT has been introduced into
transform/sub-band coding as a complex extension of the MLT. It is a particular
kind of a generalized DFT filter bank oversampled by a factor of two, whose real
part corresponds to the MLT. One disadvantage of the MLT for some audio coding
applications is that its transform coefficients are real-valued, and therefore they
do not explicitly carry phase information, only magnitude. However, the MCLT
supports both the magnitude and phase representation of the signal in frequency
domain which are useful measures in many perceptual audio coders for spectral
analysis (see Chap. 6). In most applications, the MCLT can be used in place of the
DFT filter bank [73].

In general, the basis functions of the MCLT are defined by the cosine and sine
modulation of the analysis and synthesis windowing function fwng in the form [73]
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.c/

k;n � i p
.s/

k;n; i D p�1; (3.155)
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k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ; 2M � 1: (3.156)

It is clear that the cosine-modulated functions in (3.156) correspond to the MLT
basis functions. There are two main interpretations of this MCLT construction.
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First, the additional sine-modulated functions in (3.156) can be viewed as a 2�
oversampling in the frequency domain, because for every data block of M real-
valued samples, the MCLT results in M complex-valued frequency coefficients. In
other words, the MCLT basis functions form an overcomplete basis [73]. The second
interpretation is that the MCLT is in fact a 2� oversampled DFT filter bank (using
the O2DFT) instead the conventional DFT. Note that unlike in DFT filter banks, the
DC frequency sub-band of the MCLT is complex-valued [71].

Based on (3.156), the analysis MCLT filter bank of an input audio signal fxng,
n D 0; 1; : : : ; 2M � 1, as a block transform is defined as [73]

pk D ck � i sk; k D 0; 1; : : : ;M � 1; (3.157)

where
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and
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where fwng is the sine windowing function given by (3.105) for N D 2M, and
fckg are frequency coefficients of the MLT. Since the MLT is equivalent to the
oddly stacked MDCT filter bank associated with the sine windowing function for
N D 2M, the sine-modulated filter bank (3.159) defines the corresponding oddly
stacked MDST filter bank, and fskg are its transform coefficients. Consequently,
general mathematical properties in the time and frequency domains, relationships,
and matrix representations for the oddly stacked TDAC MDCT/MDST are also
valid for the MCLT. Thus, the MLT or oddly stacked MDCT is the real part of the
MCLT, while the oddly stacked MDST is the imaginary part of the MCLT. We recall
that the oddly stacked MDCT and MDST are, respectively, the real and imaginary
components of the O2DFT [see Eq. (3.63)].

On the other hand, a reconstruction formula of the synthesis MCLT filter bank is
not unique. Specifically, there is a reconstruction formula from the real part only, as
well as one from the imaginary part only [71, 73]. However, the best reconstruction
formula is the average of those from real and imaginary parts (preferred) defined
as [73]
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�
; n D 0; 1; : : : ; 2M � 1; (3.160)
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where fOx.c/n g and fOx.s/n g are time domain aliased data sequences recovered by the
synthesis MLT (MDCT) and MDST filter banks, respectively, defined as
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M�1X

kD0
sk sin

�
�

M

�
k C 1

2

��
n C M C 1

2

�	
;

n D 0; 1; : : : ; 2M � 1: (3.162)

Using both the synthesis MLT (MDCT) and MDST filter banks for the reconstruc-
tion removes the time domain aliasing. It is important to emphasize that if we use
the reconstruction formula (3.160), then the original data sequence fxng is perfectly
reconstructed even without the windowing, overlap/add procedure. It means that
the windowing procedure in the MCLT computation is redundant. In fact, using
the matrix representation of oddly stacked MDCT and MDST filter banks it can be
shown that (3.160) leads to yn D w

2

n xn, n D 0; 1; : : : ; 2M �1 (see below), i.e., there
is no time domain aliasing.

Denoting the MLT (MDCT) and MDST matrices, respectively, by CM�2M and
SM�2M , their transposed versions by C2M�M and S2M�M , and representing the
symmetric windowing function fwng by a diagonal matrix W2M , firstly using
(3.160)–(3.162), then (3.158), (3.159) in the matrix representation, and relations
(3.74), (3.75), the following relation holds in the matrix-vector form [68]:

yT D 1

2

�
ŒOx.c/ �T C ŒOx.s/ �T

�

D 1

2

�
W2M C2M�M cT C W2M S2M�M sT



D 1

2
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2

M
CM�2M W2M xT C 1

2
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2

M
SM�2M W2M xT

D 1

2
W2M

�
IM � JM 0

0 IM C JM

�
W2M xT

C1

2
W2M

�
IM C JM 0

0 IM � JM

�
W2M xT D W

2

2M xT ; (3.163)

where 0 is null matrix, IM is the identity matrix, and JM is the opposite diagonal
identity matrix all of order M.

A biorthogonal version of the MCLT can be constructed by considering non-
identical analysis and synthesis windowing functions fhng and fgng, respectively.
Specifically, wn D hn in (3.158) and (3.159) and wn D gn in (3.161) and (3.162). The
perfect reconstruction property is preserved by assuming the analysis windowing
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function fhng to be symmetric, i.e., hn D h2M�1�n, n D 0; 1; : : : ;M � 1, and
the synthesis windowing function fgng is obtained by using (3.152). Note that for
biorthogonal MCLT (3.160) leads to yn D hngnxn, n D 0; 1; : : : ; 2M � 1.

On the other hand, the nonuniform MCLT (NMCLT) being a nonuniform
oversampled filter bank has been introduced in [69, 72] as a two-stage extension
of the MCLT by cascading a MCLT with shorter size MCLTs applied to high-
frequency sub-bands. Each shorter size MCLT plays the role of merging sub-bands.
Thus, the NMCLT allows a better combination of the frequency resolution and time
localization.
Note 6: A real-valued variant of the MCLT, called the lapped directional transform
(LDT), has been defined in [67, 70]. The central idea behind the LDT is to perform
two MLT filter banks with different complementary basis functions, i.e., with cosine
and corresponding sine basis functions defined by (3.156), and to combine the
resulting spectra in the form of the sum and difference of transform coefficients.
Thus, the LDT allows for detection of spatial orientation by using the corresponding
sine modulation.

3.5 Summary

The original derivations, definitions, general mathematical properties in the time
and frequency domains, and (block) matrix representations of the evenly and oddly
stacked MDCT and MDST, MLT, ELTs, MCLT, and their biorthogonal versions
have been presented. They are cosine/sine-modulated filter banks satisfying the
perfect reconstruction property. Since necessary and sufficient conditions imposed
on the analysis and synthesis windowing functions play an important role to obtain
the perfect reconstruction property, additionally they have been derived and/or
discussed in detail: Windowing procedure and perfect reconstruction (biorthogonal)
conditions in the case of identical and (nonidentical) analysis and synthesis window-
ing functions, design of a windowing function including definitions of commonly
windowing functions used in audio coding applications, adaptive switching of
transform block sizes and windowing functions, and general perfect reconstruction
conditions for the ELT filter bank with multiple overlapping factor both for the
orthogonal and biorthogonal cases are discussed in detail.

Problems and Exercises

1. Consider the evenly stacked backward MDCT and MDST block transforms
(3.7) and (3.9), respectively. Verify the local symmetries of the corresponding
time domain aliased data sequences fOxE�MDCT

n g and fOxE�MDST

n g given by (3.14)
and (3.15), respectively.

2. Verify relations (3.20) and (3.21) between the evenly stacked MDCT and
MDST block transforms.
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3. Verify relations (3.22) and (3.23) between the evenly stacked MDCT/MDST
block transforms and the DFT.

4. Consider the matrices C
E

N
2 �N

and S
E

N
2 �N

representing the evenly stacked MDCT

and MDST, respectively. Show for N D 8 that their transposed versions are
pseudoinverses of their corresponding matrices, i.e., they satisfy four Moore–
Penrose conditions (see Appendix A.1).

5. Verify the periodicity properties of the oddly stacked MDCT and MDST
transform kernels given by (3.53) and (3.54), respectively, and symmetry
properties of oddly stacked MDCT/MDST basis vectors given by (3.55).

6. Repeat Problem 5 for the evenly stacked MDCT and MDST transform kernels.
7. Verify relations (3.61) and (3.62) between the oddly stacked MDCT and MDST

block transforms.
8. Implement by a computer program the relation between the N-point oddly

stacked MDCT, MDST, and the 4N-point DFT using (3.66), and verify the
validity of (3.67) and (3.68).

9. Similarly, consider the matrices C
O

N
2 �N

and S
O

N
2 �N

representing the oddly stacked

MDCT and MDST, respectively. Show for N D 8 that their transposed
versions are pseudoinverses of their corresponding matrices, i.e., they satisfy
four Moore–Penrose conditions (see Appendix A.1).

10. Consider the matrices C
O

N
2 �N

and S
O

N
2 �N

representing the oddly stacked MDCT

and MDST, respectively, each split into two block sub-matrices of order N
2

according to (3.79). Verify Eqs. (3.84)–(3.89) for N D 8.
11. Repeat Problem 10 for the evenly stacked MDCT and MDST matrices C

E

N
2 �N

and S
E

N
2 �N

.

12. The symmetric Landau nonnegative kernel function is defined by (3.108),
and its discrete version by (3.109). For N D 512 using the transformation
(3.107), generate by a computer program the LD windowing function. Then
show its plot and compare it with the KBD windowing function. Additionally,
investigate its properties in the frequency domain by the normalized DFT
spectrum (the frequency log-magnitude response).

13. Using the matrix representation of lapped transforms given by (3.119)–(3.124),
derive the lapped transform for the overlapping factor K D 2. Assume that the
basis vectors of block square sub-matrices P

.l/

M , l D 0; 1, are constructed from
the oddly stacked MDCT (MDST) basis vectors. Verify the properties (3.124).

14. Consider (3.128) representing the analysis MLT filter bank. Derive its common
block transform form given by (3.129) and (3.130).

15. Construct the biorthogonal version of analysis/synthesis MLT filter banks
using a symmetric synthesis windowing function given by (3.115). Then, the
analysis windowing function is given by (3.114). Implement the direct form
of biorthogonal MLT by a computer program, and in particular, show plots
of the analysis and synthesis windowing functions for some value of M (see
also [65]).
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Chapter 4
Fast MDCT/MDST, MLT, ELT, and MCLT
Algorithms

4.1 Introduction

The perfect reconstruction cosine/sine-modulated analysis/synthesis filter banks
such as the MDCT, MLT, MDST, ELT, and MCLT are fundamental processing
components for the time-to-frequency transformation of an audio data block in many
international audio coding standards, proprietary audio compression algorithms,
broadcasting/speech/data communication codecs, as well as open-source royalty
free audio/speech codecs for high quality audio/speech compression. Since the
computations of cosine/sine-modulated filter banks are the most time-consuming
operations in audio coding schemes, the crucial aspect for their applicability
is the existence of fast algorithms that allow their efficient software/hardware
implementation compared to the direct implementation via their corresponding
analytical forms. Over more than two decades a number of fast algorithms for
the efficient implementation of MDCT/MDST, MLT, ELT, and MCLT have been
developed. In general, they are based on the indirect computation via a discrete
sinusoidal unitary transform of a reduced size, or by a recursive generating a higher
order transform from two lower order transforms. Fast algorithms are generally
classified as radix-2 (or 2n-length), even-length, mixed-radix (combination of radix-
2 and radix-q algorithms, where q is an odd integer) or equivalently, composite
length algorithms.

Any complete analysis cosine/sine-modulated filter bank involves the windowing
procedure applied to an input data block followed by its transformation to the
frequency domain via corresponding forward block transform. On the other hand,
any complete synthesis cosine/sine-modulated filter bank involves transformation
of spectral representation back to the time domain via corresponding backward
block transform followed by the windowing/overlap/add procedure to recover the
original data block. In developing fast algorithms for the efficient implementation
of cosine/sine-modulated analysis/synthesis filter banks, for simplicity, they are
considered frequently as block transforms applied to a single data block. Principally,
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by eliminating the time shift factor from cosine/sine transform kernel, the block
transform can always be converted to a discrete sinusoidal unitary transform such as
the DFT, type-II discrete cosine/sine transform (DCT-II/DST-II), or type-IV discrete
cosine/sine transform (DCT-IV/DST-IV). Consequently, from the algorithmic point
of view the cosine/sine-modulated filter banks and the DFT, DCT-II/DST-II, and
DCT-IV/DST-IV are closely interrelated.

In this chapter, fast algorithms for the efficient implementation of the for-
ward/backward evenly stacked MDCT/MDST, oddly stacked MDCT/MDST, MLT,
ELT, and MCLT block transforms are presented. The emphasis is imposed partic-
ularly on basic steps, various tricks (trigonometric and algebraic), and approaches
leading to the derivation of final formulae of a fast algorithm. Therefore, the chapter
has also an educational value, thus giving the reader guidelines about how to derive
a fast algorithm for a specific cosine/sine-modulated filter bank.

Almost all fast evenly stacked MDCT/MDST, oddly stacked MDCT/MDST,
MLT, and MCLT algorithms are classified into the following categories:

• DFT/FFT-based algorithms,
• DCT-II-based algorithms,
• DCT-IV-based algorithms,
• DCT-IV/(scaled)DCT-II-based algorithms,
• Mixed-radix algorithms,
• Algorithms based on recursive/regressive filter structures,

including the unified evenly and oddly stacked MDCT/MDST computation.
For each fast algorithm complete formulae or a sparse block matrix factorization,

a corresponding generalized signal flow graph, the total computational complexity,
and a possible structural simplification of the algorithm are presented. Appendices
provide all the necessary supporting efficient fast computational structures including
short-length modules for completing forward/backward MDCT/MDST, MLT, ELT,
and MCLT efficient implementations.

4.2 Fast Algorithms for the MDCT/MDST Computation in
the Evenly Stacked System

The evenly stacked MDCT/MDST [4] have been adopted in the Dolby Labs AC-
2 audio compression system [9–12]. AC-2 digital audio system is also used in
DigiCipher and DSC (Digital Spectrum Compatible) HDTV audio coders [84]. In
the following, at first definitions of the evenly stacked MDCT and MDST in the
form of block transforms are presented including a relation between the MDCT
and MDST. Then fast algorithms for their efficient implementation are discussed in
detail.
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4.2.1 Definitions of MDCT and MDST Block Transforms

Let fxng; n D 0; 1; : : : ;N � 1 represent a windowed input data sequence, and N
being the length of a data block is assumed to be an even integer. With respect
to Chap. 3, the forward and backward MDCT block transforms are, respectively,
defined as [4]

c
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nD0
xn cos

�
�
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2n C 1C N
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k

	
;

k D 0; 1; : : : ;
N

2
� 1; c

E

N
2

D 0; (4.1)

OxE�MDCT

n D 1

N

N
2 �1X

kD0
�k c

E

k cos

�
�

N

�
2n C 1C N

2

�
k

	
;

n D 0; 1; : : : ;N � 1; (4.2)

where �0 D 1, and �k D 2 for k D 1; 2; : : : ; N
2

� 1. The corresponding forward and
backward MDST block transforms are, respectively, defined as [4]

s
E

k D
N�1X

nD0
xn sin

�
�

N

�
2n C 1C N

2

�
k

	
;

k D 1; 2; : : : ;
N

2
; s

E

0 D 0; (4.3)

OxE�MDST

n D 1

N

N
2X

kD1
�k s

E

k sin

�
�

N

�
2n C 1C N

2

�
k

	
;

n D 0; 1; : : : ;N � 1; (4.4)

where � N
2

D 1, and �k D 2 for k D 1; 2; : : : ; N
2

� 1. fc
E

k g and fs
E

k g are, respectively,

MDCT and MDST coefficients, and fOxE�MDCT

n g in (4.2) and fOxE�MDST

n g in (4.4) are time
domain aliased data sequences. We recall that in the evenly stacked system alternate
MDCT and MDST computations are required, i.e., the MDCT of fxng and the MDST
of fx N

2 Cng, where fxng and fx N
2 Cng are successive adjacent overlapped data blocks.

The MDCT is recognized as the transform operation when the time index of data
block is even, while the MDST is recognized as the transform operation when the
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time index of data block is odd. We note that the relation between the MDCT and
the MDST block transforms given by Britanak and Rao [8]

s
E

N
2 �k

D .�1/ N
4

N�1X

nD0
.�1/n xn cos

�
�

N

�
2n C 1C N

2

�
k

	
; k D 1; 2; : : : ;

N

2
;

(4.5)

results in a simple method to compute the MDST (but of fx N
2 Cng) using only one fast

algorithm for the MDCT computation. For simplicity, in the following discussion
the normalization factors 1

N in (4.2) and (4.4) are neglected.

4.2.2 DFT/FFT-Based Fast Algorithms

The first efficient algorithm for the alternate MDCT and MDST computation in the
evenly stacked system is based on the complex-valued N-point DFT/FFT [13]. It
has been subsequently improved replacing the complex FFT by two N-point real-
valued FFTs (RVFFTs) [14]. In any case, using the symmetry property of the DFT
and defining the MDCT and MDST to be real and imaginary components of a
single complex FFT [73], two windowed and overlapped adjacent data blocks may
be transformed simultaneously by one complex FFT in order to obtain alternating
MDCT/MDST coefficients. Indeed, the forward MDCT and MDST and their
backward versions can be expressed as an DFT/FFT with appropriate post- and
pre-twiddle operations, respectively.

Consider the forward MDCT given by (4.1) and the forward MDST given by
(4.3). Exploiting the fact that FFT operates on an array of complex components,
the forward MDCT/MDST computation can be realized by packing one windowed
data block in the real part of the forward complex FFT, the other in the imaginary
part, and both adjacent overlapping data blocks can be transformed simultaneously
as [9, 10, 13]

fk D e�i . �2 C �
N /k

N�1X

nD0
.xn C i x N

2 Cn/ e�i 2�nk
N ; i D p�1; k D 0; 1; : : : ;N � 1;

(4.6)

where ffkg are DFT coefficients. After the complex FFT computation and post-
twiddle operations, the MDCT and MDST coefficients are obtained as [8]

c
E

k D �1
2
.<e ffN�kg � <e ffkg/; c

E

0 D f0;

s
E

k D 1

2
.<e ffkg C <e ffN�kg/; s

E

0 D 0; k D 1; : : : ;
N

2
: (4.7)
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We note that the complex multiplications by the factors ei . �2 C �
N /k in (4.6) can be

realized as the blocks of Givens–Jacobi rotations (see Appendix F.4).
The number of arithmetic operations can be reduced using two RVFFTs, one for

the MDCT and one for the MDST computation [14]. Let fg
.1/

k g be the RVFFT of

windowed fxng, and fg
.2/

k g be the RVFFT of windowed fx N
2 Cng. Then MDCT and

MDST coefficients are given by Britanak and Rao [8]

c
E

k D g
.1/

k cos�k � g
.1/

N�k sin�k; c
E

0 D g
.1/

0 ;

s
E

k D g
.2/

k sin�k C g
.2/

N�k cos�k;

s
E

0 D 0; s
E

N
2

D g
.2/

N
2

;

k D 1; : : : ;
N

2
� 1; (4.8)

where �k D .�
2

C �
N /k.

Note 1 For the real-time PC-based implementation of AC-2 audio compression
in [12] two methods for the alternate MDCT/MDST computation are discussed:
One method based on complex N

2
-point FFT, and the other based on two N

4
-point

FFTs. The required computational complexity is not mentioned. However, it was
concluded that although both of these methods allow better than 50% savings in
time, the former method is preferred in the trade-off between data manipulation and
processing time reduction.

Now, consider the backward MDCT given by (4.2) and the backward MDST
given by (4.4). The backward MDCT can be mapped into a complex N-point inverse
DFT/FFT as [11]

OxE�MDCT

n D <e

8
<

:

N
2 �1X

kD0

h
�k c

E

k ei . �2 C �
N /k
i

ei 2�nk
N

9
=

;
; n D 0; 1; : : : ;N � 1; (4.9)

while the backward MDST can be mapped as [11]

OxE�MDST

n D =m

8
<

:

N
2X

kD1

h
�k s

E

k ei . �2 C �
N /k
i

ei 2�nk
N

9
=

;
; n D 0; 1; : : : ;N � 1:

(4.10)
By packing the real-valued data sequence f�k c

E

k g or f�k s
E

k g in the real part of an
inverse FFT after multiplying by the twiddle factors ei . �2 C �

N /k, both they become
complex-valued. Similarly, the complex multiplications by the factors ei . �2 C �

N /k

in (4.9) and (4.10) can be realized as the blocks of Givens–Jacobi rotations (see
Appendix F.4). Equations (4.9) and (4.10) imply that the time domain aliased data
sequence fOxE�MDCT

n g is obtained as the real part of the N-point inverse complex
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FFT, while the time domain aliased data sequence fOxE�MDST

n g is obtained as the
imaginary part of the N-point inverse complex FFT. Thus, for the computation of
fOxE�MDCT

n g and fOxE�MDST

n g we need two separate N-point inverse complex FFTs [11]
(see Exercise 1).

Note 2 There exists a simple method how to use a forward complex FFT for
the inverse complex FFT computation [80]. Specifically, at first it is necessary to
exchange the real and imaginary parts in the input complex-valued data sequence,
then performing the forward complex FFT and finally, again exchanging the real
and imaginary parts of the result.

4.2.3 DCT-II-Based Fast Algorithms

Although the DFT/FFT-based fast algorithms are structurally very simple, they
require complex arithmetic. However, the DCT-II-based algorithms require the real
arithmetic only, and they are more efficient in terms of the computational complexity
[7, 8, 67]. The required DCT-II fast algorithm or fast DCT-II computational structure
is presented in Appendix C.1.

4.2.3.1 DCT-II-Based Fast Algorithm [8] and Its Refined Version [7]

The evenly stacked N-point MDCT given by (4.1) can be decomposed into the
form [8]

c
E

k D
N�1X

nD0
xn cos

�
�.2n C 1/k

N
C �

2
k

	

D cos
�

2
k
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nD0
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�
�.2n C 1/k

N

	
� sin

�

2
k

N�1X

nD0
xn sin

�
�.2n C 1/k

N

	
;

k D 0; 1; : : : ;
N

2
� 1: (4.11)

From (4.11) it can be easily seen that the MDCT coefficients are obtained from the
alternate computation of two sums. For even-indexed MDCT coefficients (k is even)
the first sum is computed, while for odd-indexed MDCT coefficients (k is odd) the
second sum is computed, and hence (4.11) is equivalent to

c
E

2k D .�1/k
N�1X

nD0
xn cos

�
�.2n C 1/2k

N

	
;
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c
E

2kC1 D .�1/kC1
N�1X

nD0
xn sin

�
�.2n C 1/.2k C 1/

N

	
; k D 0; 1; : : : ;

N

4
� 1:

(4.12)

The symmetry of cosine and sine transform kernels on the right-hand side of (4.12)
provides the first reduction. Indeed, substituting N�1�n for n D 0; 1; : : : ; N

2
�1 into

both sums of (4.12), and using the trigonometric identities, they can be written as
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;
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E
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�.2n C 1/.2k C 1/
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;

k D 0; 1; : : : ;
N

4
� 1: (4.13)

The last step includes again using the symmetry of cosine and sine transform kernels
and by substitution N

2
�1�n for n D 0; 1; : : : ; N

4
�1 in (4.13), the complete formulae

constituting the fast algorithm for the alternate N-point MDCT/MDST computation
in the evenly stacked system (N is integer divisible by 4) are obtained as [8]
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2k D .�1/k
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n C x
00

N
2 �1�n

/ cos
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�.2n C 1/k
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E
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4 �1X

nD0
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0

n C x
0

N
2 �1�n

/ sin

�
�.2n C 1/.2k C 1/

4.N=4/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.14)

where

x
0

n D xn � xN�1�n; x
00

n D xn C xN�1�n; n D 0; 1; : : : ;
N

2
� 1: (4.15)
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The cosine and sine transform kernels in (4.14) are recognized as an unnormalized
N
4

-point DCT-II of fx
00

n C x
00

N
2 �1�n

g and an unnormalized N
4

-point DST-IV of

fx
0

n C x
0

N
2 �1�n

g, respectively. Thus, the even-indexed MDCT coefficients are con-

verted to the DCT-II while the odd-indexed MDCT coefficients are converted to the
DST-IV.

The corresponding generalized signal flow graph for the alternate forward and
backward MDCT/MDST computation is shown in Fig. 4.1 for N D 16. Based
on the relation between the MDCT and MDST block transforms given by (4.5),
the symbols in brackets correspond to the MDST computation. After the MDCT
computation, the MDST coefficients are in reverse order. From (4.14) it can be easily
seen that the fast MDCT algorithm is generally valid for any integer N divisible
by 4. Therefore, its computational complexity depends on the adopted fast DCT-
II and DST-IV algorithms (see Appendices C.1 and C.2, respectively). N

4
may be

even or odd, thus requiring efficient even-length or odd-length DCT-II and DST-IV
algorithms.

The backward MDCT/MDST computation can be realized by reversing the
generalized signal flow graph for the forward MDCT computation and performing
inverse operations. However, there is a minor change. The backward MDCT given
by (4.2) can be decomposed into the form

OxE�MDCT
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�
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	�
;

n D 0; 1; : : : ;N � 1: (4.16)

Using the odd anti-symmetry property of MDCT coefficients (when N
2

is even, see
Chap. 3) we have

OxE�MDCT
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;

n D 0; 1; : : : ;N � 1; (4.17)

which can be finally written as

OxE�MDCT
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Fig. 4.1 Generalized signal flow graph for the alternate forward and backward MDCT/MDST
computation in the evenly stacked system for N D 16
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E
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�
�.2n C 1/.2k C 1/

4.N=4/

	
;

n D 0; 1; : : : ;N � 1: (4.18)

It means that for the backward MDCT/MDST computation, the MDCT coefficients
fc

E

k g, k D 1; 2; : : : ; N
2

� 1, have to be scaled by the factor of 2 except for c
E

0

according to (4.2). This is shown in the generalized signal flow graph in Fig. 4.1.
Thus, the generalized signal flow graph represents the unified forward and back-
ward MDCT/MDST computation in the evenly stacked system for any integer N
divisible by 4.
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The fast algorithm defined by (4.14) and (4.15) can be refined to involve two
identical unnormalized N

4
-point DCTs-II as follows. At first, substituting N

4
� 1 � k

for k into the second sum of (4.14) we have
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; (4.19)

k D 0; 1; : : : ;
N

4
� 1:

Based on the relation between the DST-IV and the corresponding DCT-IV [75]
(see also Appendix C.2), the DST-IV transform kernel is converted to that of the
corresponding DCT-IV. Finally, using the trigonometric identity cos.˛ C ˇ/ D
2 cos.˛/ cos.ˇ/ � cos.˛ � ˇ/, setting ˛ D �

N=2 .2n C 1/k, ˇ D �
N .2n C 1/, and

exploiting the fact that the MDCT coefficients have odd anti-symmetry property,
i.e., c

E

N
2 C2k�1 D � c

E

N
2 �2kC1 when N

2
is even (see Chap. 3), we get the complete

formulae of the refined fast algorithm for the forward N-point MDCT computation
defined as [7]
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4
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whereby in the second sum of (4.20), the MDCT coefficients are related to the DCT-
II coefficients fc

II

k g by
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4 2 c
II
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4 �1; if k D 0;
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2 �1�2k

D .�1/ N
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N
4 �1�k

C c
E

N
2 �2kC1; for k > 0; (4.21)

and
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Fig. 4.2 Refined generalized signal flow graph for the alternate forward and backward
MDCT/MDST computation in the evenly stacked system for N D 16

zn D .�1/n .x0

n C x
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/; n D 0; 1; : : : ;
N

4
� 1: (4.22)

The corresponding refined generalized signal flow graph for the alternate fast
MDCT/MDST computation is shown in Fig. 4.2 for N D 16. The backward
MDCT/MDST computation can be realized by reversing the generalized signal
flow graph for the forward MDCT and performing inverse operations. The MDCT
coefficients have to be scaled according to (4.2) (see Fig. 4.1).
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The total computational complexity of the refined fast MDCT/MDST algorithm
[7] in the general case, when N is integer divisible by 4 is given by N

4
multiplications,

7N
4

�1 additions, 1 shift plus the arithmetic complexity of two N
4

-point DCT-IIs. The
backward MDCT/MDST requires exactly N

2
less number of additions than that of

the forward MDCT.

4.2.3.2 DCT-II-Based Fast Algorithm [7]

Substituting N � 1 � n for n into (4.1) we have

c
E

k D
N
2 �1X

nD0
.xn C .�1/k xN�1�n/ cos

�
�

N

�
2n C 1C N

2

�
k

	
;

k D 0; 1; : : : ;
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2
� 1: (4.23)

Now consider separately the even-indexed and odd-indexed MDCT coefficients in
(4.23). Then, we have [7]
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k D 0; 1; : : : ;
N

4
� 1:

The transform kernels for even-indexed and odd-indexed MDCT coefficients in
(4.24) are recognized to be N

2
-point MDCT and N

2
-point oddly stacked MDCT,

respectively. Again, using the trigonometric identity cos.˛Cˇ/ D 2 cos.˛/ cos.ˇ/�
cos.˛ � ˇ/, setting ˛ D �

N .2n C 1C N
2
/, ˇ D �

N=2 .2n C 1C N
2
/k, the second sum

in (4.24) can be written in the form
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and hence, we have the following expressions
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where
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Compared to (4.15), the data sequence fx
0

ng is multiplied by 2 cos
�
�
N .2n C 1C N

2
/
�
.

Since the transform kernels in both sums in (4.26) have the identical form, let us
substitute N

2
� 1 � n for n, and we get
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The last step involves converting the MDCT kernel in both sums to that of the
unnormalized DCT-II according to
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and the complete formulae for the fast N-point MDCT computation are given by
Britanak [7]
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N

4
� 1; (4.30)

whereby in the second sum of (4.30) the MDCT coefficients are related to the DCT-
II coefficients fc

II

k g by

c
E

1 D 2 c
II

0 ; if k D 0;

c
E

2kC1 D .�1/k c
II

k � c
E

2k�1 for k > 0: (4.31)

The corresponding generalized signal flow graph for the forward MDCT com-
putation is shown in Fig. 4.3 for N D 16. Obviously, the backward MDCT/MDST
computation can be realized by reversing the generalized signal flow graph for the
forward MDCT and performing inverse operations, and the MDCT coefficients have
to be scaled according to (4.2) (see Fig. 4.1).

The total computational complexity of the fast MDCT algorithm [7] in the
general case, when N is integer divisible by 4 is given by N

2
multiplications, 7N

4
� 1

additions, 1 shift plus the arithmetic complexity of two N
4

-point DCT-IIs. The
backward MDCT/MDST requires exactly N

2
less number of additions than that of

the forward MDCT.

4.2.3.3 DCT-II-Based Fast Algorithm [67]

Perhaps the most elegant fast algorithm for the MDCT and MDST computation in
the evenly stacked system in terms of the computational complexity, regularity, and
structural simplicity was developed in [67] as a part of the fast algorithm developed
for the complex MCLT filter bank. It was shown that the evenly stacked N-point
MDCT and MDST may be computed with two N

2
-point DCTs-II of appropriately

folded input sequences.
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Fig. 4.3 Generalized signal flow graph for the alternate forward and backward MDCT/MDST
computation in the evenly stacked system for N D 16

Consider the forward MDCT and MDST given by (4.1) and (4.3), respectively.
In order to eliminate the time shift factors N

2
in the MDCT and MDST transform

kernels, apply a permutation to the data sequence fxng defined as

yn D

8
<̂

:̂

x 3N
4 Cn; n D 0; 1; : : : ; N

4
� 1;

xn� N
4
; n D N

4
; N
4

C 1; : : : ;N � 1;
(4.32)
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The permutation defined by (4.32) can be interpreted as a circular shift of the
original data sequence fxng to the right in the period N by N

4
samples. Subsequently,

after the elimination of time shift factors N
2

, using the symmetry property of cosine
and sine transform kernels, the forward N-point MDCT is reduced to [67]

c
E

k D
N�1X

nD0
yn cos

�
�.2n C 1/k

N

	
D

N
2 �1X

nD0
.yn C yN�1�n/ cos

�
�.2n C 1/k

2.N=2/

	
;

k D 0; 1; : : : ;
N

2
� 1; (4.33)

while the forward N-point MDST is reduced to [67]

s
E

k D
N�1X

nD0
yn sin

�
�.2n C 1/k

N

	
D

N
2 �1X

nD0
.yn � yN�1�n/ sin

�
�.2n C 1/k

2.N=2/

	
;

k D 0; 1; : : : ;
N

2
� 1: (4.34)

The transform kernel in (4.33) is recognized as an unnormalized N
2

-point DCT-II of
fyn CyN�1�ng, and the transform kernel in (4.34) as the unnormalized corresponding
N
2

-point DST-II of fyn � yN�1�ng. Finally, combining (4.32) and (4.33), the fast
algorithm for the forward N-point MDCT computation (N is integer divisible by 4)
is defined as [67]

c
E

k D
N
2 �1X

nD0
un cos

�
�.2n C 1/k

2.N=2/

	
; k D 0; 1; : : : ;

N

2
� 1; (4.35)

where

un D

8
<̂

:̂

x 3N
4 Cn C x 3N

4 �1�n; n D 0; 1; : : : ; N
4

� 1;

xn� N
4

C x 3N
4 �1�n; n D N

4
; N
4

C 1; : : : ; N
2

� 1:
(4.36)

On the other hand, combining (4.32) and (4.34) and using the relation between the
DCT-II and the corresponding DST-II [75], the fast algorithm for the forward N-
point MDST computation (N is integer divisible by 4) is defined as [67]

s
E

N�k D
N
2 �1X

nD0
.�1/n vn cos

�
�.2n C 1/k

2.N=2/

	
; k D 0; 1; : : : ;

N

2
� 1; (4.37)
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where

vn D

8
<̂

:̂

x 3N
4 Cn � x 3N

4 �1�n; n D 0; 1; : : : ; N
4

� 1;

xn� N
4

� x 3N
4 �1�n; n D N

4
; N
4

C 1; : : : ; N
2

� 1:
(4.38)

The generalized signal flow graph for the forward MDCT computation in the evenly
stacked system for N D 16 is shown in Fig. 4.4. The corresponding generalized
signal flow graph for the forward MDST computation can be easily deduced taking
into account (4.38) and sign changes applied to odd-indexed samples of fvng
according to (4.37). The MDST coefficients will be in reverse order.

Fig. 4.4 Generalized signal
flow graph for the forward
and backward MDCT
computation in the evenly
stacked system for N D 16
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Obviously, the backward MDCT or MDST computation can be realized by
reversing the corresponding generalized signal flow graph for the forward MDCT
and MDST and performing inverse operations. Before the backward MDCT and
MDST computation, the MDCT coefficients have to be scaled according to (4.2),
while the MDST coefficients according to (4.4). For this fast algorithm based on
the relation between the MDCT and the MDST block transforms given by (4.5), the
forward and backward MDST can be computed alternatively using the fast MDCT
algorithm only.

The total computational complexity of the fast MDCT algorithm [67] in the
general case when N is integer divisible by 4 is given by N

2
additions plus the

arithmetic complexity of the N
2

-point DCT-II. The backward MDCT/MDST requires
exactly N

2
less number of additions than that of the forward MDCT.

Note 3 In the theory of fast algorithms for discrete unitary (orthogonal) trans-
forms a generalized signal flow graph defines a sparse (block) matrix factorization
(recursive or non-recursive) of a given transform matrix [75]. Therefore, generalized
signal flow graphs for the MDCT/MDST computation in the evenly stacked system
shown in Figs. 4.1, 4.2, 4.3, and 4.4 correspond to sparse matrix factorizations of
the MDCT matrix [7]. Based on the relation between the MDCT and MDST block
transforms given by (4.5) we can obtain sparse (block) matrix factorizations of the
corresponding MDST matrix.

4.2.4 Comparison of Evenly Stacked Fast MDCT/MDST
Algorithms

Comparison of the discussed fast algorithms for the alternate (simultaneous)
MDCT/MDST computation in the evenly stacked system in terms of arithmetic
complexity for N D 2n, n > 2 is summarized in Table 4.1. For the DFT/FFT-based
algorithms it is assumed that the best 2n-point complex split-radix FFT [2, 79, 85]
and RVFFT algorithms [2, 86] are employed. The computational complexity of
DFT/FFT-based algorithms can be further improved by the FFT algorithm [82]
being actually the modified split-radix FFT algorithm with fewer total number of

Table 4.1 Comparison of fast algorithms for the alternate (simultaneous) MDCT/MDST compu-
tation in the evenly stacked system in terms of arithmetic complexity for N D 2n, n > 2

Fast algorithm # of real mults # of real adds # of shifts

N-point complex FFT [10, 13] Nn C 1 N.3n C 1/C 1 N

Two N-point RVFFTs [14] N.n � 1/ N.3n � 4/C 6

Refined DCT-II-based [7] N
2
.n � 1/ N

2
.3n � 1/C 2 2

DCT-II-based [7] N
2

n N
2
.3n � 1/C 2 2

DCT-II-based [67] N
2
.n � 1/ N

2
.3n � 3/C 2 2
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real arithmetic operations. Specifically, for the N D 2n-length FFT it reduces the
computational complexity asymptotically from 4Nn CO .N/ to 34

9
Nn CO .N/ real

arithmetic operations [37].
For the DCT-II-based fast algorithms in general case, when N is a composite

integer, i.e., it is of the form N D 2n � q, where q is an odd positive integer (or
the mixed-radix length being the combination of radix-2 and radix-q lengths), the
computational complexity of the N-point DCT-II is given by (C.8) in Appendix C.

4.3 Fast Algorithms for the MDCT (MLT)/MDST
Computation in the Oddly Stacked System

Compared to the evenly stacked MDCT [4], the oddly stacked MDCT [5] or equiv-
alently, the MLT [2], became preferring for the time-to-frequency transformation of
an audio data block in many international audio coding standards as well as in many
proprietary audio compression algorithms [1, 6]. In the following, at first definitions
of the oddly stacked MDCT and the corresponding MDST block transforms are
presented including a relation between the MDCT and MDST. Then, a relation
between the MDCT and MLT, and fast algorithms for their efficient implementation
are discussed in detail.

4.3.1 Definitions of MDCT (MLT) and MDST Block
Transforms

Let fxng; n D 0; 1; : : : ;N � 1 represent a windowed input data sequence, and N
being the length of a data block is assumed to be an even integer. With respect
to Chap. 3, the forward and backward MDCT block transforms are, respectively,
defined as [5]

c
O

k D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1;

(4.39)

and

OxO�MDCT

n D 4

N

N
2 �1X

kD0
c

O

k cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; n D 0; 1; : : : ;N � 1:

(4.40)
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The corresponding forward and backward MDST block transforms are, respectively,
defined as [18]

s
O

k D
N�1X

nD0
xn sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1;

(4.41)

and

OxO�MDST

n D 4

N

N
2 �1X

kD0
s

O

k sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
; n D 0; 1; : : : ;N � 1;

(4.42)

where fc
O

k g/fs
O

k g are MDCT/MDST coefficients, and fOxO�MDCT

n g/fOxO�MDST

n g are time
domain aliased data sequences recovered by the backward MDCT/MDST. We note
that the relation between the MDCT and the MDST block transforms given by
Britanak and Rao [18]

s
O

N
2 �k�1 D .�1/ N

4

N�1X

nD0
.�1/n xn cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; (4.43)

results in a simple method to compute the MDST using only one fast algorithm for
the MDCT computation.

The original definitions of the forward and backward MLT block transforms
[2, 47] are simply obtained by substituting N D 2M into (4.39) and (4.40). On
the other hand, the MLT is always implicitly associated with the sine windowing
function. Therefore, from algorithmic point of view the fast MDCT and MLT algo-
rithms are equivalent. For simplicity, in the following discussion the normalization
factors 4

N in (4.40) and (4.42) are neglected.

4.3.2 DFT/FFT-Based Fast Algorithms

Traditionally, after introducing any new sinusoidal unitary transform or any cosine-
modulated filter bank to digital signal processing, in developing fast algorithms for
their efficient computation the DFT and its fast implementation, FFT, frequently
have been used in the first place. Indeed, similarly as for the evenly stacked MDCT,
several fast DFT/FFT-based algorithms for the oddly stacked MDCT computation
[15, 23–25, 28, 32, 34, 36] and the MLT computation [45, 46] have been developed.
They are derived and discussed in the following subsections. The required fast
DFT/FFT algorithms are presented in [2].
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4.3.2.1 DFT/FFT-Based Fast Algorithm [23]

The first computationally efficient DFT/FFT-based MDCT algorithm originally
proposed for the realization of real-valued perfect reconstruction single sideband
analysis/synthesis filter banks [78] has been reported in [23]. Due to the same basic
symmetry property of MDCT coefficients (see Chap. 3) and of the odd-time odd-
frequency DFT (O2DFT) coefficients (see Appendix B.1), the fast forward and
backward MDCT computation is based on the fast O2DFT algorithm derived for
odd/even symmetric real-valued data sequences (see Appendix B.2).

The forward MDCT block transform given by (4.39) can be expressed in terms
of the O2DFT as [23]

c
O

k D 2 <e

(

e�i �4 .2kC1/
N�1X

nD0
xn e�i 2�.2kC1/.2nC1/

4N

)

;

i D p�1; k D 0; 1; : : : ;
N

2
� 1: (4.44)

As the first step, the original windowed data sequence fxng is split into its real-valued
odd and even symmetric parts, respectively, as

un D 1

2
.xn � xN�1�n/; vn D 1

2
.xn C xN�1�n/; n D 0; 1; : : : ;N � 1:

(4.45)
For the real-valued odd symmetric part fung, the real-valued even symmetric part
fvng and their corresponding O2DFT, the following symmetry relations hold [23]

un D �uN�1�n , Uk D �UN�1�k;

vn D vN�1�n , i Vk D i VN�1�k; n; k D 0; 1; : : : ;N � 1: (4.46)

Relations given by (4.46) imply that for fung being the real-valued odd symmetric
data sequence, the transformed sequence fUkg is purely real and odd symmetric,
while for fvng being the real-valued even symmetric data sequence, the transformed
sequence fVkg is purely imaginary and even symmetric [23]. Thus, the odd and
even symmetric parts given by (4.46) may be transformed separately using the fast
O2DFT algorithm (see Appendix B.2), and then added afterwards [23]

xn D un C vn , Uk C i Vk: (4.47)

This is already a reduction in computational complexity, because only two FFTs of
the length N

4
are required compared to the direct realization of (4.44) requiring an

FFT of the length N. However, exploiting the symmetry properties of O2DFT the
number of FFTs can be reduced to only one FFT of the length N

4
, whereby N is an

integer divisible by 4 [23].
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Using (4.46) and (4.47), (4.44) may be expressed in the equivalent form as

c
O

k D 2 <e
n
e�i �4 .2kC1/ .Uk � i Vk/

o
; k D 0; 1; : : : ;

N

2
� 1: (4.48)

Taking the real part of (4.48), after some algebraic manipulations we get

c
O

k D p
2 cos

�

2
k .Uk � i Vk/ � p

2 sin
�

2
k .Uk C i Vk/;

k D 0; 1; : : : ;
N

2
� 1; (4.49)

where the cosine and sine terms are defined on cyclic sets

C D f1; 0;�1; 0g; cos
�

2
k 2 C; 8 k mod 4;

S D f0; 1; 0;�1g; sin
�

2
k 2 S; 8 k mod 4: (4.50)

Now, split the MDCT coefficients fc
O

k g into sequences containing the even- and odd-
indexed values only, and from (4.49) we get

c
O

2k D p
2 .�1/k .U2k � i V2k/;

c
O

2kC1 D �p
2 .�1/k .U2kC1 C i V2kC1/;

k D 0; 1; : : : ;
N

4
� 1: (4.51)

Using the symmetry relations given by (4.46) for values with odd indices we have

U2kC1 D �UN�2�2k and V2kC1 D VN�2�2k; (4.52)

and the odd-indexed MDCT coefficients can be expressed as a function of the even-
indexed values as

c
O

2kC1 D p
2 .�1/k .UN�2�2k � i VN�2�2k/; k D 0; 1; : : : ;

N

4
� 1: (4.53)

Substituting N
4

C k for k into the first equation of (4.51) we get

c
O

N
2 C2k

D p
2 .�1/ N

4 CkC1 .U N
2 C2k � i V N

2 C2k/; k D 0; 1; : : : ;
N

4
� 1; (4.54)

and finally, using (4.51) and (4.54), after applying the fast O2DFT algorithm (see
Appendix B.2) we have
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p
2 .�1/k c

O

2k C i
p
2 .�1/ N

4 CkC1 c
O

N
2 C2k

D
h
.U2k � i V2k/ � i .U N

2 C2k � i V N
2 C2k/

i

D
h
.U2k � V N

2 C2k/ � i .U N
2 C2k C V2k/

i

D e�i �.8kC1/
4N

N
4 �1X

nD0

h
yn e�i �.8nC1/

4N

i
e�i 2�kn

N=4 ;

k D 0; 1; : : : ;
N

4
� 1; (4.55)

where

yn D
h
.u2n � v N

2 C2n/ � i .u N
2 C2n C v2n/

i
; n D 0; 1; : : : ;

N

4
� 1: (4.56)

From definitions of odd and even parts given by (4.45), the expressions for real
and imaginary parts on the right-hand side of (4.56) in terms of the original data
sequence fxng correspond to

u2n � v N
2 C2n D 1

2

h
.x2n � x N

2 �1�2n/ � .xN�1�2n C x N
2 C2n/

i
;

u N
2 C2n C v2n D 1

2

h
.x2n � x N

2 �1�2n/C .xN�1�2n C x N
2 C2n/

i
;

n D 0; 1; : : : ;
N

4
� 1: (4.57)

Now we are able to formulate the complete formulae of the fast DFT/FFT-based
algorithm for the forward MDCT computation as follows [23]:

fk D f2k C i f N
2 C2k D

p
2

2

N
4 �1X

nD0
Œ.an � bn/ � i .an C bn/� e�i �.4nC1/.4kC1/

2N

D
p
2

2
e�i �.8kC1/

4N

N
4 �1X

nD0

h
Œ.an � bn/ � i .an C bn/� e�i �.8nC1/

4N

i
e�i 2�kn

N=4 ;

k D 0; 1; : : : ;
N

4
� 1; (4.58)
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where

an D x2n � x N
2 �1�2n; bn D xN�1�2n C x N

2 C2n;

n D 0; 1; : : : ;
N

4
� 1: (4.59)

The final MDCT coefficients are obtained as

c
O

2k D .�1/k <e ffkg; c
O

2kC1 D .�1/ N
4 CkC1 =m ff N

4 �1�kg;

k D 0; 1; : : : ;
N

4
� 1; (4.60)

or alternatively, as

c
O

2k D .�1/k <e ffkg; c
O

N
2 �1�k

D .�1/ N
4 CkC1 =m ffkg;

k D 0; 1; : : : ;
N

4
� 1: (4.61)

The transform kernel on the right-hand side of (4.58) is the forward N
4

-point complex
FFT. The generalized signal flow graph of the fast DFT/FFT-based algorithm for
the forward MDCT computation [23] is shown in Fig. 4.5. Complex multiplications

by e�i �.8nC1/
4N and e�i �.8kC1/

4N correspond, respectively, to two identical blocks of N
4

Givens–Jacobi pre- and post-rotations (see Appendix F.4).

Scaling factors
p
2
2

in (4.58) can be incorporated into the block of Givens–Jacobi
pre-rotations. Then, for the efficient implementation of pre-rotations, the bilinear
computational structure has to be used (see Appendix F.3). Further, if N

4
is odd, then

.�1/ N
4 CkC1 in (4.60) and (4.61) is reduced to .�1/k. For 2n-lengths, is reduced to

.�1/kC1.
Now consider the backward MDCT block transform given by (4.40). Let fyng

represent an arbitrary real-valued data sequence. Then, with respect to (4.58) for the
inverse O2DFT computation the following relation holds (see Appendix B.2):

yn D O2DFT�1ffkg D O2DFTff
�

k g; (4.62)

where � denotes the complex conjugate. Consequently, the inverse O2DFT computa-
tion can be realized by the forward O2DFT algorithm. Thus, the fast DFT/FFT-based
algorithm for the backward MDCT computation is defined as [23]

yn D y2n C i y N
2 C2n

D
p
2

2

N
4 �1X

kD0

h
.�1/k c

O

2k C i .�1/ N
4 CkC1 c

O

N
2 �1�2k

i�
e�i �.4nC1/.4kC1/

2N
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Fig. 4.5 Generalized signal flow graph for the fast DFT/FFT-based forward MDCT computation

[23] in the oddly stacked system for N D 16, and ˛ D
p
2

2

D
p
2

2
e�i �.8nC1/

4N

N
4 �1X

kD0

h
Œ.�1/k c

O

2k � i .�1/ N
4 CkC1 c

O
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2 �1�2k

� e�i �.8kC1/
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e�i 2�kn

N=4 ;

n D 0; 1; : : : ;
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4
� 1: (4.63)

Exploiting the symmetry properties of time domain aliased data sequence fOxO�MDCT

n g
(see Chap. 3), it is recovered as [23]
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OxO�MDCT

2n D <e fyng C =m fyng; OxO�MDCT

N
2 �1�2n

D �OxO�MDCT

2n ;

OxO�MDCT

N
2 C2n

D �<e fyng C =m fyng; OxO�MDCT

N�1�2n D OxO�MDCT

N
2 C2n

;

n D 0; 1; : : : ;
N

4
� 1: (4.64)

The total computational complexity of the fast DFT/FFT-based algorithm for the
forward N-point MDCT computation [23] is given by 3N

2
real multiplications, 5N

2

real additions plus the complexity of N
4

-point forward complex FFT. The backward
MDCT computation requires exactly N

2
real additions less than that of the forward

MDCT.

4.3.2.2 DFT/FFT-Based Fast Algorithm [24, 34, 36]

Another fast DFT/FFT-based MDCT algorithm was developed in [24, 34], and its
improved implementation was described in [36]. The algorithm is very similar to
that discussed in previous subsection although it was derived by a quite different
procedure. It is based on a N

4
-point inverse complex-valued DFT/FFT.

The forward MDCT block transform given by (4.39) can be written in the
equivalent as [24]

c
O

k D
N�1X

nD0
xn cos

h �
2N
.2n C 1/.2k C 1/C �

4
.2k C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1: (4.65)

The even anti-symmetry of MDCT coefficients (see Chap. 3) allows to restrict the
computation to only half of coefficients. For the derivation of algorithm, the even-
indexed coefficients are chosen. The odd-indexed coefficients can be deduced from
the even anti-symmetry property, i.e., c

O

2kC1 D �c
O

N�2�2k for k D 0; 1; : : : N
4

� 1.

Then (4.65) replacing c
O

2k by z2k is equivalent to

z2k D
N�1X

nD0
xn cos

h �
2N
.2n C 1/.4k C 1/C �

4
.4k C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1; (4.66)

which using the trigonometric identity for cosine transform kernel can be rewrit-
ten as
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z2k D .�1/k
p
2

2

N�1X

nD0
xn

�
cos

h �
2N
.2n C 1/.4k C 1/

i

� sin
h �
2N
.2n C 1/.4k C 1/

i�
;

k D 0; 1; : : : ;
N

2
� 1: (4.67)

The symmetric cosine and sine transform kernels in (4.67) with respect to the time
and frequency indices n and k, respectively, can be obtained by introducing the
following permutation [24]

x
0

n D x2n; x
00

n D xN�1�2n; n D 0; 1; : : : ;
N

2
� 1; (4.68)

and from (4.67) we get

z2k D .�1/k
p
2

2

N
2 �1X

nD0
x2n

�
cos

h �
2N
.4n C 1/.4k C 1/

i

� sin
h �
2N
.4n C 1/.4k C 1/

i�

�.�1/k
p
2

2

N
2 �1X

nD0
xN�1�2n

�
cos

h �
2N
.4n C 1/.4k C 1/

i

C sin
h �
2N
.4n C 1/.4k C 1/

i�
; k D 0; 1; : : : ;

N

2
� 1: (4.69)

Now, for simplicity in the subsequent derivation of algorithm denote the cosine and
sine transform kernels in (4.69) as

cs D cos
h �
2N
.4n C 1/.4k C 1/

i
; sn D sin

h �
2N
.4n C 1/.4k C 1/

i
:

Substituting N
4

C k for k into (4.69) we have

z2k D .�1/k
p
2

2

N
2 �1X

nD0
x2n .cs � sn/ � xN�1�2n .cs C sn/;

z N
2 C2k D .�1/ N

4 CkC1
p
2

2

N
2 �1X

nD0
xN�1�2n .cs � sn/C x2n .cs C sn/;

k D 0; 1; : : : ;
N

4
� 1: (4.70)
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Finally, substitute N
4

C n for n in (4.70). After some algebraic manipulations we get

z2k D .�1/k
p
2

2

N
4 �1X

nD0

.x2n � x N
2 �1�2n/ .cs � sn/� .xN�1�2n C x N

2 C2n/ .cs C sn/;

z N
2 C2k D .�1/ N

4 Ck

p
2

2

N
4 �1X

nD0

.xN�1�2n C x N
2 C2n/ .cs � sn/C .x2n � x N

2 �1�2n/ .cs C sn/;

k D 0; 1; : : : ;
N

4
� 1: (4.71)

The last step includes mapping (4.71) into the inverse N
4

-point complex DFT/FFT
(N is integer divisible by 4) as [24]

zk D .�1/k z2k C i .�1/ N
4 Ck z N

2 C2k D
p
2

2

N
4 �1X

nD0

Œ.an � bn/C i .an C bn/� ei 2�.4nC1/.4kC1/
4N

D
p
2

2
ei 2�k

N

N
4 �1X

nD0

h
Œ.an � bn/C i .an C bn/� ei �.4nC1/

2N

i
ei 2�kn

N=4 ;

k D 0; 1; : : : ;
N

4
� 1; (4.72)

where fang and fbng are given by (4.59). The final MDCT coefficients are obtained
as [24]

c
O

2k D .�1/k <e fzkg; c
O

N
2 �1�2k

D .�1/ N
4 Ck =m fzkg;

k D 0; 1; : : : ;
N

4
� 1: (4.73)

The transform kernel on the right-hand side of (4.72) is the inverse N
4

-point complex
FFT. The generalized signal flow graph of the fast DFT/FFT-based algorithm for
the forward MDCT computation [24] is shown in Fig. 4.6. Complex multiplications

by ei �.4nC1/
2N and ei 2�k

N correspond, respectively, to two blocks of N
4

Givens–Jacobi

pre- and post-rotations (see Appendix F.4). Scaling factors
p
2
2

in (4.72) can be
incorporated into the block of Givens–Jacobi pre-rotations. Then, for the efficient
implementation of pre-rotations, the bilinear computational structure has to be used
(see Appendix F.3). Further, if N

4
is even, then .�1/ N

4 Ck in (4.72) and (4.73) is
reduced to .�1/k.

Now consider the backward MDCT block transform given by (4.40). Since
the DFT is the unitary discrete transform, the approach in [80] allows for the
forward complex FFT computation to use the inverse complex FFT. Specifically,
it is necessary at first to exchange the real and imaginary parts in the input complex-
valued data sequence, then performing the inverse complex FFT and finally, again
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Fig. 4.6 Generalized signal flow graph for the fast DFT/FFT-based forward MDCT computation

[24] in the oddly stacked system for N D 16, and ˛ D
p
2

2

exchanging the real and imaginary parts of the result. Let fyng represent an
arbitrary real-valued data sequence. Thus, the fast DFT/FFT-based algorithm for
the backward MDCT computation is defined as [24]

yn D y2n C i y N
2 C2n D

p
2

2

N
4 �1X

kD0

h
.�1/ N

4 Ck c
O

N
2 �1�2k

C i .�1/k c
O

2k�
i

ei 2�.4nC1/.4kC1/
4N

D
p
2

2
ei 2�n

N

N
4 �1X

kD0

h
Œ.�1/ N

4 Ck c
O

N
2 �1�2k

C i .�1/k c
O

2k� ei �.4kC1/
2N

i
ei 2�kn

N=4 ;

n D 0; 1; : : : ;
N

4
� 1: (4.74)
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Exploiting the symmetry properties of time domain aliased data sequence fOxO�MDCT

n g
(see Chap. 3), it is recovered as [24]

OxO�MDCT

2n D <e fyng C =m fyng; OxO�MDCT

N
2 �1�2n

D �OxO�MDCT

2n ;

OxO�MDCT

N
2 C2n

D <e fyng � =m fyng; OxO�MDCT

N�1�2n D OxO�MDCT

N
2 C2n

; n D 0; 1; : : : ;
N

4
� 1:
(4.75)

The total computational complexity of the fast DFT/FFT-based algorithm for the
forward N-point MDCT computation [24] is given by 3N

2
real multiplications, 5N

2

real additions plus the complexity of N
4

-point forward complex FFT. The backward
MDCT computation requires exactly N

2
real additions less than that of the forward

MDCT.
Note 4 The windowing procedure by the sine windowing function can directly

be incorporated into the fast algorithm without increasing the computational
complexity [24]. An improved implementation of the windowing procedure by the
sine windowing function both for the analysis and synthesis MLT (MDCT) filter
bank is discussed in [36].

4.3.2.3 DFT/FFT-Based Fast Algorithm [25, 32]

The main idea of a fast DFT/FFT-based MDCT algorithm outlined in [32] is based
on the simple fact that the forward MDCT block transform given by (4.39) can be
written in the following equivalent form:

c
O

k D <e

(
N�1X

nD0
xn� N

4
e�i 2�.2nC1/.2kC1/

4N

)

D
N�1X

nD0
xn� N

4
cos

h �
2N
.2n C 1/.2k C 1/

i
;

i D p�1; k D 0; 1; : : : ;
N

2
� 1: (4.76)

The transform kernels on the right-hand side of (4.76) are recognized, respectively,
as the forward O2DFT and the real-valued polyphase filter bank derived from the
DCT-IV kernel [25]. The term xn� N

4
is interpreted as a shifting of the original

data sequence fxng by N
4

samples with respect to the cosine transform kernel. In
fact, exploiting the anti-periodicity property of the cosine transform kernel with the
period N, i.e., substituting N C n for n we obtain

cos
h �
2N
.2n C 1C 2N/.2k C 1/

i
D � cos

h �
2N
.2n C 1/.2k C 1/

i
:



4.3 Fast Algorithms for the MDCT (MLT)/MDST Computation in the Oddly. . . 129

It can be shown that the original data sequence fxng has to be circularly shifted to
the right in the period N by N

4
samples followed by sign changes of N

4
circularly

shifted samples. This operation actually corresponds to a permutation applied to the
original data sequence fxng defined as [28]

yn D

8
<̂

:̂

� x 3N
4 Cn; n D 0; 1; : : : ; N

4
� 1;

xn� N
4
; n D N

4
; N
4

C 1; : : : ;N � 1:
(4.77)

Then, applying the permutation (4.77) and using the symmetry property of cosine
transform kernel, (4.76) can be rewritten as

c
O

k D
N�1X

nD0
yn cos

h �
2N
.2n C 1/.2k C 1/

i

D
N
2 �1X

nD0
.yn � yN�1�n/ cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1: (4.78)

The transform kernel on the right-hand side of (4.78) is recognized as an unnor-
malized N

2
-point DCT-IV of fyn � yN�1�ng. We note that the permutation given by

(4.77) was introduced first time in [28], but the N
2

-point DCT-IV was mapped into
an N

2
-point complex DFT. Finally, combining (4.77) and (4.78) we get

c
O

k D
N
2 �1X

nD0
yn cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
; k D 0; 1; : : : ;

N

2
�1; (4.79)

where

yn D

8
<̂

:̂

� x 3N
4 Cn � x 3N

4 �1�n; n D 0; 1; : : : ; N
4

� 1;

xn� N
4

� x 3N
4 �1�n; n D N

4
; N
4

C 1; : : : ; N
2

� 1:
(4.80)

Since the N
2

-point DCT-IV given by (4.79) is closely related to the real part of
forward O2DFT for real-valued odd symmetric data sequences [25], the N

2
-point

DCT-IV of fyng can be efficiently computed via the fast O2DFT algorithm (see
Appendix C.2.1). The complete formulae for the DFT/FFT-based forward MDCT
computation (N is integer divisible by 4) are defined as [25, 32]
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fk D f2k C i f N
2 C2k D

N
4 �1X

nD0
.y2n C i y N

2 �1�2n/ e�i �.4nC1/.4kC1/
2N

D e�i 2�k
N

N
4 �1X

nD0

h
.y2n C i y N

2 �1�2n/ e�i �.4nC1/
2N

i
e�i 2�kn

N=4 ; k D 0; 1; : : : ;
N

4
� 1:

(4.81)

The final MDCT coefficients are obtained as

c
O

2k D <e ffkg; c
O

N
2 �1�2k

D �=m ffkg; k D 0; 1; : : : ;
N

4
� 1: (4.82)

The transform kernel on the right-hand side of (4.81) is the forward N
4

-point complex
FFT. The generalized signal flow graph of the fast DFT/FFT-based algorithm for the
forward MDCT computation [25, 32] is shown in Fig. 4.7. Complex multiplications

by e�i �.4nC1/
2N and e�i 2�k

N correspond, respectively, to two blocks of N
4

Givens–
Jacobi pre- and post-rotations (see Appendix F.4). Note that compared to the fast
algorithms described in previous subsections, in the fast DFT/FFT-based algorithm

given by (4.80), (4.81), and (4.82), scaling factors
p
2
2

as well as sign changing
factors are completely eliminated.

Now consider the backward MDCT block transform given by (4.40). With
respect to Appendix C.2.1 the fast DFT/FFT-based algorithm for the backward
MDCT computation is defined as [25, 32]

yn D y2n C i y N
2 C2n D

N
4 �1X

kD0
.c

O

2k C i c
O

N
2 �1�2k

/ e�i �.4nC1/.4kC1/
2N

D e�i 2�n
N

N
4 �1X

kD0

h
.c

O

2k C i c
O

N
2 �1�2k

/ e�i �.4kC1/
2N

i
e�i 2�kn

N=4 ; n D 0; 1; : : : ;
N

4
� 1:

(4.83)

The time domain aliased data sequence fOxO�MDCT

n g is partially recovered as

OxO�MDCT

N
4 C2n

D =m fyng; OxO�MDCT

3N
4 �1�2n

D �<e fyng; n D 0; 1; : : : ;
N

4
� 1; (4.84)

and remaining samples of fOxO�MDCT

n g are obtained as

OxO�MDCT

n D �OxO�MDCT

N
2 �1�n

; OxO�MDCT

N�1�n D OxO�MDCT

N
2 Cn

; n D 0; 1; : : : ;
N

4
� 1: (4.85)
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Fig. 4.7 Generalized signal flow graph for the fast DFT/FFT-based forward MDCT computation
[25, 32] in the oddly stacked system for N D 16

The total computational complexity of the fast DFT/FFT-based algorithm for
the forward N-point MDCT computation [25, 32] is given by 3.N

2
� 1/ real

multiplications, 2N � 3 real additions plus the complexity of N
4

-point forward
complex FFT. The backward MDCT computation requires exactly N

2
real additions

less than that of the forward MDCT.
Note 5 Later, quite similar fast DFT/FFT-based algorithms for the MDCT

computation were presented in [15, 16], and for the MLT computation in [45, 46]. In
order to reduce further the computational complexity, in [15] the N

4
-point complex

FFT is alternatively decomposed into two N
8

-point complex FFTs.
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Note 6 The computational complexity of DFT/FFT-based algorithms can be
further improved by the modified split-radix FFT algorithm [82] with fewer total
number of real arithmetic operations. Specifically, for the N D 2n-length FFT
it reduces the computational complexity asymptotically from 4Nn C O .N/ to
34
9

Nn C O .N/ real arithmetic operations [37].

4.3.3 DCT-II-Based Fast Algorithms

The fast DFT/FFT-based algorithms for the oddly stacked MDCT computation
are structurally simple, but they require complex arithmetic. The fast MDCT
algorithm reported in [18] and its improved version [22, 29, 35] are based on the
DCT-II of reduced sizes, and use real arithmetic only. The required fast DCT-II
algorithms/computational structures are presented in Appendix C.1.

4.3.3.1 DCT-II-Based Fast Algorithm [18]

Consider the forward MDCT block transform given by (4.39). The derivation of
fast DCT-II-based algorithm [18] begins with Eq. (4.67), but further development
is quite different compared to that of the fast DFT/FFT-based algorithm [24]. The
symmetry of cosine and sine transform kernels in (4.67) provides the first reduction.
Indeed, substituting N �1�n for n into (4.67) and using the trigonometric identities
it can be written in the form [18]

z2k D .�1/k
p
2

2

N
2 �1X

nD0
x

0

n cos
h �
2N
.2n C 1/.4k C 1/

i

�x
00

n sin
h �
2N
.2n C 1/.4k C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1; (4.86)

where

x
0

n D xn � xN�1�n x
00

n D xn C xN�1�n; n D 0; 1; : : : ;
N

2
� 1: (4.87)

Repeatedly using the symmetry of cosine and sine transform kernels and by
substituting N

2
� 1 � n for n into (4.86), the second reduction is achieved as
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z2k D .�1/k
p
2

2

N
4 �1X

nD0
.x

0

n � x
00

N
2 �1�n

/ cos
h �
2N
.2n C 1/.4k C 1/

i

� .x
00

n � x
0

N
2 �1�n

/ sin
h �
2N
.2n C 1/.4k C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1: (4.88)

The last step includes expanding cosine and sine transform kernels as follows

cos
h �
2N
.2n C 1/.4k C 1/

i
D cos

�.2n C 1/

2N
cos

�.2n C 1/k

N=2

� sin
�.2n C 1/

2N
sin

�.2n C 1/k

N=2
;

sin
h �
2N
.2n C 1/.4k C 1/

i
D sin

�.2n C 1/

2N
cos

�.2n C 1/k

N=2

C cos
�.2n C 1/

2N
sin

�.2n C 1/k

N=2
; (4.89)

and their substitution into (4.88). After some algebraic manipulations we get

z2k D .�1/k
p
2

2

N
4 �1X

nD0
an cos

�
�.2n C 1/k

2.N=4/

	
� bn sin

�
�.2n C 1/k

2.N=4/

	
; (4.90)

k D 0; 1; : : : ;
N

2
� 1;

where data sequences fang and fbng are defined as

an D .x
0

n � x
00

N
2 �1�n

/ cos
�.2n C 1/

2N
� .x

00

n � x
0

N
2 �1�n

/ sin
�.2n C 1/

2N
;

bn D .x
0

n � x
00

N
2 �1�n

/ sin
�.2n C 1/

2N
C .x

00

n � x
0

N
2 �1�n

/ cos
�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

4
� 1: (4.91)

The cosine and sine transform kernels in (4.90) are recognized as the unnormalized
N
4

-point DCT and DST of type II (DCT-II and DST-II) [75], respectively. Equation
(4.91) defines the block of Givens–Jacobi rotations (see Appendix F.1). Finally,
substituting N

4
C k for k into (4.90) and using the trigonometric identities



134 4 Fast MDCT/MDST, MLT, ELT, and MCLT Algorithms

cos
h �
2N
.2n C 1/.4k C 1C N/

i
D .�1/nC1 sin

h �
2N
.2n C 1/.4k C 1/

i
;

sin
h �
2N
.2n C 1/.4k C 1C N/

i
D .�1/n cos

h �
2N
.2n C 1/.4k C 1/

i
;

after some algebraic manipulations the complete formulae of the fast DCT-II-based
algorithm for the forward MDCT computation are obtained as (N is an integer
divisible by 4) [18]

z2k D .�1/k
p
2

2

N
4 �1X

nD0

�
an cos

�
�.2n C 1/k

2.N=4/

	
� bn sin

�
�.2n C 1/k

2.N=4/

	�
;

z N
2 C2k D .�1/ N

4 Ck

p
2

2

N
4 �1X

nD0
.�1/nC1

�
an sin

�
�.2n C 1/k

2.N=4/

	

Cbn cos

�
�.2n C 1/k

2.N=4/

	�
;

k D 0; 1; : : : ;
N

4
� 1: (4.92)

The final MDCT coefficients using their even anti-symmetry property, i.e., c
O

2kC1 D
�c

O

N�2�2k, k D 0; 1; : : : N
4

� 1, are given by

c
O

2k D z2k

c
O

2kC1 D �zN�2�2k; k D 0; 1; : : : ;
N

4
� 1: (4.93)

From (4.92) it can be easily seen that the coefficients z0 and z N
2

for k D 0 are
sums of fang and fbng, respectively. The fast DCT-II-based algorithm defined by
(4.87), (4.91), (4.92), and (4.93) may be further refined as follows. Scaling factorsp
2
2

in (4.92) can be incorporated into the block of N
4

Givens–Jacobi rotations
(4.91). Then, for the efficient implementation of Givens–Jacobi rotations the bilinear
computational structure has to be used (see Appendix F.3). If N

4
is even, then

.�1/ N
4 Ck in (4.92) is reduced to .�1/k. Further, since there exists a relation between

the DCT-II and the corresponding DST-II [75], the N
4

-point DST-II in (4.92) may
be converted to the N

4
-point DCT-II with proper preceding sign changes applied to

odd-indexed samples. Then DST-II coefficients will be in reverse order. Thus, two
identical N

4
-point DCTs-II are used in the resulting fast computational structure.

Based on the relation between the MDST and the MDCT given by (4.43), the MDST
computation can be realized by the fast MDCT algorithm.

The generalized signal flow graph of the refined fast DCT-II-based algorithm
for the unified forward and backward MDCT/MDST computation [18] is shown
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Fig. 4.8 Generalized signal flow graph of the refined fast DCT-II-based algorithm for the unified

MDCT/MDST computation [18] in the oddly stacked system for N D 16, ı D
p
2

2

in Fig. 4.8. The computation of backward MDCT/MDST is simply realized by
reversing the signal flow graph for the forward MDCT computation and performing
inverse operations. The symbols in round brackets in Fig. 4.8 correspond to the
MDST computation. After the MDCT computation, the MDST coefficients are in
reverse order.

The total computational complexity of the fast DCT-II-based algorithm for the
forward N-point MDCT computation [18] is given by 3N

4
multiplications, 11N

4
�

2 additions plus the complexity of two N
4

-point DCTs-II. The backward MDCT
computation requires exactly N

2
additions less than that of the forward MDCT.

The original fast DCT-II-based MDCT algorithm [18] was improved both in
terms of the computational complexity and structural simplicity in [22, 29, 35].

4.3.3.2 Improved DCT-II-Based Fast Algorithm [22, 29, 35]

Recall that the even anti-symmetry of MDCT coefficients allows for computation
of only the half number of coefficients. Therefore, the even-indexed coefficients
are chosen. The odd-indexed coefficients can easily be deduced from the even anti-
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symmetry property, i.e., c
O

2kC1 D �c
O

N�2�2k for k D 0; 1; : : : N
4

�1. Then, the forward
MDCT block transform given by (4.39) is equivalent to [35]

z2k D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2

�
.4k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1:

(4.94)
In order to eliminate the time shift factor N

2
from the cosine transform kernel in

(4.94), applying the permutation (4.77) we have

z2k D
N�1X

nD0
yn cos

h �
2N
.2n C 1/.4k C 1/

i
; k D 0; 1; : : : ;

N

2
� 1: (4.95)

Subsequently substituting N � 1 � n for n into (4.95) and using the symmetry of
cosine transform kernel we obtain

z2k D
N
2 �1X

nD0
.yn � yN�1�n/ cos

h �
2N
.2n C 1/.4k C 1/

i
; k D 0; 1; : : : ;

N

2
� 1:
(4.96)

Combining (4.77) and (4.96) we get

z2k D
N
2 �1X

nD0
yn cos

h �
2N
.2n C 1/.4k C 1/

i
; k D 0; 1; : : : ;

N

2
� 1: (4.97)

where fyng is given by (4.80). Further, substituting N
2

� 1 � n for n into (4.97), and
again using the symmetry of cosine and sine transform kernels, the next reduction
is achieved as

z2k D
N
4 �1X

nD0
yn cos

h �
2N
.2n C 1/.4k C 1/

i
C y N

2 �1�n sin
h �
2N
.2n C 1/.4k C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1: (4.98)

The last step includes expanding cosine and sine transform kernels according to
(4.89) followed by substituting N

2
C k for k, and the complete formulae of the

improved fast DCT-II-based algorithm are defined as [22, 29, 35]

z2k D
N
4 �1X

nD0
an cos

�
�.2n C 1/k

2.N=4/

	
C bn sin

�
�.2n C 1/k

2.N=4/

	
; k D 0; : : : ;

N

4
� 1;
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zN�2k D
N
4 �1X

nD0
�an cos

�
�.2n C 1/k

2.N=4/

	
C bn sin

�
�.2n C 1/k

2.N=4/

	
; k D 1; 2; : : : ;

N

4
;

(4.99)

where

an D yn cos
�.2n C 1/

2N
C y N

2 �1�n sin
�.2n C 1/

2N
;

bn D �yn sin
�.2n C 1/

2N
C y N

2 �1�n cos
�.2n C 1/

2N
; n D 0; 1; : : : ;

N

4
� 1:
(4.100)

The data sequence fyng is given by (4.80). Final MDCT coefficients are obtained
from (4.93). The N

4
-point DST-II in (4.99) can be converted to the N

4
-point DCT-II

with proper preceding sign changes applied to odd-indexed samples.
The modified generalized signal flow graph of the improved fast DCT-II-based

algorithm [22, 29, 35] for the unified forward and backward MDCT/MDST compu-
tation is shown in Fig. 4.9. The computation of backward MDCT/MDST is simply
realized by reversing the signal flow graph for the forward MDCT computation
and performing inverse operations. Compared to the fast refined MDCT algorithm
defined by (4.87), (4.91), (4.92), and (4.93), the improved fast MDCT algorithm
eliminates: the first butterfly stage, thus saving N additions (see Fig. 4.8), further

eliminates scaling factors
p
2
2

and final sign changes, thus simplifying the resulting
fast computational structure. Comparing (4.91) and (4.100) one can note that they
involve Givens–Jacobi rotations of opposite types.

The total computational complexity of the improved fast DCT-II-based algorithm
for the forward N-point MDCT computation [22, 29, 35] is given by 3N

4
multi-

plications, 7N
4

� 2 additions ( 5N
4

� 2 additions for the backward MDCT) plus the
complexity of two N

4
-point DCTs-II.

4.3.4 DCT-IV-Based Fast Algorithms

Another class of fast MDCT algorithms [19, 33, 37, 39] and fast MLT algorithms
[2, 47, 51] is based on the DCT-IV (or DST-IV) of reduced size. In fact, using a
simple permutation applied to the input data sequence fxng, the MDCT or MLT
can always be converted to the DCT-IV of reduced size. Then, it is sufficient only
to specify a suitable fast DCT-IV algorithm/computational structure, in general,
valid for N being an even integer. It is widely accepted that the fast DCT-IV-
based MDCT or MLT algorithms are the most efficient both in terms of the
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Fig. 4.9 Modified generalized signal flow graph of the improved fast DCT-II-based algorithm for
the unified MDCT/MDST computation [22, 29, 35] in the oddly stacked system for N D 16

computational complexity and structural simplicity. The required DCT-IV (DST-IV)
fast algorithms/computational structures are presented in Appendix C.2.

Essentially, applying the permutation defined by (4.80) to the input data sequence
fxng, or a permutation originally introduced for the MLT defined as [2, 47, 51]

y N
4 Cn D xn � x N

2 �1�n;

y N
4 �1�n D � x N

2 Cn � xN�1�n; n D 0; 1; : : : ;
N

4
� 1; (4.101)

the N-point forward MDCT or MLT is converted into the N
2

-point DCT-IV of fyng
[see Eq. (4.79)]. The backward MDCT or MLT is realized by the inverse N

2
-point

DCT-IV of fc
O

k g using the same fast algorithm/computational structure. The time
domain aliased data sequence fOxO�MDCT

n g can be recovered from fyng applying an
inverse permutation to that of (4.101) defined as
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OxO�MDCT

n D y N
4 Cn; OxO�MDCT

N
2 �1�n

D �y N
4 Cn;

OxO�MDCT

N
2 Cn

D �y N
4 �1�n; OxO�MDCT

N�1�n D �y N
4 �1�n; n D 0; 1; : : : ;

N

4
� 1:

(4.102)

Although the permutations (4.80) and (4.101) seem to be different, they generate
exactly the same time domain aliased data sequence fyng. Alternatively, applying
the permutation (4.77) to the input data sequence fxng, the time domain aliased data
sequence fOxO�MDCT

n g is also recovered after the backward MDCT computation from
fyng as [19, 33]

OxO�MDCT

n D

8
<̂

:̂

y N
4 Cn; n D 0; 1; : : : ; 3N

4
� 1;

� yn� 3N
4
; n D 3N

4
; 3N
4

C 1; : : : ;N � 1:
(4.103)

Since the DCT-IV matrix is symmetric and self-inverse, the N
2

-point
forward/inverse DCT-IV computation, and hence the N-point forward/backward
MDCT (MLT) computation is realized by an identical fast computational structure
with the properly appended permutations (4.101) and (4.102).

Taking into account permutation (4.80) or (4.101), the total computational
complexity of fast DCT-IV-based algorithms [2, 47, 51] for the forward N-point
MLT or MDCT/MDST computation is given by N

2
additions plus the complexity of

N
2

-point DCT-IV.
Note 7 Applying a permutation to the input data sequence fxng defined as [3, 18]

y N
4 Cn D xn C x N

2 �1�n;

y N
4 �1�n D x N

2 Cn � xN�1�n; n D 0; 1; : : : ;
N

4
� 1; (4.104)

the N-point forward MDST is converted into the N
2

-point DST-IV of fyng. The

backward MDST is realized by the inverse N
2

-point DST-IV of fs
O

k g using the same
fast algorithm or computational structure, and the time domain aliased data sequence
fOxO�MDST

n g can be recovered from fyng applying an inverse permutation to that of
(4.104) as

OxO�MDST

n D y N
4 Cn; OxO�MDST

N
2 �1�n

D y N
4 Cn;

OxO�MDST

N
2 Cn

D y N
4 �1�n; OxO�MDST

N�1�n D �y N
4 �1�n; n D 0; 1; : : : ;

N

4
� 1:

(4.105)



140 4 Fast MDCT/MDST, MLT, ELT, and MCLT Algorithms

We note that based on a relation between the DST-IV and the DCT-IV (see
Appendix C.2), the DST-IV can always be converted to the DCT-IV with proper
preceding sign changes applied to odd-indexed samples.

Compact computational structures for the implementation of fast analysis and
synthesis MDCT or MLT filter banks based on the DCT-IV including the win-
dowing&overlap procedure in the analysis MDCT (MLT) filter bank and window-
ing&overlap&add procedure in the synthesis MDCT (MLT) filter bank are discussed
in detail in Sect. 5.5 of Chap. 5.

4.3.5 DCT-IV/(Scaled)DCT-II-Based Fast Algorithms

Recall that applying the permutation (4.80) or (4.101) to the input data sequence
fxng, the N-point forward MDCT is converted into the N

2
-point DCT-IV of fyng

[see Eq. (4.79)]. The fast DCT-IV/DCT-II-based MDCT [19–21, 27, 31, 40, 41] or
MLT algorithms [51] and the fast DCT-IV/scaled DCT-II (SDCT-II)-based MDCT
algorithms [30, 43] utilize the following simple fact. Since there exists a simple
relation between the DCT-IV and the DCT-II matrices [75] (see also Appendix C.3),
the M-point DCT-IV may be converted to the DCT-II or SDCT-II of the same size
at the cost of additional M pre-multiplications and M � 1 recursive post-additions
[83]. The required DCT-II fast algorithm/computational structure is presented in
Appendix C.1.

Definitions of unnormalized M-point DCT-II and DCT-IV transforms are,
respectively, presented in Appendices C.1 and C.2. Let fymg, m D 0; 1; : : : ;M � 1,
represent an input data sequence. An unnormalized M-point SDCT-II is
defined as [30]

s
II

k D �k

M�1X

mD0
ym cos

�
�.2m C 1/k

2M

	
; k D 0; 1; : : : ;M � 1; (4.106)

where

�k D
8
<

:

1; if k D 0;

2; otherwise:
(4.107)

Using the trigonometric identity cos.˛ C ˇ/ D 2 cos˛ cosˇ � cos.˛ � ˇ/ to the
DCT-IV kernel setting ˛ D �.2mC1/k

2M and ˇ D �.2mC1/
4M , the M-point DCT-IV is

converted to the DCT-II of the same size as [83]

c
IV

k D
M�1X

mD0

�
2 ym cos

�.2m C 1/

4M

�
cos

�
�.2m C 1/k

2M

	
�c

IV

k�1; k D 0; 1; : : : ;M�1;
(4.108)
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or to the SDCT-II of the same size as [30]

c
IV

k D �k

M�1X

mD0

�
ym cos

�.2m C 1/

4M

�
cos

�
�.2m C 1/k

2M

	
� c

IV

k�1;

k D 0; 1; : : : ;M � 1; (4.109)

where coefficients fc
IV

k g and fc
II

k g; .fs
II

k g/ satisfy the following conditions:

2 c
IV

0 D c
II

0 ; .c
IV

0 D s
II

0 / if k D 0;

c
IV

k C c
IV

k�1 D c
II

k ; .c
IV

k C c
IV

k�1 D s
II

k / if k > 0: (4.110)

Equations (4.108) or (4.109) and (4.110) for M D N
2

and m D n define the first
form of the fast DCT-IV/(S)DCT-II-based algorithm [19–21, 27, 31, 40, 41, 51]. Pre-
multiplications by f2 cos �.2mC1/

4M g in (4.108) or by fcos �.2mC1/
4M g in (4.109) applied

to the data sequence fymg can be effectively absorbed into the windowing procedure
in the complete analysis and synthesis MDCT or MLT filter banks.

However, an M-point DCT-II of fumg in (4.108) or SDCT-II in of fumg (4.109),
whereby um D 2 ym cos �.2mC1/

4M for the DCT-II and um D ym cos �.2mC1/
4M for

the SDCT-II, can be recursively decomposed into M
2

-point (S)DCT-II (even-indexed
coefficients) and M

2
-point DCT-IV (odd-indexed coefficients) as [30, 75]

c
II

2k D
M
2 �1X

mD0
.um C uM�1�m/ cos

�
�.2m C 1/k

2.M=2/

	
;

c
II

2kC1 D
M
2 �1X

mD0
.um � uM�1�m/ cos

h �
2M

.2m C 1/.2k C 1/
i
; k D 0; 1; : : : ;

M

2
� 1:

(4.111)

Using (C.33) from Appendix C.3, the M
2

-point DCT-IV in (4.111) corresponding to

odd-indexed coefficients fc
II

2kC1g is converted to the M
2

-point (S)DCT-II as [30]

c
II

2kC1 D
M
2 �1X

mD0

�
2 .um � uM�1�m/ cos

�.2m C 1/

2M

�
cos

�
�.2m C 1/k

2.M=2/

	
� c

II

2k�1;

k D 0; 1; : : : ;
M

2
� 1; (4.112)

where

2 c
II

1 D OcII

0 ; .c
II

1 D OsII

0 / if k D 0;
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c
II

2kC1 C c
II

2k�1 D OcII

k ; .c
II

2kC1 C c
II

2k�1 D OsII

k / if k > 0: (4.113)

From (4.111) and (4.112) it can be seen that the M-point (S)DCT-II is decomposed
into two identical M

2
-point (S)DCTs-II. Equations (4.108) or (4.109), (4.110),

(4.111), (4.112), and (4.113) for M D N
2

and m D n define the second form of
the fast DCT-IV/(S)DCT-II-based algorithm [30]. Since the DCT-IV matrix is sym-
metric and self-inverse, the forward/inverse DCT-IV computation via the (S)DCT-II
(note that the DCT-II matrix is not symmetric), and hence the forward/backward
MDCT or MLT may be realized by an identical fast computational structure. The
time domain aliased data sequence fOxO�MDCT

n g is recovered after the backward MDCT
computation according to (4.102).

Taking into account permutation (4.80) or (4.101), the total computational
complexity of the first form of fast DCT-IV/DCT-II-based algorithm for the forward
N-point MDCT or MLT computation is given by N � 1 additions, 1 shift plus the
complexity of N

2
-point DCT-II.

An interesting method of constructing a DCT-IV/SDCT-II-based algorithm for
the forward/backward MDCT computation was reported in [43]. Consider the first
form of algorithm defined by (4.108) and (4.110). Substituting M D N

2
and m D n

into (4.108), it can be rewritten into the equivalent form as

c
IV

k D
N
2 �1X

nD0
un cos

�
�.2n C 1/k

2.N=2/

	
� c

IV

k�1; k D 0; 1; : : : ;
N

2
� 1; (4.114)

where

un D 2 yn cos
�.2n C 1/

2N
; n D 0; 1; : : : ;

N

2
� 1: (4.115)

The data sequence fyng in (4.115) is given by (4.80) or (4.101). Now using a simple
trick, specifically, at first introducing the scaling factor

p
2 into the sum in (4.114)

and immediately the scaling factor 1p
2

into the right-hand side of (4.115), we obtain
equivalent forms of (4.114) and (4.115), respectively, as [43]

c
IV

k D
N
2 �1X

nD0
un

p
2 cos

�
�.2n C 1/k

2.N=2/

	
� c

IV

k�1; k D 0; 1; : : : ;
N

2
� 1; (4.116)

where

un D 2p
2

yn cos
�.2n C 1/

2N
D p

2 yn cos
�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

2
� 1: (4.117)
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The cosine transform kernel in (4.116) is recognized as the N
2

-point SDCT-II scaled
by the factor

p
2. The just indicated simple trick is especially appreciated in the

derivation of efficient MDCT implementation for MP3 audio coding standard (see
Chap. 5). The total computational complexity of the algorithm is the same as that of
the first form of algorithm defined by (4.108) and (4.110).

4.3.6 Unified Evenly and Oddly Stacked MDCT/MDST
Computation

Another class of developed fast MDCT algorithms is based on a relation between
the oddly stacked MDCT block transform given by (4.39) and the corresponding
evenly stacked MDCT block transform given by (4.1). Although the oddly stacked
and evenly stacked MDCT, at least according to their definitions, are quite different
filter banks, they are closely related, and consequently, the efficient computation
of oddly stacked MDCT can be realized via the evenly stacked MDCT and vice
versa, only by simple pre- and post-processing of input and output data sequences
[7]. This fact allows to handle evenly and oddly stacked MDCT block transform
computations in a unified framework.

Consider the forward oddly stacked MDCT block transform given by (4.39).
Using the trigonometric identity cos.˛ C ˇ/ D 2 cos˛ cosˇ � cos.˛ � ˇ/ applied
to the oddly stacked MDCT kernel in (4.39), setting ˛ D �

N .2n C 1 C N
2
/k and

ˇ D �
2N .2n C 1C N

2
/, we obtain the relation between the unnormalized oddly and

evenly stacked MDCT block transforms defined as [7]

c
O

k D
N�1X

nD0
yn cos

�
�

N

�
2n C 1C N

2

�
k

	
� c

O

k�1; k D 0; 1; : : : ;
N

2
� 1;

(4.118)

where

yn D 2 xn cos

�
�

2N

�
2n C 1C N

2

�	
; n D 0; 1; : : : ;N � 1: (4.119)

The coefficients fc
O

k g and fc
E

k g satisfy the following conditions:

2 c
O

0 D c
E

0 ; if k D 0;

c
O

k C c
O

k�1 D c
E

k ; if k > 0: (4.120)

The transform kernel on the right-hand side of (4.118) is recognized as an N-
point evenly stacked MDCT. Hence, the N-point oddly stacked MDCT is converted
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to the evenly stacked MDCT of the same size at the cost of additional N pre-
multiplications and N � 1 recursive post-additions. Note that this relation is quite
similar to that of between the DCT-IV and the DCT-II given by (4.108).

Thus, the forward oddly stacked MDCT can be implemented via the forward
evenly stacked MDCT algorithm only by simple pre- and post-processing of
input and output data sequences, respectively. Any fast DCT-II-based MDCT
algorithm for the evenly stacked system discussed in Sect. 4.2 can be adopted. Pre-
multiplications by f2 cos

�
�
2N .2n C 1C N

2
/
�g in (4.119) applied to the data sequence

fyng can be effectively absorbed into the windowing procedure in the complete
analysis and synthesis MDCT or MLT filter banks, so saving N multiplications.
Consequently, the total computational complexity of the oddly stacked MDCT is
the same as that of the evenly stacked MDCT (see Table 4.1). We note that the
number of multiplications and additions in Table 4.1 should be divided by 2.

The relation defined by (4.118), (4.119), and (4.120) may be represented equiva-
lently in a matrix product [7] (see also Chap. 3). Inverting the matrix product results
in the forward evenly stacked MDCT computation via the forward oddly stacked
MDCT algorithm. Finally, the backward oddly/evenly stacked MDCT computation
is realized by the forward evenly/oddly stacked MDCT algorithm but in reverse
order performing inverse operations.

4.3.6.1 Comparison of Oddly Stacked Fast MDCT/MDST Algorithms

Comparison of the discussed fast DFT/FFT-, DCT-II-, DCT-IV-, DCT-IV/(S)DCT-
II-, and evenly stacked MDCT-based algorithms for the MDCT and MDST compu-
tation in the oddly stacked system in terms of the arithmetic complexity for N D 2n,
n > 2 is summarized in Table 4.2.

For the DCT-II-based, DCT-IV-based and DCT-IV/(S)DCT-II-based fast and
evenly stacked MDCT-based algorithms in general case, when N is a composite
integer, i.e., it is of the form N D 2n � q, where q is an odd positive integer (or

Table 4.2 Comparison of fast DFT/FFT-, DCT-II-, DCT-IV-, DCT-IV/(S)DCT-II-, and evenly
stacked MDCT-based algorithms for the MDCT and MDST computation in the oddly stacked
system in terms of the arithmetic complexity for N D 2n, n > 2

Fast algorithm # of mults # of adds # of shifts

DFT/FFT-based [23] N
4
.n C 1/C 4 N

4
.3n C 1/C 4

DFT/FFT-based [24, 34, 36] N
4
.n C 1/C 4 N

4
.3n C 1/C 4

DFT/FFT-based [25, 32] N
4
.n C 1/C 1 N

4
.3n � 1/C 1

Refined DCT-II-based [18] N
4
.n C 1/ N

4
.3n C 3/

Improved DCT-II-based [22, 29, 35] N
4
.n C 1/ N

4
.3n � 1/

DCT-IV-based N
4
.n C 1/ N

4
.3n � 1/

DCT-IV/(S)DCT-II-based N
4
.n � 1/ N

4
.3n � 1/ 1

Evenly stacked MDCT-based N
4
.n � 1/ N

4
.3n � 3/C 2 2
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the mixed-radix length being the combination of radix-2 and radix-q lengths), the
computational complexity of the N-point DCT-II is given by (C.8) and of N-point
DCT-IV is given by (C.32) in Appendix C.

4.3.7 Mixed-Radix Oddly Stacked Fast MDCT/MDST
Algorithms

Mixed-radix fast algorithms or fast algorithms for composite lengths are obtained by
the combination of radix-q (q is an odd positive integer) and radix-2 fast algorithms.
For a particular radix number q, the radix-q fast algorithms recursively divide
the entire transform computation into q shorter N

q -point [72]. The computation
of higher-order transforms is obtained by the recursive reusing the lower-order
transforms. A generalized mixed-radix decomposition method applied to the DCT-II
and DCT-III for the composite lengths N D qm � 2p, m; p > 0, is described in [72].
It enables to optimize the performance of such algorithms in terms of the arithmetic
complexity during the decomposition process for some special lengths.

All the fast MDCT algorithms described in the previous subsections convert
the N-point MDCT, where N is integer divisible by 4, to a discrete unitary
(orthogonal) transform such as the DFT or DCT, in general, of reduced odd-lengths.
Consequently, radix-q fast algorithms can be applied to the q-length DFT or DCT
[21]. It is important to note that the strictly radix-q fast MDCT algorithm cannot
be constructed, since from the MDCT definition it follows that any odd qm divided
by 2 is not an integer. Therefore, the mixed-radix fast MDCT algorithms may be
constructed only.

Several (recursive) mixed-radix fast algorithms for the MDCT computation were
developed [17, 26, 38, 42, 44]. The first one [38, 44] is obtained by the decimation in
frequency (DIF) method for composite lengths N D 3m�2, m > 0, and subsequently
it was improved and extended for composite lengths N D 3m � 2p, m > 0, p > 1

[17]. The second one [42] is obtained by the decimation in time (DIT) method for
composite lengths N D 3m � 4, m > 0. This DIT mixed-radix fast algorithms was
extended to composite lengths N D qm � 2p, m; p > 1, where q D 3; 5; and
9 [26]. Essentially, DIF and DIT fast MDCT algorithms can be combined with a
recursive radix-2 DIF fast MDCT algorithm [42] to obtain in general fast algorithms
for composite lengths N D qm � 2p, m > 0, p > 1. All mixed-radix fast MDCT
algorithms are discussed in detail in the following subsections.

4.3.7.1 DIF Mixed-Radix Fast Algorithm [38, 44]

Consider the forward MDCT given by (4.39) with the MDCT coefficients split into
three sets, specifically, fc

O

3kg, fc
O

3kC1g, and fc
O

3kC2g for k D 0; 1; : : : ; N
6

� 1, where

N D 3m �2, m > 0. From (4.39) for the MDCT coefficients fc
O

3kC1g we immediately
have [38, 44]
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c
O

3kC1 D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2

�
.6k C 3/

	

D
N�1X

nD0
xn cos

�
3�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

6
� 1: (4.121)

Subsequently substituting N
3

� 1 � n, 2N
3

� 1 � n, and then N � 1 � n for n into
(4.121) we get

c
O

3kC1 D
N
3 �1X

nD0
.x N

3 �1�n � x 2N
3 �1�n C xN�1�n/

cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

6
� 1: (4.122)

Further, from (4.39) for the MDCT coefficients fc
O

3kg and fc
O

3kC2g we, respectively,
have

c
O

3k D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2

�
.6k C 1/

	
;

c
O

3kC2 D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2

�
.6k C 5/

	
; k D 0; 1; : : : ;

N

6
� 1:

(4.123)

Now, introduce the data sequences fakg and fbkg defined as [38, 44]

ak D c
O

3k C c
O

3kC2; bk D c
O

3k � c
O

3kC2; k D 0; 1; : : : ;
N

6
� 1: (4.124)

Combining the MDCT transform kernels in (4.123), and using the trigonometric
identities for the sums/differences of cosines, the data sequences fakg and fbkg are
given by

ak D �
N�1X

nD0

�
xn 2 sin

�.2n C 1/

N

�
cos

�
3�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;
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bk D
N�1X

nD0

�
xn 2 cos

�.2n C 1/

N

�
sin

�
3�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

6
� 1: (4.125)

From (4.124) it follows that the MDCT coefficients fc
O

3kg and fc
O

3kC2g are obtained
as

c
O

3k D 1

2
.ak C bk/; c

O

3kC2 D 1

2
.ak � bk/; k D 0; 1; : : : ;

N

6
�1: (4.126)

The last step involves subsequent substituting N
3

� 1 � n, 2N
3

� 1 � n, and then
N � 1 � n for n into the first equation in (4.125), and we get

ak D �
N
3 �1X

nD0

�
.x N

3 �1�n C x 2N
3 �1�n/

p
3 cos

�.2n C 1/

N

C .x N
3 �1�n � x 2N

3 �1�n � 2 xN�1�n/ sin
�.2n C 1/

N

	

� cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

6
� 1: (4.127)

Similarly, subsequent substituting N
3

C n and 2N
3

C n for n into the second equation
of (4.125), we finally get

bk D .�1/k
N
3 �1X

nD0

�
.2 xn C x N

3 Cn � x 2N
3 Cn/ cos

�.2n C 1/

N

C .x N
3 Cn C x 2N

3 Cn/
p
3 sin

�.2n C 1/

N

	

� cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

6
� 1: (4.128)
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From (4.122), (4.127), and (4.128) it can be seen that the N-point forward MDCT
is decomposed into three N

3
-point MDCTs. Equations (4.122), (4.126), (4.127), and

(4.128) define the DIF mixed-radix fast MDCT algorithm for composite lengths
N D 3m � 2, m > 0. The factor 1

2
from (4.126) may simply be absorbed in (4.127)

and (4.128).
The total computational complexity of the DIF mixed-radix fast algorithm for

the forward N-point MDCT or MLT computation [38, 44] without any optimization
(MN is the number of multiplications and AN is the number of additions) is generally
given by

MN D 3 M N
3

C 4N

3
; AN D 3 A N

3
C 10N

3
; (4.129)

where M N
3

and A N
3

denote the number of multiplications and additions, respectively,

for the computation of one N
3

-point MDCT. Note that N
3

multiplications by 2 are
implicitly taken as shift operations.

A detailed analysis of the computational structure of fast algorithm [38, 44]
reveals that a corresponding generalized signal graph is partially regular. The reason
why it is not completely regular, results from the following fact. Each algebraic
expression between round brackets under the sum of (4.127) corresponding to fakg
is a proper linear combination of two algebraic expressions between round brackets
under the sum of (4.128) corresponding to fbkg, but for n D N

3
� 1 � n, hence

for algebraic expressions generated in reverse order. Indeed, for a given N taking
two algebraic expressions from (4.128) for n D N

3
� 1 � n, the following algebraic

identities hold:

2.x N
3 �1�n C x 2N

3 �1�n/ D .2 x N
3 �1�n C x 2N

3 �1�n � xN�1�n/

C.x 2N
3 �1�n C xN�1�n/;

.x N
3 �1�n � x 2N

3 �1�n � 2 xN�1�n/ D 1

2
.2 x N

3 �1�n C x 2N
3 �1�n � xN�1�n/

�3
2
.x 2N

3 �1�n C xN�1�n/;

n D 0; 1; : : : ;
N

3
� 1: (4.130)

Consequently, the second N
3

-point MDCT corresponding to fakg needs to be
constructed by a separate way using the indicated linear combinations of two
algebraic expressions given by (4.130). Thus, the evaluation of (4.130) requires
totally N

3
multiplications by 3 and 2N

3
additions, thus saving N

3
additions in the

original DIF mixed-radix fast MDCT algorithm [38, 44].
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The original DIF mixed-radix fast MDCT algorithm [38, 44] was improved both
in terms of the regularity and computational complexity and extended for composite
lengths N D 3m � 2p, m > 0, p > 1 in [17]. It is discussed in the following
subsection.

4.3.7.2 Improved and Extended Recursive DIF Mixed-Radix Fast
Algorithm [17]

From (4.122), (4.127), and (4.128) it can be seen that all algebraic expressions
between round brackets combined with cosine/sine twiddle factors are quite dif-
ferent. The main idea for the derivation of improved mixed-radix DIF fast MDCT
algorithm is based on (4.130). Defining each algebraic expression between round
brackets under the first sum of (4.127) is derived by the linear combination of two
algebraic expressions between round brackets under the second sum of (4.128). If
we denote

un D 2xn C x N
3 Cn � x 2N

3 Cn; vn D x N
3 Cn C x 2N

3 Cn; (4.131)

the following simple algebraic identities hold [17]:

x N
3 �1�n C x 2N

3 �1�n D 1

2
.u N

3 �1�n C v N
3 �1�n/;

x N
3 �1�n � x 2N

3 �1�n � 2xN�1�n D 1

2
.u N

3 �1�n � 3 v N
3 �1�n/;

n D 0; 1 : : : ;
N

3
� 1: (4.132)

Substituting the algebraic identities (4.132) followed immediately by substituting
N
3

� 1 � n for n into (4.127), and then substituting (4.131) into (4.128), after some
algebraic manipulations we get a very regular form of the improved mixed-radix
DIF fast MDCT algorithm defined as [17]

c3kC1 D
N
3 �1X

nD0

h
x N
3 �1�n � .x 2N

3 �1�n � xN�1�n/
i

cos�n;k;

k D 0; 1; : : : ;
N

6
� 1;

�n;k D �

2.N=3/

�
2n C 1C N

6

�
.2k C 1/; (4.133)
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with

ak D �
N
3 �1X

nD0

�
un sin

�.2n C 1/

N
� vn

p
3 cos

�.2n C 1/

N

	
cos� N

3 �1�n;k;

bk D .�1/k
N
3 �1X

nD0

�
un cos

�.2n C 1/

N
C vn

p
3 sin

�.2n C 1/

N

	
cos�n;k;

k D 0; 1; : : : ;
N

6
� 1: (4.134)

The complete set of MDCT coefficients is obtained from (4.126). Due to the
algorithm regularity, the algebraic expression between round brackets in (4.122)
is rewritten into the more convenient equivalent form in Eq. (4.133). Comparing
(4.127) and (4.128) with (4.134) one can see that the terms un and vn combined
with the sine/cosine twiddle factors in (4.134) are the same. This fact enables us to
investigate the computational structure of the algorithm in detail for all composite
lengths N D 3m � 2p, m; p > 0. The cosine transform kernel cos� N

3 �1�n;k in
the first sum of (4.134) is recognized as the MDCT kernel but in reverse order,
whereby cos� N

3 �1�n;k D .�1/kC1 sin�n;k. For a given N the computation of a

higher-order MDCT is obtained by recursively reusing three lower-order N
3

-point
MDCTs. The backward MDCT computation can be simply realized by reversing
a fast computational structure for the forward MDCT and performing the inverse
operations.

In general, the computational complexity of improved mixed-radix DIF fast
MDCT algorithm [17] for composite lengths N D 3m � 2p, m; p > 0, is given
by the complexity of three N

3
-point MDCTs associated with the value of p, and

the complexity of (4.134). The best 2p-point .p > 1/ fast MDCT algorithm requires
N
4
.p�1/multiplications and N

4
.3p�3/C2 additions (see Table 4.2). The evaluation

of algebraic expressions in (4.131) requires 4N
3

additions, whereby N
3

multiplications
by 2 are counted as additions (note that the multiplications by 2 can be imple-
mented as shift operations). The evaluation of algebraic expressions between the
square brackets in (4.133) requires only N

3
additions because the sub-expressions

.x 2N
3 �1�n � xN�1�n/ are precomputed in (4.131) for u N

3 �1�n. The computation of

fakg and fbkg in (4.134) requires 4N
3

multiplications and 2N
3

additions. Finally, to
obtain the complete set of MDCT coefficients from (4.126) we need N

3
additions.

Then, the total arithmetic complexity of the improved mixed-radix DIF fast MDCT
algorithm for composite lengths N D 3m � 2p, m > 0, p > 2; is given by
Britanak [17]

MN D 3 � M N
3

C 4N

3
; AN D 3 � A N

3
C 8N

3
; (4.135)
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Compared to the total arithmetic complexity of the original algorithm [38, 44], 2N
3

additions are saved in the improved algorithm [17]. In general, for composite lengths
N D 3m � 2p, the number of arithmetic operations for some special angles can
be further reduced by an individual analysis. As an example, in the following the
detailed analysis of computational complexity for composite lengths N D 3m � 2 is
presented.

Let the factors 1
2

in (4.126) be absorbed in (4.134). The evaluation of (4.134) for
one n requires 4 multiplications and 2 additions. For n D 1

2
.N
6

� 1/ the angle is
�
6

, then cos �
6

D
p
3
2

, sin �
6

D 1
2
, and the expressions between square brackets in

(4.134) are:

un
1

2
sin

�

6
� vn

p
3

2
cos

�

6
D 1

4
.un � 3vn/;

un
1

2
cos

�

6
C vn

p
3

2
sin

�

6
D

p
3

4
.un C vn/;

requiring 1 multiplication, 4 additions, and 1 shift, where multiplication by 3 is
realized by 2 additions. On the other hand, for n D N

6
C 1

2
.N
6

� 1/ the angle is �
2

and
therefore, the expressions between square brackets in Eq. (4.134) are:

un
1

2
sin

�

2
� vn

p
3

2
cos

�

2
D 1

2
un;

un
1

2
cos

�

2
C vn

p
3

2
sin

�

2
D

p
3

2
vn;

requiring 1 multiplication and 1 shift, so totally saving of 6 multiplications. Then,
the total arithmetic complexity for the composite lengths N D 3m � 2; m > 0, is
given by Britanak [17]

MN D 3 � M N
3

C 4N

3
� 6; AN D 3 � A N

3
C 8N

3
; (4.136)

where for N D 3�2 D 6, M6 D 2, A6 D 16 plus 2 shifts (compared to the arithmetic
complexity M6 D 5, A6 D 15 in [38]). Exploiting the fact that the transform kernel
of 2-point MDCT is cos �

2
and cos� (and hence M2 D A2 D 0), the forward 6-point

MDCT computation can be optimized in terms of the arithmetic complexity. The
optimized signal flow graph for the forward 6-point MDCT computation is shown
in Fig. 4.10. All redundant computations are indicated by the thicker lines in the
signal flow graph in Fig. 4.10. Removing these redundant computations results in a
forward 6-point MDCT module with the arithmetic complexity M6 D 1, A6 D 11

plus 1 shift (note that two multiplications by 2 are counted as 2 additions). Since the
6-point forward MDCT is recursively used for the computation of the higher-order
forward MDCTs, the total arithmetic complexity is reduced significantly.
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Fig. 4.10 Optimized signal flow graph for the forward 6-point MDCT computation

The analysis of computational complexity for the case of N D 3m � 4 can be
found in [17] (see also Chap. 5).

4.3.7.3 Recursive DIT Mixed-Radix Fast Algorithms [26, 42]

Split the input data sequence fxng into three sets of samples, specifically, fx3ng,
fx3nC1g and fx3nC2g for n D 0; 1; : : : ; N

3
� 1, where N D 3m � 4, m > 0. Then, the

forward MDCT given by (4.39) is decomposed as [42]

c
O

k D
N
3 �1X

nD0
x3nC1 cos

�
3�

2N

�
2n C 1C N

6

�
.2k C 1/

	

C
N
3 �1X

nD0
x3n cos

�
�

2N
.6n C 1C N

2
/ .2k C 1/

	

C
N
3 �1X

nD0
x3nC2 cos

�
�

2N
.6n C 5C N

2
/ .2k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1:

(4.137)

Combining the cosine transform kernels in the second and the third sum on the right-
hand side of (4.137), and using the trigonometric identities for the sums/differences
of cosines we get [42]
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c
O

k D
N
3 �1X

nD0

x3nC1 cos

�
3�

2N

�
2n C 1C N

6

�
.2k C 1/

	

C
N
3 �1X

nD0

x3n



cos˛n cos

�
3�

2N

�
2n C 1C N

6

�
.2k C 1/

	

C sin˛n sin

�
3�

2N

�
2n C 1C N

6

�
.2k C 1/

	�

C
N
3 �1X

nD0

x3nC2



cos˛n cos

�
3�

2N

�
2n C 1C N

6

�
.2k C 1/

	

� sin˛n sin

�
3�

2N

�
2n C 1C N

6

�
.2k C 1/

	�
;

k D 0; 1; : : : ;
N

2
� 1; ˛n D �.2n C 1/

N
: (4.138)

Now, for the further development rewrite (4.138) to more simplified form as

c
O

k D ek C fk cos˛n C gk sin˛n; k D 0; 1; : : : ;
N

2
� 1; (4.139)

where

ek D
N
3 �1X

nD0
x3nC1 cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

fk D
N
3 �1X

nD0
.x3n C x3nC2/ cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

gk D
N
3 �1X

nD0
.x3n � x3nC2/ sin

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

6
� 1: (4.140)

The MDST kernel in (4.140) corresponding to fgkg, by substituting N
6

� 1 � k for k
is converted to the MDCT kernel (note that N has to be integer divisible by 12), and
we get
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g N
6 �1�k D

N
3 �1X

nD0
.�1/nC N

12 .x3n � x3nC2/ cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

6
� 1: (4.141)

From (4.140) and (4.141) it can be seen that the N-point forward MDCT is
decomposed into three N

3
-point MDCTs. Finally, substituting subsequently N

3
�1�k

and N
3

C k into (4.139), after some algebraic manipulations we obtain the complete
formulae of the DIT mixed-radix fast MDCT algorithm as [42]

c
O

k D ek C .fk cos˛n C gk sin˛n/ ;

c
O

N
3 �1�k

D �ek C 1

2
.fk cos˛n C gk sin˛n/ �

p
3

2
.fk sin˛n � gk cos˛n/ ;

c
O

N
3 Ck

D �ek C 1

2
.fk cos˛n C gk sin˛n/C

p
3

2
.fk sin˛n � gk cos˛n/ ;

k D 0; 1; : : : ;
N

6
� 1; (4.142)

where fekg, ffkg are defined by (4.140), and fg N
6 �1�kg is defined by (4.141). For a

given N the computation of a higher-order MDCT is obtained by recursively reusing
three lower-order N

3
-point MDCTs.

For composite lengths N D 3m � 4, m > 0, the multiplicative complexity of the
DIT mixed-radix fast MDCT algorithm can be further reduced as follows. For the
value of n D 1

2
.N
4

� 1/ the angle is �
4

, and from (4.142) we have

1

2

�
fk cos

�

4
C gk sin

�

4

�
D 1

2
cos

�

4
.fk C gk/;

p
3

2

�
fk sin

�

4
� gk cos

�

4

�
D

p
3

2
cos

�

4
.fk � gk/;

requiring 2 multiplications and 2 additions (instead of 4 multiplications and 2

additions), so saving 2 multiplications. Then, the total computational complexity
of the mixed-radix DIT fast MDCT algorithm is given by Wu et al. [42]

MN D 3 � M N
3

C 2N

3
� 2; AN D 3 � A N

3
C 5N

3
; (4.143)

plus N
6

shift operations. The regular signal flow graph for the forward MDCT
computation for N D 3� 4 D 12 is shown in Fig. 5.20 (see Chap. 5). The backward
MDCT computation is realized simply by reversing the signal flow graph for the
forward MDCT computation and performing inverse operations.



4.3 Fast Algorithms for the MDCT (MLT)/MDST Computation in the Oddly. . . 155

Note 8 Following the decomposition method applied to the DCT-II and DCT-III
[72], the DIT mixed-radix fast MDCT algorithm [42] was generalized and extended
in [26] for composite lengths N D qm � 2p, m; p > 1, where q D 3; 5 and 9.

4.3.7.4 Recursive Radix-2 DIF Fast Algorithm [42]

Essentially, the mixed-radix decomposition process can start with any radix number.
However, a lower computational complexity is achieved, if the decomposition
process starts with the smallest radix number, i.e., with the radix-2 [72]. A such
radix-2 recursive DIF fast MDCT algorithm for any even-lengths N divisible by 4
was developed in [42], and it can be combined with any DIF or DIT mixed-radix
fast algorithm for composite lengths N D qm � 2p, m > 0, p > 1. The radix-
2 recursive DIF fast algorithm decomposes the N-point MDCT into two N

2
-point

MDCTs.
Let us introduce the following two sub-sequences fakg and fbkg defined as [42]

ak D c
O

2k C c
O

2kC1; bk D c
O

2k � c
O

2kC1; k D 0; 1; : : : ;
N

4
� 1: (4.144)

Then, from (4.144) and the definition of forward MDCT given by (4.39), the
data sequences fakg and fbkg by using the trigonometric identities for the
sums/differences of cosines are, respectively, given by Wu et al. [42]

ak D
N�1X

nD0
xn



cos

�
�

2N

�
2n C 1C N

2

�
.4k C 1/

	

C cos

�
�

2N

�
2n C 1C N

2

�
.4k C 3/

	�

D
N�1X

nD0
2 xn cos

�
�

4
C �.2n C 1/

2N

	

� cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/C �

4
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.145)

and

bk D
N�1X

nD0
xn



cos

�
�

2N

�
2n C 1C N

2

�
.4k C 1/

	

� cos

�
�

2N

�
2n C 1C N

2

�
.4k C 3/

	�
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D
N�1X

nD0
2 xn sin

�
�

4
C �.2n C 1/

2N

	

� sin

�
�

N

�
2n C 1C N

4

�
.2k C 1/C �

4
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1: (4.146)

Further, (4.144) implies that the even- and odd-indexed MDCT coefficients are,
respectively, obtained as

c
O

2k D 1

2
.ak C bk/; c

O

2kC1 D 1

2
.ak � bk/; k D 0; 1; : : : ;

N

4
�1: (4.147)

At first consider (4.145). Extending the cosine transform kernel on the right-
hand side of (4.145), i.e., the transform kernel cos

�
�
N .2n C 1C N

4
/ .2k C 1/

C�
4
.2k C 1/

�
, we get

ak D 2 cos
�

4
.2k C 1/

N�1X

nD0
xn

� cos

�
�

4
C �.2n C 1/

2N

	
cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	
�

�2 sin
�

4
.2k C 1/

N�1X

nD0
xn cos

�
�

4
C �.2n C 1/

2N

	

� sin

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1: (4.148)

Similarly, considering (4.146) and extending the sine transform kernel on the
right-hand side of (4.146), i.e., the transform kernel sin

�
�
N .2n C 1C N

4
/ .2k C 1/

C�
4
.2k C 1/

�
, we get

bk D 2 sin
�

4
.2k C 1/

N�1X

nD0
xn sin

�
�

4
C �.2n C 1/

2N

	

� cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/
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�2 cos
�

4
.2k C 1/

N�1X

nD0
xn sin

�
�

4
C �.2n C 1/

2N

	

� sin

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	
; k D 0; 1; : : : ;

N

4
� 1: (4.149)

Using the trigonometric identity

cos
�

4
.2k C 1/ D .�1/k sin

�

4
.2k C 1/ D .�1/b kC1

2 c
p
2

2
; (4.150)

where b : c denotes the lower integer part of argument, the terms fakg given by
(4.148) can be rewritten into simplified form as

ak D p
2 .�1/b kC1

2 c .a.1/k � .�1/k a
.2/

k /; (4.151)

where

a
.1/

k D
N�1X

nD0
xn cos

�
�

4
C �.2n C 1/

2N

	
cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	
;

a
.2/

k D
N�1X

nD0
xn cos

�
�

4
C �.2n C 1/

2N

	
sin

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1: (4.152)

Similarly, using the trigonometric identity (4.150), and algebraic identity

.�1/b kC1
2 c D .�1/kCb k

2 c D .�1/k .�1/b k
2 c; (4.153)

the terms fbkg given by (4.149) can also be rewritten into simplified form as

bk D p
2 .�1/b k

2 c .b.1/k C .�1/k b
.2/

k /; (4.154)

where

b
.1/

k D
N�1X

nD0
xn sin

�
�

4
C �.2n C 1/

2N

	
cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	
;

b
.2/

k D
N�1X

nD0
xn sin

�
�

4
C �.2n C 1/

2N

	
sin

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1: (4.155)
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The further development involves decompositions of fa
.1/

k g, fa
.2/

k g and fb
.1/

k g, fb
.2/

k g
as follows. fa

.1/

k g is decomposed as [42]

a
.1/

k D
N
2 �1X

nD0
xn cos

�
�

4
C �.2n C 1/

2N

	
cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	

C
N�1X

nD N
2

xn cos

�
�

4
C �.2n C 1/

2N

	
cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	

D
N
2 �1X

nD0
xn cos

�
�

4
C �.2n C 1/

2N

	
cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	

�
N
2 �1X

nD0
x N
2 Cn cos

�
3�

4
C �.2n C 1/

2N

	
cos

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	

D
p
2

2

N
2 �1X

nD0
y
.1/

n cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.156)

where

y
.1/

n D .xn C x N
2 Cn/ cos

�.2n C 1/

2N
�
�

xn � x N
2 Cn

�
sin

�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

2
� 1: (4.157)

fa
.2/

k g is decomposed as [42]

a
.2/

k D
N
2 �1X

nD0
xn cos

�
�

4
C �.2n C 1/

2N

	
sin

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	

C
N�1X

nD N
2

xn cos

�
�

4
C �.2n C 1/

2N

	
sin

�
�

N

�
2n C 1C N

4

�
.2k C 1/

	

D
N
2 �1X

nD0
x N
2 �1�n cos

�
3�

4
� �.2n C 1/

2N
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� sin

�
3�

2
.2k C 1/ � �

N

�
2n C 1C N

4

�
.2k C 1/

	

C
N
2 �1X

nD0
xN�1�n cos

�
5�

4
� �.2n C 1/

2N

	

� sin

�
5�

2
.2k C 1/ � �

N

�
2n C 1C N

4

�
.2k C 1/

	

D
p
2

2
.�1/k

N
2 �1X

nD0
y
.2/

n cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.158)

where

y
.2/

n D .x N
2 �1�n � xN�1�n/ cos

�.2n C 1/

2N
� .x N

2 �1�n C xN�1�n/ sin
�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

2
� 1: (4.159)

From (4.157) and (4.159), it can be easily verified that

y
.2/

n D �y
.1/

N
2 �1�n

; n D 0; 1; : : : ;
N

2
� 1: (4.160)

Substituting (4.156) and (4.158) in (4.151), and using (4.160) we get [42]

ak D .�1/b kC1
2 c

N
2 �1X

nD0
.y

.1/

n � y
.2/

n / cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	

D .�1/b kC1
2 c

N
2 �1X

nD0
.y

.1/

n C y
.1/

N
2 �1�n

/ cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

D .�1/b kC1
2 c

N
2 �1X

nD0
yn cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.161)

where fyng is explicitly given by
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yn D
h
.xn � x N

2 �1�n/C .x N
2 Cn C xN�1�n/

i
cos

�.2n C 1/

2N

�
h
.xn � x N

2 �1�n/ � .x N
2 Cn C xN�1�n/

i
sin

�.2n C 1/

2N
; n D 0; 1; : : : ;

N

2
� 1:

(4.162)

Moreover, the data sequence fyng has an even symmetry property given by

yn D y N
2 �1�n; n D 0; 1; : : : ;

N

4
� 1: (4.163)

Equation (4.161) corresponding to fakg is recognized as the N
2

-point MDCT of fyng.

Following the derivation procedure presented for fa
.1/

k g given by (4.156) and

fa
.2/

k g given by (4.158), fb
.1/

k g and fb
.2/

k g defined by (4.155) after decomposition are,
respectively, given by

b
.1/

k D
p
2

2

N
2 �1X

nD0
z
.1/

n cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.164)

where

z
.1/

n D .xn C x N
2 Cn/ sin

�.2n C 1/

2N
C .xn � x N

2 Cn/ cos
�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

2
� 1; (4.165)

and

b
.2/

k D
p
2

2
.�1/k

N
2 �1X

nD0
z
.2/

n cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.166)

where

z
.2/

n D �.x N
2 �1�n � xN�1�n/ sin

�.2n C 1/

2N
� .x N

2 �1�n C xN�1�n/ cos
�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

2
� 1: (4.167)
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Again, from (4.165) and (4.167) it can be easily verified that

z
.2/

n D �z
.1/

N
2 �1�n

; n D 0; 1; : : : ;
N

2
� 1: (4.168)

Substituting (4.164) and (4.166) into (4.154), and using (4.168) we get [42]

bk D .�1/b k
2 c

N
2 �1X

nD0
.z
.1/

n C z
.2/

n / cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	

D .�1/b k
2 c

N
2 �1X

nD0
.z
.1/

n � z
.1/

N
2 �1�n

/ cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

D .�1/b k
2 c

N
2 �1X

nD0
zn cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.169)

where fzng is explicitly given by

zn D
h
.xn � x N

2 �1�n/C .x N
2 Cn C xN�1�n/

i
sin

�.2n C 1/

2N

C
h
.xn � x N

2 �1�n/ � .x N
2 Cn C xN�1�n/

i
cos

�.2n C 1/

2N
; n D 0; 1; : : : ;

N

2
� 1:

(4.170)

Moreover, the data sequence fzng has an even anti-symmetry property given by

zn D � z N
2 �1�n; n D 0; 1; : : : ;

N

4
� 1: (4.171)

Equation (4.169) corresponding to fbkg is recognized as the N
2

-point MDCT of fzng.
The last step involves to derive the complete formulae defining the recursive

radix-2 DIF fast MDCT algorithm. Based on (4.147), (4.161), (4.169) and using the
algebraic identity (4.153), we have [42]

c
O

2k D .�1/b kC1
2 c

N
2 �1X

nD0

1

2

�
yn C .�1/k zn

�

� cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;
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c
O

2kC1 D .�1/b kC1
2 c

N
2 �1X

nD0

1

2

�
yn � .�1/k zn

�

� cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1: (4.172)

where the data sequence fyng is given by (4.162) and data sequence fzng is given by
(4.170). Finally, directly calculating the algebraic expressions under both sums of
(4.172) for k even and odd, we get [42]

c
O

2k D .�1/b kC1
2 c

N
2 �1X

nD0
x
.k/

n cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

c
O

2kC1 D .�1/b kC1
2 c

N
2 �1X

nD0
x
.k/

N
2 �1�n

cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (4.173)

where

x
.k/

n D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

.xn � x N
2 �1�n/ cos �.2nC1/

2N

C.x N
2 Cn C xN�1�n/ sin �.2nC1/

2N ; k is even;

�.xn � x N
2 �1�n/ sin �.2nC1/

2N

C.x N
2 Cn C xN�1�n/ cos �.2nC1/

2N ; k is odd;

x
.k/

N
2 �1�n

D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

�.xn � x N
2 �1�n/ sin �.2nC1/

2N

C.x N
2 Cn C xN�1�n/ cos �.2nC1/

2N ; k is even;

.xn � x N
2 �1�n/ cos �.2nC1/

2N

C.x N
2 Cn C xN�1�n/ sin �.2nC1/

2N ; k is odd;

n D 0; 1; : : : ;
N

2
� 1: (4.174)

Since the data sequence fx
.k/

N
2 �1�n

g is reversed to fx
.k/

n g, i.e.,
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x
.k/

N
2 �1�n

D x
.k/

n ; n D 0; 1; : : : ;
N

2
� 1; (4.175)

consequently, it is satisfying to calculate fx
.k/

n g and fx
.k/

N
2 �1�n

g only for n D
0; 1; : : : ; N

4
� 1.

The radix-2 recursive DIF fast MDCT algorithm defined by (4.173)–(4.175)
decomposes the N-point MDCT into two N

2
-point MDCTs. The decomposition

process can recursively be repeated until the lower-order even-length (4-point or
6-point) MDCTs remain. Equation (4.174) defines the block of N

4
Givens–Jacobi

rotations. The generalized signal flow graph of the recursive radix-2 DIF fast
algorithm for the forward MDCT computation [42] for N D 8 is shown in Fig. 4.11.
The backward MDCT computation can be realized simply by reversing the signal
flow graph for the forward MDCT computation and performing inverse operations.

The total computational complexity of the recursive radix-2 DIF fast MDCT
algorithm is given by Wu et al. [42]

x0

x1

x2

x3

x4

x5

x0
(0)

c0
O

c3
O

x6

x7

c1
O

cos /16
sin /16

/16
/16

x1
(0)

/16

/16

cos /16
sin /16

x2
(0)

x3
(0)

x0
(0)

c2
O

x3
(0)

x2
(0)

x1
(0)

Fig. 4.11 Generalized signal flow graph of the recursive radix-2 DIF fast algorithm [42] for the
forward MDCT computation for N D 8
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MN D 2 � M N
2

C 3N

4
; AN D 2 � A N

2
C 5N

4
: (4.176)

Note 9 Similarly as for the evenly stacked MDCT/MDST (see Sect. 4.2),
generalized signal flow graphs for the MDCT/MDST computation in the oddly
stacked system shown in Figs. 4.5, 4.6, 4.7, 4.8, and 4.9, DCT-IV-based, fast DCT-
IV/(S)DCT-II-based, unified evenly/oddly stacked MDCT/MDCT algorithms as
well as (recursive) fast DIF/DIT mixed-radix and radix-2 algorithms correspond
to sparse (block) matrix factorizations of the MDCT matrix. Based on the relation
between the MDCT and MDST block transforms given by (4.5) we can obtain sparse
matrix factorizations of the corresponding MDST matrix.

4.3.8 Oddly Stacked MDCT/MDST Implementations Based
on the Recursive/Regressive Filter Structures

Quite different class of algorithms for an efficient implementation of the for-
ward/backward MDCT in the oddly stacked system or equivalently of the MLT are
algorithms based on recursive or regressive filter structures [52–63]. Although these
recursive algorithms are not so efficient in terms of the arithmetic complexity, they
can be represented by simple regular regressive filter structures of the same type
for the variable- or general-lengths forward/backward MDCT (MLT) computation.
Thus, recursive algorithms provide efficient online schemes particularly suitable for
parallel VLSI implementations.

Principally, the forward or backward MDCT (MLT) kernels are converted to
recursive (or recurrent) equations based on:

• Recurrence formulae for Chebyshev polynomials of the second and third kinds
[87]. A typical recursive forward/backward MDCT (MLT) implementation [53]
follows closely the DCT-II-based approach [87].

• Sinusoidal recursive formulae exploiting the Goertzel recursive formula [81].
Such a typical recursive implementation [61, 63] follows closely the DCT-II-
based approach [76, 77].

• Clenshaw’s recurrence formula (used for upward or downward ordering) [71]. A
typical recursive implementation [62] follows closely the DCT-II-based approach
[71].

• Goertzel digital filters, where the forward and backward MDCT are expressed in
the form of discrete time domain convolution sums [54].

• Recurrence formulae for the cosine and sine functions [55].

Now, we know that the N-point MDCT or MLT using the permutation (4.80) or
(4.101) can be converted to the DCT-IV of half size which may be subsequently con-
verted to the DCT-II of the same size at the cost of additional N

2
pre-multiplications

and N
2

�1 recursive post-additions. Following this approach the recursive/regressive
filter structures have been developed [52, 58–60]. On the other hand, the DCT-
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IV-based recursive/regressive filter structures are presented in [56, 57]. Since the
DCT-IV is self-inverse, both the forward and backward MDCT computations are
implemented by an identical recursive/regressive filter structure.

In the following subsections typical representative recursive MDCT (MLT)
implementations based on recursive/regressive filter structures are discussed in more
detail. Recursive (recurrence) formulae are applied directly to the MDCT (MLT)
kernel. We note that in the derivation of algorithms [55, 61, 63], the definitions of
the forward and backward MLT are used. Therefore, we recall that the forward and
backward MLT are, respectively, defined as [2]

c
MLT

k D
N�1X

nD0
xn cos

�
�

M

�
n C M C 1

2

��
k C 1

2

�	
; k D 0; 1; : : : ;M � 1;

(4.177)

OxMLT

n D
M�1X

kD0
c

MLT

k cos

�
�

M

�
n C M C 1

2

��
k C 1

2

�	
; n D 0; 1; : : : ;N � 1;

(4.178)

where fxng is the windowed input data sequence, N D 2M and M is the number of
MLT coefficients fc

MLT

k g. fOxMLT

n g is the time domain aliased data sequence.

4.3.8.1 Recursive MLT (MDCT) Algorithm [61, 63]

At first, we remind the recurrence formulae for the cosine and sine functions [52]

cos Œr �k� D 2 cos Œ.r � 1/ �k� cos �k � cos Œ.r � 2/ �k� ;

sin Œr �k� D 2 sin Œ.r � 1/ �k� cos �k � sin Œ.r � 2/ �k� ; �k D � k

N
:

(4.179)

With respect to the Goertzel recursive algorithm [81], defining a relation [76]

vm sin �k D
N�1X

nDm

xn sin.n � m C 1/ �k; (4.180)

and using the recurrence formula for the sine function (4.179) with r D n � m C 1,
we have

vm sin �k D xm sin �k C
N�1X

nDmC1
xn sin.n � m C 1/ �k
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D xm sin �k C
N�1X

nDmC1
xn Œ2 cos �k sin.n � m/ �k � sin.n � m � 1/ �k�

D xm sin �k C 2 cos �k

N�1X

nDmC1
xm sin.n � m/ �k

�
N�1X

nDmC2
xn sin.n � m � 1/ �k

D xm sin �k C 2 cos �k vmC1 sin �k � vmC2 sin �k;

m D N � 1;N � 2; : : : ; 1; 0: (4.181)

From (4.181) we directly get the recursive equation defined as [76]

vm D xm C 2 cos �k vmC1 � vmC2; m D N � 1;N � 2; : : : ; 1; 0; (4.182)

with the initial conditions: vN�1 D xN�1 and vN D vNC1 D 0 for m D N � 1.
In order to obtain the recursive transfer function for the forward MLT given by

(4.177), let us denote

�k D �

M

�
k C 1

2

�
; k D 0; 1; : : : ;M � 1; (4.183)

and multiplying both sides of (4.177) by sin �k, we have [61, 63]

c
MLT

k sin �k D
N�1X

nD0
xn cos

��
n C M C 1

2

�
�k

	
sin �k

D x0 cos

�
.M C 1/

�k

2

	
sin �k C

N�1X

nD1
xn



cos.n �k/ cos

�
.M C 1/

�k

2

	

� sin.n �k/ sin

�
.M C 1/

�k

2

	�
sin �k

D x0 cos

�
.M C 1/

�k

2

	
sin �k C C

N�1X

nD1
xn



cos �k cos

�
.M C 1/

�k

2

	

� sin �k sin

�
.M C 1/

�k

2

	�
sin.n �k/

�
N�1X

nD1
xn Œsin.n �k/ cos �k � cos.n �k/ sin �k� cos

�
.M C 1/

�k

2
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D x0 cos

�
.M C 1/

�k

2

	
sin �k C cos

�
.M C 3/

�k

2

	 N�1X

nD1
xn sin.n �k/

� cos

�
.M C 1/

�k

2

	 N�1X

nD2
xn sin Œ.n � 1/ �k�

D x0 cos

�
.M C 1/

�k

2

	
sin �k C v1 cos

�
.M C 3/

�k

2

	
sin �k

�v2 cos

�
.M C 1/

�k

2

	
sin �k: (4.184)

From (4.184) we directly obtain the recursive transfer function for the forward MLT
as [61, 63]

c
MLT

k D x0 cos

�
.M C 1/

�k

2

	
C v1 cos

�
.M C 3/

�k

2

	
� v2 cos

�
.M C 1/

�k

2

	

D .x0 � v2/ cos

�
.M C 1/

�k

2

	
C v1 cos

�
.M C 3/

�k

2

	
;

k D 0; 1; : : : ;M � 1: (4.185)

From (4.182) for m D 0 we have

x0 � v2 D v0 � v1 2 cos �k: (4.186)

Substituting (4.186) in (4.185), then using the trigonometric identity cos.˛ � ˇ/ D
2 cos˛ cosˇ�cos.˛Cˇ/, where ˛ D .MC1/ �k

2
and ˇ D �k, after some algebraic

manipulations we finally obtain [61, 63]

c
MLT

k D v0 cos

�
.M C 1/

�k

2

	
� v1 cos

�
.M � 1/�k

2

	
; k D 0; 1; : : : ;M � 1:

(4.187)
Equations (4.182) and (4.187) define the recursive algorithm for the forward MLT
(MDCT) computation. To compute one MLT (MDCT) coefficient c

MLT

k , we need to
recursively generate fvmg according to (4.182). At Nth step, the kth MLT (MDCT)
coefficient is evaluated according to (4.187). This requires N C 1 multiplications
and 2N � 1 additions.

The corresponding regressive filter structure for the forward MLT (MDCT)
computation is shown in Fig. 5.3a in Chap. 5. The input data sequence fxng is in
reverse order.

Now, consider the backward MLT given by (4.178). Similarly, defining a
relation [77]
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vm sin �n D
M�1X

kDm

c
MLT

k sin.k � m C 1/ �n; (4.188)

using the recurrence formula for the sine function (4.179) with r D k � m C 1, and
following the derivation procedure (4.181), we get the recursive equation defined
as [77]

vm D c
MLT

m C 2 cos �n vmC1 � vmC2; m D M � 1;M � 2; : : : ; 1; 0; (4.189)

with initial conditions: vM�1 D c
MLT

M�1 and vM D vMC1 D 0 for m D M � 1.
In order to obtain the recursive transfer function for the backward MLT given by

(4.178), let us denote

�n D �

M

�
n C M C 1

2

�
; n D 0; 1; : : : ;N � 1; (4.190)

and multiplying both sides of (4.178) by sin �n, we have [61, 63]

OxMLT

n sin �n D
M�1X

kD0
c

MLT

k cos

��
k C 1

2

�
�n

	
sin �n

D c
MLT

0 cos
�n

2
sin �n C

M�1X

kD1
ck



cos.k �n/ cos

�n

2

� sin.k �n/ sin
�n

2

�
sin �n

D c
MLT

0 cos
�n

2
sin �n

C
M�1X

kD1
c

MLT

k

�
cos �n cos

�n

2
� sin �n sin

�n

2

	
sin.k �n/

�
M�1X

kD1
c

MLT

k Œsin.k �n/ cos �n � cos.k �n/ sin �n� cos
�n

2

D c
MLT

0 cos
�n

2
sin �n C cos

3�n

2

M�1X

kD1
c

MLT

k sin.k �n/

� cos
�n

2

M�1X

kD2
ck sinŒ.k � 1/ �n�
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D c
MLT

0 cos
�n

2
sin �n C v1 cos

3�n

2
sin �n

�v2 cos
�n

2
sin �n: (4.191)

From (4.191) we directly obtain the recursive transfer function for the backward
MLT as [61, 63]

OxMLT

n D c
MLT

0 cos
�n

2
C v1 cos

3�k

2
� v2 cos

�n

2

D .c
MLT

0 � v2/ cos
�n

2
C v1 cos

3�n

2
; n D 0; 1; : : : ;N � 1: (4.192)

From (4.189) for m D 0 we have

c
MLT

0 � v2 D v0 � v1 2 cos �n: (4.193)

Similarly, substituting (4.193) into (4.192), then using the trigonometric identity
cos.˛ � ˇ/ D 2 cos˛ cosˇ � cos.˛ C ˇ/, where ˛ D �n and ˇ D �n

2
, we finally

obtain [61, 63]

OxMLT

n D .v0 � v1/ cos
�n

2
; n D 0; 1; : : : ;N � 1: (4.194)

Equations (4.189) and (4.194) define the recursive algorithm for the backward MLT
(MDCT) computation. To compute one time domain aliased sample OxMLT

n , we need
recursively generate fvmg according to (4.189). At Mth step, the time domain aliased
sample is evaluated according to (4.194). This requires M multiplications and 2M�1
additions. Exploiting the symmetry property of fOxMLT

n g (see Chap. 3), i.e., OxMLT

n D
� OxMLT

N
2 �1�n

and OxMLT

N
2 Cn

D OxMLT

N�1�n, for n D 0; 1; : : : ; N
4

� 1, it is sufficient to compute

only N
2

samples.
The corresponding regressive filter structure for the backward MLT (MDCT)

computation is shown in Fig. 5.3b in Chap. 5. The MLT (MDCT) coefficients are in
reverse order.

4.3.8.2 Recursive MLT (MDCT) Algorithm [55]

Simple recursive algorithms [55] for the variable-length forward and backward MLT
(MDCT) computation are based on a recursively generating the MLT (MDCT)
kernel using the recurrence formulae (4.179).

Consider the forward MLT given by (4.177). Defining �k similarly as in (4.183),
the MLT kernel is first rewritten into the equivalent form as [55]
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fn D cos

��
n C M C 1

2

�
�k

	
; n D 0; 1; : : : ;N � 1: (4.195)

Applying the cosine recurrence formula (4.179) for r D n to (4.195) we obtain the
recurrence equation for generating the MLT kernel as

fn D 2 cos �k fn�1 � fn�2; n D 1; 2; : : : ;N � 1: (4.196)

From (4.195) for n D 0 we obtain the initial conditions

f0 D cos

�
M C 1

2
�k

	
; f�1 D cos

�
M � 1
2

�k

	
: (4.197)

Then, the computation of the forward MLT (MDCT) is defined as [55]

c
MLT

k D x0 f0 C
N�1X

nD1
xn fn; k D 0; 1; : : : ;M � 1; (4.198)

where the MLT kernel given by ffng, n D 1; 2; : : : ;N � 1, is recursively generated
according to (4.196) with initial conditions (4.197). The computation of one MLT
(MDCT) coefficient c

MLT

k requires 2N � 1 multiplications and 2N � 1 additions.
Now, consider the backward MLT given by (4.178). Defining �n similarly as in

(4.190), the MLT kernel is rewritten into the equivalent form as [55]

gk D cos

��
k C 1

2

�
�n

	
; k D 0; 1; : : : ;M � 1: (4.199)

Following the same derivation procedure as used for the forward MLT, the compu-
tation of the backward MLT (MDCT) is defined as [55]

OxMLT

n D c
MLT

0 g0 C
M�1X

kD1
ck gk; n D 0; 1; : : : ;N � 1; (4.200)

where

gk D 2 cos �n gk�1 � gk�2; k D 1; 2; : : : ;M � 1: (4.201)

with initial conditions given by

g0 D cos
�n

2
; g�1 D cos

�
��n

2

�
D cos

�n

2
: (4.202)

The computation of one time domain aliased sample OxMLT

n requires 2M � 1

multiplications and 2M � 1 additions.
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For a potential hardware implementation, in [55] additionally the recursive
algorithm [61, 63] and recursive algorithm [55] have been investigated in terms
of the required number of bits for the fixed-point data representation during the
backward MLT (MDCT) computation on data block sizes with N D 1920. Indeed,
due to the nature of recursion, numerical values are accumulated very fast, and this
fact has an impact for implementation on a hardware architecture with the limited
number of bits for data representation. It was shown in [55] that the recursive
algorithm [61, 63] frequently exceeded a maximum limit of 24 bits (actually it
required up to 31 bits particularly when the magnitude 2 cos �n reached the value
of 2 in the inner loop of recursion), while the recursive algorithm [55] was able to
process the same data with only 24 bits. Consequently, the computation of the MLT
(MDCT) by the recursive algorithm [55] can be performed on a reduced bit-width
architecture without a loss of accuracy.

Note 10 Although similar recursive algorithms have been also derived for the
corresponding MDST in [55, 61, 63], using the relation between the MDST and the
MDCT block transforms given by (4.43), the computation of MDST can be realized
by the MDCT recursive algorithms.

4.4 Fast Algorithm for the ELT Computation

Essentially, the ELT is the MLT but with longer basis functions, or in general, with
the basis functions of arbitrary length [2, 48–50]. We recall that the forward ELT as
a block transform is defined as [2, 48, 50]

c
ELT

k D
2KM�1X

nD0
xn cos

�
�

M

�
n C M C 1

2

��
k C 1

2

�	
; k D 0; 1; : : : ;M � 1;

(4.203)

where fxng is the windowed input data sequence, K > 1 is the overlapping factor
being a positive integer. The overlapping factor K actually specifies how many pairs
of overlapped input data blocks are used to compute the ELT coefficients. When
K D 1, the ELT becomes the MLT.

On the other hand, the backward ELT as a block transform is defined as [2, 48, 50]

OxELT

n D
M�1X

kD0
c

ELT

k cos

�
�

M

�
n C M C 1

2

��
k C 1

2

�	
; n D 0; 1; : : : ;KM � 1;

(4.204)

where fOxELT

n g is the time domain aliased data sequence. We note that the normaliza-

tion factors
q

2
M in (4.203) and (4.204) for simplicity are omitted. For the efficient
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forward and backward ELT computation the fast algorithms were developed in
[2, 48–50], and they are discussed in the following text.

Consider the forward ELT given by (4.203). Using the change of variables n D
3M
2

C s, and defining

gs � x 3M
2 Cs; (4.205)

we can write (4.203) in the form [2]

c
ELT

k D �
.4K�3/M

2 �1X

sD� 3M
2

gs cos

�
�

M

�
s C 1

2

��
k C 1

2

�	
;

k D 0; 1; : : : ;M � 1: (4.206)

Assuming that fgsg defined by (4.205), but with gs D 0 if s < � 3M
2

or
s > .4K � 3/M

2
, (4.206) may be written in the form

c
ELT

k D �
2KX

lD0

.l�1/M�1X

sD.l�2/M
gs cos

�
�

M

�
s C 1

2

��
k C 1

2

�	
;

k D 0; 1; : : : ;M � 1: (4.207)

Further, splitting the first sum with 2K C 1 terms in (4.207) into two sums,
specifically for l D 2s and l D 2s C 1, we get

c
ELT

k D �
KX

rD0

.2r�1/M�1X

sD.2r�2/M
gs cos

�
�

M

�
s C 1

2

��
k C 1

2

�	
�

�
K�1X

rD0

2rM�1X

sD.2r�1/M
gs cos

�
�

M

�
s C 1

2

��
k C 1

2

�	
;

k D 0; 1; : : : ;M � 1: (4.208)

By substituting s C 2.r � 1/M, and then 2rM � 1 � s for s in (4.208), we find that
the modulating cosines satisfy the following relations [2, 50]:

cos

�
�

M

�
s C 2.r � 1/M C 1

2

��
k C 1

2

�	

D .�1/r�1 cos

�
�

M

�
s C 1

2

��
k C 1

2

�	
;
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cos

�
�

M

�
2rM � 1 � s C 1

2

��
k C 1

2

�	

D .�1/r cos

�
�

M

�
s C 1

2

��
k C 1

2

�	
: (4.209)

Finally, using (4.209), applying the change of variables n D s � .2r � 2/M in the
first sum of (4.208), and the change of variables n D 2rM �1� s in the second sum,
we obtain [2]

c
ELT

k D
M�1X

nD0
un cos

�
�

M

�
n C 1

2

��
k C 1

2

�	
;

k D 0; 1; : : : ;M � 1; (4.210)

where the data sequence fung is given by Malvar [2]

un D
KX

rD0
.�1/r gnC.2r�2/M C

K�1X

rD0
.�1/r�1 g2rM�1�n;

n D 0; 1; : : : ;M � 1: (4.211)

The cosine transform kernel in (4.210) is recognized as an M-point DCT-IV. Thus,
using (4.205) and (4.211) the KM-point forward ELT of fxng is converted to the M-
point DCT-IV of fung. Moreover, the windowing procedure for a given value of K >

1 using (4.205) and (4.211) is decomposed to a product of K orthogonal butterfly
matrices intermixed with delays. The ELT windowing function design method as
well as C computer program to generate required butterfly angles can be found
in [2, 50]. The backward ELT computation can be realized by reversing the fast
forward ELT structure and performing the inverse operations. Generalized signal
flow graphs both for the forward and backward ELT computation are presented in
[2]. The required DCT-IV fast algorithms/computational structures are presented in
Appendix C.2.

The total computational complexity of the fast forward/backward ELT, where
M D 2m, is given [2]

MKM D M

2
.2K C m C 3/; AKM D M

2
.2K C m C 1/: (4.212)

4.4.1 Fast ELT for K D 2

The forward ELT given by (4.203) for K D 2 corresponds to
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c
ELT

k D
4M�1X

nD0
xn cos

�
�

M

�
n C M C 1

2

��
k C 1

2

�	

D
M�1X

nD0
un cos

�
�

M

�
n C 1

2

��
k C 1

2

�	
;

k D 0; 1; : : : ;M � 1; (4.213)

and assuming that gs D 0 if s 62 Œ� 3M
2
; 5M
2

� 1�, the data sequence fung given by
(4.211) can be written as [2]

ui D
2X

rD0
.�1/r giC.2r�2/M C

1X

rD0
.�1/r�1 g2rM�1�i; i D 0; 1; : : : ;M � 1:

Let us consider two halves of fuig simultaneously, with indices n D M
2

C i and
n D M

2
� 1 � i. Then, we have

u M
2 Ci D gi� 3M

2
� giC M

2
� g� M

2 �1�i C g 3M
2 �1�i;

u M
2 �1�i D �g M

2 �1�i C g 5M
2 �1�i � gi� M

2
C g 3M

2 Ci; i D 0; 1; : : : ;
M

2
� 1:

Using (4.205), we finally obtain

u M
2 Cn D xn � x2MCn � xM�1�n C x3M�1�n;

u M
2 �1�n D �x2M�1�n C x4M�1�n � xMCn C x3MCn;

n D 0; 1; : : : ;
M

2
� 1: (4.214)

Computer programs in C language for the fast forward/backward ELT computa-
tion can be found in [2].

4.5 Fast Algorithms for the MCLT Computation

The MCLT [3] is the complex block transform mapping overlapped blocks of real-
valued signal into blocks of complex-valued transform coefficients. Its real part is
the MLT, or equivalently the oddly stacked MDCT, and its imaginary part is the
corresponding oddly stacked MDST. Actually, the MDCT (MLT) and the MDST
are, respectively, the real and imaginary components of the O2DFT [23]. In general,
based on the relation between the MDST and the MDCT given by (4.43), the
MDST computation can be realized by any existing fast MDCT computational
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structure with simple pre-processing of data sequences. Consequently, any fast
MDCT algorithm discussed in Sect. 4.3 may be used for the MCLT computation.
But, a fast MDCT computational structure should be applied sequentially to obtain
the MCLT.

A number of fast algorithms were developed for the computation of the MCLT
or more accurately, for the simultaneous (online) MDCT/MDST computation
[3, 18, 64–70]. The conventional approach is to decompose the argument of MCLT
kernel and map it into the complex DFT of the same size with complex pre- and
post-multiplications [70]. However, this approach involves redundant arithmetic
operations. To reduce the arithmetic complexity, the simultaneous MDCT/MDST
computation is mapped into the real-valued DFT/FFT [68], type-IV generalized
DFT (GDFT-IV) of real-valued data sequences or alternatively, into type-IV gener-
alized discrete Hartley transform (GDHT-IV) [18], type-II GDHT (GDHT-II) [69],
DCT-IV/DST-IV [3], DCT-II/DST-II [67], or it is realized by the DCT-IV/DCT-II
combination [65, 66]. A direct recursive fast radix-2 MCLT algorithm [64] is based
on the recursive radix-2 DIF MDCT algorithm [42]. In particular, exploiting the
explicit form of the sine windowing function combined with the MCLT kernel,
several fast MCLT algorithms with incorporated sine windowing function were
derived: the real-valued DFT/FFT-based [68], DCT-II-based [67], and GDHT-II-
based [69].

In the theory of fast MDCT/MDST algorithms it is well known that by a
composition of simple permutations applied to the input data sequence, an N-point
MDCT/MDST can always be converted to N

2
-point DCT-IV/DST-IV (whereby DST-

IV may always be converted back to DCT-IV with simple pre-processing of data
sequences). Note that each N

2
-point DCT-IV may be alternatively mapped into the

N
4

-point complex DFT with identical pre- and post-rotation stages [25].

4.5.1 Definitions of MCLT Block Transforms

Let fxng; n D 0; 1; : : : ;N � 1 represent an input data sequence, and N is assumed
to be an even integer. Consider the forward MDCT given by (4.39) and the forward
MDST given by (4.41) with N D 2M. Then, the forward MCLT as a block transform
is defined as [3]

pk D c
O

k � i s
O

k ; i D p�1; k D 0; 1; : : : ;M � 1; (4.215)

where fc
O

k g and fs
O

k g are, respectively, the MDCT and MDST coefficients.
A reconstruction formula of the backward MCLT block transform is not unique.

There is a reconstruction formula from the real part only, as well as one from the
imaginary part only [3]. However, the best reconstruction formula is the average of
those from real and imaginary parts (preferred) defined as [3]
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yn D 1

2

�
OxO�MDCT

n C OxO�MDST

n

�
; n D 0; 1; : : : ; 2M � 1; (4.216)

where fOxO�MDCT

n g and fOxO�MDST

n g are, respectively, the time domain aliased data
sequences recovered by the backward MDCT given by (4.40) and the backward
MDST given by (4.42). Therefore, for the backward MCLT computation we need to
use a fast MDCT algorithm for the backward MDCT/MDST computation to obtain
the time domain aliased data sequences fOxO�MDCT

n g and/or fOxO�MDST

n g.
Note 11 It is important to emphasize that if we use the reconstruction formula

(4.216), then the original data sequence fxng is perfectly reconstructed even without
the windowing, overlap, and add procedure, i.e., yn D xn in (4.216). It means that the
windowing procedure in the fast MCLT computation is redundant. However, when
the windowing procedure nevertheless is used, then yn D w

2

n xn, n D 0; 1; : : : ; 2M �
1 (see Chap. 3).

4.5.2 (G)DFT/FFT-Based Fast Algorithms

The DFT/FFT-based fast MCLT algorithm [70] directly maps the 2M-point MCLT
kernel into 2M-point complex DFT/FFT. Consequently, it is not so efficient in
terms of the arithmetic complexity. In order to reduce the arithmetic complexity,
the DFT/FFT-based fast MCLT algorithm developed in [68] is based on 2M-
point real-valued DFT/FFT with the incorporated sine windowing function. As an
alternative, the fast MCLT algorithm [18] is based on the type-IV GDFT (DFT-IV)
of real-valued data sequences [74]. Both algorithms are discussed in the following
subsections.

4.5.2.1 Real-Valued DFT/FFT-Based Fast Algorithm [68]

At first, the sine windowing function can be written as a sum of two
exponentials as [68]

sin

�
�.2n C 1/

4M

	
D i

2

�
e�i �.2nC1/

4M � e�i �.�2n�1/
4M

�
; k D 0; 1; : : : ; 2M � 1:

(4.217)

Then (4.215) with the normalization factor
q

2
M is mapped into a real-valued

DFT as

pk D
r
2

M

2M�1X

nD0
xn sin

�
�.2n C 1/

4M

	
e�i �.2nC1CM/.2kC1/

4M ; k D 0; 1; : : : ;M � 1:
(4.218)
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Combining (4.217) and (4.218), after some algebraic manipulations we get [68]

pk D i dk fk C dkC1 fkC1; (4.219)

where

dk D e�i �4 .2kC1/ e�i 2�k
4M ; (4.220)

and

fk D
r

1

2M

2M�1X

nD0
xn e�i 2�nk

2M : (4.221)

Equation (4.221) is a normalized 2M-point DFT/FFT of the real-valued input data
sequence fxng. From (4.219), (4.220) and (4.221) it follows that the MCLT coeffi-
cients fpkg are obtained by first computing the FFT of fxng, and then performing the
additional operations with factors fdkg given by (4.220). Since factors fdkg satisfy
jdkj D 1, they actually correspond to Givens–Jacobi rotations (see Appendix F.4).

One of the advantages of the DFT/FFT-based fast MCLT algorithm [68] is
that it does not require data shuffling. Another positive aspect is that the factors
fdkg may be computed recursively. This fact can take advantage in a potential
hardware implementation. Specifically, substituting k�1 for k in (4.220), after some
manipulations we get [68]

dk D dk�1 e�i 2�.MC1/
4M ; k D 1; 2; : : : ;M: (4.222)

The total computational complexity of the DFT/FFT-based fast MCLT algorithm
[68] is given by the complexity of 2M-point FFT of real-valued data sequences plus
the complexity of (4.219) requiring M C 1 complex multiplications and M complex
additions. Each complex multiplication corresponds to the Givens–Jacobi rotation.
Additionally, f0 and fM are real, factors d0 and dM have identical real and imaginary
parts except for sign, and factor c M

2
D e�i �2 .

M
2 C1/ is either purely real or purely

imaginary for M > 2. Thus, (4.219) requires 3M �2 real multiplications and 5M �6
real additions. The required real-valued FFT algorithm is presented in [2].

4.5.2.2 GDFT-IV-Based Fast Algorithm [18]

The N-point forward and inverse GDFT-IV of a real-valued data sequence fxng, are,
respectively, defined as [74]

f
IV

k D 1

N

N�1X

nD0
xn e�i 2�.2nC1/.2kC1/

4N ; i D p�1; k D 0; 1; : : : ;N � 1;
(4.223)
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xn D
N�1X

kD0
f

IV

k ei 2�.2nC1/.2kC1/
4N ; n D 0; 1; : : : ;N � 1; (4.224)

where ff
IV

k g are GDFT-IV coefficients. The GDFT-IV coefficients ff
IV

k g have the
following symmetry property [18, 74]

f
IV

k D f
� IV

N�1�k; k D 0; 1; : : : ;
N

2
� 1; (4.225)

where � denotes the complex conjugate. The forward GDFT-IV of real-valued data
sequences may be decomposed as [18]

f
IV

k D 1

N

N
2 �1X

nD0
.xn � xN�1�n/ cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	

�i .xn C xN�1�n/ sin

�
�

4.N=2/
.2n C 1/.2k C 1/

	
;

k D 0; 1; : : : ;N � 1: (4.226)

The transform kernels on the right-hand side of (4.226) are recognized as the N
2

-
point DCT-IV of fxn �xN�1�ng (real part), and the N

2
-point DST-IV of fxn CxN�1�ng

(imaginary part). Based on the relation between the DST-IV and the DCT-IV (see
Appendix C.2), the DST-IV in (4.226) may be converted to the DCT-IV with a
simple pre-processing of data sequences. A sparse block matrix factorization of the
GDFT-IV matrix defining a fast algorithm is presented in [18].

On the other hand, the forward MDCT in (4.215) for N D 2M can be
decomposed as [18]

c
O

k D
2M�1X

nD0
xn cos

h �
4M

.2n C 1C M/.2k C 1/
i

D
2M�1X

nD0
xn cos

h �
4M

.2n C 1/.2k C 1/C �

4
.2k C 1/

i

D cos
�

4
.2k C 1/

M�1X

nD0
.xn � x2M�1�n/ cos

h �
4M

.2n C 1/.2k C 1/
i

� sin
�

4
.2k C 1/

M�1X

nD0
.xn C x2M�1�n/ sin

h �
4M

.2n C 1/.2k C 1/
i
;

k D 0; 1; : : : ;M � 1; (4.227)
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From Sect. 4.3.4 we know that the MDCT and MDST are closely related to the DCT-
IV and DST-IV of reduced sizes, respectively. Therefore, Eqs. (4.226) and (4.227)
imply that the forward 2M-point MCLT can be mapped into the 2M-point GDFT-
IV of real-valued data sequences utilizing its generalized signal flow graph with
a simple post-processing of output data sequences. The terms cos �

4
.2k C 1/ and

sin �
4
.2k C 1/ change signs on cyclic sets

C D fC1;�1;�1;C1g; cck 2 C 8 k mod 4;

S D fC1;C1;�1;�1g; ssk 2 S 8 k mod 4: (4.228)

Then, the forward MDCT as the real part, and the forward MDST as the imaginary
part of MCLT are related to the forward GDFT-IV by Britanak and Rao [18]

c
O

k D
p
2

2

�
cck mod 4 f

IV

k C ss.2M�1�k/ mod 4 f
IV

2M�1�k

�
;

s
O

M�1�k D
p
2

2

�
ss.k/ mod 4 f

IV

k C cc.2M�1�k/ mod 4 f
IV

2M�1�k

�
;

k D 0; 1; : : : ;M � 1; ccj 2 C; ssj 2 S; j D 0; 1; 2; 3: (4.229)

The GDFT-IV generalized signal flow modified for the simultaneous computation
of the MDCT and MDST for N D 2M D 16 is shown in Fig. 4.12. The relation
(4.229) forms the last simple butterfly stage.

Note 12 For the representation of terms cos �
4
.2kC1/ and sin �

4
.2kC1/ in (4.227),

the trigonometric identity (4.150) and algebraic identity (4.153) alternatively may
be used.

The backward MCLT computation is simply realized via the inverse GDFT-IV
as follows. With respect to modified generalized GDFT-IV signal flow graph shown
in Fig. 4.12, at first we need to compute two inverse DCTs-IV given by

zn D DCT-IV of fc
O

k g; n D 0; 1; : : : ;M � 1;
.�1/n z2M�1�n D DCT-IV of fs

O

M�1�kg;
n D M;M C 1; : : : ; 2M � 1; (4.230)

and the original data sequence fxng is recovered from fzng as

xn D zn C z2M�1�n; x2M�1�n D �zn C z2M�1�n;

n D 0; 1; : : : ;M � 1: (4.231)

With respect to the generalized signal flow graph shown in Fig. 4.12, the total
computational complexity of the GDFT-IV-based fast MCLT algorithm [18] is given
by 4M additions plus the complexity of two M-point DCTs-IV. The required DCT-
IV fast algorithms/computational structures are presented in Appendix C.2.
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Fig. 4.12 Modified GDFT-IV generalized signal flow graph for the simultaneous computation of
the MDCT and MDST for N D 2M D 16

4.5.3 GDHT-Based Fast Algorithms

For the efficient MCLT computation, GDHT-based algorithms were developed [18,
69], specifically, GDHT-IV-based fast MCLT algorithm [18] and GDHT-II-based
fast MCLT algorithm with incorporated sine windowing function [69]. They are
discussed in the following subsections.
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4.5.3.1 GDHT-IV-Based Fast Algorithm [18]

N-point forward GDHT-IV of a real-valued data sequence fxng is defined as [74]

h
IV

k D 1

N

N�1X

nD0
xn cas

�
2�.2n C 1/.2k C 1/

4N

	
; k D 0; 1; : : : ;N � 1; (4.232)

where fh
IV

k g are GDHT-IV coefficients and cas .:/ D cos .:/Csin .:/. A sparse block
matrix factorization of the GDHT-IV matrix defining a fast algorithm is presented
in [18].

Since the GDHT-IV is related to the GDFT-IV by Britanak and Rao [18]

h
IV

k D f
IV

k C f
IV

N�1�k;

h
IV

N�1�k D f
IV

k � f
IV

N�1�k; k D 0; 1; : : : ;
N

2
� 1; (4.233)

this fact implies that there also exists a relation among MDCT, MDST, and GDHT-
IV. Indeed, the MDCT is related to the GDHT-IV by Britanak and Rao [18]

c
O

2k D .�1/kC1 p
2 h

IV

N�1�2k;

c
O

2kC1 D .�1/kC1 p
2 h

IV

2kC1; k D 0; 1; : : : ;
N

4
� 1; (4.234)

while the MDST is related to the GDHT-IV by Britanak and Rao [18]

s
O

2k D .�1/k p
2 h

IV

2k

s
O

2kC1 D .�1/kC1 p
2 h

IV

N�2�2k; k D 0; 1; : : : ;
N

4
� 1: (4.235)

The modified GDHT-IV generalized signal flow graph for the simultaneous
computation of the MDCT and MDST for N D 2M D 16 is shown in Fig. 4.13.

With respect to the generalized signal flow graph shown in Fig. 4.13, the total
computational complexity of the GDHT-IV-based fast MCLT algorithm [18] is the
same as for GDFT-IV-based fast MCLT algorithm.

4.5.3.2 GDHT-II-Based Fast Algorithm [69]

N-point forward GDHT-II of a real-valued data sequence fxng is defined as [74]

h
II

k D 1

N

N�1X

nD0
xn cas

�
2�.2n C 1/k

2N

	
; k D 0; 1; : : : ;N � 1; (4.236)
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Fig. 4.13 Modified GDHT-IV generalized signal flow graph for the simultaneous computation of
the MDCT and MDST for N D 2M D 16

where fh
II

k g are GDHT-II coefficients. A sparse block matrix factorization of the
GDHT-II matrix defining a fast algorithm is presented in [18].

With respect to (4.215), denote the basis functions of the MDCT and MDST

with the normalization factor
q

2
M and the incorporated negative sine windowing

function, respectively, as

b
.c/

k;n D
r
2

M
sin

�
��.2n C 1/

4M

	
cos

h �
4M

.2n C 1C M/.2k C 1/
i
;
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b
.s/

k;n D
r
2

M
sin

�
��.2n C 1/

4M

	
sin
h �
4M

.2n C 1C M/.2k C 1/
i
;

k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ; 2M � 1: (4.237)

It can be easily verified that the basis functions in (4.237) have the following
symmetry properties [69]

b
.c/

k;n D .�1/MC1 b
.c/

2M�1�k;n;

b
.s/

k;n D .�1/M b
.s/

2M�1�k;n; k D 0; 1; : : : ;M � 1; (4.238)

Equation (4.238) implies that MDCT and MDST coefficients satisfy

c
O

2M�1�k D .�1/MC1 c
O

k ;

s
O

2M�1�k D .�1/M s
O

k ; k D 0; 1; : : : ;M � 1; (4.239)

demonstrating the even anti-symmetry and even symmetry property of fc
O

k g and
fs

O

k g, respectively, depending on the parity of M. Therefore, the computation of fc
O

k g
and fs

O

k g can be realized by computing either via the even-indexed or odd-indexed
coefficients. The even-indexed coefficients are chosen. Then, the basis functions
fb

.c/

k;ng become

b
.c/

2k;n D �
r
2

M
sin

�
�.2n C 1/

4M

	
cos

h�
4
.4k C 1/C �

4M
.2n C 1/.4k C 1/

i

D �
r
1

M
.�1/k sin

�
�.2n C 1/

4M

	
cas

���.2n C 1/.4k C 1/

4M

	
;

k D 0; 1; : : : ;M � 1: (4.240)

Applying the trigonometric identity

� sin .˛/ cas .�ˇ/ D 1

2
Œcas .ˇ � ˛/ � cas .˛ C ˇ/� ; (4.241)

to the sine windowing function, (4.240) finally becomes

b
.c/

2k;n D
r
1

M

.�1/k
2



cas

�
�.2n C 1/2k

2M

	
� cas

�
�.2n C 1/.2k C 1/

2M

	�
;

k D 0; 1; : : : ;M � 1: (4.242)

Similarly, for the basis functions fb
.s/

k;ng we get
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b
.s/

2k;n D �
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M
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�.2n C 1/
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.4k C 1/C �
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.2n C 1/.4k C 1/
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M
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�
�.2n C 1/
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�.2n C 1/.4k C 1/

4M
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M
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���.2n C 1/.2k C 1/

2M
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���.2n C 1/2k

2M

	�
;

k D 0; 1; : : : ;M � 1: (4.243)

If we denote

h
II

k D
r

1

2M

2M�1X

nD0
xn cas

�
�.2n C 1/k

2M

	
;

OhII

k D
r

1

2M

2M�1X

nD0
xn cas

���.2n C 1/k

2M

	
; k D 0; 1; : : : ; 2M � 1; (4.244)

it can be verified that

OhII

2M�k D �h
II

k ; k D 0; 1; : : : ;M � 1: (4.245)

Transform kernels in (4.244) are the normalized 2M-point GDHT-II of fxng.
According to (4.215) using (4.242), (4.243), (4.244), and (4.245), the MDCT and
MDST coefficients fc

O

2kg and fs
O

2kg are, respectively, given by Shu et al. [69]

c
O

2k D .�1/k
p
2

2

�
h

II

2k � h
II

2kC1
�
;

s
O

2k D .�1/k
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�OhII

2kC1 � OhII

2k

�
D .�1/k

p
2

2

�
h

II

2M�2k � h
II

2M�1�2k

�
;

k D 0; 1; : : : ;M � 1: (4.246)

The odd-indexed coefficients fc
O

2kC1g and fs
O

2kC1g can be deduced from the even
anti-symmetry and even symmetry properties (4.239), i.e.,

c
O

2kC1 D .�1/MC1 c
O

2M�2�2k; s
O

2kC1 D .�1/M s
O

2M�2�2k;

k D 0; 1; : : : ;
M

2
� 1: (4.247)
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Fig. 4.14 Modified GDHT-II generalized signal flow graph for the simultaneous computation of
the MDCT and MDST for N D 2M D 16

The GDHT-II generalized signal flow modified for the simultaneous computation
of the MDCT and MDST for N D 2M D 16 is shown in Fig. 4.14. The relations
(4.246) and (4.247) form the last simple butterfly stage.

With respect to the generalized signal flow graph shown in Fig. 4.14, the total
computational complexity of the GDHT-II-based fast MCLT algorithm [69] is given
by 6M � 2 additions plus the complexity of two M-point DCTs-II. The required
DCT-II fast algorithm/computational structure is presented in Appendix C.1.

4.5.4 DCT-II-Based Fast Algorithm [67]

A fast MCLT algorithm with the incorporated sine windowing function developed
in [67] is based on the DCT-II-based evenly stacked fast MDCT/MDST algorithm
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defined by (4.35), (4.36) and (4.37), (4.38) for N D 2M. In [67] it was shown that the
real part (MDCT) and imaginary part (MDST) of the MCLT can be directly obtained
from a combination of fc

E

k g and fs
E

k g coefficients. This fact in general allows for the
fast MCLT computation to use any fast evenly stacked MDCT/MDST algorithm
associated with the sine windowing function.

Consider the basis functions of the MDCT and MDST given by (4.237) with the
incorporated negative sine windowing function. Using the trigonometric identity
sin.˛/ cos.ˇ/ D 1

2
Œsin.˛ � ˇ/C sin.˛C ˇ/�, the MDCT basis functions fb

.c/

k;ng can
be simplified to [67]

b
.c/

k;n D
r

1

2M

�
sin
h �
2M

.2n C 1C M/k C �

4

i

� sin
h �
2M

.2n C 1C M/.k C 1/ � �

4

i�
: (4.248)

The transform kernels on the right-hand side of (4.248) correspond to the evenly
stacked MDST. Further, applying the standard trigonometric identities to (4.248)
we get [67]

b
.c/

k;n D 1

2
p

M

n
cos

h �
2M

.2n C 1C M/k
i

C sin
h �
2M

.2n C 1C M/k
i

C cos
h �
2M

.2n C 1C M/.k C 1/
i

� sin
h �
2M

.2n C 1C M/.k C 1/
i o
: (4.249)

On the other hand, using the trigonometric identity sin.˛/ sin.ˇ/ D 1
2
Œcos.˛ �

ˇ/ � cos.˛ C ˇ/�, the MDST basis functions fb
.s/

k;ng can be simplified to [67]

b
.s/

k;n D
r

1

2M

�
� cos

h �
2M

.2n C 1C M/k C �

4

i

C cos
h �
2M

.2n C 1C M/.k C 1/ � �

4

i�
: (4.250)

The transform kernels on the right-hand side of (4.250) correspond to the evenly
stacked MDCT. Similarly, applying the standard trigonometric identities to (4.250)
we get [67]
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.s/
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� cos

h �
2M

.2n C 1C M/k
i

C sin
h �
2M

.2n C 1C M/k
i

C cos
h �
2M

.2n C 1C M/.k C 1/
i

C sin
h �
2M

.2n C 1C M/.k C 1/
i �

: (4.251)

From (4.249) and (4.251) it follows that the MDCT and MDST basis functions
are decomposed into the sums/differences of evenly stacked MDCT and MDST
transform kernels. Thus, according to (4.215) the MDCT coefficients being the real
part of MCLT are obtained from (4.249) as

c
O

k D c
E

k C s
E

k C c
E

kC1 � s
E

kC1; k D 0; 1; : : : ;M � 1; (4.252)

while the MDST coefficients being the imaginary part of MCLT are obtained from
(4.251) as

s
O

k D �c
E

k C s
E

k C c
E

kC1 C s
E

kC1; k D 0; 1; : : : ;M � 1: (4.253)

For the efficient implementation of (4.252) and (4.253), if we denote

uk D c
E

kC1 C s
E

k ; vk D s
E

kC1 � c
E

k ; k D 0; 1; : : : ;M � 1; (4.254)

then

c
O

k D uk � vk; s
O

k D uk C vk; k D 0; 1; : : : ;M � 1: (4.255)

The corresponding generalized signal flow graph of the DCT-II-based fast MCLT
algorithm [67] for N D 2M D 16 is shown in Fig. 4.15.

Equations (4.36) and (4.38) for N D 2M require 2M additions. Equations
(4.254) and (4.255) ignoring the trivial additions by c

E

M D s
E

0 D 0 require 4M � 2

additions. Then, the total computational complexity of the DCT-II-based fast MCLT
algorithm [67] is given by 6M � 2 additions plus the complexity of two M-point
DCTs-II. The required DCT-II fast algorithm/computational structure is presented
in Appendix C.1.
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Fig. 4.15 Generalized signal flow graph of the DCT-II-based fast MCLT algorithm [67] for N D
2M D 16

4.5.5 DCT-IV-Based Fast Algorithms [3]

After introducing the MCLT immediately its DCT-IV-based fast algorithm was also
proposed [3]. The real part of the MCLT, MLT, or equivalently MDCT is obtained
via the DCT-IV of reduced size, while the imaginary part of the MCLT and MDST
is obtained via the corresponding DST-IV of reduced size.

Indeed, for N D 2M applying a permutation to the input data sequence fxng
defined by Malvar [3]

u M
2 Cn D xn � xM�1�n;

u M
2 �1�n D � xMCn � x2M�1�n; n D 0; 1; : : : ;

M

2
� 1; (4.256)
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the 2M-point forward MLT or MDCT is reduced to the M-point DCT-IV of fung as

c
O

k D
M�1X

nD0
un cos

h �
4M

.2n C 1/.2k C 1/
i
; k D 0; 1; : : : ;M � 1: (4.257)

On the other hand, applying a permutation to the input data sequence fxng defined
by Malvar [3]

vM
2 Cn D xn C xM�1�n;

vM
2 �1�n D xMCn � x2M�1�n; n D 0; 1; : : : ;

M

2
� 1; (4.258)

the 2M-point forward MDST is reduced to the M-point DST-IV of fvng as

s
O

k D
M�1X

nD0
vn sin

h �
4M

.2n C 1/.2k C 1/
i
; k D 0; 1; : : : ;M � 1; (4.259)

or equivalently, as

s
O

M�1�k D
M�1X

nD0
.�1/n vn cos

h �
4M

.2n C 1/.2k C 1/
i
;

k D 0; 1; : : : ;M � 1; (4.260)

The corresponding generalized signal flow graph of the DCT-IV-based fast MCLT
algorithm [3] for N D 2M D 16 is shown in Fig. 4.16.

The total computational complexity of the DCT-IV-based fast MCLT algorithm
[3] is given by 2M additions plus the complexity of two M-point DCTs-IV.
The required DCT-IV fast algorithm/computational structures are presented in
Appendix C.2.

4.5.6 DCT-IV/DCT-II-Based Fast Algorithm [65, 66]

An interesting and simple DCT-IV/DCT-II-based fast MCLT algorithm was devel-
oped in [65, 66]. Using trigonometric identities the basis functions of the MDCT and
MDST are converted to the sum and difference of transform kernels corresponding
to the DCT-IV of reduced sizes. Alternatively, based on the relation between the
DCT-IV and the DCT-II (see Appendix C.3), the M-point DCT-IV can be converted
to the DCT-II of the same size at the cost of M pre-multiplications and M � 1

recursive additions.
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Fig. 4.16 Generalized signal flow graph of the DCT-IV-based fast MCLT algorithm [3] for
N = 2M = 16

Consider the MDCT and MDST basis functions with the normalization factorq
2
M , respectively, as

b
.c/

k;n D
r
2

M
cos

h �
4M

.2n C 1C M/.2k C 1/
i
;

b
.s/

k;n D
r
2

M
sin
h �
4M

.2n C 1C M/.2k C 1/
i
;
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k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ; 2M � 1: (4.261)

Setting ˛k;n D �
4M .2n C 1 C 2M/.2k C 1/ and ˇk;n D �

4M .2n C 1/.2k C 1/, and
applying the trigonometric identities

cos ˛ C cos ˇ D 2 cos
˛ C ˇ

2
cos

˛ � ˇ
2

;

cos ˛ � cos ˇ D �2 sin
˛ C ˇ

2
sin

˛ � ˇ
2

; (4.262)

then using the trigonometric identity (4.150) and algebraic identity (4.153), the
MDCT and MDST basis functions (4.261) can be written in the form [66]

b
.c/

k;n D .�1/b kC1
2 c

r
1

2M
.cos ˛k;n C cos ˇk;n/ ;

b
.s/

k;n D �.�1/b k
2 c
r

1

2M
.cos ˛k;n � cos ˇk;n/ ;

k D 0; 1; : : : ;M � 1; n D 0; 1; : : : ; 2M � 1: (4.263)

Importantly, the cosines of ˛k;n and ˇk;n satisfy the following relations [66]

cos ˛k;n D cos ˇk;MCn D � cos ˇk;M�1�n; cos ˛k;MCn D � cos ˇk;n:

(4.264)
According to (4.215) for the forward MDCT and MDST we have

c
O

k D .�1/b kC1
2 c

r
1

2M

n 2M�1X

nD0
xn cos

h �
4M

.2n C 1C 2M/ .2k C 1/
i

C
2M�1X

nD0
xn cos

h �
4M

.2n C 1/ .2k C 1/
i o
;

s
O

k D �.�1/b k
2 c
r

1

2M

n 2M�1X

nD0
xn cos

h �
4M

.2n C 1C 2M/ .2k C 1/
i

�
2M�1X

nD0
xn cos

h �
4M

.2n C 1/ .2k C 1/
i
;
o
; k D 0; 1; : : : ;M � 1:

(4.265)

Now, investigate two unique sums on the right-hand sides of (4.265) separately.
Using the relations (4.264) for the first sum we get
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2M�1X

nD0
xn cos

h �
4M

.2n C 1C 2M/ .2k C 1/
i

D
M�1X

nD0
xn cos

h �
4M

.2n C 1C 2M/ .2k C 1/
i

C
2M�1X

nDM

xn cos
h �
4M

.2n C 1C 2M/ .2k C 1/
i

D
M�1X

nD0
�xM�1�n cos

h �
4M

.2n C 1/ .2k C 1/
i

C
M�1X

nD0
�xMCn cos

h �
4M

.2n C 1/ .2k C 1/
i

D �
M�1X

nD0
.xM�1�n C xMCn/ cos

h �
4M

.2n C 1/ .2k C 1/
i
: (4.266)

For the second sum we get

2M�1X

nD0
xn cos

h �
4M

.2n C 1/ .2k C 1/
i

D
M�1X

nD0
xn cos

h �
4M

.2n C 1/ .2k C 1/
i

C
2M�1X

nDM

xn cos
h �
4M

.2n C 1/ .2k C 1/
i

D
M�1X

nD0
xn cos

h �
4M

.2n C 1/ .2k C 1/
i

C
M�1X

nD0
�x2M�1�n cos

h �
4M

.2n C 1/ .2k C 1/
i

D
M�1X

nD0
.xn � x2M�1�n/ cos

h �
4M

.2n C 1/ .2k C 1/
i
: (4.267)

Combining (4.265), (4.266), and (4.267) we finally obtain [66]
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c
O

k D .�1/b kC1
2 c

r
1

2M

M�1X

nD0
.un � vn/ cos

h �
4M

.2n C 1/ .2k C 1/
i
;

s
O

k D .�1/b k
2 c
r

1

2M

M�1X

nD0
.un C vn/ cos

h �
4M

.2n C 1/ .2k C 1/
i
;

k D 0; 1; : : : ;M � 1; (4.268)

where

un D xn�x2M�1�n; vn D xM�1�nCxMCn; n D 0; 1; : : : ;M�1: (4.269)

Transform kernels on the right-hand side of (4.268) are M-point DCT-IV of fun�vng
and M-point DCT-IV of fun C vng. Alternatively, based on the relation between the
DCT-IV and DCT-II, each M-point DCT-IV may be converted to the DCT-II of the
same size at the cost of M pre-multiplications and M � 1 recursive additions. Thus,
we have two forms of the fast MCLT algorithm [66], the DCT-IV-based and DCT-
IV/DCT-II-based form.

The generalized signal flow graph corresponding to the DCT-IV-based form of
fast MCLT algorithm defined by (4.268) and (4.269) for N D 2M D 16 is shown in
Fig. 4.17.

The total computational complexity of the DCT-IV-based form of fast MCLT
algorithm [66] is given by 2M additions plus the complexity of two M-point DCTs-
IV. The required DCT-IV fast algorithm/computational structures are presented in
Appendix C.2.

On the other hand, the total computational complexity of the DCT-IV/DCT-
II-based form of fast MCLT algorithm is given by 2M multiplications, 4M � 2

additions, and 2 shifts plus the complexity of two M-point DCTs-II. The required
DCT-II fast algorithm/computational structure is presented in Appendix C.1.

4.5.7 Recursive Radix-2 DIF Fast Algorithm [64]

A recursive radix-2 DIF fast MCLT algorithm was developed in [64]. Essentially,
it is based on the recursive radix-2 DIF fast MDCT algorithm [42] discussed in
Sect. 4.3.7. The recursive radix-2 DIF fast MCLT algorithm [64] is constructed
from an alternative recursive sparse block matrix factorization of the MDCT matrix
without redundant computations, and a relation between the MDCT and the MDST
matrices.

We recall that the recursive radix-2 DIF fast MDCT algorithm [42] for N being
divisible by 4 is defined as [42]
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Fig. 4.17 Generalized signal flow graph corresponding to the DCT-IV-based form of fast MCLT
algorithm [66] for N D 2M D 16
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k D 0; 1; : : : ;
N

4
� 1: (4.270)

The data sequence fx
.c/

n g and its reversed version, fx
.c/

N
2 �1�n

g, are given by

x
.c/

n D an cos
�.2n C 1/

2N
C bn sin

�.2n C 1/

2N
;

x
.c/

N
2 �1�n

D �an sin
�.2n C 1/

2N
C bn cos

�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

4
� 1: (4.271)

where

an D xn � x N
2 �1�n; bn D x N

2 Cn C xN�1�n;

n D 0; 1; : : : ;
N

4
� 1: (4.272)

Equation (4.271) represents the block of N
4

Givens–Jacobi rotations. From (4.270) it
can be seen that the computation of N-point MDCT is realized via the computation
of two identical N

2
-point MDCTs. The decomposition is applied recursively until

trivial small even-length MDCT modules remain. However, the corresponding
original recursive sparse block matrix factorization of the MDCT matrix presented
in [42] involves redundant computations.

The key for the construction of the recursive fast radix-2 MCLT algorithm is the
alternative recursive sparse block matrix factorization that involves no redundant
computations. Denoting the MDCT matrix by C N

2 �N , it is defined as [64]

C N
2 �N D P N

2

 
E N

4
0

0 E N
4

! 
C N

4 � N
2

0

0 C N
4 � N

2

! 
I N
2

J N
2

!

G N
2

 
I N
4

�J N
4

0 0

0 0 J N
4

I N
4

!

;

(4.273)

where IM is the identity matrix, JM is the reverse ordered identity matrix, both
of order M. P N

2
is the permutation matrix which reorders the MDCT coefficients

fc0; c3; c4; c7; c8; c11; : : : ; c1; c2; c5; c6; c9; c10; : : :g to natural order. 00s are null

matrices. The matrix E N
4

D diag f.�1/b kC1
2 cg is the diagonal sign-changing matrix,

and G N
2

is the Givens–Jacobi rotation matrix defined by
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G N
2

D

0

B
BBBBB
BBBB
@

cos �
2N sin �

2N
: :

cos
. N
2 �1/�
2N sin

. N
2 �1/�
2N

� sin
. N
2 �1/�
2N cos

. N
2 �1/�
2N

: :

� sin �
2N cos �

2N

1

C
CCCCC
CCCC
A

: (4.274)

The recursive sparse MDCT matrix factorization given by (4.273) enables us to
generate the higher-order MDCT matrix from two lower-order MDCT matrices.

There exits an intimate relation between the MDCT and MDST matrices.
Actually, denoting the MDST matrix by S N

2 �N , the matrix S N
2 �N is related to C N

2 �N

by Britanak [64]

S N
2 �N D .�1/ N

4 J N
2

C N
2 �N DN ; (4.275)

where J N
2

is the reverse ordered identity matrix of order N
2

, and DN is a diagonal
odd sign-changing matrix of order N defined as DN D diag f1;�1; 1; : : : ; 1;�1g.

Using the alternative recursive sparse MDCT matrix factorization given by
(4.273) and the relation between MDST and MDCT matrices given by (4.275), a
recursive radix-2 DIF fast MDST algorithm is defined as [64]
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;

k D 0; 1; : : : ;
N

4
� 1: (4.276)

The data sequence fx
.s/

n g and its reversed version, fx
.s/

N
2 �1�n

g, are given by

x
.s/

n D cn cos
�.2n C 1/

2N
C dn sin

�.2n C 1/

2N
;

x
.s/

N
2 �1�n

D �cn sin
�.2n C 1/

2N
C dn cos

�.2n C 1/

2N
; n D 0; 1; : : : ;

N

4
� 1;

(4.277)
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Fig. 4.18 Generalized signal flow graph of the recursive radix-2 DIF fast MDST algorithm for
N D 8

where

cn D .�1/n.xn C x N
2 �1�n/; dn D .�1/n.x N

2 Cn � xN�1�n/;

n D 0; 1; : : : ;
N

4
� 1: (4.278)

Equation (4.277) again represents the block of N
4

Givens–Jacobi rotations. The
generalized signal flow graph of the radix-2 DIF fast MDST algorithm for N D 8 is
shown in Fig. 4.18.

One can easily see that both fast MDCT and MDST computational structures in
Figs. 4.11 and 4.18, respectively, are complementary to each other. This fact enables
us to construct a fast MCLT computational structure by a simple way. Specifically,
the composition of the fast MDCT and MDST computational structures in Figs. 4.11
and 4.18 leads to the fast MCLT computational structure which is shown for N D 8

in Fig. 4.19.
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The total computational complexity of the radix-2 DIF fast MCLT algorithm [64]
in general is given by

MN D 4M N
2

C 3N

2
; AN D 4A N

2
C 5N

2
: (4.279)

Combining the recursive fast radix-2 DIF MCLT algorithm with the generalized
fast mixed-radix MDCT algorithm [26] defined for the composite lengths N D 2 �
qm; m 	 2, where q is an odd positive integer, the MCLT can be computed for
the composite lengths N D 2n � qm; n;m 	 2, thus supporting a wider range of
transform sizes.

Note 13 The generalized signal flow graphs for the fast MCLT computation
shown in Figs. 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, and 4.19 correspond to sparse
(block) matrix factorizations of the MCLT matrix.

4.5.8 Comparison of Fast MCLT Algorithms

Comparison of the fast MCLT algorithms for the simultaneous MDCT and MDST
computation in terms of the arithmetic complexity for N D 2M, M D 2m, m > 2,
and used windowing function is summarized in Table 4.3.

For all discussed fast MCLT algorithms, in general, when N is a composite
integer, i.e., it is of the form N D 2n � q, where q is an odd positive integer (or
the mixed-radix length being the combination of radix-2 and radix-q lengths), the
computational complexity of the N-point DCT-II is given by (C.8) and of N-point
DCT-IV is given by (C.32) in Appendix C.

Table 4.3 Comparison of fast MCLT algorithms in terms of the arithmetic complexity for N D
2M, M D 2m, m > 2, and used windowing function

Fast MCLT algorithm # of real mults # of real adds Windowing function

Complex FFT-based [70] M.2m C 3/ M.6m C 3/C 4 Any

Real-valued FFT-based [68] M.m C 1/ M.3m C 3/� 2 Sine

GDFT-IV-based [18] M.m C 2/ M.3m C 4/ Any

GDHT-IV-based [18] M.m C 2/ M.3m C 4/ Any

GDHT-II-based [69] Mm M.3m C 4/ Sine

DCT-II-based [67] Mm M.3m C 4/ Sine

DCT-IV-based [3] M.m C 2/ M.3m C 2/ Any

DCT-IV-based [65, 66] M.m C 2/ M.3m C 4/ Any

DCT-IV/DCT-II-based [65, 66] M.m C 2/ M.3m C 4/ Any
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4.6 Summary

The fast algorithms (radix-2, even-length, mixed-radix being the combination of
radix-2 and radix-q algorithms, where q is an odd integer) for the efficient imple-
mentation of the forward/backward evenly stacked MDCT/MDST, oddly stacked
MDCT/MDST, MLT, ELT, and MCLT block transforms have been presented. The
emphasis was imposed particularly on basic steps, various tricks (trigonometric
and algebraic), and approaches leading to the derivation of final formulae of a fast
algorithm. For each fast algorithm have been presented: Complete formulae or the
sparse block matrix factorization, the corresponding generalized signal flow graph,
the total computational complexity, and a possible structural simplification of the
algorithm have been provided. Appendices provide all the necessary supporting effi-
cient fast computational structures including short-length modules for completing
forward/backward MDCT/MDST, MLT, ELT, and MCLT efficient implementations.

Problems and Exercises

1. The backward MDCT/MDST computation in the evenly stacked system
requires two N-point inverse complex FFTs [see Eqs. (4.9) and (4.10)]. The
real-valued data sequence f�k c

E

k ei . �2 C �
N /kg, k D 0; 1; : : : ; N

2
� 1 and

f�k s
E

k ei . �2 C �
N /kg, k D 1; 2; : : : ; N

2
, are complex-valued, whereby c

E

N
2

D s
E

0 D 0.

In [11] it is claimed that two N-point inverse complex FFTs can be combined
into a single N-point inverse complex FFT. Is it possible?

2. For a given N, implement by computer programs the fast DFT/FFT-based
algorithms for the simultaneous forward and backward evenly stacked
MDCT/MDST computation defined by (4.6) and (4.7), and then the fast
algorithm via two RVFFTs defined by (4.8). Verify their computational
complexities. The required split-radix complex FFT and split-radix RVFFT
fast algorithms with specified computational complexity can be found in [2].

3. For a given N, implement by computer programs the fast DCT-II-based algo-
rithms for the evenly stacked forward/backward MDCT/MDST computation
discussed in Sect. 4.2.3. Verify their computational complexities. The required
DCT-II fast algorithms with specified computational complexity are presented
in Appendix C.1.

4. Based on generalized signal flow graphs for the MDCT/MDST computation in
the evenly stacked system shown in Figs. 4.1, 4.2, 4.3, and 4.4 for a given N,
derive sparse matrix factorizations of the MDCT matrix, and then of the MDST
matrix.

5. Derive (4.49) from (4.48), and then derive (4.57) from (4.56) using (4.45).
6. From (4.69) at first derive (4.70), and then (4.71).
7. For a given N, implement by computer programs the DFT/FFT-based fast

algorithms for the forward/backward oddly stacked MDCT/MDST compu-
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tation discussed in Sect. 4.3.2. Verify their computational complexities. The
required split-radix complex FFT fast algorithms with specified computational
complexity can be found in [2].

8. Derive (4.90) from (4.88) by expanding indicated cosine and sine transform
kernels.

9. Derive the second equation from the first equation in (4.92) using indicated
trigonometric identities.

10. Derive (4.99) from (4.98) using indicated trigonometric identities.
11. For a given N, implement by computer programs the fast DCT-II-based

algorithms for the forward/backward MDCT/MDST computation in the oddly
stacked system discussed in Sect. 4.3.3. Verify their computational complexi-
ties. The required DCT-II fast algorithms with specified computational com-
plexity are presented in Appendix C.1.

12. For a given N, implement by computer programs the fast DCT-IV-based
algorithms for the forward/backward MDCT/MDST computation in the oddly
stacked system discussed in Sect. 4.3.4. Verify their computational complexi-
ties. The required DCT-IV fast algorithms with specified computational com-
plexity are presented in Appendix C.2.

13. For a given N, implement by computer programs the fast DCT-IV/DCT-II-
based algorithms for the forward/backward MDCT/MDST computation in
the oddly stacked system discussed in Sect. 4.3.5. Verify their computational
complexities. The required DCT-II fast algorithms with specified computational
complexity are presented in Appendix C.1.

14. Derive (4.122) from (4.121).
15. Based on (4.124), derive equations in (4.125) from (4.123). Then, derive (4.127)

and (4.128) from (4.125).
16. Derive fakg and fbkg in (4.134) from (4.127) and (4.128) using (4.131) and

(4.132).
17. Following the derivation procedure for fa

.1/

k g given by (4.156) and fa
.2/

k g given

by (4.158), decompose fb
.1/

k g and fb
.2/

k g given by (4.155).
18. Verify the even symmetry property (4.163) of data sequence fyng given by

(4.162).
19. Verify the even anti-symmetry property (4.171) of data sequence fzng given by

(4.170).
20. For a given N, implement by computer programs (recursive) DIF, DIT mixed-

radix and DIF radix-2 fast algorithms the forward/backward MDCT com-
putation in the oddly stacked system discussed in Sect. 4.3.7. Verify their
computational complexities.

21. Based on generalized signal flow graphs and fast algorithms for the
MDCT/MDST computation in the oddly stacked system discussed in Sect. 4.3
for a given N, derive sparse matrix factorizations of the MDCT matrix, and
then of the MDST matrix.

22. For a given N divisible by 4, implement by computer programs the recursive
algorithms for the forward/backward MLT (MDCT/MDST) computation dis-
cussed in Sect. 4.3.8.
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23. Derive (4.219) combining (4.217) and (4.218).
24. Using (4.229) and (4.233) derive (4.234) and (4.235).
25. The MDCT and MDST basis functions with the incorporated sine windowing

function are given by (4.237). Derive their simplified forms given by (4.248)
and (4.250) using indicated trigonometric identities.

26. Verify relations (4.264).
27. For a given N, implement by computer programs the fast MCLT algorithms for

the simultaneous MDCT and MDST computation discussed in Sect. 4.5. Verify
their computational complexities.
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62. V. Nikolajevič, G. Fettweis, Computation of forward and inverse MDCT using Clenshaw’s
recurrence formula. IEEE Trans. Signal Process. 51(5), 1439–1444 (2003)
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Chapter 5
Efficient Implementations of Cosine-Modulated
Pseudo-QMF and MLT (MDCT) Filter Banks
in MP3

5.1 Introduction

The MPEG-1 audio compression algorithm [2], finalized in 1992, is the first
established international coding standard for high-quality compression and decom-
pression of digital audio signals. The MPEG-2 audio standard [3], finalized in 1994,
extends the multichannel capabilities not offered by MPEG-1 audio. MPEG-1/2
algorithms exploit perceptual audio coding principles and they involve three distinct
layers for compression. Layer I forms the most basic compression algorithm, while
layers II and III are enhancements that use some elements of layer I. Each successive
layer improves the compression performance but at the cost of greater encoder
and decoder complexity [1, 8, 16, 17]. Essentially, Layer III of MPEG-1/2, well
known as MP3 standard, has become key technology to realize audio decoders
for various computer platforms (music distribution via internet) and consumer
electronics (portable MP3 players and multimedia systems).

For the time-to-frequency decomposition of digital audio signals the MP3 stan-
dard [3] employs the hybrid filter bank consisting of the near-perfect reconstruction
cosine-modulated polyphase quadrature mirror filter (QMF) analysis/synthesis filter
banks [1, 8] referred also to as the pseudo-QMF banks [1], and the perfect recon-
struction modulated lapped transform (MLT) [5, 6] which is actually the modified
discrete cosine transform (MDCT) based on the time domain aliased cancellation
(TDAC) concept [4, 7] and associated with the sine windowing function. The
pseudo-QMF bank, common to all three layers of MPEG-1/2 audio, decomposes
the input audio signal into 32 equally spaced frequency sub-bands. Each sub-band
is then coded either to single groups of 12-sample blocks (in layer I) or to groups
of three successive 12-sample blocks (in layer II). For 32 sub-bands this results in
two data frames of 32 � 12 D 384 and 32 � 36 D 1152 samples [1, 8, 16, 17].
In MP3 standard [3], the outputs of pseudo-QMF bank are further processed by
the MLT (MDCT) filter bank. The MLT (MDCT) filter bank operates on the block
of 12 samples (the short block) or the block of 36 samples (the long block). The
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long block allows greater frequency resolution for audio signals with stationary
characteristics, while the short block provides better time resolution for transient
audio signals. Basic windowing operation is defined for the long block and short
block. During transient signals, the long block is replaced by a series of three
overlapped short blocks thus maintaining the same total number of samples as
for the long block. Each of the three short blocks is then windowed separately.
Switching between long and short blocks is not instantaneous. In order to ensure
smooth transition between long and short blocks and vice versa, transient blocks
(long-to-short and short-to-long blocks having the same size as the long block) are
specifically defined and windowed [1, 8]. In principle, the pseudo-QMF and MLT
(MDCT) analysis/synthesis filter banks are the most time-consuming operations in
the encoder/decoder, and therefore, their fast and efficient implementations with a
simple and regular computational structure have played an important role for their
real-time hardware/software implementations.

With the popularity of MP3 standard after its finalization in 1992 and 1994,
much research has been devoted to develop the efficient implementations of
analysis/synthesis pseudo-QMF and MLT (MDCT) filter banks. The efficient
implementations of analysis/synthesis pseudo-QMF banks with additional pos-
sible optimizations are almost completely presented in [9–16, 18, 19, 53]. On
the other hand, many fast MLT (MDCT) algorithms have been developed in
the time period 1990–2012 which could/can be adopted for the efficient MLT
(MDCT) implementation in MP3 audio [5, 6, 20–88]. Almost all existing fast MLT
(MDCT) algorithms employ a discrete sinusoidal unitary transform of reduced
size such as the discrete Fourier transform (DFT) and its fast implementation,
FFT [20, 21, 37, 42, 43, 46, 47, 52, 57, 59, 61, 69], the discrete Hartley transform
(DHT), and its fast implementation, FHT [62], type II discrete cosine/sine transform
(DCT-II/DST-II) [33], type IV discrete cosine/sine transform (DCT-IV/DST-IV)
[5, 6, 25, 27, 31, 49, 53, 63], or they are obtained in DCT-IV/DCT-II combination
[34, 35, 45, 51, 54, 65, 69]. Other fast algorithms enabling an efficient MDCT
implementation in MP3 are: mixed-radix (combined radix-2/3) MDCT algorithms
[28, 44, 60, 67], algorithms based on the corresponding evenly stacked MDCT
[26, 39, 64], and algorithms based on recursive/regressive filter structures [70–88].
It is widely accepted that the DCT-IV-based fast MLT (MDCT) algorithms are
the most efficient both in terms of the computational complexity and structural
simplicity [30, 31].

For the short and long audio blocks (N D 12 or 36) whose sizes are
not powers of two (sizes are even integers divisible by 2, 3, 4, and 6), the
original ISO source code [2, 3] recommends to implement the forward and
backward MLT (MDCT) block transforms “as-is.” This direct implementation
requires 72 multiplications plus 66=60 additions for the short block, and 648

multiplications plus 630=612 additions for the long block. In the time period
1998–2012 several efficient MLT (MDCT) implementations tailored directly
to the MP3 decoder only [41, 55, 58] or both the MP3 encoder and decoder
[24–26, 28, 29, 31, 32, 36, 38, 40, 44, 48, 50, 56, 64, 66–68] have been developed.
Although not surprising, it is less known that after the MPEG-1/2 standards
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finalization, the proposed DFT/FFT-based MDCT algorithms [37, 42, 43] could be
adopted for quite efficient MLT (MDCT) implementations in MP3 (required 3=9-
point complex-valued DFT modules have been presented in [120, 127, 135, 139]),
but these implementations did never appear in the literature. The first breakthrough
in the efficient implementation of the backward MLT (MDCT) in MP3 decoder
appeared in [58]. Using the symmetry of MDCT transform kernel the number of
arithmetic operations was reduced by half compared to the direct implementation.
Exploiting the approach [34, 53] a more efficient implementation of the backward
MDCT in MP3 decoder has been reported in the unpublished work [55]. It required
13 multiplications and 27 additions for the short block, and 81 multiplications
and 149 additions for the long block. The research interest in this area has
dramatically increased since a regular and efficient forward/backward MLT
(MDCT) implementation in MP3 based on the fast algorithm [33] has been proposed
in [32]. After some refinements [24] it required 11 multiplications, 39=33 additions
plus 2 shifts for the short block, and 43 multiplications, 165=147 additions plus
4 shifts for the long block. It has been sequentially improved/optimized in terms
of the arithmetic complexity and structural simplicity [29, 31, 36, 48, 50, 56, 64].
As the best result, using identical computational structures, the forward/backward
MLT (MDCT) computation required 11 multiplications, 27=21 additions, and 2
shifts for the short block, and 43multiplications, 129=111 additions, and 4 shifts for
the long block. In 2008, an MDCT hardware accelerator for MP3 audio has been
presented in [38, 40] which is based on the most efficient DCT-IV algorithms in
terms of the minimal multiplicative complexity known up to now. Specifically, the
forward/backward MLT (MDCT) computation requires 9 multiplications, 27=21
additions, and 2 shifts for the short block (the same multiplicative complexity was
achieved in [29]), and 36 multiplications, 148=130 additions, and 2 shifts for the
long block. It is worth to note that in 2010, a new efficient method of computing
the MDCT in MP3 has been proposed in [66]. Based on a recursive sparse block
matrix factorization of scaled DCT-II matrix, the forward/backward MLT (MDCT)
computation requires 10 multiplications, 28=22 additions, and 1 shift for the short
block, and 37 multiplications, 135=117 additions, and 2 shifts for the long block.

Aforementioned efficient MLT (MDCT) implementations have led to low-
complexity MP3 decoders realized by software [92, 102] and many real-time
MP3 audio encoders/decoders realized on high-performance programmable DSP
processors [89, 90, 95, 96, 104, 109, 112], universal RISC-based ARM processors
[93, 97, 105, 106, 111], and implemented into VLSI full-custom ASIC [39, 40, 71,
94, 98–100, 107, 108, 110] or semi-custom circuits (FPGA) [76, 91, 98, 101, 103].

In this chapter, various efficient implementations of the forward and backward
MLT (MDCT) block transforms in the MP3 audio coding standard developed
in the time period 1990–2012 are described and compared, including the effi-
cient implementation of pseudo-QMF banks for completeness. The efficient MLT
(MDCT) implementations are discussed in the context of the complete (fast)
analysis/synthesis MLT (MDCT) filter banks in the MP3 encoder and decoder. They
are classified into the following categories:
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• DFT/FFT-based efficient MLT (MDCT) implementations,
• DCT-II/DST-II-based efficient MLT (MDCT) implementations,
• DCT-IV-based efficient MLT (MDCT) implementations,
• DCT-IV/(scaled)DCT-II-based efficient MLT (MDCT) implementations,
• Efficient MLT (MDCT) implementations based on the corresponding evenly

stacked MDCT [137],
• Mixed-radix (combined radix-2/3) efficient MLT (MDCT) implementations,
• Efficient MLT (MDCT) implementations based on recursive/regressive filter

structures.

In general, for each efficient forward/backward MLT (MDCT) implementations
are presented: Complete formulae or sparse (block) matrix factorizations, the
corresponding signal flow graph for short audio block and the total arithmetic
complexity as well as the useful comments related to improving the arithmetic
complexity and a possible structural simplification of the algorithm are provided.
Finally, the fast analysis and synthesis MLT (MDCT) filter banks for the MP3
encoder and decoder are discussed in detail. Appendices provide all the necessary
supporting efficient optimized short-length computational modules and tools for
completing efficient forward/backward MLT (MDCT) implementations.

5.2 Definitions and Properties of Filter Banks Used in MP3

5.2.1 Analysis/Synthesis Pseudo-QMF Banks

The standard specifications of analysis/synthesis pseudo-QMF banks for the
encoder/decoder (also called the matrixing operations for sub-band filtering) are
presented in [1–3, 16, 17]. In general, they can be reduced to the block transforms
defined below.

Pseudo-QMF banks as the forward and backward block transforms are, respec-
tively, defined as [1–3, 16, 17]

pk D
N�1X

nD0
xn cos

�
�

N

�
n � N

4

�
.2k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1; (5.1)

Oxn D
N
2 �1X

kD0
pk cos

�
�

N

�
n C N

4

�
.2k C 1/

	
; n D 0; 1; : : : ;N � 1; (5.2)

where fxng is the input data sequence multiplied by filter coefficients explicitly
given in [1–3, 16, 17], fpkg are sub-band transform coefficients, and fOxng is the
time domain aliased data sequence which does not correspond to the original data
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sequence. For MPEG-1/2 audio coding standards N D 64. Substituting N � 1 � k
for k into (5.1) we get

pN�1�k D pk; k D 0; 1; : : : ;
N

2
� 1; (5.3)

demonstrating that the sequence of sub-band transform coefficients fpkg has the even
symmetry property. From (5.3) it follows that only N

2
coefficients are unique in the

sub-band transform sequence.

5.2.2 TDAC Analysis/Synthesis MDCT Filter Banks

The complete TDAC analysis and synthesis MDCT filter banks are, respectively,
defined as [7]
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; n D 0; 1; : : : ;N�1;

(5.5)

where fwng is a symmetric windowing function, and a superscript t denotes the
data-block number. N, the length of the data block is assumed to be an even integer.
In the analysis filter bank given by (5.4), for the tth data block, N windowed time
domain samples fx

.t/

n g are used to calculate N
2

unique transform coefficients fc
.t/

k g.

Vice versa, the tth block of N
2

transform coefficients fc
.t/

k g is used to calculate N

windowed time domain aliased samples fOx.t/n g with the synthesis filter bank given
by (5.5). The complete TDAC analysis/synthesis MDCT filter bank provides critical
sampling, overlapping of adjacent data blocks by N

2
samples, possesses energy-

packing capability and allows perfect reconstruction. To achieve critical sampling in
combination with overlapping data blocks, subsampling in the frequency domain is
performed by the analysis MDCT filter bank. This subsampling introduces aliasing
in the time domain, but this can be cancelled by overlapping and adding of two
adjacent recovered data blocks by the synthesis filter bank. This procedure is known
as TDAC [7]. It is important to note that the time domain aliased data sequence fOx.t/n g
does not correspond to the original data sequence fx

.t/

n g.
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Two succeeding data blocks t and t C 1 are overlapped by N
2

samples so that
for each data block N

2
new time domain samples are processed. For a smooth block

overlapping a windowing function fwng is applied to fx
.t/

n g and fx
.tC1/

n g (the so-called
windowing&overlap procedure). By applying analysis and synthesis MDCT filter
banks, a time domain aliasing error is introduced which is independent for each
half of the data block. This leads to the realization of adaptive block-size switching
(processing with variable-block size) [125, 126, 133]. Flexible dynamic block-
size switching is an important concept to reduce pre-echo effects in MDCT-based
audio codecs [1, 125]. The aliasing error is cancelled (or perfect reconstruction
is accomplished) by adding outputs of the synthesis MDCT filter bank of two
succeeding windowed data blocks t and t C 1 in the overlapped part (the so-called
windowing&overlap&add procedure) as follows:

x
.tC1/

n D x
.t/

N
2 Cn

D Ox.t/N
2 Cn

C Ox.tC1/

n ; n D 0; 1; : : : ;
N

2
� 1: (5.6)

To ensure TDAC, the windowing functions of two succeeding data blocks have to
satisfy the so-called perfect-reconstruction conditions in their overlapped part. A
sufficient condition for TDAC is given by [4, 7]

w
2

n C w
2

N
2 Cn

D 1;

wn D wN�1�n; or w N
2 Cn D w N

2 �1�n; n D 0; 1; : : : ;
N

2
� 1: (5.7)

A symmetric windowing function used in MP3 audio coding standard [2, 3] both
for the analysis and synthesis MDCT filter banks, satisfying perfect reconstruction
conditions (5.7) and producing aliasing cancellation, is the sine windowing function
defined by [5, 6]

wn D sin

�
�.2n C 1/

2N

	
; n D 0; 1; : : :N � 1: (5.8)

5.2.3 The Forward and Backward MDCT and MLT Block
Transforms

When developing fast computational structures for an efficient implementation
of any analysis/synthesis filter banks, they are frequently considered as block
transforms applied to a single data block. Consequently, the data-block number t
from (5.4) and (5.5) is omitted. The input data sequence fxng; n D 0; 1; : : : ;N � 1
is assumed to be windowed by the sine windowing function given by (5.8)
before its transformation. The forward and backward MDCT block transforms are,
respectively, specified in simplified forms as



5.2 Definitions and Properties of Filter Banks Used in MP3 213
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(5.10)

The data sequence fOxng recovered by the backward MDCT represents the time
domain aliased data sequence. The forward and backward MDCT block transforms
are actually a pseudoinverse pair [26]. General mathematical properties, matrix
representations, and special (peculiar) properties of the MDCT are discussed in
detail in [31] (see also Chap. 3). The forward/backward MDCT associated with the
sine windowing function is equivalent to the forward/backward MLT [5, 6]. The
original definition of MLT is obtained simply by substituting N D 2M into Eqs. (5.9)
and (5.10). The forward and backward MLT block transforms are, respectively,
defined as [5, 6]
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(5.12)

where M is the number of transform coefficients. Based on the aforementioned
equivalence between the MDCT and MLT, these abbreviations in subsequent text
are exchangeable.

When N
2

is even, the MDCT sequence fckg has even anti-symmetry property
given by [31, 33]

cN�k�1 D � ck; k D 0; 1; : : : ;
N

2
� 1; (5.13)

while the time domain aliased data sequence fOxng recovered by the backward MDCT
has the following symmetries [31, 33]

Oxn D � Ox N
2 �1�n; OxN�1�n D Ox N

2 Cn; n D 0; 1; : : : ;
N

4
� 1: (5.14)
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From (5.13) it follows that only N
2

coefficients are unique in the MDCT sequence.
Further, from (5.14) it can be seen that the time domain aliased data sequence fOxng
exhibits two local symmetries (odd symmetry in the first half and even symmetry in
the second half). From the algorithmic point of view this means that it is sufficient to
compute only the time domain aliased samples Oxn and Ox N

2 Cn for n D 0; 1; : : : ; N
4

� 1
by the backward MDCT.

5.3 Efficient Implementations of Pseudo-QMF Banks in MP3

The standard implementations of analysis/synthesis pseudo-QMF banks for the
encoder/decoder (or matrixing operations for sub-band filtering) in the form of
flow charts are specified in [1–3, 8]. The developed efficient implementations of
analysis/synthesis pseudo-QMF banks based on the DCT-II, and its inverse, DCT-
III, of reduced size can be found in [9, 12–16, 18, 19, 53].

Consider the forward pseudo-QMF bank given by (5.1). Applying the following
permutation to the input data sequence fxng [13, 53]
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(5.15)

where N is divisible by 4, we have
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Substituting N � n for n D 1; 2; : : : ; N
2

� 1; into the sum on the right-hand side
of (5.16), we finally get
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where

y0
n D

8
<

:

y0; n D 0;

yn � yN�n; n D 1; 2; : : : ; N
2

� 1:
(5.18)

The cosine transform kernel in (5.17) is recognized as an unnormalized N
2

-point
DCT-III) of fy0

ng.
Now consider the backward pseudo-QMF bank given by (5.2). Since the DCT-III

is an orthogonal transform, then based on (5.17) the sequence fy0
ng can be recovered

by the inverse DCT-III of fpkg, i.e., by the DCT-II of fpkg as
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From (5.19) it can be seen that y0
N
2

D 0 for n D N
2

and y0
n D �y0

N�n for n D
N
2

C 1; : : : ;N � 1. Let us introduce a new extended sequence fyng defined as
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(5.20)

Note that the sequence fyng exhibits the anti-symmetry property at the point N
2

. From
the definition of backward pseudo-QMF bank given by (5.2) and (5.19) we have
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and the time domain aliased data sequence fOxng can be recovered from fyng as
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y N
4 Cn; n D 0; 1; : : : ; 3N

4
� 1;

�yn� 3N
4
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4
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4
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The C source code of a fast recursive algorithm for the 2n-length DCT-II
computation and its inverse, DCT-III, can be found in [116]. To further reduce
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the arithmetic complexity of sub-band synthesis windowing operation in the MP3
decoder, a recursive optimized algorithm is presented in [10, 11].

5.4 Efficient MDCT or MLT Implementations in MP3

Generally, for a given N the forward MDCT block transform given by (5.9) using
the direct approach requires totally N2

2
multiplications and N

2
.N � 1/ additions. The

backward MDCT block transform given by (5.10) requires exactly N
2

less additions
than that of the forward MDCT block transform. Thus, the forward/backward
MDCT computation in MP3 using the direct approach requires for the short audio
block 72 multiplications and 66=60 additions, while for the long audio block 648
multiplications and 630=612 additions are needed.

The description of each fast MDCT algorithm will include:

• General comments with reference to the bibliography.
• Complete formulae or sparse matrix factorizations for the efficient computation

of both the forward and backward MDCT block transforms in MP3 audio coding
standard. The detailed derivation of each fast MDCT algorithm can be found in
the referred paper(s).

• The corresponding signal flow graphs are shown only for short audio blocks
(N D 12). For the long audio blocks (N D 36), the signal flow graphs can be
easily extrapolated from those of the short audio blocks, or they can be found
in the referred paper(s). Note that the signal flow graphs define sparse matrix
factorizations of the MDCT matrices.

• The total arithmetic complexity of the forward/backward MDCT computation as
well as comments related to improving the arithmetic complexity and a possible
structural simplification of the algorithm.

All necessary supporting efficient optimized modules (in the form of linear
code) and tools for completing efficient MDCT implementations are provided in
the Appendices. All the presented fast and efficient MDCT algorithms have been
implemented and verified by computer programs in C and almost all can be also
used for the 2n-length data blocks.

5.4.1 DFT/FFT-Based Efficient MDCT Implementations

Traditionally, after introducing a new sinusoidal unitary transform in digital signal
processing and in developing fast algorithms for its efficient computation, the DFT
and its fast implementation, FFT, frequently has been used in the first place. Indeed,
this is the case for MDCT. Several DFT/FFT-based algorithms for the fast MDCT
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and MLT computation have been proposed [37, 42, 43, 46, 47, 52, 61] which at that
time enabled the efficient implementation of the MDCT in MP3. They are discussed
in the following subsections.

5.4.1.1 DFT/FFT-Based MDCT Implementation [37]

A computationally efficient DFT/FFT-based MDCT algorithm originally proposed
for the realization of real-valued single sideband analysis/synthesis filter banks (with
perfect reconstruction as well as with nearly or almost perfect reconstruction) has
been reported in [37]. It is perhaps the first proposed fast algorithm which has
enabled to efficiently implement the MDCT in MP3 standard. Due to the same
basic symmetry property of the MDCT coefficients given by (5.13) and the odd-
time odd-frequency DFT (O2DFT) coefficients (see Appendix B.1), the fast forward
and backward MDCT computation [37] is based on the fast O2DFT algorithm [115]
derived for odd/even symmetric real-valued data sequences (see Appendix B.2).
Since it is valid for any N being an integer multiple of 4, consequently, it can
be adopted for the efficient implementation of the MDCT in MP3 audio coding
standard.

Complete formulae constituting the fast DFT/FFT-based algorithm for the
efficient forward MDCT computation are given in [37] as
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where W
�nk

N D e�i 2�nk
N and i D p�1. Further, F2k D <e fFkg, F N

2 C2k D =m fFkg,
and data sequences fang; fbng are given by
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Finally, MDCT coefficients are obtained as

c2k D.�1/k <e fFkg; c N
2 �1�2k D.�1/kC N

4 C1 =m fFkg; kD0; 1; : : : ; N

4
� 1:
(5.25)
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The transform kernel W
�.4nC1/.4kC1/

4N in (5.23) is uniformly split into three parts

(whereby two of them are equal) as follows: W
�.4nC1/.4kC1/

4N D W
�.8kC1/

8N W
�nk

N
4

W
�.8nC1/

8N ,

corresponding, respectively, to the block of N
4

Givens–Jacobi pre-rotations, an
N
4

-point forward complex-valued DFT (CDFT), and the identical block of N
4

Givens–Jacobi post-rotations (see Appendix F.1).
On the other hand, the fast DFT/FFT-based algorithm for the efficient backward

MDCT computation is defined in [37] as
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where f2n D <e ffng and f N
2 C2n D =m ffng. The time domain aliased data sequence

fOxng is recovered as

Ox2n D <e ffng C =m ffng; Ox N
2 �1�2n D �Ox2n;

Ox N
2 C2n D �<e ffng C =m ffng; OxN�1�2n D Ox N

2 C2n; n D 0; 1; : : : ;
N

4
� 1:
(5.27)

Note 1: If N
4

is odd (hence for the MDCT implementation in MP3), the factor

.�1/kC N
4 C1 in (5.25) and (5.26) can be reduced to .�1/k.

For the forward/backward MDCT computation in MP3 we need 3=9-point
forward complex-valued DFT (CDFT) modules. The optimized efficient 3=9-point
forward CDFT modules are presented in Appendix D.2. The regular signal flow
graph for the computation of forward MDCT for N D 12 is shown in Fig. 5.1. Full
lines represent transfer factors C1 while dashed lines represent transfer factors �1.
Symbol ı represents addition. The common computing module identical both for
the forward and backward MDCT is highlighted by shaded rectangle. Scaling

factors
p
2
2

in (5.23) and (5.26) can be absorbed into Givens–Jacobi pre-rotation
stage of the common computing module. Then, for the efficient implementation of
Givens–Jacobi pre-rotations the bilinear computational structure has to be used (see
Appendix F.3). The signal flow graph for the backward MDCT computation can be
easily obtained taking into account (5.26) and (5.27).
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Fig. 5.1 Signal flow graph for the DFT/FFT-based forward MDCT computation for N D 12.
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In general, the total computational complexity of the forward and backward
MDCT is 3N

2
real multiplications and 5N

2
real additions (2N real additions for the

backward MDCT) plus the arithmetic complexity of N
4

-point forward CDFT. Thus,
for the short block the forward/backward MDCT computation in MP3 requires 20
real multiplications, 42=36 real additions, and 2 shifts, while for the long block the
forward/backward MDCT computation requires 70 real multiplications, 174=156
real additions, and 4 shifts.

Note 2: Alternatively, the transform kernel W
�.4nC1/.4kC1/

4N in (5.23) and (5.26)

can be split nonuniformly as follows: W
�.4nC1/.4kC1/

4N D W
�k

N W
�nk

N
4

W
�.4nC1/

4N D
W

�n

N W
�nk

N
4

W
�.4kC1/

4N (see next subsection). Since the terms W
�k

N and W
�n

N for k; n D 0

involve trivial rotations we can save three multiplications and three additions for the
short and long blocks.

5.4.1.2 DFT/FFT-Based MDCT Implementation [42]

Another fast DFT/FFT-based MDCT algorithm has been reported in [42]. It is very
similar to that described in previous subsection although it was derived by a quite
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different procedure. Since the fast MDCT algorithm is also based on an N
4

-point
complex-valued DFT, it can be adopted for the efficient MDCT implementation in
MP3 standard.

Complete formulae constituting the fast DFT/FFT-based algorithm for the
efficient forward MDCT computation are given in [42] as
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where W
nk

N D ei 2�nk
N and i D p�1, F2k D <e fFkg, F N

2 C2k D =m fFkg, and
data sequences fang; fbng are given in (5.24). Finally, MDCT coefficients are
obtained as
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The transform kernel W
.4nC1/.4kC1/

4N in (5.28) is nonuniformly split into three parts as

follows: W
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� 1 Givens–Jacobi pre-rotations, an N
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-point inverse CDFT, and the
block of N

4
Givens–Jacobi post-rotations (see Appendix F.1).

The fast DFT/FFT-based algorithm for the efficient backward MDCT computa-
tion is defined as [42]
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where f2n D <e ffng and f N
2 C2n D =m ffng. The time domain aliased data sequence

fOxng is recovered as

Ox2n D <e ffng C =m ffng; Ox N
2 �1�2n D �Ox2n;

Ox N
2 C2n D <e ffng � =m ffng; OxN�1�2n D Ox N

2 C2n; n D 0; 1; : : : ;
N

4
� 1:

(5.31)

Note 3: If N
4

is even, the factor .�1/kC N
4 in (5.29) and (5.30) can be reduced to

.�1/k.
Compared to the DFT/FFT-based MDCT algorithm in MP3 described in the

previous subsection, now we need 3=9-point inverse CDFT modules instead of the
forward CDFT modules. The optimized efficient 3=9-point inverse CDFT modules
can be easily obtained from the forward CDFT modules presented in Appendix D.2.
The regular signal flow graph for the computation of forward MDCT for N D 12

is shown in Fig. 5.2. Again, the common computing module identical both for
the forward and backward MDCT is highlighted by shaded rectangle. Scaling

factors
p
2
2

in (5.28) and (5.30) can be absorbed into Givens–Jacobi pre-rotation
stage of the common computing module. Then, for the efficient implementation
of Givens–Jacobi pre-rotations the bilinear computational structure has to be used
(see Appendix F.3). Note that the Givens–Jacobi post-rotations in the common
computing module for N D 12 involve cosines and sines of rotation angles �

6
and

�
3

, where cos �
6

D sin �
3

D
p
3
2

and cos �
3

D sin �
6

D 1
2
. The signal flow graph for

the backward MDCT computation can be easily obtained taking into account (5.30)
and (5.31).

Note 4: It is important to note that the DFT/FFT-based fast MDCT algorithm [42]
actually requires exactly about N

2
C 1 real additions more than it has been reported

in the original paper [42]. To obtain the correct result, an additional butterfly stage
is necessary before the N

4
-point inverse CDFT is applied (see the second butterfly

stage in Fig. 5.2).
The total computational complexity of the forward and backward MDCT is

3.N
2

� 1/ real multiplications and 5N
2

� 3 real additions (2N � 3 real additions
for the backward MDCT) plus the arithmetic complexity of N

4
-point inverse CDFT.

Thus, for the short block the forward MDCT computation in MP3 requires 17
real multiplications, 39=33 real additions, and 2 shifts, while for the long block
the forward MDCT computation requires 67 real multiplications, 171=153 real
additions, and 4 shifts.

Note 5: The windowing operation with the sine windowing function can be written
in the form of Givens–Jacobi rotations applied to the input data sequence fxng, and
it can be incorporated into the fast computational structure of the algorithm [42, 61].
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Fig. 5.2 Signal flow graph for the DFT/FFT-based forward MDCT computation for N D 12.
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5.4.1.3 DFT/FFT-Based MDCT Implementation [43, 52]

The main idea of a fast and efficient DFT/FFT-based MDCT algorithm outlined
in [52] is based on the simple fact that the forward MDCT block transform given
by (5.9) can be written in the following equivalent form:

ck D <e

(
N�1X

nD0
xn� N

4
W

�.2nC1/.2kC1/

4N

)

D
N�1X

nD0
xn� N

4
cos

h �
2N
.2n C 1/.2k C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1; (5.32)

where the transform kernels on the right-hand side of (5.32) are recognized,
respectively, as the O2DFT (see Appendix B.1) and the so-called real-valued
polyphase filter bank derived from the DCT-IV transform kernel [43]. The term
xn� N

4
can be interpreted as a shifting of the original data sequence by N

4
samples

with respect to the cosine transform kernel. In fact, exploiting the anti-periodicity
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property of the cosine transform kernel with the period N, i.e., substituting n C N
for n we obtain: cos

�
�
2N .2n C 1C 2N/.2k C 1/

� D � cos
�
�
2N .2n C 1/.2k C 1/

�
,

and it can be shown that the original data sequence has to be circularly shifted to
the right in the period N by N

4
samples followed by sign changes of N

4
circularly

shifted samples. This operation actually corresponds to a permutation applied to the
original data sequence defined as [34, 53]

yn D

8
<̂

:̂

� x 3N
4 Cn; n D 0; 1; : : : ; N

4
� 1;

xn� N
4
; n D N

4
; N
4

C 1; : : : ;N � 1:
(5.33)

Then, applying the permutation described in (5.33) and using the symmetry property
of the cosine transform kernel, (5.32) can be rewritten as

ck D
N�1X

nD0
yn cos

h �
2N
.2n C 1/.2k C 1/

i

D
N
2 �1X

nD0
.yn � yN�1�n/ cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1: (5.34)

The transform kernel in (5.34) is recognized as an N
2

-point DCT-IV. Finally,
combining (5.33) and (5.34) we get

ck D
N
2 �1X

nD0
yn cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
; k D 0; 1; : : : ;

N

2
�1; (5.35)

where

yn D

8
<̂

:̂

� x 3N
4 Cn � x 3N

4 �1�n; n D 0; 1; : : : ; N
4

� 1;

xn� N
4

� x 3N
4 �1�n; n D N

4
; N
4

C 1; : : : ; N
2

� 1:
(5.36)

Since the N
2

-point DCT-IV is closely related to the real part of N-point O2DFT for
real-valued odd symmetric data sequences, in order to efficiently compute the N

2
-

point DCT-IV of fyng, the fast O2DFT algorithm is applied [6, 43, 138].
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Complete formulae constituting the fast DFT/FFT-based algorithm for the
efficient forward MDCT computation are given by [43]

Fk D F2k C i F N
2 C2k D

N
4 �1X

nD0

�
y2n C i y N

2 �1�2n

�
W

�.4nC1/.4kC1/

4N

D W
�k

N

N
4 �1X

nD0

h�
y2n C i y N

2 �1�2n

�
W

�.4nC1/

4N

i
W

�nk

N
4

;

k D 0; 1; : : : ;
N

4
� 1; (5.37)

where W
�nk

N D e�i 2�nk
N and i D p�1, F2k D <e fFkg, F N

2 C2k D =m fFkg. The
data sequence fyng is given by (5.36) or (5.47). Finally, MDCT coefficients are
obtained as

c2k D <e fFkg; c N
2 �1�2k D �=m fFkg; k D 0; 1; : : : ;

N

4
� 1: (5.38)

The transform kernel W
�.4nC1/.4kC1/

4N in (5.28) is nonuniformly split into three parts

as follows: W
�.4nC1/.4kC1/

4N D W
�k

N W
�nk

N
4

W
�.4nC1/

4N D W
�n

N W
�nk

N
4

W
�.4kC1/

4N corresponding,

respectively, to the block N
4

� 1 Givens–Jacobi pre-rotations, an N
4

-point forward
CDFT, and the block of N

4
Givens–Jacobi post-rotations (see Appendix F.1).

The fast DFT/FFT-based algorithm for the efficient backward MDCT computa-
tion is defined as [43]

fn D f2n C i f N
2 C2n D

N
4 �1X

kD0
.c2k C i c N

2 �1�2k/ W
�.4nC1/.4kC1/

4N

D W
�n

N

N
4 �1X

kD0

h
.c2k C i c N

2 �1�2k/ W
�.4kC1/

4N

i
W

�nk

N
4

;

n D 0; 1; : : : ;
N

4
� 1; (5.39)

where f2n D <e ffng and f N
2 C2n D =m ffng. The time domain aliased data sequence

fOxng is partially recovered as

Ox N
4 C2n D =m ffng; Ox 3N

4 �1�2n D �<e ffng; n D 0; 1; : : : ; N
4

� 1;
(5.40)

and remaining samples of fOxng can be easily deduced from the symmetry property
given in (5.14).
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Fig. 5.3 Signal flow graph for the DFT/FFT-based forward MDCT computation for N D 12

For the forward/backward MDCT computation in MP3 we need 3=9-point
forward CDFT modules. The optimized efficient 3=9-point forward CDFT modules
are presented in Appendix D.2. The regular signal flow graph for the computation
of forward MDCT for N D 12 is shown in Fig. 5.3. Again, the common computing
module identical both for the forward and backward MDCT is highlighted by
shaded rectangle. Compared to DFT/FFT-based MDCT algorithms [37, 42] (see

two previous subsections), scaling factors
p
2
2

and required sign changes have been
completely eliminated thus simplifying the algorithm structure. Efficient implemen-
tations of Givens–Jacobi rotations are presented in Appendices F.2 and F.3. Note that
the Givens–Jacobi post-rotations in the common computing module for N D 12

involve cosines and sines of rotation angles �
6

and �
3

, where cos �
6

D sin �
3

Dp
3
2

and cos �
3

D sin �
6

D 1
2
. The signal flow graph for the backward MDCT

computation can be easily obtained taking into account (5.39) and (5.40).
The total computational complexity of the forward and backward MDCT is

3.N
2

� 1/ real multiplications and 2N � 3 real additions, (3.N
2

� 1/ real additions
for the backward MDCT) plus the arithmetic complexity of N

4
-point forward

CDFT. Thus, for the short block the forward/backward MDCT computation in MP3
requires 17 real multiplications, 33=27 real additions, and 2 shifts, while for the long
block the forward/backward MDCT computation requires 67 real multiplications,
153=135 real additions, and 4 shifts.
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Note 6: An identical fast DFT/FFT-based algorithm for the efficient MLT compu-
tation has been presented in [46, 47]. Using the permutation given by (5.47), the
N-point MLT is first converted to the N

2
-point DCT-IV which is directly mapped

into the N
4

-point forward complex-valued DFT [6, 43].

5.4.2 DCT-II/DST-II-Based Efficient MDCT Implementations

The first published efficient MDCT implementation in MP3 [32] based on the
fast MDCT algorithm [33] has been sequentially refined [24], improved [50, 56],
and optimized [36, 48] both in terms of the arithmetic complexity and structural
simplicity. The fast MDCT algorithm [33] uses the DCT-II and the corresponding
DST-II of reduced sizes and it is valid for any N divisible by 4. Consequently, this
fact enabled the efficient implementation of the forward/backward MDCT in MP3
audio coding standard.

In the following subsections the refined DCT-II/DST-II-based version [24] of the
fast MDCT algorithm [32, 33] and its improved version [56] are discussed.

5.4.2.1 DCT-II/DST-II-Based MDCT Implementation [24, 32, 33]

Complete formulae constituting the fast DCT-II/DST-II-based algorithm for the
forward/backward MDCT computation are given by [33]

z2k D .�1/k
p
2

2

N
4 �1X

nD0

�
an cos

�
�.2n C 1/k

2.N=4/

	
� bn sin

�
�.2n C 1/k

2.N=4/

	�
;

z2kC N
2

D .�1/kC N
4

p
2

2

N
4 �1X

nD0
.�1/nC1

�
an sin

�
�.2nC1/k
2.N=4/

	
Cbn cos

�
�.2nC1/k
2.N=4/

	�
;

k D0; 1; : : : ;
N

4
� 1; (5.41)

where

an D
�

x
0

n � x
00

N
2 �1�n

�
cos

�.2n C 1/

2N
�
�

x
00

n � x
0

N
2 �1�n

�
sin

�.2n C 1/

2N
;

bn D
�

x
0

n � x
00

N
2 �1�n

�
sin

�.2n C 1/

2N
C
�

x
00

n � x
0

N
2 �1�n

�
cos

�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

4
� 1; (5.42)
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and

x
0

n D xn � xN�1�n; x
00

n D xn C xN�1�n; n D 0; 1; : : : ;
N

2
� 1: (5.43)

Final MDCT coefficients are obtained as

c2k D z2k; c2kC1 D �zN�2�2k; k D 0; 1; : : : ;
N

4
� 1: (5.44)

One can see from (5.41) to (5.44) that the N-point MDCT is decomposed into two
pre-butterfly stages, the block of N

4
Givens–Jacobi rotations, an unnormalized N

4
-

point DCT-II and a corresponding unnormalized N
4

-point DST-II, and the butterfly
stage followed by proper sign changes. For k D 0, the coefficients z0 and z N

2
are

sums of fang and fbng, respectively. The refined regular signal flow graph for the
efficient forward/backward MDCT computation in MP3 for N D 12 is shown in
Fig. 5.4. The backward MDCT computation can be simply realized by reversing
the signal flow graph for the forward MDCT computation and performing inverse
operations. The optimized efficient 3=9-point DCT-II and DCT-III modules are
presented in Appendix D.4. The efficient MDCT implementation has been further
refined as follows [24]. Since there exists a simple relation between the DCT-II
and the DST-II [119], the N

4
-point DST-II can be replaced by the N

4
-point DCT-II

with proper preceding sign changes, thus two identical N
4

-point DCT-II modules are

used in the resulting fast computational structure. Scaling factors
p
2
2

in expressions
of (5.41) can be absorbed into Givens–Jacobi rotations. Then, for the efficient
implementation of Givens–Jacobi rotations the bilinear computational structure has
to be used (see Appendix F.3).

The total computational complexity of the forward MDCT is 3N
4

multiplications
and 11N

4
� 2 additions (9N

4
� 2 additions for the backward MDCT) plus the

arithmetic complexity of two identical N
4

-point DCT-II/DCT-III modules. Thus,
for the short block the forward/backward MDCT computation in MP3 requires
11 multiplications, 39=33 additions, and 2 shifts, while for the long block the for-
ward/backward MDCT computation requires 43multiplications, 165=147 additions,
and 4 shifts.

5.4.2.2 Improved DCT-II/DST-II-Based MDCT Implementation [56]

Owing to the compatibility with the fast DCT-II/DST-II-based MDCT algorithm
described in the previous subsection, the original form of improved fast
DCT-II/DST-II-based MDCT algorithm [56] has been slightly modified. Complete
formulae for the forward/backward MDCT computation are given by
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C bn sin
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�.2n C 1/k

2.N=4/
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z2kC N
2

D
N
4 �1X

nD0
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�an sin
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�.2n C 1/k
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C bn cos
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	�
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k D 0; 1; : : : ;
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4
� 1; (5.45)

where

an D yn cos
�.2n C 1/

2N
C y N

2 �n�1 sin
�.2n C 1/

2N
;
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bn D �yn sin
�.2n C 1/

2N
C y N

2 �n�1 cos
�.2n C 1/

2N
; n D 0; 1; : : : ;

N

4
� 1:
(5.46)

The data sequence fyng is given by (5.36), and final MDCT coefficients are
obtained from (5.44). The modified regular signal flow graph for the improved
forward/backward MDCT computation in MP3 for N D 12 is shown in Fig. 5.5.
The backward MDCT computation can be simply realized by reversing the signal
flow graph for the forward MDCT computation and performing inverse operations.
The optimized efficient 3=9-point DCT-II and DCT-III modules are presented in
Appendix D.4. Compared to the fast MDCT algorithm given by (5.41)–(5.44), the
improved fast MDCT algorithm given by (5.45) and (5.46) eliminates: the first
butterfly stage thus saving N additions (see Fig. 5.4), further eliminates scaling

factors
p
2
2

and final sign changes, thus simplifying the fast computational structure
of the algorithm. On the other hand, comparing complete formulae of both fast
MDCT algorithms one can note that they involve Givens–Jacobi rotations of
opposite types. Efficient implementations of Givens–Jacobi rotations are presented
in Appendices F.2 and F.3.

The total computational complexity of the forward MDCT is 3N
4

multiplications
and 7N

4
�2 additions (5N

4
�2 additions for the backward MDCT) plus the arithmetic

complexity of two identical N
4

-point DCT-II/DCT-III modules. Thus, for the short
block the forward/backward MDCT computation in MP3 requires 11 multiplica-
tions, 27=21 additions and 2 shifts, while for the long block the forward/backward
MDCT computation requires 43 multiplications, 129=111 additions, and 4 shifts.

5.4.3 DCT-IV-Based Efficient MDCT Implementations

Another class of the fast MDCT algorithms developed up to now is based on the
DCT-IV of half size [5, 6, 25, 27, 29, 31, 34, 36, 38, 40, 48, 53, 59, 63]. In fact, using
a simple permutation applied to the input data sequence, the MDCT can always be
converted to the DCT-IV of half size. Then, it is sufficient only to specify a suitable
fast DCT-IV algorithm/computational structure which is valid for N being an even
integer. It is widely accepted that the DCT-IV-based MDCT implementations are the
most efficient both in terms of the arithmetic complexity and structural simplicity
[30, 31]. Note that using the direct approach for computing the N

2
-point DCT-IV

immediately reduces the arithmetic complexity of the direct MDCT computation to
.N
2
/2 multiplications and .N

2
/2 additions.

Principally, applying a permutation given by (5.36) to the input data sequence
fxng or a permutation defined as [6, 31]

y N
4 Cn D xn � x N

2 �1�n;

y N
4 �1�n D �x N

2 Cn � xN�1�n; n D 0; 1; : : : ;
N

4
� 1; (5.47)



230 5 Efficient Implementations of Cosine-Modulated Pseudo-QMF and MLT. . .

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

z0

-I
I

a2

cos /24

a1

a0

-I
I

b0

b1

b2

z2

z4

z6

z8

z10

sin /24

/24

/24

/24

/24

/24
/24

/24

/24

sin /24

y3

y4

y5

y0

y1

y2
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the N-point forward MDCT or MLT is converted to an N
2

-point DCT-IV of fyng. The
backward MDCT or MLT is realized by the inverse N

2
-point DCT-IV of fckg using

the same fast algorithm/computational structure, and the time domain aliased data
sequence fOxng can be recovered from fyng applying an inverse permutation to that
of (5.47) as [6, 31]

Oxn D y N
4 Cn; Ox N

2 �1�n D �y N
4 Cn;

Ox N
2 Cn D �y N

4 �1�n; OxN�1�n D �y N
4 �1�n; n D 0; 1; : : : ;

N

4
� 1:

(5.48)
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Note 7: Although the permutations (5.36) and (5.47) seem to be different, they
generate exactly the same time domain aliased data sequence fyng [31]. On the other
hand, applying the permutation (5.33) to the input data sequence, the time domain
aliased data sequence fOxng can be recovered after the backward MDCT from fyng as
[34, 53]

Oxn D

8
<̂

:̂

y N
4 Cn; n D 0; 1; : : : ; 3N

4
� 1;

� yn� 3N
4
; n D 3N

4
; 3N
4

C 1; : : : ;N � 1:
(5.49)

Since the DCT-IV matrix is symmetric and self-inverse (the DCT-IV transform
kernel is symmetric with respect to the time and frequency indices n and k), the
forward/inverse DCT-IV computation, and hence as well as the forward/backward
MDCT (or forward/backward MLT) is realized by an identical fast computational
structure with the properly appended permutations (5.47) and (5.48). The N

2
-point

DCT-IV can be further decomposed either into two identical N
4

-point DCTs-IV [114]
or two identical N

4
-point DCTs-II [25, 31, 136] with pre-butterfly/post-rotation or

pre-rotation/post-butterfly stages. In order to efficiently implement the MDCT in
MP3 we should specify a suitable fast DCT-IV algorithm/computational structure
which is valid for N being an even integer, i.e., 6- and 18-point fast DCT-IV
algorithms. In general, the even-length DCT-IV can be realized by:

• An indirect fast DCT-IV algorithm which maps the DCT-IV into a complex-
valued DFT of half size [6, 43, 138]. Such an MDCT algorithm has been
presented in Sect. 5.4.1.

• Recursive filter structures for the general-lengths DCT-IV [34, 76, 77, 80, 81, 84,
119] (see references on pp. 14–15).

• Combining radix-q fast DCT-IV algorithms (where q is an odd positive integer)
[117, 130] with existing mixed-radix fast DCT-IV algorithms for the composite
lengths 2n � q, or with the even-length fast DCT-IV algorithms [114].

• Direct fast even-length recursive DCT-IV algorithms [121, 132].
• Fast even-length DCT-IV algorithms [25, 31] or based on orthogonal (recursive)

sparse matrix factorizations of the DCT-IV matrix [119, 136].

Note 8: Recently, a new recursive algorithm for the 2n-length DCT-IV computation
has been presented [59] requiring fewer total real multiplications and real additions
than algorithms published up to now. It is based on a new improved FFT algorithm
being actually the modified split-radix FFT [131] with fewer arithmetic operations.
Since the DCT-IV and MDCT are closely related, this improved indirect 2n-length
fast DCT-IV algorithm immediately implies an improved 2n-length fast MDCT
algorithm.

Note 9: Symmetry property of the DCT-IV matrix implies that by transposing its
(orthogonal) sparse matrix factorization we can obtain the equivalent fast DCT-IV
computational structure but in the reverse direction.
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Note 10: The fast analysis and synthesis MDCT or MLT filter banks in MP3 based
on the DCT-IV including the windowing&overlap procedure in the analysis MDCT
(MLT) filter bank and windowing&overlap&add procedure in the synthesis MDCT
(MLT) filter bank are presented in detail in Sect. 5.5.

Typical representative DCT-IV-based implementations adopted or directly tai-
lored for the efficient MDCT computation in MP3 are discussed in the following
subsections.

5.4.3.1 DCT-IV-Based MDCT Implementation (Simple Representative
Version)

A simple representative efficient implementation of the MDCT in MP3 is obtained
by combining the radix-3 and radix-9 fast DCT-IV algorithms [117, 130] with an
even-length DCT-IV algorithm [114]. Let M be an even integer. Let fyng be an input
data sequence given by (5.36) or (5.47). A simple fast algorithm for the efficient
M-point forward/inverse DCT-IV computation is defined as [114]

c
IV

k D cos
�.2k C 1/

4M
ak C sin

�.2k C 1/

4M
bk;

c
IV

M�1�k D � sin
�.2k C 1/

4M
ak C cos

�.2k C 1/

4M
bk; k D 0; 1; : : : ;

M

2
� 1;
(5.50)

where

ak D
M
2 �1X

mD0
um cos

�
�

4.M=2/
.2m C 1/.2k C 1/

	
;

b M
2 �1�k D

M
2 �1X

mD0
.�1/n vm cos

�
�

4.M=2/
.2m C 1/.2k C 1/

	
; kD0; 1; : : : ; M

2
�1:

(5.51)

and

um D y2m C y2mC1; vm D y2m � y2mC1; m D 0; 1; : : : ;
M

2
� 1: (5.52)

Transposed version of this fast DCT-IV algorithm has been published in [81]. Taking
M D N

2
, (5.50), and (5.51) show that an N

2
-point DCT-IV required for the efficient

MDCT implementation in MP3 is decomposed into a butterfly stage, two identical
unnormalized N

4
-point DCTs-IV and the block of N

4
Givens–Jacobi rotations. For

the efficient MDCT implementation in MP3 we need optimized efficient 3=9-point
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Fig. 5.6 Signal flow graph for the DCT-IV-based forward/backward MDCT computation for

N D 12, ˛ D
p
2

2

scaled DCT-IV (SDCT-IV) modules. They are presented in Appendix D.6. The
regular signal flow graph identical for the computation both of the forward and

backward MDCT for N D 12 is shown in Fig. 5.6. Scaling factor
p
2
2

necessary for
the 3=9-point DCT-IV can be absorbed into the block of N

4
Givens–Jacobi rotations.

Then, for the efficient implementation of scaled Givens–Jacobi rotations the bilinear
computational structure has to be used (see Appendix F.3). For the forward MDCT
computation the data sequence fyng is given by (5.36) or (5.47) while the time
domain aliased data sequence fOxng after the backward MDCT is recovered from
fyng according to (5.48) or (5.49).

The total computational complexity of the forward and backward MDCT is 3N
4

multiplications and 7N
4

additions (5N
4

additions for the backward MDCT) plus the
arithmetic complexity of two N

4
-point SDCT-IV modules. Thus, for the short block

the forward/backward MDCT computation in MP3 requires 11 multiplications,
33=27 additions, and 2 shifts, while for the long block the forward/backward MDCT
computation requires 61 multiplications, 169=151 additions, and 6 shifts.

5.4.3.2 DCT-IV-Based MDCT Implementation [25]

The fast DCT-IV/DST-IV algorithm [25] has been derived directly from the
proposed fast MDCT algorithm [33] based on the following fact. The DCT-IV
and DST-IV of double sizes are related to two variants of cosine-modulated filter
banks (the so-called 1. and 2. short transforms) defined by the Dolby Digital (AC-3)
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audio compression algorithm [1]. Since these two variants of cosine-modulated
filter banks can be efficiently computed by the fast MDCT algorithm [33] (see
also Chap. 6), the efficient DCT-IV/DST-IV computation can be realized via the
MDCT of double size. The careful analysis of regular structure of the fast MDCT
algorithm [33] (see also Sect. 5.4.2) allows to extract the even-length fast DCT-IV
computational structure for the efficient implementation of the forward/backward
MDCT in MP3.

Let C
IV

M be the orthogonal DCT-IV matrix of order M. Then, C
IV

M can be
decomposed into the following sparse block matrix product [25]

C
IV

M D QM

0

BBB
@

1

I M
2 �1 �J M

2 �1
�1

�J M
2 �1 �I M

2 �1

1

CCC
A

0

@
C

II

M
2

J M
2

0

0 C
II

M
2

D M
2

1

A GM

 
J M
2

0

0 �J M
2

!

;

(5.53)

where I M
2

is the identity matrix and J M
2

is reverse ordered identity matrix, both of

order M
2

, and 0’s are null matrices. The matrix product C
II

M
2

J M
2

denotes M
2

-order

DCT-II matrix with reversed order of its columns. The matrix product C
II

M
2

D M
2

denotes M
2

-order DCT-II matrix with sign changed of its odd-indexed rows, whereby

D M
2

D diag f1;�1; 1; : : : ; .�1/M
2 C1g is the diagonal matrix. GM is the rotation

matrix (Givens–Jacobi rotations) defined as

GMD

0

BBB
BBBBBB
BBBB
@

cos .M�1/�
4M 0 0 � sin .M�1/�

4M

cos .M�3/�
4M � sin .M�3/�

4M
: :

cos �
4M � sin �

4M
0 0

sin �
4M cos �

4M
: :

sin .M�3/�
4M cos .M�3/�

4M

sin .M�1/�
4M 0 0 cos .M�1/�

4M

1

CCC
CCCCCC
CCCC
A

; (5.54)

and QM is a permutation matrix corresponding to (5.44). The sparse matrix
factorization of the DCT-IV matrix (5.53) is the direct consequence of a sparse
matrix factorization derived for the MDCT matrix [33].

Taking M D N
2

, from the factorization (5.53) it follows that an N
2

-point DCT-IV is
decomposed into the block of N

4
Givens–Jacobi rotations, two identical unnormal-

ized N
4

-point DCTs-II and the butterfly stage. For the efficient forward/backward
MDCT implementation in MP3, the optimized efficient 3=9-point DCT-II modules
are presented in Appendix D.4. The simple and regular signal flow graph identical
for the computation both of the forward and backward MDCT for N D 12 is shown
in Fig. 5.7. Efficient implementations of Givens–Jacobi rotations are presented in
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Fig. 5.7 Signal flow graph for the DCT-IV-based forward/backward MDCT computation for
N D 12

Appendices F.2 and F.3. The input data sequence fyng in the forward MDCT is
given by (5.47) while the time domain aliased data sequence fOxng is recovered after
the backward MDCT from fyng according to (5.48).

The total computational complexity of the forward MDCT is 3N
4

multiplications
and 7N

4
� 2 additions (5N

4
� 2 additions for the backward MDCT) plus the

arithmetic complexity of two N
4

-point DCT-II modules. Thus, for the short block
the forward/backward MDCT computation in MP3 requires 11 multiplications,
27=21 additions, and 2 shifts, while for the long block the forward/backward MDCT
computation requires 43 multiplications, 129=111 additions, and 4 shifts.

5.4.3.3 DCT-IV-Based MDCT Implementation [31]

Complete formulae constituting the fast DCT-IV computational structure for the
forward/backward MDCT computation are given by [31]

c2k D
N
4 �1X

nD0
an cos

�
�.2n C 1/k

2.N=4/

	
C bn sin

�
�.2n C 1/k

2.N=4/

	
;

c2k�1D
N
4 �1X

nD0
an cos

�
�.2n C 1/k

2.N=4/

	
� bn sin

�
�.2n C 1/k

2.N=4/

	
; kD1; 2; : : : ; N

4
� 1;

(5.55)
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where

an D yn cos
�

2N
.2n C 1/C y N

2 �1�n sin
�

2N
.2n C 1/;

bn D � yn sin
�

2N
.2n C 1/C y N

2 �1�n cos
�

2N
.2n C 1/; n D 0; 1; : : : ;

N

4
� 1:
(5.56)

For k D 0 in the first sum and for k D N
4

in the second sum of (5.55), we,
respectively, get

c0 D
N
4 �1X

nD0
an; c N

2 �1 D �
N
4 �1X

nD0
.�1/n bn: (5.57)

It can be easily seen that the N
2

-point DCT-IV is decomposed into the block of N
4

Givens–Jacobi rotations given by (5.56), an unnormalized N
4

-point DCT-II and a
corresponding unnormalized N

4
-point DST-II. Denoting in (5.55) the N

4
-point DCT-

II of fang and the N
4

-point DST-II of fbng, respectively, by

c
II

k D
N
4 �1X

nD0
an cos

�
�.2n C 1/k

2.N=4/

	
; s

II

k D
N
4 �1X

nD0
bn sin

�
�.2n C 1/k

2.N=4/

	
;

k D 1; 2; : : : ;
N

4
� 1;

and using a relation between the DCT-II and the DST-II [119], i.e., substituting N
4

�k
for k into the above second sum, we get

s
II

N
4 �k

D
N
4 �1X

nD0
.�1/n bn cos

�
�.2n C 1/k

2.N=4/

	
D

N
4 �1X

nD0
b0

n cos

�
�.2n C 1/k

2.N=4/

	
;

k D 1; 2; : : : ;
N

4
� 1;

and the N
4

-point DST-II of fbng is converted to an N
4

-point DCT-II of fb0
ng.

Thus, (5.55) and (5.57) can be rewritten in a simplified equivalent form as

c2k D c
II

k C s
II

k ; c0 D c
II

0 ;

c2k�1 D c
II

k � s
II

k ; c N
2 �1 D � s

II

N
4

; k D 1; 2; : : : ;
N

4
� 1; (5.58)

which corresponds to the butterfly stage.
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Fig. 5.8 Signal flow graph for the DCT-IV-based forward/backward MDCT computation for
N D 12

The regular signal flow graph identical for the computation both of the forward
and backward MDCT for N D 12 is shown in Fig. 5.8. For the efficient MDCT
implementation in MP3 the optimized efficient 3=9-point DCT-II modules are
presented in Appendix D.4. Efficient implementations of Givens–Jacobi rotations
are presented in Appendices F.2 and F.3. The input data sequence fyng in the forward
MDCT is given by (5.47) while the time domain aliased data sequence fOxng is
recovered after the backward MDCT from fyng according to (5.48).

The last butterfly stage in the signal flow graph shown in Fig. 5.8 can be further
refined as follows. If we denote the output coefficients fc

II

0 ; c
II

1 ; : : : ; c
II

N
4 �1; s

II

1 ; s
II

2 ; : : : ; s
II

N
4

g
of the two unnormalized N

4
-point DCTs-II by fzkg, then the last butterfly stage can

be reorganized and the final MDCT coefficients fckg are obtained in natural order
using the following mapping:

ck D

8
ˆ̂̂
<

ˆ̂̂
:

z k
2
Cz N

4 �1C k
2
; kD2; 4; : : : ; N

4
� 2; is even, c0Dz0;

z kC1
2

�z N
4 �1C kC1

2
; kD1; 3; : : : ; N

4
� 1; is odd, c N

2 �1D� z N
2 �1:

(5.59)

The corresponding signal flow graph with the reorganized last butterfly stage is
shown in Fig. 5.9.

Note 11: Similar fast computational structures have been derived in [36, 48] with
the aim to improve and optimize an efficient implementation of the MDCT in MP3
[25, 33].
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Fig. 5.9 Signal flow graph for the DCT-IV-based forward/backward MDCT computation for
N D 12 with the reorganized last butterfly stage

The total computational complexity of the forward MDCT is 3N
4

multiplications
and 7N

4
� 2 additions (5N

4
� 2 additions for the backward MDCT) plus the

arithmetic complexity of two N
4

-point DCT-II modules. Thus, for the short block
the forward/backward MDCT computation in MP3 requires 11 multiplications,
27=21 additions, and 2 shifts, while for the long block the forward/backward MDCT
computation requires 43 multiplications, 129=111 additions, and 4 shifts.

5.4.3.4 DCT-IV-Based MDCT Implementation [38, 40]

The most efficient MDCT implementations in MP3 in terms of the minimal
multiplicative complexity known up to now [38, 40] are based on mixed-radix
3m � 2; m > 0; fast DCT-IV algorithms developed specifically for 6-point and 18-
point DCT-IV computations. Based on group theoretic partitioning of the DCT-IV
transform kernel (or equivalently partitioning the DCT-IV matrix into sub-matrices),
the unnormalized DCT-IV matrices of order 6 and 18 denoted, respectively, by
C

IV

6 and C
IV

18, are decomposed into cyclic convolutions and Hankel matrix-vector
products. Then, bilinear algorithms [134] are applied to each of the convolutions and
2-point Hankel matrix-vector products resulting in a single bilinear algorithm for
the forward/backward MDCT computation used both for the short and long audio
blocks.

Although the procedures in deriving the most efficient algorithms [38, 40]
are based on rigorous mathematical theory of cyclic (Abelian) groups, cyclic
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convolutions, and associated Hankel matrices [134, 140], we will try to explain
the approach from the viewpoint of classical theory of matrices [128]. Since the
approach in derivation of the most efficient algorithms is very sophisticated and
elegant it merits to be presented in a detailed, but compact form as much as possible
for the short and long audio blocks separately.

5.4.3.5 Case N D 12 (Short Data Block)

Consider the MDCT implementation for the short audio block represented in the
matrix-vector form as
0

B
BBBBBB
BBBBB
BBBBBB
@

c0

c1

c2

c3

c4

c5

1

C
CCCCCC
CCCCC
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A

D

0

B
BBBBBB
BBBBB
BBBBBB
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cos �
24

cos 3�
24

cos 5�
24

cos 7�
24

cos 9�
24

cos 11�
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cos 3�
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cos 9�
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� cos 9�
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� cos 3�
24

� cos 3�
24

� cos 9�
24

cos 5�
24

� cos 9�
24

� cos �
24

� cos 11�
24

cos 3�
24
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24
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� cos 3�
24

� cos 11�
24

cos �
24

� cos 9�
24

� cos 5�
24

cos 9�
24

� cos 3�
24

cos 3�
24

� cos 9�
24

� cos 9�
24

cos 3�
24

cos 11�
24

� cos 9�
24

cos 7�
24

� cos 5�
24

cos 3�
24

� cos �
24

1

C
CCCCCC
CCCCC
CCCCCC
A

0

B
BBBBBB
BBBBB
BBBBBB
@

y0

y1

y2

y3

y4

y5

1

C
CCCCCC
CCCCC
CCCCCC
A

;

(5.60)

where the data sequence fyng is given by (5.36) or (5.47), and fckg are MDCT
coefficients. Perhaps the most important fact, one can observe a special structure of
some basis vectors of the symmetric matrix C

IV

6 which does not appear in 2n-order
DCT-IV matrices [119]. Specifically, for the frequency/time indices k=n D 0; 2; 3; 5,
the corresponding row/column basis vectors always consist of six different elements
in magnitude, whereas for k; n D 1; 4, i.e., the first and fourth row/column basis
vectors consist of only two different elements in magnitude. The proposed most
efficient MDCT implementations [38, 40] just exploit this special structure of basis
vectors of C

IV

6 matrix.
At first, the time and frequency indices n and k, respectively, are partitioned into

two sets. The set S1 D f1; 4g is made up of those values j for which .2j C 1/

is a multiple of 3, and the set S2 D f0; 2; 3; 5g otherwise. The computation of
transform coefficients fckg with respect to the time indices restricted to sets S1
and S2 is denoted by c

.1/

k and c
.2/

k , respectively. Specifically, the DCT-IV matrix
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C
IV

6 is partitioned into four sub-matrices and the summation is carried out over
the two index sets separately. Then, it is clear that the MDCT coefficients fckg are
obtained as

ck D c
.1/

k C c
.2/

k ; k D 0; 1; 2; 3; 4; 5: (5.61)

Now, let us partition the matrix C
IV

6 into four sub-matrices as follows. The
transform components fc

.1/

k g, where k 2 S1 and n 2 S1 are given by

0

B
@

c
.1/

1

c
.1/

4

1

C
AD

0

@
cos 9�

24
� cos 3�

24

� cos 3�
24

� cos 9�
24

1
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0

@
y1

y4

1

A ; cos
3�

24
Dcos

�

8
; cos

9�

24
Dsin

�

8
:

(5.62)

Since the constant matrix in (5.62) is a Hankel matrix, this product can be obtained
by using a corresponding bilinear algorithm for 2-point Hankel matrix-vector
product (see Appendix A.2). Similarly, the transform components fc

.2/

k g, where
k 2 S1 and n 2 S2 are given by

0

B
@

c
.2/

1

c
.2/

4

1

C
A D

0
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cos 3�

24
cos 9�

24

cos 9�
24

� cos 3�
24
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0

@
y0 � y3

�y2 � y5

1

A : (5.63)

Equation (5.63) is based on the simple fact that some matrix elements are equal in
magnitude (see the first and fourth rows of C

IV

6 ). Again, since the constant matrix
in (5.63) is a Hankel matrix this product can be obtained by using the corresponding
bilinear algorithm for 2-point Hankel matrix-vector product (see Appendix A.2).

Further, the transform components fc
.1/

k g, where k 2 S2 and n 2 S1 are given by
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: (5.64)

Comparison of (5.64) with (5.62) shows that the transform components
c
.1/

0 ;�c
.1/

5 ; c
.1/

3 and c
.1/

2 need not be computed separately.
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Finally, the computation of transform components fc
.2/

k g when k; n 2 S2, after
proper row/column reordering and sign changes made in the remaining symmetric
4 � 4 sub-matrix and associated input/output data vectors (actually predicted by
the structure of a cyclic group [38, 40]), it can be represented in the matrix-vector
form as
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: (5.65)

One can observe that the matrix in (5.65) is a block cyclic matrix with each block
being a 2 � 2 Hankel matrix. In order to compute (5.65) the following procedure is
applied. Denoting 2 � 2 Hankel matrices in (5.65) as
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A ; (5.66)

and defining the two combined 2-point Hankel matrix-vector products we get the
following important interrelations
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(5.67)

Using trigonometric identities
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the two expressions in (5.67) can be derived in the form of final 2-point Hankel
matrix-vector products as
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Importantly, the second expression in (5.68) implies that the computation of (5.63)
can be absorbed into that of (5.65). The constant matrices in (5.68) are Hankel
matrices, and therefore, these products can be obtained by using the corresponding
bilinear algorithm for 2-point Hankel matrix-vector product (see Appendix A.2).
From (5.67) and (5.68) it follows that the complete set of transform components
fc

.2/

k g is given by

c
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c
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1 D �2h;

c
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4 D 2g: (5.69)

Now we are ready to derive the final MDCT coefficients fckg. According to (5.61)
we get
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1 � f � h D �f � .c.1/1 C h/: (5.70)

Revealing all the redundancies we need to evaluate only (5.62), (5.68), and (5.69)
to compute 6-point DCT-IV. The regular signal flow graph for the 6-point DCT-
IV computation, and hence, the identical fast computational structure both for the
forward and backward MDCT for the short block is shown in Fig. 5.10. 2-point
Hankel matrix-vector products given by (5.62) and (5.68) in the signal flow graph
are alternatively converted to (scaled) Givens–Jacobi rotations which can be realized
by a corresponding bilinear computational structure (see Appendix F.3). The time
domain aliased data sequence fOxng after the backward MDCT is recovered from fyng
according to (5.48) or (5.49).

It can be easily seen that the computational structure in Fig. 5.10 requires 9
multiplications, 21 additions, and 2 shifts. Then, taking into account the permu-
tation (5.36) or (5.47), the forward/backward MDCT computation in MP3 for the
short block requires 9multiplications, 27=21 additions, and 2 shifts, and this MDCT
efficient implementation achieves the minimal multiplicative complexity known up
to now.

5.4.3.6 Case N D 36 (Long Data Block)

Now consider the MDCT implementation for the long audio block represented
in the matrix-vector form as cT D C

IV

18 yT . Deriving the unnormalized

symmetric DCT-IV matrix C
IV

18 in the explicit form one can observe again a
special structure of some of its basis vectors. For frequency and time indices
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Fig. 5.10 Signal flow graph for the 6-point DCT-IV computation, ˛ D
p
3

2
and ˇ D 1

2

k; n D 0; 2; 3; 5; 6; 8; 9; 11; 12; 14; 15; 17, the corresponding row/column basis
vectors always consist of 18 different elements in magnitude whereas for
k; n D 1; 4; 7; 10; 13; 16 consist of only 6 different elements in magnitude.
Particularly, writing explicitly the matrix-vector product C

IV

18 yT we immediately
realize that the MDCT coefficients fckg for k D 1; 4; 7; 10; 13; 16 can be
obtained directly from the 6-point DCT-IV of a folded data sequence defined
as fyj � y11�j � y12Cjg; j D 0; 1; 2; 3; 4; 5; i.e., the MDCT coefficients fckg for
k D 1; 4; 7; 10; 13; 16; derived in the matrix-vector form are given by [38]
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: (5.71)

This fact implies that the 6-point fast DCT-IV computational structure for the
short block (see Fig. 5.10) can be reused for the long block to compute the
MDCT coefficients fckg for k D 1; 4; 7; 10; 13; 16. It requires 9 multiplications,
33 additions, and 2 shifts.

For remaining 12 � 18 sub-matrix of matrix C
IV

18 the approach used for the short
block is now extended to the long block. As before, the time and frequency indices
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n and k, respectively, are partitioned into two sets. The set S1 D f1; 4; 7; 10; 13; 16g
is made up of those values j for which .2j C 1/ is a multiple of 3, and the
set S2 D f0; 2; 3; 5; 6; 8; 9; 11; 12; 14; 15; 17g otherwise. If the computation of
transform coefficients fckg with respect to the time indices restricted to sets S1 and S2
is denoted by c

.1/

k and c
.2/

k , respectively, then remaining MDCT transform coefficients
fckg are obtained as

ck D c
.1/

k C c
.2/

k ; k 2 S2: (5.72)

At first, the transform components fc
.1/

k g, where k 2 S2 and n 2 S1, are given by
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(5.73)

From (5.73) it can be easily seen that the first four rows of sub-matrix are
linearly independent (corresponding to transform components c

.1/

0 ; c
.1/

2 ; c
.1/

3 ; c
.1/

5 ), and
therefore, it is sufficient to compute only the following matrix-vector product:
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(5.74)

Further, from (5.73) it also follows that the transform components c
.1/

6 ; c
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8 ; c
.1/
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.1/

11;

c
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12; c
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14; c
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15; c
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17 need not be computed separately, because after evaluating the
matrix-vector product (5.74) they are directly given by

0

BBBBB
BBBBBB
B
@

c
.1/

6

c
.1/

8

c
.1/

9

c
.1/

11

c
.1/

12

c
.1/

14

c
.1/

15

c
.1/

17

1

CCCCC
CCCCCC
C
A

D

0

BBBBB
BBBBBB
B
@

�c
.1/

5

�c
.1/

3

�c
.1/

2

�c
.1/

0

�c
.1/

0

�c
.1/

2

�c
.1/

3

�c
.1/

5

1

CCCCC
CCCCCC
C
A

: (5.75)

In order to compute (5.74), we partition the sub-matrix in (5.74) into two parts.
Defining a 2-point Hankel matrix-vector product as
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for the first partitioned sub-matrix we have
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and after proper row/column reordering and sign changes made in the remaining
symmetric 4 � 4 sub-matrix and associated input/output data vectors we have
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Equations (5.76), (5.77), and (5.78) are quite similar to (5.62), (5.64), and (5.65),
respectively, and therefore, we can use the approach applied to the short block to
compute (5.74). Similarly, defining two combined 2-point Hankel matrix-vector
products we get
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(5.79)

From (5.76), (5.77), and (5.79) it follows that the transform components
c
.1/

0 ; c
.1/

2 ; c
.1/

3 ; c
.1/

5 are given by

c
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c
.1/

5 D �f � .p C h/: (5.80)

Comparing (5.70) and (5.80) it is evident that the 6-point DCT-IV computational
structure shown in Fig. 5.10 can be again reused (but incompletely) to compute
transform components c

.1/

0 ; c
.1/

2 ; c
.1/

3 ; c
.1/

5 . The corresponding computational structure
originally called the 6-point cosine group transform (CGT6) [38, 40] is a part
of the 6-point DCT-IV computational structure. It is indicated in Fig. 5.10 by
shaded polygon, where the associated reordered input data vector is given by
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Œy13; y4; y1; y16; y10; y7�T . The computation of transform components c
.1/

0 ; c
.1/

2 ; c
.1/

3 ; c
.1/

5

requires 9 multiplications and 19 additions.
The computation of transform components fc

.2/

k g when k; n 2 S2 for the remain-
ing symmetric 12 � 12 sub-matrix is realized separately. Let s denote the element
cos � s

72
of the symmetric 12�12 sub-matrix. After its proper row/column reordering

and sign changes (actually predicted by the structure of a cyclic group [38]) and
associated input/output data vectors, the computation of transform components
fc
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k g, k; n 2 S2 can be represented in the matrix-vector form as
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(5.81)

One can observe that the sub-matrix in (5.81) is a block cyclic matrix with each
block being a 2�2Hankel matrix. Extending the similar procedure applied to (5.65)
or (5.78) , i.e., combining always two proper 2-point Hankel matrix-vector products,
and using the following trigonometric identities
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we subsequently cover the entire sub-matrix in (5.81), and after rigorous algebraic
manipulations we get the following system of algebraic equations:
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(5.82)

where R2 and Q2 are, respectively, 2 � 2 Hankel matrices given by
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u1;u2;u3; v1; v2; v3 are, respectively, 2-point vectors given by
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For the transform components fc
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k g, k 2 S2 the following relations hold:
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The system of algebraic equations (5.82) requires to evaluate eighteen 2-point
Hankel matrix-vector products. However, using the trigonometric identities

cos
�

9
D cos

4�

9
C cos

2�

9
; sin

�

9
D sin

4�

9
� sin

2�

9
;
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the system of equations (5.82) can be evaluated by combining only six 2-point
Hankel matrix-vector products which are defined as

.a/ cos 4�
9

R2 .u1 C u2/; .a0/ sin
4�

9
Q2 .v1 C v2/;

.b/ cos 2�
9

R2 .u1 � u3/; .b0/ sin
2�

9
Q2 .v1 � v3/;

.c/ cos �
9

R2 .u2 C u3/; .c0/ sin
�

9
Q2 .v2 C v3/; (5.84)

whereby u1 � u3 D .u1 C u2/ � .u2 C u3/ and v1 � v3 D .v1 C v2/ � .v2 C v3/.
Combinations of expressions in (5.84) are explicitly indicated on the right-hand
side of (5.82). Further, note on the right-hand side of (5.82), similarly the following
relations hold:

.a/ � .c/ D Œ.a/C .b/�C Œ�.b/ � .c/�;
.a0/ � .c0/ D Œ.a0/ � .b0/�C Œ.b0/ � .c0/�:

The 2-point Hankel matrix-vector products can be realized by the corresponding
bilinear algorithm (see Appendix A.2). The resulting regular fast computational
structure for the computation of transform components fc

.2/

k g, k 2 S2 is shown in
Fig. 5.11. It can be easily seen that the fast computational structure in Fig. 5.11
requires 18 multiplications and 66 additions. The remaining MDCT coefficients
fckg, k 2 S2 are obtained according to (5.72) combining results of two fast
computational structures taking into account (5.75) and (5.83).

If we take into account the permutation (5.36) or (5.47), the forward/backward
MDCT computation in MP3 for the long block requires totally 36 multiplications,
148=130 additions and 2 shifts, and this MDCT efficient implementation again
achieves the minimal multiplicative complexity known up to now. Considering
the fast analysis/synthesis MDCT filter banks described in Sect. 5.5 together
with efficient MDCT implementations [38, 40] we get perhaps the most efficient
implementations of the complete analysis/synthesis MDCT or MLT filter banks in
MP3 both in terms of the arithmetic complexity and structural simplicity.

Note 12: Open problem remains to prove that the most efficient MDCT implemen-
tations [38, 40] are optimal in terms of the multiplicative complexity.

5.4.3.7 DCT-IV-Based MDCT Implementation [29]

A universal rotation-based fast MDCT computational structure based on a novelty
fast rotation-based DCT-IV computational structure has been proposed in [27].
Specifically, for N0 D N

4
being odd, the fast rotation-based MDCT computational

structure for k odd/even is defined as [29]
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Fig. 5.11 Computational structure for the computation of transform components fc
.2/

k g, k 2 S2

c2k D
b N0

2 c�1X

nD0

h �
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4 �1�n

�
cos'k;n C

�
bn ˙ b N

4 �1�n

�
sin'k;n

i
;

c N
2 �1�2k D

b N0

2 c�1X

nD0
.�1/nC1 h�

�
an ˙ a N

4 �1�n

�
sin'k;nC

�
bn 
 b N

4 �1�n

�
cos'k;n

i
;

c N
2 �2k D

b N0

2 c�1X

nD0
.�1/n

h �
bn 
 b N

4 �1�n

�
cos'k;n C

�
an ˙ a N

4 �1�n

�
sin'k;n

i
;

c2k�1 D
b N0

2 c�1X

nD0

h
�
�

bn ˙ b N
4 �1�n

�
sin'k;n C

�
an 
 a N

4 �1�n

�
cos'k;n

i
;

'k;n D �

2N0 .2n C 1/k; k D 1; 2; : : : ;

�
N0

2

�
; (5.85)
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where b : c denotes the lower integer part of an argument, and

an D yn cos
�

2N
.2n C 1/C y N

2 �1�n sin
�

2N
.2n C 1/;

bn D � yn sin
�

2N
.2n C 1/C y N

2 �1�n cos
�

2N
.2n C 1/; n D 0; 1; : : : ;

N

4
� 1;
(5.86)

defines the block of N
4

Givens–Jacobi rotations. For k D 0 the coefficients c0 and
c N
2 �1 are given by

c0 D a N0�1
2

C
b N0

2 c�1X

nD0
.an C a N

4 �1�n/;

c N
2 �1 D .�1/ N0�1

2 C1 b N0�1
2

C
b N0

2 c�1X

nD0
.�1/nC1 .bn C b N

4 �1�n/: (5.87)

The data sequence fyng in the forward MDCT computation is given by (5.47)
whereas the time domain aliased data sequence fOxng in the backward MDCT can
be recovered from fyng according to (5.48).

5.4.3.8 Case N D 12 (Short Data Block)

For the short block we have N0 D N
4

D 3, N0�1
2

D 1 and b N0

2
c D 1. For the

forward MDCT computation the data sequence fyng given by (5.47) requires 6
additions. According to (5.86) the block of three Givens–Jacobi rotations of vectors
Œyn; y5�n�

T with rotation angles �
24
.2n C 1/; n D 0; 1; 2; requires 9 multiplications

and 9 additions. Efficient implementations of Givens–Jacobi rotations are presented
in Appendices F.2 and F.3.

Extending (5.87) for coefficients c0; c5, followed by extending (5.85) for k D 1

being odd, n D 0, and the angle '1;0 D �
6

for the pairs of coefficients c2; c1 and
c3; c4, after some algebraic manipulations we get [29]

c0 D a1 C .a0 C a2/;

c5 D b1 � .b0 C b2/;

c2 D b1 C .a0 � a2/ cos
�

6
C .b0 C b2/ sin

�

6
;

c1 D �b1 C .a0 � a2/ cos
�

6
� .b0 C b2/ sin

�

6
;

c3 D �a1 C .a0 C a2/ sin
�

6
� .b0 � b2/ cos

�

6
;

c4 D �a1 C .a0 C a2/ sin
�

6
C .b0 � b2/ cos

�

6
: (5.88)
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From (5.88) it can be easily seen that the pairs of coefficients c2; c1 and c3; c4
contain redundant algebraic expressions. Now we can straightforwardly generate an
efficient implementation of (5.85) and (5.87) for the short block in the form of the
following linear code [29]:

p0 D a0 C a2 q0 D b0 C b2
p1 D .a0 � a2/ cos �

6
q1 D b1 C q0 sin �

6

p2 D p0 sin �
6

� a1 q2 D .b0 � b2/ cos �
6

c0 D a1 C p0

c1 D p1 � q1

c2 D p1 C q1

c3 D p2 � q2

c4 D p2 C q2

c5 D b1 � q0 (5.89)

where cos �
6

D
p
3
2

and sin �
6

D 1
2
. Equation (5.89) requires 2 multiplications,

12 additions, and 2 shifts. For the short block (5.86) and (5.89) define the identical
fast computational structure for the forward/backward MDCT computation which is
represented by the signal flow graph shown in Fig. 5.12. Thus, the forward/backward
MDCT computation requires totally 11 multiplications, 27=21 additions, and 2

shifts.
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5 5
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q2

cos /6

cos /6

sin /6

sin /6

Fig. 5.12 The fast computational structure for the forward/backward MDCT computation when
N D 12
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Note 13: Investigating the fast computational structure in Fig. 5.12 for the short
block and comparing with that of [38] (see Fig. 5.10 in the previous subsection),
it can be seen that the implementation in Fig. 5.12 requires just about two mul-
tiplications more while the number of additions and shifts is the same. This fact
indicates that there exist two redundant multiplications in the implementation shown
in Fig. 5.12. Indeed, twiddle factors cos �

6
are redundant. They can be absorbed

(and similarly sin �
6

) into the following introduced block of three Givens–Jacobi
rotations [29]:

p D .�y4/ cos
�

8
� .�y1/ sin

�

8
;

q D .�y4/ sin
�

8
C .�y1/ cos

�

8
;

e D .y0 C y3/ cos
�

6
cos

�

8
� .y5 � y2/ cos

�

6
sin

�

8
;

f D .y0 C y3/ cos
�

6
sin

�

8
C .y5 � y2/ cos

�

6
cos

�

8
;

g D .y2 C y5/ sin
�

6
cos

�

8
� .y3 � y0/ sin

�

6
sin

�

8
;

h D .y2 C y5/ sin
�

6
sin

�

8
C .y3 � y0/ sin

�

6
cos

�

8
: (5.90)

Then, after the computation of Givens–Jacobi rotations defined by (5.90) taking into
account trigonometric identities, the MDCT coefficients are obtained by combining
output values (p, q, e, f, g, h) of rotated vectors as follows:

c0 D e C .g � q/;

c1 D p � 2h;

c2 D f � .p C h/;

c3 D e � .g � q/;

c4 D q C 2g;

c5 D �f � .p C h/: (5.91)

Equations (5.47)/(5.48), (5.90), and (5.91) define the modified fast computational
structure identical for the efficient forward/backward MDCT computation requiring
9 multiplications, 27=21 additions, and 2 shifts, thus achieving the same minimal
multiplicative complexity as in [38, 40]. The modified fast computational structure
is shown in Fig. 5.13. (Scaled) Givens–Jacobi rotations can be realized by a
corresponding bilinear computational structure (see Appendix F.3).
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Fig. 5.13 The modified fast computational structure for the forward/backward MDCT when
N D 12

5.4.3.9 Case N D 36 (Long Data Block)

For N D 36 we have N0 D N
4

D 9, N0�1
2

D 4, and b N0

2
c D 4. For the

forward MDCT computation the data sequence fyng given by (5.47) requires 18
additions. According to (5.86) the block of nine Givens–Jacobi rotations of vectors
Œyn; y17�n�

T with rotation angles �
72
.2n C 1/; n D 0; 1; 2; 3; 4; 5; 6; 7; 8; requires

27 multiplications and 27 additions. Efficient implementations of Givens–Jacobi
rotations are presented in Appendices F.2 and F.3.

Similarly, extending (5.87) for coefficients c0, c17, followed by extending (5.85)
for k D 1; 2; 3; 4 and n D 0; 1; 2; 3 for the pairs of coefficients c2k�1; c2k

and c17�2k; c18�2k, k D 1; 2; 3; 4, after rigorous algebraic manipulations
and using trigonometric identities we obtain the following explicit algebraic
expressions [29]

c0 D a4 C .a0 C a8/C .a1 C a7/C .a2 C a6/C .a3 C a5/;

c17 D �b4 � .b0 C b8/C .b1 C b7/ � .b2 C b6/C .b3 C b5/;

c1 D �b4 C
h
.a1 � a7/ cos

�

6

i

C
�
.a0 � a8/ sin

4�

9
C .a2 � a6/ sin

2�

9
C .a3 � a5/ sin

�

9

	

�
h
.b1 C b7/ sin

�

6

i

C
�
.b0 C b8/ cos

4�

9
C .b2 C b6/ cos

2�

9
C .b3 C b5/ cos

�

9

	
;
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c2 D b4 C
h
.a1 � a7/ cos

�

6

i

C
�
.a0 � a8/ sin

4�

9
C .a2 � a6/ sin

2�

9
C .a3 � a5/ sin

�

9

	

C
h
.b1 C b7/ sin

�

6

i

C
�
.b0 C b8/ cos

4�

9
C .b2 C b6/ cos

2�

9
C .b3 C b5/ cos

�

9

	
;

c3 D �a4 C
h
.a1 C a7/ sin

�

6

i

C
�
.a0 C a8/ cos

�

9
� .a2 C a6/ cos

4�

9
� .a3 C a5/ cos

2�

9

	

�
h
.b1 � b7/ cos

�

6

i

C
�
.b0 � b8/ sin

�

9
C .b2 � b6/ sin

4�

9
C .b3 � b5/ sin

2�

9

	
;

c4 D �a4 C
h
.a1 C a7/ sin

�

6

i

C
�
.a0 C a8/ cos

�

9
� .a2 C a6/ cos

4�

9
� .a3 C a5/ cos

2�

9

	

C
h
.b1 � b7/ cos

�

6

i

C
�
.b0 � b8/ sin

�

9
C .b2 � b6/ sin

4�

9
C .b3 � b5/ sin

2�

9

	
;

c5 D b4 C Œ.a0 � a8/ � .a2 � a6/ � .a3 � a5/� cos
�

6

�.b1 C b7/C Œ.b0 C b8/C .b2 C b6/ � .b3 C b5/� sin
�

6
;

c6 D �b4 C Œ.a0 � a8/ � .a2 � a6/ � .a3 � a5/� cos
�

6

C.b1 C b7/C Œ.b0 C b8/C .b2 C b6/ � .b3 C b5/� sin
�

6
;

c7 D a4 �
h
.a1 C a7/ sin

�

6

i

C
�
.a0 C a8/ cos

2�

9
� .a2 C a6/ cos

�

9
C .a3 C a5/ cos

4�

9

	

�
h
.b1 � b7/ cos

�

6

i
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C
�
.b0 � b8/ sin

2�

9
� .b2 � b6/ sin

�

9
� .b3 � b5/ sin

4�

9

	
;

c8 D a4 �
h
.a1 C a7/ sin

�

6

i

C
�
.a0 C a8/ cos

2�

9
� .a2 C a6/ cos

�

9
C .a3 C a5/ cos

4�

9

	

C
h
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�

6

i

C
�
.b0 � b8/ sin

2�

9
� .b2 � b6/ sin

�

9
� .b3 � b5/ sin

4�

9

	
;

c15 D a4 �
h
.a1 C a7/ sin

�

6

i

C
�
.a0 C a8/ cos

4�

9
C .a2 C a6/ cos

2�

9
� .a3 C a5/ cos

�

9

	

�
h
�.b1 � b7/ cos

�

6

i

C
�
.b0 � b8/ sin

4�

9
C .b2 � b6/ sin

2�

9
� .b3 � b5/ sin

�

9

	
;

c16 D a4 �
h
.a1 C a7/ sin

�

6

i

C
�
.a0 C a8/ cos

4�

9
C .a2 C a6/ cos

2�

9
� .a3 C a5/ cos

�

9

	

C
h
�.b1 � b7/ cos

�

6

i

C
�
.b0 � b8/ sin

4�

9
C .b2 � b6/ sin

2�

9
� .b3 � b5/ sin

�

9

	
;

c13 D b4 �
h
.a1 � a7/ cos

�

6

i

C
�
.a0 � a8/ sin

�

9
C .a2 � a6/ sin

4�

9
� .a3 � a5/ sin

2�

9

	

�
h
�.b1 C b7/ sin

�

6

i

C
�
.b0 C b8/ cos

�

9
� .b2 C b6/ cos

4�

9
C .b3 C b5/ cos

2�

9

	
;

c14 D �b4 �
h
.a1 � a7/ cos

�

6

i

C
�
.a0 � a8/ sin

�

9
C .a2 � a6/ sin

4�

9
� .a3 � a5/ sin

2�

9
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C
h
�.b1 C b7/ sin

�

6

i

C
�
.b0 C b8/ cos

�

9
� .b2 C b6/ cos

4�

9
C .b3 C b5/ cos

2�

9

	
;

c11 D �a4 � .a1 C a7/C Œ.a0 C a8/C .a2 C a6/C .a3 C a5/� sin
�

6

� Œ.b0 � b8/ � .b2 � b6/C .b3 � b5/� cos
�

6
;

c12 D �a4 � .a1 C a7/C Œ.a0 C a8/C .a2 C a6/C .a3 C a5/� sin
�

6

C Œ.b0 � b8/ � .b2 � b6/C .b3 � b5/� cos
�

6
;

c9 D �b4 �
h
.a1 � a7/ cos

�

6

i

C
�
.a0 � a8/ sin

2�

9
� .a2 � a6/ sin

�

9
C .a3 � a5/ sin

4�

9

	

�
h
.b1 C b7/ sin

�

6

i

C
�
.b0 C b8/ cos

2�

9
� .b2 C b6/ cos

�

9
� .b3 C b5/ cos

4�

9

	
;

c10 D b4 �
h
.a1 � a7/ cos

�

6

i

C
�
.a0 � a8/ sin

2�

9
� .a2 � a6/ sin

�

9
C .a3 � a5/ sin

4�

9

	

C
h
.b1 C b7/ sin

�

6

i

C
�
.b0 C b8/ cos

2�

9
� .b2 C b6/ cos

�

9
� .b3 C b5/ cos

4�

9

	
: (5.92)

From (5.92) it can be seen that each pair of coefficients c2k�1; c2k and c17�2k; c18�2k,
k D 1; 2; 3; 4, is the result of addition and subtraction of the same unique
algebraic expressions in brackets. This fact enables us to concentrate on the
efficient computation of half the coefficients. In order to reduce the multiplicative
complexity, further development is based on classical complexity theory and it is
divided into four parts.



260 5 Efficient Implementations of Cosine-Modulated Pseudo-QMF and MLT. . .

At first, consider a group of algebraic expressions extracted from (5.92) for
coefficients c15, c4, and c8, respectively, as

�
.a0 C a8/ cos

4�

9
C .a2 C a6/ cos

2�

9
� .a3 C a5/ cos

�

9

	
D .a/C .c/;

�
.a0 C a8/ cos

�

9
� .a2 C a6/ cos

4�

9
� .a3 C a5/ cos

2�

9

	
D .a/C .b/;

�
.a0 C a8/ cos

2�

9
� .a2 C a6/ cos

�

9
C .a3 C a5/ cos

4�

9

	
D .b/ � .c/:

(5.93)

The direct approach to compute (5.93) requires nine multiplications and six
additions provided the terms a0 C a8, a2 C a6, and a3 C a5 are precomputed.
The multiplicative complexity can be reduced as follows. Using the trigonometric
identity:

cos
4�

9
C cos

2�

9
D cos

�

9
;

and decomposing cos 2�
9

in the first expression of (5.93), then cos �
9

in the second
expression, and finally, cos 4�

9
in the third expression, we get

�
.a0 C a8/ cos

4�

9
C .a2 C a6/

�
cos

�

9
� cos

4�

9

�
� .a3 C a5/ cos

�

9

	

D Œ.a0 C a8/ � .a2 C a6/� cos
4�
9

C Œ.a2 C a6/ � .a3 C a5/� cos
�

9
;

�
.a0 C a8/

�
cos

4�

9
C cos

2�

9

�
� .a2 C a6/ cos

4�

9
� .a3 C a5/ cos

2�

9

	

D Œ.a0 C a8/ � .a2 C a6/� cos
4�

9
C Œ.a0 C a8/ � .a3 C a5/� cos

2�
9
;

�
.a0 C a8/ cos

2�

9
� .a2 C a6/ cos

�

9
C .a3 C a5/

�
cos

�

9
� cos

2�

9

�	

D Œ.a0 C a8/ � .a3 C a5/� cos
2�

9
� Œ.a2 C a6/ � .a3 C a5/� cos

�

9
: (5.94)

One can easily see from (5.94) that for evaluation of (5.93) we need to combine
three algebraic expressions which are highlighted by bold. Thus, introducing
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.a/ Œ.a0 C a8/ � .a2 C a6/� cos
4�

9
;

.b/ Œ.a0 C a8/ � .a3 C a5/� cos
2�

9
;

.c/ Œ.a2 C a6/ � .a3 C a5/� cos
�

9
; (5.95)

the efficient computation of (5.93) requires only three multiplications and six
additions. Combinations of expressions in (5.95) are explicitly indicated on the
right-hand side of (5.93).

Now, consider a group of algebraic expressions extracted from (5.92) for
coefficients c2, c13, and c9, respectively, as

�
.a0 � a8/ sin

4�

9
C .a2 � a6/ sin

2�

9
C .a3 C a5/ sin

�

9

	
D .a/ � .c/;

�
.a0 � a8/ sin

�

9
C .a2 � a6/ sin

4�

9
� .a3 C a5/ sin

2�

9

	
D .a/ � .b/;

�
.a0 � a8/ sin

2�

9
� .a2 � a6/ sin

�

9
C .a3 C a5/ sin

4�

9

	
D .b/ � .c/:

(5.96)

Using the trigonometric identity:

sin
4�

9
� sin

2�

9
D sin

�

9
;

and decomposing sin 2�
9

in the first expression of (5.96), then sin �
9

in the second
expression, and finally, sin 4�

9
in the third expression, we obtain the following three

algebraic expressions

.a/ Œ.a0 � a8/C .a2 � a6/� sin
4�

9
;

.b/ Œ.a0 � a8/C .a3 � a5/� sin
2�

9
;

.c/ Œ.a2 � a6/ � .a3 � a5/� sin
�

9
: (5.97)

Again, combinations of expressions in (5.97) are explicitly indicated on the right-
hand side of (5.96). Following the same procedure for the remaining group of
algebraic expressions for coefficients c2, c13, and c9, respectively, as
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�
.b0 C b8/ cos

4�

9
C .b2 C b6/ cos

2�

9
C .b3 C b5/ cos

�

9

	
D .a/C .c/;

�
.b0 C b8/ cos

�

9
� .b2 C b6/ cos

4�

9
C .b3 C b5/ cos

2�

9

	
D .a/C .b/;

�
.b0 C b8/ cos

2�

9
� .b2 C b6/ cos

�

9
� .b3 C b5/ cos

4�

9

	
D .b/ � .c/;

(5.98)

we obtain

.a/ Œ.b0 C b8/ � .b2 C b6/� cos
4�

9
;

.b/ Œ.b0 C b8/C .b3 C b5/� cos
2�

9
;

.c/ Œ.b2 C b6/C .b3 C b5/� cos
�

9
; (5.99)

and finally, for a group of algebraic expressions for coefficients c15, c4 and c8,
respectively, as

�
.b0 � b8/ sin

4�

9
C .b2 � b6/ sin

2�

9
� .b3 � b5/ cos

�

9

	
D .a/ � .c/;

�
.b0 � b8/ sin

�

9
C .b2 � b6/ sin

4�

9
C .b3 � b5/ cos

2�

9

	
D .a/ � .b/;

�
.b0 � b8/ sin

2�

9
� .b2 � b6/ sin

�

9
� .b3 � b5/ cos

4�

9

	
D .b/ � .c/;

(5.100)

we obtain

.a/ Œ.b0 � b8/C .b2 � b6/� sin
4�

9
;

.b/ Œ.b0 � b8/ � .b3 � b5/� sin
2�

9
;

.c/ Œ.b2 � b6/C .b3 � b5/� sin
�

9
: (5.101)

Now we can straightforwardly generate an efficient implementation of (5.85)
and (5.87) for the long block in the form of the following linear code [29]:
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p0 D a0 C a8 q0 D a0 � a8 u0 D b0 C b8 v0 D b0 � b8
p1 D a1 C a7 q1 D a1 � a7 u1 D b1 C b7 v1 D b1 � b7
p2 D a2 C a6 q2 D a2 � a6 u2 D b2 C b6 v2 D b2 � b6
p3 D a3 C a5 q3 D a3 � a5 u3 D b3 C b5 v3 D b3 � b5

p4 D p0 C p2 q4 D q0 � q2 u4 D u0 C u2 v4 D v0 � v2;
p5 D .p0 � p2/ cos 4�9 q5 D .q0 C q2/ sin 4�

9 u5 D .u0 � u2/ cos 4�9 v5 D .v0 C v2/ sin 4�
9

p6 D .p0 � p3/ cos 2�9 q6 D .q0 C q3/ sin 2�
9 u6 D .u0 C u3/ cos 2�9 v6 D .v0 � v3/ sin 2�

9

p7 D .p2 � p3/ cos �9 q7 D .q2 � q3/ sin �
9 u7 D .u2 C u3/ cos �9 v7 D .v2 C v3/ sin �

9

p8 D p4 C p3 q8 D q1
p
3
2 u8 D u4 � u3 v8 D v1

p
3
2

p9 D 1
2p8 q9 D .q4 � q3/

p
3
2 u9 D 1

2u8 v9 D .v4 C v3/
p
3
2

p10 D a4 � 1
2p1 u10 D b4 C 1

2u1
p11 D a4 C p1 u11 D u1 � b4
p12 D p5 C p7 q10 D q5 � q7 u12 D u5 C u7 v10 D v5 � v7
p13 D p5 C p6 q11 D q5 � q6 u13 D u5 C u6 v11 D v5 � v6
p14 D p6 � p7 q12 D q6 � q7 u14 D u6 � u7 v12 D v6 � v7

p15 D p10 C p12 q13 D q8 C q10 u15 D u10 C u12 v13 D v10 � v8
p16 D p13 � p10 q14 D q11 � q8 u16 D u13 � u10 v14 D v8 C v11

p17 D p9 � p11 q15 D q12 � q8 u17 D u11 C u9 v15 D v8 C v12

p18 D p10 C p14 u18 D u10 C u14

c0 D p8 C p11 c17 D u11 � u8

c1 D q13 � u15 c15 D p15 � v13
c2 D q13 C u15 c16 D p15 C v13

c3 D p16 � v14 c13 D q14 � u16

c4 D p16 C v14 c14 D q14 C u16

c5 D q9 � u17 c11 D p17 � v9
c6 D q9 C u17 c12 D p17 C v9

c7 D p18 � v15 c9 D q15 � u18

c8 D p18 C v15 c10 D q15 C u18 (5.102)

requiring 16 multiplications, 84 additions, and 4 shifts. For the long block (5.86)
and (5.102) define the identical fast computational structure both for the forward and
backward MDCT computation. Thus, the forward/backward MDCT computation
requires totally 43 multiplications, 129=111 additions, and 4 shifts. In contrast to
the short block, the identical fast computational structure for the forward/backward
MDCT computation when N D 36 cannot be represented by a regular signal flow
graph.
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Note 14: Therefore, the open problem remains to derive a modified 18-point fast
DCT-IV computational structure with the minimal multiplicative complexity.

Note 15: The efficient MDCT implementations in MP3 audio coding standard in the
form of linear code are particularly suitable for high-performance programmable
DSP processors.

5.4.4 DCT-IV/(Scaled) DCT-II-Based Efficient MDCT
Implementations

We recall that applying the permutation (5.36) or (5.47) to the input data sequence
fxng, the N-point forward MDCT is converted to the N

2
-point DCT-IV of fyng. Devel-

oped fast DCT-IV/DCT-II-based MDCT algorithms [34, 35, 45, 51, 54, 65, 66, 69]
and DCT-IV/scaled DCT-II (SDCT-II)-based MDCT algorithms [50, 66] utilize the
following simple fact. Since there exists a simple relation between the DCT-IV and
the DCT-II matrices [119], the N

2
-point DCT-IV may be converted to the DCT-II

(SDCT-II) of the same size at the cost of additional N
2

pre-multiplications and N
2

� 1
recursive post-additions [121, 132].

Now let us summarize basic facts for developing DCT-IV/(S)DCT-II-based
efficient MDCT implementations. Unnormalized M-point DCT-IV and DCT-II of
an input data sequence fymg, m D 0; 1; : : : ;M � 1 are, respectively, defined as [119]

c
IV

k D
M�1X

mD0
ym cos

h �
4M

.2m C 1/.2k C 1/
i
;

c
II

k D
M�1X

mD0
ym cos

�
�.2m C 1/k

2M

	
; k D 0; 1; : : : ;M � 1; (5.103)

whereas an unnormalized M-point scaled DCT-II (SDCT-II) is defined as [50]

s
II

k D �k

M�1X

mD0
ym cos

�
�.2m C 1/k

2M

	
; k D 0; 1; : : : ;M � 1; (5.104)

where

�k D
8
<

:

1; if k D 0;

2; otherwise:
(5.105)

Using trigonometric identity cos.˛ C ˇ/ D 2 cos˛ cosˇ � cos.˛ � ˇ/ to the
DCT-IV transform kernel setting ˛ D �.2mC1/k

2M and ˇ D �.2mC1/
4M , the M-point DCT-

IV can be converted to the DCT-II of the same size as [121, 132]
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c
IV

k D
M�1X

mD0

�
2 ym cos

�.2m C 1/

4M

�
cos

�
�.2m C 1/k

2M

	
�c

IV

k�1; kD0; 1; : : : ;M�1;
(5.106)

or to the SDCT-II of the same size as [50]

c
IV

k D�k

M�1X

mD0

�
ym cos

�.2m C 1/

4M

�
cos

�
�.2m C 1/k

2M

	
�c

IV

k�1; kD0; 1; : : : ;M�1;
(5.107)

where transform coefficients fc
IV

k g and fc
II

k g; .fs
II

k g/ satisfy the following conditions:

2 c
IV

0 D c
II

0 ; .c
IV

0 D s
II

0 / if k D 0;

c
IV

k C c
IV

k�1 D c
II

k ; .c
IV

k C c
IV

k�1 D s
II

k / if k > 0: (5.108)

On the other hand, it is well known that an M-point (S)DCT-II of fumg, whereby
um D 2 ym cos �.2mC1/

4M for the DCT-II and um D ym cos �.2mC1/
4M for the SDCT-II,

it can be recursively decomposed into M
2

-point (S)DCT-II (even-indexed transform
coefficients) and M

2
-point DCT-IV (odd-indexed transform coefficients) as [50, 119,

121, 132]

c
II

2k D
M
2 �1X

mD0
.um C uM�1�m/ cos

�
�.2m C 1/k

2.M=2/

	
;

c
II

2kC1 D
M
2 �1X

mD0
.um � uM�1�m/ cos

h �
2M

.2m C 1/.2k C 1/
i
; k D 0; 1; : : : ;

M

2
� 1:

(5.109)

Then, using (C.33) from Appendix C.3, the M
2

-point DCT-IV in (5.109) correspond-

ing to odd-indexed transform coefficients fc
II

2kC1g can be converted to the M
2

-point
(S)DCT-II as

c
II

2kC1 D
M
2 �1X

mD0

�
2 .um � uM�1�m/ cos

�.2m C 1/

2M

�
cos

�
�.2m C 1/k

2.M=2/

	
� c

II

2k�1;

k D 0; 1; : : : ;
M

2
� 1; (5.110)

where

2 c
II

1 D OcII

0 ; .c
II

1 D OsII

0 / if k D 0;

c
II

2kC1 C c
II

2k�1 D OcII

k ; .c
II

2kC1 C c
II

2k�1 D OsII

k / if k > 0: (5.111)
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Equations (5.109) and (5.110) show that the M-point (S)DCT-II is decomposed
into two identical M

2
-point (S)DCTs-II. Since the DCT-IV matrix is symmetric and

self-inverse, the forward/inverse DCT-IV computation via the (S)DCT-II (note that
the DCT-II matrix is not symmetric), and hence as well as the forward/backward
MDCT can be realized by an identical fast computational structure. In order to
efficiently implement the MDCT in MP3 we should specify a suitable fast DCT-
II algorithm/computational structure which is valid for N being an even integer, i.e.,
6- and 18-point DCT-II fast algorithms. In general, the even-length DCT-II can be
realized by:

• An indirect fast DCT-II algorithm which maps the DCT-II into a complex-valued
DFT of half size [6].

• Recursive filter structures for the DCT-II general lengths [113, 119, 123, 124,
141] (see references on pp. 14–15).

• Combining fast radix-q DCT-II algorithms (where q is an odd integer) with
existing mixed-radix fast DCT-II algorithms for the composite lengths 2n � q
[114, 119, 122] (see references on pp. 11–13), or with the direct fast even-length
recursive DCT-II algorithms [121, 132].

5.4.4.1 Representative DCT-IV/DCT-II-Based MDCT Implementation

Substituting M D N
2

and m D n into (5.106), (5.109), and (5.110), we get complete
formulae defining the DCT-IV/DCT-II-based efficient MDCT implementation as

c
IV

k D
N
2 �1X

nD0

�
2 yn cos

�.2n C 1/

2N

�
cos

�
�.2n C 1/k

2.N=2/

	
�c

IV

k�1; k D 0; 1; : : : ;
N

2
�1;

(5.112)
where fyng is given by (5.36) or (5.47), and

c
II

2k D
N
4 �1X

nD0
.un C u N

2 �1�n/ cos

�
�.2n C 1/k

2.N=4/

	
;

c
II

2kC1 D
N
4 �1X

nD0

�
2 .un � u N

2 �1�n/ cos
�.2n C 1/

N

�
cos

�
�.2n C 1/k

2.N=4/

	
� c

II

2k�1;

k D 0; 1; : : : ;
N

4
� 1; (5.113)

where un D 2 yn cos �.2nC1/
2N , and transform coefficients fc

IV

k g and fc
II

k g are,
respectively, given by (5.108) and (5.111). For the forward/backward MDCT
computation the even-length fast recursive DCT-II algorithm [121, 132] is used.
The regular signal flow graph identical for the computation both of the forward
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Fig. 5.14 Signal flow graph for the DCT-IV/DCT-II-based forward/backward MDCT computation
for N D 12

and backward MDCT for N D 12 is shown in Fig. 5.14. The optimized efficient
3=9-point DCT-II modules are presented in Appendix D.4. The time domain aliased
data sequence fOxng is recovered after the backward MDCT from fyng according
to (5.48).

The total computational complexity of the forward MDCT is 3N
4

multiplications
and 7N

4
�2 additions (5N

4
�2 additions for the backward MDCT) plus the arithmetic

complexity of two identical N
4

-point DCT-II modules. Thus, for the short block the
forward/backward MDCT computation in MP3 requires 11 multiplications, 27=21
additions, and 4 shifts, while for the long block the forward/backward MDCT
computation requires 43 multiplications, 129=111 additions, and 6 shifts.

Note 16: A similar efficient backward MDCT implementation in MP3 has been
reported in [55], but N

2
-point DCT-IV is converted to N

2
-point DCT-III, being inverse

of the DCT-II, which is further decomposed into two N
4

-point DCTs-III. For N D 12

its arithmetic complexity is 11multiplications, 27 additions, and 2 shifts. In the case
of N D 36, the 9-point DCT-III is again factorized into 4-point and 5-point DCTs-
III thus causing the increase in arithmetic complexity (81 multiplications and 149
additions).

5.4.4.2 DCT-IV/SDCT-II-Based MDCT Implementation [50]

Substituting M D N
2

and m D n into (5.107), (5.109), and (5.110) we get complete
formulae defining the DCT-IV/SDCT-II-based efficient MDCT implementation
[50]. Transform coefficients fc

IV

k g and fs
II

k g are, respectively, given by (5.108)
and (5.111), and un D yn cos �.2nC1/

2N . The regular signal flow graph identical for
the computation both of the forward and backward MDCT for N D 12 is shown in
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Fig. 5.15 Signal flow graph for the SDCT-IV/DCT-II-based forward/backward MDCT computa-
tion for N D 12

Fig. 5.15. Comparing Figs. 5.14 and 5.15 it can be seen that the factors 2 and 1
2

in
Fig. 5.14 are removed and 3-point DCT-II modules are replaced by 3-point SDCT-II
ones in Fig. 5.15. The optimized efficient 3=9-point SDCT-II modules are presented
in Appendix D.5. The time domain aliased data sequence fOxng is recovered after the
backward MDCT from fyng according to (5.48).

The total computational complexity of the forward MDCT is 3N
4

multiplications
and 7N

4
�2 additions (5N

4
�2 additions for the backward MDCT) plus the arithmetic

complexity of two identical N
4

-point SDCT-II modules. Thus, for the short block the
forward/backward MDCT computation in MP3 requires 11 multiplications, 27=21
additions, and 2 shifts, while for the long block the forward/backward MDCT
computation requires 43 multiplications, 129=111 additions, and 4 shifts.

Note 17: Twiddle factors 2 cos �.2nC1/
2N or cos �.2nC1/

2N applied to the data sequence
fyng in DCT-IV/(S)DCT-II-based MDCT implementations can be effectively
absorbed into the windowing operation in the complete analysis/synthesis MDCT
(MLT) filter banks.

5.4.4.3 DCT-IV/SDCT-II-Based MDCT Implementation [66]

An interesting efficient method of computing the MDCT in MP3 has been proposed
in [66]. In terms of the multiplicative complexity these DCT-IV/SDCT-II-based
MDCT implementations require exactly about one multiplication more compared
to [38, 40], specifically, 10 multiplications for the short audio block and 37

multiplications for the long audio block. They are based on a recursive sparse
block matrix factorization of DCT-II matrices of order 6 and 18 scaled by a factor



5.4 Efficient MDCT or MLT Implementations in MP3 269

of
p
2, denoted, respectively, by

p
2 C

II

6 and
p
2 C

II

18. Since the approach in
derivation of efficient MDCT implementations [66] is very valuable it merits to be
presented in a detailed and compact form both for the short and long audio blocks
separately.

At first, substituting M D N
2

and m D n into (5.106) we obtain the basic formulae
of DCT-IV/DCT-II-based efficient MDCT implementations defined as

c
IV

k D
N
2 �1X

nD0
un cos

�
�.2n C 1/k

2.N=2/

	
� c

IV

k�1;

k D 0; 1; : : : ;
N

2
� 1; (5.114)

where

un D 2 yn cos
�.2n C 1/

2N
; n D 0; 1; : : : ;

N

2
� 1: (5.115)

fyng in (5.115) is given by (5.36) or (5.47) requiring N
2

additions, and transform

coefficients fc
IV

k g are computed from fc
II

k g according to (5.108). But, using a simple
trick, specifically, introducing the scaling factor

p
2 into the sum in (5.114) and

immediately the scaling factor 1p
2

into the right-hand side of (5.115), we obtain
equivalent forms of Eqs. (5.114) and (5.115), respectively, as [66]

c
IV

k D
N
2 �1X

nD0
un

p
2 cos

�
�.2n C 1/k

2.N=2/

	
� c

IV

k�1; k D 0; 1; : : : ;
N

2
� 1; (5.116)

where

un D 2p
2

yn cos
�.2n C 1/

2N
D p

2 yn cos
�.2n C 1/

2N
;

n D 0; 1; : : : ;
N

2
� 1: (5.117)

The cosine transform kernel in (5.116) is recognized as the N
2

-point SDCT-II scaled
by the factor

p
2. The computational complexity of (5.116) is given by the complex-

ity of N
2

-point SDCT-II plus N
2

� 1 recursive additions and 1 shift (multiplication by
1
2
) according to (5.108). Equation (5.117) requires N

2
multiplications.

Note 18: It is important to note that in the original paper [66] the corresponding
Eq. (5.117) involves reciprocal values of cosines defined as 1

2
p
2 cos �.2nC1/

2N

. This fact

can cause the numerical instability of efficient MDCT algorithms, particularly for
the long block.
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Secondly, let TM be an orthogonal matrix of order M (M is an even integer) with
elements ftk;mg, k; m D 0; 1; : : : ;M � 1, whose basis vectors (rows) are symmetric
and anti-symmetric, i.e.,

t2k;m D t2k;M�1�m; t2kC1;m D � t2kC1;M�1�m; k; m D 0; 1; : : : ;
M

2
� 1:

Just C
II

M or
p
2 C

II

M is a such matrix. It is well known that the reordered matrix OTM

can be factored into the following (recursive) sparse block matrix factorization [119]

OTM D

0

B
@

A M
2

NA M
2

NB M
2

�B M
2

1

C
A D

0

B
@

A M
2

0

0 B M
2

1

C
A

0

B
@

I M
2

J M
2

J M
2

�I M
2

1

C
A ;

NA M
2

D A M
2

J M
2
;

NB M
2

D B M
2

J M
2
;

(5.118)

where I M
2

is the identity matrix and J M
2

is reverse ordered identity matrix, both of

order M
2

, and 0’s are null matrices. Block sub-matrices .A M
2

NA M
2
/ represent the

even-indexed symmetric basis vectors of TM , while block sub-matrices . NB M
2

� B M
2
/

represent the odd-indexed anti-symmetric basis vectors of TM .
In summary, (5.116), (5.117), and (5.118) provide the basis in derivation of DCT-

IV/SDCT-II-based MDCT implementations in MP3 [66]. Extracting the N
2

-point
SDCT-II from (5.116) we have

c
II

k D
N
2 �1X

nD0
un

p
2 cos

�
�.2n C 1/k

2.N=2/

	
; k D 0; 1; : : : ;

N

2
� 1; (5.119)

where fung is given by (5.117). Equation (5.119) can be represented in the equivalent
matrix-vector form as

Œc
II
�T D p

2 C
II

N
2

uT : (5.120)

Further development both for the short and long audio blocks is focused only on the
efficient factorization of SDCT-II matrices

p
2 C

II

6 and
p
2 C

II

18.

5.4.4.4 Case N D 12 (Short Data Block)

Consider the matrix-vector product (5.120) for the explicit form of
p
2 C

II

6 . Since

the reordered SDCT-II matrix
p
2 OC

II

6 can be factored into the sparse block
matrix factorization defined by (5.118), substituting (5.118) into the matrix-vector
product (5.120) we have
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0

BBB
BBBBBB
@

c
II

0

c
II

2

c
II

4

��
c

II

1

c
II

3

c
II

5

1

CCC
CCCCCC
A

D
0

@
A3 0

0 B3

1

A

0

@
I3 J3

J3 �I3

1

A

0

BBB
BBBBBB
@

u0
u1
u2
��
u3
u4
u5

1

CCC
CCCCCC
A

; (5.121)

where matrices A3 and B3 are, respectively, given by

A3 D

0

BBBB
B
@

p
2

p
2

p
2

p
2 cos �

6
0 �p

2 cos �
6

p
2 cos �

3
�p

2
p
2 cos �

3

1

CCCC
C
A
; B3 D

0

BBBB
B
@

p
2 cos 5�

12
1

p
2 cos �

12

�1 �1 1

p
2 cos �

12
�1 p

2 cos 5�
12

1

CCCC
C
A
;

where cos �
6

D
p
3
2

, cos �
3

D 1
2

in A3. Further, scaling C
II

6 by
p
2 produces a useful

trigonometric identity between two elements of B3 resulting in saving 1 nontrivial
multiplication in the corresponding block matrix-vector product. It is defined as

p
2 cos

5�

12
D p

2 cos
�

12
� 1: (5.122)

Performing sequentially block matrix-vector products on the right-hand side
of (5.121), and introducing a new vector v we get

v0 D u0 C u5; v1 D u1 C u4; v2 D u2 C u3;

v3 D u2 � u3; v4 D u1 � u4; v5 D u0 � u5; (5.123)

and

c
II

0 D p
2 .v0 C v1 C v2/;

c
II

2 D p
2 cos

�

6
.v0 � v2/;

c
II

4 D p
2 cos

�

3
.v0 C v2/ � p

2 v1;

c
II

1 D p
2 cos

�

12
.v3 C v5/ � .v3 � v4/;

c
II

3 D �.v3 C v4/C v5;

c
II

5 D p
2 cos

�

12
.v3 C v5/ � .v4 C v5/: (5.124)
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Now, from (5.124) we are able to complete an efficient computation of SDCT-
II coefficients fc

II

k g for the short audio block in the form of the following linear
code:

m1 D
p
2
2
.v0 C v2/ m2 D p

2 v1;

m3 D p
2 cos �

6
.v0 � v2/ m4 D p

2 cos �
12
.v3 C v5/;

c
II

0 D 2 m1 C m2;

c
II

1 D m4 � .v3 � v4/;

c
II

2 D m3;

c
II

3 D �.v3 C v4/C v5;

c
II

4 D m1 � m2;

c
II

5 D m4 � .v4 C v5/: (5.125)

Equation (5.123) requires 6 additions while (5.125) requires 4 multiplications, 11
additions, and 1 shift (multiplication by 2). Equations (5.123) and (5.125) define the
fast computational structure for the computation of 6-point SDCT-II which totally
requires 4 multiplications, 17 additions, and 1 shift.

Equations (5.116), (5.117), (5.123), and (5.125) define the identical fast computa-
tional structure both for the forward and backward MDCT computations. fyng given
by (5.36) or (5.47) in (5.117) requires 6 additions, (5.117) requires 6multiplications,
and (5.116) for the computation of transform coefficients fc

IV

k g from fc
II

k g according
to (5.108) requires 5 recursive additions and 1 shift. Thus, for the short audio block
the forward/backward MDCT in MP3 requires totally 10 multiplications, 28=22
additions, and 2 shifts. The time domain aliased data sequence fOxng is recovered
after the backward MDCT from fyng according to (5.48).

5.4.4.5 Case N D 36 (Long Data Block)

Now, consider the matrix-vector product (5.120) for the explicit form of
p
2 C

II

18.

Similarly, the reordered SDCT-II matrix
p
2 OC

II

18 can be factored into the sparse
block matrix factorization defined by (5.118), and substituting (5.118) into (5.120)
we have
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@
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II
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c
II

6

c
II

8

c
II
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c
II

12

c
II

14

c
II

16

��
c

II

1

c
II

3

c
II

5

c
II

7

c
II

9

c
II

11

c
II

13

c
II

15

c
II

17

1

CC
CCCCCC
CCCCC
CCCCCC
CCCCCC
CCCCC
CCCCCC
CCCCCC
A

D
0

@
A9 0

0 B9

1

A

0

@
I9 J9

J9 �I9

1

A

0

BBBB
BBBBBB
BBBBBB
BBBBB
BBBBBB
BBBBBB
BB
@

u0
u1
u2
u3
u4
u5
u6
u7
u8
��
u9
u10
u11
u12
u13
u14
u15
u16
u17

1

CCCC
CCCCCC
CCCCCC
CCCCC
CCCCCC
CCCCCC
CC
A

; (5.126)

where matrices A9 and B9 are, respectively, given by

A9Dp
2

0

B
B
B
BB
B
B
BB
B
B
BB
B
B
BB
B
B
B
BB
B
B
BB
B
B
BB
B
@

1 1 1 1 1 1 1 1 1

cos �
18 cos �6 cos 5�18 cos 7�18 0 � cos 7�18 � cos 5�18 � cos �6 � cos �

18

cos �9 cos �3 � cos 4�9 � cos 2�9 �1 � cos 2�9 � cos 4�9 cos �3 cos �9

cos �6 0 � cos �6 � cos �6 0 cos �6 cos �6 0 � cos �6

cos 2�9 � cos �3 � cos �9 cos 4�9 1 cos 4�9 � cos �9 � cos �3 cos 2�9

cos 5�18 � cos �6 � cos 7�18 cos �
18 0 � cos �

18 cos 7�18 cos �6 � cos 5�18

cos �3 �1 cos �3 cos �3 �1 cos �3 cos �3 �1 cos �3

cos 7�18 � cos �6 cos �
18 � cos 5�18 0 cos 5�18 � cos �

18 cos �6 � cos 7�18

cos 4�9 � cos �3 cos 2�9 � cos �9 1 � cos �9 cos 2�9 � cos �3 cos 4�9

1

C
C
C
CC
C
C
CC
C
C
CC
C
C
CC
C
C
C
CC
C
C
CC
C
C
CC
C
A

;
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B9 D p
2

0

B
B
B
B
B
B
B
B
B
B
B
B
BBBBBBBBBBBBBBBBBBBBBBB
@

cos 17�
36

cos 5�
12

cos 13�
36

cos 11�
36

p
2

2
cos 7�

36
cos 5�

36
cos �

12
cos �

36

� cos 5�
12

�
p
2

2
� cos �

12
� cos �

12
�

p
2

2
� cos 5�

12
cos 5�

12

p
2

2
cos �

12

cos 13�
36

cos �
12

cos 7�
36

cos 17�
36

�
p
2

2
� cos �

36
� cos 11�

36
cos 5�

12
cos 5�

36

� cos 11�
36

� cos �
12

� cos 17�
36

cos 5�
36

p
2

2
� cos 13�

36
� cos �

36
� cos 5�

12
cos 7�

36

1 1 �1 �1 1 1 �1 �1 1

� cos 7�
36

� cos 5�
12

cos �
36

� cos 13�
36

�
p
2

2
cos 5�

36
cos 17�

36
� cos �

12
cos 11�

36

cos 5�
36

� cos 5�
12

� cos 11�
36

cos �
36

�
p
2

2
� cos 17�

36
cos 7�

36
� cos �

12
cos 13�

36

� cos �
12

p
2

2
� cos 5�

12
� cos 5�

12

p
2

2
� cos �

12
cos �

12
�

p
2

2
cos 5�

12

cos �
36

� cos �
12

cos 5�
36

� cos 7�
36

p
2

2
� cos 11�

36
cos 13�

36
� cos 5�

12
cos 17�

36

1

C
C
C
C
C
C
C
C
C
C
C
C
CCCCCCCCCCCCCCCCCCCCCCC
A

;

Performing the product of the rightmost block matrix with vector uT on the right-
hand side of (5.126), and introducing a new vector v we get

v0 D u0 C u17; v1 D u1 C u16; v2 D u2 C u15;
v3 D u3 C u14; v4 D u4 C u13; v5 D u5 C u12;
v6 D u6 C u11; v7 D u7 C u10; v8 D u8 C u9;
v9 D u8 � u9; v10 D u7 � u10; v11 D u6 � u11;
v12 D u5 � u12; v13 D u4 � u13; v14 D u3 � u14;
v15 D u2 � u15; v16 D u1 � u16; v17 D u0 � u17:

(5.127)

Equation (5.127) requires 18 additions. Let us investigate the matrix A9.
Considering the central (5th) column of A9 only, with respect to (5.126)
the product of A9 with the first half of vector vT given by (5.127), i.e.,
A9 Œv0; v1; v2; v3; v4; v5; v6; v7; v8�

T results in values ˙p
2 v4 for

the even-indexed transform coefficients c
II

0 ; c
II

4 ; c
II

8 ; c
II

12; c
II

16. On the other
hand, if we perform the scalar product of the first row of A9 with vector
Œv0; v1; v2; v3; v4; v5; v6; v7; v8�

T we obtain directly the transform coefficient
c

II

0 as

c
II

0 D p
2 Œ.v0 C v8/C .v1 C v7/C .v2 C v6/C .v3 C v5/�C

p
2 v4: (5.128)

Elimination of the first row and of central (5th) column from A9 leads to an 8 � 8
square matrix whose basis vectors (rows) are again symmetric and anti-symmetric.
Consequently, the resulting reordered 8 � 8 matrix can be factored into the sparse
block matrix factorization (5.118) as
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@
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II
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II

8
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II
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��
c

II

2

c
II

6

c
II
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c
II

14

1
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CCCCCC
CCCCCC
C
A

D

0

B
BBBBBB
BBBBB
B
@

�p
2 v4p
2 v4

�p
2 v4p
2 v4

��
0

0

0

0

1

C
CCCCCC
CCCCC
C
A

C
0

@
E4 0

0 F4

1

A

0

@
I4 J4

J4 �I4

1

A

0

B
BBBBBB
BBBBB
B
@

v0
v1
v2
v3
��
v5
v6
v7
v8

1

C
CCCCCC
CCCCC
C
A

; (5.129)

where matrices E4 and F4 are, respectively, given by

E4 D

0

BBBB
BBBBB
BBBBBB
B
@

p
2 cos

�

9

p
2

2
�p

2 cos
4�

9
�p

2 cos
2�

9

p
2 cos

2�

9
�

p
2

2
�p

2 cos
�

9

p
2 cos

4�

9

p
2

2
�p

2

p
2

2

p
2

2

p
2 cos

4�

9
�

p
2

2

p
2 cos

2�

9
�p

2 cos
�

9

1

CCCC
CCCCC
CCCCCC
C
A

;

F4 D

0

BBBBBB
BBBBBB
BB
@

p
2 cos

7�

18

p
2 cos

5�

18

p
2 cos

�

6

p
2 cos

�

18

�p
2 cos

�

6
�p

2 cos
�

6
0

p
2 cos

�

6

p
2 cos

�

18
�p

2 cos
7�

18
�p

2 cos
�

6

p
2 cos

5�

18

�p
2 cos

5�

18

p
2 cos

�

18
�p

2 cos
�

6

p
2 cos

7�

18

1

CCCCCC
CCCCCC
CC
A

:

Performing the product of the rightmost block matrix with vector vT on the right-
hand side of (5.129), and introducing a new vector w we get

w0 D v0 C v8; w1 D v1 C v7; w2 D v2 C v6; w3 D v3 C v5;

w4 D v4;

w5 D v3 � v5; w6 D v2 � v6; w7 D v1 � v7; w8 D v0 � v8;
(5.130)
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Equation (5.130) requires eight additions. Now, it remains for us to evaluate the
computation of even-indexed transform coefficients fc

II

2kg, k D 0; 1; : : : ; 8, and to
evaluate the products of matrix E4 with the first half of vector wT (including the
component w4) given by (5.130), and of matrix F4 with the second half of vector
wT given by (5.130).

At first, consider the matrix-vector product E4 Œw0; w1; w2; w3�T . Taking into
account (5.128) for the transform coefficient c

II

0 , and using the trigonometric identity

p
2 cos

4�

9
D p

2

�
cos

�

9
� cos

2�

9

�
;

after some algebraic manipulations for the even-indexed transform coefficients
c

II

0 ; c
II

4 ; c
II

8 ; c
II

12; c
II

16, we get

c
II

0 D 2

p
2

2
.w0 C w2 C w3/C p

2 w1 C p
2 w4;

c
II

4 D p
2 cos

�

9
.w0 � w2/C p

2 cos
2�

9
.w2 � w3/C

p
2

2
w1 � p

2 w4;

c
II

8 D p
2 cos

2�

9
.w0 � w3/ � p

2 cos
�

9
.w2 � w3/ �

p
2

2
w1 C p

2 w4;

c
II

12 D
p
2

2
.w0 C w2 C w3/ � p

2 w1 � p
2 w4;

c
II

16 D p
2 cos

�

9
.w0 � w3/ � p

2 cos
2�

9
.w0 � w2/ �

p
2

2
w1 C p

2 w4:

(5.131)

Noting that .w0 � w3/ D .w0 � w2/ C .w2 � w3/, we can generate an efficient
computation of transform coefficients c

II

0 ; c
II

4 ; c
II

8 ; c
II

12; c
II

16, in the form of the
following linear code:

m1 D
p
2
2
.w0 C w2 C w3/;

m2 D
p
2
2

w1;

m3 D p
2 w4;

e D m2 � m3 f D 2 m2 C m3;

m4 D p
2 cos �

9
.w0 � w2/;

m5 D p
2 cos 2�

9
.w2 � w3/;

m6 D �p
2 cos 4�

9
.w0 � w3/;
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c
II

0 D 2 m1 C f ;

c
II

4 D m4 C m5 C e;

c
II

8 D m6 C m4 � e;

c
II

12 D m1 � f ;

c
II

16 D m5 � m6 � e: (5.132)

Equation (5.132) requires 6 multiplications, 15 additions, and 2 shifts (multiplica-
tions by 2).

Now, consider the matrix-vector product F4 Œw5; w6; w7; w8�T . Using the
trigonometric identity (note that cos �

18
D sin 4�

9
; cos 5�

18
D sin 2�

9
; cos 7�

18
D

sin �
9

)

p
2 cos

7�

18
D p

2

�
cos

�

18
� cos

5�

18

�
;

after some algebraic manipulations for the even-indexed transform coefficients
c

II

2 ; c
II

6 ; c
II

10; c
II

14, we get

c
II

2 D p
2 cos

�

18
.w5 C w8/ � p

2 cos
5�

18
.w5 � w6/C p

2 cos
�

6
w7;

c
II

6 D p
2 cos

�

6
.�w5 � w6 C w8/;

c
II

10 D p
2 cos

�

18
.w5 � w6/C p

2 cos
5�

18
.w6 C w8/ � p

2 cos
�

6
w7;

c
II

14 D p
2 cos

�

18
.w6 C w8/ � p

2 cos
5�

18
.w5 C w8/ � p

2 cos
�

6
w7:

(5.133)

Similarly, noting that .w5 C w8/ D .w5 � w6/ C .w6 C w8/, we can generate an
efficient computation of transform coefficients c

II

2 ; c
II

6 ; c
II

10; c
II

14, in the form of the
following linear code:

m1 D p
2 cos

�

6
w7;

m2 D p
2 cos

�

6
.�w5 � w6 C w8/;

m3 D p
2 cos

�

18
.w5 � w6/;
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m4 D p
2 cos

5�

18
.w6 C w8/;

m5 D p
2 cos

7�

18
.w5 C w8/;

c
II

2 D m5 C m4 C m1;

c
II

6 D m2;

c
II

10 D m3 C m4 � m1;

c
II

14 D m5 � m3 � m1: (5.134)

Equation (5.134) requires 5multiplications and 11 additions. Thus, the evaluation of
block matrix-vector product (5.129) for the computation of even-indexed transform
coefficients fc

II

2kg, k D 0; 1; : : : ; 8, according to (5.130), (5.132), and (5.134)
requires totally 11 multiplications, 34 additions, and 2 shifts.

Finally, for the computation of odd-indexed transform coefficients fc
II

2kC1g, k D
0; 1; : : : ; 8, consider the product of matrix B9 with the second half of vector vT

given by (5.127), i.e., B9 Œv9; v10; v11; v12; v13; v14; v15; v16; v17�T . At first, we
partition the matrix B9 into two parts. The first part consists of the 2nd, 5th, and 8th
rows of B9 corresponding, respectively, to transform coefficients c

II

3 ; c
II

9 ; c
II

15 in the
matrix-vector product. Performing sequentially scalar products of the 2nd, 5th and
8th rows of B9 with the vector Œv9; v10; v11; v12; v13; v14 v15; v16;
v17�

T , and using the trigonometric identity (5.122), after some algebraic manipula-
tions we get

c
II

3 D p
2 cos

�

12
.�v9 � v11 � v12 � v14 C v15 C v17/

C.v9 � v10 � v13 C v14 � v15 C v16/;

c
II

9 D .v9 C v10 � v11 � v12 C v13 C v14 � v15 � v16 C v17/;

c
II

15 D p
2 cos

�

12
.�v9 � v11 � v12 � v14 C v15 C v17/

C.v10 C v11 C v12 C v13 � v16 � v17/: (5.135)

From (5.134) we can generate an efficient computation of transform coefficients
c

II

3 ; c
II

9 ; c
II

15, in the form of the following linear code:

e D v10 C v13 � v16; f D v9 C v14 � v15; g D v11 C v12 � v17;
m1 D �p

2 cos �
12
.f C g/;
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c
II

3 D m1 � e C f ;

c
II

9 D e C f � g;

c
II

15 D m1 C e C g: (5.136)

Equation (5.136) requires 1 multiplication and 13 additions. Further, noting that the
2nd, 5th, and 8th columns of B9 (corresponding to the components v10; v13; v16 of
vector vT ) is composed from elements ˙p

2 cos 5�
12

, ˙1, and ˙p
2 cos �

12
, again

using the trigonometric identity (5.122), remaining matrix-vector product can be
represented as

0

BBBBB
BBBBB
@

c
II

1

c
II

5

c
II

7

c
II

11

c
II

13

c
II

17

1

CCCCC
CCCCC
A

D

0

BBBB
BBBBB
@

p
2 cos �

12
.v10 C v16/ � .v10 � v13/p

2 cos �
12
.v10 C v16/ � .v13 C v16/

�p
2 cos �

12
.v10 C v16/C .v13 C v16/

�p
2 cos �

12
.v10 C v16/C .v10 � v13/

�p
2 cos �

12
.v10 C v16/C .v10 � v13/

�p
2 cos �

12
.v10 C v16/C .v13 C v16/

1

CCCC
CCCCC
A

C p
2

0

BBBB
BBBBB
BBBBBB
BBB
@

cos 17�
36

cos 13�
36

cos 11�
36

cos 7�
36

cos 5�
36

cos �
36

cos 13�
36

cos 7�
36

cos 17�
36

� cos �
36

� cos 11�
36

cos 5�
36

� cos 11�
36

� cos 17�
36

cos 5�
36

� cos 13�
36

� cos �
36

cos 7�
36

� cos 7�
36

cos �
36

� cos 13�
36

cos 5�
36

cos 17�
36

cos 11�
36

cos 5�
36

� cos 11�
36

cos �
36

� cos 17�
36

cos 7�
36

cos 13�
36

cos �
36

cos 5�
36

� cos 7�
36

� cos 11�
36

cos 13�
36

cos 17�
36

1

CCCC
CCCCC
CCCCCC
CCC
A

0

BBBB
BBBB
@

v9

v11

v12

v14

v15

v17

1

CCCC
CCCC
A

:

(5.137)

Substituting the following trigonometric identities

p
2 cos

�

36
D cos 2�

9
C cos 5�

18
;

p
2 cos 17�

36
D cos

2�

9
� cos

5�

18
;

p
2 cos

5�

36
D cos �

9
C cos 7�

18
;

p
2 cos 13�

36
D cos

�

9
� cos

7�

18
;

p
2 cos

7�

36
D cos 4�

9
C cos �

18
;

p
2 cos 11�

36
D cos

4�

9
� cos

�

18
;
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into the matrix on right-hand side of (5.137), performing the matrix-vector product,
and then using the trigonometric identities

cos
4�

9
D cos

�

9
� cos

2�

9
; cos

7�

18
D cos

�

18
� cos

5�

18
;

after rigorous algebraic manipulations, for the odd-indexed transform coefficients
c

II

1 ; c
II

5 ; c
II

7 ; c
II

11; c
II

13; c
II

17, we finally obtain

c
II

1 D p
2 cos

�

12
.v10 C v16/ � .v10 � v13/

C cos
�

9
.v11 � v12 C v14 C v15/C cos

2�

9
.v9 C v12 � v14 C v17/

� cos
�

18
.v11 � v12 � v14 � v15/ � cos

5�

18
.v9 � v11 C v15 � v17/

c
II

5 D p
2 cos

�

12
.v10 C v16/ � .v13 C v16/

C cos
�

9
.v9 C v11 C v15 C v17/ � cos

2�

9
.v11 � v12 C v14 C v15/

� cos
�

18
.v9 � v11 C v15 � v17/C cos

5�

18
.v9 � v12 � v14 � v17/

c
II

7 D �p
2 cos

�

12
.v10 C v16/C .v13 C v16/

C cos
�

9
.v9 C v12 � v14 C v17/ � cos

2�

9
.v9 C v11 C v15 C v17/

� cos
�

18
.v9 � v12 � v14 � v17/C cos

5�

18
.v11 � v12 � v14 � v15/

c
II

11 D �p
2 cos

�

12
.v10 C v16/C .v10 � v13/

� cos
�

9
.v9 C v12 � v14 C v17/C cos

2�

9
.v9 C v11 C v15 C v17/

� cos
�

18
.v9 � v12 � v14 � v17/C cos

5�

18
.v11 � v12 � v14 � v15/

c
II

13 D �p
2 cos

�

12
.v10 C v16/C .v10 � v13/

C cos
�

9
.v9 C v11 C v15 C v17/ � cos

2�

9
.v11 � v12 C v14 C v15/

C cos
�

18
.v9 � v11 C v15 � v17/ � cos

5�

18
.v9 � v12 � v14 � v17/
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c
II

17 D �p
2 cos

�

12
.v10 C v16/C .v13 C v16/

C cos
�

9
.v11 � v12 C v14 C v15/C cos

2�

9
.v9 C v12 � v14 C v17/

C cos
�

18
.v11 � v12 � v14 � v15/C cos

5�

18
.v9 � v11 C v15 � v17/:

(5.138)

Noting that

.v9 C v11 C v15 C v17/ D .v11 � v12 C v14 C v15/C .v9 C v12 � v14 C v17/;

D Œ.v11 � v12/C .v14 C v15/�C Œ.v9 C v12/ � .v14 � v17/�;

.v9 � v12 � v14 � v17/ D .v11 � v12 � v14 � v15/C .v9 � v11 C v15 � v17/;
D Œ.v11 � v12/ � .v14 C v15/�C Œ.v9 � v12/C .v15 � v17/�;

from (5.138) we can generate an efficient computation of transform coefficients
c

II

1 ; c
II

5 ; c
II

7 ; c
II

11; c
II

13; c
II

17, in the form of the following linear code:

m2 D p
2 cos �

12
.v10 C v16/;

d D m2 � .v10 � v13/; e D m2 � .v13 C v16/;

p D v11 � v12; q D v14 C v15;

r D v9 C v12; s D v14 � v17;
a D p C q; b D r � s;
m3 D cos �

9
a;

m4 D cos 2�
9

b;
m5 D cos 4�

9
.a C b/;

f D m3 C m4; g D m5 C m4; h D m5 � m3;

r D v9 � v12; s D v15 � v17;
a D p � q; b D r C s;
m6 D cos �

18
a;

m7 D cos 5�
18

b;
m8 D � cos 7�

18
.a C b/;

i D m6 C m7; j D m8 C m6; l D m8 � m7;
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c
II

1 D d C f � i;

c
II

5 D e C g C j;

c
II

7 D �e C h C l;

c
II

11 D �d � h C l;

c
II

13 D �d C g � j;

c
II

17 D �e C f C i: (5.139)

Equation (5.139) requires 7 multiplications and 35 additions. Thus, the evaluation
of block matrix-vector product B9 Œv9; v10; v11; v12; v13; v14; v15; v16; v17�T

for the computation of odd-indexed transform coefficients fc
II

2kC1g, k D 0; 1; : : : ; 8,
according to (5.136) and (5.139) requires 8 multiplications and 48 additions.
Equations (5.127), (5.130), (5.132), (5.134), (5.136), and (5.139) define the fast
computational structure for the computation of 18-point SDCT-II which requires
totally 19 multiplications, 100 additions, and 2 shifts.

Equations (5.116), (5.117), (5.127), (5.130), (5.132), (5.134), (5.136),
and (5.139) define the identical fast computational structure both for the forward
and backward MDCT computation. fyng given by (5.36) or (5.47) in (5.117) requires
18 additions, (5.117) requires 18 multiplications, and (5.116) for the computation
of transform coefficients fc

IV

k g from fc
II

k g according to (5.108) requires 17 recursive
additions and 1 shift. Thus, for the long audio block the forward/backward MDCT
in MP3 requires totally 37 multiplications, 135=117 additions, and 3 shifts. The
time domain aliased data sequence fOxng is recovered after the backward MDCT
from fyng according to (5.48).

5.4.5 MDCT Efficient Implementations Based on the Evenly
Stacked MDCT

Another class of developed efficient MDCT implementations in MP3 [26, 39, 64]
is based on a relation between the MDCT block transform given by (5.9) and the
corresponding evenly stacked MDCT block transform [137]. Note that the forward
and backward MDCT block transforms given by (5.9) and (5.10), respectively,
represent the oddly stacked MDCT block transforms. Although the oddly stacked
MDCT [7] and evenly stacked MDCT [137] are quite different TDAC filter
banks, there exists a close relation between them, and consequently, the efficient
computation of oddly stacked MDCT can be realized via the evenly stacked MDCT
and vice versa only by simple pre- and post-processing of input and output data
sequences [26]. This fact allows to handle evenly and oddly stacked MDCT block
transforms in a unified framework.
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Let fxng, n D 0; 1; : : : ;N � 1 be an input data sequence. The forward and
backward evenly stacked MDCT block transforms are, respectively, defined as
[26, 137]

c
E

k D
r
1

N

N�1X

nD0
xn cos

�
�

N

�
2n C 1C N

2

�
k

	
; k D 0; 1; : : : ;

N

2
� 1; c

E

N
2

D 0;

(5.140)

OxE

n D
r
1

N

N
2 �1X

kD0
�k c

E

k cos

�
�

N

�
2n C 1C N

2

�
k

	
; n D 0; 1; : : : ;N � 1;

(5.141)

where �0 D 1 for k D 0, �k D 2 for k D 1; 2; : : : ; N
2

�1, and fOxE

ng is the time domain
aliased data sequence. Using trigonometric identity cos.˛ C ˇ/ D 2 cos˛ cosˇ �
cos.˛ � ˇ/ to the oddly stacked MDCT transform kernel given by (5.9), setting
˛ D �

N .2n C 1 C N
2
/k and ˇ D �

2N .2n C 1 C N
2
/, we get the relation between the

unnormalized oddly and evenly stacked MDCT block transforms defined as [26]

ck D
N�1X

nD0

�
2 xn cos

�
�

2N

�
2n C 1C N

2

�	�
cos

�
�

N

�
2n C 1C N

2

�
k

	
� ck�1;

k D 0; 1; : : : ;
N

2
� 1; (5.142)

where the transform coefficients fckg and fc
E

k g satisfy the following conditions:

2 c0 D c
E

0 ; if k D 0;

ck C ck�1 D c
E

k ; if k > 0: (5.143)

Thus, the N-point oddly stacked MDCT is converted to the evenly stacked MDCT
of the same size at the cost of additional N pre-multiplications and N � 1 recursive
post-additions. This relation is quite similar to that of between the DCT-IV and
the DCT-II given by (5.106) and (5.108). Hence, an efficient implementation of
the oddly stacked MDCT in MP3 relies on a suitable fast algorithm for the evenly
stacked MDCT computation valid for N being an even integer. Some fast algorithms
for the evenly stacked MDCT computation are presented in [118].

Now consider the efficient computation of the forward evenly stacked MDCT
given by (5.140). Applying a permutation defined as [39]

yn D

8
<̂

:̂

xn� N
4
; n D N

4
; N
4

C 1; : : : ;N � 1;

x 3N
4 Cn; n D 0; 1; : : : ; N

4
� 1;

(5.144)
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and using the symmetry property of the cosine transform kernel, (5.140) can be
rewritten as

c
E

k D
N�1X

nD0
yn cos

�
�.2n C 1/k

N

	
D

N
2 �1X

nD0
.yn C yN�1�n/ cos

�
�.2n C 1/k

2.N=2/

	
;

k D 0; 1; : : : ;
N

2
� 1: (5.145)

The transform kernel in (5.145) is recognized as an N
2

-point DCT-II. Finally,
combining (5.144) and (5.145) we get

c
E

k D
N
2 �1X

nD0
yn cos

�
�.2n C 1/k

2.N=2/

	
; k D 0; 1; : : : ;

N

2
� 1; (5.146)

where

yn D

8
<̂

:̂

x 3N
4 Cn C x 3N

4 �1�n; n D 0; 1; : : : ; N
4

� 1;

xn� N
4

C x 3N
4 �1�n; n D N

4
; N
4

C 1; : : : ; N
2

� 1:
(5.147)

Equation (5.146) implies that the N-point forward evenly stacked MDCT given
by (5.140) is converted to the N

2
-point DCT-II of the data sequence fyng defined

by (5.147). Because we need a suitable even-length fast DCT-II algorithm, further
development is simply based on (5.109)–(5.111) by substituting M D N

2
and

um D ym for m D n.
Since the transform kernel of the evenly stacked MDCT is not symmetric,

efficient computing the backward evenly stacked MDCT given by (5.141) can be
realized by reversing a signal flow graph for the forward evenly stacked MDCT
computation and performing inverse operations. Note that if backward evenly
stacked MDCT computation is only required, then MDCT coefficients in (5.141)
should be scaled by �k.

5.4.5.1 MDCT Efficient Implementation Based on the Evenly Stacked
MDCT [39, 64]

Referring to (5.146) and (5.147), substituting M D N
2

and m D n into Eqs. (5.109)
and (5.110) we have

c
II

2k D
N
4 �1X

nD0

�
un C u N

2 �1�n

�
cos

�
�.2n C 1/k

2.N=4/

	
;
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c
II

2kC1 D
N
4 �1X

nD0

�
2
�

un � u N
2 �1�n

�
cos

�.2n C 1/

N

	
cos

�
�.2n C 1/k

2.N=4/

	
� c

II

2k�1;

k D 0; 1; : : : ;
N

4
� 1; (5.148)

and the evenly stacked MDCT transform coefficients fc
E

k g are obtained from (5.111)
by setting c

E

k D c
II

k and OcE

k D OcII

k . Note that (5.113) and (5.148) are identical.
However, the data sequence fung defined as

un D

8
ˆ̂<

ˆ̂:

�2 cos �.2nC1/
2N

�
x 3N
4 Cn C x 3N

4 �1�n

�
; n D 0; 1; : : : ; N

4
� 1;

2 cos �.2nC1/
2N

�
xn� N

4
� x 3N

4 �1�n

�
; n D N

4
; N
4

C 1; : : : ; N
2

� 1;
(5.149)

is obtained by incorporating the terms 2xn cos
�
�
2N .2n C 1C N

2

�
from (5.142) for n

equal to 3N
4

C n; 3N
4

� 1� n and n � N
4

into the permutation (5.147). The final oddly
stacked MDCT coefficients fckg are obtained from (5.143). The corresponding
regular signal flow graph for the forward MDCT computation in MP3 based on the
evenly stacked MDCT for N D 12 is shown in Fig. 5.16. The backward MDCT
computation can be realized simply by reversing the signal flow graph for the
forward MDCT computation and performing inverse operations. The optimized
efficient 3=9-point DCT-II and DCT-III modules are presented in Appendix D.4.

The total computational complexity of the forward MDCT is 3N
4

multiplications
and 7N

4
�2 additions (5N

4
�2 additions for the backward MDCT) plus the arithmetic

complexity of two identical N
4

-point DCT-II/DCT-III modules. Thus, for the short
block the forward/backward MDCT computation in MP3 requires 11 multiplica-
tions, 27=21 additions, and 4 shifts, while for the long block the forward/backward
MDCT computation requires 43 multiplications, 129=111 additions, and 6 shifts.

The efficient MDCT implementation based on the evenly stacked MDCT can
be further improved in terms of the structural simplicity. Comparing the data
sequence fung given by (5.149) with that of defined in (5.112) and (5.113)
for the DCT-IV/DCT-II-based efficient MDCT implementation, one can observe
that they generate the same permuted data sequence (see Figs. 5.14 and 5.16).
This fact indicates that there exists a close relation between those two different
efficient MDCT implementations. Therefore, the signal flow graph identical for the
forward/backward MDCT efficient implementation shown in Fig. 5.14 can be also
used for the forward/backward MDCT efficient implementation based on the evenly
stacked MDCT. With respect to (5.149) and Fig. 5.14, the time domain aliased data
sequence fOxng is recovered after the backward MDCT from fyng as

Ox 3N
4 Cn D Ox 3N

4 �1�n D �yn; n D 0; 1; : : : ;
N

4
� 1;
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Fig. 5.16 Signal flow graph for the forward/backward MDCT computation for N D 12 based on
the evenly stacked MDCT

Oxn� N
4

D yn; Ox 3N
4 �1�n D �yn; n D N

4
;

N

4
C 1; : : : ;

N

2
� 1: (5.150)

5.4.5.2 MDCT Efficient Implementation Based on the Evenly Stacked
MDCT [26]

Complete formulae of a refined fast algorithm for the evenly stacked MDCT
computation are given by [26, 118]

c
E

2k D .�1/k
N
4 �1X

nD0

�
y

00

n C y
00

N
2 �1�n

�
cos

�
�.2n C 1/k

2.N=4/

	
;
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c
E

N
2 �2k�1 D .�1/ N

4 �k

N
4 �1X

nD0

�
2 zn cos

�.2n C 1/

N

	
cos

�
�.2n C 1/k

2.N=4/

	
C c

E

N
2 �2kC1;

k D 0; 1; : : : ;
N

4
� 1; (5.151)

where

yn D 2 xn cos

�
�

2N

�
2n C 1C N

2

�	
; n D 0; 1; : : : ;N � 1;

y
0

n D yn � yN�1�n; y
00

n D yn C yN�1�n; n D 0; 1; : : : ;
N

2
� 1;

zn D .�1/n
�

y
0

n C y
0

N
2 �1�n

�
; n D 0; 1; : : : ;

N

4
� 1: (5.152)

The transform coefficients fc
E

k g and fc
II

k g satisfy the following conditions:

c
E

N
2 �1 D .�1/ N

4 2 c
II

N
4 �1 if k D 0;

c
E

N
2 �2k�1 � c

E

N
2 �2kC1 D .�1/ N

4 �k c
II

N
4 �k�1 if k > 0: (5.153)

The final oddly stacked MDCT coefficients fckg are obtained from (5.143). The
corresponding regular signal flow graph for the forward MDCT computation in MP3
based on the evenly stacked MDCT for N D 12 is shown in Fig. 5.17. The backward
MDCT computation can be realized simply by reversing the signal flow graph for
the forward MDCT computation and performing inverse operations. The optimized
efficient 3=9-point DCT-II and DCT-III modules are presented in Appendix D.4.

The total computational complexity of the forward MDCT is 5N
4

multiplications
and 9N

4
�2 additions (7N

4
�2 additions for the backward MDCT) plus the arithmetic

complexity of two identical N
4

-point DCT-II/DCT-III modules. Thus, for the short
block the forward/backward MDCT computation in MP3 requires 17 multiplica-
tions, 33=27 additions, and 4 shifts, while for the long block the forward/backward
MDCT computation requires 61 multiplications, 147=129 additions, and 6 shifts.

Note 19: Twiddle factors 2 cos
�
�
2N .2n C 1C N

2

�
applied to the data sequence

fxng can be effectively absorbed into the windowing operation in the complete
analysis/synthesis MDCT (MLT) filter banks.

5.4.6 Mixed-Radix Efficient MDCT Implementations

Mixed-radix fast MDCT algorithms or fast MDCT algorithms for the composite
lengths [28, 44, 60, 67, 68] are obtained by the combination of radix-q fast
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Fig. 5.17 Signal flow graph for the forward/backward MDCT computation for N D 12 based on
the evenly stacked MDCT

algorithms (q is an odd integer) and radix-2 fast algorithms. For a particular
radix number q, the radix-q fast algorithms recursively divide the entire transform
computation into q shorter N

q -point transforms. The computation of higher-order
transforms is obtained by the recursive reuse of lower-order transforms. A general-
ized mixed-radix decomposition method for the composite lengths N D qm � 2p,
m; p > 0, is described in [114]. It enables to optimize the performance of such
algorithms in terms of the arithmetic complexity during the decomposition process
for some special lengths [114].

Note 20: Importantly, the strictly radix-q fast MDCT algorithm cannot be con-
structed, since from the MDCT definition it follows that qm is not divisible by 2.
Therefore, for the MDCT only mixed-radix fast algorithms may be constructed.

Among the proposed mixed-radix fast algorithms which can be adopted for
the efficient MDCT implementation in MP3 are three mixed-radix fast MDCT
algorithms: the first one with q D 3 obtained by the decimation in frequency (DIF)
method for the composite lengths N D 3m � 2p, m; p > 0 [28, 60, 68], the second
one obtained by the decimation in time (DIT) method for the composite lengths
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N D 3m � 2p, m > 0, p > 1 [67], and the third is a generalized mixed-radix MDCT
algorithm for composite lengths N D qm � 2p, m > 0, p > 1, where q D 3; 5; and
9 [44].

5.4.6.1 DIF Mixed-Radix Fast MDCT Algorithms [28, 60, 68]

Based on [60, 68] complete formulae of the improved and extended DIF mixed-
radix fast MDCT algorithm [28] for the composite lengths N D 3m � 2p, m; p > 0,
are given by

c3kC1 D
N
3 �1X

nD0

h
x N
3 �1�n�

�
x 2N
3 �1�n�xN�1�n

�i
cos

�
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2.N=3/

�
2nC1CN

6

�
.2kC1/

	
;

c3k D ak C bk;

c3kC2 D ak � bk; k D 0; 1; : : : ;
N

6
� 1; (5.154)

where
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�.2n C 1/
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C vn
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2
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2.N=3/
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2n C 1C N
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;

k D 0; 1; : : : ;
N

6
� 1; (5.155)

and

un D 2xn C x N
3 Cn � x 2N

3 Cn; vn D x N
3 Cn C x 2N

3 Cn; n D 0; 1; : : : ;
N

3
� 1:

(5.156)
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Thus, the forward N-point MDCT is obtained from the computation of three N
3

-point
MDCTs. The cosine transform kernel in the first sum of (5.155) is recognized as the
MDCT kernel in reverse order, whereby cos� N

3 �1�n;k D .�1/kC1 sin�n;k.
Since the short and long block sizes in MP3 are the composite lengths N D 3m�4,

m > 0, their DIF mixed-radix decompositions are, respectively, given by

N D 12 D 3 � 22 D 3 � 4;
N D 36 D 32 � 22 D 32 � 4 D 3 � .3 � 4/ D 3 � 12: (5.157)

From DIF mixed-radix decompositions (5.157) it can be seen that the 12-point
MDCT is decomposed into three 4-point MDCTs, and 36-point MDCT into three
12-point MDCTs. In general, the computational complexity of improved DIF
mixed-radix fast MDCT algorithm [28] for the composite lengths N D 3m � 2p,
m; p > 0, is associated with the value of p. For the composite lengths N D 3m � 4,
m > 0, the multiplicative complexity can be reduced as follows. For the value of
n D 1

2
.N
4

�1/ the angle is �
4

, and the expressions between square brackets in (5.155)
are:

un
1

2
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4
� vn

p
3

2
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2
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un � p

3vn

�
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un
1

2
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4
C vn

p
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2
sin
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D

p
2

4

�
un C p

3vn

�
;

requiring three multiplications and two additions (instead of four multiplications
and two additions), hence saving one multiplication. Then, the total arithmetic
complexity (MN are multiplications and AN are additions) is given by [28]

MN D 3 � M N
3

C 4N

3
� 1; AN D 3 � A N

3
C 8N

3
; with M4 D 3; A4 D 5;

where N
3

multiplications by 2 are counted as additions which can be efficiently
implemented as shift operations. The regular signal flow graph for the forward
MDCT computation for N D 12 is shown in Fig. 5.18. The backward MDCT
computation can be realized simply by reversing the signal flow graph for the
forward MDCT computation and performing inverse operations. The required
optimized efficient forward/backward 4=2-point MDCT modules are presented in
Appendix E.1. The total arithmetic complexity of the forward 12-point MDCT is
24 multiplications and 47 additions, whereby 4 multiplications by 2 are counted
as additions. Since the forward 12-point MDCT is recursively reused for the
forward 36-point MDCT, the total arithmetic complexity of the forward 36-point
MDCT computation is 119 multiplications and 237 additions, whereby similarly 24
multiplications by 2 are counted as additions. The backward MDCT computation
requires exactly N

2
less additions than that of the forward MDCT.
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Fig. 5.18 Signal flow graph for the forward MDCT computation for N D 12 (3 � 4 mixed-radix
decomposition) based on the improved DIF mixed-radix fast algorithm [28]

Note 21: When the terms
p
3vn are considered to be precomputed, then (5.155)

can be alternatively implemented by the bilinear computational structure (see
Appendix F.3) as

0
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the improved DIF mixed-radix fast algorithm [28]

however, at the cost of N
3

more additions. In the bilinear computational structure all
the multiplications are independent and can be realized concurrently (preferred in
hardware implementations).

The multiplicative complexity as well as the number of unique nontrivial angles
for the forward 12-point MDCT computation based on the improved DIF mixed-
radix fast MDCT algorithm can be further reduced by an optimization procedure
[28] which is valid only for N D 12. The corresponding regular signal flow graph
for the optimized forward 12-point MDCT computation is shown in Fig. 5.19. The
optimized computation of the forward/backward 12-point MDCT requires totally
21 multiplications and 53=47 additions, wherein 4 multiplications by 2 are counted
as additions. Since the forward/backward 12-point MDCT is recursively reused for
the forward/backward 36-point MDCT computation, the total arithmetic complexity
of the forward/backward 36-point MDCT computation is 110 multiplications and
255=237 additions, whereby 24 multiplications by 2 are counted as additions.
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5.4.6.2 DIT Mixed-Radix Fast MDCT Algorithm [67]

Complete formulae of the DIT mixed-radix fast MDCT algorithm for the composite
lengths N D 3m � 2p, m > 0; p > 1, are given by [67]

ck D ek C
�

cos
�.2k C 1/

N
fk C sin

�.2k C 1/

N
gk

	
;

c N
3 �1�k D �ek C 1

2

�
cos

�.2k C 1/

N
fk C sin

�.2k C 1/

N
gk

	

�
p
3

2

�
sin

�.2k C 1/

N
fk � cos

�.2k C 1/

N
gk

	
;

c N
3 Ck D �ek C 1

2

�
cos

�.2k C 1/

N
fk C sin

�.2k C 1/

N
gk

	

C
p
3

2

�
sin

�.2k C 1/

N
fk � cos

�.2k C 1/

N
gk

	
;

k D 0; 1; : : : ;
N

6
� 1; (5.158)

where

ek D
N
3 �1X

nD0
x3nC1 cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

fk D
N
3 �1X

nD0
.x3n C x3nC2/ cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

g N
6 �1�k D

N
3 �1X

nD0
.�1/nC N

12 .x3n � x3nC2/ cos

�
�

2.N=3/

�
2n C 1C N

6

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

6
� 1: (5.159)

Thus, the forward N-point MDCT is again obtained from the computation of three
N
3

-point MDCTs. The input data sequence fxng is reordered into three sub-sequences
fx3nC1g, fx3ng and fx3nC2g, n D 0; 1; : : : ; N

3
� 1.

Similarly, since the short and long block sizes in MP3 are the composite lengths
N D 3m � 4, m > 0, their DIT mixed-radix decompositions are the same as DIF
mixed-radix decompositions given in (5.157). Further, for the composite lengths
N D 3m � 4, m > 0, the multiplicative complexity of the DIT mixed-radix fast
MDCT algorithm can be reduced as follows. For the value of k D 1

2
.N
4

� 1/ the
angle is �

4
, and from (5.158) we have
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cos

�

4
.fk � gk/;

requiring two multiplications and two additions (instead of four multiplications
and two additions), hence saving two multiplications. Then, the total arithmetic
complexity is given by [67]

MN D 3 � M N
3

C 2N

3
� 2; AN D 3 � A N

3
C 5N

3
; with M4 D 3; A4 D 5;

plus N
6

shift operations. The regular signal flow graph for the forward MDCT
computation for N D 12 is shown in Fig. 5.20. The backward MDCT computation
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Fig. 5.20 Signal flow graph for the forward MDCT computation for N D 12 (3 � 4 mixed-radix
decomposition) based on the DIT mixed-radix fast algorithm
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can be realized simply by reversing the signal flow graph for the forward MDCT
computation and performing inverse operations. The required optimized efficient
forward/backward 4=2-point MDCT modules are presented in Appendix E.1.
The total arithmetic complexity of the forward/backward 12-point MDCT is 15
multiplications, 35=29 additions and 2 shifts. Since the forward/backward 12-point
MDCT is recursively reused for the forward/backward 36-point MDCT, the total
arithmetic complexity of the forward/backward 36-point MDCT computation is 67
multiplications, 165=147 additions, and 6 shifts.

5.4.6.3 Combined DIF Radix-2 and DIT Mixed-Radix Fast MDCT
Algorithms [44, 67]

In principle, the mixed-radix decomposition process can start with any radix
number. However, a lower count of arithmetic operations is achieved, if the
decomposition process starts with the smallest radix number, i.e., with the radix-
2 [114]. A such DIF radix-2 recursive fast MDCT algorithm for any even-lengths N
divisible by 4 has been proposed in [67].

Complete formulae of the DIF radix-2 fast recursive MDCT algorithm for the
even-lengths N divisible by 4 are given by [67]

c2k D .�1/b kC1
2 c

N
2 �1X

nD0
x
.k/

n cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

c2kC1 D .�1/b kC1
2 c

N
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x
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N
2 �1�n

cos

�
�

2.N=2/

�
2n C 1C N

4

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

4
� 1; (5.160)

where b : c is the lower integer part of argument, and the terms fx
.k/

n g, fx
.k/

N
2 �1�n

g are

given by
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n D 0; 1; : : : ;
N

2
� 1: (5.161)

The radix-2 recursive fast MDCT algorithm decomposes an N-point MDCT into
two N

2
-point MDCTs. The decomposition process is recursively repeated until

the lower-order even-length MDCTs remain (3m � 2p�1)-point MDCTs for the
composite lengths and 4-point MDCTs for the 2p-lengths. Equation (5.161) defines
the block of N

4
Givens–Jacobi rotations.

In general, for the composite lengths N D 3m � 2p, m; p > 0, the total arithmetic
complexity of the DIF radix-2 recursive fast MDCT algorithm is given by [67]

MN D 2 � M N
2

C 3N

4
; AN D 2 � A N

2
C 5N

4
:

Since the short and long block sizes in MP3 are composite lengths N D 4�3m, m >

0, being even-lengths, their corresponding radix-2 decompositions are, respectively,
given by

N D 12 D 22 � 3 D 2 � .2 � 3/ D 2 � 6;
N D 36 D 22 � 32 D 2 � .2 � 32/ D 2 � 18: (5.162)

From radix-2 decompositions (5.162) it can be seen that the 12-point MDCT is
decomposed into two 6-point MDCTs, and the 36-point MDCT into two 18-point
MDCTs. The forward 18-point MDCT can be generated from the improved DIF
mixed-radix fast MDCT algorithm given by (5.154), (5.155), and (5.156) by recur-
sively reuse three forward 6-point MDCTs (3 � 6 mixed-radix DIF decomposition
with M6 D 1, A6 D 6 plus 1 shift). Its arithmetic complexity is 21 multiplications,
66 additions, and 2 shifts. Therefore, for such efficient MDCT implementation in
MP3 we need two separate computational structures, one for the 12-point MDCT
and one for the 36-point MDCT without the possibility to reuse 12-point MDCT for
the 36-point MDCT computation. The total arithmetic complexity of such forward
36-point MDCT implementation is shown in Table 5.1.

The MDCT algorithm with radix-2 decomposition for N D 12 D 2 � 6 leads
to the regular signal flow graph for the forward 12-point MDCT computation
shown in Fig. 5.21. The backward MDCT computation can be realized simply by
reversing the signal flow graph for the forward MDCT computation and performing
inverse operations. The required optimized efficient 6=3-point MDCT modules are
presented in Appendix E.2. Efficient implementations of Givens–Jacobi rotations
are presented in Appendices F.2 and F.3. The total arithmetic complexity of
the forward/backward 12-point MDCT computation is 11 multiplications, 27=21
additions, and 2 shifts being the most efficient implementation among all mixed-
radix 12-point MDCT implementations. On the other hand, the forward/backward
36-point MDCT computation based on the MDCT algorithm with radix-2 decom-
position (N D 36 D 2 � 18) requires totally 43 multiplications, 129=111 additions,
and 4 shifts being also the most efficient implementation among all mixed-radix
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Table 5.1 Arithmetic complexity of various efficient implementations of the forward 36-point
MDCT obtained by combining radix-2 and DIF or DIT mixed-radix decompositions

Decomposition of Decomposition of lower-order The arithmetic
36-point MDCT even-length MDCT complexity Remark

Radix-2 (2� 18) DIF (3� 6) 69M+177A+6S

DIF (3� 12) DIF (3� 4) 110M+255A 24A are M by 2

DIT (3� 12) DIT (3� 4) 67M+165A+6S

DIF (3� 12) Radix-2 (2� 6) 80M+177A+6S 12A are M by 2

DIT (3� 12) Radix-2 (2� 6) 55M+141A+18S

DIF (3� 12) DIT (3� 4) 92M+201A+6S 12A are M by 2

DIT (3� 12) DIF (3� 4) 85M+219A+6S 12A are M by 2

M multiplication, A addition, S shift

36-point MDCT implementations [44]. The required optimized efficient 18=9-point
MDCT modules are presented in Appendix E.3.

In order to recursively reuse the forward and backward 12-point MDCTs for
the forward and backward 36-point MDCT, we may combine radix-2 and DIF or
DIT mixed-radix decompositions to obtain various efficient implementations of
the forward/backward 36-point MDCT. We have three different 12-point MDCT
efficient implementations (shown in Figs. 5.19, 5.20, and 5.21) and two different
36-point MDCT implementations resulting in six various 36-point MDCT efficient
implementations with different arithmetic complexities. They are summarized in
Table 5.1. The best 36-point forward/backward MDCT implementation is obtained
by combining the DIT mixed-radix decomposition for 36-point MDCT with the
radix-2 decomposition for 12-point MDCT. It requires 55 multiplications, 141=123
additions, and 18 shifts.

5.4.7 MDCT Implementations Based on Recursive/Regressive
Filter Structures

Quite different class of algorithms which can be adopted for an efficient for-
ward/backward MDCT implementation in MP3 are algorithms based on recursive
or regressive filter structures [34, 70–88]. Following the approaches originally
developed for the DCT-II and its inverse, DCT-III [113, 123, 124, 141], the
forward/backward MDCT kernels are converted to recursive (or recurrent) equations
based on:

• Recurrence formulae for Chebyshev polynomials of the second and third kinds
[141]. Typical recursive forward/backward MDCT implementations [73, 88]
follow the DCT-II-based approach [141].
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Fig. 5.21 Signal flow graph for the forward MDCT computation for N D 12 (2 � 6 mixed-radix
decomposition) based on the DIF radix-2 recursive fast algorithm

• Sinusoidal recursive formulae exploiting Goertzel recursive formula [129]. Such
typical recursive forward/backward MDCT implementations [85, 87] follow the
DCT-II-based approach [123, 124].

• Clenshaw’s recurrence formula (used for upward or downward ordering) [113].
A typical recursive forward/backward MDCT implementation [86] follows the
DCT-II-based approach [113].
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• Goertzel digital filters, where the forward/backward MDCT are expressed in the
form of discrete time domain convolution sums [74].

• Recurrence formulae for the cosine and sine functions [75].

We recall that the N-point MDCT using the permutation (5.36) or (5.47) can
optionally be converted to the DCT-IV of half size which may be subsequently con-
verted to the DCT-II of the same size at the cost of additional N

2
pre-multiplications

and N
2

�1 recursive post-additions. Then, following the above mentioned approaches
the recursive/regressive filter structures have been developed [70–72, 78, 79, 83].
The DCT-IV-based recursive MDCT filter structures are presented in [34, 76, 77,
80–82, 84]. Since the DCT-IV is self-inverse, both the forward and backward
MDCT computations are implemented by an identical recursive/regressive filter
structure. Although these recursive algorithms are not so efficient in terms of the
arithmetic complexity, they can be represented by regular recursive or regressive
filter structures which provide efficient online schemes particularly suitable for par-
allel VLSI implementations of the variable- or general-lengths forward/backward
MDCT.

In the following subsections several representative efficient MDCT implemen-
tations based on recursive or regressive filter structures are discussed in more
detail. We note that in the derivation of recursive algorithms [73, 85–87] the
definitions of the forward and backward MLT given by (5.11) and (5.12), respec-
tively, are used. We recall that N D 2M, where M is the number of transform
coefficients.

5.4.7.1 Recursive MDCT Implementation [73]

Complete formulae for the recursive computation of one MDCT coefficient ck in the
forward MDCT are defined as [73]

ck D �pN�1 cos

��
M � 1
2

�
�k

	
; �k D �.2k C 1/

2M
; k D 0; 1; : : : ;M � 1;

(5.163)
where the term pN�1 is obtained from the recursive equation given by

pn D xn C pn�1 2 cos �k � cos
��

MC1
2


�k
�

cos
��

M�1
2


�k
� xn�1 � pn�2; n D 0; 1; : : : ;N � 1;

(5.164)
with the following initial conditions: p�1 D p�2 D 0 and x�1 D xN�1. For n D 0

we get

p0 D x0 � cos
��

MC1
2


�k
�

cos
��

M�1
2


�k
� xN�1: (5.165)
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Fig. 5.22 Regressive filter structures [73] for (a) the recursive forward MDCT computation, (b)
recursive backward MDCT computation (M is even)

From (5.163), (5.164), and (5.165) it can be seen that for the computation of one
coefficient ck we need 2N multiplications and 3N � 2 additions. The corresponding
regressive filter structure for the parallel VLSI computing of the forward MDCT
is shown in Fig. 5.22a. z�1 denotes one-sample delay operator. The input data
sequence fxng is in natural order. The regressive filter structure in Fig. 5.22a for the
recursive forward MDCT computation consists of three multipliers, three adders,
and three delay operators.

On the other hand, complete formulae for the recursive computation of one time
domain aliased sample Oxn in the backward MDCT (M is even) are defined as [73]

Oxn D pM�1 .�1/nC M
2 sin

�n

2
; �n D �

M

�
n C M C 1

2

�
; n D 0; 1; : : : ;N � 1;

(5.166)
where the term pM�1 is obtained from the recursive equation given by

pk D ck C pk�1 2 cos �n C ck�1 � pk�2; k D 0; 1; : : : ;M � 1; (5.167)
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with the following initial conditions: p�1 D p�2 D 0 and c�1 D 0. For k D 0 we
get

p0 D c0: (5.168)

From (5.166), (5.167), and (5.168) it follows that for the computation of one time
domain aliased sample Oxn we need M multiplications and 3M � 3 additions. Using
the symmetry property of fOxng given by (5.14) it is sufficient to compute only N

2

time domain aliased samples. The corresponding regressive filter structure for the
parallel VLSI implementation of the backward MDCT (M is even) is shown in
Fig. 5.22b. The input data sequence fckg is in natural order. The regressive filter
structure in Fig. 5.22b for the recursive backward MDCT computation consists of
two multipliers, three adders, and three delay operators.

5.4.7.2 Recursive MDCT Implementation [85, 87]

Complete formulae for the recursive computation of one MDCT coefficient ck in the
forward MDCT are defined as [85, 87]

ck D v0 cos

��
M C 1

2

�
�k

	
� v1 cos

��
M � 1
2

�
�k

	
;

�k D �.2k C 1/

2M
; k D 0; 1; : : : ;M � 1; (5.169)

where the terms v0 and v1 are obtained from the recursive equation given by

vn D xn C vnC1 2 cos �k � vnC2; n D N � 1;N � 2; : : : ; 0; (5.170)

with the following initial condition: vN D vNC1 D 0. For n D N � 1 we get

vN�1 D xN�1: (5.171)

From (5.169), (5.170), and (5.171) it follows that for the computation of one
coefficient ck we need NC1multiplications and 2N�1 additions. The corresponding
regressive filter structure for the parallel VLSI implementation of the forward
MDCT is shown in Fig. 5.23a. The input data sequence fxng is in reverse order. The
regressive filter structure for the recursive forward MDCT computation consists of
three multipliers, three adders, and two delay operators.

Complete formulae for the recursive computation of one time domain aliased
sample Oxn in the backward MDCT are defined as [85, 87]

Oxn D .v0 � v1/ cos
�n

2
; �n D �

M

�
n C M C 1

2

�
; n D 0; 1; : : : ;N � 1;

(5.172)
where the terms v0 and v1 are obtained from the recursive equation given by
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Fig. 5.23 Regressive filter structures [87] for (a) the recursive forward MDCT computation, (b)
recursive backward MDCT computation

vk D ck C vkC1 2 cos �n � vkC2; k D M � 1;M � 2; : : : ; 0; (5.173)

with the following initial condition: vM D vMC1 D 0. For k D M � 1 we get

vM�1 D cM�1: (5.174)

From (5.172), (5.173), and (5.174) it follows that for the computation of one time
domain aliased sample Oxn we need M multiplications and 2M � 1 additions. Again,
using the symmetry property of fOxng given by (5.14) it is sufficient to compute only
N
2

time domain aliased samples. The corresponding regressive filter structure for the
parallel VLSI implementation of the backward MDCT is shown in Fig. 5.23b. The
input data sequence fckg is in reverse order. The regressive filter structure for the
recursive backward MDCT computation consists of two multipliers, three adders,
and two delay operators.
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5.4.7.3 Recursive MDCT Implementation [86]

Complete formulae for the recursive computation of one MDCT coefficient ck in the
forward MDCT (Clenshaw’s recurrence formula is used for the upward ordering) are
defined as [86]

ck D aN�2 cos

��
M C 1

2

�
�k

	
� aN�1 cos

��
M � 1
2

�
�k

	
;

�k D �.2k C 1/

2M
; k D 0; 1; : : : ;M � 1; (5.175)

where the terms aN�2 and aN�1 are obtained from the recursive equation given by

an D xn C an�1 2 cos �k � an�2; n D 0; 1; : : : ;N � 1; (5.176)

with the following initial condition: a�2 D a�1 D 0. For n D 0 we get

a0 D x0: (5.177)

From (5.175), (5.176), and (5.177) it follows that for the computation of one
coefficient ck we need NC1multiplications and 2N�1 additions. The corresponding
regressive filter structure for the parallel VLSI computing of the forward MDCT is
shown in Fig. 5.24a. The input data sequence fxng is in natural order. The regressive
filter structure for the recursive forward MDCT computation consists of three
multipliers, three adders and two delay operators. If Clenshaw’s recurrence formula
is used for the downward ordering, then the corresponding regressive filter structure
is identical to that of shown in Fig. 5.23a.

Complete formulae for the recursive computation of one time domain aliased
sample Oxn in the backward MDCT (Clenshaw’s recurrence formula is used for the
upward ordering, and M is even) are defined as [86]

Oxn D .a0 � a1/ cos
�n

2
; �n D �

M

�
n C M C 1

2

�
; n D 0; 1; : : : ;N � 1;

(5.178)
where the terms a0 and a1 are obtained from the recursive equation given by

ak D ck C akC1 2 cos �n � akC2; k D M � 1;M � 2; : : : ; 0; (5.179)

with the following initial condition: aM D aMC1 D 0. For k D M � 1 we get

aM�1 D cM�1: (5.180)

From (5.178), (5.179), and (5.180) it follows that for the computation of one time
domain aliased sample Oxn we need M multiplications and 2M � 1 additions. Again,
using the symmetry property of fOxng given by (5.14) it is sufficient to compute only
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Fig. 5.24 Regressive filter structures [86] for (a) the recursive forward MDCT computation, (b)
recursive backward MDCT computation

N
2

time domain aliased samples. The corresponding regressive filter structure for the
parallel VLSI implementation of the backward MDCT is shown in Fig. 5.24b. The
input data sequence fckg is in natural order. The regressive filter structure for the
recursive backward MDCT computation consists of two multipliers, three adders,
and two delay operators. If Clenshaw’s recurrence formula is used for the downward
ordering, then the corresponding regressive filter structure is identical to that of
shown in Fig. 5.23b.

5.4.8 Comparison of Efficient MDCT Implementations in MP3

Improvements in integrated circuit technology have enabled audio codecs to be built
on a single chip. An optimal hardware implementation of such systems on a chip
(SOC) requires detailed analysis of the trade-offs between system performance and
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hardware parameters such as the delay, memory requirements, clock cycle counts,
accuracy, power consumption, and circuit area. A simple low-cost and power-
efficient (parallel) hardware architecture for the audio encoder, and in particular,
for battery operated audio decoder is desired [110].

In general, when a fast algorithm is intended to be implemented in hard-
ware/software for real-time processing, besides arithmetic complexity the design
criteria such as I/O data access scheme (serial-in serial-out or parallel-in parallel-
out), data indexing scheme, structural simplicity (using the identical or separate fast
computational structures, common module sharing in fast computational structures
for different block sizes), regularity (complete/incomplete recursive algorithm,
butterfly-like repetitive stages and in-place computation), modularity (repetitive
using basic modules in a corresponding fast computational structure) [67], and
numerical precision and stability need to be considered for the evaluation of
algorithm performance [110]. Note that the inherent parallelism in an investigated
fast algorithm is not frequently exploited [104]. Essentially, using the identical fast
computational structures both for the forward and backward transforms as well as
sharing common modules for different block sizes significantly reduce the design
time and hardware resources of a potential MP3 audio codec.

All presented fast computational structures for the efficient implementations of
the forward/backward MDCT block transforms in MP3 are regular with butterfly-
like stages and modular. Besides the arithmetic complexity for the short and long
audio blocks, for evaluation and comparison of efficient MDCT implementations in
MP3 the following criteria are specified (acronyms are used in Table 5.2 in the last
column):

• Using complex arithmetic (CA) or real arithmetic (RA).
• Required input/internal/output permutations (IP/InP/OP) in the fast computa-

tional structure.
• Required sign changes (SC) in the fast computational structure.
• Required recursive post-addition stage(s) (RPAS) in the fast computational

structure.
• Completely recursive fast algorithm (CRFA).
• Reversing the fast forward MDCT computational structure for the backward

MDCT computation (RevFCS). This results in two separate computational
structures for the encoder and two for the decoder.

• Using the identical fast computational structures (IFCS) with simple pre- and
post-processing data sequences both for the forward and backward MDCT (one
for the short and one for the long block).

• Reusing the fast computational structure (RFCS) for the short block in the fast
computational structure for the long block.

• Unifying the fast computational structures (UFCS), i.e., integrating fast compu-
tational structures for the short and long blocks into a single one.

• Optimizing the fast computational structures (OFCS) in context of the complete
analysis/synthesis MDCT (MLT) filter banks (see Sect. 5.5 for efficient imple-
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Table 5.2 Comparison of efficient implementations of the forward/backward MDCT block trans-
forms in MP3 in terms of the arithmetic complexity and specified criteria

MDCT Forward/backward MDCT computation

algorithm N D 12 N D 36 Remarks

DFT/FFT-based [37] 20M+42/36A+2S 70M+174/156A+4S CA, OP,

(3M+3A can be saved) (3M+3A can be saved) SC, IFCS

DFT/FFT-based [42] CA, OP,

17M+39/33A+2S 67M+171/153A+4S SC, IFCS

DFT/FFT-based [43, 52] CA, InP, OP,

17M+33/27A+2S 67M+153/135A+4S SC, IFCS

DCT-II/DST-II-based RA, InP, OP,

[24] refined version of [32] 11M+39/33A+2S 43M+165/147A+4S SC, RevFCS

DCT-II/DST-II-based [56] RA, InP, OP,

11M+27/21A+2S 43M+129/111A+4S SC, RevFCS

DCT-IV-based [114] RA, IP, InP,

11M+33/27A+2S 61M+169/151A+6S IFCS, OFCS

DCT-IV-based [25] RA, IP, InP,

11M+27/21A+2S 43M+129/111A+4S OP, SC, IFCS,

OFCS

DCT-IV-based [31] RA, IP, InP,

11M+27/21A+2S 43M+129/111A+4S IFCS, OFCS

DCT-IV-based [38, 40] RA, IP, OP,

9M+27/21A+2S 36M+148/130A+2S SC, RFCS,

UFCS, OFCS

DCT-IV-based [29] 11M+27/21A+2S 43M+129/111A+4S RA, IFCS,

(9M+27/21A+2S) OFCS

DCT-IV/DCT-II-based RA, InP,
(representative) 11M+27/21A+4S 43M+129/111A+6S RPAS,IFCS

DCT-IV/SDCT-II-based [50] RA,InP,

11M+27/21A+2S 43M+129/111A+6S RPAS, IFCS

DCT-IV/SDCT-II-based [66] RA, InP,

10M+28/22A+2S 37M+135/117A+3S RPAS, IFCS

Evenly stacked RA, InP,

MDCT-based [39, 64] 11M+27/21A+4S 43M+129/111A+6S RPAS, RevFCS

Evenly stacked RA,InP,

MDCT-based [26] 17M+33/27A+4S 61M+147/129A+6S RPAS, RevFCS

Improved DIF RA,InP,OP,

mixed-radix [28] 21M+49/43A+4S 110M+231/213A+24S SC, RevFCS

DIT mixed-radix [67] RA, IP, InP,

15M+35/29A+2S 67M+165/147A+6S RevFCS

Combined radix-2 and RA, InP, SC

DIT mixed-radix [67] 11M+27/21A+2S 55M+141/123A+18S CRFA,RevFCS

M real multiplication, A real addition, S shift
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mentations of windowing&overlap and windowing&overlap&add procedures via
the block of Givens–Jacobi rotations or 2-point Hankel matrix products).

Comparison of efficient implementations of the forward and backward MDCT
(MLT) block transforms in MP3 in terms of the arithmetic complexity and specified
criteria above is summarized in Table 5.2.

The DFT/FFT-based MDCT implementations in MP3 are quite efficient in
terms of the structural simplicity. We recall that the DCT-IV-based MDCT imple-
mentations are the most efficient both in terms of the arithmetic complexity and
structural simplicity. In particular, the structure of DCT-IV algorithms for the
most efficient MDCT implementation [38, 40] allows to create a single unified
architecture to process both the short and long audio blocks. Moreover, if we
use these the most efficient MDCT algorithms in the implementation of complete
TDAC analysis/synthesis MDCT (MLT) filter banks, then they can result in the most
efficient and compact architecture of TDAC fast analysis/synthesis MDCT (MLT)
filter banks in MP3 audio encoder/decoder.

Finally, comparison of efficient implementations of the forward and backward
MDCT block transforms in MP3 based on recursive/regressive filter structures
(for one coefficient/sample computation) is summarized in Table 5.3. The last
column in Table 5.3 specifies the complexity of the corresponding regressive filter
structure. In regressive filter structures [73, 85, 87] for the forward/backward MDCT
computation the input data sequences fxng and fckg are in natural order, while in the
regressive filter structure [86] they are in reverse order. Although these recursive
algorithms are not so efficient in terms of the arithmetic complexity, regressive
structures provide an efficient scheme for the parallel VLSI implementation of the
variable-length MDCT.

Table 5.3 Comparison of efficient implementations of the forward and backward MDCT block
transforms in MP3 based on recursive/regressive filter structures (for one coefficient/sample
computation)

MDCT
algorithm

Forward/backward MDCT computation Complexity of corresponding
regressive filter structureN D 12 N D 36

Chiang and Liu
[73]

24/6M+34/15A
72/18M+106/51A

3/2 multipliers,
3 adders and 3 delay
elements

Nikolajevič and
Fettweis [86]

13/6M+23/11A 37/18M+71/35A 3/2 multipliers,
3 adders and 2 delay
elements

Nikolajevic and
Fettweis [85, 87]

13/6M+23/11A 37/18M+71/35A 3/2 multipliers,
3 adders and 2 delay
elements
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5.5 Fast Analysis/Synthesis MDCT (MLT) Filter Banks

With respect to the notation introduced in Sect. 5.2.2 we recall that the TDAC
analysis MDCT filter bank given by (5.4) in processing two adjacent overlapped
data blocks fx

.t/

n g and fx
.tC1/

n g consists of the windowing&overlap procedure and
transforming adjacent data blocks by the forward MDCT block transform (realized
by a fast computational structure). Vice versa, the TDAC synthesis MDCT filter
bank given by (5.5) in processing two adjacent blocks of transform coefficients fc

.t/

k g
and fc

.tC1/

k g consists of the backward MDCT transformation of coefficients (realized
by a fast computational structure) and the windowing&overlap&add procedure to
perfectly reconstruct the original data sequence in the overlapped part.

For a given N the implementation of complete TDAC analysis/synthesis MDCT
filter banks using the direct approach requires totally N

2
.N C 2/ multiplications

and N
2
.N � 1/ additions. Specifically, this requires for the short audio block 84

multiplications and 66 additions, while for the long audio block 684 multiplications
and 630 additions. However, if the forward/backward MDCT is implemented by
a fast DCT-IV computational structure, then the total arithmetic complexity of
the complete TDAC analysis/synthesis MDCT filter banks implementation can be
further reduced/optimized as well as their corresponding computational structures
can be represented in more compact form.

5.5.1 Fast Analysis MDCT (MLT) Filter Bank

Consider the TDAC analysis MDCT filter bank given by (5.4). The fast
TDAC analysis MDCT filter bank with incorporated windowing operation is
defined as [31]

c
.t/

k D
N
2 �1X

nD0
y
.t/

n cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1;

(5.181)
where

y
.t/

N
4 Cn

D wn x
.t/

n � w N
2 �1�n x

.t/

N
2 �1�n

;

y
.t/

N
4 �1�n

D � w N
2 Cn x

.t/

N
2 Cn

� wN�1�n x
.t/

N�1�n; n D 0; 1; : : : ;
N

4
� 1:

(5.182)

The cosine transform kernel in (5.181) is the N
2

-point forward DCT-IV of fy
.t/

n g.
fwng in (5.182) is generally a symmetric windowing function satisfying the perfect
reconstruction conditions given by (5.7). MP3 audio encoder/decoder adopted
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the sine windowing function given by (5.8). Thus, (5.181) and (5.182) for the
sine windowing function define the fast analysis MLT filter bank [5, 6]. We
note that (5.182) with the incorporated windowing operation includes also the
permutation defined by (5.47).

5.5.2 Fast Synthesis MDCT (MLT) Filter Bank

Now consider the TDAC synthesis MDCT filter bank given by (5.5). Since the DCT-
IV matrix is self-inverse, the data sequence fy

.t/

n g is recovered by the inverse N
2

-point

DCT-IV of fc
.t/

k g as [31]

y
.t/

n D
N
2 �1X

kD0
c
.t/

k cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
; n D 0; 1; : : : ;

N

2
�1: (5.183)

Equation (5.183) defines the fast TDAC synthesis MDCT filter bank, or equiva-
lently, the fast synthesis MLT filter bank with the sine windowing function [5, 6].
The time domain aliased data sequence fOx.t/n g is obtained from fy

.t/

n g by applying the
inverse permutation to (5.182) as

Ox.t/n D wn y
.t/

N
4 Cn

;

Ox.t/N
2 �1�n

D � w N
2 �1�n y

.t/

N
4 Cn

;

Ox.t/N
2 Cn

D � w N
2 Cn y

.t/

N
4 �1�n

D � w N
2 �1�n y

.t/

N
4 �1�n

;

Ox.t/N�1�n D � wN�1�n y
.t/

N
4 �1�n

D � wn y
.t/

N
4 �1�n

;

n D 0; 1; : : : ;
N

4
� 1: (5.184)

Equations (5.183) and (5.184) define the fast synthesis MDCT filter banks. The
fast DCT-IV computational structures for the efficient implementations of for-
ward/backward MDCT (MLT) block transforms in MP3 are presented in Sect. 5.4.3.

The windowing&overlap procedure in the fast TDAC analysis MDCT filter bank
and windowing&overlap&add procedure given by (5.6) in the fast TDAC synthesis
MDCT filter bank can be represented by regular cascades of Givens–Jacobi rotations
(see Appendix F.1), or alternatively, by regular cascades of 2-point Hankel matrix-
vector products (see Appendix A.2) as follows.
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5.5.3 Efficient Implementation of the Windowing&Overlap
Procedure

In the TDAC analysis MDCT filter bank between two adjacent overlapped data
blocks fx

.t/

n g and fx
.tC1/

n g the following relations hold:

x
.t/

N
2 Cn

D x
.tC1/

n ; x
.t/

N�1�n D x
.tC1/

N
2 �1�n

; n D 0; 1; : : : ;
N

4
� 1: (5.185)

Using (5.185) and the symmetry property of the sine windowing function, and
denoting cn D cos �.2nC1/

2N , sn D sin �.2nC1/
2N , Eq. (5.182) is rewritten as

y
.t/

N
4 Cn

D sn x
.t/

n � cn x
.t/

N
2 �1�n

;

y
.t/

N
4 �1�n

D � cn x
.tC1/

n � sn x
.tC1/

N
2 �1�n

; n D 0; 1; : : : ;
N

4
� 1: (5.186)

For clarity, in processing the succeeding overlapped data blocks 0; 1; : : : ; t; t C
1; t C 2; : : : ; the associated N

4
-point data sub-sequences fy

.:/

N
4 Cn

g and fy
.:/

N
4 �1�n

g are,

respectively, given by

y
.0/

N
4 Cn

D 0; (initialization step);

y
.0/

N
4 �1�n

D �cn x
.1/

n � sn x
.1/

N
2 �1�n

;

y
.1/

N
4 Cn

D sn x
.1/

n � cn x
.1/

N
2 �1�n

; fy
.1/

N
4 Cn

g is
N

4
-sample delayed data sub-block;

:::

y
.t/

N
4 Cn

D sn x
.t/

n � cn x
.t/

N
2 �1�n

;

y
.t/

N
4 �1�n

D �cn x
.tC1/

n � sn x
.tC1/

N
2 �1�n

;

y
.tC1/

N
4 Cn

D sn x
.tC1/

n � cn x
.tC1/

N
2 �1�n

; fy
.tC1/

N
4 Cn

g is
N

4
-sample delayed data sub-block;

y
.tC1/

N
4 �1�n

D �cn x
.tC2/

n � sn x
.tC2/

N
2 �1�n

;

y
.tC2/

N
4 Cn

D sn x
.tC2/

n � cn x
.tC2/

N
2 �1�n

; y
.tC2/

N
4 Cn

is
N

4
-sample delayed data sub-block;

::: (5.187)
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By introducing the N
4

-sample delay operator denoted by 	 N
4
f:g, the window-

ing&overlap procedure in the fast analysis MLT filter bank can be represented in
the matrix-vector form as

0

BB
@

y
.t/

N
4 �1�n

	 N
4

n
y
.tC1/

N
4 Cn

o

1

CC
A D �

0

@
cn sn

�sn cn

1

A

0

B
@

x
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n

x
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N
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1

C
A ; n D 0; 1; : : : ;

N

4
� 1;

(5.188)

or alternatively, as
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x
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1

C
A ; n D 0; 1; : : : ;

N

4
� 1;

(5.189)

with initial condition y
.0/

N
4 Cn

D 0. Equation (5.188) represents the block of N
4

Givens–Jacobi rotations, while (5.189) represents the block of N
4

(2-point) Hankel
matrix-vector products. Efficient implementations of Givens–Jacobi rotations and
2-point Hankel matrix-vector products are presented in Appendices F.2 and F.3.
The windowing&overlap procedure including the permutation (5.47) requires 3N

4

multiplications and 3N
4

additions. Two corresponding compact computational struc-
tures of the fast analysis MLT filter bank with incorporated windowing&overlap
procedure for the MP3 encoder are shown in Fig. 5.25a, b.

5.5.4 Efficient Implementation of the
Windowing&Overlap&Add Procedure

Given two succeeding blocks of transform coefficients fc
.t/

k g and fc
.tC1/

k g. After
transforming the transform coefficients by the backward MLT (MDCT) block
transform realized by the N

2
-point DCT-IV, using the symmetry property of sine

windowing function, and denoting cn D cos �.2nC1/
2N , sn D sin �.2nC1/

2N , from (5.184)

it follows that the time domain aliased data sequences fOx.t/n g and fOx.tC1/

n g are,
respectively, given by

Ox.t/N
2 Cn

D �cn y
.t/

N
4 �1�n

;

Ox.t/N�1�n D �sn y
.t/

N
4 �1�n

;
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Fig. 5.25 Compact computational structures of the fast analysis MLT filter bank with incorporated
windowing&overlap procedure represented by (a) Givens–Jacobi rotations, (b) 2-point Hankel
matrix-vector products
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n D sn y
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;

Ox.tC1/

N
2 �1�n

D �cn y
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; n D 0; 1; : : : ;
N

4
� 1: (5.190)

For two adjacent time domain aliased data blocks fOx.t/n g and fOx.tC1/

n g recovered by the
TDAC synthesis MDCT filter bank, the following relations hold in the overlapped
part:

x
.tC1/

n D Ox.t/N
2 Cn

C Ox.tC1/

n ; x
.tC1/

N
2 �1�n

D Ox.t/N�1�n C Ox.tC1/

N
2 �1�n

; n D 0; 1; : : : ;
N

4
� 1:

(5.191)

In order to perfectly reconstruct the original data sequence fx
.tC1/

n g in the overlapped
part, let us substitute the appropriate time domain aliased data sequences fOx.t/n g
from (5.190) into (5.191). Using N

4
-sample delay operator 	 N

4
f:g the window-

ing&overlap&add procedure in the fast synthesis MLT filter bank is expressed as

x
.tC1/

n D �cn 	 N
4
fy
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N
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g C sn y
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N
4 Cn

;
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4
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Equation (5.192) can be represented in the matrix-vector form as
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or alternatively, as
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(5.194)

Again, (5.193) represents the block of N
4

Givens–Jacobi rotations, while (5.194)
represents the block of N

4
(2-point) Hankel matrix-vector products. The win-

dowing&overlap&add procedure requires 3N
4

multiplications and 3N
4

additions.
Two corresponding compact computational structures of the fast synthesis MLT
filter bank with incorporated windowing&overlap&add procedure are shown in
Fig. 5.26a, b.

The efficient implementation of complete analysis and synthesis MLT (MDCT)
filter banks consists of the N

2
-point identical fast DCT-IV computational structure,

windowing&overlap and windowing&overlap&add procedures. If we adopt the fast
N
2

-point DCT-IV computational structures [38, 40] (requiring 9 multiplications, 21
additions plus 2 shifts for the short block, and 36multiplications, 130 additions plus
2 shifts for the long block), then the complete analysis/synthesis MLT (MDCT) filter
banks in MP3 will require totally 18 multiplications, 30 additions plus 2 shifts for
the short audio block, and 63multiplications, 157 additions plus 2 shifts for the long
audio block.

Note 22: Similar compact computational structures of the fast TDAC analysis
MDCT filter bank with incorporated windowing&overlap procedure, and of the fast
TDAC synthesis MDCT filter bank with incorporated windowing&overlap&add
procedure for arbitrary symmetric windowing function fwng can be easily con-
structed as follows.

Consider the fast TDAC analysis MDCT filter bank with incorporated win-
dowing&overlap procedure defined by (5.181) and (5.182) for arbitrary symmetric
windowing function. Using (5.185) and the symmetry property of windowing
function given by (5.7), (5.182) is rewritten as
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Fig. 5.26 Compact computational structures of the fast synthesis MLT filter bank with incorpo-
rated windowing&overlap&add procedure represented by (a) Givens–Jacobi rotations, (b) 2-point
Hankel matrix-vector products
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Following the approach described in Sect. 5.5.3 the windowing&overlap procedure
is represented in the following matrix-vector product
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with initial condition y
.0/

N
4 Cn

D 0. Equation (5.196) represents 2-point Hankel

matrix-vector product whose efficient implementation via the bilinear algorithm is
presented in Appendix A.2. The corresponding compact computational structure of
the fast TDAC analysis MDCT filter bank with incorporated windowing&overlap
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procedure for arbitrary symmetric windowing function fwng can be obtained from
Fig. 5.25b by setting constants m1; m2 and m3 to the following values

m1 D �wn C w N
2 �1�n; m2 D �w N

2 �1�n; m3 D wn � w N
2 �1�n: (5.197)

Now, consider the fast TDAC synthesis MDCT filter bank defined by (5.183)
and (5.184) with incorporated windowing&overlap&add procedure for arbitrary
symmetric windowing function. At first, deriving the time domain aliased data
sequences fOx.t/n g and fOx.tC1/

n g from (5.184), and then following the approach described
in Sect. 5.5.4, the windowing&overlap&add procedure is represented in the follow-
ing matrix-vector product
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Again, (5.198) represents the 2-point Hankel matrix-vector product. The corre-
sponding compact computational structure of the fast TDAC synthesis MDCT
filter bank with incorporated windowing&overlap&add procedure for arbitrary
symmetric windowing function fwng can be obtained from Fig. 5.26b by setting
constants m1; m2 and m3 to the following values

m1 D wn C w N
2 �1�n; m2 D �w N

2 �1�n; m3 D �wn C w N
2 �1�n: (5.199)

5.6 Summary

Various efficient implementations of the forward and backward MDCT (MLT) block
transforms in the MP3 audio coding standard developed in the time period 1990–
2012 have been described and compared, including the efficient implementation
of (pseudo-) QMF filter banks for completeness. The efficient MDCT (MLT)
implementations have been discussed in the context of complete (fast) TDAC
analysis/synthesis MDCT filter banks associated with the sine windowing function
or equivalently, of the fast analysis/synthesis MLT filter banks in the MP3 encoder
and decoder. For each efficient implementation of the forward/backward MDCT
(MLT), block transforms have been presented: complete formulae or sparse matrix
factorizations, the corresponding signal flow graph for short audio block, and the
total arithmetic complexity as well as useful comments related to improving the
arithmetic complexity and a possible structural simplification of the algorithm.
Finally, the fast TDAC analysis/synthesis MDCT filter banks or equivalently, the fast
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analysis/synthesis MLT filter banks for MP3 encoder/decoder have been discussed
in detail. Appendices provide all the necessary supporting efficient optimized short-
length computational modules and tools for completing efficient forward/backward
MDCT (MLT) implementations. Essentially, the chapter provides:

• Efficient implementations of the hybrid analysis/synthesis filter banks in MP3
audio coding standard.

• History, theoretical background of the developed fast MDCT (MLT) algorithms,
the relations among them (particularly among fast algorithms in different cate-
gories), as well as the relations among discrete sinusoidal unitary transforms of
reduced sizes.

All the presented fast MDCT (MLT) algorithms can also be readily used for
the 2n-length data blocks. We hope that the chapter will serve as an excellent
reference in designing not only MP3 audio encoder/decoder but in general, any
audio encoder/decoder as well as it will be an inspiration to further advanced
research.

Problems and Exercises

1. Investigating (5.19), (5.20), and (5.22) for the efficient implementation of back-
ward pseudo-QMF block transform given by (5.2), derive the local symmetry
properties of time domain aliased data sequence fOxng, in general, for any N
divisible by 4.

2. Implement by a computer program the fast algorithm for forward pseudo-QMF
block transform computation defined by (5.15), (5.17), and (5.18) for any N
divisible by 4. Determine its arithmetic complexity. Fast recursive DCT-III
computational structure is presented in Appendix C.1.1 or it is ready for using
in [116].

3. Implement by a computer program the fast algorithm for backward pseudo-
QMF block transform computation defined by (5.19), (5.20), and (5.22) for any
N divisible by 4. Similarly, determine its arithmetic complexity. Fast recursive
DCT-II computational structure is presented in Appendix C.1.1 or it is ready
for using in [116].

4. Implement by a computer program the complete synthesis pseudo-QMF fil-
ter bank with windowing operation for MP3 decoder including a recursive
optimized algorithm [10, 11]. Then investigate its computational complexity.
How many arithmetic operations can be saved compared to the direct approach
without applying the recursive optimized algorithm?

5. Verify the equivalence of permutations (5.36) and (5.47) for N D 8 and 16.
6. In this chapter the efficient MDCT (MLT) implementations in MP3 (including

improved and modified) based on the discrete sinusoidal unitary transforms
(DFT, DCT, and DST) are classified into the following categories:
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• DFT/FFT-based (Sect. 5.4.1),
• DCT-II/DST-II-based (Sect. 5.4.2),
• DCT-IV-based (Sect. 5.4.3),
• DCT-IV/(S)DCT-II-based (Sect. 5.4.4).

The corresponding signal flow graphs are presented for the short audio block
only (N D 12). At first, verify their correctness by computer programs. Then,
investigating each algorithm in each category for the forward/backward MDCT
(MLT) computation draw the corresponding signal flow graph for long audio
block (N D 36). Similarly, verify their correctness by computer programs.

7. Following the previous Exercise 6 repeat the same problems for efficient MDCT
(MLT) implementations in MP3 (including improved and modified):

• Based on the corresponding evenly stacked MDCT (Sect. 5.4.5),
• Mixed-radix MDCT algorithms (Sect. 5.4.6).

8. Implement by a computer program the most efficient DCT-IV-based MDCT
algorithms in terms of the minimal multiplicative complexity [38, 40] tailored to
MP3 described in Sect. 5.4.3 for the forward/backward MDCT block transforms
computation both for the short and long audio blocks.

9. For the fast DCT-IV-based MDCT algorithm [29] described in Sect. 5.4.3,
the most efficient MDCT implementation for the short audio block achieving
the minimal multiplicative complexity (nine multiplications) has been derived
(see (5.90) and (5.91) in Note 5.4.3.8). Consider (5.47), (5.86), and (5.88).
Extending the terms fang and fbng in (5.88) according to (5.86), and then using
the following trigonometric identities
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derive an alternative efficient DCT-IV-based MDCT implementation for the
short audio block achieving the minimal multiplicative complexity. Draw the
corresponding modified fast 6-point DCT-IV computational structure.
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10. As is indicated by Note 5.4.3.9 in Sect. 5.4.3 for the fast DCT-IV-based MDCT
algorithm [29], the open problem remains to derive a modified 18-point fast
DCT-IV computational structure with the minimal multiplicative complex-
ity (36 multiplications) for the long audio block. Consider (5.47), (5.86),
and (5.92). Try to derive a modified 18-point fast DCT-IV computational
structure with the minimal multiplicative complexity for the long audio block.
We note that this problem is classified as a difficult one. Hint: At first,
extract from (5.92) for the pairs of coefficients c2k�1; c2k and c17�2k; c18�2k,
k D 1; 2; 3; 4, the unique algebraic expressions containing the terms fang and
fbng, n D 1; 4 and 7 extended according to (5.86). Then follow the approach
indicated in Problem 8. For the remaining unique algebraic expressions, try to
complete the modified 18-point fast DCT-IV computational structure.

11. Implement by a computer program the DCT-IV/SDCT-II-based MDCT algo-
rithm [66] described in Sect. 5.4.4 also tailored to MP3 for the computation
of forward/backward MDCT block transforms: (a) For the short audio block
defined by (5.47), (5.48), (5.116), (5.117), (5.123), and (5.125), and (b) For the
long audio block defined by (5.47), (5.48), (5.116), (5.117), (5.127), (5.130),
(5.132), (5.134), (5.136), and (5.139).

12. Consider again the DCT-IV/SDCT-II-based MDCT algorithm [66] described in
Sect. 5.4.4 for the short audio block. Based on (5.121) the computation of odd-
indexed SDCT-II coefficients c

II

1 , c
II

3 , and c
II

5 can be derived alternatively with the
same computational complexity using the following trigonometric identities:
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3 ,
and c
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5 .
13. The most efficient MDCT implementations among all mixed-radix MDCT

algorithms are based on the combined DIF radix-2 and DIT mixed-radix fast
MDCT algorithms [44, 67] described in Sect. 5.4.6. Implement by a computer
program the 12-point MDCT (see signal flow graph shown in Fig. 5.21) and
then 36-point MDCT for MP3. The required optimized efficient 6=3-point
MDCT modules are presented in Appendix E.2 while the optimized efficient
18=9-point MDCT modules are presented in Appendix E.3.

14. By computer programs verify the correctness of forward and backward MDCT
implementations based on recursive/regressive filter structures described in
Sect. 5.4.7.

15. For MP3 encoder implement by a computer program compact DCT-IV com-
putational structures of the fast analysis MLT filter bank with incorporated
windowing&overlap procedure represented by Givens–Jacobi rotations (see
Fig. 5.25a), and then represented by 2-point Hankel matrix-vector products (see
Fig. 5.25b).

16. For MP3 decoder implement by a computer program compact DCT-IV com-
putational structures of the fast synthesis MLT filter bank with incorporated
windowing&overlap&add procedure represented by Givens–Jacobi rotations
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(see Fig. 5.26a), and then represented by 2-point Hankel matrix-vector products
(see Fig. 5.26b).

17. For any MDCT-based audio encoder based on (5.196) and (5.197), implement
by a computer program compact DCT-IV computational structure of the fast
analysis MDCT filter bank with incorporated windowing&overlap procedure
represented by 2-point Hankel matrix-vector products for arbitrary symmetric
windowing function.

18. Similarly, for any MDCT-based audio decoder based on (5.198) and (5.199),
implement by a computer program compact DCT-IV computational struc-
ture of the fast synthesis MDCT filter bank with incorporated window-
ing&overlap&add procedure represented by 2-point Hankel matrix-vector
products for arbitrary symmetric windowing function.
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Chapter 6
Perfect Reconstruction Cosine/Sine-Modulated
Filter Banks in the Dolby Digital (Plus) AC-3
Audio Coding Standards

6.1 Introduction

The Dolby Digital (AC-3) [1, 2, 5, 6, 8, 9, 12, 16] and the Dolby Digital Plus or
Enhanced AC-3 (E-AC-3) [4, 7, 10, 11] audio coding standards developed by the
Dolby Laboratories are currently the key enabling technologies for high-quality
compression of digital audio signals. The AC-3 is a multichannel (5.1 channels)
transform-based audio coding system that uses perceptual coding principles to
provide high-quality data rate reduction for the transmission of audio signals. First
released in 1991 for cinema industry needs and standardized in 1995, the AC-3 went
through many stages of refinements, improvements, and fine-tuning. The resulting
algorithm is currently in use in a number of standard applications in consumer
electronics including the North American HDTV standard, DVD-Video standard,
Blu-ray Disc standard, and Digital Video Broadcasting (DVB) standard. The E-
AC-3 system released in 2005 [4, 7, 10, 11] extends the capabilities of the existing
AC-3 system to better meet the needs of the emerging broadcast and multimedia
applications. The E-AC-3 is essentially the advanced version of AC-3 providing
increased coding efficiency, flexibility and wider range of supported bit-rates,
expanded channel formats (up to 15.1 channels), and reproduction circumstances
while preserving a high level of compatibility and interoperability with existing AC-
3 system [4, 7, 10]. An excellent overview of the current AC-3 and E-AC-3 codecs
is presented in [10].

For the time/frequency transformation of an audio data block, and vice versa, the
AC-3 and E-AC-3 have adopted the modified discrete cosine transform (MDCT) as
a perfect reconstruction cosine-modulated filter bank based on the concept of time
domain aliasing cancellation [14]. Besides the MDCT, the AC-3 defines additional
two variants of cosine-modulated filter banks called the first and second short
transforms. They are actually real-valued polyphase filter banks, where all channels
are shifted versions of the same prototype low-pass filter, and these filter banks are
derived directly from the type-IV discrete cosine/sine transform (DCT-IV/DST-IV)
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kernels [24]. Moreover, the current AC-3 and E-AC-3 codecs for better spectral
estimation and for phase angle adjustment have adopted the modified discrete sine
transform (MDST) which together with the MDCT forms a complex filter bank.
Specifically, the MDCT as the real part and MDST as the imaginary part compose
a complex filter bank called the modulated complex lapped transform (MCLT)
[39, 44, 48].

The chapter is devoted to the perfect reconstruction cosine/sine-modulated filter
banks used in the Dolby AC-3 and E-AC-3 audio coding standards. Specifically, the
chapter presents:

• Definitions of the analysis/synthesis AC-3 filter banks including the customized
Kaiser-Bessel Derived windowing function, and general symmetry properties of
AC-3 transforms both in the time and frequency domains.

• Efficient unified implementations of AC-3 transforms with corresponding signal
flow graphs, and comparison of efficient unified implementations in terms of
computational complexity and structural simplicity.

• Matrix representations of windowing procedure, AC-3 filter banks, their proper-
ties and useful relations among the AC-3 transform (sub-)matrices.

• Relations between the frequency coefficients and the time domain aliasing data
sequences of AC-3 transforms.

• Fast algorithm for conversion of frequency coefficients of AC-3 transforms
directly in the frequency domain for efficient E-AC-3 to AC-3 bit stream
conversion and AC-3 to E-AC-3 bit stream transcoding. The fast conversion algo-
rithm is compared with standard conversion methods in terms of computational
complexity and memory requirements.

• Conversion methods of the MDCT to MDST frequency coefficients (exact and
approximate), or equivalently the methods for construction of complex MCLT
filter bank directly in the frequency domain. Exact and approximate conversion
methods are compared in terms of computational complexity, structural simplic-
ity, and memory requirements.

We note that the chapter summarizes many new research results achieved
in the last few years related to the perfect reconstruction cosine/sine-modulated
filter banks used in the Dolby AC-3 and E-AC-3 codecs. More specifically, it
presents more efficient solutions of several open problems originally formulated
in [4, 10, 37]. In general, some efficient methods can be used in any MDCT-based
audio coding scheme/standard/system.

6.2 Definitions of AC-3 Filter Banks

The AC-3 defines analysis and synthesis filter banks with a variable parameter ˛,
respectively, as [6]
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�1 for the first short transform .N D 256/

0 for the long transform .N D 512/

C1 for the second short transform .N D 256/:

fxng; n D 0; 1; : : : ;N � 1 represents the input audio data sequence which is
windowed by a symmetrical customized Kaiser-Bessel derived (KBD) windowing
function before its transformation [2, 9, 11–13, 15]. fOx.˛/n g; n D 0; 1; : : : ;N �
1, represents the recovered time domain aliased data sequence which does not
correspond to the original data sequence fxng.

Two algebraic terms of cosine transform kernels in (6.1) and (6.2) can be
combined, and AC-3 analysis and synthesis filter banks, respectively, may be
rewritten in more simplified equivalent forms as

c
.˛/

k D � 2

N

N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2
.1C ˛/

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; (6.3)

Ox.˛/n D �
N
2 �1X

kD0
c
.˛/

k cos

�
�

2N

�
2n C 1C N

2
.1C ˛/

�
.2k C 1/

	
;

n D 0; 1; : : : ;N � 1: (6.4)

It is important to note that the normalization factor 2
N in the analysis AC-3 filter

bank (6.1) or (6.3) with incorporated windowing operation should be reduced to 4
N

to maintain the perfect reconstruction conditions in the overlapped part when the
windowing and overlap-add procedure is applied. With respect to the definitions of
AC-3 transforms it is assumed through the chapter that M D N

2
denotes the size of
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two short transforms and N is an even integer divisible by 4. Further, for simplicity,
the scaling factor � 2

N , (� 4
N ) in (6.1) and (6.3), and the sign “–” in (6.2) and (6.4)

are omitted.

6.2.1 Parametrized KBD Windowing Function

The parametrized KBD windowing function has been constructed by a numeri-
cal normalization procedure proposed by the Dolby Laboratories [2, 9, 11, 15].
This numerical normalization procedure generally guarantees that any customized
symmetric windowing function satisfying perfect reconstruction conditions can
be derived from an initial symmetric nonnegative kernel function of the length
N
2

C 1. The KBD windowing function fwng which is identical both for the analysis
and synthesis AC-3 filter banks with 50% overlapping is obtained by applying a
transformation of the form [2, 15]

wn D
vuut
Pn

jD0 vj

P N
2

jD0 vj

; n D 0; 1; : : : ;
N

2
� 1; (6.5)

where fvjg represents an appropriately chosen symmetric nonnegative kernel func-
tion. In designing of the KBD windowing function, the Dolby Laboratories adopted
the parametrized symmetric Kaiser-Bessel function with a variable parameter ˇ
defined as
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where I0.x/ is the modified zeroth order Bessel function given by
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Since the KBD windowing function is symmetric, i.e., wN�1�n D wn for n D
0; 1; : : : ; N

2
�1, only half of its values is sufficient to be stored. The KBD windowing

function in the AC-3 and E-AC-3 is used with parameter ˇ D 5. Plot of the KBD
windowing function generated by the procedure (6.5) for N D 512 and ˇ D 5 is
shown in Fig. 6.1. For the shape comparison, plot of the sine windowing function is
also included.

We note that the KBD windowing function is also employed in the MPEG-2/4
AAC [2, 3], specifically, with ˇ D 4 for steady-state conditions (long windowing
function), and with ˇ D 6 for transients (short windowing function).
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Fig. 6.1 Plot of the KBD windowing function for N D 512 and ˇ D 5. For comparison plot of
the sine windowing function is also shown

6.2.2 How the AC-3 and E-AC-3 Systems Transform Audio
Data Blocks

Compared to the MPEG-2/4 AAC approach [2, 3], the AC-3 [1, 2, 5, 6, 8, 9, 12, 16]
maintains the perfect reconstruction of filter banks while avoiding transitional
blocks. In the AC-3 transform block-size switching procedure, a long block of
N D 512 samples or two short blocks of M D 256 samples is employed (with
the time resolution of 10:7 or 5:3 ms, respectively, for the sampling frequency of
48 kHz). The windowed long block is transformed when the spectrum remains
stationary, or varies only slowly with time resulting in 256 unique nonzero frequency
coefficients. During transients, when the signal changes rapidly in time, shorter
blocks are constructed to reduce pre-echo effects by taking windowed long 512-
sample block and splitting it into two segments each containing 256 samples. The
first half of long block is transformed separately from the second half of that
block. Each half-block produces 128 unique nonzero frequency coefficients. This
is identical to the number of frequency coefficients produced by a single long block,
but with two times improved temporal resolution. Frequency coefficients from those
two half-blocks are interleaved together on a coefficient-by-coefficient basis to form
a single audio block of 256 coefficients being processed identically. The diagram of
time-to-frequency transformation of audio data blocks and vice versa in the AC-3
encoder/decoder is shown in Fig. 6.2.

In the current architecture of AC-3 [4, 10, 11] blocks of frequency coefficients
are grouped into continuous frames. The AC-3 frame length is fixed at 1536
frequency coefficients per input channel corresponding to six 256-coefficients
blocks. Transformed blocks are then quantized and transmitted as the so-called
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Fig. 6.2 Diagram of time-to-frequency transformation of audio data blocks and vice versa in the
AC-3 encoder/decoder

spectral envelope with the associated side information. A similar, mirror image
procedure is applied in the decoder during signal reconstruction. The current AC-3
encoder obtains better spectral power estimation in terms of improving the fidelity
through the power energy summation of the MDCT frequency coefficients and
frequency coefficients of the corresponding MDST [10].

As was mentioned earlier, the E-AC-3 [4, 7, 10, 11] is the advanced version
of AC-3 providing increased coding efficiency, flexibility, and wider range of sup-
ported bit-rates, expanded channel formats (up to 15.1 channels) and reproduction
circumstances while preserving a high level of compatibility and interoperability
with existing AC-3 system [4, 7, 10]. The E-AC-3 preserves frame structure of
six 256-coefficients blocks while also allows for shorter frames composed of
one, two, or three frequency coefficients blocks. This feature enables to transport
audio at data rates in formats limiting the amount of data per frame, such as
DVD. The E-AC-3 utilizes new powerful coding tools such as an improved filter
bank, improved quantization, enhanced channel coupling with phase preservation,
spectral extension, and transient pre-noise processing. The improved filter bank is an
adaptive hybrid transform composed of two linear transforms connected in cascade
[10, 11]. The first transform is identical to that of employed AC-3: The windowed
long (MDCT) transform producing 256 unique nonzero frequency coefficients. For
frames containing audio signals which are stationary, a second linear transform
can optionally be applied by E-AC-3 encoder, and inverted by the decoder. It
is a non-windowed, non-overlapped type-II discrete cosine transform (DCT-II).
When the DCT-II is applied, six 256-coefficients blocks are converted to a single
1536-coefficients block. This increases the frequency resolution resulting in the
significantly improved coding efficiency and perceptual coding performance for
stationary audio signals [10, 11]. Enhanced channel coupling process in the encoder
and decoder requires the phase information for angle adjustment and therefore,
besides the MDCT the corresponding MDST is also generated. The transient
detector is similar but more sensitive to that employed in the standard AC-3 encoder.
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However, although the E-C-3 in the presence of a transient can be switched into
AC-3 block switching mode, the E-AC-3 decoder processes transient segments in a
different way by the transient pre-noise coding tool [10, 11].

Essentially, the E-AC-3 bit streams are similar in nature to AC-3 bit streams, but
are not backwards compatible, i.e., they are not decodable by AC-3 decoders. Annex
E of [7] specifies E-AC-3 the bit stream syntax for decoding process.

6.2.3 Symmetry Properties of AC-3 Transforms

When investigating general mathematical properties of the filter banks, and when
developing fast computational structures for their efficient implementation, they are
frequently considered for simplicity as the block transforms applied to a single
(windowed) data block. In the following subsections the symmetry properties of
the AC-3 block transforms applied to the single audio data block are investigated in
detail [29, 30].

6.2.3.1 The Forward and Backward Long (MDCT) Block Transforms

For ˛ D 0 in (6.3) and (6.4) let us denote ck D c
.0/

k and Oxn D Ox.0/n . The AC-3 forward
and backward long block transforms are, respectively, given by

ck D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1CN

2

�
.2kC1/

	
; kD0; 1; : : : ; N

2
�1; (6.8)

Oxn D
N
2 �1X

kD0
ck cos

�
�

2N

�
2nC1CN

2

�
.2kC1/

	
; nD0; 1; : : : ;N�1; (6.9)

and they correspond, respectively, to the forward and backward MDCT block
transforms [14]. The symmetry properties of data sequences fckg and fOxng as well
as the general mathematical and special properties of the MDCT block transform
are presented in Chap. 3. Essentially, the forward and backward MDCT block
transforms with the KBD windowing function (in general with any symmetric
windowing function) can be efficiently realized by the fast analysis and synthesis
MDCT filter banks based on an N

2
-point DCT-IV [30]. This approach results in an

identical fast computational structure with simple pre- and post-processing of data
sequences both for the forward and backward MDCT computation.
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6.2.3.2 The Forward and Backward First Short Block Transforms

For ˛ D �1 in (6.3) and (6.4), the forward and backward first short block transforms
are, respectively, defined as

c
.�1/

k D
M�1X

nD0
x
.c/

n cos
h �
2M

.2n C 1/.2k C 1/
i
; k D 0; 1; : : : ;

M

2
� 1; (6.10)

Ox.�1/n D
M
2 �1X

kD0
c
.�1/

k cos
h �
2M

.2n C 1/.2k C 1/
i
; n D 0; 1; : : : ;M � 1; (6.11)

where fx
.c/

n g represents the input data sequence taken from the first half of long audio
block, i.e., x

.c/

n D xn; n D 0; 1; : : : ;M � 1. Substituting M � 1 � k for k into (6.10)
and M � 1 � n for n into (6.11) we obtain

c
.�1/

M�1�k D � c
.�1/

k ; k D 0; 1; : : : ;
M

2
� 1; (6.12)

demonstrating that fc
.�1/

k g possesses the even anti-symmetry property while fOx.�1/n g
has the following symmetry:

Ox.�1/M�1�n D � Ox.�1/n ; n D 0; 1; : : : ;
M

2
� 1: (6.13)

Using the symmetry of the cosine transform kernel, i.e., substituting M � 1 � n for
n into (6.10), the forward first short transform can be written as

c
.�1/

k D
M
2 �1X

nD0
y
.c/

n cos

�
�

4.M=2/
.2n C 1/.2k C 1/

	
; k D 0; 1; : : : ;

M

2
� 1;

(6.14)
where

y
.c/

n D x
.c/

n � x
.c/

M�1�n; n D 0; 1; : : : ;
M

2
� 1: (6.15)

Since the DCT-IV is self-inverse, the backward first short transform is given by

y
.c/

n D
M
2 �1X

nD0
c
.�1/

k cos

�
�

4.M=2/
.2n C 1/.2k C 1/

	
;

k D 0; 1; : : : ;
M

2
� 1; (6.16)
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and the time domain aliased data sequence fOx.�1/n g is recovered from fy
.c/

n g by
applying an inverse permutation to that of (6.15) defined as

Ox.�1/n D y
.c/

n ; Ox.�1/M�1�n D � y
.c/

n ; n D 0; 1; : : : ;
M

2
� 1: (6.17)

The cosine transform kernels in (6.14) and (6.16) are recognized as M
2

-point forward

DCT-IV of fy
.c/

n g and M
2

-point inverse DCT-IV of fc
.�1/

k g, respectively.

6.2.3.3 The Forward and Backward Second Short Block Transforms

For ˛ D C1 in (6.3) and (6.4), the forward and backward second short block
transforms are, respectively, defined as

c
.C1/

k D
M�1X

nD0
x
.s/

n cos
h �
2M

.2n C 1C M/.2k C 1/
i
; k D 0; 1; : : : ;

M

2
� 1;

(6.18)

Ox.C1/

n D
M
2 �1X

kD0
c
.C1/

k cos
h �
2M

.2n C 1C M/.2k C 1/
i
; n D 0; 1; : : : ;M � 1;

(6.19)

where fx
.s/

n g represents the input data sequence taken from the second half of long
audio block, i.e., x

.s/

n D xMCn; n D 0; 1; : : : ;M �1. Similarly, substituting M �1�k
for k into (6.18) and M � 1 � n for n into (6.19) we obtain

c
.C1/

M�1�k D � c
.C1/

k ; k D 0; 1; : : : ;
M

2
� 1; (6.20)

and fc
.C1/

k g possesses also the even anti-symmetry property while fOx.C1/

n g has the
following symmetry:

Ox.C1/

M�1�n D Ox.C1/

n ; n D 0; 1; : : : ;
M

2
� 1: (6.21)

Applying a permutation to the input data sequence fx
.s/

n g in (6.18) [25]

y
.s/

n D

8
ˆ̂<

ˆ̂:

� x
.s/

M
2 Cn

; n D 0; 1; : : : ; M
2

� 1;

x
.s/

n� M
2

; n D M
2
; M
2

C 1; : : : ;M � 1;
(6.22)

and using the symmetry of the cosine transform kernel, i.e., substituting M � 1 � n
for n, the forward second short transform takes the following form:
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c
.C1/

k D
M
2 �1X

nD0
y
.s/

n cos

�
�

4.M=2/
.2n C 1/.2k C 1/

	
; k D 0; 1; : : : ;

M

2
� 1;

(6.23)
where

y
.s/

n D � x
.s/

M
2 Cn

� x
.s/

M
2 �1�n

; n D 0; 1; : : : ;
M

2
� 1: (6.24)

Since the DCT-IV is self-inverse, the backward second short transform is given by

y
.s/

n D
M
2 �1X

nD0
c
.C1/

k cos

�
�

4.M=2/
.2n C 1/.2k C 1/

	
; k D 0; 1; : : : ;

M

2
� 1;

(6.25)

whereby the time domain aliased data sequence fOx.C1/

n g is recovered from fy
.s/

n g by
applying an inverse permutation to that of (6.24) defined as

Ox.C1/

M
2 Cn

D � y
.s/

n ; Ox.C1/

M
2 �1�n

D � y
.s/

n ; n D 0; 1; : : : ;
M

2
� 1: (6.26)

The cosine transform kernels in (6.23) and (6.25) are again recognized as M
2

-point

forward DCT-IV of fy
.s/

n g and M
2

-point inverse DCT-IV of fc
.C1/

k g, respectively.
In summary, from Eqs. (6.14)/(6.16) and (6.23)/(6.25) it can be seen that the M-

point forward/backward first and second short transforms are, respectively, reduced
to M

2
-point forward/inverse DCT-IV.

6.3 Efficient Unified Implementations of AC-3 Transforms

Motivated by a specific definition of AC-3 filter banks, some proposed fast MDCT
algorithms [19, 21, 30] and existing fast computational structures for the discrete
sinusoidal unitary transforms computation of real data sequences [21–23, 25, 27,
28] have been investigated for the alternate and simultaneous (online) efficient
implementation of AC-3 transforms. However, in all investigated unified approaches
due to different transform lengths of the long (MDCT) and two short transforms,
the efficient implementations have required a fast computational structure being
reconfigurable with respect to the block length or they have required a modification
in the internal structure of the fast algorithm. As the most efficient solution
in terms of the arithmetic complexity and structural simplicity for the efficient
implementation of the long (MDCT) and two short transforms the AC-3 [6] and
E-AC-3 [7] have adopted a reconfigurable complex DFT/FFT-based fast algorithm
[24, 53].
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In the following subsections such efficient unified implementations of AC-3
transforms are discussed in more detail.

6.3.1 Efficient Implementations of AC-3 Transforms Adopted
in the AC-3 and E-AC-3 Codecs

In the theory of fast MDCT algorithms it is well known that using a simple
permutation applied to the input (windowed) data sequence, the MDCT can always
be converted to the DCT-IV of half size. It is widely accepted that the DCT-IV-based
fast MDCT algorithms are the most efficient both in terms of arithmetic complexity
and structural simplicity [30].

Consider the N-point forward long (MDCT) transform given by (6.8). In fact,
using a permutation applied to the input data sequence fxng defined as

yn D

8
<̂

:̂

� x 3N
4 Cn � x 3N

4 �1�n; n D 0; 1; : : : ; N
4

� 1;

xn� N
4

� x 3N
4 �1�n; n D N

4
; N
4

C 1; : : : ; N
2

� 1;
(6.27)

or alternatively, applying a permutation defined as

y N
4 Cn D xn � x N

2 �1�n;

y N
4 �1�n D � x N

2 Cn � xN�1�n;

n D 0; 1; : : : ;
N

4
� 1; (6.28)

the N-point forward long (MDCT) transform is converted to the N
2

-point forward
DCT-IV of fyng as follows:

ck D
N
2 �1X

nD0
yn cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1: (6.29)

Although the permutations (6.27) and (6.28) seem to be different, they generate
exactly the same data sequence fyng [30]. Since the DCT-IV is self-inverse, with
respect to (6.29) the backward long (MDCT) transform given by (6.9) is realized by
the inverse N

2
-point DCT-IV of fckg as
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yn D
N
2 �1X

kD0
ck cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
;

n D 0; 1; : : : ;
N

2
� 1: (6.30)

The time domain aliased data sequence fOxng can be recovered from fyng applying an
inverse permutation to that of (6.28) as

Oxn D y N
4 Cn; Ox N

2 �1�n D �y N
4 Cn;

Ox N
2 Cn D �y N

4 �1�n; OxN�1�n D �y N
4 �1�n;

n D 0; 1; : : : ;
N

4
� 1: (6.31)

Finally, Eqs. (6.14), (6.15) and (6.16), (6.17) define the fast algorithms, respec-
tively, for the M-point forward and backward first short transforms computation
based on the M

2
-point forward and inverse DCT-IV. Similarly, Eqs. (6.23), (6.24) and

(6.25), (6.26) define the fast algorithms, respectively, for the M-point forward and
backward second short transforms also based on the M

2
-point forward and inverse

DCT-IV. As an example, signal flow graph for the online computation of the first
and second short transforms for M D 8 is shown in Fig. 6.3.

Now, it is sufficient only to specify a suitable fast DCT-IV algorithm/computational
structure valid for any N being an integer divisible by 4. Although generally, many
2n-length [24, 49, 53] and even-length fast DCT-IV algorithms/computational
structures are available [19, 30] (see Appendces C.2.1 and C.2.2), the AC-3 [6] and
E-AC-3 [7] codecs have adopted a 2n-length fast DCT-IV algorithm based on the
identical complex forward FFT of half size [17, 24] which combines theoretical
efficiency with very regular structure and achieves the lowest multiplicative
complexity. For N D 2n its arithmetic complexity is N

2
.n C 2/ real multiplications

and 3N
2

n real additions [53]. The fast algorithm for the forward/inverse DCT-IV
computation based on the identical complex forward FFT of half size [24] with
corresponding fast computational structure is presented in Appendix C.2.1.

Thus, for the efficient implementation of N-point (N D 512D 29; n D 9) for-
ward/backward long (MDCT) transforms the AC-3 and E-AC-3 employ the N

2
-point

DCT-IV fast algorithm which is mapped into the identical N
4

-point forward complex
FFT module. Then, the forward long (MDCT) transform given by (6.29) taking
into account Eq. (6.27) or (6.28), as well as the backward long (MDCT) transform
given by (6.30) with overlap/add procedure require N

4
.n � 1/ real multiplications

and N
4
.3n � 1/ real additions.

On the other hand, for the efficient implementation of M-point (M D 256D 28;

m D 8) forward/backward short transforms the AC-3 employ additionally the
M
2

-point DCT-IV fast algorithm which is similarly mapped into the identical M
4

-
point forward complex FFT module. Then, the forward first/second short transforms
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Fig. 6.3 Signal flow graph for the online computation of the first and second short transforms for
M D 8

given by (6.14)/(6.23) and (6.15)/(6.24) require M
4
.m � 1/ real multiplications and

M
4
.3m � 1/ real additions. The backward first/second short transforms given

by (6.16)/(6.25) with overlap/add procedure have exactly the same arithmetic
complexity.

Recently, new recursive algorithms for the 2n length DCT-IV/DST-IV and MDCT
computation have been presented in [26] requiring fewer total real multiplications
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and additions than algorithms published up to now. They are based on a new
improved FFT algorithm being actually the modified split-radix FFT with fewer
arithmetic operations. For the N-point DCT-IV, N D 2n, n > 2, the total number
of arithmetic operations is asymptotically reduced from 2Nn C N to 17

9
Nn C 31

27
N.

Since the DCT-IV and MDCT are closely related, this improved DCT-IV algorithm
immediately implies an improved MDCT algorithm.

6.3.2 Efficient Implementations of AC-3 Transforms Based
on One Unified Transform Kernel

An interesting method for the unified efficient implementation of AC-3 short
transforms has been proposed in [27, 28]. First, the cosine transform kernel of AC-
3 filter banks with the variable parameter ˛ in (6.1) and (6.2) is rewritten into one
unified equivalent form which corresponds to the cosine transform kernel of the long
(MDCT) transform. Consequently, the short transforms can be implemented by the
long (MDCT) transform formula with simple pre-processing of data sequences.

Consider the AC-3 analysis filter bank given by (6.1). Extending the second term
of cosine transform kernel containing .1C ˛/ we have

c
˛

k D
N�1X

nD0
xn cos

h �
2N
.2n C 1/.2k C 1/C �

4
.2k C 1/C �

4
.2k C 1/˛

i
; (6.32)

and combining the first and third terms in the cosine transform kernel of (6.32), after
a simple algebraic manipulation we get

c
˛

k D
N�1X

nD0
xn cos

�
�

2N

�
2n C 1C N

2
˛

�
.2k C 1/C �

4
.2k C 1/

	

D
N�1X

nD0
xn cos

�
�

2N

�
2

�
n C N

4
˛

�
C 1

�
.2k C 1/C �

4
.2k C 1/

	
: (6.33)

Finally, substituting m D n C N
4
˛ .n D m � N

4
˛/ into (6.33) we obtain a unified

equivalent form of the cosine transform kernel of the AC-3 analysis filter bank as
[27, 28]

c
˛

k D
N�1C N

4 ˛X

mD N
4 ˛

xm� N
4 ˛

cos
h �
2N
.2m C 1/.2k C 1/C �

4
.2k C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1: (6.34)
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For ˛ D 0 in Eq. (6.34) we have

c
.0/

k D
N�1X

mD0
xm cos

h �
2N
.2m C 1/.2k C 1/C �

4
.2k C 1/

i

D
N�1X

mD0
xm cos

�
�

2N

�
2m C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; (6.35)

which actually for m D n is the forward long (MDCT) block transform given
by (6.8). When parameter ˛ ¤ 0, the data sequence fxm� N

4 ˛
g in (6.34) can be

interpreted as a shifting of the original data samples by N
4

samples with respect
to the cosine transform kernel. In fact, exploiting the anti-periodicity property of
MDCT transform kernel with the period N, i.e., by substituting m C N for m into
(6.35), we have [30]

cos

�
�

2N

�
2m C 1C N

2
C 2N

�
.2k C 1/

	

D � cos

�
�

2N

�
2m C 1C N

2

�
.2k C 1/

	
;

and it can be shown that for ˛ D 
 1, the original data sequence fxmg has to
be circularly shifted to the left/right in the period N by N

4
samples, respectively,

followed by sign changes of N
4

circularly shifted samples.
Specifically, for ˛ D �1 in (6.34) the forward first short transform for N D M is

given by

c
.�1/

k D
3M
4 �1X

mD� M
4

xmC M
4

cos
h �
2M

.2m C 1/.2k C 1/C �

4
.2k C 1/

i
;

k D 0; 1; : : : ;
M

2
� 1; (6.36)

while for ˛ D C1 in (6.34) the forward second short transform for N D M is
given by

c
.C1/

k D
5M
4 �1X

mD M
4

xm� M
4

cos
h �
2M

.2m C 1/.2k C 1/C �

4
.2k C 1/

i
;

k D 0; 1; : : : ;
M

2
� 1: (6.37)



342 6 Perfect Reconstruction Cosine/Sine-Modulated Filter Banks in the Dolby. . .

Applying the following permutation to the input data sequence fxmg (actually
corresponding to circular shifting to the left by M

4
samples)

y
.�1/

m D

8
<̂

:̂

x M
4 Cm; m D 0; 1; : : : ; 3M

4
� 1;

�xm� 3M
4
; m D 3M

4
; 3M
4

C 1; : : : ;M � 1;
(6.38)

the forward first short transform given by (6.36) takes the form

c
.�1/

k D
M�1X

mD0
y
.�1/

m cos
h �
2M

.2m C 1/.2k C 1/C �

4
.2k C 1/

i

D
M�1X

mD0
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m cos

�
�

2M

�
2m C 1C M

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
M

2
� 1: (6.39)

On the other hand, applying the following permutation to the input data sequence
fxmg (actually corresponding to circular shifting to the right by M

4
samples)

y
.C1/

m D

8
ˆ̂<

ˆ̂:

�x 3M
4 Cm; m D 0; 1; : : : ; M

4
� 1;

xm� M
4
; m D M

4
; M
4

C 1; : : : ;M � 1;
(6.40)

the forward second short transform given by (6.37) takes the form

c
.C1/

k D
M�1X

mD0
y
.C1/

m cos
h �
2M

.2m C 1/.2k C 1/C �

4
.2k C 1/

i
;

D
M�1X

mD0
y
.C1/

m cos

�
�

M

�
2m C 1C M

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
M

2
� 1: (6.41)

Equations (6.39) and (6.41) imply that both the forward first and second short
transforms computation after a proper permutation of the original data sequence
fxmg (Eqs. (6.38) and (6.40)) can be implemented via any fast computational
structure for the forward long (MDCT) transform of size M D N

2
. If the DCT-IV-

based fast MDCT algorithm is applied to the computation of the forward first and
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second short transforms, then one may simply use Eq. (6.27) or (6.28) for N D M
and n D m to convert the M-point short transforms to M

2
-point forward DCT-IV

given by (6.29).
By the similar procedure for the AC-3 synthesis filter bank given by (6.2) with

the variable parameter ˛, or simply directly from (6.34) we obtain

Ox.˛/
m� N

4 ˛
D

N
2 �1X

kD0
c
˛

k cos
h �
2N
.2m C 1/.2k C 1/C �

4
.2k C 1/

i
;

m D N
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4
˛: (6.42)

For ˛ D 0 in Eq. (6.42) we have
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;

m D 0; 1; : : : ;N � 1; (6.43)

which actually for m D n is the backward long (MDCT) block transform given
by (6.9). For ˛ D �1 in (6.42) and N D M the backward first short transform is
given by
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2 �1X
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2m C 1C M
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�
.2k C 1/

	
;

m D �M

4
;�M

4
C 1; : : : ;

3M

4
� 1: (6.44)

Similarly, for ˛ D C1 in (6.42) and N D M the backward second short transform is
given by
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;
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4
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C 1; : : : ;

5M

4
� 1: (6.45)

Exploiting the symmetry properties of the time domain aliased data sequences
fOx.�1/m g and fOx.C1/

m g given by (6.13) and (6.21), respectively, only half of samples is
sufficient to be computed. Equations (6.44) and (6.45) imply that the data sequences
fOx.�1/m g and fOx.C1/

m g are recovered, respectively, by the backward first and second short
transforms implemented via any fast computational structure for the backward long
(MDCT) transform of size M D N

2
.

6.3.3 Efficient Implementations of AC-3 Transforms via
the Fast MDCT Computational Structure

The fast MDCT algorithm originally proposed in [21] and refined in [18] besides
the computation of long transform can be also adopted for the alternate efficient
implementation of two short transforms in the AC-3. Complete formulae of the
fast MDCT algorithm [21] are presented in Chap. 4. The corresponding refined fast
MDCT computational structure for N D 16 is shown in Fig. 6.4. The computation of
backward long (MDCT) transform is realized simply by reversing the fast MDCT
computational structure and performing inverse operations. For 2n lengths the N-
point long (MDCT) transform requires N

4
.n C 1/ real multiplications and N

4
.3n C 3/

real additions.
In order to adopt the fast MDCT computational structure for the alternate efficient

implementation of two short transforms in the AC-3, consider the first step in the
derivation of the fast MDCT algorithm defined as [21]

z2k D .�1/k
p
2

2

N
2 �1X

nD0
x

0

n cos
h �
2N
.2n C 1/.4k C 1/

i

�x
00

n sin
h �
2N
.2n C 1/.4k C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1; (6.46)

where

x
0

n D xn � xN�1�n; x
00

n D xn C xN�1�n; n D 0; 1; : : : ;
N

2
� 1: (6.47)
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Fig. 6.4 Refined fast MDCT computational structure for N D 16, ı D
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2

Equation (6.46) is actually derived exploiting the even anti-symmetry property of
MDCT coefficients [21]. This fact allows us to consider the even-indexed MDCT
coefficients only. The odd-indexed MDCT coefficients can be deduced from the
even anti-symmetry property.

Based on the even anti-symmetry property (6.12) of the first short transform
given by (6.10), let us consider its even-indexed coefficients. Then, using the
symmetry of cosine transform kernel we have

c
.�1/

2k D
M�1X

nD0
x
.c/

n cos
h �
2M

.2n C 1/.4k C 1/
i

D
M
2 �1X

nD0
.x

.c/

n � x
.c/

M�1�n/ cos
h �
2M

.2n C 1/.4k C 1/
i
;

k D 0; 1; : : : ;
M

2
� 1: (6.48)
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The data sequence fx
.c/

n � x
.c/

M�1�ng in (6.48) has exactly the same form as fx
0

ng
defined in (6.47) for N D M. In fact, from (6.46) it follows that the first short
transform can be computed by the fast MDCT computational structure setting x

00

n D
0 for n D 0; 1; : : : ; M

2
�1, where x

00

n is defined in (6.47) for N D M. It means that the
upper half after the first butterfly stage of the fast MDCT computational structure
(see Figs. 6.4 and 6.5) is set to zero. Final coefficients of the first short transform are
obtained as

c
.�1/

2k D z2k; c
.�1/

2kC1 D � zM�2�2k; k D 0; 1; : : : ;
M

4
� 1: (6.49)

On the other hand, the second short transform given by (6.18) may be expressed
in the following equivalent form

c
.C1/

k D .�1/kC1
M�1X

nD0
x
.s/

n sin
h �
2M

.2n C 1/.2k C 1/
i
;

k D 0; 1; : : : ;
M

2
� 1: (6.50)
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Fig. 6.5 Modified fast MDCT computational structure adopted for the alternate computation of
two short transforms in the AC-3 for M D 16
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Again, based on the even anti-symmetry property (6.20), let us consider the even-
indexed coefficients of the second short transform given by (6.50). Using the
symmetry of sine transform kernel we have

c
.C1/

2k D �
M
2 �1X

nD0

�
x
.s/

n C x
.s/

M�1�n

�
sin
h �
2M

.2n C 1/.4k C 1/
i
;

k D 0; 1; : : : ;
M

2
� 1; (6.51)

and the data sequence fx
.s/

n C x
.s/

M�1�ng in (6.51) has exactly the same form as fx
00

n g in
(6.47) for N D M. Similarly, from (6.46) it follows that the second short transform
can be computed by the fast MDCT computational structure setting x

0

n D 0 for
n D 0; 1; : : : ; M

2
� 1, where x

0

n is defined in (6.47) for N D M. It means that the
lower half after the first butterfly stage of the fast MDCT computational structure
(see Figs. 6.4 and 6.5) is set to zero. Final coefficients of the second short transform
are obtained as

c
.C1/

2k D z2k; c
.C1/

2kC1 D � zM�2�2k; k D 0; 1; : : : ;
M

4
� 1: (6.52)

For the computation of two short transforms in the AC-3 the fast MDCT
computational structure should be slightly modified. Comparison of (6.46) with

(6.48) and (6.51) implies that the factor .�1/k
p
2
2

in (6.46) has to be eliminated.
The corresponding modified fast MDCT computational structure for the alternate
computation of two short transforms in the AC-3 for M D 16 is shown in Fig. 6.5.
The computation of backward short transforms is realized simply by reversing the
modified fast MDCT computational structure and performing inverse operations.
For M D 2m lengths the computation of M-point first or second short transform
requires M

4
.m C 1/ real multiplications and M

4
.3m � 1/ real additions.

6.3.4 Efficient Implementations of AC-3 Transforms via
the Fast O2DFT and DFT-IV Computational Structures

A computationally efficient DFT/FFT-based MDCT algorithm originally proposed
for the realization of real-valued single sideband analysis/synthesis filter banks
(with perfect reconstruction as well as with nearly or almost perfect reconstruction)
has been proposed in [23]. Due to the same even anti-symmetry property of the
long (MDCT) transform coefficients and O2DFT ones (see Appendix B.1), the
efficient forward/backward long (MDCT) computation is based on the fast O2DFT
algorithm (see Appendix B.2) derived for odd/even symmetric real-valued data
sequences. Complete formulae of the fast O2DFT algorithm [23] for the efficient
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implementation of long (MDCT) transform are presented in Chap. 4. For N D 2n

the long (MDCT) transform computation requires N
4
.n C1/ real multiplications and

N
4
.3n C 1/ real additions.
The O2DFT is equivalent to the generalized DFT of type IV (GDFT-IV) of real-

valued data sequences defined as [20]

f
IV

k D
M�1X

nD0
xn exp

�
�i

2�

4M
.2n C 1/.2k C 1/

	
;

k D 0; 1; : : : ;M � 1; (6.53)

where ff
IV

k g are GDFT-IV transform coefficients and i D p�1. The corresponding
fast GDFT-IV computational structure [20] can be adopted for the online com-
putation of two short transforms in the AC-3 as follows. Consider the first short
transform defined by (6.10) and the second short transform defined by (6.50). Using
the symmetry properties of cosine and sine transform kernels, the GDFT-IV given
by (6.53) can be decomposed as

f
IV

k D
M
2 �1X

nD0
x

0

n cos

�
�.2n C 1/.2k C 1/

4.M=2/

	
� i x

00

n sin

�
�.2n C 1/.2k C 1/

4.M=2/

	
;

k D 0; 1; : : : ;M � 1; (6.54)

where fx
0

ng and fx
00

n g are given by (6.47) for N D M. Using Eq. (6.50), the fast
GDFT-IV computational structure can be modified for the online computation of
two short transforms in the AC-3. It is shown for M D 16 in Fig. 6.6. For M D 2m

the first/second short transform computation requires M
4
.m C 1/ real multiplications

and M
4
.3m C 1/ real additions.

6.3.5 Comparison of Existing Efficient Implementations
of AC-3 Transforms

The arithmetic complexity of N D 2n-length fast algorithms for the for-
ward/backward long (MDCT) transform computation is summarized in Table 6.1.
The arithmetic complexity of the M D 2m length forward/backward first and second
short transform computation is obtained, if we replace N by M and n by m in
Table 6.1.

The DCT-IV-based efficient implementation of AC-3 transforms via the identical
complex forward FFT of half size combines theoretical efficiency with very regular
structure and achieves the lowest multiplicative complexity. Due to using different
block lengths of AC-3 transforms, it is necessary only reconfigure it. On the other
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Fig. 6.6 Modified fast GDFT-IV computational structure for the online computation of two short
transforms in the AC-3 for M D 16

Table 6.1 Summary of arithmetic complexity of discussed 2n-length fast algorithms for the
forward/backward long (MDCT) transform

N D 2n-point fast algorithm # of real mults # of real adds

DCT-IV-based via N
4

-point complex FFT N
4
.n � 1/ N

4
.3n � 1/

Fast MDCT computational structure [18, 21] N
4
.n C 1/ N

4
.3n C 3/

Fast O2DFT algorithm [23] N
4
.n C 1/ N

4
.3n C 1/
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hand, the fast MDCT computational structure [21] requires a modification in its
internal structure with respect to the block length.

6.3.6 The Efficient Implementation of Adaptive Hybrid
Transform

We recall that the E-AC-3 utilizes an improved filter bank. The improved filter bank
is an adaptive hybrid transform (AHT) composed of two linear transforms connected
in cascade [10, 11]. The first transform is identical to that of employed in AC-3:
the windowed 512-point long (MDCT) transform producing 256 unique nonzero
frequency coefficients. For frames containing audio signals which are stationary, a
second linear transform can optionally be applied by E-AC-3 encoder, and inverted
by the decoder. It is the non-windowed and non-overlapped DCT-II. After the time-
to-frequency transformation of successive overlapped audio blocks, six blocks of
MDCT coefficients are packed and transformed by the DCT-II resulting in a block
of 1536 coefficients. An efficient implementation of the DCT-II and its inverse, the
DCT-III, is also briefly discussed for completeness.

Since the block length is a composite number, i.e., 1536 D 29 � 3, the
composition of even-length fast recursive DCT-II algorithm and 3-point DCT-II
module provides an efficient implementation of DCT-II in the E-AC-3 encoder.
Complete formulae of the even-length fast recursive DCT-II (DCT-III) algorithm
are presented in Appendix C.1.1, whereas the required efficient optimized 3-point
DCT-II/DCT-III modules are presented in Appendix D.4. The arithmetic complexity
of 1536-point DCT-II (DCT-III) computation is 7424 multiplications and 22 273
additions.

6.4 Matrix Representations of AC-3 Transforms

An alternative way to represent the AC-3 block transforms is in the matrix-vector
form. Matrix representations are very powerful tools to analyze filter bank charac-
teristics of the single data block both in the time and frequency domains. In the
following subsections the matrix representations of windowing procedure and AC-
3 transforms, their properties, and useful relations among transform (sub-)matrices
are investigated and presented in detail [29, 30].

6.4.1 Windowing Procedure

Let WN be a diagonal matrix with elements fwng on the main diagonal defined as
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WN D
0

@
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0 W
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N
2
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A ; (6.55)

representing the KBD windowing function, where W
.1/

N
2

and W
.2/

N
2

represent the first

and second half of the windowing function, respectively. In order to eliminate time
domain aliasing, the windowing functions of two succeeding data blocks have to
satisfy the perfect reconstruction conditions. We recall that they are given by

w
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2 Cn
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2 �1�n

D 1;

wn D wN�1�n; or w N
2 Cn D w N

2 �1�n; n D 0; 1; : : : ;
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2
� 1; (6.56)

or alternatively, in the matrix form as

W
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2
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2

W
.2/

N
2

D I N
2
;

W
.2/

N
2

D J N
2

W
.1/

N
2

J N
2
; (6.57)

where I N
2

is the identity matrix and J N
2

is the reverse ordered identity matrix both

of order N
2

. The matrix WN given by (6.55) represents the windowing procedure by
the symmetric KBD function applied to an audio data block in the encoder or to a
recovered time domain aliased data block in the decoder.

6.4.2 Forward/Backward Long (MDCT) Transform

Consider the forward and backward MDCT block transforms defined by (6.8) and
(6.9), respectively. Let the cosine transform kernel in the forward MDCT block
transform (6.8) be represented by an N

2
� N matrix C N

2 �N with elements

n
C N

2 �N

o

k;n
D cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; n D 0; 1; : : : ;N � 1: (6.58)

Further, the cosine transform kernel in the backward MDCT block transform (6.9) is

represented by the matrix
h
C N

2 �N

iT D CN� N
2

, where T denotes transposition. Next,
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let xT D Œx0; x1; : : : ; xN�1�T , cT D
h
c0; c1; : : : ; c N

2 �1
iT

and OxT D ŒOx0; Ox1; : : : ; OxN�1�T

be column vectors. Then, the forward and backward MDCT block transforms
given by (6.8) and (6.9), respectively, including the windowing operation and
the normalization factor 4

N can be written in the equivalent matrix-vector
form as

cT D 4

N
C N

2 �N WN xT ; (6.59)

OxT D WN ŒC N
2 �N �

T cT : (6.60)

Based on the matrix representation of the MDCT it was shown in [50] that the

transposed MDCT matrix
h
C N

2 �N

iT
denoted by C

C

N� N
2

is the pseudoinverse of its

corresponding forward transform matrix. Hence, the forward and backward MDCT
block transforms are actually the pseudoinverse pair (see Appendix A.1).

The pseudoinverse matrix [51, 52] and its properties provide an elegant mathe-
matical tool to characterize the MDCT, and in general, any perfect reconstruction
cosine-/sine-modulated filter bank in a matrix representation. If we consider the for-
ward MDCT given by (6.59) to be overdetermined systems of linear equations, then
the time domain aliased data samples fOxng in (6.60) for given MDCT coefficients
can be interpreted as least squares solutions, i.e., solutions with minimum norm
[51]. For products of the matrix C N

2 �N and its pseudoinverse, C
C

N� N
2

, the following

relations hold:
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; (6.61)
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where I N
2

is the identity matrix, J N
2

is the reverse ordered identity matrix both of

order N
2

, and 00s are null matrices. For clarity, the matrix C N
2 �N in explicit form for

N D 8 is given by
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6.4.3 Forward/Backward First and Second Short Transforms

Consider the forward and backward first/second short block transforms defined by
(6.10)/(6.18) and (6.11)/(6.19), respectively. Let the cosine transform kernels of the
first and second short transforms in (6.10) and (6.18), respectively, be represented
by the M

2
� M matrices C

.1/

M
2 �M

and C
.2/

M
2 �M

with elements
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Using the notation introduced in the previous subsection, the forward first and
second short transforms given by (6.10) and (6.18), respectively, including the
windowing operation and the normalization factor 4

M can be written in the equivalent
matrix-vector form as
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while the backward first and second short transforms given by (6.11) and (6.19),
respectively, including the windowing operation can be written as
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Similarly as for the forward/backward MDCT block transforms, it can be shown
that the forward/backward first and second short block transforms are actually the
pseudoinverse pairs (see Appendix A.1). In fact, for the product of matrix C

.1/

M
2 �M

and its pseudoinverse denoted by ŒC
.1/

M� M
2

�C, as well as for the product of matrix
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where I M
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is the identity matrix of order M
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, and
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where IM is the identity matrix and JM is the reverse ordered identity matrix both of
order M. For clarity, the matrices C

.1/

M
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and C
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M
2 �M

in explicit forms for M D 4 are

given by
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A :

6.4.4 Useful Relations Among the AC-3 Transform Matrices

Denote by tk;n D cos
�
�
2N

�
2n C 1C N

2


.2k C 1/

�
the elements of matrix C N

2 �N

given by (6.58). We recall that the k-th row basis vector of C N
2 �N in the first

half possesses the even anti-symmetry and in the second half possesses the even
symmetry property, respectively, given by
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tk; N
2 �1�n D � tk;n; tk; N

2 Cn D tk;N�1�n;

8 k; n D 0; 1; : : : ;
N

4
� 1: (6.71)

Similarly, denoting by t
.1/

k;n D cos
�
�
2M .2n C 1/.2k C 1/

�
the elements of matrix

C
.1/

M
2 �M

given by (6.63), and denoting by t
.2/

k;n D cos
�
�
2M .2n C 1C M/.2k C 1/

�
the

elements of matrix C
.2/

M
2 �M

given by (6.63), it can be verified by proper substitution

that the k-th row basis vector of C
.1/

M
2 �M

exhibits the even anti-symmetry property

given by

t
.1/

k;M�1�n D � t
.1/

k;n; 8 k; n D 0; 1; : : : ;
M

2
� 1; (6.72)

while the k-th row basis vector of C
.2/

M
2 �M

exhibits the even symmetry property

given by

t
.2/

k;M�1�n D t
.2/

k;n; 8 k; n D 0; 1; : : : ;
M

2
� 1: (6.73)

The even anti-symmetry and even symmetry properties of row basis vectors given
by (6.72) and (6.73) are quite similar to those of time domain aliased data sequences
fOx.�1/n g and fOx.C1/

n g given by (6.13) and (6.21), respectively.

Now, let the matrix C N
2 �N given by (6.58) and its pseudoinverse, C

C

N� N
2

, be split

into two blocks defined as

C N
2 �N D

�
K N

2
L N

2

�
; C

C

N� N
2

D
0

@
K

C

N
2

L
C

N
2

1

A ; (6.74)

where K N
2

, L N
2

, K
C

N
2

and L
C

N
2

are square nonsingular matrices of order N
2

with

elements

fK N
2
gk;n D cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

fL N
2
gk;n D cos

�
�

2N

�
2n C 1C 3N

2

�
.2k C 1/

	
; k; n D 0; 1; : : : ;

N

2
� 1;
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fK
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gn;k D cos
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�
2n C 1C N

2

�
.2k C 1/

	
;

fL
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N
2
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�
�

2N

�
2n C 1C 3N

2

�
.2k C 1/

	
;

n; k D 0; 1; : : : ;
N

2
� 1: (6.75)

From (6.71) it follows that the k-th column basis vector of K
C

N
2

is even anti-

symmetric, whereas the k-th column basis vector of L
C

N
2

is even symmetric, and

immediately from (6.62) we have

K
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4
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/; (6.76)
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/: (6.77)

Finally, comparing (6.76) to (6.69) and (6.77) to (6.70) for M D N
2

we get
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Let us consider the following matrix products:
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:

Since according to (6.71), (6.72), (6.73), (6.74), and (6.75) the row/column basis
vectors of matrices in the corresponding matrix products are either even anti-
symmetric/symmetric or even symmetric/anti-symmetric, and due to the symmetric
property of windowing function, the matrix products satisfy the following relations:
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; (6.79)
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; (6.80)
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where 0M
2

and 0M
2 � N

2
are null matrices. Relations (6.79) and (6.80) arise from

the simple fact that the scalar product of even anti-symmetric/symmetric or even
symmetric/anti-symmetric nonzero vectors is always zero. In fact, the matrix
products W

.1/

N
2

W
.2/

N
2

and W
.2/

N
2

W
.1/

N
2

in (6.79) and (6.80) do not disturb the symmetry

properties of row/column basis vectors. A slightly different proof of (6.79) and
(6.80) is presented in [31].

Given the frequency coefficients of the long (MDCT) transform or given the
frequency coefficients of two short transforms in the frequency domain. Does exist
a relation between the frequency coefficients of long transform and those of two
short transforms, and vice versa?

6.5 Relations Between the Frequency Coefficients
and the Time Domain Aliasing Data Sequences of AC-3
Transforms

Based on the matrix representation of AC-3 transforms, a systematic investigation
of their properties and relations among transform matrices enables us to derive a
relation between the frequency coefficients of the long (MDCT) and those of two
short transforms [29, 31]. This relation has an impact on the current implementation
of AC-3 analysis filter banks which can be simplified in the encoder. Similarly, a
simple relation between the aliased data sequence recovered by the backward long
(MDCT) and those of two short transforms can be derived. This relation shows
why the perfect reconstruction property between the long (MDCT) and two short
transforms is maintained although phase shifts of cosine transform kernels of two
short transforms are relatively different to that of the long (MDCT) transform [29].
Again, this relation has an impact on the current implementation of AC-3 synthesis
filter banks which can be simplified in the decoder.

6.5.1 Relation Between Frequency Coefficients of the Long
and Two Short Transforms

Consider the windowing and overlap-add procedure in the AC-3 decoder to recon-

struct the current data block denoted by xt D
h
x
.c/

t ; x
.s/

t

i
where x

.c/

t is the first half

and x
.s/

t is the second half of xt, and the subscript t denotes the data-block number.

Further, let c
T

t ;
h
c
.�1/

t

iT
and

h
c
.C1/

t

iT
be the column vectors representing the fre-

quency coefficients of the long (MDCT), the first and second short transforms of the
tth transformed data block, respectively. Since the AC-3 transforms satisfy the per-
fect reconstruction constraints in the overlapped parts of two adjacent data blocks,
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the tth data block xt D
h
x
.c/

t ; x
.s/

t

i
can be perfectly reconstructed by the windowing

and overlap-add procedure formulated in the matrix-vector representation as follows
(note that the tth current data block which is processed is the long block) [31]:
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(6.81)
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tC1; if in the following data block the long

transform is adopted:

(6.82)

According to (6.64) and (6.65), the frequency coefficients of two short transforms
in the tth data block can be expressed in the matrix-vector form as
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A : (6.83)

Substituting the expressions from (6.81) and (6.82) into the right-hand side of (6.83)
for Œx

.c/

t �
T and Œx

.s/

t �
T , using relations (6.79) and (6.80) and noting that the current

block is the long block, after some algebraic manipulations we obtain [31]
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Equation (6.84) defines the relation between the frequency coefficients of the long
(MDCT) transform and two short transforms in the tth data block. Given frequency
coefficients of the long (MDCT) transform. Then, the frequency coefficients of two
short transforms can be simply obtained from those of the long (MDCT) transform
via a conversion matrix defined on the right-hand side of (6.84). Note that the
authors in [31] did not further investigate the mathematical properties and general
structure of the conversion matrix in detail.
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The existence of conversion matrix has an impact on the current implementation
of AC-3 analysis filter banks which can be simplified in the encoder. A fast
computational structure for the forward long (MDCT) transform computation is
required only, which can run in parallel with the transient detector. If a transient is
detected, the frequency coefficients of the long (MDCT) transform can be converted
to those of the short transforms via the conversion matrix. However, it is not
necessary. The frequency coefficients of the long (MDCT) transform may be further
transmitted with code bit indicating the presence/absence of transient. Thus, the
fast computational structure for the forward short transforms computation with
associated memory tables for the cosine/sine twiddle factors (128 table values) [6]
can be completely eliminated so saving memory resources. On the other hand, in the
AC-3 decoder the frequency coefficients of two short transforms can be converted
to those of the long (MDCT) transform via the transposed conversion matrix, if it is
required. However, as we will see in the next subsection, the conversion matrix may
not be used at all.

6.5.2 Relation Between Time Domain Aliased Data Sequences
Recovered by the Backward Long and Two Short
Transforms

Consider the forward/backward long (MDCT) transform in the matrix-vector form
defined by (6.59)/(6.60). Substituting (6.59) into (6.60) (i.e., performing the forward
and backward MDCT) and using relation (6.62) we have
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Based on (6.85), in [50] it has been shown that the recovered time domain aliased
data sequence fOxng can be derived in terms of the original data sequence fxng.

On the other hand, consider the forward/backward short transforms in the matrix-
vector form defined by (6.64)/(6.66) and (6.65)/(6.67). Substituting (6.64)/(6.65)
into (6.66)/(6.67) (i.e., performing the forward and backward first/second short
transforms) and using relations (6.69)/(6.70) we have
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where xT D
h
x
.c/
; x

.s/
iT

and OxT D
h
Ox.�1/ ; Ox.C1/

iT
. In (6.86) and (6.87) we can

clearly observe that the corresponding time domain aliased data sequences fOx.�1/g
and fOx.C1/g can be respectively derived in terms of the input data sequences fx

.c/g
and fx

.s/g, and hence, in terms of the original data sequence fxng too. Indeed, the
block matrices on the right-hand sides of (6.86) and (6.87) for M D N

2
coincide

with those of on the right-hand side of (6.85). Using (6.5) and (6.74), substituting
M D N

2
into (6.85) and performing block matrix products we get
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Comparing (6.88) and Eqs. (6.86) and (6.87) concatenated into one matrix form
it can be seen that they are equivalent. Finally, exploiting relations (6.69), (6.70),
(6.76), (6.77), and (6.78) reveals a close relation between the time domain aliased
data sequence recovered by the backward long (MDCT) and those of two short
transforms given by

Ox.�1/n D 1

2
Oxn; Ox.C1/

n D 1

2
Ox N
2 Cn; n D 0; 1; : : : ;M � 1: (6.89)

Equation (6.89) also implies that although phase shifts of cosine transform kernels
of two short transforms are relatively different from that of the long (MDCT)
transform, the perfect reconstruction property between the long (MDCT) and two
short transforms is maintained.

The relations given by (6.89) have an impact on the current implementation
of AC-3 synthesis filter banks which can be simplified in the decoder. A fast
computational structure for the backward long (MDCT) transform computation is
required only. If the presence of a transient is indicated, the time domain aliased
data samples recovered by the backward long (MDCT) transform can be windowed
and converted to those of recovered and windowed by the backward short transforms
and vice versa using (6.89). It means that the conversion matrix in the AC-3 encoder
and decoder may not be used at all.
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6.6 Fast Algorithm for Conversion of Frequency Coefficients
of AC-3 Transforms

We recall that although the E-AC-3 bit streams are similar in nature to AC-3 ones
(they use the same MDCT filter bank, bit-allocation process, and framing structure),
are not backwards compatible, i.e., they are not decodable by AC-3 decoders [7].
Therefore, the Dolby Laboratories developed an efficient method to convert an
E-AC-3 bit stream to an AC-3 one, the so-called E-AC-3 to AC-3 conversion,
to ensure the compatibility with the large installed base of AC-3 decoders. The
conversion procedure is designed to minimize loss in audio quality while keeping
the complexity at a level suitable for low-cost consumer devices [10, 11]. On the
other hand, the so-called AC-3 to E-AC-3 transcoding, is used to distribute 5.1-
channel audio content that has already been encoded in the AC-3. The E-AC-3 bit
stream is created by transcoding an AC-3 bit stream to an E-AC-3 bit stream at lower
bit rate [10, 11].

In the following subsection, standard methods for conversion of frequency
coefficients including their arithmetic complexity and memory requirements are
described. They are used in the current E-AC-3 to/from AC-3 bit stream conver-
sion/transcoding.

6.6.1 Standard Methods for Conversion of Frequency
Coefficients

We recall that for time-to-frequency transformation of an audio data block and
vice versa, both the AC-3 and E-AC-3 use the identical long (MDCT) transform
while the AC-3 uses the additional two short transforms when a transient signal
is detected. We note that for efficient implementations of AC-3 transforms, the
M-point (M D 2m) DCT-IV requires M

2
.m C 2/ real multiplications and 3M

2
m

real additions, while M
2

-point DCT-IV requires M
4
.m C 1/ real multiplications and

3M
4
.m � 1/ real additions. The use of different filter banks has an impact on the

E-AC-3 to/from AC-3 bit stream conversion/transcoding.
The E-AC-3 employs always the long data blocks. For the E-AC-3 to AC-3

bit stream conversion, when the current block is long without transient signal,
then no conversion for the AC-3. However, when the long data block contains a
transient signal, the frequency coefficients of the long (MDCT) transform have
to be converted to those of two short transforms for the AC-3 to cancel pre-echo
effects. The standard conversion method (see Fig. 6.7) involves the computation of
three backward long transforms (of previous, current and following blocks), three
(complete) windowing procedures, two overlap/add procedures, and two forward
short transforms. This requires M

2
.4m C 19/ real multiplications, 3M

2
.4m C 1/ real

additions, and 2M memory locations.
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Fig. 6.7 Standard method for conversion of frequency coefficients

On the other hand, for the AC-3 to E-AC-3 bit stream transcoding, when the
current block is long, then no conversion for the E-AC-3. However, when the
frequency coefficients of AC-3 two short transforms are available, then they have to
be converted to those of the long (MDCT) transform for the E-AC-3. The standard
conversion method (see Fig. 6.7) involves the computation of two backward short
transforms plus two backward long transforms in the worst case (provided by the
previous and following blocks are long), or two backward short transforms in the
best case (provided by the previous and following blocks are short), three (complete)
windowing procedures, two overlap/add procedures, and finally one forward long
(MDCT) transform. This requires in the worst case similarly M

2
.4m C 19/ real

multiplications and 3M
2
.4m C 1/ real additions, while in the best case M

2
.3m C 16/

real multiplications, 3M
2
3m real additions, and in both cases 2M memory locations.

In general, it can be seen that the standard methods for conversion of fre-
quency coefficients involve a partial decoding and encoding during the con-
version processes. The existence of relation between transform coefficients via
the conversion matrix enables to realize the E-AC-3 to/from AC-3 bit stream
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conversion/transcoding in a simplified and more transparent way, thus minimizing
the amount of partial decoding and encoding during the conversion processes.

6.6.2 The Conversion Matrix and Its Properties

In the following discussion for simplicity we drop the subscript t in (6.84). Denoting
the square nonsingular conversion matrix by VM , its upper and lower block sub-
matrices V
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M
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2

and V
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M
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2
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we have
0

B
@

h
c
.�1/
iT

h
c
.C1/
iT

1

C
A D 4

N

0

@
V
.1/

M
2 � N

2

V
.2/

M
2 � N

2

1

A cT D 4

N
VM cT : (6.90)

Now, investigate the elements of V
.1/

M
2 � N

2

and V
.2/

M
2 � N

2

in detail. According to (6.63),

(6.71), (6.72), (6.73), and (6.75), and performing the scalar products of row/column
basis vectors, the corresponding elements of sub-matrices V
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M
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and V
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M
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are,

respectively, given by
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� 1: (6.91)
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Equation (6.91) is based on the simple fact that the scalar product of even anti-
symmetric/anti-symmetric or even symmetric/symmetric nonzero vectors is always
nonzero. Since between the corresponding cosine terms under sums of (6.91) the
following trigonometric identities hold:
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; (6.92)

substituting M
2

� 1� k for k into the first sine term, and then substituting N
2

� 1� m
for m into the second sine term on the right-hand side of (6.92) we get
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and (6.91) can be rewritten in the final form as
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However, since the KBD windowing function is symmetric and satisfies the per-
fect reconstruction conditions (6.56), the expression under sum of (6.94), w

2

n C
w
2

N
2 �1�n

D 1 (see Eq. (6.56)), may be eliminated. It means that the elements of

conversion matrix VM do not depend on the KBD windowing function. Equa-
tion (6.94) implies that the elements v

.2/

k;m of sub-matrix V
.2/

M
2 � N

2

are the same

in magnitude compared to the elements v
.1/

k;m of sub-matrix V
.1/

M
2 � N

2

except for

their reverse ordering and proper sign changes. Hence, only elements in the
upper half of the conversion matrix VM are unique. Therefore, only sub-matrix
V
.1/

M
2 � N

2

is sufficient to be precomputed and stored, thus saving memory resources.

In fact, the conversion matrix VM possesses the following regular general block
structure:
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where A
.1/

M
2

and A
.2/

M
2

are square sub-matrices both of order M
2

, and NJ M
2

is the matrix of

order M
2

with alternating ˙1 elements on the opposite main diagonal defined as
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Note that if data block lengths are powers of 2, the sign changing factor .�1/ N
4 in

(6.95) can be removed, and NJT

M
2

D �NJ M
2

.
In general, between the matrix VM and its transpose the following relation holds:

VM V
T

M D V
T

M VM D 1

2
IM; (6.97)

i.e., the matrices VM are orthogonal. If the matrices VM are properly scaled by the
factor

p
2, then they are orthonormal, their determinant is unity and they have QR

and PLUS factorizations [49, 54]. The scaling factor
p
2 can be simply absorbed

into (6.90).



366 6 Perfect Reconstruction Cosine/Sine-Modulated Filter Banks in the Dolby. . .

6.6.3 Conversion Procedures in the Matrix-Vector Forms

Given the frequency coefficients of the long (MDCT) transform, they can be
converted to the frequency coefficients of two short transforms via the conversion
matrix VM according to

0

B
@

h
c
.�1/
iT

h
c
.C1/
iT

1

C
A D VM cT ; (6.98)

or alternatively, by more practical formulae defined as
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� 1: (6.99)

In order to obtain the true frequency coefficients of two short transforms fc
.�1/

k g and

fc
.C1/

k g, after conversion they have to be scaled by
p
2
2

. Equation (6.99) is valid for
any value of M D N

2
, where N is even integer divisible by 4.

Let the frequency coefficients of two short transforms be given. Using the
orthonormality property of the conversion matrix VM , from (6.98) we directly obtain
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B
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c
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1
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A ; (6.100)

and hence, the frequency coefficients of two short transforms can be converted to
those of the long (MDCT) transform via the transposed conversion matrix V

T

M , or
alternatively, according to the more practical formula defined as
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M
2 �1X

kD0
v
.1/

k;m c
.�1/

k C .�1/kCm v
.1/

M
2 �1�k; N

2 �1�m
c
.C1/

k ; m D 0; 1; : : : ;M � 1:

(6.101)
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Equations (6.98)/(6.100) and (6.99)/(6.101) require M2 multiplications, M.M � 1/

additions and half of the matrix VM (the sub-matrix V
.1/

M
2 �M

), i.e., we need to store
1
2

M2 elements.
The conversion procedures defined in the matrix-vector form are still compu-

tationally intensive and have high memory requirements compared to the stan-
dard conversion methods. Since the conversion matrix after proper scaling is the
orthonormal matrix with very regular general block structure, the open problem
as stated in [29] has to be solved: The existence of a generalized sparse block
matrix factorization of the conversion matrix VM which would define a fast
conversion algorithm. Such generalized sparse block matrix factorization of the
conversion matrix VM indeed exists [32, 33], and is discussed in the following
subsection.

6.6.4 Fast Algorithm for Conversion of Frequency Coefficients

Investigate in detail the explicit forms of conversion matrix VM defined by (6.91)
and scaled by the factor

p
2 for M D 2; 4 and 8. For M D 2 we have
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while for M D 4 the conversion matrix V4 given by
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is factorized into the following matrix product
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The key to the derivation of a fast conversion algorithm is an observation that the
properly scaled factored (block) matrices on the right-hand sides of V2 and V4

matrices are actually the orthonormal DCT-IV matrices C
IV

2 and C
IV

4 , but with lower
and upper halves exchanged (see the rightmost matrices on the right-hand sides of
V2 and V4) when compared with the explicit orthonormal forms of DCT-IV matrices
presented in [49]. For clarity, the explicit forms of orthonormal matrices C

IV

2 and C
IV

4

are, respectively, given by
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Hence, the conversion matrices V2 and V4 may be represented by the following
sparse block matrix factorizations:
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where
p
2 C

IV

1 D 1, and I2 is the identity matrix of order 2. In fact, investigating

the conversion matrix V8 by the same procedure (see the orthonormal matrix C
IV

8

in [49]) we find that it may be represented by the similar sparse block matrix
factorization as
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Hence, for M D 2m; m > 0, scaling VM by
p
2 produces its generalized sparse

block matrix factorization defined as
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Fig. 6.8 Block diagram of
the fast in-place conversion
algorithm
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V

-I
V
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[c ](+1) T

[c ](-1) T

where C
IV

M
2

and C
IV

M are DCT-IV matrices of order M
2

and M, respectively, I M
2

is

the identity matrix of order M
2

, and 00s are null matrices. Equations (6.98) and
(6.102) define the fast conversion algorithm. The corresponding block diagram of
the fast in-place conversion algorithm is shown in Fig. 6.8. Based on the frequency
coefficients of the long (MDCT) transform according to Fig. 6.8, they are at first
transformed by the M-point DCT-IV, then two halves of the output vector are
exchanged and finally, each half is transformed separately by the M

2
-point DCT-IV.

The final frequency coefficients of two short transforms are normalized by the factor
4
N . Note that the memory requirements to store the half of VM matrix are completely
eliminated.

Since the DCT-IV matrices are self-inverse, i.e., C
IV

M D ŒC
IV

M�
�1 D ŒC

IV

M�
T [49], by

transposing (6.102) we obtain the generalized sparse block matrix factorization of
the transposed conversion matrix V
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Equations (6.100) and (6.103) define the fast conversion algorithm to convert
the frequency coefficients of two short transforms to those of the long (MDCT)
transform. It means that the block diagram in Fig. 6.7 is performed in the reverse
direction. The final frequency coefficients of the long (MDCT) transform are
normalized by the factor 4

M .
In general, the arithmetic complexity of the fast conversion algorithm for M D 2m

is given by that of the M-point DCT-IV plus that of two M
2

-point DCTs-IV. Using
the fast algorithm for M-point DCT-IV computation having the lowest achievable
arithmetic complexity [53], the fast conversion algorithm requires M

2
.2m C 3/ real
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multiplications and 3M
2
.2m � 1/ real additions. Compared to the matrix-vector

products given by (6.98) and (6.100) which require M2 multiplications, M.M � 1/

additions, and the memory to store 1
2

M2 elements of VM , the fast conversion
algorithm is superior both in terms of the arithmetic complexity and memory
requirements.

6.6.5 Comparison of Discussed Conversion Methods
and Consequences

The arithmetic complexity and memory requirements of discussed conversion
methods are summarized in Table 6.2. It can be seen that the fast in-place
conversion algorithm is efficient in terms of the arithmetic complexity and mem-
ory requirements. It may be applied to the E-AC-3 to/from AC-3 bit stream
conversion/transcoding directly in the frequency domain without partial decod-
ing/encoding, thus saving more than 50% of total arithmetic operations and
eliminating completely memory requirements compared to the standard conversion
methods. The relationship between the long (MDCT) transform and two short
transforms via the orthonormal conversion matrix guarantees that no errors are
introduced during the E-AC-3 to/from AC-3 bit stream conversion/transcoding.

In summary, the fast algorithm for conversion of frequency coefficients of AC-3
transforms has the following advantages:

• It does not depend on the KBD windowing function.
• It simplifies the implementation of AC-3 analysis and synthesis filter banks in

the encoder and decoder.
• It is efficient in terms of the structural simplicity, arithmetic complexity and

memory requirements.
• Conversion procedures can be realized directly in the frequency domain without

partial decoding and encoding.

Table 6.2 Summary of arithmetic complexity and memory requirements of conversion methods

Conversion method # of real mults # of real adds Memory

Matrix-vector products M2 M.M � 1/ 1
2

M2

Dolby E-AC-3 to AC-3 M
2
.4m C 19/ 3M

2
.4m C 1/ 2M

Dolby AC-3 to E-AC-3

(in the worth case) M
2
.4m C 19/ 3M

2
.4m C 1/ 2M

Dolby AC-3 to E-AC-3

(in the best case) M
2
.3m C 16/ 3M

2
3m 2M

Fast algorithm M
2
.2m C 3/ 3M

2
.2m � 1/ None
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• Although many fast algorithms for the DCT-IV computation are available the
existing AC-3 fast computational modules, i.e., the N

4
-point and M

4
-point forward

complex FFT modules may be simply reused in the conversion procedures.
• It minimizes the amount of partial decoding/encoding and memory requirements

during the conversion and transcoding processes.

6.7 Conversion of the MDCT to MDST Frequency
Coefficients

The MDCT being the long transform in the AC-3 and E-AC-3 and the corre-
sponding modified discrete sine transform (MDST) [21] are perfect reconstruction
cosine/sine-modulated filter banks based on the concept of time domain aliasing
cancellation. The MDCT as the real part and the MDST as the imaginary part
compose a complex filter bank called the modulated complex lapped transform
(MCLT) [44, 48]. Equivalently, the MDCT and MDST can be respectively viewed
as the real and imaginary components of the well-known modified O2DFT [23,
36, 37, 39]. The MCLT carries the magnitude and phase information which are
useful measures in many perceptual audio coders for spectral analysis. Therefore,
the MCLT has been adopted in the current AC-3 and E-AC-3 for spectral adjustment
(extension) and channel coupling [10], in MP3 [45] and MPEG AAC [46, 47] audio
streaming applications for audio packet loss concealment, as well as in MPEG-
2/4 AAC to obtain the spatial parameter representation for stereo and multichannel
audio coding [35, 36]. The construction of MCLT at the encoder is almost trivial
using a fast MCLT algorithm (see Chap. 4). However, at the decoder, when the time
domain samples are not available, the so-called direct transform-based method has
to be applied, i.e., the available frequency representation (MDCT coefficients of
three adjacent blocks) is backwards transformed to reconstruct the time domain
representation and then transformed back to the frequency domain to obtain the
MDST coefficients [10]. Therefore, the key question is how to compute the MDST
coefficients from given MDCT coefficients directly in the frequency domain, or in
other words, how to construct the complex MCLT filter bank from available MDCT
coefficients.

Several methods have been developed [34–38, 40, 41, 43, 45–47] in order to
obtain the MDST coefficients at the decoder directly in the frequency domain
from current and neighboring blocks of MDCT coefficients. Fraunhofer researchers
[40, 41] proposed a method to obtain the approximate MDST coefficients for
the current block as a weighted sum of the surrounding MDCT coefficients. By
using trigonometric identities, simple analytical formulae have been proposed in
[45] to compute the MDST coefficients from three consecutive blocks of MDCT
coefficients. However, analytical formulae are valid only for the rectangular and
sine windowing functions. Using a sophisticated analytical procedure, trigonometric
identities and identities for sums of trigonometric series, Dolby Labs developed
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an exact and approximate method for arbitrary symmetric windowing function
[37, 38]. Exact MDST coefficients for the current block are expressed as the sum
of two modified convolution or filtering operations: the first filtering operation
is performed on the MDCT coefficients of the previous and following blocks,
and the second one is performed on the MDCT coefficients of the current block.
On the other hand, based on the block matrix representation of the MDCT and
MDST filter banks, a relation between the MDCT and MDST coefficients in the
frequency domain has been derived in [43, 46, 47]. The MDST coefficients for
the current block are obtained from three consecutive blocks of MDCT coefficients
via conversion matrices. However, the authors did not investigate the properties of
conversion matrices in detail. A method formulated in the matrix-vector form has
been presented in [35, 36]. Due to applying different windowing functions for the
MDCT and the MDST (the sine windowing function for MDCT and the cosine
windowing function for MDST), the final matrix-vector products are different
compared to [43, 46, 47]. Consequently, the MDST coefficients are approximately
obtained only from previous and following blocks of MDCT coefficients (the current
block is completely eliminated). Recently, a generalized exact and approximate
conversion method of the MDCT to MDST coefficients directly in the frequency
domain has been proposed for arbitrary symmetric windowing function [34]. Based
on the compact block matrix representation of the MDCT and MDST filter banks,
on their properties and on relations among transform sub-matrices, a relation in the
matrix-vector form between the MDCT and MDST coefficients in the frequency
domain is derived. Given MDCT coefficients of three consecutive data blocks at
a decoder, the MDST coefficients of the current data block can be obtained by
combining the MDCT coefficients of the previous, current, and following blocks via
conversion matrices. Because the conversion matrices have a very regular structure,
the matrix-vector products are reduced to simple analytical formulae. We note that
the conversion methods do not disturb the MDCT coefficients at the decoder, i.e.,
the quality of recovered signal is preserved.

Although the exact conversion methods enable us to compute the exact MDST
coefficients only in specified one or more frequency ranges, thus significantly
reducing the computational complexity, the computation of complete set of MDST
coefficients still requires a high number of arithmetic operations compared to the
direct transform-based conversion method. As an alternative, efficient and flexible
approximate conversion methods have been constructed [34, 37]. With properly
selected parameters they can produce acceptable approximate results with much
lower computational complexity. Moreover, they are very flexible to compute
the approximate MDST coefficients in different frequency ranges with different
accuracies including the exact computation. Therefore, the approximate conversion
methods have a potential to be used in many MDCT-based audio decoders, and
particularly at resource-limited and low-cost decoders for spectral analysis to obtain
the magnitude and phase information.

In the following sections several exact and approximate conversion methods of
the MDCT to MDST coefficients in the frequency domain are discussed including
the direct transform-based method, their computational complexity, and memory
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requirements. In general, almost all methods can be adopted in any MDCT-based
audio codec, when the spectral information is required.

6.7.1 Analysis/Synthesis MDCT and MDST Filter Banks

We recall that the analysis and synthesis MDCT filter banks are, respectively,
defined as [14]

c
.t/

k D 4

N

N�1X

nD0
wn x

.t/

n cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; (6.104)

Ox.t/n D wn

N
2 �1X

kD0
c
.t/

k cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

n D 0; 1; : : : ;N � 1; (6.105)

where the superscript t denotes the data-block number, fx
.t/

n g is the input data block,
fc

.t/

k g are MDCT frequency coefficients, and fOx.t/n g is the time domain aliased data
sequence. N is the data block length, assumed to be a multiple of 4. Although fwng
in the AC-3 and E-AC-3 represents the KBD windowing function, in this section
it is assumed to be an arbitrary symmetric windowing function satisfying perfect
reconstruction conditions given by (6.56), and fwng is the same for analysis and
synthesis filter banks. Analytical forms of commonly used symmetric windowing
functions in audio coding applications satisfying (6.56) are discussed in Chap. 3.

The corresponding analysis and synthesis MDST filter banks are, respectively,
defined as [30]
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where fs
.t/

k g are MDST frequency coefficients and fOy.t/n g is the time domain aliased
data sequence.

Since there exists a relation between the MDST and the MDCT [21, 30], the
MDST computation can be realized via any fast MDCT computational structure.
Consequently, in the current AC-3 and E-AC-3 encoder/decoder, the MDST may be
implemented by the adopted reconfigurable complex DFT/FFT-based fast algorithm
with simple pre- and post-processing of data sequences.

The MDCT as the real part and MDST as the imaginary part compose the
complex MCLT filter bank for the tth data block defined as [44, 48]

p
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k D c
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k � i s
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k ; i D p�1; k D 0; 1; : : : ;
N

2
� 1; (6.108)

which is used to compute spectral measures, the magnitude and phase angle. Indeed,
the current AC-3 encoder obtains better spectral power estimation in terms of
improving the fidelity through the power energy summation of the MDCT frequency
coefficients and frequency coefficients of the corresponding MDST. On the other
hand, new coding tools in the E-AC-3 encoder and decoder, spectral adjustment
(extension) and enhanced channel coupling process, require the phase information
for angle adjustment and therefore, besides the MDCT the corresponding MDST is
also generated [10].

6.7.2 Magnitude and Phase Angle of Spectral Coefficients

The magnitude of spectral coefficient p
.t/

k in the tth data block is defined as [37]
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whereas the phase angle '
.t/

k of spectral coefficient p
.t/

k is defined as [37]
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6.7.3 The Direct Transform-Based Method

Given the MDCT coefficients of three consecutive data blocks (the previous, current,
and following) at the decoder, i.e., t�1, t and tC1. According to (6.104) the MDCT
coefficients fc

.t�1/

m g, fc
.t/

m g and fc
.tC1/

m g are, respectively, given by
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The direct transform-based method [37, 38] to compute the exact MDST coefficients
for the current time domain data block t requires three computations of the synthesis
MDCT filter bank given by (6.105), defined as
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2

�
.2m C 1/

	
;

n D 0; 1; : : : ;N � 1; (6.112)

and two overlap-add procedures to recover the current time domain data block fx
.t/

n g
defined as

x
.t/

n D

8
ˆ̂
<

ˆ̂:

Ox.t�1/N
2 Cn

C Ox.t/n ; n D 0; 1; : : : ; N
2

� 1;

Ox.t/n C Ox.tC1/

n� N
2

; n D N
2
; N
2

C 1; : : : ;N � 1;
(6.113)

followed by the analysis MDST filter bank given by (6.106) applied to fx
.t/

n g. For
clarity of the direct transform-based conversion method see Fig. 6.7.

Since the direct transform-based method is a block operation, it yields always
the complete set of exact MDST coefficients for the current data block. In practical
implementations, to simplify computation only one synthesis MDCT filter bank, one
overlap-add procedure and one analysis MDST filter bank are required, provided
that a decoder retained the results of previous two synthesis MDCT filter banks [37].
If we adopt for the data block length N D 2n the most efficient fast MDCT algorithm
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with the arithmetic complexity of N
4
.n C 1/ real multiplications and N

4
.3n � 1/ real

additions (the synthesis MDCT filter bank requires exactly N
2

less real additions)
[21, 30], then the practical implementation of direct transform-based method will
actually require N

2
.n C 5/ real multiplications and N

2
.3n � 1/ real additions. Thus,

for the computation of one unique MDST frequency coefficient the direct transform-
based method will require exactly nC5 real multiplications and 3n�1 real additions,
i.e., totally 4n C 4 arithmetic operations.

Splitting the sum of analysis MDST filter bank given by (6.106) into two parts as

s
.t/

k D 4

N

N
2 �1X

nD0
wn x

.t/

n sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	

C 4

N

N�1X

nD N
2

wn x
.t/

n sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; (6.114)

and then substituting expressions of the overlap-add procedures from the right-hand
sides of (6.113) into both sums for x

.t/

n in (6.114) we get

s
.t/

k D 4

N

N
2 �1X

nD0
wn .Ox.t�1/N

2 Cn
C Ox.t/n / sin

�
�
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�
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�
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2
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n� N
2
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�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1: (6.115)

Finally, substituting proper expressions for the terms Ox.t�1/N
2 Cn

, Ox.t/n and Ox.tC1/

n� N
2

from the

right-hand sides of (6.112) into (6.115), i.e., substituting N
2

C n and n � N
2

for n into
appropriate sum of (6.112), we obtain

s
.t/
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N

N
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2 �1X

mD0
.�1/mC1 c

.t�1/

m sin

�
�

2N

�
2n C 1C N

2

�
.2m C 1/

	
9
=

;
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�
�

2N

�
2n C 1C N

2

�
.2k C 1/
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C 4
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=

;
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�
�

2N

�
2n C 1C N

2

�
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; k D 0; 1; : : : ;

N

2
� 1: (6.116)

Equation (6.116) provides the basis for the derivation of two frequency domain-
based conversion methods [45] and [37, 38] which are discussed in the next
subsections.

6.7.4 Conversion Method for the Rectangular and Sine
Windowing Functions

Simple analytical formulae have been proposed in [45] to compute the exact MDST
coefficients of the current time domain data block t from three consecutive blocks
of MDCT coefficients fc

.t�1/

m g, fc
.t/

m g and fc
.tC1/

m g. However, analytical formulae are
valid only for the rectangular and sine windowing functions.

Taking Eq. (6.116), adjusting the range of n in the last two sums from N
2
; N
2

C
1; : : : ;N � 1 to 0; 1; : : : ; N

2
� 1, using the trigonometric identities for products

sin.˛/ sin.ˇ/, cos.˛/ sin.ˇ/, cos.˛/ cos.ˇ/, and finally exchanging the order of
sums, after some algebraic manipulations the conversion method is defined by [45]

s
.t/
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c
.t/

0 � c
.t/
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�
C

N
2 �1X

mD0
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N
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m ; for k D 0;

s
.t/

k D e
�

c
.t/

k�1 � c
.t/

kC1
�

C
N
2 �1X

mD0
.�1/m fk;m c

.t�1/

m C .�1/k
N
2 �1X

mD0
gk;m c

.tC1/

m ;
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k D 1; 2; : : : ;
N

2
� 2;

s
.t/

N
2 �1 D e

�
c
.t/

N
2 �1 C c

.t/

N
2 �2
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N
2 �1X

mD0
.�1/m f N

2 �1;m c
.t�1/

m

�
N
2 �1X

mD0
g N
2 �1;m c

.tC1/

m ; for k D N

2
� 1: (6.117)

The real-valued constant e, and real-valued elements of ffk;mg, fgk;mg are, respec-
tively, defined as [45]

e D 2
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�

2N

�
2n C 1C N

2

�
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	�
; k;m D 0; 1; : : : ;

N

2
� 1: (6.118)

For the sine windowing function the arithmetic complexity of conversion method
defined by (6.117) is given by N

2
.N C 1/ multiplications and the same number of

additions. The precomputed values e, ffk;mg and fgk;mg in (6.118) require a memory
to store N2

2
C 1 real values. Notice that for rectangular windowing function the

constant e D 0, and hence the MDST coefficients do not depend on the current
block of MDCT coefficients.

6.7.5 Dolby Conversion Method

The Dolby conversion method [37, 38] for arbitrary symmetric windowing function
has been derived by a sophisticated analytical procedure using the trigonometric
identities and identities for sums of trigonometric series. Principally, the derivation
of exact conversion method is similarly based on Eq. (6.116).

In the following only analytical formulae of the Dolby exact conversion method
in a compact form are presented. All intermediate steps in the derivation of
conversion method and details in the form of lemmas with their proofs as well as
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possible simplifications for the rectangular and sine windowing functions can be
found in [37, 38].

Keeping up the original notation used in [37, 38], the exact even-indexed MDST
coefficients are given by

s
.t/

2k D a2k C b2k D
N�1X

pD0
z
.1/

p h
.1/

2k�p C
N
2 �1X

qD0
z
.2/

2qC1 h
.2/

2k�.2qC1/; k D 0; 1; : : : ;
N

2
� 1;

(6.119)
where

a2kC1 D aN�2�2k; b2kC1 D bN�2�2k; k D 0; 1; : : : ;
N

4
� 1: (6.120)

The spectral components fz
.1/

p g and fz
.2/

2qC1g are, respectively, defined by

z
.1/

p D .�1/pC1 c
.t�1/

p C c
.tC1/

p ; p D 0; 1; : : : ;N � 1; (6.121)

z
.2/

2qC1 D c
.t/

2qC1; q D 0; 1; : : : ;
N

2
� 1: (6.122)

The precomputed discrete sequences fh
.1/

p g and fh
.2/

2qC1g are, respectively, defined by

h
.1/

p D 2

N

N
2 �1X

nD0
wn w N

2 Cn cos

�
�

N

�
2n C 1C N

2

�
p

	
; h

.1/

�p D h
.1/

p ;

p D 0; 1; : : : ;N � 1; (6.123)

h
.2/

2qC1 D 4

N

N
2 �1X

nD0
w
2

n sin

�
�

N

�
2n C 1C N

2

�
.2q C 1/

	
; h

.2/

�.2qC1/ D �h
.2/

2qC1;

q D 0; 1; : : : ;
N

2
� 1: (6.124)

Note that fh
.2/

2qC1g is defined only in odd values. The odd-indexed MDST coefficients
are deduced from even symmetry properties of MDST coefficients [21] as

s
.t/

2kC1 D s
.t/

N�2�2k; k D 0; 1; : : : ;
N

2
� 1: (6.125)
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The discrete sequence fh
.1/

p g given by (6.123) has the odd anti-symmetry property:

h
.1/

N�p D �h
.1/

p ; p D 1; 2; : : : ;
N

2
� 1; (6.126)

while the discrete sequence fh
.2/

2qC1g given by (6.124), has the even symmetry
property:

h
.2/

N�.2qC1/ D h
.2/

2qC1; q D 0; 1; : : : ;
N

2
� 1: (6.127)

The Dolby exact conversion method consists of two parts. Equation (6.119) may be
interpreted as a summation of two modified convolution or filtering operations of
two discrete symmetric sequences fh

.1/

p g and fh
.2/

2qC1g with two sets of intermediate

spectral components fz
.1/

p g and fz
.2/

2qC1g derived from previous, current and following

blocks of MDCT coefficients. Since discrete sequences fh
.1/

p g and fh
.2/

2qC1g depend
on the employed symmetric windowing function, their analytical expressions
are further simplified by the sophisticated analytical procedures for two specific
windowing functions, rectangular and sine [37, 38]. In particular, for the rectangular
windowing function the discrete sequence fh

.2/

2qC1g reduces to zero, i.e., h
.2/

2qC1 D 0,

for q D 0; 1; : : : ; N
2

� 1, and hence the MDST coefficients do not depend on the
current block of MDCT coefficients. For the sine windowing function, the discrete
sequence fh

.1/

p g is nonzero only for two values of p.

6.7.5.1 Computational Complexity and Memory Requirements

The arithmetic complexity of Dolby exact conversion method for the rectangular
windowing function is N

4
.N C2/multiplications, N

4
.N C4/ additions, and it requires

a memory for 3N
2

values. For the sine windowing function N
4
.N C6/multiplications

and N
4
.N C8/ additions are required, and memory for 2N C N

4
values. Exploiting the

symmetry properties of fh
.1/

p g and fh
.2/

2qC1g, the exact conversion method for KBD

windowing function requires N
4
.3N � 2/ multiplications, N

4
3N additions and the

memory for 2N C N
4

values.

6.7.6 Generalized Conversion Method Based on the Compact
Block Matrix Representation

A generalized conversion method of the MDCT to MDST coefficients directly in
the frequency domain has been proposed in [34] for arbitrary symmetric windowing
function. Based on the compact block matrix representation of the MDCT and
MDST filter banks, on their properties and on relations among transform sub-
matrices, a relation in the matrix-vector form between the MDCT and MDST
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coefficients in the frequency domain is derived. Given MDCT coefficients of three
consecutive data blocks at a decoder, the MDST coefficients of the current data
block can be obtained by combining the MDCT coefficients of the previous,
current, and following blocks via conversion matrices. Since the forms of conversion
matrices depend on the employed windowing function, a specific solution for
each windowing function is derived. Because the conversion matrices have a
very regular structure, the matrix-vector products are reduced to simple analytical
formulae. The generalized conversion method [34] presented in the next subsections
is more efficient and structurally simpler both in terms of arithmetic complexity
and memory requirements compared to existing exact frequency domain-based
conversion methods.

It is important to note that in the next subsections the data-block number t is also
used as the subscript in vector notations.

6.7.6.1 Matrix Representations of MDCT and MDST Filter Banks

Consider the MDCT and MDST filter banks given by (6.104)/(6.105) and
(6.106)/(6.107), respectively. Matrix representations of the analysis/synthesis
MDCT filter banks or equivalently, of the forward/backward long AC-3 transform
with incorporated windowing function are presented in Sect. 6.4.2, whereas the
symmetry properties of row basis vector of matrix C N

2 �N are discussed in Sect. 6.4.4.
Let the sine transform kernel in the analysis MDST filter bank (6.106) be

represented by a matrix S N
2 �N with elements

fS N
2 �Ngk;n D sin

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; n D 0; 1; : : : ;N � 1: (6.128)

Note that the kth row basis vector of the matrix S N
2 �N exhibits even symmetry in its

first half and even anti-symmetry property in its second half [30]. The sine transform
kernel in the synthesis MDST filter bank (6.107) is represented by the matrix S

T

N
2 �N

,

where T denotes transposition. The analysis/synthesis MDST filter banks given by
(6.106)/(6.107) can be respectively represented in the equivalent matrix-vector form
as [30]

s
T

t D 4

N
S N
2 �N WN x

T

t ; OyT

t D WN S
T

N
2 �N

s
T

t ; (6.129)

where the matrix WN is given by (6.55), and x
T

t , s
T

t , OyT

t are appropriate column
vectors. Based on the matrix representation of the MDST it was shown in [50] that

the transposed MDST matrix
h
S N
2 �N

iT
denoted by S

C

N� N
2

is the pseudoinverse of its
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corresponding forward transform matrix. Hence, the forward and backward MDST
block transforms are actually the pseudoinverse pair (see Appendix A.1). In fact, for
products of the matrix S N

2 �N and its pseudoinverse, S
C

N� N
2

, the following relations

hold:

S N
2 �N S

C

N� N
2

D N

2
I N
2
; (6.130)

and

S
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N� N
2
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4
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1
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2

C J N
2

0

0 I N
2

� J N
2

!

; (6.131)

where I N
2

is the identity matrix, J N
2

is the reverse ordered identity matrix both of

order N
2

, and 00s are null matrices.
We recall that there exists a close relation between MDCT and MDST matrices

[30]. Actually, the matrix S N
2 �N is related to C N

2 �N by

S N
2 �N D .�1/ N

4 J N
2

C N
2 �N DN ; (6.132)

where DN is a diagonal odd sign-changing matrix of order N defined as DN D
diagf1;�1; 1; : : : ;�1g. For clarity, the matrix S N

2 �N in explicit form for N D 8 is
given by

S4�8 D

0

BBBBBBBBB
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16
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16
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CCCCCCCCC
A

:

6.7.6.2 Relations Among MDCT and MDST Sub-Matrices

Now, let the matrices C N
2 �N given by (6.58) and S N

2 �N given by (6.128) be split into
the following two blocks:

C N
2 �N D

�
K N

2
L N

2

�
; S N

2 �N D
�

P N
2

Q N
2

�
; (6.133)
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where K N
2

, L N
2

, P N
2

and Q N
2

are square nonsingular matrices of order N
2

. Splitting
the matrices C N

2 �N and S N
2 �N into two blocks plays a key role in the derivation of a

relation between MDCT and MDST coefficients directly in the frequency domain.
Based on the relation (6.132), the matrix pairs K N

2
, P N

2
and L N

2
, Q N

2
are closely

related as

P N
2

D .�1/ N
4 J N

2
K N

2
D N

2
;

Q N
2

D .�1/ N
4 J N

2
L N

2
D N

2
; (6.134)

where the elements of K N
2

and L N
2

are given by (6.75). According to (6.134) the
elements of P N

2
and Q N

2
are, respectively, given by
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;

k; n D 0; 1; : : : ;
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2
� 1: (6.135)

Then, the pseudoinverse matrices C
C

N� N
2

and S
C

N� N
2

(or transposed versions of C N
2 �N

and S N
2 �N) are, respectively, given by

C
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A ; S
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N� N
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A ; (6.136)

and the row vectors of K N
2
=L N

2
and P N

2
=Q N

2
become the column vectors of K

C

N
2

=L
C

N
2

and P
C

N
2

=Q
C

N
2

.

6.7.6.3 Relation Between MDCT and MDST Coefficients
in the Frequency Domain

Consider the windowing and overlap-add procedure at the decoder to reconstruct

the current time domain data block t denoted by xt D
h
x
.1/

t x
.2/

t

i
, where x

.1/

t is the

first half and x
.2/

t is the second half of xt. Since the MDCT filter bank satisfies the
perfect reconstruction constraints in the overlapped parts of three consecutive blocks

t � 1, t and t C 1, the tth current time domain data block xt D
h
x
.1/

t x
.2/

t

i
can be

perfectly reconstructed by the windowing and overlap-add procedures formulated
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in the matrix-vector form as follows:

h
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tC1: (6.137)

On the other hand, using (6.55), (6.129) and (6.133) the MDST coefficients in tth
data block can be expressed in the matrix-vector form as

s
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t D 4
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�
: (6.138)

Equations (6.137) and (6.138) represent the direct transform-based conversion
method in the matrix-vector representation to compute the exact MDST coefficients
of the current time domain data block t if the MDCT coefficients of three
consecutive blocks t � 1, t and t C 1 are given.

In order to obtain a relation between MDCT and MDST coefficients directly in
the frequency domain, substituting expressions from (6.137) for Œx

.1/

t �
T and Œx

.2/

t �
T

into the right-hand side of (6.138) we have
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where
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2

L
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; (6.140)

are nonsingular square matrices of order N
2

. Equations (6.139) and (6.140) define
the relation among the MDST coefficients of the current time domain data block t
and the MDCT coefficients of three consecutive blocks t � 1, t and t C 1. Square
matrices U N

2
, V N

2
and G N

2
C H N

2
are called conversion matrices.

The same relation between the MDCT and MDST coefficients in the frequency
domain defined by (6.139) and (6.140) has been obtained in [43, 46, 47]. However,
the authors did not further investigate the properties of conversion matrices in detail.
On the other hand, a relation between the MDCT and MDST coefficients in the
matrix-vector form presented in [35, 36] is based on applying different windowing
functions for the MDCT and the MDST, specifically, the sine windowing function
for MDCT and the cosine windowing function for MDST. Consequently, the final
matrix-vector products are different compared to (6.139) and (6.140), and MDST
coefficients are approximately obtained only from previous and following blocks of
MDCT coefficients (the current block is completely eliminated).
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As the first step in the derivation of the generalized conversion method for
arbitrary symmetric windowing function, we shall investigate the elements of
matrices U N

2
, V N

2
and G N

2
C H N

2
in detail. Actually, the conversion matrices have

very regular structure and possess interesting symmetry properties which can be
used to reduce the matrix-vector products in (6.139) to simple general analytical
formulae with minimal memory requirements.

6.7.6.4 Conversion Matrices U N
2

, V N
2

and Their Properties

Using (6.57), (6.75), (6.135), and (6.136), and performing the scalar products of
row/column vectors, the corresponding elements of matrices U N

2
and V N

2
in (6.139)

and (6.140) are, respectively, given by

u N
2 �1�k;m D 4

N

N
4 �1X

nD0
2 wn w N

2 �1�n .�1/nC N
4 cos�n;k cos n;m;

v N
2 �1�k;m D 4

N

N
4 �1X

nD0
2 w N

2 �1�n wn .�1/nC N
4 cos n;k cos�n;m;

k; m D 0; 1; : : : ;
N

2
� 1; (6.141)

where �n;p D �
2N

�
2n C 1C N

2


.2p C 1/ and  n;p D �

2N

�
2n C 1C 3N

2


.2p C 1/ for

p D k and m. Since

cos n;p D .�1/pC1 sin�n;p; (6.142)

then, substituting N
2

� 1 � p for p into the sine term in (6.142) we get the following
trigonometric identity:

cos n; N
2 �1�p D .�1/p .�1/nC N

4 cos�n;p: (6.143)

Using (6.142) and (6.143) for p D k and m we can rewrite (6.141) into the final
form as

u N
2 �1�k; N

2 �1�m D .�1/m 4

N

N
4 �1X

nD0
2 wn w N

2 �1�n cos�n;k cos�n;m;
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vk;m D .�1/k 4
N

N
4 �1X

nD0
2 wn w N

2 �1�n cos�n;k cos�n;m;

k; m D 0; 1; : : : ;
N

2
� 1: (6.144)

From (6.144), it can be easily seen that the elements of U N
2

and V N
2

are the same
in magnitude except for their proper sign changes and reverse ordering. Indeed, the
elements uk;m are related to vk;m and vice versa by

uk;m D .�1/kCm v N
2 �1�k; N

2 �1�m;

vk;m D .�1/kCm u N
2 �1�k; N

2 �1�m;

k; m D 0; 1; : : : ;
N

2
� 1: (6.145)

Further, between the elements above and under the main diagonal of U N
2

and V N
2

we can observe the following symmetries:

uk;m D .�1/kCm um;k;

vk;m D .�1/kCm vm;k; k ¤ m; k < m;

k; m D 0; 1; : : : ;
N

2
� 1: (6.146)

If we would realize the matrix-vector products U N
2

c
T

t�1 and V N
2

c
T

tC1 in (6.139), then
from (6.145) it follows that it is sufficient to use only one of the matrices U N

2
and

V N
2

. Let the conversion matrix V N
2

be precomputed according to (6.144). Equation
(6.146) implies that only the upper triangular part of V N

2
including elements on the

main diagonal must be stored, i.e., we need totally N
8
.N C 2/ elements. However,

the memory requirements can be further minimized as follows.
Using the trigonometric identity 2 cos�n;k cos�n;m D cos .�n;k C �n;m/ C

cos .�n;k � �n;m/, the elements vk;m in (6.144) can be written as

vk;m D .�1/k 4
N

N
4 �1X

nD0
wn w N

2 �1�n cos

�
�

N

�
2n C 1C N

2

�
.k C m C 1/

	
C

.�1/k 4
N

N
4 �1X

nD0
wn w N

2 �1�n cos

�
�

N

�
2n C 1C N

2

�
.k � m/

	
;

k; m D 0; 1; : : : ;
N

2
� 1: (6.147)
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Let us define the following discrete sequence ffsg by

fs D 4

N

N
4 �1X

nD0
wn w N

2 �1�n cos

�
�

N

�
2n C 1C N

2

�
s

	
;

f�s D fs; s D 0; 1; : : :N � 1; (6.148)

whose values depend on the block length and a specific windowing function. It can
be easily verified that the discrete sequence ffsg possesses the odd anti-symmetry
property given by

fN�s D � fs; s D 1; 2; : : : ;
N

2
� 1; and f N

2
D 0: (6.149)

Then, Eq. (6.147) can be written in the simplified form as

vk;m D .�1/k .fkCmC1 C fk�m/; k; m D 0; 1; : : : ;
N

2
� 1: (6.150)

Finally, substituting N
2

�1�k for k and N
2

�1�m for m in (6.150) and using (6.145)
after some algebraic manipulations, the elements uk;m are given by

uk;m D .�1/m .fkCmC1 � fk�m/; k; m D 0; 1; : : : ;
N

2
� 1: (6.151)

The symmetry properties given by (6.145) and (6.146) can be easily derived from
(6.147) using its representation via ffsg. Equations (6.150) and (6.151) indicate the
following important fact. For given k; m, the elements vk;m and uk;m can be generated
by combining values fkCmC1 and fk�m of the discrete sequence ffsg. Thus, if we use
the odd anti-symmetry property of ffsg given by (6.149), then we need to store only
N
2

elements instead of N
8
.N C 2/.

It is interesting to compare Eqs. (6.151) and (6.150) with elements ffk;mg and
fgk;mg, respectively, defined in (6.118). Except for sign changes, they are equivalent.
However, the authors in their conversion method [45] observed neither the symmetry
properties of conversion matrices nor the discrete sequence ffsg and its symmetry
property which reduce the memory requirements significantly.

6.7.6.5 Conversion Matrix G N
2

C H N
2

and Its Properties

Similarly, using (6.57), (6.75), (6.135), and (6.136), and performing the scalar
products of row/column vectors, the elements of matrix G N

2
C H N

2
in (6.139) and

(6.140) denoted by .g C h/k;m are given by
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.g C h/ N
2 �1�k;m D 4

N

N
2 �1X

nD0
.�1/nC N

4

�
w
2

n cos�n;k cos�n;m

Cw
2

N
2 �1�n

cos n;k cos n;m

�
;

k; m D 0; 1; : : : ;
N

2
� 1: (6.152)

Compared to the conversion matrix V N
2

, the derivation of a general close form of
G N

2
C H N

2
is somewhat more complicated. Firstly, using (6.142) for p D k and m,

subsequently substituting N
2

�1�n for n in (6.152) and using trigonometric identities

cos� N
2 �1�n;p D � cos�n;p; sin� N

2 �1�n;p D sin�n;p; (6.153)

for p D k and m, Eq. (6.152) can be written as

.g C h/ N
2 �1�k;m D 4

N

N
4 �1X

nD0

.�1/nC N
4

�
w
2

n � w
2

N
2 �1�n

�

�
cos�n;k cos�n;m � .�1/kCm sin�n;k sin�n;m


;

k; m D 0; 1; : : : ;
N

2
� 1: (6.154)

Then, by substituting N
2

�1�k for k into (6.154), and using trigonometric identities

cos�n; N
2 �1�k D .�1/nC N

4 sin�n;k; sin�n; N
2 �1�k D .�1/nC N

4 cos�n;k; (6.155)

Eq. (6.154) takes the following form

.g C h/k;m D 4

N

N
4 �1X

nD0

�
w
2

n � w
2

N
2 �1�n

� �
sin�n;k cos�n;m C .�1/kCm cos�n;k sin�n;m


;

k; m D 0; 1; : : : ;
N

2
� 1: (6.156)

Applying trigonometric identities to the terms sin�n;k cos�n;m and cos�n;k sin�n;m

in (6.156), and by using

sin

�
�

N

�
2n C 1C N

2

�
.k C m C 1/

	

D .�1/ kCm
2 cos

�
�.2n C 1/

N
.k C m C 1/

	
; when .k C m/ is even;
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sin

�
�

N

�
2n C 1C N

2

�
.k � m/

	

D .�1/ k�m�1
2 cos

�
�.2n C 1/

N
.k � m/

	
; when .k C m/ is odd;

(6.157)

we finally obtain a general close form of G N
2

C H N
2

defined as

.g C h/k;m D 4

N

N
4 �1X

nD0

8
ˆ̂̂
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂:

�
w
2

n � w
2

N
2 �1�n

�
.�1/ kCm

2 cos
h
�.2nC1/

N .k C m C 1/
i
;

.k C m/ is even;

�
w
2

n � w
2

N
2 �1�n

�
.�1/ k�m�1

2 cos
h
�.2nC1/

N .k � m/
i
;

.k C m/ is odd;

(6.158)

for k; m D 0; 1; : : : ; N
2

� 1. Note that w
2

n � w
2

N
2 �1�n

D
�

wn C w N
2 �1�n

�

�
wn � w N

2 �1�n

�
< 0 for n D 0; 1; : : : ; N

4
� 1.

The conversion matrix G N
2

C H N
2

has interesting symmetry properties. Specifi-
cally, between the elements in the upper/left and lower/right half of G N

2
C H N

2
the

following symmetries can be observed:

.gCh/k;m D .�1/kCm.gCh/ N
2 �1�k; N

2 �1�m; k; m D 0; 1; : : : ;
N

2
�1; (6.159)

while between the elements under and above the main/opposite main diagonal of
G N

2
C H N

2
the following symmetries can be observed:

.g C h/k;m D .�1/kCm.g C h/m;k; k ¤ m; k < m; k; m D 0; 1; : : : ;
N

2
� 1:

(6.160)

After we realize the matrix-vector product
�

G N
2

C H N
2

�
c

T

t in (6.139), it is sufficient

to store either only the upper half or only the upper triangular part of G N
2

C H N
2

including elements on the main diagonal, i.e., totally either N2

8
or N

8
.NC2/ elements,

respectively. However, we shall see that the memory requirements may be reduced
to N

4
as follows.

Let us derive the elements of G N
2

C H N
2

in the explicit form according to
Eq. (6.158). There are two cases:

1. If k C m is even, then it can be written as k C m D 2q, q D 0; 1; : : : ; N
4

� 1, and
the elements .g C h/k;m are given by
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.g C h/k;m D 4

N

N
4 �1X

nD0

�
w
2

n � w
2

N
2 �1�n

�
.�1/q cos

h�
N
.2n C 1/.2q C 1/

i
;

q D 0; 1; : : : ;
N

4
� 1: (6.161)

Additionally, substituting N
2

� 1 � k for k and N
2

� 1 � m for m in (6.158) when
k C m is even, we have

.g C h/k;m D .g C h/ N
2 �1�m; N

2 �1�k; k C m is even: (6.162)

2. If kCm is odd, then k�m is also odd and it can be written as k�m D ˙.2qC1/,
q D 0; 1; : : : ; N

4
� 1, and the elements .g C h/k;m are given by

.g C h/k;m D 4

N

N
4 �1X

nD0

8
ˆ̂̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂̂
:

�
w
2

n � w
2

N
2 �1�n

�
.�1/q cos

�
�
N .2n C 1/.2q C 1/

�
;

if k > m;

�
w
2

n � w
2

N
2 �1�n

�
.�1/q�1 cos

�
�
N .2n C 1/.2q C 1/

�
;

if k < m;

(6.163)

q D 0; 1; : : : ;
N

4
� 1:

Equations (6.161), (6.162), and (6.163) directly imply that the matrix G N
2

C H N
2

contains only N
4

unique elements in magnitude. Denoting them by ˇq, based on
(6.161) they are defined as

ˇq D .�1/q 4
N

N
4 �1X

nD0

�
w
2

n � w
2

N
2 �1�n

�
cos

�
�

4.N=4/
.2n C 1/.2q C 1/

	
;

q D 0; 1; : : : ;
N

4
� 1: (6.164)

Values of fˇqg again depend on the block length and on a specific windowing
function. Equation (6.164) corresponds to an N

4
-point DCT-IV of fw

2

n � w
2

N
2 �1�n

g.

In general, the forms of conversion matrices V N
2

and G N
2

C H N
2

depend on the
employed symmetric windowing function. The unique elements of V N

2
are given

by (6.150), and the unique elements of G N
2

C H N
2

are given by (6.164). Since the
conversion matrices have the very regular structure, the matrix-vector products in
(6.139) can be reduced to simple analytical formulae.
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6.7.6.6 General Analytical Formulae of the Exact Conversion Method

With respect to (6.139) let us divide the matrix-vector products into two parts as

s
.t/

k D ak C bk; k D 0; 1; : : : ;
N

2
� 1; (6.165)

where the terms ak and bk are, respectively, defined as

ak D
N
2 �1X

mD0
uk;m c

.t�1/

m C vk;m c
.tC1/

m ; (6.166)

bk D
N
2 �1X

mD0
.g C h/k;m c

.t/

m ; k D 0; 1; : : : ;
N

2
� 1: (6.167)

6.7.6.7 General Analytical Formula for the Computation of ak

According to (6.150) and (6.151), and replacing the index m by p, the computation
of ak given by (6.166) can be written as

ak D
N
2 �1X

pD0
.�1/p .fkCpC1 � fk�p/ c

.t�1/

p C .�1/k .fkCpC1 C fk�p/ c
.tC1/

p

D
N
2 �1X

pD0

h
.�1/p c

.t�1/

p C .�1/k c
.tC1/

p

i
fkCpC1 �

h
.�1/p c

.t�1/

p � .�1/k c
.tC1/

p

i
fk�p;

k D 0; 1; : : : ;
N

2
� 1: (6.168)

Finally, considering indices k in (6.168) separately for even and odd values, i.e., for
2k and 2k C 1, respectively, we obtain the analytical formulae for the computation
of ak as

a2k D
N
2 �1X

pD0

h
.�1/p c

.t�1/

p C c
.tC1/

p

i
f2kCpC1 �

h
.�1/p c

.t�1/

p � c
.tC1/

p

i
f2k�p;

a2kC1 D
N
2 �1X

pD0

h
.�1/p c

.t�1/

p � c
.tC1/

p

i
f2kCpC2 �

h
.�1/p c

.t�1/

p C c
.tC1/

p

i
f2kC1�p;

k D 0; 1; : : : ;
N

4
� 1; (6.169)
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where data sequences f.�1/p c
.t�1/

p C c
.tC1/

p g and f.�1/p c
.t�1/

p � c
.tC1/

p g for p D
0; 1; : : : ; N

2
� 1 are precomputed requiring N additions. Since f�s D fs note that

f2k�p D fj2k�pj when 2k � p < 0, and f2kC1�p D fj2kC1�pj when 2k C 1 � p < 0.
Subscript indices 2k C p C 1, 2k C p C 2, j2k � pj and j2k C 1 � pj satisfy the
following conditions: 2kCpC1 2 f1; 2; : : : ;N �2g, 2kCpC2 2 f2; 3; : : : ;N �1g,
j2k � pj and j2k C 1 � pj 2 f0; 1; : : : ; N

2
� 1g. In general, for arbitrary symmetric

windowing function, exploiting the fact that f2kCpC1 D 0 when 2k C p C 1 D N
2

, or
f2kCpC2 D 0, when 2kCpC2 D N

2
, the analytical formula (6.169) requires N

2
.N �1/

multiplications, N
2

N additions and needs the memory to store 3N
2

values. However,
for the rectangular and sine windowing functions, the arithmetic complexity of the
computation of a2k and a2kC1 given by (6.169) can be further reduced by identifying
additional zeroth values of the discrete sequence ffsg as follows.

Substituting the analytical form of rectangular windowing function into (6.148),
the discrete sequence ffsg is given by

fs D 2

N

N
4 �1X

nD0
cos

�
�

N

�
2n C 1C N

2

�
s

	
; s D 0; 1; : : :N � 1: (6.170)

Based on the identity for the sum of trigonometric series defined as

N
4 �1X

nD0
cos

�
�

N

�
2n C 1C N

2

�
2r

	
D 0; jrj D 1; 2; : : : ;

N

2
� 1; (6.171)

it can be seen that by substituting s D 2r in (6.170) and using the identity (6.171),
the terms f2r D 0 for r D 1; 2; : : : ; N

2
� 1 including the case f N

2
D 0. For the

rectangular windowing function the discrete sequence ffsg has N
4

additional zero
values. Therefore, in the computation of ak for indices k; p satisfying 2k C p C 1 D
2k C p C 2 D j2k � pj D j2k C 1 � pj D 2r; r D 1; 2; : : : ; N

2
� 1 (excluding the

case f N
2

D 0), N
2

�
N
2

� 2 multiplications and the same number of additions may be
saved.

Similarly, substituting the analytical form of sine windowing function into
(6.148) and using trigonometric identity after some algebraic manipulations, the
discrete sequence ffsg is given by

fs D 2

N

N
4 �1X

nD0
sin

�
�.2n C 1/

N

	
cos

�
�

N

�
2n C 1C N

2

�
s

	
; s D 0; 1; : : :N � 1:

(6.172)
Based on the identity for the sum of trigonometric series defined as
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N
4 �1X

nD0
sin

�
�.2n C 1/

N

	
cos

�
�

N

�
2n C 1C N

2

�
.2r C 1/

	
D 0;

r D 1; 2; : : : ;
N

2
� 2; (6.173)

by substituting s D 2r C 1 into (6.172) and using the identity (6.173), the terms
f2rC1 D 0 for r D 1; 2; : : : ; N

2
� 2. For the sine windowing function the discrete

sequence ffsg has also N
4

additional zero values. Hence, in the computation of ak for
indices k; p satisfying 2k C p C 1 D 2k C p C 2 D j2k � pj D j2k C 1 � pj D
2r C 1; r D 1; 2; : : : ; N

2
� 2, similarly, N

2
.N
2

� 2/ multiplications and the same
number of additions may be saved.

6.7.6.8 Analytical Formulae for the Computation of bk

The computation of bk given by (6.167) can also be further optimized for the specific
windowing function in terms of the number of multiplications and memory require-
ments. Indeed, it follows immediately for the rectangular windowing function from
the general analytical close form (6.158) that the matrix G N

2
C H N

2
is null matrix,

and therefore bk D 0 for 8 k. It means that bk does not depend at all on the MDCT
coefficients of the current data block.

By exploiting the special structure of matrix G N
2

C H N
2

, specific analytical
formulae for (and in general, for any symmetric windowing function), and the sine
windowing function are derived separately in the following subsections.

A. Analytical Formulae for the KBD Windowing Function

The analytical form of KBD windowing functions is relatively complicated, and
consequently, the expression w

2

n � w
2

N
2 �1�n

in (6.158) is also relatively complicated.

Therefore, numerical values only are used. Exploiting the special structure of
matrix G N

2
C H N

2
containing only N

4
unique elements in magnitude, bk given by

(6.167) for KBD (and in general, for any symmetric windowing function) can be
realized as
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bk D
N
8 �1X

qD0

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂̂
:

ˇq

�
c
.t/

2q�k � c
.t/

2qC1Ck

�
C ˇ N

4 �1�q

�
c
.t/

N
2 �2�2q�k

� c
.t/

N
2 �1�2qCk

�
;

if 2q � k 	 0; and 2q C 1C k < N
2

� 1;

ˇq

�
c
.t/

k�2q�1 � c
.t/

2qC1Ck

�
C ˇ N

4 �1�q

�
c
.t/

N
2 �2�2q�k

C c
.t/

N
2 C2q�k

�
;

if 2q � k < 0; and 2q C 1C k � N
2

� 1;

ˇq

�
c
.t/

k�2q�1 C c
.t/

N�2�2q�k

�
C ˇ N

4 �1�q

�
c
.t/

k� N
2 C1C2q

C c
.t/

N
2 C2q�k

�
;

otherwise;

(6.174)

for k D 0; 1; : : : ; N
2

� 1, where multipliers ˇq are given in (6.164). If N
4

is even, the
analytical formula (6.174) requires N

2
N
4

multiplications and N
2

�
N
2

� 1 additions,
and needs the memory to store N

4
values.

If N
4

is odd, then for fixed value of the index q D 1
2

�
N
4

� 1 we need additionally
to compute

b0
k D ˇq

�
c
.t/

2q�k � c
.t/

2qC1Ck

�
;

b0
N
2 �1�k D ˇq

�
c
.t/

2q�k C c
.t/

2qC1Ck

�
; k D 0; 1; : : : ;

N

4
� 1; (6.175)

and add the results to appropriate terms bk. This requires N
2

multiplications and N
additions.

B. Analytical Formula for the Sine Windowing Function

Analytical form of the sine windowing function is simple and the expression w
2

n �
w
2

N
2 �1�n

is equal to � cos �.2nC1/
N in (6.158). Analysis of the general close form of

G N
2

C H N
2

is based on Eqs. (6.161), (6.162), (6.163) and (6.164), and an identity for
the sum of trigonometric series which is defined by

N
4 �1X

nD0
cos

h�
N
.2n C 1/ 2r

i
D 0; jrj D 1; 2; : : : ;

N

2
� 1: (6.176)

Let us derive the elements fˇqg given in (6.164) in the explicit form for the sine
windowing function. Then, we have
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ˇq D .�1/qC1 4
N

N
4 �1X

nD0
cos

h�
N
.2n C 1/

i
cos

h�
N
.2n C 1/.2q C 1/

i
;

q D 0; 1; : : : ;
N

4
� 1: (6.177)

Consider two cases in (6.177), specifically, q D 0 and q > 0:

1. If q D 0, then using the trigonometric identity cos2 ˛ D 1
2
.1 C cos 2˛/ and the

identity (6.176) we get

ˇ0 D � 4

N

N
4 �1X

nD0
cos2

h�
N
.2n C 1/

i
D � 4

N

N
4 �1X

nD0

�
1

2
C 1

2
cos

h�
N
.2n C 1/ 2

i�

D � 4

N

0

@
N
4 �1X

nD0

1

2
C 1

2

N
4 �1X

nD0
cos

h�
N
.2n C 1/ 2

i
1

A D � 4

N

N

8
D �1

2
: (6.178)

2. If q > 0, then using the trigonometric identity for cosine products and the identity
(6.176), we get

ˇq D 4

N
.�1/qC1

N
4 �1X

nD0

1

2

�
cos

h�
N
.2n C 1/ 2q

i

C cos
h�

N
.2n C 1/ 2.q C 1/

i�
D 0;

q D 1; 2; : : : ;
N

4
� 1: (6.179)

Equations (6.178) and (6.179) imply that only ˇ0 D � 1
2

is nonzero. This defines
the nonzero elements of G N

2
C H N

2
for which k C m D 0 in equations (6.161) and

(6.162), and the elements for which k C m is odd and k � m D ˙1 in Eq. (6.163),
i.e.,

.g C h/0;0 D .g C h/ N
2 �1; N

2 �1 D �1
2
;

.g C h/kC1;k D �1
2
; .g C h/k;kC1 D 1

2
;

k D 0; 1; : : : ;
N

2
� 2: (6.180)

As a result, for the sine windowing function the matrix G N
2

C H N
2

corresponds to a
tridiagonal matrix defined as
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G N
2

C H N
2

D

0

BBBBBB
BBBBBB
BBB
@

� 1
2

1
2
0 : : : 0

� 1
2

0 1
2

0 : : : 0

0 � 1
2
0 1

2
0 : : : 0

:::
:::

:::

0 : : : 0 � 1
2

0 1
2

0

0 : : : 0 � 1
2

0 1
2

0 : : : 0 � 1
2

� 1
2

1

CCCCCC
CCCCCC
CCC
A

; (6.181)

and bk given by (6.167) can be realized as

bk D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

� 1
2

�
c
.t/

0 � c
.t/

1

�
when k D 0;

� 1
2

�
c
.t/

k�1 � c
.t/

kC1
�

when k D 1; 2; : : : ; N
2

� 2;

� 1
2

�
c
.t/

N
2 �2 C c

.t/

N
2 �1

�
when k D N

2
� 1:

(6.182)

The analytical formula (6.182) requires N
2

multiplications (they can be implemented
as shift operations) and N

2
additions. Unlike the rectangular windowing function,

bk for the sine windowing function is dependent on the MDCT coefficients of the
current data block. However, since the tridiagonal matrix G N

2
C H N

2
defined by

(6.181) is sparse, the dependence is relatively small.
A family of sine squared windowing functions for harmonic analysis has been

analyzed in [42]. They can be written in a general analytical form as

wn D ˛ � .1 � ˛/ cos
�.2n C 1/

N
; n D 0; 1; : : : ;N � 1: (6.183)

Equation (6.183) for ˛ D 1
2

defines the Hann windowing function (see also [2],
p. 107), and for ˛ � 0:54 it defines the Hamming windowing function. Both
windowing functions are special cases of the Blackman windowing function [42].
We easily find that the expression w

2

n � w
2

N
2 �1�n

D �4˛.1 � ˛/ cos �.2nC1/
N .

In particular, when ˛ D 1
2

the expression w
2

n � w
2

N
2 �1�n

is the same as for sine

windowing function, and hence, based on (6.178) for the Hann windowing function
we obtain the same solution ˇ0 D � 1

2
. For the Hamming windowing function,

ˇ0 D 2˛.1� ˛/, where ˛ � 0:54, and the tridiagonal structure of G N
2

C H N
2

is also
preserved for it.
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6.7.6.9 Computational Complexity and Memory Requirements

The generalized conversion method for arbitrary symmetric windowing function
defined by (6.165), (6.169), (6.174), (6.175), and (6.182) is valid for any value of
N divisible by 4. Let the discrete sequence ffsg given by (6.148) be precomputed
for s D 0; 1; : : : ; N

2
� 1. Similarly, let the data sequences f.�1/p c

.t�1/

p C c
.tC1/

p g
and f.�1/p c

.t�1/

p � c
.tC1/

p g be precomputed for p D 0; 1; : : : ; N
2

� 1. Then, the exact
MDST coefficients are computed for the specific symmetric windowing function as
follows:

• For the rectangular windowing function we use only formula (6.169) requiring
totally N

4
.N C 2/ multiplications, N

4
.N C 4/ additions and the memory for 3N

2

values.
• For the sine windowing function we use formulae (6.169) and (6.182) requiring

totally N
4
.N C 2/ multiplications, N

2
shifts, N

4
.N C 8/ additions and the memory

for 3N
2

values.
• Finally, for the KBD windowing function we use formulae (6.169) and (6.174),

where multipliers ˇp are given by (6.164). When N
4

is even, formulae (6.169)
and (6.174) require totally N

4

�
5N
2

� 2 multiplications, N
4
3N additions and the

memory for 3N
2

C N
4

values. If N
4

is odd, then we use additionally formula (6.175)
requiring N

2
multiplications and N additions.

6.7.6.10 Comparison of Exact Conversion Methods

The generalized exact conversion method for sine windowing function and the
existing method for audio packet loss concealment in MP3 decoder [45] (see
Sect. 6.7.4) are actually equivalent in terms of analytical expressions, although they
have been derived by different procedures. Indeed, for the sine windowing function
the constant e in (6.118) coincides with the element .g C h/0;0 D � 1

2
or with the

multiplier ˇ0 D � 1
2

in (6.178). Similarly, two-dimensional arrays ffk;mg and fgk;mg
in (6.117) with proper sign changes coincide with conversion matrices U N

2
and V N

2
,

respectively. However, because the authors in [45] observed neither the symmetry
properties of ffk;mg and fgk;mg nor the discrete sequence ffsg given by (6.148) and its
symmetry property, the efficiency of generalized exact conversion method for the
sine windowing function is superior both in terms of the arithmetic complexity and
memory requirements compared to [45] (see Table 6.3).

In principle, the generalized conversion method is similar to the Dolby con-
version method [37, 38], although both methods have been derived by quite
different procedures. The exact MDST coefficients in the current data block are
expressed as linear combinations of previous, current, and following blocks of
MDCT coefficients. While the Dolby conversion method has been derived by a
sophisticated analytical procedure using the trigonometric identities and identities
for sums of trigonometric series, the generalized conversion method is based on
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Table 6.3 Comparison of the arithmetic complexity and memory requirements of the frequency
domain-based conversion methods for the exact computation of the complete set of MDST
coefficients for commonly used windowing functions

Method Windowing function # of mults # of adds Memory

[45] Only sine N
2
.N C 1/ N

2
.N C 1/ N2

2

[37, 38] Sine N
4
.N C 6/ N

4
.N C 8/ 2N C N

4

[37, 38] KBD N
4
.3N � 2/ N

4
3N 2N C N

4

[34] Sine N
4
.N C 2/ N

4
.N C 8/ 3 N

2

[34] KBD N
4
. 5N
2

� 2/ N
4
3N 3 N

2
C N

4

the compact block matrix representation of the MDCT and MDST filter banks
and detailed investigation of the symmetry properties of conversion matrices in
corresponding matrix-vector products.

In general, both the Dolby and generalized conversion methods consist of two
parts. Although the resulting analytical formulae for the computation of fakg=fa2kg
and fbkg=fb2kg seem to be different (compare Eqs. (6.169), (6.174) with (6.119)
and (6.120)), they give exactly the same numerical results. In fact, Eq. (6.169)
corresponds to the first sum in (6.119), while Eq. (6.174), (6.175) for the KBD
windowing function and Eq. (6.182) for the sine windowing function correspond
to the second sum in (6.119). Further, the discrete sequence fh

.1/

p g given by (6.123)
coincides with ffpg given by (6.148), and the discrete sequence fˇqg given by (6.164)

coincides with the first half of elements of the discrete sequence fh
.2/

2qC1g given

by (6.124). Note that f N
2

D 0 and hence, h
.1/

N
2

D 0. In particular, comparing the

second sum in (6.119) with Eq. (6.182) for the sine windowing function reveals that
only two nonzero values of fh

.2/

2qC1g are equal to ˙ 1
2

(ˇ0 D � 1
2
). It means that

the multiplicative complexity of Dolby conversion method can be further reduced.
The arithmetic complexity and memory requirements for rectangular windowing
function are the same in both methods.

It can be seen from Table 6.3 that the generalized conversion method for the
exact MDST computation is better both in terms of arithmetic complexity and
memory requirements. The achieved reduced multiplicative complexity in gener-
alized conversion method for the KBD and sine windowing functions compared to
the Dolby conversion method is based on the fact that the formulae (6.174) and
(6.182) for the computation of fbkg directly incorporate the symmetry property of
fh

.2/

2qC1g by combining pairs of MDCT coefficients multiplied by the same value

of ˇq or equivalently by h
.2/

2qC1. Further, in generalized conversion method for
the sine windowing function the formula (6.182) for the computation of fbkg is
simpler and more elegant compared to the Dolby conversion method. Comparison
of the arithmetic complexity and memory requirements of the frequency domain-
based conversion methods for the exact computation of the complete set of
MDST coefficients for commonly used windowing functions, when N

4
is even, is
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summarized in Table 6.3. One can see that the generalized conversion method is
more efficient both in terms of arithmetic complexity and memory requirements,
compared to exact frequency domain-based conversion methods.

6.7.7 Efficient and Flexible Approximate Generalized
Conversion Methods

The exact MDST coefficients of the current time domain data block in the Dolby
conversion method are expressed in terms of linear combinations of exact MDCT
coefficients of previous, current, and following blocks. In [37, 38] the general form
of exact conversion method for arbitrary windowing function defined by (6.119)–
(6.125) has been used to construct an approximate conversion method.

The construction is based on two important properties of discrete sequences
fh

.1/

p g defined by (6.123) and fh
.2/

2qC1g defined by (6.124). Since both fh
.1/

p g and

fh
.2/

2qC1g are symmetric and decay relatively quickly, each discrete sequence may
be truncated to significantly shorter length. Exploiting these properties, the general
form of exact conversion method defined by (6.119)–(6.125) has been rewritten to
form the approximate conversion method which uses simply the truncated versions
of fh

.1/

p g and fh
.2/

2qC1g in convolution operations defined by (6.119). Consequently,
an approximation of MDST coefficients is obtained with much lower complexity.
In general, the longer the truncated versions of discrete sequences, the higher
the computational complexity and the more accurate the approximated MDST
coefficients.

In order to specify the computational complexity and to enable a performance
analysis of the approximate conversion method [37, 38], an optional parameter has
been defined: the total number of nonzero coefficients or taps (denoted by ntapstotal)
to be used in both of the truncated versions fh

.1/

p g and fh
.2/

2qC1g. Specifically, values
of ntapstotal D 5; 13; 19 and 25 have been selected to investigate the approximate
conversion method. The selection and distribution of these taps between discrete
sequences fh

.1/

p g and fh
.2/

2qC1g depend on their decaying rates. The inspection reveals

that for increasing indices the discrete sequence fh
.2/

2qC1g decays faster than fh
.1/

p g. It

means that fh
.1/

p g is more dominant in the approximate computation and therefore,

more taps have to be allocated to fh
.1/

p g than to fh
.2/

2qC1g. The number of taps allocated

to fh
.1/

p g and fh
.2/

2qC1g is denoted by ntapsI;III and ntapsII , respectively, whereby
ntapstotal D ntapsI;III C ntapsII determines the computational complexity of Dolby
approximate conversion method [37, 38].

In order to investigate and compare the Dolby approximate conversion method
with an approximate version of generalized conversion method in a unified frame-
work, let us define two new optional parameters pmax and qmax and relate them
to ntapsI;III , ntapsII , and ntapstotal. Taking into account the symmetry properties
of fh

.1/

p g and fh
.2/

2qC1g, let pmax denote the maximal value of the subscript index

p for which values of fh
.1/

p g, p D 0; 1; : : : ; pmax, are involved in the approximate
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computation of a
�

2k in (6.119), whereby pmax 2 f0; 1; : : : ; N
2

� 1g. Similarly, let qmax

denote the maximal value of the subscript index q for which values of fh
.2/

2qC1g,

q D 0; 1; : : : ; qmax � 1, are involved in the approximate computation of b
�

2k in
(6.119), whereby qmax 2 f1; 2; : : : ; N

4
g. Then, pmax and qmax are related to ntapsI;III ,

ntapsII and ntapstotal by

ntapsI;III D 2pmax C 1; ntapsII D 2qmax;

ntapstotal D 2pmax C 1C 2qmax; (6.184)

and the distribution of taps ntapsI;III and ntapsII between fh
.1/

p g and fh
.2/

2qC1g,
respectively, is related to

pmax D 2qmax C 1; (6.185)

i.e., approximately two times more taps are allocated to ntapsI;III compared to
ntapsII . Choosing pmax D N

2
� 1 and qmax D N

4
� 1 corresponds to the Dolby

exact conversion method.
Since the discrete sequence ffpg coincides with fh

.1/

p g and the discrete sequence

fˇqg coincides with the first half of fh
.2/

2qC1g, following the approach of [37, 38] we
can construct the approximate method [34] from the generalized exact conversion
method defined by (6.169) and (6.174). Let pmax and qmax be given. At first, in the
approximate computation of a

�

k according to (6.169) those values of f2kCpC1, f2k�p,
f2kCpC2 and f2kC1�p are involved, whose subscript indices satisfy: 2k C p C 1; 2k C
p C 2; j2k � pj; j2k C 1� pj � pmax. On the other hand, since the discrete sequence
fˇqg decays very fast, for larger block sizes the multipliers ˇ N

4 �1�q in (6.174) may

be neglected, and (6.174) for the approximate computation of b
�

k can be rewritten in
the simplified form as follows:

b
�

k D
qmax�1X

qD0

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

ˇq

�
c
.t/

2q�k � c
.t/

2qC1Ck

�
; if 2q � k 	 0; and 2q C 1C k < N

2
� 1;

ˇq

�
c
.t/

k�2q�1 � c
.t/

2qC1Ck

�
; if 2q � k < 0; and 2q C 1C k � N

2
� 1;

ˇq

�
c
.t/

k�2q�1 C c
.t/

N�2�2q�k

�
; otherwise;

k D 0; 1; : : : ;
N

2
� 1: (6.186)

With respect to (6.174), qmax 2 f1; 2; : : : ; N
8
g, i.e., qmax has half range compared to

that of the Dolby approximate method. Further, it is important to note that although
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the Dolby and generalized approximate method defined by quite different formulae,
for given pmax and qmax both approximate methods generate the same algebraic
expressions.

6.7.7.1 Computational Analysis

In order to quantify the computational complexity of the generalized conversion
method including Dolby approximate method for completeness, expressions in
terms of optional parameters pmax and qmax are derived specifying the average
total number of arithmetic operations required per unique MDST coefficient for
several different 2n length blocks and the different total number of taps ntapstotal D
7; 13; 19; 25 specified in [37]. Then, the computational complexity of approximate
conversion methods for the complete set of MDST coefficients is compared to that
of the direct transform-based method.

A. Arithmetic Complexity of the Dolby Approximate Conversion Method

The average total number of arithmetic operations required per unique MDST
coefficient by the Dolby approximate method in terms of optional parameters pmax,
qmax is given by

1. Computation of fz
.1/

p g
given by (6.121): 2 adds on average

2. Computation of a
�

2k in
(6.119): .2pmax C 1/ mults 2pmax adds

3. Computation of b
�

2k in
(6.119): 2qmax mults .2qmax � 1/ adds

4. Computation of a
�

2k C b
�

2k: 1 add
2pmax C 1C 2qmax 2pmax C 2qmax C 2 adds
mults

The total number of
operations: 4pmax C 4qmax C 3

Thus derived arithmetic complexity per unique MDST coefficient in terms of
pmax and qmax coincides with that derived in [37]. Table 6.4 summarizes the
arithmetic complexity of the Dolby approximate method in terms of the average
total number of operations required per unique MDST coefficient for ntapstotal D
7; 13; 19; 25, whereas Table 6.5 summarizes the arithmetic complexity in terms of
the total number of operations required for the complete set of MDST coefficients
for different 2n length blocks and ntapstotal D 7; 13; 19; 25.
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Table 6.4 The arithmetic complexity in terms of the average number of total operations required
per unique MDST coefficient by the Dolby approximate method for ntapstotal D 7; 13; 19; 25,
and generalized approximate method for ntapstotal D 6; 11; 16; 21

Total # of taps ntapsI;III of ntapsII of Value Value # of # of Total # of

(ntapstotal) fh
.1/

p g=ffpg fh
.2/

2qC1g=fˇqg of pmax of qmax mults adds operations

7/6 5 2/1 2 1 7/6 8 15/14

13/11 9 4/2 4 2 13/11 14 27/25

19/16 13 6/3 6 3 19/16 20 39/36

25/21 17 8/4 8 4 25/21 26 51/47

Table 6.5 The arithmetic complexity in terms of the total number of operations required for the
complete set of MDST coefficients for different 2n length blocks by the practical direct transform-
based method, Dolby approximate method for ntapstotal D 7; 13; 19; 25, and generalized
approximate method for ntapstotal D 6; 11; 16; 21

2n-length Direct Dolby method Generalized method

blocks method 7/15 13/27 19/39 25/51 6/14 11/25 16/36 21/47

128 2048 960 1728 2496 3264 896 1600 2304 3008

256 4608 1920 3456 4992 6528 1792 3200 4608 6016

512 10240 3840 6912 9984 13056 3584 6400 9216 12032

1024 22258 7680 13824 19986 26112 7168 13280 18432 24064

2048 49152 15360 27648 39936 52224 14336 25600 36864 48128

From Table 6.4, it can be observed that the Dolby approximate method for obtain-
ing the complete set of MDST coefficients requires fewer arithmetic operations
than the direct transform-based method for most combinations of block sizes and
specified ntapstotal. Furthermore, the advantage of the Dolby approximate method
increases over the direct transform-based method as the block size increases [37]. In
a specific case of the sine windowing function, since the values of discrete sequence
fh

.1/

p g coincide with those of ffpg (see Eqs. (6.172) and (6.173)), the values h
.1/

2rC1 D 0

for r D 1; 2; : : : ; N
2

� 2. ntapsII is always equal to 2 for any value of ntapstotal, and
therefore, ntapstotal D ntapsI;III C 2. Consequently, for a fixed ntapstotal more taps
are allocated to ntapsI;III , and proper identifying of the values h

.1/

2rC1 D 0 results in
further reduction of the total number of arithmetic operations.

B. Arithmetic Complexity of General Approximate Conversion Method

The average total number of arithmetic operations required per unique MDST
coefficient by the generalized approximate method in terms of optional parameters
pmax and qmax is given by
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1. Computation of
f.�1/p c

.t�1/

p C c
.tC1/

p g: 1 add on average
2. Computation of

f.�1/p c
.t�1/

p � c
.tC1/

p g: 1 add on average
3. Computation of a

�

k in
(6.168): .2pmax C 1/ mults 2pmax adds

4. Computation of b
�

k given
by (6.186): qmax mults .2qmax � 1/ adds

5. Computation of a
�

k C b
�

k : 1 add
2pmax C 1C qmax 2pmax C 2qmax C 2 adds
mults

The total number of
operations: 4pmax C 3qmax C 3

Table 6.4 summarizes the arithmetic complexity of the generalized approximate
method in terms of the average total number of operations required per unique
MDST coefficient for ntapstotal D 6; 11; 16; 21. Comparing the expressions for
arithmetic complexity per unique MDST coefficient of the Dolby and generalized
approximate method, one can see that to obtain the same approximated MDST coef-
ficient, generalized approximate method requires lower number of multiplications
with less total number of ntapstotal and hence, less total number of operations than
the Dolby approximate method. The achieved reduced multiplicative complexity
is based on the fact that (6.186) for the computation of fb

�

k g directly incorporates

the symmetry property of fh
.2/

2qC1g by combining pairs of MDCT coefficients
multiplied by the same value of ˇq. Consequently, since ffpg is more dominant
in the approximate computation than fˇqg, increasing the number of taps for ffpg
in generalized approximate method for the same value of ntapstotal will lead to
obtaining the approximated MDST coefficient with higher accuracy, while the total
number of required operations is approximately the same compared to the Dolby
approximate method.

Table 6.5 summarizes the arithmetic complexity in terms of the total number of
operations required for the complete set of MDST coefficients by the generalized
approximate method for different 2n-length blocks and ntapstotal D 6; 11; 16; 21.
It can be observed that the generalized approximate method requires significantly
lower total number of operations than the Dolby approximate method and direct
transform-based methods for almost all combinations of block sizes, as well as lower
number of ntapstotal. This advantage is more apparent over the Dolby approximate
and direct transform-based methods as the block size increases. The advantage
is even more evident for the sine windowing function. In this specific case, the
computation of fbkg is realized by (6.182) requiring one multiplication by 1

2
and two

additions per unique MDST coefficient. Then, for a fixed ntapstotal exact identifying
of the values fp D 0 (see Eqs. (6.172) and (6.173)) results in a significant reduction
of the total number of arithmetic operations. The memory requirements of the
generalized approximate conversion method are the same as for the exact conversion
method.
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6.7.7.2 Performance Analysis

The performance of Dolby approximate conversion method has been analyzed
in [37] by measuring the difference between the exact and approximate spectral
components, magnitudes defined by (6.109) and phase angles defined by (6.110),
for different block lengths, windowing functions, source signals, and accuracy
specifications in terms of ntapstotal. In this performance analysis, special attention
was given to ntapstotal parameter because it provides the best control over the
behavior of the approximate method. The exact spectral components were computed
using the exact MDCT and exact MDST, while approximate spectral components
were computed using the exact MDCT and approximate MDST. The source input
signal has been modeled either as a noise source being the white noise uniformly
distributed between �32767 and C32768, or as a sinusoidal source being 1440:324
Hz sine wave having the amplitude of 32768. To be more general, the source
signals have been normalized to < �1; 1 > range. In simulations 512-point
analysis/synthesis KBD windowing function applied to the noise source signal has
been used, as a typical application for the AC-3 (E-AC-3) audio coding standard
[10], and 2048-point analysis/synthesis sine windowing function applied to the
sinusoidal source signal, as a typical application for the MPEG AAC audio coding
standard [3].

The performance analysis of Dolby approximate method has involved measuring
the difference between the exact and approximate spectral components by investi-
gating [37]:

• The accuracy of approximation for ntapstotal shown in Table 6.2. Simulations
have shown that the approximation of spectral components is improved as
ntapstotal increases. While for ntapsvtotal D 7 the approximation is fairly poor,
for ntapstotal 	 19 the errors are small enough and obtained approximation may
be acceptable for some audio codec configurations, while saving considerable
computational power at the decoder.

• The effects of a longer block size, different source signal, and different windowing
function on the quality of approximation. Simulations have shown that errors are
distributed relatively evenly across the spectra both for the noise and sinusoidal
sources, with only a few isolated frequency coefficients having larger errors.

• The error statistics of approximation (average, maximum, median, and variance)
for different source signals and all combinations of block sizes and ntapstotal.
Simulations have shown that for increasing ntapstotal in general, all error statistics
decrease. The block length does not seem to have a predictable effect on the error
statistics.

One can find in [37] all detailed results of experiments.
Since the discrete sequence ffpg coincides with fh

.1/

p g and the discrete sequence

fˇqg coincides with the first half of fh
.2/

2qC1g, the above brief summary of perfor-
mance analysis is also valid for the generalized approximate conversion method
[34]. The performance analysis of generalized approximate method involved also
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measures the difference between the exact and approximate spectral components. In
contrast to [37], for 512-point KBD windowing function applied to the same noise
source signal, additionally the following problems have been investigated [34]:

• Effects of the distribution of taps between ffpg and fˇqg and their impact on the
accuracy of approximation by measuring the average, maximum, and root-mean-
square (RMSE) errors for a given ntapstotal. The error statistics of approximate
spectral components have been measured for various combinations of allocated
taps pmax and qmax. It was observed that for ntapstotal D 19 and 20, fixing the
number of ffpg taps (pmax) and increasing the number of fˇqg taps (qmax), the
error statistics significantly decreased compared to those for ntapstotal D 18,
i.e., the approximation accuracy has improved significantly. On the other hand,
by increasing the number of ffpg taps (pmax) while fixing the number of fˇqg
taps (qmax), the error statistics remain similar, but both are significantly higher.
This indicates that the distribution of taps for ntapstotal D 18; 19; 20 has
considerable impact on the accuracy of the approximation method. However,
for increasing ntapstotal > 20 almost all error statistics decrease smoothly. It
was also shown that the Dolby approximate method with ntapstotal D 25 and
generalized approximate method with ntapstotal D 21 give exactly the same error
statistics. It means that the approximate spectral components computed by the
generalized approximate method with almost the same computational complexity
are obtained with higher accuracy.

• Decaying rates of ffpg and fˇqg for different block lengths and different
windowing functions. In general, proper selection and distribution of taps depend
on the decaying rates of discrete sequences ffpg and fˇqg whose values depend
on the block length and employed windowing function. As an example, the first
ten elements of ffpg and fˇqg for 512-point KBD windowing function are shown
in Table 6.6.

In order to get an insight into decaying rates of ffpg and fˇqg, the following
simple and useful experiment was carried out. For each windowing function
and block length were searched for such indices pmax and qmax for which the
elements of both sequences ffpg, where p � pmax, and fˇqg, where q < qmax,

Table 6.6 The first ten
elements of ffpg and fˇqg for
512-point KBD windowing
function

p, q ffpg fˇqg
0 1.933E-001 �5.914E-001

1 �1.729E-001 �1.079E-001

2 1.228E-001 �1.793E-002

3 �6.796E-002 �1.429E-003

4 �8.512E-003 �2.302E-005

5 2.065E-003 �3.022E-008

6 �6.588E-004 �8.216E-009

7 2.045E-004 1.098E-008

8 1.604E-005 �3.151E-009

9 �3.921E-006 �1.539E-009
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have a magnitude greater than a pre-specified constant. Thus, for the approximate
method values pmax and qmax will determine truncation limits or the number
of allocated taps to ffpg and fˇqg, respectively, when higher accuracy of the
approximate spectral components is required. For the KBD windowing function
and constants 10�5 and 10�6, the values of pmax and qmax do not change for
different block lengths in contrast to the sine windowing function. This explains
the behavior of the approximation method in terms of accuracy by specific
distribution of the taps between ffpg and fˇqg for 512-point KBD windowing
function and ntapstotal D 18; 19; 20. Experimental results confirm the conclu-
sion given in [37] that the decay rates of ffpg and fˇqg for different windowing
functions are influenced by the increased frequency resolution property of a
specific windowing function. The better frequency resolution of the windowing
function, the faster is the decay rate of ffpg and fˇqg. We recall that the taps
in the Dolby approximate method [37] are distributed according to Eq. (6.185),
i.e., approximately two times more taps are allocated to ntapsI;III than to ntapsII .
Indeed, it was observed that for KBD windowing function and the constant 10�5
approximately two times more taps are allocated to ffpg than to fˇqg. However,
for the constant 10�6 approximately three times more taps are allocated to ffpg
than to fˇqg for higher accuracy. For the sine windowing function and increasing
block length, it is interesting to note the changing values of pmax. They seem to
approach a constant value [34].

One can find in [34] all detailed results of experiments. However, three essential
open problems still remain to be solved:

1. Why the decaying rates of ffpg and fˇqg for the KBD windowing function do not
depend on the block length? An asymptotic investigation of the behavior of ffpg
and fˇqg as the block length goes to the infinity has to be carried out. Note that
even/odd terms of ffpg given by (6.148) and fˇqg given by (6.164) can be written
in the following equivalent forms as

f2q D .�1/q 4
N

N
4 �1X

nD0
wn w N

2 �1�n cos
h�

N
.2n C 1/2q

i
;

f N
2 �1�2q D .�1/q 4

N

N
4 �1X

nD0
.�1/nwn w N

2 �1�n cos
h�

N
.2n C 1/.2q C 1/

i
;

q D 0; 1; : : : ;
N

4
� 1;

ˇq D .�1/q 4
N

N
4 �1X

nD0
.wn C w N

2 �1�n/.wn � w N
2 �1�n/

� cos
h�

N
.2n C 1/.2q C 1/

i
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2. Why fˇqg generally decays faster than ffpg?
3. Given pmax and qmax, can the approximation accuracy be estimated? Such a

formula would be very useful for the approximate conversion method in real
audio applications.

Compared to the direct transform-based method, the approximate conversion
methods for approximation of spectral components at the decoder have the follow-
ing advantages:

• With properly selected parameters pmax and qmax they can produce acceptable
approximate results, while saving considerable computational power particularly
at resource-limited and low-cost decoders.

• They are very flexible to compute the approximate MDST coefficients in different
frequency bands with different accuracies including the exact computation.

6.8 Summary

The perfect reconstruction cosine/sine-modulated filter banks used in the Dolby AC-
3 and E-AC-3 audio coding standards have been discussed, specifically, definitions
of the analysis/synthesis AC-3 filter banks, their general symmetry properties both
in the time and frequency domains, and their efficient unified implementations with
corresponding signal flow graphs. The efficient unified implementations of AC-
3 transforms are compared in terms of computational complexity and structural
simplicity. Matrix representations of AC-3 filter banks, their properties, and rela-
tions among transform (sub-)matrices provided the basis to derive relations between
the frequency coefficients and the time domain aliasing data sequences of AC-
3 transforms, and in particular, the derivation of the fast conversion algorithm of
frequency coefficients of AC-3 transforms directly in the frequency domain for
efficient E-AC-3 to AC-3 bit stream conversion and AC-3 to E-AC-3 bit stream
transcoding. The fast conversion algorithm is compared with standard conversion
methods in terms of computational complexity and memory requirements. Finally,
exact and approximate conversion methods of the MDCT to MDST frequency
coefficients, or equivalently the methods for construction of complex MCLT filter
bank directly in the frequency domain have been presented. Exact and approximate
conversion methods are compared in terms of computational complexity, structural
simplicity, and memory requirements.

Problems and Exercises

1. Based on Eqs. (6.5), (6.6), and (6.7) for a given block size N, write a computer
program to generate the KBD windowing function with variable parameter ˇ.
If it is possible, display the graph of generated KBD windowing function for
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the selected parameter ˇ. Note that the modified zeroth order Bessel function
given by (6.7) converges rapidly after several iterations for a given argument
and accuracy.

2. In the AC-3 and E-AC-3 encoder/decoder, the KBD windowing procedure is
realized via lookup tables before/after the forward/backward long (MDCT)
transform computation (standard method). Following the approach described in
Chap. 5 for MP3 audio coding standard, construct a fast analysis MDCT filter
bank (including the forward long transform with incorporated KBD windowing
and overlap procedures), and a fast synthesis MDCT filter bank (including the
backward long transform with incorporated KBD windowing, overlap, and add
procedures). Draw corresponding general compact computational structures
and verify them by a computer program. Finally, compare the arithmetic
complexity of standard method with the implemented fast analysis/synthesis
MDCT filter banks.

3. Consider Eqs. (6.14) and (6.15) for n D m defining the fast DCT-IV-based
algorithm for the forward first short transform computation. Further, consider
Eqs. (6.38) and (6.39) defining the forward first short transform in the unified
form of forward long (MDCT) transform. When we adopt the DCT-IV-based
fast MDCT algorithm given by (6.27) or (6.28), and (6.29) for its efficient
computation, whereby N D M and n D m, show that the data sequences fy

.c/

m g
in (6.15) and fy

.�1/

m g in (6.39) are equivalent.
4. Similarly, consider Eqs. (6.23) and (6.24) for n D m defining the fast DCT-IV-

based algorithm for the forward second short transform computation. Further,
consider Eqs. (6.40) and (6.41) defining the forward second short transform
in the unified form of forward long (MDCT) transform. When we adopt the
DCT-IV-based fast MDCT algorithm given by (6.27) or (6.28), and (6.29) for
its efficient computation, whereby N D M and n D m, show that the data
sequences fy

.s/

m g in (6.24) and fy
.C1/

m g in (6.41) are equivalent.
5. Implement the computation of forward first short transform derived in the

unified form of forward long (MDCT) transform given by (6.38) and (6.39)
and the computation of forward second short transform derived in the unified
form of forward long (MDCT) transform given by (6.40) and (6.41), via a fast
DCT-IV-based MDCT computational structure.

6. Implement the alternate computation of forward/backward first and second
short transforms via the modified fast MDCT computational structure discussed
in Sect. 6.3.3, and verify Eqs. (6.48), (6.49) and (6.51), (6.52).

7. Implement the alternate computation of forward/backward first and second
short transforms by the modified fast GDFT-IV computational structure dis-
cussed in Sect. 6.3.4.

8. In the E-AC-3 encoder after the time-to-frequency transformation of successive
overlapped audio blocks, six blocks of MDCT coefficients are packed and
transformed by the DCT-II resulting in the block of 1536 coefficients. In the
E-AC-3 decoder, this block of DCT-II coefficients is inverted by the inverse
DCT-II, DCT-III. The block length is a composite number, i.e., 1536 D 29 � 3.
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Implement the efficient DCT-II/DCT-III computation for the composite lengths
2n � 3; n > 0. The even-length fast recursive DCT-II algorithm is presented in
Appendix C.1.1, whereas the required efficient optimized 3-point DCT-II/DCT-
III modules are presented in Appendix D.4.

9. Verify the products of the matrix C N
2 �N and its pseudoinverse, C

C

N� N
2

, given by

(6.61) and (6.62) for N D 4 and 8.

10. Verify the products of matrix C
.1/

M
2 �M

and its pseudoinverse,
h
C
.1/

M� M
2

iC
, given by

(6.68) and (6.69), as well as the products of matrix C
.2/

M
2 �M

and its pseudoinverse,
h
C
.2/

M� M
2

iC
, given by (6.68) and (6.70), for M D 4 and 8.

11. Prove the symmetry properties of row basis vectors of matrices C N
2 �N , C

.1/

M
2 �M

and C
.2/

M
2 �M

defined by (6.71), (6.72) and (6.73), respectively.

12. Prove Eqs. (6.79) and (6.80).
13. Derive Eq. (6.84) using Eqs. (6.81), (6.82), and (6.83).
14. Investigate the regular general block structure of conversion matrix VM defined

by (6.95) for M D 4 and 8.
15. Verify the orthogonality property of conversion matrix VM defined by (6.97)

for M D 4 and 8, and then its orthonormality property.
16. Implement the fast algorithm for conversion of frequency coefficients of AC-3

transforms defined by (6.98), (6.102) and (6.100), (6.103).
17. From (6.116) derive the conversion method of MDCT to MDST coefficients

defined by (6.117) and (6.118) for rectangular and sine windowing functions.
18. Implement by a computer program the conversion method defined by (6.117)

and (6.118) for rectangular and sine windowing functions. Investigate the real-
valued constant e, and real-valued elements of ffk;mg and fgk;mg for rectangular
and sine windowing functions.

19. Implement the Dolby exact conversion method defined by (6.119)–(6.124) for
commonly used symmetric windowing functions.

20. Verify the products of the matrix S N
2 �N and its pseudoinverse, S

C

N� N
2

, given by

(6.130) and (6.131) for N D 4 and 8.
21. Based on (6.137) and (6.138) derive the relation between MDCT and MDST

coefficients in the frequency domain defined by (6.139) and (6.140).
22. Using (6.57), (6.75), (6.135), and (6.136), derive the elements fuk;mg and fvk;mg

of conversion matrices U N
2

and V N
2

, respectively, in (6.141) and then derive
(6.144) from (6.141). Similarly, derive the elements fvk;mg in (6.147) from
(6.144).

23. Verify the relation between the elements fuk;mg and fvk;mg given by (6.145), and
their symmetry properties given by (6.146) for N D 4 and 8.

24. Using (6.57), (6.75), (6.135), and (6.136), derive the elements f.g C h/k;mg of
conversion matrix G N

2
C H N

2
in (6.152) and derive (6.154) from (6.152). Then,

derive the general close form of G N
2

C H N
2

given by (6.158) from (6.154).
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25. Verify the symmetry properties of elements f.g C h/k;mg given by (6.159) and
(6.160) for N D 4 and 8.

26. Try to generalize the conversion method defined by (6.117) and (6.118) for
arbitrary symmetric windowing function. Hint: Instead of the real-valued
constant e, consider the terms fek;mg. Then, investigate real values of fek;mg,
ffk;mg and fgk;mg for commonly used symmetric windowing functions.

27. Implement by a computer program the generalized exact conversion method
defined by (6.165), (6.169), (6.174), (6.175), and (6.182) for commonly used
symmetric windowing functions.

28. Consider the computation of spectral measures, the magnitudes, and phase
angles of spectral coefficients defined by (6.109) and (6.110), respectively. For
a given source input signal and two input parameters pmax and qmax, implement
by a computer program the Dolby approximate conversion method defined by
(6.119)–(6.124) for the KBD windowing function.

29. Similarly, for the same source input signal and two input parameters pmax

and qmax, implement by a computer program the generalized approximate
conversion method defined by (6.169) and (6.186) for the KBD windowing
function. Compare the exact spectral measures with those computed by the
generalized approximate conversion method and by the Dolby approximate
method for the same input parameters pmax and qmax.

30. At the end of this chapter three essential open problems related to the
approximate conversion methods are formulated. Try to solve them.

References

1. M. Bosi, S.E. Forshay, High quality audio coding for HDTV: an overview of AC-3, in
Proceedings of the 7th International Workshop on HDTV, Torino, Italy, Oct 1994

2. M. Bosi, R.E. Goldberg, Introduction to Digital Audio Coding and Standards (Springer
Science+Business Media, New York, 2003), Chap. 5, pp. 103–147, Chap. 14, pp. 371–400

3. M. Bosi et al., ISO/IEC MPEG-2 advanced audio coding, in 101st AES Convention, Los
Angeles, CA, Nov 1996, Preprint #4382

4. G.A. Davidson, M.A. Isnardi, L.D. Fielder, M.S. Goldman, C.C. Todd, ATSC video and audio
coding. Proc. IEEE 94(1), 60–76 (2006)

5. M.F. Davis, The AC-3 multichannel coder, in 95th AES Convention, New York, NY, Oct 1993,
Preprint #3774

6. Digital Audio Compression (AC-3) ATSC Standard, Document A/52/10 of advanced television
systems committee (ATSC), Audio specialist group T3/S7, Washington D.C., Dec 1995

7. Digital Audio Compression Standard (AC-3, E-AC-3), Revision B, Document A/52B of
advanced television systems committee (ATSC), Washington, D.C., Dec 2012

8. L.D. Fielder, D.P. Robinson, AC-2 and AC-3: the technology and its applications, in 5th
Australian Regional Convention, Sydney, Australia, April 1995, Preprint #4022

9. L.D. Fielder, M. Bosi, G.A. Davidson, M.F. Davis, C.C. Todd, S. Vernon, AC-2 and AC-3:
low-complexity transform-based audio coding, in AES publication collected papers on Digital
Audio Bit-Rate Reduction, ed. by N. Gilchrist, C. Grewin (Audio Engineering Society, San
Francisco, 1996), pp. 54–72



References 411

10. L.D. Fielder et al., Introduction to Dolby digital plus, an enhancement to the Dolby digital
coding system, in 117th AES Convention, San Francisco, CA, Oct 2004, Preprint #6196

11. V.K. Madisetti (ed.), The Digital Signal Processing Handbook, vol. 3, 2nd edn., Video, Speech,
and Audio Signal Processing and Associated Standards (CRC Press, Boca Raton, 2010), Part
I-3: Dolby digital audio coding standards, pp. 3.1–3.46

12. V.K. Madisetti, D.B. Williams (eds.), Digital audio coding: Dolby AC-3, in The Digital Signal
Processing Handbook (CRC Press, Boca Raton, 1998), Chap. 41, pp. 41.1–41.21

13. T. Painter, A. Spanias, Perceptual coding of digital audio. Proc. IEEE 88(4), 451–513 (2000)
14. J.P. Princen, A.W. Johnson, A.B. Bradley, Sub-band/transform coding using filter bank designs

based on time domain aliasing cancellation, in Proceedings of the IEEE ICASSP’87, Dallas,
TX, April 1987, pp. 2161–2164

15. A. Spanias, T. Painter, V. Atti, Audio Signal Processing and Coding (Wiley, Hoboken, 2007),
Chap. 6, pp. 145–193, Chap. 10, pp. 263–342

16. C.C. Todd, G.A. Davidson, M.F. Davis, L.D. Fielder, B.D. Link, S. Vernon, AC-3: flexible
perceptual coding for audio transmission and storage, in 96th AES Convention, Amsterdam,
Feb 1994, Preprint #3796

Efficient Unified Implementations of AC-3 Transforms

17. M. Bosi-Goldberg, Analysis-/synthesis-filtering system with efficient oddly-stacked single-
band filter bank using time-domain aliasing cancellation, US Patent Application 5,890,106,
Dolby Laboratories, San Francisco, CA, March 1999

18. V. Britanak, The refined efficient implementation of the MDCT in MP3 and comparison with
other methods. Technical Report II SAS-2002-02, Sept 2002

19. V. Britanak, New universal rotation-based fast computational structures for an efficient
implementation of the DCT-IV/DST-IV and analysis/synthesis MDCT/MDST filter banks.
Signal Process. 89(11), 2213–2232 (2009)

20. V. Britanak, K.R. Rao, The fast generalized discrete Fourier transforms: a unified approach to
the discrete sinusoidal transforms computation. Signal Process. 79(12), 135–150 (1999)

21. V. Britanak, K.R. Rao, A new fast algorithm for the unified forward and inverse MDCT/MDST
computation. Signal Process. 82(3), 433–459 (2002)

22. Y.-C. Chen, C.-W. Tsai, J.-L. Wu, Fast time-frequency transform algorithms and their
applications to real-time software implementation of AC-3 codec. IEEE Trans. Consum.
Electron. 44(2), 413–423 (1998)

23. S. Cramer, R. Gluth, Computationally efficient real-valued filter banks based on a modified
O2 DFT, in Proceedings of EUSIPCO’90, Signal Processing V: Theories and Applications
(Elsevier Science Publishers B.V., Barcelona, Sept 1990), pp. 585–588

24. R. Gluth, Regular FFT-related transform kernels for DCT/DST–based polyphase filter banks,
in Proceedings of the IEEE ICASSP’91, Toronto, Canada, May 1991, pp. 2205–2208

25. C.-M. Liu, W.-C. Lee, A unified fast algorithm for cosine-modulated filter banks in current
audio coding standards. J. Audio Eng. Soc. 47(12), 1061–1075 (1999)

26. X. Shao, S.G. Johnson, Type-IV DCT, DST, and MDCT algorithms with reduced numbers of
arithmetic operations. Signal Process. 88(6), 1313–1326 (2008)

27. T. Zhang, S. Liu, J. He, H. Zhang, A new algorithm on short window MDCT for Dolby
AC3, in Proceedings of the International Symposium on Intelligent Signal Processing and
Communication Systems (ISPACS’2007), Xiamen, China, Nov–Dec 2007, pp. 478–481

28. T. Zhang, J. He, C. Chen, On the relationship of MDCT transform kernels in AC-3, in
Proceedings of the International Conference on Audio, Language and Image Processing,
(ICALIP’2009), Shanghai, China, July 2008, pp. 839–842



412 6 Perfect Reconstruction Cosine/Sine-Modulated Filter Banks in the Dolby. . .

Matrix Representations of AC-3 Transforms, Relations
Between the Frequency Coefficients and the Time Domain
Aliasing Data Sequences

29. V. Britanak, On properties, relations, and simplified implementations of filter banks in the
Dolby Digital (Plus) AC-3 audio coding standards. IEEE Trans. Audio Speech Lang. Process.
19(5), 1231–1241 (2011)

30. V. Britanak, H.J. Lincklaen Arriëns, Fast computational structures for an efficient implemen-
tation of the complete TDAC analysis/synthesis MDCT/MDST filter banks. Signal Process.
89(7), 1379–1394 (2009)

31. S.-W. Lee, C.-M. Liu, Transformation from 512–point transform coefficients to 256–point
transform coefficients for Dolby AC-3 decoder. Electron. Lett. 35(19), 1614–1615 (1999)

Fast Algorithm for Conversion of Frequency Coefficients
of AC-3 Transforms

32. V. Britanak, Fast conversion algorithm for the Dolby Digital (Plus) AC-3 audio coding
standards. IEEE Signal Process Lett. 19(12), 910–913 (2012)

33. V. Britanak, Fast conversion algorithm for the Dolby Digital (Plus) AC-3 audio coding
standards. Presented in the IEEE ICASSP’2013, Vancouver, Canada, May 2013

Conversion Methods of the MDCT to MDST Coefficients
Directly in the Frequency domain

34. V. Britanak, New generalized conversion method of the MDCT to MDST coefficients in the
frequency domain for arbitrary symmetric windowing function. Digital Signal Process. 23(5),
1783–1797 (2013)

35. S. Chen, R. Hu, S. Zhang, Estimating spatial cues for audio coding in MDCT domain, in
Proceedings of the IEEE International Conference on Multimedia and Expo (IMCE’2009),
Cancun, Mexico, June–July 2009, pp. 53–56

36. S. Chen, N. Xiong, J.H. Park, M. Chen, R. Hu, Spatial parameters for audio coding: MDCT
domain analysis and synthesis. Multimed. Tools Appl. 48(2), 225–246 (2010)

37. C.I. Cheng, Method for estimating magnitude and phase in the MDCT domain, in 116th AES
Convention, Berlin, Germany, May 2004, Preprint #6091

38. C.I. Cheng, M.J. Smithers, D.N. Lathrop, Improved coding techniques using estimated
spectral magnitude and phase derived from MDCT coefficients, US Patent Application
US2005/001499, Dolby Laboratories, San Francisco, CA, Aug 2005

39. G.A. Davidson, S.D. Vernon, Method and apparatus for efficient implementation of single-
sideband filter banks providing accurate measures of spectral magnitude and phase, US Patent
Application #5,727,119, Dolby Laboratories, San Francisco, CA, March 1998

40. B. Edler, S. Geyersberger, Arrangement and method for the generation of a complex spectral
representation of a time-discrete signal, International Patent Application WO 2004/013839 A1,
Fraunhofer Institute, München, Germany, Feb 2004

41. B. Edler, S. Geyersberger, Device and method for generating a complex spectral represen-
tation of a discrete–time signal, US Patent Application No. 11/044786, Fraunhofer Institute,
München, Germany, Jan 2005



References 413

42. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform.
Proc. IEEE 66(1), 51–83 (1978)

43. F. Kuech, B. Edler, Aliasing reduction for modified discrete cosine transform domain filtering
and its application to speech enhancement, in Proceedings of the IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics, New Paltz, NY, Oct 2007, pp. 131–134

44. H. Malvar, A modulated complex lapped transform and its applications to audio processing, in
Proceedings of the IEEE ICASSP’99, Phoenix, AR, May 1999, pp. 1421–1424

45. H. Ofir, D. Malah, I. Cohen, Audio packet loss concealment in a combined MDCT-MDST
domain. IEEE Signal Process. Lett. 14(12), 1032–1035 (2007)

46. S.-U. Ryu , K. Rose, A frame loss concealment technique for MPEG AAC, in 120th AES
Convention, Paris, France, May 2006, Preprint #6662

47. S.-U. Ryu, K. Rose, An MDCT domain frame-loss concealment technique for MPEG advanced
audio coding, in Proceedings of the IEEE ICASSP’2007, vol. I, Honolulu, HI, April 2007,
pp. 273–276

48. B.-J. Yoon, H.S. Malvar, Coding overcomplete representations of audio using the MCLT,
in Proceedings of the IEEE Data Compression Conference, Snowbird, UT, March 2008,
pp. 152–161

Supporting Literature

49. V. Britanak, P. Yip, K.R. Rao, Discrete Cosine and Sine Transforms: General Properties, Fast
Algorithms and Integer Approximations (Academic Press/Elsevier Science, Amsterdam, 2007)

50. V. Britanak, A note on the MDCT/MDST and pseudoinverse matrix. Comput. Inform. 23(3),
205–214 (2004)

51. F.R. Gantmacher, The Theory of Matrices, 2nd edn. (Nauka, Moscow, 1966) (in Russian),
English translation: Vol. 1 and 2, Chelsea, New York, 1959

52. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University
Press, Baltimore, 1996)

53. H.S. Malvar, Signal Processing with Lapped Transforms (Artech House, Norwood, 1992)
54. G.W. Stewart, Matrix Algorithms, Volume I: Basic Decompositions (SIAM Society for

Industrial and Applied Mathematics, Philadephia, 1998)



Chapter 7
Spectral Band Replication Compression
Technology: Efficient Implementations
of Complex Exponential- and Cosine-Modulated
QMF Banks

7.1 Introduction

Spectral Band Replication (SBR) [1, 2, 4] is an enhancement compression tech-
nology originally invented, developed, and marketed by Coding Technologies. In
November 2007 Coding Technologies company merged into Dolby Laboratories,
now the leading international company in the audio coding field. The SBR is a
bandwidth extension method [2] which significantly improves the compression
efficiency (coding gain) of perceptual audio and speech coding schemes. SBR
cannot be used as a stand-alone coder, it always operates in conjunction with a
conventional codec, a core codec. The SBR acts as pre-processing to the encoder,
and as post-processing to the decoder. In general, the SBR can be combined with
any conventional (even not necessary perceptual) audio/speech codec. The SBR is
based on the fact that in most cases there are large dependencies or strong correlation
between the characteristics of lower and higher frequency content of an audio signal.
Consequently, the high frequency part can be reconstructed from the low frequency
part, or in other words, the SBR is able to recreate the missing high frequency
components of a decoded audio signal in a perceptually accurate way by reusing
signal information from the decoded low frequency part, thus allowing a much
higher audio quality at low data rates. Therefore, transmission of the high frequency
part is not necessary, only the low frequency part and a small set of control data
need to be carried in the bit stream to guarantee an optimal reconstruction of high
frequencies. Thus, the core codec is responsible only for coding and transmitting
the lower part of the original signal spectrum [1, 4].

SBR-enhanced codecs have the major advantage of being backward and forward
compatible to the core codec. This permits to integrate the SBR technology to
existing systems, thus enabling a smooth transition from a conventional audio coder
to its more efficient SBR-enhanced version. In December 2001, the SBR was chosen
as initial reference model for the MPEG standardization process for bandwidth
extension [2], a work item finalized in March 2003 [23]. Indeed, the SBR technology

© Springer International Publishing AG 2018
V. Britanak, K.R. Rao, Cosine-/Sine-Modulated Filter Banks,
DOI 10.1007/978-3-319-61080-1_7

415



416 7 Spectral Band Replication Compression Technology: Efficient Implementations. . .

has been initially successfully integrated into three existing international audio
coding standards: MPEG-1 audio layer II [10], MPEG-1/2 audio layer III known
as MP3 [12], and MPEG-2/4 AAC (Advanced Audio Coding) [7], all being parts
of the open ISO/MPEG standard. The SBR-enhanced version of MPEG-1 audio
layer II [10] has been adopted as a source coder by the Digital Audio Broadcasting
(DAB) system for digital radio services [8]. The SBR-enhanced version of MP3
[12], called mp3PRO, released and marketed by Thomson Multimedia led to several
both software- and hardware-based commercial products [2]. The combination
of SBR and MPEG-4 AAC, the so-called MPEG-4 High Efficiency AAC (HE-
AAC) or aacPlus standard [13–18, 22, 23], has been adopted as a source coder
by the advanced DAB digital broadcasting system (DAB+) [8], by the Digital
Radio Mondiale (DRM) universal openly standardized digital broadcasting system
[6, 8, 9], as well as by the XM Satellite Radio [11] being one of two satellite-based
digital radio services (XM Satellite Radio and Sirius Satellite Radio) used in United
States and Canada. In July 2008, XM Satellite Radio and Sirius Satellite Radio
merged forming Sirius XM Radio. Recently, the combination of SBR and modified
MPEG-4 AAC has been adopted by the MPEG-D Unified Speech and Audio Coding
(USAC) standard for high-quality coding of both speech and music signals [19–21].
The MPEG committee also completed development of a new audio coding standard,
the MPEG-4 AAC Enhanced Low Delay (AAC-ELD) [24–30]. In order to minimize
algorithmic delays while maintaining high coding efficiency at low bit rates, the
AAC-ELD uses a special low delay optimized version of SBR technology. Both
the HE-AAC and AAC-ELD currently belong to the state-of-the-art audio codecs.
Targeted applications involve digital audio broadcasting (proprietary digital radio
systems, digital radio standards), TV broadcasting, mobile communications, com-
mercial electronics (HDTV, DVD), internet audio/video streaming, and in particular,
the real-time bidirectional audio/video teleconferencing. A comprehensive list of
real-world audio applications can be found in [17].

In this chapter, the complete unified efficient low-cost implementations of
complex exponential-modulated and real-valued cosine-modulated analysis and
synthesis QMF banks used in the standard SBR (HQ-SBR and LP-SBR) and LD-
SBR (HQ-LD-SBR and LP-LD-SBR) encoder and decoder are presented. They are
based on existing fast algorithms for the discrete cosine/sine transform of type IV
(DCT-IV/DST-IV), and discrete cosine transforms of type II and III (DCT-II/DCT-
III). The unified efficient implementations are efficient in terms of the computational
complexity, regularity, and structural simplicity. In general, for each QMF bank is
presented:

• Definition in its equivalent block transform with a common parameter M
representing the number of sub-bands. The parameter M has a fixed value of
M D 64 both for the number of sub-bands and time shift factors in the transform
kernels.

• Its general symmetry property in the frequency or time domain which is very
useful for the derivation of a fast algorithm.

• The derivation of a fast algorithm with corresponding computational complexity.
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All fast algorithms are analyzed in detail in terms of the regularity and struc-
tural simplicity for a potential real-time low-cost implementation in hardware
or software. Appendices contain the required fast DCT-IV and DCT-II/DCT-III
computational structures to complete the unified efficient low-cost implementations
of complex exponential-modulated and real-valued cosine-modulated analysis and
synthesis QMF banks.

7.2 Overview of the SBR Compression Technology

There are two versions of the SBR technology in the encoder and decoder: Standard
SBR and low delay SBR (LD-SBR). Basic principles how the both standard SBR
and LD-SBR work in the encoder and decoder are well described in [1, 2, 4, 23].

7.2.1 High-Quality and Low-Power SBR and LD-SBR

Central to the operation of both standard SBR and LD-SBR are dedicated complex
exponential-modulated and real-valued cosine-modulated (low delay) quadrature
mirror filter (QMF) banks as the basic mathematical tools to analyze and syn-
thesize audio signals. While the standard SBR for the encoder defines only one
complex exponential-modulated analysis QMF bank [18], the standard SBR for the
decoder defines two types of analysis and synthesis QMF banks depending on the
application: Complex exponential-modulated QMF banks forming the high quality
SBR (HQ-SBR), and real-valued cosine-modulated QMF banks forming the low
power SBR (LP-SBR) [3, 5]. Since the LD-SBR [25] is derived from the standard
SBR with some modifications, similarly, the LD-SBR for the encoder defines also
only one complex exponential-modulated low delay analysis QMF bank and two
types of low delay analysis and synthesis QMF banks for the decoder forming
the high quality LD-SBR (HQ-LD-SBR) and low power LD-SBR (LP-LD-SBR).
The main difference between HQ-SBR (HQ-LD-SBR) and LP-SBR (LP-LD-SBR)
is how the data is represented during the SBR process. In the HQ-SBR (HQ-LD-
SBR) all subsequent calculations are realized in complex arithmetic. The LP-SBR
(LP-LD-SBR) operates with real-valued cosine-modulated (low delay) analysis and
synthesis QMF banks, and hence subsequent real-valued arithmetic, to reduce the
computational complexity. In situations, where a lower sampling rate is sufficient,
for example in portable devices, the SBR can run in a down-sampled mode and
down-sampled versions of complex and real-valued (low delay) synthesis QMF
banks can be employed. The complex exponential-modulated (low delay) QMF
banks are intended for use in applications requiring the best possible audio quality
at a given bit rate, while the real-valued (low delay) QMF banks are intended to
be lower complexity versions that still produce acceptable results in terms of audio
quality and bit rate [33, 34].
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7.2.2 Motivation to Develop Efficient Implementations
of QMF Banks

The modulation stages of the QMF banks in the ISO/MPEG standard documents
[18, 25] are defined using matrix-vector products with the number of sub-bands
being 64 or 32 and with fixed values of time shift factors in the transform kernels.
They are the most time-consuming procedures in decoders. Indeed, from the study
of the HE-AAC codec [23] it is known that the SBR process in the decoder may
constitute from 50% to 75% of its total computational complexity. Audio and
speech decoders are used in mobile or portable devices, where the processing power
and battery resources are limited. Consequently, in such environments a particular
attention must be paid to reducing the decoder complexity. Moreover, if the decoder
is intended to be implemented in hardware, it is well known that the computational
complexity and memory requirements are directly related to the power consumption
and/or chip size as well as the implementation costs [23]. This is a reason why
the HE-AAC and AAC-ELD define two types of QMF banks in the decoders.
Nevertheless, even when the LP-SBR (LP-LD-SBR) is used, the contribution of
the QMF banks to the overall decoder complexity is significant [33, 34]. Therefore,
efficient implementations of the QMF banks are of great importance.

7.2.3 Existing Efficient Implementations of QMF Banks

After finalizing the MPEG-4 HE-AAC standard in 2004 [18], several efficient
implementations of QMF banks have been developed both for the HQ-SBR [39, 40]
and LP-SBR decoder [32, 38]. The real and imaginary parts of the complex
exponential modulation step of the QMF are, respectively, mapped into the DCT-
IV and the corresponding DST-IV of reduced sizes [39, 40], while the cosine
modulation of real-valued QMF banks is mapped either into the DCT-II or its
inverse, DCT-III, of a reduced size [32, 38]. Thus, many available fast DCT-IV/DST-
IV computational structures [43, 45–47, 51, 52] offer efficient implementations of
the QMF banks in HQ-SBR, and the fast DCT-II/DCT-III computational structures
[42, 44, 46, 48, 51, 57] in LP-SBR. The definitions of the low delay QMF banks
in the MPEG-4 AAC-ELD standard [25] are basically similar to those in the
standard SBR. Only the windowing function and modulation differ. Efficient
implementations of the QMF banks both for the HQ-LD-SBR and LP-LD-SBR have
been proposed in [33, 34]. Similarly, the real and imaginary parts of the complex
exponential modulation step of the low delay QMF are mapped into the DCT-IV
and the corresponding DST-IV of reduced sizes. The cosine modulation of real-
valued low delay QMF banks is the same as the real part of the corresponding
complex exponential-modulated low delay QMF banks. In general, since there exists
a relation between the DCT-IV and DCT-II [44, 46, 48], the DCT-IV may always
be converted to the DCT-II of the same size at the cost of additional multiplications
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and recursive additions. This approach allows absorbing additional multiplications
in the windowing stage, thus further reducing the multiplicative complexity (see
Appendix C.3). The complete unified efficient low-cost implementations of complex
exponential-modulated and real-valued cosine-modulated analysis and synthesis
QMF banks used in the standard SBR (HQ-SBR and LP-SBR) and LD-SBR (HQ-
LD-SBR and LP-LD-SBR) encoder and decoder are presented in [31].

Besides the aforementioned developed efficient implementations of QMF banks
there are the so-called firmware implementations for the standard SBR decoder
available. Specifically, a fixed-point firmware reference (FFR) code for various
computer platforms licensed by Coding Technologies [35, 36] which is optimized
in terms of the memory usage and processing power. Further, QMF functions
for the SBR decoder developed by INTEL are described in its Integrated Per-
formance Primitives Reference Manual [41]. However, for a reader perhaps the
most interesting and easily available is the free-ware open source code for efficient
implementations of QMF banks in the standard SBR decoder, the so-called FAAD2
software package [37].

7.3 QMF Banks: Definitions, Symmetry Properties,
and Efficient Implementations

The theory of complex (low delay) QMF banks [2, 18, 40] used in the standard SBR
and LD-SBR technologies is a complex exponential extension of the theory of real-
valued cosine-modulated (low delay) QMF banks [54–56]. The excellent overview
of the technical details of complex exponential-modulated and real-valued cosine-
modulated QMF banks used in the standard SBR is presented in [2].

7.3.1 Standard SBR QMF Banks: Definitions and Symmetry
Properties

In the following subsections the definitions and symmetry properties of complex
exponential-modulated analysis/(down-sampled) synthesis QMF banks used in the
standard HQ-SBR are presented.

7.3.1.1 Complex Exponential-Modulated Analysis QMF Bank
in the Encoder

The complex exponential-modulated M-band (M D 64) analysis QMF bank in the
encoder as a block transform is defined as [18]
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2M�1X

nD0
un exp

�
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�
k C 1
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.2n C 1/

	
;

k D 0; 1; : : : ;M � 1; (7.1)

where fpkg are complex-valued sub-band coefficients and fung is a 2M-point
windowed data sequence. The flowchart of one loop of the sub-band filtering
procedure in the encoder is shown in [18] (see Fig. 4.B.16). Since exp Œ:� denotes
the complex exponential function and i D p�1 is the imaginary unit, Eq. (7.1) can
be extended as

pk D
2M�1X

nD0
un cos
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.2k C 1/.2n C 1/
i

C i
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nD0
un sin
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k D 0; 1; : : : ;M � 1; (7.2)

or equivalently, decomposed into two parts, the real and the imaginary part,
respectively, as

<e fpkg D
2M�1X

nD0
un cos

h �
4M

.2k C 1/.2n C 1/
i
;

=m fpkg D
2M�1X

nD0
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4M

.2k C 1/.2n C 1/
i
; k D 0; 1; : : : ;M � 1:

(7.3)

One can note that the cosine and sine transform kernels in (7.2) and (7.3) are
symmetric with respect to the time and frequency indices n and k. Substituting
2M � 1 � k for k into (7.2) for the cosine and sine transform kernels we have:

cos
h �
4M

.4M � 1 � 2k/.2n C 1/
i

C i sin
h �
4M

.4M � 1 � 2k/.2n C 1/
i

D � cos
h �
4M

.2k C 1/.2n C 1/
i

C i sin
h �
4M

.2k C 1/.2n C 1/
i

D � exp
h
�i

�

4M
.2k C 1/.2n C 1/

i
; (7.4)

implying that fpkg has a conjugate symmetry property given by

p2M�1�k D � p
�

k ; k D 0; 1; : : : ;M � 1; (7.5)
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where the symbol � denotes complex conjugation. The conjugate symmetry prop-
erty given by (7.5) indicates that only M complex-valued sub-band coefficients are
unique, if we take into account the negative frequencies for k D M;M C 1; : : : ;

2M � 1. Further, for Eq. (7.5) to hold, the data sequence fung needs to be
real-valued.

7.3.1.2 HQ-SBR QMF Banks in the Decoder

Complex Exponential-Modulated Analysis QMF Bank

The complex exponential-modulated M
2

-band (M D 64) analysis QMF bank in the
decoder as a block transform is defined as [18]
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i
�

M

�
k C 1

2

��
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;

k D 0; 1; : : : ;
M

2
� 1; (7.6)

where fpkg are complex-valued sub-band coefficients and fung is an M-point
windowed data sequence. The flowchart of one loop of sub-band filtering procedure
in the decoder is shown in [18] (see Fig. 4.41). Equation (7.6) can be similarly
extended as
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or equivalently, decomposed into the real and the imaginary part, respectively, as
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Substituting M � 1 � k for k into (7.7) for the cosine and sine transform kernels we
have:

cos
h �
4M

.2M � 1 � 2k/.4n � 1/
i

C i sin
h �
4M

.2M � 1 � 2k/.4n � 1/
i
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i
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i

D �i exp
h
�i

�

4M
.2k C 1/.4n � 1/

i
; (7.9)

demonstrating that fpkg has a conjugate symmetry property given by

pM�1�k D �i p
�

k ; k D 0; 1; : : : ;
M

2
� 1; (7.10)

where the symbol � denotes complex conjugation. The conjugate symmetry prop-
erty (7.10) indicates that only M

2
complex-valued sub-band coefficients are unique.

Further, based on (7.10), the real part of fpkg is related to the imaginary part
in (7.8) by

<efpkg D � =mfpM�1�kg; k D 0; 1; : : : ;M � 1: (7.11)

According to (7.11) it is sufficient to consider either the real or imaginary part of
fpkg only, if the index k is extended to M � 1.

Complex Exponential-Modulated Synthesis QMF Bank

The complex exponential-modulated M-band (M D 64) synthesis QMF bank in the
decoder as a block transform is defined as [18]
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kD0
pk exp

�
i
�

2M

�
k C 1

2

�
.2n C 1 � 4M/

	)

;

n D 0; 1; : : : ; 2M � 1; (7.12)

where fpkg are complex-valued sub-band coefficients and fvng is a 2M-point real-
valued time domain data sequence. The flowchart of one loop of synthesis filtering
procedure in the decoder is shown in [18] (see Fig. 4.42). The real part of complex
exponential-modulated synthesis QMF bank defined by (7.12) after performing the
complex multiplications under the sum is given by
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Complex Exponential-Modulated Down-Sampled Synthesis QMF Bank

The complex exponential-modulated M
2

-band (M D 64) down-sampled synthesis
QMF bank in the decoder as a block transform is defined as [18]
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where fpkg are complex-valued sub-band coefficients and fvng is an M-point real-
valued time domain data sequence. The flowchart of one loop of synthesis down-
sampled filtering procedure in the decoder is shown in [18] (see Fig. 4.43). The real
part of complex exponential-modulated down-sampled synthesis QMF bank defined
by (7.14) after performing the complex multiplications under the sum is given by

vn D 1

M

M
2 �1X

kD0
<efpkg cos

h �
4M

.2k C 1/.4n C 1 � 4M/
i

� 1

M

M
2 �1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.4n C 1 � 4M/
i
;

n D 0; 1; : : : ;M � 1: (7.15)

7.3.1.3 LP-SBR QMF Banks in the Decoder

In the following subsections the definitions and symmetry properties of real-
valued cosine-modulated analysis/(down-sampled) synthesis QMF banks used in
the standard LP-SBR are presented.
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Real-Valued Cosine-Modulated Analysis QMF Bank

The real-valued cosine-modulated M
2

-band (M D 64) analysis QMF bank in the
decoder as a block transform is defined as [18]
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where fckg are real-valued sub-band coefficients and fung is an M-point windowed
data sequence. The flowchart of one loop of sub-band filtering procedure in the
decoder is shown in [18] (see Fig. 4.49). Substituting M � 1 � k for k into (7.16)
we get

cM�1�k D ck; k D 0; 1; : : : ;
M

2
� 1; (7.17)

demonstrating that fckg has an even symmetry property, and hence only M
2

real-
valued sub-band coefficients are unique if the range of k is extended from M

2
� 1 to

M � 1. Equation (7.16) can be written in the following equivalent form:
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Real-Valued Cosine-Modulated Synthesis QMF Bank

The real-valued cosine-modulated M-band (M D 64) synthesis QMF bank in the
decoder as a block transform is defined as [18]
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where fckg are real-valued sub-band coefficients and fvng is a 2M-point time domain
data sequence. The flowchart of one loop of synthesis filtering procedure in the
decoder is shown in [18] (see Fig. 4.50). Equation (7.19) can be written in the
following equivalent form:
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Real-Valued Cosine-Modulated Down-Sampled Synthesis QMF Bank

The real-valued cosine-modulated M
2

-band (M D 64) down-sampled synthesis QMF
bank in the decoder as a block transform is defined as [18]
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where fckg are real-valued sub-band coefficients and fvng is an M-point time domain
data sequence. The flowchart of one loop of synthesis down-sampled filtering
procedure in the decoder is shown in [18] (see Fig. 4.51). Equation (7.21) can be
written in the following equivalent form:
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7.3.2 Efficient Implementations of the QMF Banks
in the HE-AAC

In general, each complex-valued or real-valued QMF bank in the ISO/MPEG
standards [18, 25] consists of a windowing step followed by a block transform.
The windowing step is in itself quite computational demanding as each block of
M samples requires a filtering step using 10M coefficients. The filtering step is
as complex as one of the block transforms for the real or imaginary part, thus
representing one-third of the complexity in a complex-valued QMF and half of the
complexity of a real-valued QMF.

In the following efficient implementations of QMF banks as block transforms
in the HE-AAC codec are presented. Without loss of generality, the normalization
factors from definitions of the QMF banks are omitted in the derivations of fast
algorithms.
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7.3.2.1 Complex Exponential-Modulated Analysis QMF Bank in the
Encoder

Consider the complex exponential-modulated analysis QMF bank in the encoder
given by (7.3). Using the symmetry properties of cosine and sine transform kernels,
i.e., substituting 2M �1�n for n we immediately obtain its efficient implementation
defined as

<e fpkg D
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nD0
.un � u2M�1�n/ cos
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.2k C 1/.2n C 1/
i
;

=m fpkg D
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.2k C 1/.2n C 1/
i
;

k D 0; 1; : : : ;M � 1; (7.23)

where the real part <e fpkg is reduced to an unnormalized M-point forward DCT-IV
of fun � u2M�1�ng while the imaginary part =m fpkg is reduced to an unnormalized
M-point forward DST-IV of fun C u2M�1�ng which may subsequently be (but
not necessary) converted to the DCT-IV. The efficient implementation of complex
exponential-modulated analysis QMF bank in the encoder requires 2M additions
and the computation of two M-point forward DCTs-IV.

7.3.2.2 HQ-SBR QMF Banks in the Decoder

The efficient implementations of complex exponential-modulated QMF banks for
the HQ-SBR in the HE-AAC decoder proposed in [39, 40] are based on the DCT-IV
or FFT. Their derivations here are presented in more general, more transparent, and
compact form.

Complex Exponential-Modulated Analysis QMF Bank

We recall that for computation of the complex exponential-modulated analysis QMF
bank given by (7.8), based on the property (7.11) it is sufficient to compute only
either the real (preferred) or the imaginary part of fpkg.

Let us investigate the transform kernel cos
�
�
4M .2k C 1/.4n � 1/� for the

real part in (7.8). Substituting n D mC1
2

leads to the transform kernel
cos

�
�
4M .2k C 1/.2m C 1/

�
which corresponds to the real part in (7.8). This fact

indicates that there exists a mapping between the time indices n and m in the range
of 0; 1; : : : ;M � 1. Indeed, comparing both the transform kernels for specific values
of n and m as follows:
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n cos
�
�
4M .2k C 1/.4n � 1/

�
m cos

�
�
4M .2k C 1/.2m C 1/

�

0 cos
�
�
4M .2k C 1/.�1/� 0 cos

�
�
4M .2k C 1/.1/

�

M
2

cos
�
�
4M .2k C 1/.2M � 1/

�
M � 1 cos

�
�
4M .2k C 1/.2M � 1/

�

n C 1 cos
�
�
4M .2k C 1/.4n C 3/

�
2m C 1 cos

�
�
4M .2k C 1/.4m C 3/

�

n D 0; 1; : : : ; M
2

� 2 m D 0; 1; : : : ; M
2

� 2

M � 1� n � cos
�
�
4M .2k C 1/.4n C 5/

�
2m C 2 cos

�
�
4M .2k C 1/.4m C 5/

�

n D 0; 1; : : : ; M
2

� 2 m D 0; 1; : : : ; M
2

� 2

results in the unique one-to-one mapping defined by

y0 D u0; yM�1 D u M
2
;

y2nC1 D unC1; y2nC2 D � uM�1�n; n D 0; 1; : : : ;
M

2
� 2; (7.24)

and the real part of (7.8) can be equivalently written as

<e fpkg D
M�1X

nD0
yn cos

h �
4M

.2k C 1/.2n C 1/
i
;

k D 0; 1; : : : ;M � 1: (7.25)

Using the mapping (7.24), the real part of the complex exponential-modulated
analysis QMF bank given by (7.8) is converted to an unnormalized M-point forward
DCT-IV of fyng. Hence, its efficient implementation requires the computation of
only one M-point forward DCT-IV. The imaginary part =m fpkg is easily constructed
from (7.11).

Complex Exponential-Modulated Synthesis QMF Bank

Consider the complex exponential-modulated synthesis QMF bank given by (7.13).
Using trigonometric identities for the cosine and sine transform kernels we can
immediately eliminate time shift factors 4M, and Eq. (7.13) can be written in the
equivalent form as

vn D �
M�1X

kD0
<efpkg cos

h �
4M

.2k C 1/.2n C 1/
i

C
M�1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.2n C 1/
i
;

n D 0; 1; : : : ; 2M � 1: (7.26)



428 7 Spectral Band Replication Compression Technology: Efficient Implementations. . .

The first sum in (7.26) is an unnormalized M-point inverse DCT-IV, while the
second sum is the corresponding unnormalized M-point inverse DST-IV which may
subsequently be (but not necessary) converted to the DCT-IV. Further, substituting
2M � 1 � n for n into (7.26) we get

v2M�1�n D
M�1X

kD0
<efpkg cos

h �
4M

.2k C 1/.2n C 1/
i

C
M�1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.2n C 1/
i
;

n D 0; 1; : : : ;M � 1: (7.27)

Combining (7.26) and (7.27) and using the definitions of the inverse DCT-IV and
DST-IV, respectively, given by (C.10) and (C.12) from Appendix C.2, the final time
domain sequence fvng is obtained as

vn D � x
.c/

n C x
.s/

n ;

v2M�1�n D x
.c/

n C x
.s/

n ;

n D 0; 1; : : : ;M � 1: (7.28)

The efficient implementation of the complex exponential-modulated synthesis QMF
bank requires 2M additions and the computation of two M-point inverse DCTs-IV.

Complex Exponential-Modulated Down-Sampled Synthesis QMF Bank

There exist at least three methods how to compute the complex exponential-
modulated down-sampled synthesis QMF bank in the decoder given by (7.15). The
first method is based on a direct relation between Eqs. (7.13) and (7.15). Specifically,
substituting n D m

2
into (7.15) and zero-padding the real and imaginary parts of fpkg

for k D M
2
; M
2

C 1; : : : ;M � 1 we have

v m
2

D
M�1X

kD0
<efpkg cos

h �
4M

.2k C 1/.2m C 1 � 4M/
i

�
M�1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.2m C 1 � 4M/
i
;

m D 2n; n D 0; 1; : : : ;M � 1: (7.29)

Equation (7.29) corresponds to the complex exponential-modulated synthesis
QMF bank given by (7.13). Therefore, its efficient implementation defined
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by (7.26)–(7.28) may simply be re-used for the down-sampled synthesis QMF bank.
The time domain sequence of the down-sampled synthesis QMF bank is obtained
from fvng by taking the even-indexed samples, i.e., fv2ng, n D 0; 1; : : : ;M � 1.

The second method is similarly based on the existing efficient implementation
of complex exponential-modulated synthesis QMF bank. Using trigonometric
identities for the cosine and sine transform kernels in (7.15), we can immediately
eliminate the shift factors 4M, and Eq. (7.15) can be written as

vn D �
M
2 �1X

kD0
<efpkg cos

h �
4M

.2k C 1/.4n C 1/
i

C
M
2 �1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.4n C 1/
i
;

n D 0; 1; : : : ;M � 1: (7.30)

Further, substituting M � 1 � n for n into (7.30) we get

vM�1�n D
M
2 �1X

kD0
<efpkg cos

h �
4M

.2k C 1/.4n C 3/
i

C
M
2 �1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.4n C 3/
i
;

n D 0; 1; : : : ;
M

2
� 1: (7.31)

Now, if the real and imaginary parts of fpkg are zero-padded for k D M
2
; M
2

C
1; : : : ;M�1, and we use the definitions of inverse DCT-IV and DST-IV, respectively,
given by (C.10) and (C.12) from Appendix C.2, then Eqs. (7.30) and (7.31) can be
written in the following form:

vn D � x
.c/

2n C x
.s/

2n;

vM�1�n D x
.c/

2nC1 C x
.s/

2nC1;

n D 0; 1; : : : ;
M

2
� 1: (7.32)

Although both discussed methods above can simply reuse the existing efficient
implementation of the complex exponential-modulated synthesis QMF bank given
by (7.13), they still require the computation of two unnormalized M-point inverse
DCTs-IV.
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However, the third, more elegant method, requires the computation of only one
unnormalized M-point inverse DCT-IV as follows. Consider Eqs. (7.30) and (7.31).
If we substitute M � 1 � k for k D M

2
; M
2

C 1; : : : ;M � 1, into the second sums
of (7.30) and (7.31), then they can be written as

vn D �
M
2 �1X

kD0
<efpkg cos

h �
4M

.2k C 1/.4n C 1/
i

C
M�1X

kD M
2

=mfpM�1�kg cos
h �
4M

.2k C 1/.4n C 1/
i
; (7.33)

vM�1�n D
M
2 �1X

kD0
<efpkg cos

h �
4M

.2k C 1/.4n C 3/
i

C
M�1X

kD M
2

=mfpM�1�kg cos
h �
4M

.2k C 1/.4n C 3/
i
;

n D 0; 1; : : : ;
M

2
� 1: (7.34)

Introducing new data sequences fykg and fzkg and packing the real and imaginary
parts of fpkg in (7.33) and (7.34), respectively, as

yk D � <efpkg; y M
2 Ck D =mfp M

2 �1�kg; k D 0; 1; : : : ;
M

2
� 1; (7.35)

and

zk D <efpkg; z M
2 Ck D � =mfp M

2 �1�kg; k D 0; 1; : : : ;
M

2
� 1; (7.36)

Eqs. (7.33) and (7.34) are reduced to unnormalized M-point inverse DCTs-IV of
fykg and fzkg, respectively, as

vn D
M�1X

kD0
yk cos

h �
4M

.2k C 1/.4n C 1/
i

D x
.c/

2n; (7.37)

vM�1�n D
M�1X

kD0
zk cos

h �
4M

.2k C 1/.4n C 3/
i
;

n D 0; 1; : : : ;
M

2
� 1: (7.38)
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But, one can easily see that the data sequence fykg is closely related to fzkg by

zk D � yk; k D 0; 1; : : : ;M � 1: (7.39)

Consequently, only one M-point inverse DCT-IV is sufficient to be computed.
Indeed, using the definition of the inverse DCT-IV given by (C.10) from
Appendix C.2, the final time domain sequence is obtained as

vn D x
.c/

2n; vM�1�n D � x
.c/

2nC1; k D 0; 1; : : : ;
M

2
� 1: (7.40)

7.3.2.3 LP-SBR QMF Banks in the Decoder

The efficient implementations of the real-valued cosine-modulated QMF banks for
the LP-SBR in HE-AAC decoder have been proposed in [32, 38]. They are based on
the DCT-II or its inverse, the DCT-III. In principle, these derivations closely follow
a method for the derivation of efficient implementations of analysis and synthesis
pseudo-QMF banks used in the MPEG-1/2 audio coding standard [49, 50].

Real-Valued Cosine-Modulated Analysis QMF Bank

Consider the real-valued cosine-modulated analysis QMF bank given by (7.18).
In order to eliminate the time shift factor 3M

2
in (7.18), let us apply the following

permutation to the input data sequence fung defined as

yn D

8
<̂

:̂

u 3M
4 Cn; n D 0; 1; : : : ; M

4
� 1;

� un� M
4
; n D M

4
; M
4

C 1; : : : ;M � 1;
(7.41)

and we have

ck D
M
4 �1X

nD0
u 3M

4 Cn cos

�
�.2k C 1/n

M

	
C

M�1X

nD M
4

�un� M
4

cos

�
�.2k C 1/n/

M

	

D
M�1X

nD0
yn cos

�
�.2k C 1/n

M

	
; k D 0; 1; : : : ;

M

2
� 1: (7.42)

Using the symmetry property of cosine transform kernel, i.e., substituting M � n for
n D 1; 2; : : : ; M

2
� 1; into the sum on the right-hand side of (7.42), we get
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ck D y0 C
M
2 �1X

nD1
.yn � yM�n/ cos

�
�.2k C 1/n

2.M=2/

	
;

k D 0; 1; : : : ;
M

2
� 1: (7.43)

The cosine transform kernel in Eq. (7.43) is recognized as an unnormalized M
2

-point
DCT-III of fyn � yM�ng. Finally, combining Eqs. (7.41) and (7.43) we obtain an
efficient implementation of the real-valued cosine-modulated analysis QMF bank
defined as

ck D
M
2 �1X

nD0
yn cos

�
�.2k C 1/n

2.M=2/

	
; k D 0; 1; : : : ;

M

2
� 1; (7.44)

where

yn D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

u 3M
4
; n D 0;

u 3M
4 Cn C u 3M

4 �n; n D 1; 2; : : : ; M
4

� 1;

� un� M
4

C u 3M
4 �n; n D M

4
; M
4

C 1; : : : ; M
2

� 1:

(7.45)

We note that when M is a power of two, then it is always divisible by 4. The efficient
implementation of the real-valued cosine-modulated analysis QMF bank requires
M
2

� 1 additions and the computation of one M
2

-point DCT-III.

Real-Valued Cosine-Modulated Synthesis QMF Bank

Now, consider the real-valued cosine-modulated synthesis QMF bank given
by (7.20). Similarly, in order to eliminate the time shift factor M in (7.20),
subsequently substituting M

2
C n, M

2
, M
2

� n, 3M
2

C n, 3M
2

and 3M
2

� n into (7.20), and
using relations (C.3) and (C.4) from Appendix C.1, we have

vM
2 Cn D

M�1X

kD0
ck cos

�
�.2k C 1/n

2M

	
D xn; n D 1; 2; : : : ;

M

2
;

vM
2

D
M�1X

kD0
ck D x0;

vM
2 �n D

M�1X

kD0
ck cos

�
�.2k C 1/n

2M

	
D xn; n D 1; 2; : : : ;

M

2
;
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v 3M
2 Cn D �

M�1X

kD0
ck .�1/k sin

�
�.2k C 1/n

2M

	
D � xM�n; n D 1; 2; : : : ;

M

2
� 1;

v 3M
2

D 0;

v 3M
2 �n D

M�1X

kD0
ck .�1/k sin

�
�.2k C 1/n

2M

	
D xM�n; n D 1; 2; : : : ;

M

2
� 1;

(7.46)

where

xn D
M�1X

kD0
ck cos

�
�.2k C 1/n

2M

	
; n D 0; 1; : : : ;M � 1: (7.47)

Equation (7.47) is recognized as an unnormalized M-point DCT-II of fckg.
Using (7.46), the time domain aliased data sequence fvng is recovered from fxng as

vM
2

D x0; v 3M
2

D 0;

vM
2 �n D xn; vM

2 Cn D vM
2 �n; n D 1; 2; : : : ;

M

2
;

v 3M
2 �n D xM�n; v 3M

2 Cn D � v 3M
2 �n; n D 1; 2; : : : ;

M

2
� 1: (7.48)

Equations (7.47) and (7.48) define the efficient implementation of the real-valued
cosine-modulated synthesis QMF bank requiring the computation of one M-point
DCT-II.

Real-Valued Cosine-Modulated Down-Sampled Synthesis QMF Bank

Comparing Eqs. (7.20) and (7.22) it can be easily seen that by substituting M
2

for M
into (7.20) we get the real-valued cosine-modulated down-sampled synthesis QMF
bank given by (7.22). Therefore, the efficient implementation of the real-valued
cosine-modulated synthesis QMF bank defined by (7.47) and (7.48) may also be
used for the down-sampled synthesis QMF bank by taking M

2
instead of M (M is

divisible by 4) as follows:

vM
4

D x0; v 3M
4

D 0;

vM
4 �n D xn; vM

4 Cn D vM
4 �n; n D 1; 2; : : : ;

M

4
;

v 3M
4 �n D x M

4 �n; v 3M
4 Cn D � v 3M

4 �n; n D 1; 2; : : : ;
M

4
� 1: (7.49)
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where

xn D
M
2 �1X

kD0
ck cos

�
�.2k C 1/n

2.M=2/

	
; n D 0; 1; : : : ;

M

2
� 1: (7.50)

It requires the computation of one unnormalized M
2

-point DCT-II.

7.3.3 LD-SBR QMF Banks: Definitions and Symmetry
Properties

In the following subsections the definitions and symmetry properties of complex
exponential-modulated low delay (LD) analysis/(down-sampled) synthesis QMF
banks used in the HQ-LD-SBR are presented.

7.3.3.1 Complex Exponential-Modulated LD Analysis QMF Bank in the
Encoder

The complex exponential-modulated M-band (M D 64) LD analysis QMF bank,
or the so-called CLDFB (complex low delay filter bank) analysis filter bank in the
encoder as a block transform is defined as [25]

pk D
2M�1X

nD0
un exp

�
i
�

2M

�
k C 1

2

�
.2n C 1 � 3M/

	
; k D 0; 1; : : : ;M � 1:

(7.51)

The sub-band filtering by the analysis CLDFB filter bank is basically similar to
the complex exponential-modulated analysis QMF bank used in the standard SBR
encoder defined by (7.1). Only the windowing function and the modulation differ
[25]. The flowchart of one loop of sub-band filtering procedure is shown in [18] (see
Fig. 4.B.16). Equation (7.51) can be extended as

pk D
2M�1X

nD0
un cos

h �
4M

.2k C 1/.2n C 1 � 3M/
i

Ci
2M�1X

nD0
un sin

h �
4M

.2k C 1/.2n C 1 � 3M/
i
;

k D 0; 1; : : : ;M � 1; (7.52)
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or equivalently, decomposed into the real and imaginary part, respectively, as

<e fpkg D
2M�1X

nD0
un cos

h �
4M

.2k C 1/.2n C 1 � 3M/
i
;

=m fpkg D
2M�1X

nD0
un sin

h �
4M

.2k C 1/.2n C 1 � 3M/
i
;

k D 0; 1; : : : ;M � 1: (7.53)

Substituting 2M � 1 � k for k into (7.52) we have:

cos
h �
4M

.4M � 1� 2k/.2n C 1� 3M/
i

C i sin
h �
4M

.4M � 1� 2k/.2n C 1� 3M/
i

D � cos
h �
4M

.2k C 1/.2n C 1� 3M/
i

C i sin
h �
4M

.2k C 1/.2n C 1� 3M/
i

D � exp
h
�i

�

4M
.2k C 1/.2n C 1� 3M/

i
; (7.54)

implying that fpkg has a conjugate symmetry property given by

p2M�1�k D � p
�

k ; k D 0; 1; : : : ;M � 1; (7.55)

where the symbol � denotes complex conjugation. The conjugate symmetry prop-
erty given by (7.55) indicates that only M complex-valued sub-band coefficients are
unique if the range of k is extended from M

2
to M � 1.

Note 1: The LD-SBR encoder can use either the complex exponential-modulated
analysis QMF bank defined by (7.1) or the CLDFB defined by (7.51). If the CLDFB
is used, the synchronization between the core coder and SBR is equal to the
HE-AAC case. If the complex exponential-modulated analysis QMF bank defined
by (7.1) is used, then the SBR must operate on additionally 256 (4M) delayed audio
samples with respect to the core encoder [25].

7.3.3.2 HQ-LD-SBR QMF Banks in the Decoder

The sub-band as well as synthesis filtering procedures described for the standard
HQ-SBR in the decoder (the flowcharts in Figs. 4.41, 4.42, and 4.43 in [18])
are basically similar for the HQ-LD-SBR. Only the windowing function and the
modulation differ.
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Complex Exponential-Modulated LD Analysis QMF Bank

The complex exponential-modulated M
2

-band (M D 64) LD analysis QMF bank in
the decoder as a block transform is defined as [25]

pk D 2

M�1X

nD0
un exp

�
i
�

M

�
k C 1

2

��
2n C 1 � 3M

2

�	
;

k D 0; 1; : : : ;
M

2
� 1: (7.56)

Equation (7.56) can be extended as

pk D 2

M�1X

nD0
un cos

�
�

2M
.2k C 1/

�
2n C 1 � 3M

2

�	

C2i
M�1X

nD0
un sin

�
�

2M
.2k C 1/

�
2n C 1 � 3M

2

�	
;

k D 0; 1; : : : ;
M

2
� 1; (7.57)

or equivalently, decomposed into the real and imaginary part, respectively, as

<e fpkg D 2

M�1X

nD0
un cos

�
�

2M
.2k C 1/

�
2n C 1 � 3M

2

�	
;

=m fpkg D 2

M�1X

nD0
un sin

�
�

2M
.2k C 1/

�
2n C 1 � 3M

2

�	
;

k D 0; 1; : : : ;
M

2
� 1: (7.58)

Comparing Eqs. (7.53) and (7.58) it can be seen that they are closely related.
Specifically, substituting M

2
for M into (7.53) we get (7.58), i.e., the complex

exponential-modulated LD analysis QMF bank in the decoder defined by (7.56) is
the complex exponential-modulated LD analysis QMF bank in the encoder defined
by (7.51) for the size M

2
.

Complex Exponential-Modulated LD Synthesis QMF Bank

The complex exponential-modulated M-band (M D 64) LD synthesis QMF bank in
the decoder as a block transform is defined as [25]
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vn D 1

M
<e

(
M�1X

kD0
pk exp

�
i
�

2M

�
k C 1

2

�
.2n C 1 � M/

	)

;

n D 0; 1; : : : ; 2M � 1: (7.59)

The real part of under the sum in (7.59) is given by

vn D 1

M

M�1X

kD0
<efpkg cos

h �
4M

.2k C 1/.2n C 1 � M/
i

� 1

M

M�1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.2n C 1 � M/
i
;

n D 0; 1; : : : ; 2M � 1: (7.60)

Complex Exponential-Modulated LD Down-Sampled Synthesis QMF Bank

The complex exponential-modulated M
2

-band (M D 64) LD down-sampled synthe-
sis QMF bank in the decoder as a block transform is defined as [25]

vn D 1

M
<e

8
<

:

M
2 �1X

kD0
pk exp

�
i
�

M

�
k C 1

2

��
2n C 1 � M

2

�	
9
=

;
;

n D 0; 1; : : : ;M � 1: (7.61)

The real part under sum in (7.61) is given by

vn D 1

M

M
2 �1X

kD0
<efpkg cos

�
�

2M
.2k C 1/

�
2n C 1 � M

2

�	

� 1

M

M
2 �1X

kD0
=mfpkg sin

�
�

2M
.2k C 1/

�
2n C 1 � M

2

�	
;

n D 0; 1; : : : ;M � 1: (7.62)

Comparing Eqs. (7.60) and (7.62) it can be seen that they are closely related. Indeed,
substituting M

2
for M into (7.60) excluding the normalization factor we get (7.62),

i.e., the complex exponential-modulated LD down-sampled synthesis QMF bank
defined by (7.61) is the complex exponential-modulated LD synthesis QMF bank
defined by (7.59) for the size M

2
.
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7.3.3.3 LP-LD-SBR QMF Banks in the Decoder

Similarly, the sub-band as well as synthesis filtering procedures described for the
standard LP-SBR in the core decoder (the flowcharts in Figs. 4.49, 4.50, and 4.51
in [18]) are basically similar for the LP-LD-SBR. Only the windowing function and
the modulation differ.

Real-Valued Cosine-Modulated LD Analysis QMF Bank

The real-valued cosine-modulated M
2

-band (M D 64) LD analysis QMF bank in the
decoder as a block transform is defined as [25]

ck D 2

M�1X

nD0
un cos

�
�

M

�
k C 1

2

��
2n C 1 � 3M

2

�	
;

k D 0; 1; : : : ;
M

2
� 1: (7.63)

Substituting M � 1 � k for k into (7.63) we get

cM�1�k D � ck; k D 0; 1; : : : ;
M

2
� 1; (7.64)

demonstrating that fckg has an even anti-symmetry property, and hence only M
2

real-
valued sub-band coefficients are unique if the range of k is extended from M

2
to

M � 1. Equation (7.63) can be written in the following equivalent form:

ck D 2

M�1X

nD0
un cos

�
�

2M
.2k C 1/

�
2n C 1 � 3M

2

�	
;

k D 0; 1; : : : ;
M

2
� 1: (7.65)

Comparing Eqs. (7.65) and (7.58) one can see that Eq. (7.65) corresponds to the real
part of the complex exponential-modulated LD analysis QMF filter bank defined
by (7.56).

Real-Valued Cosine-Modulated LD Synthesis QMF Bank

The real-valued cosine-modulated M-band (M D 64) LD synthesis QMF bank in
the decoder as a block transform is defined as [25]
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vn D 2

M

M�1X

kD0
ck cos

�
�

2M

�
k C 1

2

�
.2n C 1 � M/

	
; n D 0; 1; : : : ; 2M � 1:

(7.66)

Equation (7.66) can be written in the following equivalent form:

vn D 2

M

M�1X

kD0
ck cos

h �
4M

.2k C 1/.2n C 1 � M/
i
;

n D 0; 1; : : : ; 2M � 1: (7.67)

Comparing Eqs. (7.67) and (7.60) reveals that Eq. (7.67) corresponds to the first sum
on the right-hand side of (7.60) which defines the real part complex exponential-
modulated LD synthesis QMF filter bank (7.59).

Real-Valued Cosine-Modulated LD Down-Sampled Synthesis QMF Bank

The real-valued cosine-modulated M
2

-band (M D 64) LD down-sampled synthesis
QMF bank in the decoder as a block transform is defined as [25]

vn D 2

M

M
2 �1X

kD0
ck cos

�
�

M

�
k C 1

2

��
2n C 1 � M

2

�	
;

n D 0; 1; : : : ;M � 1: (7.68)

Equation (7.68) can be written in the following equivalent form:

vn D 2

M

M
2 �1X

kD0
ck cos

�
�

2M
.2k C 1/

�
2n C 1 � M

2

�	
;

n D 0; 1; : : : ;M � 1: (7.69)

Similarly, comparing Eqs. (7.69) and (7.62) reveals that Eq. (7.69) corresponds to
the first sum on the right-hand side of (7.62) which is the complex exponential-
modulated LD synthesis QMF filter bank (7.61). Moreover, comparing Eqs. (7.69)
and (7.67) it can be seen that they are closely related. Indeed, substituting M

2
for M

into (7.67) excluding the normalization factor we get (7.69), i.e., the real-valued
cosine-modulated LD down-sampled synthesis QMF bank defined by (7.68) is
the real-valued cosine-modulated LD synthesis QMF bank defined by (7.66) for
the size M

2
.

Note 2: The SBR technology in the MPEG-4 HE-AAC and AAC-ELD codecs use
similar QMF banks. Perhaps the most important distinction between standard SBR
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and LD-SBR is that the time shift factors in the transform kernels are even numbers
in HE-AAC, and odd numbers in AAC-ELD [33]. This even/odd difference comes
from the fact that the low pass prototype filter used in HE-AAC is odd symmetric
while the filter used in AAC-ELD is even symmetric.

7.3.4 Efficient Implementations of the LD QMF Banks
in the AAC-ELD

In the following efficient implementations of LD QMF banks as block transforms
in the AAC-ELD codec are presented. Again, without loss of generality, the
normalization factors from the definitions of the LD QMF banks are omitted in
the derivations of fast algorithms.

7.3.4.1 Complex Exponential-Modulated LD Analysis QMF Bank
in the Encoder

Consider the complex exponential-modulated LD analysis QMF bank, or equiv-
alently, the CLDFB analysis filter bank given by (7.53). Obviously, in order to
eliminate the time shift factors 3M in (7.53), applying the following permutation
to the input data sequence fung as

yn D

8
<̂

:̂

u 3M
2 Cn; n D 0; 1; : : : ; M

2
� 1;

� un� M
2
; n D M

2
; M
2

C 1; : : : ; 2M � 1;
(7.70)

the real and imaginary part of the CLDFB analysis filter bank can be, respectively,
written as

<e fpkg D
2M�1X

nD0
yn cos

h �
4M

.2k C 1/.2n C 1/
i
;

=m fpkg D
2M�1X

nD0
yn sin

h �
4M

.2k C 1/.2n C 1/
i
; k D 0; 1; : : : ;M � 1:

(7.71)

Subsequently, using the symmetry property of cosine and sine transform kernels,
i.e., substituting 2M � 1 � n for n into both sums of (7.71), we get
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<e fpkg D
M�1X

nD0
.yn � y2M�1�n/ cos

h �
4M

.2k C 1/.2n C 1/
i
;

=m fpkg D
M�1X

nD0
.yn C y2M�1�n/ sin

h �
4M

.2k C 1/.2n C 1/
i
; k D 0; 1; : : : ;M � 1:

(7.72)

In Eq. (7.72) the real part <e fpkg is recognized as an unnormalized M-point forward
DCT-IV of fyn � y2M�1�ng while the imaginary part =m fpkg as an unnormalized
M-point forward DST-IV of fyn C y2M�1�ng which may subsequently be (but not
necessary) converted to the forward DCT-IV. Combining (7.70) with expressions
fyn � y2M�1�ng and fyn C y2M�1�ng leads, respectively, to the following mappings

yn � y2M�1�n D

8
<̂

:̂

u 3M
2 Cn C u 3M

2 �1�n; n D 0; 1; : : : ; M
2

� 1;

� un� M
2

C u 3M
2 �1�n; n D M

2
; M
2

C 1; : : : ;M � 1;
(7.73)

and

yn C y2M�1�n D

8
<̂

:̂

u 3M
2 Cn � u 3M

2 �1�n; n D 0; 1; : : : ; M
2

� 1;

� un� M
2

� u 3M
2 �1�n; n D M

2
; M
2

C 1; : : : ;M � 1:
(7.74)

The efficient implementation of CLDFB analysis QMF bank in the encoder requires
2M additions and the computation of two M-point unnormalized forward DCTs-IV.

7.3.4.2 HQ-LD-SBR QMF Banks in the Decoder

The efficient implementations of complex exponential-modulated LD QMF banks
for the HQ-LD-SBR as well as the efficient implementations of the real-valued
cosine-modulated LD QMF banks for the LP-LD-SBR in AAC-ELD decoder have
been proposed in [33, 34]. They are based on the DCT-IV or FFT.

Complex Exponential-Modulated LD Analysis QMF Bank

We recall that the complex exponential-modulated LD analysis QMF bank given
by (7.58) is actually the CLDFB analysis filter bank in the encoder given by (7.53),
but for the size M

2
. Therefore, the efficient implementation of the CLDFB anal-

ysis filter bank defined by (7.72)–(7.74) can simply be reused for the complex
exponential-modulated LD analysis QMF bank by taking M

2
instead of M (M is

divisible by 4) as follows:
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<e fpkg D
M
2 �1X

nD0
.yn � yM�1�n/ cos

�
�

4.M=2/
.2k C 1/.2n C 1/

	
;

=m fpkg D
M
2 �1X

nD0
.yn C yM�1�n/ sin

�
�

4.M=2/
.2k C 1/.2n C 1/

	
;

k D 0; 1; : : : ;
M

2
� 1; (7.75)

where

yn � yM�1�n D

8
<̂

:̂

u 3M
4 Cn C u 3M

4 �1�n; n D 0; 1; : : : ; M
4

� 1;

� un� M
4

C u 3M
4 �1�n; n D M

4
; M
4

C 1; : : : ; M
2

� 1;
(7.76)

and

yn C yM�1�n D

8
<̂

:̂

u 3M
4 Cn � u 3M

4 �1�n; n D 0; 1; : : : ; M
4

� 1;

� un� M
4

� u 3M
4 �1�n; n D M

4
; M
4

C 1; : : : ; M
2

� 1:
(7.77)

This requires M additions and the computation of two M
2

-point unnormalized
forward DCTs-IV.

Complex Exponential-Modulated LD Synthesis QMF Bank

Consider the real part of the complex exponential-modulated LD synthesis QMF
bank given by (7.60) in the following equivalent form:

vn D y
.1/

n � y
.2/

n ; n D 0; 1; : : : ; 2M � 1; (7.78)

where

y
.1/

n D
M�1X

kD0
<efpkg cos

h �
4M

.2k C 1/.2n C 1 � M/
i
;

y
.2/

n D
M�1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.2n C 1 � M/
i
: (7.79)

In order to eliminate the time shift factors M in (7.79), subsequently substituting
M
2

C n, M
2

� 1� n, 3M
2

C n, and 3M
2

� 1� n for n D 0; 1; : : : ; M
2

� 1 into the first sum
of (7.79), and using the relation (C.16) from Appendix C.2 we, respectively, have
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y
.1/

M
2 Cn

D
M�1X

kD0
<efpkg cos

h �
4M

.2k C 1/.2n C 1/
i

D x
.c/

n ;

y
.1/

M
2 �1�n

D
M�1X

kD0
<efpkg cos

h �
4M

.2k C 1/.2n C 1/
i

D x
.c/

n ;

y
.1/

3M
2 Cn

D �
M�1X

kD0
<efpkg .�1/k sin

h �
4M

.2k C 1/.2n C 1/
i

D � x
.c/

M�1�n;

y
.1/

3M
2 �1�n

D
M�1X

kD0
<efpkg .�1/k sin

h �
4M

.2k C 1/.2n C 1/
i

D x
.c/

M�1�n;

n D 0; 1; : : : ;
M

2
� 1: (7.80)

The data sequence fx
.c/

n g in (7.80) corresponds to an unnormalized M-point inverse
DCT-IV of <efpkg. One can immediately see that the data sequence fy

.1/

n g has the
following local symmetries

y
.1/

M
2 Cn

D y
.1/

M
2 �1�n

; y
.1/

3M
2 �1�n

D � y
.1/

3M
2 Cn

; n D 0; 1; : : : ;
M

2
� 1: (7.81)

Repeating exactly the same procedure for the second sum of (7.79) and using the
relation (C.14) from Appendix C.2 we have

y
.2/

M
2 Cn

D
M�1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.2n C 1/
i

D x
.s/

n ;

y
.2/

M
2 �1�n

D �
M�1X

kD0
=mfpkg sin

h �
4M

.2k C 1/.2n C 1/
i

D � x
.s/

n ;

y
.2/

3M
2 Cn

D
M�1X

kD0
=mfpkg .�1/k cos

h �
4M

.2k C 1/.2n C 1/
i

D x
.s/

M�1�n;

y
.2/

3M
2 �1�n

D
M�1X

kD0
=mfpkg .�1/k cos

h �
4M

.2k C 1/.2n C 1/
i

D x
.s/

M�1�n;

n D 0; 1; : : : ;
M

2
� 1; (7.82)

where the data sequence fx
.s/

n g in (7.82) corresponds to an unnormalized M-point
inverse DST-IV of =mfpkg, and the data sequence fy

.2/

n g has the following local
symmetries
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y
.2/

M
2 Cn

D � y
.2/

M
2 �1�n

; y
.2/

3M
2 �1�n

D y
.2/

3M
2 Cn

;

n D 0; 1; : : : ;
M

2
� 1: (7.83)

After the computation of M-point inverse DCT-IV of <efpkg and M-point inverse
DST-IV of =mfpkg, the final time domain data sequence fvng is obtained by two
ways as follows: (a) creating the data sequence fy

.1/

n g using (7.80), then creating the
data sequence fy

.2/

n g using (7.82) followed by applying (7.78), or (b) by combining
Eqs. (7.78), (7.80), and (7.82) the data sequence fvng is directly obtained as

vM
2 Cn D x

.c/

n � x
.s/

n ; v 3M
2 Cn D � x

.c/

M�1�n � x
.s/

M�1�n;

vM
2 �1�n D x

.c/

n C x
.s/

n ; v 3M
2 �1�n D x

.c/

M�1�n � x
.s/

M�1�n;

n D 0; 1; : : : ;
M

2
� 1: (7.84)

The efficient implementation of the complex exponential-modulated LD synthesis
QMF bank requires 2M additions and the computation of two M-point unnormalized
inverse DCTs-IV.

Complex Exponential-Modulated LD Down-Sampled Synthesis QMF Bank

We recall that the complex exponential-modulated LD down-sampled synthesis
QMF bank given by (7.62) is the complex exponential-modulated LD synthesis
QMF bank given by (7.60) but for the size M

2
. Consequently, the efficient imple-

mentation of the complex exponential-modulated LD synthesis QMF bank defined
by (7.78), (7.80), (7.82), and (7.84) can be reused for the complex exponential-
modulated LD down-sampled synthesis QMF bank by taking M

2
instead of M (M is

divisible by 4). The final time domain data sequence fvng is obtained as

vM
4 Cn D x

.c/

n � x
.s/

n ; v 3M
4 Cn D � x

.c/

M
2 �1�n

� x
.s/

M
2 �1�n

;

vM
4 �1�n D x

.c/

n C x
.s/

n ; v 3M
4 �1�n D x

.c/

M
2 �1�n

� x
.s/

M
2 �1�n

;

n D 0; 1; : : : ;
M

4
� 1; (7.85)

where

x
.c/

n D
M
2 �1X

kD0
<efpkg cos

�
�

4.M=2/
.2k C 1/.2n C 1/

	
;
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x
.s/

n D
M
2 �1X

kD0
=mfpkg sin

�
�

4.M=2/
.2k C 1/.2n C 1/

	
; n D 0; 1; : : : ;

M

2
� 1:

(7.86)

This requires M additions and the computation of two M
2

-point unnormalized inverse
DCTs-IV.

7.3.4.3 LP-LD-SBR QMF Banks in the Decoder

The derivations of efficient implementations for real-valued cosine-modulated
LD QMF banks in the LP-LD-SBR core decoder closely follow those of the
corresponding complex exponential-modulated LD QMF banks in the HQ-LD-SBR
core decoder. They are exactly defined as their real parts.

Real-Valued Cosine-Modulated LD Analysis QMF Bank

The efficient implementation of the real-valued cosine-modulated LD analysis QMF
bank given by (7.65) is obtained from the real part (7.75) and mapping (7.76) by
taking M

2
instead of M (M is divisible by 4) as

ck D
M
2 �1X

nD0
.yn � yM�1�n/ cos

�
�

4.M=2/
.2k C 1/.2n C 1/

	
; k D 0; 1; : : : ;

M

2
� 1;

(7.87)

where

yn � yM�1�n D

8
<̂

:̂

u 3M
4 Cn C u 3M

4 �1�n; n D 0; 1; : : : ; M
4

� 1;

� un� M
4

C u 3M
4 �1�n; n D M

4
; M
4

C 1; : : : ; M
2

� 1:
(7.88)

It requires M
2

additions and the computation of one M
2

-point unnormalized forward
DCT-IV.

Real-Valued Cosine-Modulated LD Synthesis QMF Bank

The efficient implementation of the real-valued cosine-modulated LD synthesis
QMF bank given by (7.67) is obtained from (7.80) and (7.84). The time domain
aliased data sequence fvng is given by
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vM
2 Cn D x

.c/

n ; v 3M
2 Cn D � x

.c/

M�1�n;

vM
2 �1�n D x

.c/

n ; v 3M
2 �1�n D x

.c/

M�1�n;

n D 0; 1; : : : ;
M

2
� 1; (7.89)

where

x
.c/

n D
M�1X

kD0
ck cos

h �
4M

.2k C 1/.2n C 1/
i
; n D 0; 1; : : : ;M � 1: (7.90)

It requires only the computation of one M-point unnormalized inverse DCT-IV.

Real-Valued Cosine-Modulated LD Down-Sampled Synthesis QMF Bank

The efficient implementation of the real-valued cosine-modulated LD down-
sampled synthesis QMF bank given by (7.69) is obtained directly from (7.89)
and (7.90) by taking M

2
instead of M (M is divisible by 4). The time domain aliased

data sequence fvng is given by

vM
4 Cn D x

.c/

n ; v 3M
4 Cn D � x

.c/

M
2 �1�n

;

vM
4 �1�n D x

.c/

n ; v 3M
4 �1�n D x

.c/

M
2 �1�n

; n D 0; 1; : : : ;
M

4
� 1; (7.91)

where

x
.c/

n D
M
2 �1X

kD0
ck cos

�
�

4.M=2/
.2k C 1/.2n C 1/

	
; n D 0; 1; : : : ;

M

2
� 1: (7.92)

It requires the computation of one M
2

-point unnormalized inverse DCT-IV.

7.4 Comparison of the Efficient QMF Bank Implementations

The arithmetic complexity of the complex exponential-modulated (LD) QMF banks
in the HQ-SBR and HQ-LD-SBR encoder and decoder implemented using the direct
method as block transforms are summarized in Table 7.1, while the arithmetic
complexity of the real-valued cosine-modulated (LD) QMF banks in the LP-SBR
and LP-LD-SBR decoder implemented using the direct method as block transforms
are summarized in Table 7.2.
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Table 7.1 The arithmetic complexity of the complex exponential-modulated (LD) QMF banks in
the HQ-SBR and HQ-LD-SBR encoder and decoder implemented using the direct method as block
transforms (M—real multiplication, A—real addition)

Complex exponential-modulated (LD) QMF bank Direct implementation

Analysis (LD) QMF in encoder 16,384 M + 16,256 A

Analysis (LD) QMF in decoder 4096 M + 4032 A

Synthesis (LD) QMF in decoder 16,384 M + 16,512 A

Down-sampled synthesis (LD) QMF in decoder 4096 M + 4032 A

Table 7.2 The arithmetic complexity of the real-valued cosine-modulated (LD) QMF banks in
the LP-SBR and LP-LD-SBR decoder implemented using the direct method as block transforms
(M—real multiplication, A—real addition)

Real-valued cosine-modulated (LD) QMF bank Direct implementation

Analysis (LD) QMF 2048 M + 2016 A

Synthesis (LD) QMF 8192 M + 8064 A

Down-sampled synthesis (LD) QMF 2048 M + 1984 A

7.4.1 Efficient QMF Banks Implementations in the HE-AAC

7.4.1.1 HQ-SBR QMF Banks

The efficient implementations of all complex exponential-modulated QMF banks
in the HQ-SBR encoder and decoder rely on only one type of M-point forward
or inverse DCT-IV, where M D 64. In the cases when two M-point DCTs-IV are
needed to be computed, one for the real part and one for the imaginary part, they
can be realized in parallel. If the FFT-based fast DCT-IV computational structure
identical both for the forward and inverse DCT-IV computation is adopted (see
Appendix C.2.1), it results in the unified efficient implementation of all complex
QMF banks in the HQ-SBR encoder and decoder. Moreover, it can lead to a
very fast, compact, and low-cost hardware (VLSI) architecture in terms of the
regularity, structural simplicity, and minimal memory requirements without the need
to reconfigure the fast DCT-IV computational structure.

On the other hand, if the DCT-II-based fast DCT-IV computational structure
is adopted (see Appendix C.3), although it is more efficient in terms of the
multiplicative complexity, it has to be inverted for the inverse DCT-IV computation.
This fact results in two separate fast computational structures, one for the forward
and one for the inverse DCT-IV. Moreover, the windowing function has to be
modified too. The arithmetic complexity of the efficient implementations of the
complex exponential-modulated QMF banks in the HQ-SBR encoder and decoder
is summarized in Table 7.3.
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Table 7.3 The arithmetic complexity of the efficient implementations of the complex exponential-
modulated QMF banks in the HQ-SBR encoder and decoder

Complex exponential-modulated QMF Fast DCT-IV computational structure

banks in the HQ-SBR encoder/decoder FFT-based DCT-II-based

Analysis QMF in encoder 512 M + 1280 A 384 M + 1280 A

Analysis QMF in decoder 256 M + 576 A 192 M + 576 A

Synthesis QMF in decoder 512 M + 1280 A 384 M + 1280 A

Down-sampled synthesis QMF in decoder 256 M + 576 A 192 M + 576 A

Table 7.4 The arithmetic complexity of the efficient implementations of the real-valued cosine-
modulated QMF banks in the LP-SBR decoder

Real-valued cosine-modulated QMF Fast DCT-II/III computational structure

banks in the LP-SBR decoder Classic algorithm DCT-IV-based

Analysis QMF 80 M + 240 A 144 M + 304 A

Synthesis QMF 192 M + 513 A 320 M + 639 A

Down-sampled synthesis QMF 80 M + 209 A 144 M + 271 A

7.4.1.2 LP-SBR QMF Banks

The efficient implementations of the real-valued cosine-modulated QMF banks
in the LP-SBR decoder, although of much lower arithmetic complexity, require
the computation of one M

2
-point DCT-III and one reconfigurable M-=M

2
-point

DCT-II, where M D 64. This fact indicates that one fast reconfigurable DCT-II
computational structure is needed (see Appendix C.1.1) which has to be inverted for
the M

2
-point DCT-III computation. Thus, two separate fast computational structures

are required. The same is valid for the DCT-IV-based fast DCT-II/III computational
structures (see Appendix C.3), however, with the higher arithmetic complexity.

The FFT-based fast DCT-IV computational structure used in the HQ-SBR
may be also shared in the LP-SBR. The arithmetic complexity of the efficient
implementations of the real-valued cosine-modulated QMF banks in the LP-SBR
decoder is summarized in Table 7.4.

7.4.2 Efficient LD QMF Banks Implementations in AAC-ELD

7.4.2.1 HQ-LD-SBR QMF Banks

In contrast to the efficient implementations of the complex QMF banks in the HQ-
SBR encoder and decoder, where only one type of M-point forward and inverse
DCT-IV is required, the efficient implementations of all complex exponential-
modulated LD QMF banks in the HQ-LD-SBR encoder and decoder rely on one
reconfigurable M/ M

2
-point forward or inverse DCT-IV, where M D 64. When



7.4 Comparison of the Efficient QMF Bank Implementations 449

two M-point or two M
2

-point DCTs-IV are needed to be computed, they can be
realized in parallel. Obviously, the FFT-based fast DCT-IV computational structure
(see Appendix C.2.1) or the DCT-II-based fast DCT-IV computational structure
may be adopted (see Appendix C.3) but in the reconfigurable form. Therefore, the
conclusions mentioned in subsection 7.4.1.1 are almost valid for the HQ-LD-SBR
encoder and decoder. The arithmetic complexity of the complex exponential-
modulated LD QMF banks efficient implementations in the HQ-LD-SBR encoder
and decoder is summarized in Table 7.5.

7.4.2.2 LP-LD-SBR QMF Banks

Since the real-valued cosine-modulated LD QMF banks in the LP-LD-SBR decoder
are defined as the real parts of corresponding complex exponential-modulated LD
QMF banks in the HQ-LD-SBR decoder, their efficient implementations are also
based on one reconfigurable M/ M

2
-point forward or inverse DCT-IV, where M D 64.

Thus, the reconfigurable FFT-based or DCT-II-based fast DCT-IV computational
structures provide very compact systems for the unified efficient implementation
of all QMF banks both in the HQ-LD-SBR encoder and decoder and LP-LD-
SBR decoder. The arithmetic complexity of the real-valued cosine-modulated LD
QMF banks efficient implementations in the LP-LD-SBR decoder is summarized in
Table 7.6.

In summary, the reconfigurable FFT-based fast DCT-IV computational structure
provides a transform engine for the efficient implementations of all complex and
real-valued QMF banks in the HQ-SBR, LP-SBR, HQ-LD-SBR, and LP-LD-
SBR encoder and decoder. Since many commercial FFT software and hardware

Table 7.5 The arithmetic complexity of the complex exponential-modulated LD QMF banks
efficient implementations in the HQ-LD-SBR encoder and decoder

Complex exponential-modulated LD QMF Fast DCT-IV computational structure

banks in the HQ-LD-SBR encoder/decoder FFT-based DCT-II-based

Analysis LD QMF in encoder 512 M + 1280 A 384 M + 1280 A

Analysis LD QMF in decoder 224 M + 544 A 160 M + 544 A

Synthesis LD QMF in decoder 512 M + 1280 A 384 M + 1280 A

Down-sampled synthesis LD QMF in decoder 224 M + 544 A 160 M + 544 A

Table 7.6 The arithmetic complexity of the real-valued cosine-modulated LD QMF banks
efficient implementations in the LP-LD-SBR decoder

Real-valued cosine-modulated LD QMF Fast DCT-IV computational structure

banks in the LP-LD-SBR decoder FFT-based DCT-II-based

Analysis QMF 112 M + 272 A 80 M + 272 A

Synthesis QMF 256 M + 576 A 192 M + 576 A

Down-sampled synthesis QMF 112 M + 240 A 80 M + 240 A
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products are available on websites: S/W tools, chips, digital signal processors
(DSP), hardware/software implementations on DSP, VLSI, and FPGA [53], this fact
can result in a low-cost implementation of the QMF banks in the HQ-SBR, LP-SBR
HQ-LD-SBR, and LP-LD-SBR decoders.

7.5 Summary

The complete unified efficient low-cost implementations of the complex and real-
valued analysis/synthesis QMF banks used in the standard SBR encoder and decoder
(HQ-SBR and LP-SBR) and their low delay versions used in the LD-SBR encoder
and decoder (HQ-LD-SBR and LP-LD-SBR) have been presented. They are based
on the fast DCT-IV and DCT-II/DCT-III computational structures and are efficient
in terms of the computational complexity, regularity, and structural simplicity. The
efficient implementations of the QMF banks used in the standard SBR (HQ-SBR
and LP-SBR) as well as used in the LD-SBR encoder and decoder (HQ-LD-SBR
and LP-LD-SBR) are separately compared with respect to the arithmetic complexity.
In particular, all the fast algorithms have been analyzed in detail in terms of the
regularity and structural simplicity for a potential real-time low-cost implementation
in software or hardware.

Problems and Exercises

1. Verify the even symmetry property of sub-band coefficients fckg given by (7.17)
of the real-valued cosine-modulated analysis QMF bank used in the standard
LP-SBR decoder.

2. Verify the even anti-symmetry property of sub-band coefficients fckg given
by (7.64) of the real-valued cosine-modulated LD analysis QMF bank used
in the LP-LD-SBR decoder.

3. For the standard SBR in HE-AAC encoder, implement by a computer program
the fast algorithm for the computation of complex exponential-modulated
analysis QMF bank defined by (7.23), where M D 64. For the efficient
implementation, use both the FFT-based fast M-point DCT-IV computational
structure (see Appendix C.2.1), and the DCT-II-based fast M-point DCT-
IV computational structure (see Appendix C.3). Compare their arithmetic
complexity.

4. For the standard HQ-SBR in HE-AAC decoder, implement by a computer
program the unified fast computation of:

• Complex exponential-modulated analysis QMF bank defined by (7.24)
and (7.25),
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• Complex exponential-modulated synthesis QMF bank defined by (7.26)–
(7.28), and

• Complex exponential-modulated down-sampled synthesis QMF bank
defined by (7.35), (7.37), and (7.40),

using only one FFT-based fast M-point DCT-IV computational structure, where
M D 64.

5. Verify the correctness of the first alternative method for the efficient imple-
mentation of complex exponential-modulated down-sampled synthesis QMF
bank defined by (7.29) via the efficient implementation of complex exponential-
modulated synthesis QMF bank defined by (7.26)–(7.28).

6. Verify the correctness of the second alternative method for the efficient imple-
mentation of complex exponential-modulated down-sampled synthesis QMF
bank defined by (7.30)–(7.32) via the efficient implementation of complex
exponential-modulated synthesis QMF bank defined by (7.26)–(7.28).

7. For the standard LP-SBR in HE-AAC decoder, implement by a computer
program the unified fast computation of:

• Real-valued cosine-modulated analysis QMF bank defined by (7.44)
and (7.45),

• Real-valued cosine-modulated synthesis QMF bank defined by (7.47)
and (7.48), and

• Real-valued cosine-modulated down-sampled synthesis QMF bank defined
by (7.49) and (7.50),

using one reconfigurable (M-point and M
2

-point) fast DCT-II/III computational
structure, where M D 64.

8. For the LD-SBR in AAC-ELD encoder, implement by a computer program
the fast algorithm for the computation of complex exponential-modulated LD
analysis QMF bank defined by (7.72)–(7.74), where M D 64. For the efficient
implementation, use both the FFT-based fast M-point DCT-IV computational
structure (see Appendix C.2.1), and the DCT-II-based fast M-point DCT-
IV computational structure (see Appendix C.3). Compare their arithmetic
complexity.

9. For the HQ-LD-SBR in AAC-ELD decoder, implement by a computer program
the unified fast computation of:

• Complex exponential-modulated LD analysis QMF bank defined by (7.75)–
(7.77),

• Complex exponential-modulated LD synthesis QMF bank defined
by (7.80), (7.82), and (7.84), and

• Complex exponential-modulated LD down-sampled synthesis QMF bank
defined by (7.85) and (7.86),

using only reconfigurable (M-point and M
2

-point) FFT-based fast DCT-IV
computational structure, where M D 64.
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10. Similarly, for the LP-LD-SBR in AAC-ELD decoder, implement by a computer
program the unified fast computation of:

• Real-valued cosine-modulated LD analysis QMF bank defined by (7.87)
and (7.88),

• Real-valued cosine-modulated LD synthesis QMF bank defined by (7.89)
and (7.90), and

• Real-valued cosine-modulated LD down-sampled synthesis QMF bank
defined by (7.91) and (7.92),

using only reconfigurable (M-point and M
2

-point) FFT-based fast DCT-IV
computational structure, where M D 64.
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Chapter 8
Efficient Implementations of Perfect
Reconstruction Low Delay Cosine-Modulated
Filter Banks in the MPEG-4 AAC-ELD

8.1 Introduction

The MPEG committee has recently completed development of a new audio coding
standard, MPEG-4 Advanced Audio Coding-Enhanced Low Delay (AAC-ELD) [1],
targeted towards high-quality real-time (interactive) bidirectional communication
applications, such as audio and video conferencing. Common audio coding schemes
and state-of-the-art MPEG audio coding standards, such as MPEG-4 AAC Low
Complexity (AAC-LC), High Efficiency AAC (HE-AAC) [2, 3], and AAC Low
Delay (AAC-LD) [4–6], utilize for the time-to-frequency transformation of an
audio data block and vice versa, the well-known perfect reconstruction cosine-
modulated filter banks, the time domain aliasing cancellation modified discrete
cosine transform (TDAC-MDCT) [34]. In order to achieve the high coding effi-
ciency and low algorithmic delay, the AAC-ELD combines a low delay-optimized
Spectral Band Replication (SBR) compression technology (see Chap. 7) known
from the HE-AAC [2, 3] and a perfect reconstruction low delay cosine-modulated
filter bank, called the low delay MDCT (LD-MDCT) [8–10]. Very recently, MPEG
finished the standardization of a low delay MPEG surround as a parametric stereo
coding tool for the AAC-ELD codec. The combination of both technologies, the
parametric stereo coding tool and AAC-ELD, is also known as the AAC-ELD v2
[7, 11]. The applications of AAC-ELD v2 codec involve broadcasting and mobile
videoconferencing. Essentially, the AAC-LC, HE-AAC, and AAC-LD audio codecs
form the basis of AAC-ELD.

Although the use of LD-MDCT substantially reduces the algorithmic delays, the
transform operations in the AAC-ELD codec are still computationally intensive and
the LD-MDCT filter banks need to have fast algorithms, and in particular, when
the block length is a composite number. Therefore, this chapter is concentrated
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on the perfect reconstruction analysis/synthesis LD-MDCT filter banks used in the
AAC-ELD codec and mainly on their efficient implementations. Specifically, this
chapter presents:

• Definitions of the analysis/synthesis LD-MDCT (and TDAC-MDCT) filter
banks, and general symmetry properties of LD-MDCT block transforms both in
the time and frequency domains.

• Relations between the LD-MDCT and TDAC-MDCT block transforms in the
analytical forms as well as in the equivalent matrix representations. This fact
enables us to map the LD-MDCT into TDAC-MDCT block transform and
provides the basis for a unified approach to efficiently implement both the LD-
MDCT and TDAC-MDCT block transforms in the state-of-the-art MPEG audio
codecs.

• Efficient implementations of the even-length analysis/synthesis LD-MDCT filter
banks based on the TDAC-MDCT as well as the efficient implementations
without mapping the LD-MDCT to TDAC-MDCT. For each fast LD-MDCT
algorithm all the complete formulae are derived.

• All the fast even-length LD-MDCT algorithms are investigated and compared in
terms of arithmetic complexity and structural simplicity.

Finally, consequences of the fast even-length LD-MDCT algorithms to other exist-
ing audio broadcasting standards and speech communication codecs are discussed,
when the block sizes are composite numbers.

8.2 Definitions of the LD-MDCT and TDAC-MDCT Filter
Banks

8.2.1 Analysis/Synthesis LD-MDCT Filter Banks

The analysis and synthesis LD-MDCT filter banks are, respectively, defined as
[1, 8–10]
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where the superscript .i/ denotes the data-block number, fx
.i/

n g is the input data
block of the length 2N (N is divisible by 4), fc

.i/� LD

k g are LD-MDCT frequency

coefficients, and fOx.i/� LD

n g is the time domain aliased data sequence. fw
.a/

n g represents
an asymmetric low delay analysis windowing function, while fw

.s/

n g represents
an asymmetric low delay synthesis windowing function which is simply time-
reversed replica of the low delay analysis windowing function, i.e., w

.s/

n D w
.a/

2N�1�n,
n D 0; 1; : : : ; 2N � 1. The low delay analysis windowing functions for N D 1024

and 960 are tabulated in [1]. Plots of low delay analysis and synthesis windowing
functions for N D 960 are shown in [8–10]. Note that the first N

8
values of fw

.a/

n g
both for N D 1024 and 960 are implicitly equal to zero [1].

The original data sequence fx
.i/

n g is perfectly reconstructed by adding outputs of
the synthesis LD-MDCT filter banks of four succeeding data blocks .i � 3/, .i � 2/,
.i � 1/, and .i/ overlapped by N

2
samples (the so-called overlap/add procedure) as

follows:

x
.i/

n D Ox.i/� LD

n C Ox.i�1/�LD

N
2 Cn

C Ox.i�2/�LD

NCn C Ox.i�3/�LD

3N
2 Cn

; n D 0; 1; : : : ;
N

2
� 1: (8.3)

8.2.2 Analysis/Synthesis TDAC-MDCT Filter Banks

We recall that the analysis and synthesis TDAC-MDCT filter banks are, respectively,
defined as [34]
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where the superscript .i/ denotes the data-block number, fx
.i/

n g is the input data block
of the length N (N is divisible by 4), fc

.i/� TDAC

k g are TDAC-MDCT frequency coef-

ficients, and fOx.i/� TDAC

n g is the time domain aliased data sequence. fwng represents
a symmetric windowing function being identical both for analysis and synthesis
TDAC-MDCT filter banks.
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The original data sequence fx
.i/

n g is perfectly reconstructed by adding outputs of
the synthesis TDAC-MDCT filter banks of two succeeding data blocks .i � 1/ and
.i/ overlapped by N

2
samples (the overlap/add procedure) as follows:

x
.i/

n D Ox.i�1/�TDAC

N
2 Cn

C Ox.i/� TDAC

n ; n D 0; 1; : : : ;
N

2
� 1: (8.6)

8.2.3 General Comments on LD-MDCT and TDAC-MDCT
Filter Banks

The purpose of low delay filter banks is to reduce their reconstruction delay
independently of the prototype filter length, while still maintaining the perfect
reconstruction property. The theory and methods for the design and implementation
of perfect reconstruction modulated filter banks with arbitrary system delay are
well described and analyzed in [31, 35, 36]. The resulting low delay filter banks
have the same cosine modulation function as the TDAC-MDCT, but they can have
longer windowing functions which can be nonsymmetric with a generalized or
low reconstruction delay. In fact, the LD-MDCT has a similar cosine modulation
kernel as TDAC-MDCT, but substantial delay reduction is achieved by utilizing
a nonsymmetric windowing function with a low reconstruction delay and with
multiple overlap. The asymmetric windowing function allows to reduce the overlap
towards future samples and at the same time its impulse response is extended
towards past samples. This cannot be accomplished with TDAC-MDCT which
employs a symmetric windowing function and thus has a system delay identical
to the block size minus one [8–10].

Obviously, when investigating and developing fast algorithms/computational
structures for an efficient implementation of (low delay) analysis and synthesis
filter banks, their complete analytical forms are frequently considered as the
forward/backward block transforms applied to a single data block. Without loss
of generality, we may omit the data-block number .i/ and normalization factors
from the definitions of LD-MDCT filter banks given by (8.1) and (8.2), and
TDAC-MDCT filter banks given by (8.4) and (8.5). Similarly, assuming that the
input/output data sequences are windowed before/after their transformation, we may
omit the windowing functions too.

8.2.4 Forward/Backward LD-MDCT as the Block Transforms

The forward and backward LD-MDCT block transforms are, respectively, defined as

c
LD

k D �
N�1X

nD�N

xn cos

�
�

2N
.2k C 1/

�
2n C 1 � N

2

�	
; k D 0; 1; : : : ;

N

2
� 1;

(8.7)
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OxLD

n D �
N
2 �1X

kD0
c

LD

k cos

�
�

2N
.2k C 1/

�
2n C 1 � N

2

�	
; n D 0; 1; : : : ; 2N � 1:

(8.8)

The 2N-point forward LD-MDCT given by (8.7) can be reduced to N-point forward
LD-MDCT as follows. Splitting the summation (8.7) into two parts, we get [13, 14]

c
LD

k D �
�1X

nD�N

xn cos

�
�

2N
.2k C 1/

�
2n C 1 � N

2

�	

�
N�1X

nD0
xn cos

�
�

2N
.2k C 1/

�
2n C 1 � N

2

�	

D �
N�1X

nD0
xn�N cos

�
�

2N
.2k C 1/

�
�2N C 2n C 1 � N

2

�	

�
N�1X

nD0
xn cos

�
�

2N
.2k C 1/

�
2n C 1 � N

2

�	

D �
N�1X

nD0
.xn � xn�N/ cos

�
�

2N
.2kC1/

�
2nC1� N

2

�	
;

k D 0; 1; : : : ;
N

2
� 1: (8.9)

However, the indexing xn�N in (8.9) can be changed to xNCn. In fact, substituting
n�N and then N Cn for n D 0; 1; : : : ;N �1 into the cosine transform kernel in (8.9)
we find that it corresponds to � cos

�
�
2N .2k C 1/

�
2n C 1 � N

2

�
. This fact actually

explains the periodicity property of fxng. Consequently, Eq. (8.9) may be rewritten
into a new form defined as

c
LD

k D�
N�1X

nD0
.xn�xNCn/ cos

�
�

2N
.2kC1/

�
2nC1 � N

2

�	
; kD0; 1; : : : ; N

2
�1:

(8.10)

Thus, the 2N-point forward LD-MDCT given by (8.7) is reduced to N-point forward
LD-MDCT given by (8.10). Equation (8.10) implies that the forward LD-MDCT
block transform given by (8.7) can be written in an alternative useful form as

c
LD

k D
N�1X

nD�N

xNCn cos

�
�

2N
.2k C 1/

�
2n C 1 � N

2

�	
; k D 0; 1; : : : ;

N

2
� 1:

(8.11)



462 8 Efficient Implementations of Perfect Reconstruction Low Delay. . .

8.2.4.1 Symmetry Properties of the Forward/Backward LD-MDCT Block
Transforms

Substituting N � 1 � k for k into (8.10) we get

c
LD

N�1�k D � c
LD

k ; k D 0; 1; : : : ;
N

2
� 1; (8.12)

demonstrating that the fc
LD

k g has the even anti-symmetry property. On the other
hand, substituting N C n for n into (8.8) we obtain

OxLD

NCn D � OxLD

n ; n D 0; 1; : : : ;N � 1: (8.13)

Consequently, only half the samples of fOxLD

n g in (8.8) is sufficient to be computed.
Using the symmetry property (8.13) the backward LD-MDCT block transform is
defined as

OxLD

n D �
N
2 �1X

kD0
c

LD

k cos

�
�

2N
.2k C 1/

�
2n C 1 � N

2

�	
; n D 0; 1; : : : ;N � 1:

(8.14)

8.2.5 Forward/Backward TDAC-MDCT as the Block
Transforms

The forward and backward TDAC-MDCT block transforms are, respectively,
defined as [28]

c
TDAC

k D
N�1X

nD0
xn cos

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
; k D 0; 1; : : : ;

N

2
� 1;

(8.15)

OxTDAC

n D
N
2 �1X

kD0
c

TDAC

k cos

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
; n D 0; 1; : : : ;N � 1:

(8.16)

The symmetry properties of data sequences fc
TDAC

k g and fOxTDAC

n g as well as the general
mathematical and special properties of the TDAC-MDCT block transforms are
presented in [28] (see also Chap. 3).
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It can be easily seen that the cosine transform kernels of the LD-MDCT in (8.10)
and (8.14), and those of the TDAC-MDCT in (8.15) and (8.16), differ only by the
shift factor 
 N

2
.

8.2.6 TDAC-MDCT and LD-MDCT Transforms in the Current
Audio Codecs

We recall that the state-of-the-art MPEG-4 audio coding standards: AAC-LC, HE-
AAC [2, 3], and AAC-LD [4–6], utilize for the time-to-frequency transformation of
the audio data block and vice versa, the TDAC-MDCT transform. In order to adapt
to the signal characteristics, the AAC-LC and HE-AAC use the so-called block size
switching procedure. Specifically, when the audio signal is stationary, the long block
of size N D 2048 is used. When a transient signal is detected, then eight short
blocks of size N D 256 are used. The HE-AAC alternatively defines the long block
of size N D 1920 and short block of size N D 240. The advanced Digital Audio
Broadcasting (DAB+) system [20] for digital radio services as well as the Digital
Radio Mondiale (DRM) [19], universal openly standardized digital broadcasting
system for all broadcasting frequencies, have adopted the HE-AAC codec with the
TDAC-MDCT transform of the length N D 1920 (long block) or N D 240 (short
block). We note that these block sizes are composite numbers, i.e., they are of the
form 1920 D 27 � 15 and 240 D 24 � 15.

In general, the transform length influences the algorithmic delay (the theoretical
minimum delay allowed by an algorithm due to computational speed, or other
implementation circumstances). In order to reduce algorithmic delay, the AAC-
LD has deactivated the block size switching procedure and block sizes have been
reduced from N D 2048 to 1024 and from N D 1920 to 960 for the TDAC-MDCT
transform. Finally, for the time-to-frequency transformation of the audio block and
vice versa, AAC-ELD for the LD-MDCT transform defines the block of size 2N,
where N D 1024 or 960. Again, the block size N D 960 is a composite number,
i.e., it is of the form 960 D 26 � 15.

8.3 Relations Between the LD-MDCT and TDAC-MDCT
Block Transforms

In the following subsections, relations between the forward/backward LD-MDCT
and the forward/backward TDAC-MDCT block transforms are discussed. They
provide a unified approach to efficiently implement both the LD-MDCT and TDAC-
MDCT via a fast TDAC-MDCT computational structure.
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8.3.1 Relations Between the LD-MDCT and TDAC-MDCT

Consider the forward and backward LD-MDCT block transforms defined, respec-
tively, by (8.10) and (8.14). Relations between the forward/backward LD-MDCT
and forward/backward TDAC-MDCT block transforms have been discussed in
[13, 14]. Specifically, rewriting the argument of cosine transform kernel in the
forward/backward LD-MDCT given by (8.10)/(8.14) as

cos

�
�

2N
.2k C 1/

�
2n C 1C N

2
� N

�	

D .�1/k sin

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
; (8.17)

leads to mapping the forward/backward LD-MDCT into the forward/backward
TDAC modified discrete sine transform (TDAC-MDST), respectively, as

c
LD

k D � .�1/k
N�1X

nD0
.xn � xNCn/ sin

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
;

k D 0; 1; : : : ;
N

2
� 1; (8.18)
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2 �1X

kD0
.�1/k c

LD

k sin

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
; n D 0; 1; : : : ;N � 1:

(8.19)

Based on the relation between the TDAC-MDST and TDAC-MDCT [28], the
TDAC-MDST may be subsequently converted to the TDAC-MDCT. Then, the
analytical expressions for the forward and backward LD-MDCT computation based
on the TDAC-MDCT are, respectively, given by [13, 14]

c
LD

N
2 �1�k

D .�1/ N
2 �k

N�1X

nD0
.�1/ N

4 Cn .xn � xNCn/ cos

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
;

k D 0; 1; : : : ;
N

2
� 1; (8.20)
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2 �1�k c
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2 �1�k
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�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
;

n D 0; 1; : : : ;N � 1: (8.21)
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Equation (8.21) is obtained simply by substituting N
2

� 1� k for k into (8.19). Since
the term N

2
in Eqs. (8.20) and (8.21) is always even, then both equations can be

rewritten, respectively, in the simplified forms as

c
LD

N
2 �1�k

D .�1/k
N�1X

nD0
.�1/ N

4 Cn .xn � xNCn/ cos

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
;

k D 0; 1; : : : ;
N

2
� 1; (8.22)

OxLD
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4 Cn

N
2 �1X

kD0
.�1/k c

LD

N
2 �1�k

cos

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
;

n D 0; 1; : : : ;N � 1: (8.23)

It can be seen that this approach involves reverse operations and sign changes with
respect to both the time and frequency indices depending on whether N

4
is either

even or odd.

8.3.2 Simplified Relations Between the LD-MDCT and
TDAC-MDCT

Again, consider the forward and backward LD-MDCT block transforms defined,
respectively, by (8.10) and (8.14). The key for derivation of simplified relations
between the forward/backward LD-MDCT and the forward/backward TDAC-
MDCT block transforms is an observation that by substituting N � 1 � n for n
into (8.10) we get [12]

c
LD

k D
N�1X

nD0
.xN�1�n � x2N�1�n/ cos

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
;

k D 0; 1; : : : ;
N

2
� 1; (8.24)

and the forward LD-MDCT given by (8.10) is immediately converted to the forward
TDAC-MDCT of fxN�1�n � x2N�1�ng. Similarly, by substituting N � 1 � n for n
into (8.14) we get [12]

OxLD

N�1�n D
N
2 �1X

kD0
c

LD

k cos

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
; n D 0; 1; : : : ;N � 1;

(8.25)
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and the backward LD-MDCT given by (8.14) is also immediately converted to the
backward TDAC-MDCT of fc

LD

k g, but the time domain aliased data sequence fOxLD

n g
is in reverse order. Equations (8.24) and (8.25) define simplified relations between
the forward/backward LD-MDCT and the forward/backward TDAC-MDCT.

Let us investigate the simplified relations between LD-MDCT and TDAC-MDCT
block transforms in their equivalent matrix forms. Let the cosine transform kernel
of the forward LD-MDCT in (8.10) be represented by an N

2
� N matrix C

LD

N
2 �N

, and

the cosine transform kernel of the forward TDAC-MDCT in (8.15) be represented
by an N

2
� N matrix C

TDAC

N
2 �N

. Then, C
TDAC

N
2 �N

is related to C
LD

N
2 �N

by

C
TDAC

N
2 �N

D C
LD

N
2 �N

� .�JN/; (8.26)

where JN is the reflection matrix of order N. Equation (8.26) implies that the
corresponding basis vectors (rows) of forward LD-MDCT and TDAC-MDCT
matrices are reverse to each other, and their elements have opposite signs. For
clarity, in the following the matrices C

LD

N
2 �N

and C
TDAC

N
2 �N

are, respectively, shown in

explicit forms for N D 8:
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By transposing (8.26) we obtain the relation between matrices of the backward
LD-MDCT given by (8.14) and backward TDAC-MDCT given by (8.16) as

C
TDAC

N� N
2

D �JN � C
LD

N� N
2

: (8.27)
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Thus, by simple sign changes and order reversing applied to data sequences the
forward/backward LD-MDCT is converted to the forward/backward TDAC-MDCT.
The simplified relations between the forward/backward LD-MDCT and the
forward/backward TDAC-MDCT block transforms given by (8.24)/(8.25) are
simpler, more straightforward, and more transparent compared to (8.20)/(8.21)
or (8.22)/(8.23).

8.4 Efficient Implementations of the LD-MDCT

Although the use of LD-MDCT substantially reduces the algorithmic delays, the
transform operations in the AAC-ELD codec are still computationally intensive,
and as a motivation, the LD-MDCT filter banks need to have fast algorithms, and
in particular, when the block length is a composite number, i.e., N D 960. Several
efficient implementations of the analysis and synthesis LD-MDCT filter banks have
been developed up to now in [12–14]. The fast LD-MDCT algorithms in [13, 14]
are exclusively based on the fast TDAC-MDCT. In [12], exploiting the simplified
relations between the forward/backward LD-MDCT and forward/backward TDAC-
MDCT, the improved fast TDAC-MDCT-based LD-MDCT algorithms as well as
fast LD-MDCT algorithms without mapping the LD-MDCT to TDAC-MDCT are
described. All these fast algorithms are just discussed and investigated in detail in
this section.

In general, the relations between the forward/backward LD-MDCT and the
forward/backward TDAC-MDCT block transforms provide the unified approach
to efficiently implement both the LD-MDCT and TDAC-MDCT via a fast TDAC-
MDCT computational structure. Moreover, since the AAC-LC, HE-AAC [2, 3], and
AAC-LD [4–6] audio codecs use the TDAC-MDCT, the TDAC-MDCT-based fast
LD-MDCT algorithms provide the unified efficient implementation of LD-MDCT
and TDAC-MDCT transforms in all four codecs: AAC-ELD, AAC-LD, HE-AAC,
and AAC-LC.

8.4.1 TDAC-MDCT-Based Fast LD-MDCT Algorithms

The relations between the forward/backward LD-MDCT and the forward/backward
TDAC-MDCT defined by (8.20)/(8.21) or (8.22)/(8.23) enable us to derive fast
algorithms for the LD-MDCT computation based on the TDAC-MDCT [13, 14].
They are presented in the following subsections.
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8.4.1.1 TDAC-MDCT-Based Fast Forward LD-MDCT Algorithm

Consider the forward LD-MDCT block transform given by (8.22) expressed in the
form:

c
LD

N
2 �1�k

D .�1/k
N�1X

nD0
un cos

�
�

2N
.2k C 1/

�
2n C 1C N

2

�	
;

k D 0; 1; : : : ;
N

2
� 1; (8.28)

where

un D .�1/ N
4 Cn .xn � xNCn/; n D 0; 1; : : : ;N � 1: (8.29)

To eliminate the shift factor C N
2

in (8.28), by applying the following permutation to
the data sequence fung [27]
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8
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4
� 1;

un� N
4
; n D N

4
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4

C 1; : : : ;N � 1;
(8.30)

and using a symmetry property of the cosine transform kernel, the forward LD-
MDCT given by (8.28) is reduced to
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2
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The transform kernel in Eq. (8.31) is recognized as an N
2

-point forward type-IV DCT
(DCT-IV) [29] of fyn � yN�1�ng. Combining Eqs. (8.30) and (8.31) we obtain:
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(8.33)



8.4 Efficient Implementations of the LD-MDCT 469

and fung is defined by (8.29). However, the data sequence fyng defined by (8.33)
in terms of fung can be derived in terms of the original data sequence fxng. Indeed,
combining Eqs. (8.29) and (8.33), the fast TDAC-MDCT-based algorithm for the
N-point forward LD-MDCT computation is defined as
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8.4.1.2 TDAC-MDCT-Based Fast Backward LD-MDCT Algorithm

Now, consider the backward LD-MDCT block transform given by (8.21). To
eliminate the shift factor C N

2
in (8.21), substituting subsequently N

4
C n, N

4
� 1� n,

3N
4

Cn and 3N
4
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4

�1, into (8.21), and using the relation (C.17)
from Appendix C.2 we, respectively, have
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where the data sequence fyng actually corresponds to an N
2

-point inverse DCT-IV of
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We note that considering the relation (C.17), in two expressions corresponding
to fOxLD

N
4 Cn

g and fOxLD

N
4 �1�n

g on the right-hand sides of (8.36) the following simple

trigonometric identity is valid:
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Equation (8.36) also indicates that fOxLD

n g, n D 0; 1; : : : ;N � 1, has the following
local symmetries:
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D OxLD

N
4 �1�n

; OxLD

3N
4 Cn

D � OxLD

3N
4 �1�n

; n D 0; 1; : : : ;
N

4
� 1: (8.38)

Then, the time domain aliased data sequence fOxLD

n g is recovered as

OxLD

N
4 Cn

D OxLD

N
4 �1�n

D � y N
2 �1�n;

OxLD

3N
4 Cn

D yn; OxLD

3N
4 �1�n

D � yn; n D 0; 1; : : : ;
N

4
� 1: (8.39)
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Equations (8.37) and (8.39) define the fast TDAC-MDCT-based algorithm for
the backward LD-MDCT computation, whereby N is divisible by 4. Finally, the
complete data sequence fOxLD

n g with the length 2N is obtained according to (8.13).
We note that if we would alternatively consider the backward LD-MDCT block

transform given by (8.23), then in the derivation procedure of fast backward LD-
MDCT algorithm we can simply use the identity .�1/ N

2 �1�k D �.�1/k in (8.36). It
has been actually used in Eq. (8.37).

TDAC-MDCT-based fast algorithms for the forward N-point LD-MDCT com-
putation given by (8.34) and (8.35), and the backward LD-MDCT computation
given by (8.37) and (8.39) rely on a fast N

2
-point DCT-IV computational structure,

and involve reverse operations and sign changes with respect to both the time and
frequency indices.

8.4.2 Improved TDAC-MDCT-Based Fast LD-MDCT
Algorithms

As an alternative, the simplified relations between the forward/backward LD-MDCT
and the forward/backward TDAC-MDCT defined by (8.24) and (8.25) enable us
to improve versions of fast TDAC-MDCT-based algorithms for the forward and
backward LD-MDCT computation presented in the previous subsections without
reverse operations and sign changes with respect to both the time and frequency
indices [12]. They are presented in the following subsections.

8.4.2.1 Improved TDAC-MDCT-Based Fast Forward LD-MDCT
Algorithm

Consider the forward LD-MDCT block transform given by (8.24) expressed in the
form:

c
LD

k D
N�1X

nD0
un cos

�
�

2N
.2kC1/

�
2nC1C N

2

�	
; kD0; 1; : : : ; N

2
�1; (8.40)

where

un D xN�1�n � x2N�1�n; n D 0; 1; : : : ;N � 1: (8.41)

Following the same derivation procedure defined by (8.30)–(8.33), and finally
combining (8.33) and (8.41) we get

c
LD

k D
N
2 �1X

nD0
yn cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
; k D 0; 1; : : : ;

N

2
� 1;

(8.42)
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where

yn D

8
<̂

:̂

� x N
4 �1�n C x 5N

4 �1�n � x N
4 Cn C x 5N

4 Cn; n D 0; 1; : : : ; N
4

� 1;

x 5N
4 �1�n � x 9N

4 �1�n � x N
4 Cn C x 5N

4 Cn; n D N
4
; N
4

C 1; : : : ; N
2

� 1;
(8.43)

Equations (8.42) and (8.43) define the improved fast TDAC-MDCT-based algorithm
for the N-point forward LD-MDCT computation, whereby N is divisible by 4.

This DCT-IV-based fast algorithm is well known in the theory of fast TDAC-
MDCT algorithms, and it has been used for the efficient implementation of the
TDAC-MDCT in MP3 audio coding standard [27].

8.4.2.2 Improved TDAC-MDCT-Based Fast Backward LD-MDCT
Algorithm

Now, consider the backward LD-MDCT block transform given by (8.25). Again, to
eliminate the shift factor C N

2
in (8.25), substituting subsequently N

4
C n, N

4
� 1� n,

3N
4

Cn and 3N
4

�1�n for n D 0; 1; : : : ; N
4

�1, into (8.25), and using the relation (C.12)
from Appendix C.2 we, respectively, have

OxLD

N
4 Cn

D �
N
2 �1X

kD0
c

LD

k cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
D � yn;

OxLD

N
4 �1�n

D �
N
2 �1X

kD0
c

LD

k cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
D � yn;

OxLD

3N
4 Cn

D
N
2 �1X

kD0
c

LD

k .�1/k sin

�
�

4.N=2/
.2k C 1/.2n C 1/

	
D y N

2 �1�n;

OxLD

3N
4 �1�n

D �
N
2 �1X

kD0
c

LD

k .�1/k sin

�
�

4.N=2/
.2k C 1/.2n C 1/

	
D � y N

2 �1�n;

n D 0; 1; : : : ;
N

4
� 1: (8.44)

The data sequence fyng in (8.44) corresponds to an N
2

-point inverse DCT-IV of fc
LD

k g
as follows

yn D
N
2 �1X

kD0
c

LD

k cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
; n D 0; 1; : : : ;

N

2
� 1;

(8.45)
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and the time domain aliased data sequence fOxLD

n g having the local symmetry
properties given by (8.38) is recovered as

OxLD

N
4 Cn

D OxLD

N
4 �1�n

D � yn;

OxLD

3N
4 Cn

D y N
2 �1�n; OxLD

3N
4 �1�n

D � y N
2 �1�n; n D 0; 1; : : : ;

N

4
� 1: (8.46)

Equations (8.45) and (8.46) define the improved fast TDAC-MDCT-based algorithm
for the backward LD-MDCT computation, whereby N is divisible by 4. The
complete data sequence fOxLD

n g with the length 2N is obtained according to (8.13).
The improved TDAC-MDCT-based fast algorithms for the forward N-point LD-

MDCT computation given by (8.42) and (8.43), and the backward LD-MDCT
computation given by (8.45) and (8.46) rely again on a fast N

2
-point DCT-IV

computational structure, but without reverse operations and sign changes with
respect to both the time and frequency indices.

8.4.3 Fast LD-MDCT Algorithms Without Mapping to
TDAC-MDCT

Fast algorithms for the forward/backward LD-MDCT computation presented in
the previous subsections are based on relations between the forward/backward
LD-MDCT and forward/backward TDAC-MDCT. However, this assumption is
not necessary. In the following subsections fast algorithms for the forward and
backward LD-MDCT computation are presented without mapping the LD-MDCT
to TDAC-MDCT.

8.4.3.1 Fast Forward LD-MDCT Algorithm

Consider the forward LD-MDCT block transform given by (8.10) expressed in the
form:

c
LD

k D
N�1X

nD0
vn cos

�
�

2N
.2k C 1/

�
2n C 1 � N

2

�	
; k D 0; 1; : : : ;

N

2
� 1;

(8.47)

where

vn D xNCn � xn; n D 0; 1; : : : ;N � 1: (8.48)
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Obviously, to eliminate the shift factor � N
2

in (8.47), by applying the following
permutation to the data sequence fvng

yn D

8
<̂

:̂

v N
4 Cn; n D 0; 1; : : : ; 3N

4
� 1;

� vn� 3N
4
; n D 3N

4
; 3N
4

C 1; : : : ;N � 1;
(8.49)

and using a symmetry property of the cosine transform kernel, the forward LD-
MDCT given by (8.47) is reduced to

c
LD

k D
N
2 �1X

nD0
.yn � yN�1�n/ cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
; k D 0; 1; : : : ;

N

2
� 1:

(8.50)

The transform kernel in Eq. (8.50) is recognized as an N
2

-point forward DCT-IV of
fyn � yN�1�ng. Combining Eqs. (8.49) and (8.50) we obtain:

c
LD

k D
N
2 �1X

nD0
yn cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
; k D 0; 1; : : : ;

N

2
� 1:

(8.51)

where

yn D

8
<̂

:̂

v N
4 Cn C v N

4 �1�n; n D 0; 1; : : : ; N
4

� 1;

v N
4 Cn � v 5N

4 �1�n; n D N
4
; N
4

C 1; : : : ; N
2

� 1:
(8.52)

and fvng is defined by (8.48). Finally, combining Eqs. (8.48) and (8.52) we get

yn D

8
<̂

:̂

x 5N
4 Cn � x N

4 Cn C x 5N
4 �1�n � x N

4 �1�n; n D 0; 1; : : : ; N
4

� 1;

x 5N
4 Cn � x N

4 Cn � x 9N
4 �1�n C x 5N

4 �1�n; n D N
4
; N
4

C 1; : : : ; N
2

� 1:
(8.53)

Equations (8.51) and (8.53) define the fast algorithm for the N-point forward
LD-MDCT computation (N is divisible by 4), but without mapping the forward
LD-MDCT to forward TDAC-MDCT.

8.4.3.2 Fast Backward LD-MDCT Algorithm

Now consider the backward LD-MDCT block transform given by (8.14). Then,
substituting subsequently N

4
C n, N

4
� 1 � n, 3N

4
C n and 3N

4
� 1 � n into (8.14)

and using the relation (C.12) leads to exactly the same Eq. (8.44) and to the fast
backward LD-MDCT algorithm defined by Eqs. (8.45) and (8.46).
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The fast algorithms for the forward N-point LD-MDCT given by (8.51)
and (8.53), and the backward LD-MDCT computation given by (8.45) and (8.46) are
based on a fast N

2
-point DCT-IV computational structure with simple pre- and post-

processing of data sequences. Since the fast TDAC-MDCT-based algorithms are
also based on a fast N

2
-point DCT-IV computational structure, this fact provides the

unified approach for efficient implementation of both the even-length TDAC-MDCT
and LD-MDCT transforms via one identical fast DCT-IV computational structure.

8.5 Computational Complexity and Comparison of Fast
LD-MDCT Algorithms

For a given value of N being in general, an even integer (divisible by 4), the
computational complexity of fast analysis LD-MDCT filter bank is given by the
complexity of: Windowing procedure requiring 15N

8
multiplications, converting the

N-point forward LD-MDCT (or forward TDAC-MDCT) block transform to the N
2

-
point DCT-IV by applying the permutation described in (8.35), (8.43) or (8.53)
requiring 11N

8
additions (it is taken into account the fact that the low delay analysis

windowing function has the first N
8

values implicitly equal to zero, i.e., w
.a/

n D
0 ) xn D 0, n D 0; 1; : : : ; N

8
� 1), and the complexity of a fast N

2
-point DCT-

IV computational structure. On the other hand, the computational complexity of fast
synthesis LD-MDCT filter bank is given by the complexity of: Fast N

2
-point DCT-IV

computational structure, windowing procedure requiring 15N
8

multiplications, and
the complexity of overlapping/add procedure given by (8.3) requiring 11N

8
additions.

Since the AAC-ELD defines the block length to be 2N with N D 1024 or
N D 960 [1], we need in general a fast even-length DCT-IV computational
structure. For the block length N D 1024 being a power of two, a 2n-length
fast DCT-IV computational structure which combines theoretical efficiency with a
very regular structure, and achieving the lowest multiplicative complexity is based
on the complex FFT of half size [30, 33]. It is presented in Appendix C.2.1. In
particular, for the block length N D 960 which is a composite number of the form
2m �q; m > 1, where q is an odd positive integer, we need an even-length fast DCT-
IV computational structure. Such even-length fast DCT-IV computational structure
[28] is presented in Appendix C.2.2. Because the block length 960 D 26 � 15,
q D 15 is the composite number we additionally need an efficient 15-point type-
II/III DCT (DCT-II/III) module. The required efficient 15-point PFA DCT-II/III
module is presented in Appendix D.7, or alternatively, the efficient 15-point WFTA
DCT-II/III module is presented in Appendix D.8.

8.5.1 DCT-IV-Based Fast LD-MDCT Algorithms

Essentially, all the fast LD-MDCT (and TDAC-MDCT too) algorithms rely on the
fast N

2
-point DCT-IV computational structure which is identical both for the analysis

and synthesis LD-MDCT (TDAC-MDCT) filter banks.
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When M D N
2

D 2m; m > 1, (M D 512 D 29 for the LD-MDCT in AAC-
ELD), the arithmetic complexity of fast analysis/synthesis LD-MDCT filter banks
is given by

M2m D M

2
.m C 2/C 15M

4
; A2m D 3M

2
m C 11M

4
; (8.54)

where M2m denotes the number of multiplications and A2m denotes the number of
additions.

When M D N
2

D 2m � 15; m > 1, is a composite number (M D 480 D
25 � 15 for the LD-MDCT in AAC-ELD), taking into account the arithmetic
complexity of efficient 15-point DCT-II/III module, the arithmetic complexity of
fast analysis/synthesis LD-MDCT filter banks is given by

M2m�15 D 2m � M
II

15 C M

2
.m C 2/C 15M

4
;

A2m�15 D 2m � A
II

15 C M

2
.3m C 2/ � 2m C 11M

4
; (8.55)

where M
II

15 denotes the number of multiplications and A
II

15 denotes the number of
additions of the efficient 15-point DCT-II/III module.

8.5.2 DCT-IV/DCT-II-Based Fast LD-MDCT Algorithms

We recall that the N
2

-point DCT-IV can be converted to the DCT-II of the same
size at the cost of N

2
additional multiplications and N

2
� 1 recursive additions [32].

These multiplications may be simply absorbed into the windowing operation, thus
further reducing the multiplicative complexity (saving N

2
multiplications) of a fast

DCT-IV/DCT-II-based computational structure (see Appendix C.3). However, this
optimized approach requires modifying the low delay analysis/synthesis windowing
function and the fast DCT-IV/DCT-II-based computational structure has to be
inverted at the decoder.

When M D N
2

D 2m; m > 1, (M D 512 for the LD-MDCT in AAC-
ELD), assuming that the fast recursive DCT-II/III computational structure [32] (see
also Appendix C.1.1) achieving the lowest multiplicative complexity is used, the
arithmetic complexity of fast analysis/synthesis LD-MDCT filter banks is given by

M2m D M

2
m C 15M

4
; A2m D 3M

2
m C 11M

4
: (8.56)

When M D N
2

D 2m � 15; m > 0 is a composite number (M D 480 for the
LD-MDCT in AAC-ELD), taking into account the arithmetic complexity of efficient
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15-point DCT-II/III module, the arithmetic complexity of fast analysis/synthesis
LD-MDCT filter banks is given by

M2m�15 D 2m � M
II

15 C M

2
m C 15M

4
;

A2m�15 D 2m � A
II

15 C 3M

2
m � 2m C 15M

4
: (8.57)

8.5.3 Comparison of Fast LD-MDCT Algorithms

Comparison of fast LD-MDCT algorithms in terms of arithmetic complexity for
N D 1024 and 960 and structural simplicity are shown in Tables 8.1 and 8.2.
In Table 8.1 the fast LD-MDCT algorithms are implemented via the fast DCT-IV
computational structure, and in Table 8.2 the fast LD-MDCT algorithms are
implemented via the fast DCT-II/III computational structure. From Tables 8.1
and 8.2 one can see that all fast LD-MDCT algorithms have the same arithmetic
complexity, but improved TDAC-MDCT-based fast algorithms as well as ones
without mapping the LD-MDCT to TDAC-MDCT do not require reverse operations
and sign changes with respect to the time and frequency indices.

Table 8.1 Comparison of fast LD-MDCT algorithms based on the fast DCT-IV computational
structure in terms of arithmetic complexity for N D 1024 and 960 and structural simplicity
(M denotes multiplication, A denotes addition)

LD-MDCT algorithm Fast analysis/synthesis LD-MDCT filter bank Reverse operations

(M D N
2

) N D 1024 N D 960 and sign changes?

TDAC-MDCT-based 4736 M and 8320 A 4024 M and 7512 A Yes

Improved

TDAC-MDCT-based 4736 M and 8320 A 4024 M and 7512 A No

Without mapping

to TDAC-MDCT 4736 M and 8320 A 4024 M and 7512 A No

Table 8.2 Comparison of fast LD-MDCT algorithms based on the fast DCT-II/III computational
structure in terms of arithmetic complexity for N D 1024 and 960 and structural simplicity (M
denotes multiplication, A denotes addition)

Algorithm Fast analysis/synthesis LD-MDCT filter bank Reverse operations

(M D N
2

) N D 1024 N D 960 and sign changes?

TDAC-MDCT-based 4224 M and 8320 A 3544 M and 7512 A Yes

Improved

TDAC-MDCT-based 4224 M and 8320 A 3544 M and 7512 A No

Without mapping

to TDAC-MDCT 4224 M and 8320 A 3544 M and 7512 A No
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The direct fast mixed-radix TDAC-MDCT algorithms for composite lengths 2m�
qn, m; n > 0, with q D 3; 5 and 9 have been developed in [15, 16]. However, in
order to be used for the composite length 960 D 26 � 15 D 25 � 30, an efficient
30-point TDAC-MDCT module has to be derived.

8.6 Discussion and Consequences of Fast LD-MDCT
Algorithms

The fast even-length DCT-IV and DCT-IV/DCT-II fast computational structures
together with the efficient 15-point PFA or WFTA DCT-II/III modules (see Appen-
dices D.7 and D.8) discussed in this chapter and optimized efficient 5-point
DCT-II/III modules (see Appendix D.7) provide a compact, modular, and flexible
transform block building system which has an impact on an efficient implementation
of the even-length TDAC-MDCT filter banks used in other existing audio broad-
casting standards [19, 20] and speech communication codecs [17, 21–26], where
the length of data block is a composite number of the form 2m � q, whereby q D 5

or 15. By a composition of proper regular fast computational structure/module(s),
the efficient implementation of the even-length TDAC-MDCT can be achieved as
follows:

• The advanced Digital Audio Broadcasting (DAB+) system [20] for digital radio
services as well as the Digital Radio Mondiale (DRM) [19], universal openly
standardized digital broadcasting system, have adopted the HE-AAC codec [2, 3]
which uses the TDAC-MDCT filter bank with the length N D 1920 (long block)
or with N D 240 (short block). Since both lengths are composite numbers, i.e.,
1920 D 27 � 15 and 240 D 24 � 15, the composition of fast even-length DCT-IV
computational structure with the permutation defined by (8.33) for xn D un, and
15-point PFA or WFTA DCT-II/III module provides the efficient implementation
of forward/backward TDAC-MDCT in the DAB+ and DRM systems. According
to (C.32) with M D N

2
, m D 6 or 3, q D 15, M

II

15 D 17, and A
II

15 D 67, the
arithmetic complexity of forward TDAC-MDCT computation is 4928 and 14;784
additions for the long block, and 436 multiplications and 1308 additions for the
short block.

When the fast even-length DCT-II/III computational structure is used, accord-
ing to (C.8) the arithmetic complexity of forward TDAC-MDCT computation is
3968 and 13;825 additions for the long block, and 316 multiplications and 1189
additions for the short block. In both cases, the backward TDAC-MDCT with
overlap/add operation requires exactly the same number of arithmetic operations.

• Issued ITU-T G.722.1 [21], ITU-T G.722.1C [25], G.719 [26], G.718 and
G.729.1 [23] speech codecs, 3GPP2 EVRC-WB [17] vocoder, and ITU-T G.EV-
VBR standard [22, 24] have adopted the TDAC-MDCT filter bank (actually the
modulated lapped transform with associated sine windowing function [33]) with
the length N D 640. Compared to ITU-T G.722.1, in the ITU-T G.722.1C speech
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codec the transform length is doubled to N D 1280. Since block lengths are again
composite numbers, i.e., 640 D 27 � 5 and 1280 D 28 � 5, the composition of
fast even-length DCT-IV computational structure with the permutation defined
by (8.33) for xn D un, and efficient 5-point DCT-II/III modules provides the
efficient implementation of forward/backward TDAC-MDCT in speech commu-
nications codecs. The required efficient 5-point DCT-II/III modules are presented
in Appendix D.7. According to (C.32) with M D N

2
, m D 6, q D 5, M

II

5 D 4,

and A
II

5 D 13, the arithmetic complexity of the forward 640-point TDAC-MDCT
is 1536 multiplications and 4288 additions. The arithmetic complexity of the
forward 1280-point TDAC-MDCT is 3392 multiplications and 9536 additions.

When the fast even-length DCT-II/III computational structure is used, accord-
ing to (C.8) the arithmetic complexity of forward TDAC-MDCT computation is
1216 multiplications and 3969 additions. In both cases, the backward TDAC-
MDCT with overlap/add operation requires exactly the same number of arith-
metic operations. The associated modified sine windowing function which is
piecewise symmetric is shown in [18].

8.7 Summary

Definitions of the analysis/synthesis LD-MDCT (and TDAC-MDCT) filter banks,
general symmetry properties of LD-MDCT block transforms both in the time and
frequency domains, relations between the LD-MDCT and TDAC-MDCT transforms
both in the analytical forms and in the equivalent matrix representations, and effi-
cient implementations of the even-length analysis/synthesis LD-MDCT filter banks
have been presented. For each fast LD-MDCT algorithm the complete formulae are
derived. Relations between the LD-MDCT and TDAC-MDCT transforms enable us
to map the LD-MDCT into TDAC-MDCT block transform. This fact provides the
unified approach to efficiently implement both the LD-MDCT and TDAC-MDCT
block transforms in state-of-the-art MPEG audio codecs. All the fast even-length
LD-MDCT algorithms, TDAC-MDCT-based and without mapping the LD-MDCT
to TDAC-MDCT, have been investigated and compared in terms of arithmetic
complexity and structural simplicity.

Problems and Exercises

1. Following the procedure used in Eq. (8.9), reduce the 2N-point forward
LD-MDCT block transform given by (8.11) to the N-point forward LD-MDCT.

2. Verify the even anti-symmetry property of LD-MDCT frequency coefficients
fc

LD

k g given by (8.12).
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3. Verify the symmetry property of time domain aliased data sequence fOxLD

n g given
by (8.13).

4. Consider the forward LD-MDCT block transform defined by (8.10). Verify the
simplified relation between the forward LD-MDCT and the forward TDAC-
MDCT block transforms given by (8.24).

5. Consider the backward LD-MDCT block transform defined by (8.14). Verify
the simplified relation between the backward LD-MDCT and the backward
TDAC-MDCT block transforms given by (8.25).

6. Following the procedure used in Eq. (8.36), derive the fast TDAC-MDCT-based
algorithm for backward LD-MDCT computation from Eq. (8.23).

7. Implement by a computer program the TDAC-MDCT-based fast forward LD-
MDCT algorithm defined by (8.34) and (8.35), and TDAC-MDCT-based fast
backward LD-MDCT algorithm defined by (8.37) and (8.39) for N D 2m; m >

2. Note that in the efficient implementation you can use either a fast 2m-
length DCT-IV computational structure or a fast 2m-length DCT-IV/DCT-II
computational structure.

8. Implement by a computer program the improved TDAC-MDCT-based fast
forward LD-MDCT algorithm defined by (8.42) and (8.43), and improved
TDAC-MDCT-based fast backward LD-MDCT algorithm defined by (8.45)
and (8.46) for N D 2m; m > 2.

9. Implement by a computer program the fast forward LD-MDCT algorithm
defined by (8.51) and (8.53), and fast backward LD-MDCT algorithm defined
by (8.45) and (8.46) for N D 2m; m > 2.

10. Compare all fast LD-MDCT algorithms (see 7, 8, and 9 above) in terms of
structural simplicity.

11. Implement by a computer program the efficient 15-point PFA DCT-II/III
module represented by the signal flow graph shown in Fig. D.1 in Appendix D.7.
Thereby you can verify its correctness and also you will need it for the efficient
implementation of fast LD-MDCT algorithms for N D 960.

12. Implement by a computer program the efficient 15-point WFTA DCT-II/III
module represented by the signal flow graph shown in Fig. D.2 in Appendix D.8.
Similarly, you can verify its correctness and you will need it for the alternative
efficient implementation of fast LD-MDCT algorithms for N D 960.

13. Implement by a computer program the TDAC-MDCT-based fast forward
LD-MDCT algorithm defined by (8.34) and (8.35), and TDAC-MDCT-based
fast backward LD-MDCT algorithm defined by (8.37) and (8.39) for the
composite length N D 2m � 15; m > 0. In the efficient implementa-
tion you can use either a fast even-length DCT-IV computational structure
or a fast even-length DCT-IV/DCT-II computational structure. The required
efficient 15-point PFA DCT-II/III module is presented in Appendix D.7, or
alternatively, the efficient 15-point WFTA DCT-II/III module is presented in
Appendix D.8.
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14. Implement by a computer program the improved TDAC-MDCT-based fast
forward LD-MDCT algorithm defined by (8.42) and (8.43), and improved
TDAC-MDCT-based fast backward LD-MDCT algorithm defined by (8.45)
and (8.46) for the composite length N D 2m �15; m > 0. In the implementation
use the efficient 15-point PFA DCT-II/III module, or alternatively, the efficient
15-point WFTA DCT-II/III module.

15. Implement by a computer program the fast forward LD-MDCT algorithm
defined by (8.51) and (8.53), and fast backward LD-MDCT algorithm defined
by (8.45) and (8.46) for the composite length N D 2m � 15; m > 0.
In the implementation use the efficient 15-point PFA DCT-II/III module, or
alternatively, the efficient 15-point WFTA DCT-II/III module.

16. Compare all fast LD-MDCT algorithms (see 13, 14, and 15 above) in terms of
structural simplicity.

17. The direct fast mixed-radix TDAC-MDCT algorithms for composite lengths
2m � qn, m; n > 0, with q D 3; 5, and 9 have been developed in [15, 16].
In order to be used for the composite length 960 D 26 � 15 D 25 � 30, an
efficient 30-point TDAC-MDCT module has to be derived. Try to derive the
efficient 30-point TDAC-MDCT module. Then, the composition of 2m-length
fast TDAC-MDCT algorithm [16] and the efficient 30-point TDAC-MDCT
module provides the efficient implementation of the TDAC-MDCT (LD-
MDCT) for composite lengths N D 2m � 30; m > 0. Implement by a
computer program the improved TDAC-MDCT-based fast forward LD-MDCT
algorithm defined by (8.42) and (8.43) based on the fast mixed-radix TDAC-
MDCT algorithm. Finally, investigate its arithmetic complexity and compare
with previous efficient implementations.

18. Based on the fast even-length DCT-IV (or DCT-IV/DCT-II) computational
structure with permutation defined by (8.33) for xn D un, and 15-point PFA
or WFTA DCT-II/III module, implement the forward/backward TDAC-MDCT
computation for the composite lengths N D 1920 and 240.

19. Implement by a computer program the efficient 5-point DCT-II/III modules
presented in Appendix D.7. You will need them for the efficient implementation
of fast TDAC-MDCT algorithms for N D 640.

20. Based on the fast even-length DCT-IV (or DCT-IV/DCT-II) computational
structure with permutation defined by (8.33) for xn D un, and efficient 5-
point DCT-II/III modules (see Appendix D.7), implement the forward/backward
TDAC-MDCT computation for the composite length N D 640.
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Chapter 9
Integer Approximate Cosine/Sine-Modulated
Filter Banks

9.1 Introduction

Digital image/video/audio signals to be processed are quantized into M-bit rep-
resentations and hence, are integer-valued. Specifically, for digital audio signals
M D 16; 21 or M D 24 for high amplitude resolution signals. But the
perfect reconstruction cosine/sine-modulated filter banks and cosine-modulated
QMF banks are real-valued transforms which map integer signal into real-valued
spectral coefficients. Although their fast algorithms reduce the computational
complexity, due to floating-point finite-length representation and corresponding
rounding-off errors, they cannot be used for lossless audio coding. Indeed, almost
all modern perceptual audio coding schemes developed so far operate in floating-
point arithmetic and therefore, are lossy in nature [78]. However, some audio coding
applications require completely lossless preservation of the audio signal. In general,
there exist at least three approaches to lossless audio coding. The first approach is
using the linear (adaptive) prediction coding methods [2, 5, 32], and the second
is transform-based perceptual coding approach [4, 8]. Third approach to realize
the transform-based lossless audio coding is using a number theoretic transform
such as the discrete Mersenne and Fermat transforms which are inherently integer
transforms [1]. For large transform sizes, however, the number theoretic transforms
require a large number of bits to represent the spectral coefficients. Moreover, the
modulo arithmetic has to be employed [83].

Due to achieving the high compression ratios and relatively high-quality decoded
audio of lossy codecs, further research has been focused to design a transform-
based perceptual audio coding scheme extended to lossless coding. The basic
principles of transform-based perceptual lossless audio coding scheme have been
suggested in [4, 6–8]. Having a lossy perceptual audio codec as a core codec,
in the encoder the input audio signal is transformed into frequency domain by a
forward transform, and spectral coefficients are quantized (rounded to the nearest
integers). Duplicating the decompression steps at the decoder side, i.e., applying
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the inverse transform to integer spectral coefficients followed by dequantization
results in a residual error defined as the difference between the reconstructed and
original signal. This residual error is fed into a lossless bit-conversion module
for lossless coding, and finally is transmitted along with entropy coded integer
spectral coefficients. In the decoder, the original reconstructed signal is obtained
by adding signal reconstructed from lossy compression and lossless coded residual
error provided that the implementation of inverse transform and dequantization is
identical to that of the encoder.

All perfect reconstruction cosine/sine-modulated and cosine-modulated QMF
filter banks in the existing international audio/speech coding standards and pro-
prietary audio compression algorithms are used for larger transform sizes, typ-
ically N D 64; 128; 256; 512, 1024, 2048, 4096 for 2n-lengths, or N D
240; 640; 960; 1280; 1920 for mixed-radix (composite) lengths. In this book it
has been shown that the fast algorithms/computational structures for their efficient
implementation are based on the discrete sinusoidal unitary transforms of reduced
sizes, specifically, discrete cosine transforms of types II, III and IV (DCT-II, DCT-
III, DCT-IV), and discrete Fourier Transform (DFT) or its FFT algorithm. An
enabling technology for transform-based lossless audio coding is the integer trans-
form. Generally, integer transform is a transform which maps integers to integers by
a reversible (invertible) way so that it preserves all mathematical properties of the
original real-valued transform such as perfect reconstruction, energy compaction
property, and fast algorithm. Indeed, the integer modified discrete cosine transform
(IntMDCT) or integer modulated lapped transform (IntMLT) enabled to design and
implement this innovative coding technology for scalable lossy to lossless audio
coding [68, 71]. The latest emerged MPEG standards for lossless audio coding
support two formats: MPEG-4 Audio Lossless Coding (MPEG-4 ALS) [3, 5],
MPEG-4 Scalable Lossless Coding (MPEG-4 SLS) [63, 68], and MPEG-4 High-
Definition Scalable Advanced Audio Coding (MPEG-4 HD-AAC/SLS) [59]. ALS
based on linear predictive coding supports only lossless compression whereas SLS
and HD-AAC/SLS support a scalable to lossy compression in which the bit stream
includes an AAC lossy representation for fast transcoding [32].

In this chapter, the local and global methods to integer approximation of
perfect reconstruction cosine/sine-modulated filter banks and cosine-modulated
QMF banks are discussed in detail. They are based on computational methods
of linear algebra, matrix theory, and matrix computations, and in particular, on
(block) matrix decompositions. In fact, the scalar and block matrix decompositions
are powerful mathematical tools to construct the reversible (invertible) integer
transforms. Discussed approximation methods enable to construct the complete
integer analysis/synthesis filter banks for designing/building a transform-based
lossless audio coding scheme. In general, any integer filter bank can be constructed
as long as has a fast algorithm. Selected basic material from linear algebra and
matrix theory which is fundamental for understanding approximation methods is
presented in Appendix A.
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9.2 Integer Transforms and Integer Filter Banks

Basic theory and methods developed for the integer approximation of discrete
sinusoidal orthogonal (unitary) transforms, such as the DFT, the discrete Hartley
transform (DHT), discrete cosine, and sine transforms (DCT/DST), are well
described in [9, 12–14, 16–18, 21, 23–27]. In general, the discrete sinusoidal trans-
form to be integer approximated is represented by the corresponding orthogonal
(unitary) matrix or alternatively, by a rotation-based (recursive) sparse block matrix
factorization of the transform matrix. Principally, there are two basic approaches to
construct the integer transform [9]:

• By directly replacing the real-valued elements of the transform matrix by M-bit
integers or by dyadic rational numbers so that all its mathematical properties are
preserved. However, this approach is rather suitable for small transform sizes,
typically for N D 4; 8 and 16. Indeed, the 8- point integer DCT (IntDCT) is
used in the state-of-the-art international image/video coding standards [11, 15].
For larger transform sizes when N > 16, which are typically used in the
international audio coding standards, the complexity of derivation of integer
transform increases significantly, and hence the transform size is the main
limiting factor of this approach to integer approximation.

• In the theory of fast algorithms a rotation-based (recursive) sparse block matrix
factorization of the transform matrix defines a fast computational structure
for its efficient implementation. Then a given transform can be approximated
and implemented by a reversible integer-to-integer mapping or by a reversible
integer transform as follows: Each 2 � 2 Givens–Jacobi rotation matrix is
factored into a product of the so-called Gauss elementary matrices being the
unit lower and upper triangular matrices (see Appendix F.2). The factored unit
triangular matrices define computational structures for the efficient computation
of 2 � 2 Givens–Jacobi rotations. For the reversible (invertible) integer approx-
imation of the Givens–Jacobi rotation all off-diagonal elements in the factored
unit triangular matrices are approximated by dyadic rational numbers (dyadic
approximation), or alternatively, the computation is realized in the floating-
point arithmetic followed immediately by the rounding operator (rounding
to the nearest integer) applied to components of a rotated vector. However,
the dyadic approximation as well as the approximation by rounding operator
introduce an approximation error in each step. Although this approach offers
simple and elegant solution to reversible (invertible) integer approximation of
the transform, the resulting approximation error accumulated through the stages
of fast computational structure becomes considerable for large transform sizes.
Again, this approach is rather suitable for small transform sizes.

A comprehensive overview of integer approximation methods for the short-
length DCT can be found in the book [9], for the short-length FFT in [23–27], and
an overview of the latest research results in the short-length DCT approximations
can be found in [11, 20].



488 9 Integer Approximate Cosine/Sine-Modulated Filter Banks

In general, there are three essential aspects which we must take into account to
the integer approximation of a complete analysis/synthesis filter bank in comparison
with the integer approximation of the discrete sinusoidal unitary (orthogonal)
transform:

• While the discrete sinusoidal transform is represented by the corresponding
unitary (orthogonal) matrix or alternatively, by a rotation-based (recursive) sparse
block matrix factorization of the transform matrix, the complete analysis and
synthesis filter banks consist of several procedures which have to be integer
approximated separately. Specifically, the analysis filter bank consists of the
windowing procedure (multiplying the original audio data block by a real-valued
windowing function), the time domain aliasing (TDA) procedure followed by a
forward orthogonal block transform to compute the frequency coefficients. On
the other hand, the synthesis filter bank consists of the inverse orthogonal block
transform, and the windowing and overlap and add procedure or the time domain
aliasing cancellation (TDAC) procedure to reconstruct the original audio data
block.

• Almost all perfect reconstruction cosine/sine-modulated and cosine-modulated
QMF filter banks in the existing international audio/speech coding standards and
proprietary audio compression algorithms are used for larger transform sizes,
typically N D 64; 128; 256; 512, 1024, 2048, 4096 for 2n-lengths, or N D
240; 640; 960; 1280; 1920 for mixed-radix (composite) lengths. Perhaps the
only exception is the MLT filter bank (or equivalently the MDCT filter bank
associated with the sine windowing function), which is used in the MP3 audio
coding standard with the mixed-radix lengths N D 12 (short block) or N D 36

(long block).
• All perfect reconstruction cosine/sine-modulated and cosine-modulated

QMF filter banks discussed in this book are always converted to the
orthogonal/orthonormal DCT-IV or DCT-II/III transforms of reduced sizes,
providing thus their efficient implementation. Therefore, the design of fast DCT-
IV and DCT-II/III computational structures for radix-2 and in particular, for
mixed-radix (composite) lengths is very important for the integer approximation
of filter banks in terms of the approximation accuracy and computational
efficiency for lossless audio coding.

9.2.1 Desired Properties of Integer Transforms

In order to develop a progressive to lossless audio codec from a conventional
lossy perceptual audio codec, in general, the key step is to replace the real-
valued filter bank with its reversible (invertible) integer counterpart followed by
replacing the entropy coding module with a lossless embedded entropy coding
module (the quantization step is eliminated) [37, 38, 45, 46]. An ideal or optimal
reversible (invertible) integer transform for lossless audio coding should preserve
all mathematical properties of the original real-valued transform and should have
the following properties [37, 38, 45, 46]:
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1. Integer-to-integer mapping: The integer transform maps integer signal to
integer frequency coefficients by one-to-one correspondence, i.e., each input
value is mapped into one and only one output value, and vice versa.

2. Perfect reconstruction: By applying the forward and backward integer trans-
forms the integer signal is exactly reconstructed from the integer frequency
coefficients without any error.

3. Constant data volume: The dynamic range of output data is the same as that of
the input data.

4. Energy compaction property: The integer transform compacts most of energy
to a low number of frequency coefficients.

5. Fast algorithm: The forward and backward integer transforms are efficiently
implemented by a fast computational structure.

6. Minimal difference between the exact and approximated spectral values:
The frequency coefficients of integer transform should be as close as possible to
those of the original real-valued transform.

Properties (1) and (2) ensure that the integer transform is indeed reversible. The
property (3) requires that the reversible integer transform be designed with reference
to a concept of normalized transform. The normalized transform is associated with
an orthogonal sparse (recursive) matrix factorization of a transform matrix T, or
more exactly, it is associated with the unit determinant of transform matrix T. A
valid reversible integer transform represented by the transform matrix T cannot
have determinant det.T/ < 1, because such a transform will compact the data,
i.e., multiple input integer values will be mapped to one output integer value,
which contradicts the reversibility property. On the other hand, a reversible integer
transform represented by the transform matrix T having determinant det.T/ > 1

will expand the input data set by a factor of j det.T/j in the output data set.
Therefore, a desired property of the reversible integer transform is that det.T/ D 1

[46]. The property (4) ensures the high coding gain for audio data compression.
The property (5) guarantees the minimal computational complexity of the integer
transform. Finally, the property (6) implies that the difference between the exact
and approximated frequency coefficients defined as a quantization noise is minimal.

As a summary, all properties (1)–(6) imply that the performance of integer
transform should be as close as possible to that of the original real-valued transform
[37, 46].

9.2.2 Normalized (Integer) Transform

When a transform is applied to a data block it has to be normalized to preserve the
energy of input signal in the frequency domain. In the case of DCT-II, DCT-III and
DCT-IV the normalization factor is

p
2=N [9], and in the case of DFT the normal-

ization factor is 1=
p

N, where N is order of the matrix [41]. Then such normalized
DCT-II, DCT-III, and DCT-IV matrices for N > 2 are orthonormal and their deter-
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minants are unity. Such matrices are also called the unit matrices [9]. The normal-
ized DFT matrix is symmetric and unitary and its determinant is a complex number
whose modulus is one [26]. The concept of normalized transform is based on an
orthogonal (recursive) sparse block matrix factorization of the transform matrix.
For the normalized transform all factored matrices including butterfly ones have to
be orthogonal. Orthogonal butterfly matrices are actually trivial rotation matrices
with the rotation angle �

4
. Consequently, no final normalization is needed and the

dynamic range of the output frequency coefficients is the same as for the input
signal. The orthogonal (recursive) sparse block matrix factorization of the transform
matrix implies that the determinant of transform matrix is one. However, the
existence of orthogonal butterflies in a corresponding fast computational structure
increases the total computational complexity of the normalized transform [27, 46].

Similarly, if the corresponding integer transform is used for lossless coding
applications, it has to be normalized. Naturally, the normalized integer transform is
also associated with the orthogonal (recursive) sparse block matrix factorization of
the transform matrix. Due to realization of orthogonal butterflies by trivial rotation
matrices with the rotation angle �

4
, the error caused by integer approximation

increases too. In the case of long transforms this approximation error, i.e., the
difference between exact and approximated transform derived in some measure such
as the minimum square error (MSE), becomes considerable. The total accumulated
approximation error propagated through the stages of fast computational structure
has a significant impact on the lossless coding efficiency [27, 46].

9.2.3 Quality Measures of Integer Transforms for Coding

The reversible (invertible) integer transforms for lossless audio coding have two
quality measures of coding [36, 41, 51]:

• The approximation error: Since integer transforms map the integer signal
to integer frequency coefficients they are only approximations of the original
real-valued transforms. The approximation error results from an accumulation
of rounding errors in the approximated trivial and Givens–Jacobi rotations. As
a result, the coding efficiency and hence compression ratio is limited by the
approximation error, especially at higher frequencies, where audio signal usually
has a very low energy.

• The computational complexity: This is a very important measure because
in audio coding applications large size transforms are used, and in general,
the computational complexity of integer transform is higher than that of the
corresponding original real-valued transform.

An important factor for the approximation error is the total number of round-
ing operations applied to approximated rotations in succeeding stages of a fast
computational structure. Every rounding operation introduces a rounding error
which is interpreted as an approximation error of integer transform. Even though



9.2 Integer Transforms and Integer Filter Banks 491

this approximation error can be canceled out by the backward transform, the
approximation error is accumulated and spreads in the frequency domain. Since
all spectral coefficients have to be encoded this accumulated approximation error
has an impact on lossless coding efficiency. Specifically, for the high frequency
range, where audio signals usually contain a rather small amount of energy, the
approximation error can be larger than the actual signal. The impact is more critical
for larger transform sizes. Consequently, this fact becomes the main limiting factor
for lossless coding efficiency [41, 51].

We recall that the discrete transforms in their fast computational structures
contain butterflies being the trivial rotations with elements ˙ 1. For integer
transforms these trivial rotations have to be modified since they result in an
expansion of range of data. They are, therefore realized by the rotations with angle
�
4

. This is a reason, why the computational complexity of integer transforms is
higher than that of the corresponding original real-valued transforms. Therefore, in
order to improve the performance of reversible integer transform with the associated
fast computational structure it is desirable to minimize as much as possible [36]:

• The approximation error by minimizing the total number of rounding operations,
• Computational complexity.

9.2.4 Orthogonal Recursive Sparse Block Matrix
Factorizations

We mentioned that the normalized integer transform is associated with the orthog-
onal (recursive) sparse block matrix factorization of the transform matrix. Since
all perfect reconstruction cosine/sine-modulated and cosine-modulated QMF filter
banks discussed in this book are always converted to the orthogonal DCT-IV or
DCT-II/III transforms of reduced sizes, in the following subsections are presented
orthogonal (recursive) sparse block matrix factorizations of DCT-II, DCT-III, and
DCT-IV matrices which we will need for the integer approximation of complete
analysis/synthesis filter banks. In addition, since the DCT-IV of the length N can be
implemented via the complex DFT of half size with identical pre- and post-rotation
stages [82], the unitary recursive sparse block matrix factorization of the DFT matrix
is also included.

9.2.4.1 Orthogonal Recursive Sparse Block Factorization of DCT-II/III
Matrices

The orthogonal recursive sparse block matrix factorization of the DCT-II matrix of
order N denoted by C

II

N with a scaling factor of
p
2 has been reported in [84]. For

N D 2m; m > 1, the scaled matrix C
II

N can be factored into the following product of
orthogonal block matrices [9, 84], pp. 97–98:
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where 0s are null matrices, I N
2

is the identity matrix, J N
2

is the reverse ordered

identity matrix, C
II

N
2

is the DCT-II matrix, and C
IV

N
2

is the DCT-IV matrix, all of order
N
2

. PN is a permutation matrix of order N which when applied to a data vector
corresponds to the reordering

Qxn D x2n; Qx N
2 Cn D x2nC1; n D 0; 1; : : : ;

N

2
� 1: (9.2)

Note that P
T

N D P
�1

N . All factored block matrices on the right-hand side of (9.1)

are orthogonal. Since ŒC
II

N �
T D ŒC

II

N �
�1 D C

III

N , by transposition or inversion of (9.1)
we obtain the orthogonal recursive sparse block matrix factorization of the inverse
scaled DCT-II matrix, the scaled DCT-III matrix C

III

N .

9.2.4.2 Orthogonal Recursive Sparse Block Factorizations of the DCT-IV
Matrix

Now we derive two simple and useful recursive fast DCT-IV algorithms. The first
algorithm is derived by the decimation-in-frequency (DIF) decomposition method,
and the second one is derived by the decimation-in-time (DIT) decomposition
method. Each fast algorithm defines a recursive sparse block matrix factorization
of the DCT-IV matrix and this fact enables us to construct the corresponding
orthogonal recursive sparse block matrix factorization of the DCT-IV matrix.

Let the unnormalized forward and inverse DCT-IV transforms be defined,
respectively, by Eqs. (C.9) and (C.10) in Appendix C.2, and let N being the length
of transform be an even integer.

A. Fast DIF Recursive DCT-IV Algorithm

Following the DIF decomposition method used for the derivation of a mixed-radix
fast MDCT algorithm [87], consider the following two algebraic expressions:

ak D c
IV

2k C c
IV

2kC1; bk D c
IV

2k � c
IV

2kC1; k D 0; 1; : : : ;
N

2
� 1; (9.3)
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where

ak D
N�1X

nD0
xn

�
cos

h �
4N
.4k C 1/.2n C 1/

i
C cos

h �
4N
.4k C 3/.2n C 1/

i�
;

bk D
N�1X

nD0
xn

�
cos

h �
4N
.4k C 1/.2n C 1/

i
� cos

h �
4N
.4k C 3/.2n C 1/

i�
;

k D 0; 1; : : : ;
N

2
� 1: (9.4)

Using the trigonometric identities for the sum and difference of cosines we get

ak D 2

N�1X

nD0

�
xn cos

�.2n C 1/

4N

�
cos

h �
2N
.2k C 1/.2n C 1/

i
;

bk D 2

N�1X

nD0

�
xn sin

�.2n C 1/

4N

�
sin
h �
2N
.2k C 1/.2n C 1/

i
;

k D 0; 1; : : : ;
N

2
� 1: (9.5)

Substituting N � 1 � n for n into both equations of (9.5) we have

ak D 2

N
2 �1X

nD0

�
xn cos

�.2n C 1/

4N
� xN�1�n sin

�.2n C 1/

4N

�

cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
;

bk D 2

N
2 �1X

nD0

�
xn sin

�.2n C 1/

4N
C xN�1�n cos

�.2n C 1/

4N

�

sin

�
�

4.N=2/
.2k C 1/.2n C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1: (9.6)

The cosine transform kernel in the first equation of (9.6) for fakg corresponds to an
N
2

-point DCT-IV, while the sine transform kernel in the second equation of (9.6) for
fbkg corresponds to an N

2
-point DST-IV. Exploiting the relation between the DST-IV

and the DCT-IV defined by (C.13) in Appendix C.2 we have
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b N
2 �1�k D

N
2 �1X

nD0
.�1/n

�
xn sin

�.2n C 1/

4N
C xN�1�n cos

�.2n C 1/

4N

�

cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1: (9.7)

Then the complete formulae of fast DIF recursive DCT-IV algorithm are defined as

ak D
N
2 �1X

nD0
un cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
;

b N
2 �1�k D

N
2 �1X

nD0
.�1/nvn cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
; k D 0; 1; : : : ;

N

2
� 1;

(9.8)

where

un D xn cos
�.2n C 1/

4N
� xN�1�n sin

�.2n C 1/

4N
;

vn D xn sin
�.2n C 1/

4N
C xN�1�n cos

�.2n C 1/

4N
; n D 0; 1; : : : ;

N

2
� 1; (9.9)

and based on (9.3) the final DCT-IV coefficients are given by

c
IV

2k D ak C bk; c
IV

2kC1 D ak � bk; k D 0; 1; : : : ;
N

2
� 1: (9.10)

Thus, the N-point DCT-IV is decomposed into the block of N
2

Givens–Jacobi
rotations, two N

2
-point DCTs-IV, and the post-butterfly stage. The decomposition

may be performed recursively until the short-length DCTs-IV remain. The fast DCT-
IV computational structure derived by the DIF decomposition method for N D 6 is
shown in Fig. 9.1.

The fast DCT-IV computational structure shown in Fig. 9.1 defines the recursive
sparse block factorization of the matrix C

IV

N as

C
IV

N D PN

 
I N
2

J N
2

J N
2

�I N
2

!0

@
C

IV

N
2

0

0 C
IV

N
2

1

A

 
I N
2

0

0 D N
2

J N
2

!

GN ; (9.11)

where GN is the rotation matrix (Givens–Jacobi rotations) of order N given by
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Fig. 9.1 The fast DCT-IV computational structure derived by the DIF decomposition method for
N D 6

GN D

0

BBB
BBBBB
BBBBBB
BB
@

cos �
4N 0 � sin �

4N
cos 3�

4N � sin 3�
4N

: :

cos .N�1/�
4N � sin .N�1/�

4N
0 0

sin .N�1/�
4N cos .N�1/�

4N
: :

sin 3�
4N cos 3�

4N
sin �

4N 0 cos �
4N

1

CCC
CCCCC
CCCCCC
CC
A

; (9.12)

and D N
2

D diagf.�1/kg, k D 0; 1; : : : ; N
2

� 1 is the diagonal odd-sign changing

matrix of order N
2

. PN is a permutation matrix of order N which reorders the
transform coefficients such that the first half are even-indexed coefficients in natural
order, while the second half are odd-indexed coefficients but in reverse order. Then,
based on (9.11) and (9.12) the first orthogonal recursive sparse block factorization
of the DCT-IV matrix C

IV

N is defined as

C
IV

N D PN

p
2

2

 
I N
2

J N
2

J N
2

�I N
2

!0

@
C

IV

N
2

0

0 C
IV

N
2

1

A
 

I N
2

0

0 D N
2

J N
2

!

GN : (9.13)
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B. Fast DIT Recursive DCT-IV Algorithm

Dividing the input data sequence fxng into two parts, specifically into the even-
indexed and odd-indexed samples, we have [74]

c
IV

k D
N
2 �1X

nD0
x2n cos

h �
4N
.2k C 1/.4n C 1/

i

C
N
2 �1X

nD0
x2nC1 cos

h �
4N
.2k C 1/.4n C 3/

i

D
N
2 �1X

nD0
x2n cos

h �
4N
.2k C 1/Œ2.2n C 1/ � 1�

i

C
N
2 �1X

nD0
x2nC1 cos

h �
4N
.2k C 1/Œ2.2n C 1/C 1�

i
;

k D 0; 1; : : : ;N � 1: (9.14)

Using the trigonometric identities for cosines of sum and difference of angles after
some algebraic manipulation we get

c
IV

k D cos
�.2k C 1/

4N
ak C sin

�.2k C 1/

4N
bk; k D 0; 1; : : : ;N � 1; (9.15)

where

ak D
N
2 �1X

nD0
.x2n C x2nC1/ cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
;

bk D
N
2 �1X

nD0
.x2n � x2nC1/ sin

�
�

4.N=2/
.2k C 1/.2n C 1/

	
; k D 0; 1; : : : ;N � 1:

(9.16)

The cosine transform kernel in the first equation of (9.16) for fakg corresponds to
an N

2
-point DCT-IV of fx2n C x2nC1g, while the sine transform kernel in the second

equation of (9.16) for fbkg corresponds to an N
2

-point DST-IV of fx2n � x2nC1g.
Similarly, exploiting the relation between the DST-IV and the DCT-IV defined by
(C.13) in Appendix C.2 we have
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b N
2 �1�k D

N
2 �1X

nD0
.�1/n.x2n � x2nC1/ cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1: (9.17)

Substituting N �1� k for k into (9.16) we find that the data sequences fakg and fbkg
have the following symmetry properties

ak D �aN�1�k; bk D bN�1�k; k D 0; 1; : : : ;
N

2
� 1; (9.18)

and substituting N � 1 � k for k into (9.15) and using (9.18), we finally obtain

c
IV

N�1�k D � sin
�.2k C 1/

4N
ak C cos

�.2k C 1/

4N
bk; k D 0; 1; : : : ;

N

2
� 1:
(9.19)

Then the complete formulae of fast DIT recursive DCT-IV algorithm are defined as

un D x2n C x2nC1; vn D .�1/n.x2n � x2nC1/; n D 0; 1; : : : ;
N

2
� 1;

(9.20)

and

ak D
N
2 �1X

nD0
un cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
;

b N
2 �1�k D

N
2 �1X

nD0
vn cos

�
�

4.N=2/
.2k C 1/.2n C 1/

	
; k D 0; 1; : : : ;

N

2
� 1:

(9.21)

The final DCT-IV coefficients are given by

c
IV

k D cos
�.2k C 1/

4N
ak C sin

�.2k C 1/

4N
bk;

c
IV

N�1�k D � sin
�.2k C 1/

4N
ak C cos

�.2k C 1/

4N
bk; k D 0; 1; : : : ;

N

2
� 1: (9.22)
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Fig. 9.2 The fast DCT-IV computational structure derived by the DIT decomposition method for
N D 6

Thus, the N-point DCT-IV is decomposed into the pre-butterfly stage, two N
2

-point
DCTs-IV, and the block of N

2
Givens–Jacobi rotations. Again, the decomposition

may be performed recursively until the short-length DCTs-IV remain. The fast DCT-
IV computational structure derived by the DIT decomposition method for N D 6 is
shown in Fig. 9.2.

The fast DCT-IV computational structure shown in Fig. 9.2 defines the recursive
sparse block factorization of the DCT-IV matrix C

IV

N as

C
IV

N D G
T

N

0

@
C

IV

N
2

0

0 C
IV

N
2

1

A
 

I N
2

0

0 D N
2

! 
I N
2

I N
2

I N
2

�I N
2

!

PN ; (9.23)

where G
T

N is the transposed rotation matrix G
T

N defined by (9.12). Note that G
T

N D
G

�1

N . PN is a permutation matrix of order N defined by (9.2). Then based on (9.23)

the second orthogonal recursive sparse block factorization of the matrix C
IV

N is
defined as

C
IV

N D G
T

N

0

@
C

IV

N
2

0

0 C
IV

N
2

1

A

 
I N
2

0

0 D N
2

! p
2

2

 
I N
2

I N
2

I N
2

�I N
2

!

PN : (9.24)
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Note 1: Since the DCT-IV matrix is symmetric and self-inverse, i.e., C
IV

N D ŒC
IV

N �
T D

ŒC
IV

N �
�1, by transposition or inversion of (9.13) and (9.24) we obtain alternative

orthogonal recursive sparse block factorization of the matrix C
IV

N .

Note 2: The fast DCT-IV computational structures derived by DIF and DIT
decomposition methods are identical both for the forward and inverse DCT-IV
computation. For the N-point DCT-IV computation their computational complexity
is given by

M
IV

N D 2 M
IV

N
2

C 3N

2
; A

IV

N D 2 A
IV

N
2

C 5N

2
;

where M
IV

N denotes the number of multiplications and A
IV

N denotes the number of
additions with the following initial values: For 2n-lengths M

IV

2 D 3 and A
IV

2 D 3,
while generally if N is even, M

IV

3 D 1 and A
IV

3 D 6 and 1 shift for the scaled 3-point
DCT-IV (see Appendix D.6).

9.2.4.3 Unitary Recursive Sparse Block Factorization of the DFT Matrix

Let FN be the DFT matrix of order N with elements f1=pN e�i 2�nk
N g, where i Dp�1 and n; k D 0; 1; : : : ;N�1 [24, 25]. Then FN can be factored into the following

product of unitary block matrices [27, 41]:

FN D PN

 
F N

2
0

0 F N
2

! 
I N
2

0

0 W N
2

! p
2

2

 
I N
2

I N
2

I N
2

�I N
2

!

; (9.25)

where PN is the bit-reversal permutation matrix, F N
2

is the DFT matrix of order
N
2

, and W N
2

is a diagonal matrix of order N
2

defined as W N
2

D diagfe�i 2�k
N g, k D

0; 1; : : : ; N
2

� 1. Complex multiplications by each complex twiddle factor in the
matrix W N

2
can be converted to the Givens–Jacobi rotations (see Appendix F.4).

Note that the normalized DFT matrix is symmetric, i.e., F
T

N D FN , and is unitary,

i.e., F
�

N D F
�1

N , F
�

N FN D FN F
�

N D IN , where the symbol � denotes complex
conjugation [26].

9.2.5 Fast MDCT and MLT Analysis and Synthesis Filter
Banks

The complete analysis and synthesis MDCT filter banks are, respectively, defined
as [85]
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c
.t/

k D
r
4

N

N�1X

nD0
wn x

.t/

n cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

k D 0; 1; : : : ;
N

2
� 1; (9.26)

Ox.t/n D
r
4

N
wn

N
2 �1X

kD0
c
.t/

k cos

�
�

2N

�
2n C 1C N

2

�
.2k C 1/

	
;

n D 0; 1; : : : ;N � 1; (9.27)

where fx
.t/

n g is the input data sequence, fc
.t/

k g are the MDCT transform coefficients

and fOx.t/n g is the time domain aliased data sequence. The superscript .t/ denotes
the data-block number, and fwng is a symmetric windowing function. The anal-
ysis/synthesis MDCT filter bank implicitly associated with the sine windowing
function is the analysis/synthesis MLT filter bank [82]. In the analysis filter bank
given by (9.26), for the data block t, N windowed time domain samples fx

.t/

n g are
used to calculate N

2
unique transform coefficients fc

.t/

k g. Vice versa, the tth data

block of N
2

transform coefficients fc
.t/

k g is used to calculate N windowed time domain

aliased samples fOx.t/n g with the synthesis filter bank given by (9.27).
In the analysis MDCT filter bank two succeeding data blocks t and t C 1

are overlapped by N
2

samples so that for each data block N
2

new time domain
samples are processed. For a smooth block overlapping a windowing function fwng
is applied to fx

.t/

n g and fx
.tC1/

n g, the so-called windowing and overlap procedure.
By applying analysis and synthesis MDCT filter banks, a time domain aliasing
error is introduced. The aliasing error is canceled out (or perfect reconstruction
is accomplished) by adding outputs of the synthesis MDCT filter bank of two
succeeding windowed data blocks t and t C 1 in the overlapped part, the so-called
windowing and overlap and add procedure, or also called the time domain aliasing
cancellation (TDAC) procedure as follows:

x
.tC1/

n D x
.t/

N
2 Cn

D Ox.t/N
2 Cn

C Ox.tC1/

n ; n D 0; 1; : : : ;
N

2
� 1: (9.28)

To ensure TDAC, the windowing functions of two succeeding data blocks have to
satisfy the so-called perfect reconstruction conditions in their overlapped part. A
sufficient condition for TDAC is given by Princen et al. [85]

w
2

n C w
2

N
2 Cn

D 1; or w
2

n C w
2

N
2 �1�n

D 1;

wn D wN�1�n; or w N
2 Cn D w N

2 �1�n; n D 0; 1; : : : ;
N

2
� 1: (9.29)

Thus, the analysis MDCT filter bank given by (9.26) in processing two adjacent
overlapped data blocks fx

.t/

n g and fx
.tC1/

n g consists of the windowing and overlap
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procedure and transforming adjacent data blocks by the forward MDCT block
transform (realized by a fast DCT-IV computational structure). Vice versa, the
synthesis MDCT filter bank given by (9.27) in processing two adjacent blocks of
transform coefficients fc

.t/

k g and fc
.tC1/

k g consists of the backward MDCT transfor-
mation of coefficients (realized by the fast DCT-IV computational structure) and the
windowing and overlap and add procedure to perfectly reconstruct the original data
sequence in the overlapped part.

In the following subsections we will present the fast analysis and synthesis
MDCT filter banks associated with an arbitrary symmetric windowing function fwng
which satisfies the perfect reconstruction conditions given by (9.29).

9.2.5.1 Fast Analysis MDCT Filter Bank

The fast analysis MDCT filter bank for the data block t with incorporated windowing
procedure is defined as [76]

c
.t/

k D
N
2 �1X

nD0
y
.t/

n cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
; k D 0; 1; : : : ;

N

2
� 1;

(9.30)
where

y
.t/

N
4 Cn

D wn x
.t/

n � w N
2 �1�n x

.t/

N
2 �1�n

;

y
.t/

N
4 �1�n

D � w N
2 Cn x

.t/

N
2 Cn

� wN�1�n x
.t/

N�1�n; n D 0; 1; : : : ;
N

4
� 1:

(9.31)

Equations (9.30) and (9.31) define the fast analysis MDCT filter bank with
incorporated windowing procedure. The cosine transform kernel in (9.30) is the
N
2

-point forward DCT-IV of fy
.t/

n g. Equation (9.31) includes besides the windowing

also the permutation of input data sequence fx
.t/

n g, and frequently is called the TDA
procedure.

9.2.5.2 Efficient Implementation of the Windowing and Overlap
Procedure

In the analysis MDCT filter bank between two adjacent overlapped data blocks fx
.t/

n g
and fx

.tC1/

n g the following relations hold:

x
.t/

N
2 Cn

D x
.tC1/

n ; x
.t/

N�1�n D x
.tC1/

N
2 �1�n

; n D 0; 1; : : : ;
N

4
� 1: (9.32)
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Using (9.32) and the symmetry property of windowing function, (9.31) is
rewritten as

y
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N
4 Cn

D wn x
.t/

n � w N
2 �1�n x
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; n D 0; 1; : : : ;
N

4
� 1:

(9.33)

For clarity, in processing the succeeding overlapped data blocks 0; 1; : : : ; t; t C
1; t C 2; : : : ; the associated N

4
-point data sub-sequences fy

.:/

N
4 Cn

g and fy
.:/

N
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respectively, given by

y
.0/

N
4 Cn

D 0; (initialization step);

y
.0/

N
4 �1�n

D �w N
2 �1�n x

.1/

n � wn x
.1/

N
2 �1�n

;

y
.1/

N
4 Cn

D wn x
.1/

n � w N
2 �1�n x

.1/

N
2 �1�n

;
n
y
.1/

N
4 Cn

o
is

N

4
-sample delayed data sub-block;

:::

y
.t/

N
4 Cn

D wn x
.t/

n � w N
2 �1�n x

.t/

N
2 �1�n

;

y
.t/

N
4 �1�n

D �w N
2 �1�n x

.tC1/

n � wn x
.tC1/

N
2 �1�n

;

y
.tC1/

N
4 Cn

D wn x
.tC1/

n � w N
2 �1�n x

.tC1/

N
2 �1�n

;
n
y
.tC1/

N
4 Cn

o
is

N

4
-sample delayed data sub-block;

y
.tC1/

N
4 �1�n

D �w N
2 �1�n x

.tC2/

n � wn x
.tC2/

N
2 �1�n

;

y
.tC2/

N
4 Cn

D wn x
.tC2/

n � w N
2 �1�n x

.tC2/

N
2 �1�n

;
n
y
.tC2/

N
4 Cn

o
is

N

4
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By introducing the N
4

-sample delay operator denoted by 	 N
4
f:g, the windowing

and overlap procedure in the fast analysis MDCT filter bank can be represented in
the following matrix-vector form:
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� 1; (9.34)
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with initial condition y
.0/

N
4 Cn

D 0. Since the windowing function satisfies the perfect

reconstruction conditions given by (9.29), the determinant of 2 � 2 matrix on the
right-hand side of (9.34) is unity. The windowing and overlap procedure including
the permutation (9.31) requires 3N

4
multiplications and 3N

4
additions.

9.2.5.3 Fast Synthesis MDCT Filter Bank

Since the DCT-IV matrix is self-inverse, the data sequence fy
.t/

n g is recovered by the
inverse N

2
-point DCT-IV of fc

.t/

k g as [76]

y
.t/

n D
N
2 �1X

kD0
c
.t/

k cos

�
�

4.N=2/
.2n C 1/.2k C 1/

	
; n D 0; 1; : : : ;

N

2
� 1:

(9.35)
The time domain aliased data sequence fOx.t/n g is obtained from fy

.t/

n g by applying the
inverse permutation to (9.31) as

Ox.t/n D wn y
.t/

N
4 Cn

;

Ox.t/N
2 �1�n

D � w N
2 �1�n y

.t/

N
4 Cn

;

Ox.t/N
2 Cn

D � w N
2 Cn y

.t/

N
4 �1�n

D � w N
2 �1�n y

.t/

N
4 �1�n

;

Ox.t/N�1�n D � wN�1�n y
.t/

N
4 �1�n

D � wn y
.t/

N
4 �1�n

; n D 0; 1; : : : ;
N

4
� 1:

(9.36)

Equations (9.35) and (9.36) define the fast synthesis MDCT filter bank.

9.2.5.4 Efficient Implementation of the Windowing and Overlap and Add
Procedure

Given two succeeding blocks of transform coefficients fc
.t/

k g and fc
.tC1/

k g. After
transforming each block of transform coefficients by the N

2
-point inverse DCT-

IV transform, using the symmetry property of windowing function, from (9.36)
it follows that the time domain aliased data sequences fOx.t/n g and fOx.tC1/

n g are,
respectively, given by

Ox.t/N
2 Cn

D �w N
2 �1�n y

.t/

N
4 �1�n

;

Ox.t/N�1�n D �wn y
.t/

N
4 �1�n

;
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Ox.tC1/

n D wn y
.tC1/

N
4 Cn

;

Ox.tC1/

N
2 �1�n

D �w N
2 �1�n y

.tC1/

N
4 Cn

; n D 0; 1; : : : ;
N

4
� 1: (9.37)

For two adjacent time domain aliased data blocks fOx.t/n g and fOx.tC1/

n g recovered by the
synthesis MDCT filter bank, the following relations hold in the overlapped part:

x
.tC1/

n D Ox.t/N
2 Cn

C Ox.tC1/

n ; x
.tC1/

N
2 �1�n

D Ox.t/N�1�n C Ox.tC1/

N
2 �1�n

; n D 0; 1; : : : ;
N

4
� 1:

(9.38)

In order to perfectly reconstruct the original data sequence fx
.tC1/

n g in the overlapped
part, by substitution of the appropriate time domain aliased data sequences fOx.t/n g
from (9.37) into (9.38), and using N

4
-sample delay operator 	 N

4
f:g, the windowing

and overlap and add procedure in the fast synthesis MDCT filter bank is expressed as

x
.tC1/

n D �w N
2 �1�n 	 N

4

n
y
.t/

N
4 �1�n

o
C wn y

.tC1/

N
4 Cn

;

x
.tC1/

N
2 �1�n

D �wn 	 N
4

n
y
.t/

N
4 �1�n

o
� w N

2 �1�n y
.tC1/

N
4 Cn

; n D 0; 1; : : : ;
N

4
� 1;

(9.39)

or equivalently, it can be represented in the matrix-vector form as

0

B
@

x
.tC1/

n

x
.tC1/

N
2 �1�n

1

C
A D �

0

B
@

w N
2 �1�n �wn

wn w N
2 �1�n

1

C
A

0
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@

	 N
4

n
y
.t/

N
4 �1�n

o

y
.tC1/

N
4 Cn

1

CC
A ;

n D 0; 1; : : : ;
N

4
� 1: (9.40)

Similarly, from the perfect reconstruction conditions given by (9.29) it follows that
the determinant of 2 � 2 matrix on the right-hand side of (9.40) is unity. The
windowing and overlap and add procedure including the permutation (9.31) requires
3N
4

multiplications and 3N
4

additions.

Note 3: For the fast analysis and synthesis MLT filter banks the sine windowing
function is defined by wn D sin �.2nC1/

2N for n D 0; 1; : : : ;N � 1 [82]. Denoting

wn D sn, we have: w N
2 �1�n D cn D cos �.2nC1/

2N , w N
2 Cn D cn, and wN�1�n D sn for

n D 0; 1; : : : ; N
2

� 1.
Thus, the efficient implementation of complete analysis and synthesis MDCT

filter banks consists of the N
2

-point identical fast DCT-IV computational structure,
the windowing and overlap procedure (including the TDA procedure) and the
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windowing and overlap and add procedure. Equations (9.34) and (9.40) provide the
compact computational structures, respectively, for the efficient implementation of
the analysis MDCT filter bank with incorporated windowing and overlap procedure,
and the synthesis MDCT filter bank with incorporated windowing and overlap and
add procedure for an arbitrary symmetric windowing function (for the fast analysis
and synthesis MLT filter banks see Fig. 9.11a, b, respectively).

Having prepared the desired properties of integer transforms, quality measures
of integer transforms for coding, having defined the concept of normalized (integer)
transform with the corresponding orthogonal (unitary) recursive sparse block matrix
factorizations of the DCT-II/III, DCT-IV, and DFT matrices, and having defined the
fast MDCT and MLT analysis and synthesis filter banks, in the following sections,
local and global methods to integer approximation of transforms and cosine/sine-
modulated filter banks are presented. The local as well as global methods to integer
approximation are based on the classical matrix theory and computational methods
of linear algebra, and in particular, on (block) matrix decompositions [80, 81, 86]
(see Appendices A.3–A.8).

9.3 Local Methods to Integer Approximation

The orthogonal (unitary) recursive sparse block matrix factorizations (9.1), (9.13),
(9.24), and (9.25) define the corresponding fast computational structures. Each
matrix factor is a block matrix with blocks being the orthogonal 2 � 2 rotation
matrix and/or orthogonal 2 � 2 trivial rotation matrix with unit determinants.
Thus, the construction of reversible (invertible) integer transform is reduced to
the construction of only integer transforms of the length 2. In order to construct
the reversible (invertible) integer transforms which map integers-to-integers, each
orthogonal 2 � 2 matrix has to be factored into a product of invertible elementary
matrices [12–14, 16, 17, 29–31, 35, 37–39, 45, 46, 48]. However, for large transform
sizes the number of orthogonal 2�2matrices increases. Therefore, the local methods
to integer approximation are rather suitable for small transform sizes [54, 55].

9.3.1 LUL Matrix Factorizations of a 2-Point Block Transform

Let T2 be a matrix of order 2 with scalar elements a; b; c; d 2 R representing a
2-point block transform as

T2 D
�

a b
c d

�
; b 6D 0; (9.41)

with det.T2/ D ad � bc D C1. We show that the matrix T2 can be factored into a
product of the Gauss elementary matrices being unit lower and unit upper triangular
matrices. Indeed, since det .T2/ D C1, according to PLUS factorization theorem
we can apply to the matrix T2 the PLUS factorization algorithm (see Appendix A.6).
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The permutation matrix P in this case corresponds to the identity matrix and we can
omit it. In the first step there must exist a number s1 such that a � s1 b D 1 and
hence s1 D a�1

b and we obtain the product of

T2 S
�1

2 D
�

a b
c d

��
1 0

�s1 1

�
D
�

1 b
c � s1 d d

�
:

The second step is Gaussian elimination of the first column of T2 S
�1

2 , what is

equivalent to the pre-multiplication of T2 S
�1

2 by the Gauss elementary matrix L�1
2

as follows

L�1
2 T2 S

�1

2 D
�

1 0

s1 d � c 1

�
T2

�
1 0

�s1 1

�
D
�
1 b
0 1

�
D U2; (9.42)

and we obtained the factorization of L�1
2 T2 S

�1

2 . From algebra of unit triangular
matrices (see Appendix A.3) it follows that the inverse of a unit lower/unit upper
triangular matrix is also a unit lower/unit upper triangular matrix, and we easily find
their inverses as

�
1 0

�x 1

��1
D
�
1 0

x 1

�
;

�
1 �x
0 1

��1
D
�
1 x
0 1

�
:

Pre-multiplying Eq. (9.42) by L2 (whereby its off-diagonal element c � s1 d D d�1
b )

followed by the post-multiplying by S2 (whereby its off-diagonal element is s1), we
finally get the factorization of T2 D LUS (and hence LUL matrix factorization)
given by

T2 D
�
1 0

d�1
b 1

��
1 b
0 1

��
1 0

a�1
b 1

�
; where b 6D 0: (9.43)

For the inverse matrix T
�1

2 we obtain

T
�1

2 D
�

1 0

� a�1
b 1

��
1 �b
0 1

��
1 0

� d�1
b 1

�
: (9.44)

The LUL matrix factorization of T2 defined by (9.43) has been presented in
[12, 14, 29, 30], however without any discussion to its origin. Note that the factored
matrices on the right-hand side of (9.43) and (9.44) are invertible. Thus, the
PLUS factorization of T2 and T

�1

2 into the product of Gauss elementary matrices
given by (9.43) and (9.44), respectively, define computational structures for the
efficient implementations of the forward and inverse 2-point block transforms. The
corresponding LUL computational structures of y D T2 x and x D T

�1

2 y are,
respectively, shown in Fig. 9.3a, b, where .x0; x1/T is the input data vector and
.y0; y1/T is the output data vector.
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Fig. 9.3 LUL computational
structures for the efficient
implementation: (a) of
y D T2 x, and (b) of
x D T

�1

2 y

x0 y0

y1x1
++

(a)

b b
b

x0y0

y1 x1
(b)

__

b
b b

_

+

From the implementation point of view, to invert T2 given by PLUS factorization,
we simply need to subtract out what was added in the forward computation. The
implementation of y D T2 x given by PLUS factorization compared to its direct
implementation has the following advantages:

• The number of multiplications is reduced from four to three multiplications and
overall arithmetic complexity is three multiplications and three additions.

• Leads to in-place implementation, i.e., without the need of auxiliary memory,
which is the desired property in VLSI implementations.

• Multipliers in factor matrices can be quantized (using functions such as round,
floor or ceil) to obtain the reversible integer-to-integer mapping.

• The perfect reconstruction property.

Note 4: A general matrix factorization theory of an invertible linear transform
into a product of unit triangular matrices has been developed in [13, 18]. If a
real nonsingular matrix of order N has its determinant equal to 1, then it has the
PLUS factorization (for further details see Appendix A.6). As examples, the PLUS
factorizations of the 4-point DFT and 8-point DCT-II are presented in [13].

9.3.2 LUL (ULU) Matrix Factorizations of Givens–Jacobi
Rotations

A 2 � 2 orthogonal matrix G
.'/

2 is called Givens–Jacobi rotation by an angle ', if it
has the form [81]

G
.'/

2 D
0

@
cos' � sin'

sin' cos'

1

A ;
h
G
.'/

2

i�1 D
h
G
.'/

2

iT D G
.�'/

2 : (9.45)
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where G
.'/

2 and G
.�'/

2 are inverses to each other. It is clear that det .G
.'/

2 / D
det .G

.�'/

2 / D 1. Orthogonal Givens–Jacobi rotations are also called the linear 2-
norm rotation transforms, because they preserve the 2-norm of the rotated vectors.
They play a central role in the least squares solutions of overdetermined systems of
linear equations as well as symmetric eigenvalue problem [80, 81].

Although LUL matrix factorizations of Givens–Jacobi rotations G
.'/

2 and G
.�'/

2

be can obtained by applying the PLUS factorization algorithm to the matrix G
.'/

2 ,
without loss of generality, they are simply obtained by substituting a D d D cos',
b D � sin' and c D sin' into (9.43) and (9.44). Then, the LUL factorizations of
G
.'/

2 and G
.�'/

2 are given by

G
.'/

2 D

0

B
@

1 0

1�cos'
sin' 1

1

C
A

0

@
1 � sin'

0 1

1

A

0

B
@

1 0

1�cos'
sin' 1

1

C
A ; (9.46)

and

G
.�'/

2 D

0

B
@

1 0

� 1�cos'
sin' 1

1

C
A

0

@
1 sin'

0 1

1

A

0

B
@

1 0

� 1�cos'
sin' 1

1

C
A ; where sin' 6D 0:

(9.47)

We note that tan '

2
D 1�cos'

sin' D sin'
1Ccos' . Although the matrix G

.'/

2 is orthogonal, the
factored matrices on the right-hand sides of (9.46) and (9.47) are not longer orthog-
onal; however, they are still invertible. The corresponding LUL computational
structures for the efficient implementation of the forward and inverse Givens–Jacobi
rotations are, respectively, shown in Fig. 9.4a, b, where .x0; x1/T is the input data
vector and .y0; y1/T is the rotated vector.

Fig. 9.4 LUL computational
structures for the efficient
implementation: (a) of

y D G
.'/

2 x, and (b) of

x D G
.�'/

2 y
sin

x0 y0

y1x1
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sin

cos
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_

x0y0

y1 x1
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+

(b)

cos
sin

cos
sin

__
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Since G
.'/

2 D ŒG
.�'/

2 �T , by transposing (9.47) we obtain the alternative ULU

matrix factorizations of G
.'/

2 and G
.�'/

2 as

G
.'/

2 D

0

B
@
1 � 1�cos'

sin'

0 1

1

C
A

0

@
1 0

sin' 1

1

A

0

B
@
1 � 1�cos'

sin'

0 1

1

C
A ; where sin' 6D 0;

(9.48)
and

G
.�'/

2 D

0

B
@
1
1�cos'

sin'

0 1

1

C
A

0

@
1 0

� sin' 1

1

A

0

B
@
1
1�cos'

sin'

0 1

1

C
A : (9.49)

The corresponding ULU computational structures for the alternative efficient
implementation of the forward and inverse Givens–Jacobi rotations can be simply
obtained by a minor modification of LUL ones shown in Fig. 9.4. From the
computational point of view, the LUL and ULU structures are equivalent.

Note 5: All orthogonal (unitary) recursive sparse block matrix factoriza-
tions (9.1), (9.13), (9.24), and (9.25) contain also trivial 2 � 2 rotation matrices
of the form:

H2 D
p
2

2

�
1 1

1 �1
�
: (9.50)

The matrix H2 in (9.50) is recognized as the scaled 2 � 2 Hadamard matrix. If it is
applied to a 2-point vector xT , then we have:

0

@
cos �

4
sin �

4

sin �
4

� cos �
4

1

A

0

@
x0

x1

1

A D
0

@
cos �

4
� sin �

4

sin �
4

cos �
4

1

A

0

@
x0

�x1

1

A : (9.51)

From Eq. (9.51) it can be seen that the trivial rotation of the input vector xT (and
hence scaled Hadamard matrix H2) is converted to the forward Givens–Jacobi
rotation with the angle �

4
of the modified input vector. Using (9.46) we get the

LUL factorization of G
. �4 /

2 as

G
. �4 /
2 D

0

@
1 0

tan �
8
1

1

A

0

@
1 � sin �

4

0 1

1

A

0

@
1 0

tan �
8
1

1

A ; where tan
�

8
D p

2 � 1;

(9.52)

and using (9.48) we get the alternative ULU factorization of G
. �4 /

2 as

G
. �4 /
2 D

0

@
1 � tan �

8

0 1

1

A

0

@
1 0

sin �
4
1

1

A

0

@
1 � tan �

8

0 1

1

A : (9.53)



510 9 Integer Approximate Cosine/Sine-Modulated Filter Banks

Note 6: The second quasi-diagonal matrix on the right-hand side of (9.25) includes
the diagonal matrix W N

2
D diagfe�i 2�k

N g for k D 0; 1; : : : ; N
2

� 1. We recall that the
complex multiplications by each complex twiddle factor in the matrix W N

2
can be

converted to the forward Givens–Jacobi and trivial rotations (see Appendix F.4).
Principally, there are two approaches how to construct the reversible (invertible)

integer transforms from the corresponding factored matrices T2, T
�1

2 given
by (9.43), (9.44), respectively, and the reversible (invertible) integer rotations
from the corresponding factored matrices G

.'/

2 , G
.�'/

2 given by (9.46), (9.47)
or (9.48), (9.49), respectively, applied to the input vector xT :

• Including the nonlinear rounding operator in each factored unit triangular matrix
(integer approximation by the rounding operator). Thus, multiplying each by the
off-diagonal floating-point multiplier is followed immediately by the rounding
operation, i.e., the result is rounded to the nearest integer [16].

• Replacing the off-diagonal floating-point multiplier in each factored unit trian-
gular matrix by an appropriate dyadic rational number (dyadic approximation)
[17].

Both approaches to integer approximation result in an approximation error in each
computational step and this accumulated approximation error has to be minimized.
The approximation error can be interpreted as the difference between results of the
exact transform and the related integer transform in terms of some vector norm (for
example, Euclidean or maximum).

In the following subsections each approach is investigated in detail separately,
and the corresponding explicit estimates of approximation errors are also discussed
as well as the optimization strategies to minimize the total approximation error.

9.3.2.1 Approximation by Rounding Operator and Estimate of
Approximation Error

One can see that the orthogonal (unitary) recursive sparse block matrix factor-
izations (9.1), (9.13), (9.24), and (9.25) are composed from blocks being 2 � 2

Givens–Jacobi rotations G
.˙'/

2 and G
. �4 /

2 . Then, the first approach to construction
of an invertible integer transform of order N can be formulated simply as follows:

For a given invertible matrix G
.˙'/

2 with rotation angles ' 2 .0; �
4
i and for arbitrary

vector x 2 Z2, we need to find a suitable integer approximation of G
.˙'/

2 x such that
this process is invertible.

Due to practical reasons, consider the ULU factorizations of G
.'/

2 and G
.�'/

2

expressed, respectively, in more compact forms as
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G
.'/

2 D
0

@
1 � tan '

2

0 1

1

A

0

@
1 0

sin' 1

1

A

0

@
1 � tan '

2

0 1

1

A ; (9.54)

G
.�'/

2 D
0

@
1 tan '

2

0 1

1

A

0

@
1 0

� sin' 1

1

A

0

@
1 tan '

2

0 1

1

A ;where sin' 6D 0: (9.55)

and the ULU factorization of G
. �4 /

2 given by (9.53). The ULU factorizations consist
of nonorthogonal matrix factors which are still invertible, and they can be used for
the construction of invertible integer transform as follows.

For a 2 R let bac D maxfx � a W x 2 Zg and fag D a � bac 2 h0; 1/. Then fag
is the noninteger part of a. Further, let round.a/ D ba C 1

2
c be the integer closest

to a. Consider the last matrix factor of G
.'/

2 on the right-hand side of (9.54). One
computational step in the matrix-vector form can be written as

Oy D
�
1 �s
0 1

�
x; s 2 R;

where x D Œx0; x1�T 2 Z2. Then, Oy D ŒOy0; Oy1�T can be approximated by y D
Œy0; y1�T 2 Z2 with

y0 D x0 �
�

sx1 C 1

2

�
D x0 � round.sx1/; y1 D x1:

This transform is invertible with

x0 D y0 C
�

sy1 C 1

2

�
D y0 C round.sy1/; x1 D y1:

Indeed, we have

y1 D x1; y0 C round.sy1/ D x0 � round.sx1/C round.sx1/ D x0:

The following theorem is fundamental for the integer approximation of the ULU
factored matrix G

.'/

2 by the rounding operator with explicit estimates of truncation
errors [16].

Theorem 9.1 (Integer Approximation of the ULU Factored Matrix G
.'/

2 by the
Rounding Operator and Explicit Truncation Error Estimates) Let G

.'/

2 with
' 2 .0; �

4
i be the Givens–Jacobi matrix represented by ULU factorization. Then for

arbitrary x D Œx0; x1�T 2 Z2, a suitable integer approximation y D Œy0; y1�T 2 Z2 of
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Oy D G
.'/

2 x is given by y0 D z2, y1 D z1, where

z0 D x0 � round
�

x1 tan
'

2

�
; z1 D x1 C round .z0 sin'/ ;

z2 D z0 � round
�

z1 tan
'

2

�
:

The procedure is invertible and its inverse is x0 D v2, x1 D v1, where

v0 D y0 C round
�

y1 tan
'

2

�
; v1 D y1 � round .v0 sin'/ ;

v2 D v0 C round
�
v1 tan

'

2

�
:

The truncation error can be estimated by

kOy � yk2 �
p

h.'/; kOy � yk1 � g.'/; (9.56)

where functions h.'/ and g.'/ are respectively given by

h.'/ D 3

4
C sin' C 1

2
cos' C 1

4
tan2

'

2
; g.'/ D 1

2

�
1C tan

'

2
C cos'

�
:

The formulae for y0; y1 and x0; x1 (after inverse transform) directly follow
by applying the input vector x to three matrices in (9.54). The elegant proof of
truncation error estimates given by (9.56) can be found in [16]. Plot of the function
h.'/ is shown in Fig. 9.5, while plot of the function g.'/ is shown in Fig. 9.6.

Let Oy D G
.'/

2 x with arbitrary vector x 2 Z2 be given and let y be its integer
approximation. The special values for truncation errors kOy � yk2 and kOy � yk1 via
the rounding procedure for rotation angles ' 2 f�

4
; �
8
; �
16
; 3�
16

g can be obtained by
substituting values of ' into (9.56). In particular, we obtain [16]

Fig. 9.5 Plot of the function
h.'/
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Fig. 9.6 Plot of the function
g.'/
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kOy � yk2 �

8
ˆ̂<

ˆ̂:

1:361453 for ' D �
4
;

1:266694 for ' D �
8
;

1:199128 for ' D �
16
;

1:320723 for ' D 3�
16
;

kOy � yk1 �

8
ˆ̂<

ˆ̂:

1:060660 for ' D �
4
;

1:061396 for ' D �
8
;

1:039638 for ' D �
16
;

1:067408 for ' D 3�
16
:

Further, for all ' 2 h0; �
4
/ we have

kOy � yk1 � max
n
g.'/ W ' 2

D
0;
�

4

�o
� 1:067442:

9.3.2.2 Dyadic Approximation and Estimate of Approximation Error

The second approach to construction of an invertible integer transform of order N
is based on the approximation of off-diagonal floating-point multipliers in factored
unit triangular matrices by appropriate dyadic rational numbers.

Definition 9.1 The dyadic rational number is a binary fractional one of the form
k
2b , where k; b 2 N and k is an odd integer [9].

Multiplication by dyadic rational number can be implemented using only binary
arithmetic. The multiplicand is first multiplied by numerator k and the result is
shifted to the right by b bits. Neglecting shift operations, the minimum number
of additions required for implementing a given binary fraction is equal to that
for implementing its numerator k. An integer multiplication is equivalent to bit-
shifting the multiplicand to the left by different numbers of bits and summing up
these bit-shifted versions. The total numbers of shifts and additions required can
be counted from the binary representation of the integer multiplier. For example,
multiplication by 5 D .101/2 can be implemented by one addition and one shift.
Similarly, multiplication by 7 D .111/2 can be implemented by two additions and
two shifts, since 7 D 4 C 2 C 1 D .100/2 C .10/2 C .1/2. However, this is not
the minimum number of additions needed to multiply a number by 7, because if we
express 7 D 8 � 1 D .1000/2 � .1/2, it is immediately clear that only one addition
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and one shift are required. This fact is related to minimum-adder representation of
integer multiplier k which is based on the concept of multiplicative irreducibility in
terms of adders (see p. 221 in [9]).

Replacing the trigonometric values tan '

2
and sin' by the dyadic rationals a D ˇa

2n

and b D ˇb
2n , ˇa; ˇb; n 2 N, respectively, in the ULU factorization of G

.'/

2 given
by (9.54), and multiplying the factored matrices we obtain the approximation matrix

QG
.'/

2 in the form:

QG
.'/

2 D
0

@
1 � ab �2a � a2b

b 1 � ab

1

A ; det

�
QG
.'/

2

�
D 1: (9.57)

The following theorem states how to estimate truncation errors caused by the dyadic
approximation of ULU factored matrix G

.'/

2 [17].

Theorem 9.2 (Dyadic Approximation of the ULU Factored Matrix G
.'/

2 and
Explicit Truncation Error Estimates) Let G

.'/

2 be the matrix represented by ULU

factorization, and QG
.'/

2 be its approximation matrix with ' 2 .0; �
2
i. Further, let

a D ˇa
2n 	 0 and b D ˇb

2n 	 0, ˇa; ˇb; n 2 N be given with

ˇ̌
ˇtan

'

2
� a

ˇ̌
ˇ � 2�j and j sin' � bj � 2�j

for some fixed j 2 N denoting the required approximation accuracy. Then for
arbitrary x D Œx0; x1�T 2 .�2k; 2ki \ Z2, a suitable integer approximation y D
Œy0; y1�T 2 Z2 of Oy D QG

.'/

2 x is given by y0 D z2, y1 D z1, where

z0 D x0 � round.x1 a/; z1 D x1 C round.z0 b/; z2 D z0 � round.z1 a/:

The procedure is left-invertible and its left-inverse is x0 D w2, x1 D w1, where

w0 D y0 C round.y1 a/; w1 D y1 � round.w0 b/; w2 D w0 C round.w1 a/:

Further, the component-wise truncation error can be estimated by

jOy0 � y0j �
h
2C a C a2 C sin'

�
1C a C tan

'

2

�i
2k�j C 1

2
.2C a � ab/;

jOy1 � y1j � .1C a C sin'/ 2k�j C 1

2
.1C b/; (9.58)

where k denotes the number of bits to represent x.
ut
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The formulae for y0; y1 and x0; x1 (after inverse transform) directly follow
by applying the input vector x to three matrices in (9.54). The elegant proof of
truncation error estimates (9.58) can be found in [17]. The component-wise error
estimates given by (9.58) depend on the range of input vector x (k is fixed) and
approximation quality. Improving the approximation (j is large) leads to arbitrary
small error estimates for the first two terms due to the fact that the terms within
brackets are bounded. On the other hand, in [17] it has been indicated that the
component-wise error estimates of integer approximated G

.'/

2 x by the rounding
operator [16] are given by (see also Theorem 9.1)

jOy0 � y0j � 1

2

�
1C tan

'

2
C cos'

�
; jOy1 � y1j � 1

2
.1C sin'/: (9.59)

Note that the second terms, specifically 1
2
.2 C a � ab/ and 1

2
.1 C b/ in (9.58)

represent the component-wise error estimates in (9.59).

Note 7: The so-called SOPOT (Sum-Of-Powers-Of-Two) approximation of a
floating-point multiplier was introduced in [23, 28, 34]. The SOPOT approximation
is defined as

MX

kD1
ak 2

bk ; ak 2 f�1; 0; 1g; bk 2 f�r; : : : ;�1; 0; 1; : : : ; rg;

where r is the range of multiplier and M is the number of terms. Thus, each floating-
point multiplier can be replaced by the limited number of additions and shifts.
However, the SOPOT approximation is actually a dyadic rational number after
summing up the terms.

9.3.2.3 Optimization Strategies to Minimize the Approximation Error

Practical implementations of the LUL as well as ULU computational structures of
G
.'/

2 and G
.�'/

2 by a rotation angle ' to integer approximation of transforms by
the rounding operator or by the dyadic approximation can be further optimized
to minimize the approximation error. There are two optimization strategies which
have been proposed, one in [25] for the dyadic approximation of G

.'/

2 , and one
in [31, 45, 46] for the integer approximation by rounding operator. Again, due to
practical reasons, consider the ULU factorization of G

.'/

2 given by (9.54) with off-
diagonal elements denoted by c0 D tan '

2
D 1�cos'

sin' D sin'
1Ccos' and c1 D sin' ¤ 0.

The first optimization strategy is based on controlling the dynamic range of
off-diagonal floating-point multipliers in unit triangular matrices approximated
by dyadic rationals [25]. The value of multiplier c1 can be arbitrarily small and
consequently, the dynamic range of multiplier c0 can be arbitrarily large. Therefore,
we should control the range of the multipliers c0 and c1 as follows. If the rotation
angle ' 2 .��

2
; 0/ [ .0; �

2
/, then the value of cos' > 0 and
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jc0j D
ˇ̌
ˇtan

'

2

ˇ̌
ˇ D

ˇ̌
ˇ̌1 � cos'

sin'

ˇ̌
ˇ̌

D
ˇ̌
ˇ
ˇ

sin'

1C cos'

ˇ̌
ˇ
ˇ D j sin'j

ˇ̌
ˇ
ˇ

1

1C cos'

ˇ̌
ˇ
ˇ < j sin'j D jc1j < 1; (9.60)

and multipliers c0 and c1 fall between �1 and C1. However, if the rotation angle
' 2 .��; �

2
/ [ .�

2
; �/, then the value of cos' < 0 and jc0j > 1 which is not

desirable. The absolute values of multipliers c0 and c1 can be controlled to be always
less than or equal to 1 by replacing G

.'/

2 with its alternative equivalent form �G
.'Cpi/

2

as [25]

G
.'/

2 D �G
.'C�/

2 D �
0

@
� cos' sin'

� sin' � cos'

1

A D �
0

@
1 �Nc0

0 1

1

A

0

@
1 0

c1 1

1

A

0

@
1 �Nc0

0 1

1

A ;

(9.61)

where

Nc0 D 1C cos'

sin'
D 1

tan '

2

; and c1 D sin' ¤ 0:

When rotation angle ' 2 .��; �
2
/ [ .�

2
; �/, then we have

jNc0j D
ˇ
ˇ̌
ˇ
1

tan '

2

ˇ
ˇ̌
ˇ D

ˇ
ˇ̌
ˇ
1C cos'

sin'

ˇ
ˇ̌
ˇ

D
ˇ
ˇ̌
ˇ

sin'

1 � cos'

ˇ
ˇ̌
ˇ D j sin'j

ˇ
ˇ̌
ˇ

1

1 � cos'

ˇ
ˇ̌
ˇ < j sin'j D jc1j < 1; (9.62)

and new multipliers Nc0 and c1 fall again between �1 and C1. Consequently,
the number of required additions in a multiplier-less implementation of integer
transform is reduced. In order to obtain the corresponding ULU computational
structure of �G

.'Cpi/

2 we need to modify the ULU structure of G
.'/

2 replacing the
multiplier c0 by Nc0 and changing signs of the result.

The second optimization strategy is based on modeling the approximation
error as a quantization noise introduced after each rounding operator in ULU
structure, whereby this quantization noise in each step is independent and identically
distributed. For improving the reversible integer rotation G

.'/

2 resulting in the smaller
quantization noise, three other ULU structures have been proposed defined as
[31, 45, 46]

G
.'/

2 D
0

@
0 1

�1 0

1

A

0

B
@
1 � sin'C1

cos'

0 1

1

C
A

0

@
1 0

cos' 1

1

A

0

B
@
1 � sin'C1

cos'

0 1

1

C
A ; (9.63)
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G
.'/

2 D
0

@
�1 0

0 1

1

A

0

B
@
1

sin'�1
cos'

0 1

1

C
A

0

@
1 0

cos' 1

1

A

0

B
@
1

sin'�1
cos'

0 1

1

C
A

0

@
0 1

1 0

1

A ; (9.64)

G
.'/

2 D
0

@
�1 0

0 1

1

A

0

B
@
1 � cos'C1

sin'

0 1

1

C
A

0

@
1 0

sin' 1

1

A

0

B
@
1 � cos'C1

sin'

0 1

1

C
A

0

@
1 0

0 �1

1

A : (9.65)

where also cos' ¤ 0. Compared to (9.54), additional ULU factored forms (9.63)–
(9.65) include pre/post-swapping and pre/post-sign changing operations applied to
the components of input and/or output vector, and they lead to different multipliers
c0 and c1 for the same rotation angle '. Now, the problem is to select the optimal
ULU factored form for different rotation angle ' such that it achieves the lowest
quantization noise in the MSE sense [46].

Let Œx; y�T be the input vector, Œx0; y0�T be the output vector, and 	 be the
quantization noise of one rounding operator, i.e., round.a/ D a C 	. Then the

reversible integer rotation OG
.'/

2 applied to the vector Œx; y�T is given by

z D x � round.c0 y/ D x � .c0 y C	0/;

x0 D y C round.c1 z/ D y C .c1 z C	1/;

y0 D z � round.c0 x0/ D z � .c0 x0 C	2/: (9.66)

where 	i, i D 0; 1; 2 is the quantization noise of successive rounding operators.
Further, let e D Œ	x0; 	y0�T be the quantization noise of the reversible integer
rotation. The goal is to minimize the MSE, i.e., E ŒeeT � D E Œ.	x0/2�C E Œ.	y0/2�
has to be minimal, where E Œ:� is the expectation operator. Using Eq. (9.66) after
some algebraic manipulation we obtain the terms 	x0 and 	y0, respectively, as

	x0 D c1	0 �	1; 	y0 D .1 � c0c1/	0 C c0	1 C	2: (9.67)

The MSE of the quantization noise of the reversible integer rotation is calculated as

E Œ.	x0/2�C E Œ.	y0/2� D f.1 � c0c1/
2 C c

2

0 C c
2

1 C 2g E Œ	2�; (9.68)

where E Œ	2� D 1
12

is the average energy of quantization noise of a single rounding
operator. If we plot the quantization noise versus the rotation angles for different
ULU factored forms (9.54), (9.63)–(9.65), we can observe the plots as parabolic
curves (see Fig. 2 in [46]) which indicate that for any single ULU factorization, the
quantization noise is fairly large at certain rotation angles [46].

This fact enables us to select the optimal ULU factored form for different rotation
angle ' as follows: When the rotation angle ' 2 .��

4
; �
4
/, then the reversible integer
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rotation G
.'/

2 is realized by (9.54). ULU factored form (9.63) is used when ' 2
.� 3�

4
;��

4
/, (9.64) when ' 2 .�

4
; 3�
4
/, and (9.65) is used when ' 2 . 3�

4
; 5�
4
/.

Just discussed local methods have been used to integer approximation of the
DCT-II, the DCT-IV [9, 13, 14, 16, 17], the DFT or FFT [23–25, 27, 45, 48], the
lapped orthogonal transforms or the MLT [28–31, 33, 34, 54, 55], and of the MDCT
[36–40, 45, 46]. Although the DCT-II, DCT-IV and DFT are linear transforms which
are generated by the corresponding matrices, naturally, by introducing the nonlinear
rounding operator into computational steps, the invertible (reversible) DCTs and
DFTs are no longer linear mappings. Thus, such invertible integer transforms are
understood to be nonlinear invertible mappings which act on ZN (N-dimensional
vector space over Z) and approximate the classical original transforms [16].

9.3.3 Modulo Transforms

A nice elegant theory and construction of a class of scaled reversible (rotation)
transforms with integer elements and unit determinants has been developed in [19].
This class of integer transforms is built on a foundation of modulo arithmetic
and critical quantization of transform coefficients. Therefore, these transforms are
called the modulo transforms. Some interesting properties of modulo transforms in
modular arithmetic lead to reversible integer rotations which are critically quantized
without loss of information, as an alternative to LUL or ULU structures. The
modulo transforms are non-expansive, and therefore, are suitable for lossless signal
compression and digital image rotation [19].

A linear transform A 2 RN�N applied to the vector x 2 R is defined as

yT D A xT ;

where y is the transform domain representation of x. For data compression, the
transform A is required to be orthonormal, i.e., AAT D ATA D I, or it is required to
be orthogonal, i.e., AAT D ATA D � I, � 2 R. When elements of A are integers, A
is an integer transform since it maps integers to integers. The original vector x can
be recovered from y by the inverse transformation as

xT D AT yT ; or xT D 1

�
AT yT :

In general, any nontrivial linear transform A with integer elements results in an
expansion of the range (or more exactly, the volume) of transformed data compared
to the volume of the original data. In other words, the set of points located at integer
lattice transformed by A is mapped to the volume expanded transform domain
(or expanded bounding volume) increased by the expansion factor of vol.A/ D
j det .A/j. Due to the volume expansion such integer linear transforms cannot be
used in lossless data compression. As an example, the expansion factor of non-
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scaled 2�2Hadamard matrix H2 given by (9.50) is vol.H2/ D j det .H2/j D 2. But,
by scaled factored H2 with introduced rounding operator, the set of points located at
integer lattice transformed by the scaled H2 is mapped back to the same transform
domain volume as the time domain volume (normalized transform). Thus, the scaled
H2 has unit volume [19].

In the following are presented the definitions leading to the concept of the critical
quantization of transform space, a critically quantized transform, and modular
arithmetic [19].

Definition 9.2 The mapping F W x 2 ZN ! y 2 ZN is said to be reversible if
F.x0/ D F.x1/ ) x0 D x1.

Definition 9.3 The quantization Q of space Y is a partition of Y into some number
K of discrete cells or quantization bins. K may be countably infinite.

Definition 9.4 A valid transform point is a point in the transform space Y that is
mapped by an element of the original domain X D ZN , and the transform A is
invertible, i.e., det.A/ ¤ 0.

Definition 9.5 Q is a critical quantization of the transform space Y if every
quantization bin contains one and only one valid transform point generated by
transforming the integer lattice X.

Definition 9.6 A is a critically quantized transform if a one-to-one mapping exists
between the integer lattice representing the domain of A and the integer lattice
representing the range of A, i.e., X ! Y . Therefore, a critically quantized linear
transform A defines a reversible mapping with volume preservation, i.e., vol.A/ D
det .A/ D 1.

It is important to note that the cascades of transforms are critically quantized.
When quantization is separable and uniform scalar, the effect of quantization along
a certain dimension is basically a rounded division by the bin width along that
particular dimension, and this division can be incorporated into the transform
itself [19].

The simplest nontrivial linear transform is two-point transform. Let us now
consider a two-point transform or 2 � 2 rotation matrix R2 given by

R2 D
�

c �s
s c

�
; c; s 2 R: (9.69)

If R2 is orthonormal, then c2 C s2 D 1. Now, relax the restriction of orthonormality
of R2 and instead restrict c and s to be integers, i.e., R2 is integer rotation matrix.
Such rotation may be derived from rational approximations to the desired rotation
angle of cosine and sine terms such that they have no common factors. Integers a
and b having no common factors other than 1, i.e., .a; b/ D 1, are said to be mutually
prime or relatively prime [83]. The resulting rotation R2 is scaled orthonormal and
it is an expansive transformation with an expansion factor of det .R2/ D D D
c2 C s2 2 ZC. However, integer rotation R2 can be reformulated as a non-expansive
transformation as follows.
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Note 8: For understanding the basic elements of elementary number theory, such as
divisibility of integers and congruences (modulo relationships), the reader is referred
to the book [83].

R2 is rank deficient (see Appendix A.1) in modular D D c2 C s2 arithmetic, i.e.,
det .R2/ D c2 C s2 D D is zero in modular D arithmetic. For the transformation
yT D R2 xT , where Œx0; x1�T and Œy0; y1�T are input and output vectors, respectively,
the transform coefficients y0 and y1 are redundant in modular D arithmetic. Indeed,
considering the matrix-vector products yT D R2 xT and xT D R

T

2 yT , the quantity
c y0 C s y1 is evaluated as

c y0 C s y1 D c.c x0 � s x1/C s.s x0 C c x1/ D .c2 C s2/ x0 C 0 x1 D 0 mod D:
(9.70)

Equation (9.70) is referred to as the modulo relationship. Since c and s have no
common factors, c, s and D have no pairwise common factors. Then there exist
inverses c�1 and s�1 in modular D arithmetic such that c�1 c D s�1 s D 1 mod D.
From Eq. (9.70) it follows that the modular relationship can also be expressed as

y0 D c�1 s y1 mod D; or y0 � c�1 s y1 mod D; (9.71)

which implies that in modular D arithmetic one transform coefficient can be
recovered from the other, thus proving their redundancy. Referring to the second
equation in (9.71) it is noted that two integers a and b are congruent mod D denoted
by a � b mod D, if D=.a � b/, or in other words, D divides .a � b/ [83]. The
modulo relationship (9.70) also implies its dual one

c y1 � s y0 D 0 mod D; (9.72)

since c y1�s y0 D c�1 .c2 y1�cs y0/ D c�1 .s2 y1Ccs y0/ D c�1s .s y1Cc y0/ D 0

mod D. For a base D, any integer k can be represented in two parts corresponding
to its quotient and remainder with divisor D. When a consistent rounding is applied
for both positive and negative k, the remainder corresponds to k mod D. Let the
quotient be written as k div D. Then,

k D .k div D/ D C .k mod D/: (9.73)

Definition 9.7 The rounded division sdiv is defined for integer a and n as

sdiv.a; n/ D
$

a C �
n
2

˘

n

%

; (9.74)

where b:c denotes the rounding operator. When quantization bins are centered
around multiples of n, the quantized index of a is equal to b.a C bn=2c/=nc. The
location of a within its quantization bin with respect to its center is given by the
signed modulus smod. The range of smod.a; n/ is centered around zero for odd n.
For even n, a consistent rounding rule is chosen for 8 a: for instance rounding is
always toward �1 [19].
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Definition 9.8 The sign modulo operation smod is defined as
smod.a; n/ D a � n sdiv.a; n/ 2



�
jn

2

k
: : :

�
n � 1
2

��
: (9.75)

Thus, any scaled orthonormal two-point transform A can be reformulated as
a non-expansive or critically quantized by exploiting the modulo relationship,
although the resulting transform may be only orthogonal. Any transform domain
point satisfying modulo relationships (9.70) and (9.72) is a valid transform domain
point generated by a pair of integers in the spatial domain. As a result, the Givens–
Jacobi rotation given by (9.45) can be approximated arbitrarily closely by the integer
rotation matrix R2 given by (9.69) such that c and s being integers have no common
factors. Critically quantized transforms exploiting the modulo relationships are
referred to the modulo transforms [19].

In order to construct modulo transforms, the perfectly square quantization
partitions that guarantee the critical quantization are specific integer Pythagorean
triples .c; s;

p
D/, where D is a square.

9.3.3.1 Construction of Modulo Transforms

For the integer Pythagorean triples .c; s;
p

D/, where D is the square, the effective
forward and inverse integer rotations with orthonormal matrix are, respectively,
defined as [19]

OR2 D 1p
D

�
c �s
s c

�
; OR

�1

2 D 1p
D

�
c s

�s c

�
; c; s; D 2 Z: (9.76)

The inverse integer rotation matrix recovers the original data without any error.
Thus, this construction can be used to generate integer rotation matrices for
all primitive Pythagorean triples .c; s;

p
D/ satisfying D D c2 C s2 with c; s

having no common factors. In the following is presented an essential theorem
claiming the Pythagorean triads which satisfy conditions of the uniform and critical
quantization [19].

Theorem 9.3 Any Pythagorean triad satisfying c D ˙.pD�1/ or s D ˙.pD�1/,
i.e., ˙p

D D cC1 or ˙p
D D sC1, is critically quantized using uniform quantizers

with square bins of size
p

D�p
D, when the quantization grid is arranged such that

the origin lies at the center of its bins.
ut

Let n > 1 be an odd number. Theorem 9.3 is satisfied when the Pythagorean
triads .c; s;

p
D/, s < c, s is odd and c is even, are defined as [73]

s D n; c D 1

2
.n2 � 1/; p

D D 1

2
.n2 C 1/; (9.77)

where
p

D D c C 1, and hence the Pythagorean triads are simply given by
.c; s; c C 1/.
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Note 9: For n > 1 there are other Pythagorean triads which are defined by the
following formulae [73]

s D 4n; c D 4n2 � 1; p
D D 4n2 C 1:

Since
p

D D c C 2, they do not satisfy the conditions of Theorem 9.3, and
consequently, they cannot be used to construct the modulo transforms. In fact, they
will generate a mapping which will not be one-to-one. Famous Greek mathematician
Euclid gave formulae however without a proof to generate all Pythagorean triads
as [73]

s D t .a2 � b2/; c D 2tab;
p

D D t .a2 C b2/;

where t; a and b are arbitrary positive integers such that a > b, a and b have no
prime factors in common, and one of a or b is odd, the other even.

From definition of tan' D s
c and the relation c2 C s2 D .c C 1/2 we have

c D s2 � 1
2

; s < c; (9.78)

which produces the rotation angles

' D arctan

�
2s

s2 � 1
�
: (9.79)

In general, s and c may be interchanged to overcome the inherent constraints of odd
s and even c. For the integer rotations defined as modulo transforms only rotations
between zero and �

4
are of interest, since other rotations can be realized by negating

the rotation angle or adding an arbitrary number of right angle rotations which are

trivial transforms of the form

�
0 1

�1 1
�n

; or a combination of both. As the value

of s increases, the angles get progressively smaller. There are countably infinite
permissible rotation angles corresponding to the odd values of s. Based on (9.77)–
(9.79) the first ten Pythagorean triads .c; s; c C 1/ with corresponding angles in
radians are shown in Table 9.1.

From Table 9.1 it can be inferred that there exist good approximations to
small rotation angles. Computational structures for the forward and inverse integer

rotations OR2, OR
�1

2 based on the Pythagorean triads .c; s; c C 1/, respectively, are
shown in Fig. 9.7a, b. Boxes labeled as div.cC1/ perform the operations sdiv.a; cC
1/ on the input a. The modulo transforms based on Pythagorean triads .c; s; c C 1/

are implemented with integer multiplications and integer divisions.
Larger rotations may be realized as a finite-length cascade of smaller rotations

of the form (9.79). As an example, consider the scaled Hadamard matrix H2 given
by (9.50). Based on (9.51) the matrix-vector product yT D H2 xT may be converted



9.3 Local Methods to Integer Approximation 523

Table 9.1 Pythagorean
triads satisfying the
conditions of Theorem 9.3

Index s c
p

D D c+1 Angle ' in radians

1 3 4 5 0.643 501 109

2 5 12 13 0.394 791 120

3 7 24 25 0.283 794 109

4 9 40 41 0.221 314 442

5 11 60 61 0.181 319 774

6 13 84 85 0.153 543 783

7 15 112 113 0.133 136 328

8 17 144 145 0.117 511 645

9 19 180 181 0.105 166 123

10 21 220 221 0.095 166 207

x0

x1

(a)

y0

y1

c

c

s

s

div (c+1)

div (c+1)

x0

x1

(b)

y0

y1

c

c

s

s

div (c+1)

div (c+1)

Fig. 9.7 Computational structures for the integer rotations based on Pythagorean triads .c; s; c C
1/: (a) Forward, (b) Inverse

to the matrix-vector product yT D G
. �4 /

2 OxT , where Ox D Œx0;�x1�, and G
. �4 /

2 is the
forward Givens–Jacobi rotation by the angle �

4
. The best two-stage approximation

of the desired rotation angle �
4

D 2 �
8

by two modulo transforms is obtained by
two successive rotations of ' D arctan ..2 � 5/=.52 � 1// D 0:394791. Thus,
each integer rotation is based on the Pythagorean triad .5; 12; 13/ approximating
the rotation angle �

8
Š 0:392699. The effective integer rotation is given by the

matrix
�
12 �5
5 12

�2
D
�
119 �120
120 119

�
:

In Fig. 9.8 is shown the realization of approximation of yT D G
. �4 /

2 Ox by the cascade
of two modulo transforms resulting in an orthonormal and reversible transform.

In general, the theory of modulo transforms can be extended to an N � N
orthonormal transform A. It is well known that based on QR factorization (see
Appendix A.6), A can be decomposed and implemented by a product of at most
N.N � 1/=2 Givens–Jacobi rotations G

.'/

i;j . Thus, the transformation A D Q
i;j G

.'/

i;j

is quantized critically if 8 G
.'/

i;j are quantized critically. It means that in the
theory of modulo transforms any higher order orthonormal integer transform can
be approximated by a cascade of modulo transforms which ensure the reversibility
property. As an example, the orthonormal 4-point DCT-II approximated by modulo
transforms is shown in [19].
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div (13) y0
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div (13)

div (13)
5

Fig. 9.8 Modulo transform approximation of yT D G
. �4 /

2 Ox

9.3.3.2 Computational Aspects of Modulo Transforms

Modulo transforms based on Pythagorean triads .c; s; c C1/ satisfying Theorem 9.3
are implemented with integer multiplications and integer divisions. The forward
two-point modulo transform is generated by Srinivasan [19]

y0 D sdiv.c x0 � s x1; c C 1/;

y1 D sdiv.s x0 C c x1; c C 1/; (9.80)

while the inverse two-point modulo transform is generated by

x0 D sdiv. c y0 C s y1; c C 1/;

x1 D sdiv.�s y0 C c y1; c C 1/; (9.81)

where

sdiv.a; c C 1/ D
$

a C �
cC1
2

˘

c C 1

%

; (9.82)

and the divisor c C 1 is always an odd number. A common method of realizing the
integer division by a constant is by doing a multiply and shift. The multiplier is
related to the reciprocal of the divisor c C 1. An offset is added to prior shift to do
rounded division as required. The size of accumulator for multiply operation is the
bit range of dividend plus a constant. If the input range is ˙ R in each dimension,
the dividend range in (9.80) and (9.81) is ˙.c C s/ R. The dividend range can be
reduced to ˙.s C 1/ R because (9.80) is equivalent to

y0 D x0 � sdiv.x0 C s x1; c C 1/;

y1 D x1 C sdiv.s x0 � x1; c C 1/; (9.83)

and (9.81) is equivalent to [19]

x0 D y0 C sdiv.�y0 C s y1; c C 1/;

x1 D y1 � sdiv.s y0 C y1; c C 1/: (9.84)
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Although (9.83) and (9.84) still involve two divisions, the multiply and shift division
can be implemented using a smaller accumulator. It is noted that in practical
implementations sdiv.a; c C 1/ operation may be replaced by the rounding operator
round . a

cC1 /.
It is interesting to compare modulo transforms with LUL or ULU structures from

computational point of view. The modulo transform components may be evaluated
quite independently in the corresponding computational structure, whereas in
LUL (ULU) structures a cascade of three multiplications must be implemented
subsequently and in high precision arithmetic for the desired rotation to obtain the
final accurate result. Moreover, intermediate integer approximations by the rounding
operator or dyadic approximation lead to an effective reversible transformation
which is not a pure rotation. On the other hand, the modulo transform always results
in a rotation, even when the rotation angle is only approximated [19].

In summary, the modulo transforms have interesting properties in modular
arithmetic. Based on these properties, certain integer rotations can be critically
quantized without loss of information. Thus, modulo transforms are very suitable
for lossless data compression as a viable alternative to the LUL or ULU structures
for realizing the reversible integer transforms and reversible integer rotations.

9.3.4 Infinity-Norm Rotation Transforms

A class of reversible dynamic-range preserving one-to-one mappings to integer
transform approximation, the so-called infinity-norm rotation transforms, has been
developed in [22]. They are analogous to the general linear 2-norm rotation
transforms such as the Givens–Jacobi rotations. While the linear 2-norm rotation
transforms preserve the 2-norm (Euclidean norm) of the rotated vectors, the
infinity-norm rotation transforms are piecewise linear ones preserving the infinity-
norm of vectors. Besides the advantages of perfect reversibility property and of
maintaining the constant dynamic range, the infinity-norm rotation transforms
have also good energy-compact ability. Their in-place implementation is based on
products of matrices being unit lower and unit upper triangular matrices with unit
determinants [22].

In the following the theory of infinity-norm rotations and their important
properties are discussed at first followed by their piecewise linear implementation
preserving the constant dynamic range for integer-to-integer approximation.

9.3.4.1 Infinity-Norm Rotation

In general, a linear orthogonal transform is a rotation in Euclidean space, which
preserves the 2-norm of the rotated vectors. Similarly, a rotation that preserves the
dynamic range is a rotation in the infinity-norm space, called the infinity-norm
rotation [22]. It is well known that the vector norms are derived from the general
class of the so-called p-norms (for more details, see Appendix A.3).
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Fig. 9.9 Unit p-norm rotations in 2-D space: (a) 1-norm rotation, (b) 2-norm rotation, (c) infinity-
norm rotation

Definition 9.9 (Notion of p-Norm Rotation That Preserves p-Norm of the
Vectors After the Rotation) p-norm isometry set S

p

d is the set of vectors x D
Œx0; x1; : : : ; xn�1� such that the p-norms of all vectors are equal to d, i.e.,

S
p

d D fx W x 2 lp ^ kxkp D dg: (9.85)

In general, S
p

d is called a p-norm circle, and S
p

1 is called the unit circle of the
p-norm isometry set. For illustration, a 1-norm circle in 2-D space is a rhomboid, a
2-norm circle is a normal circle in 2-D and a sphere in 3-D, the infinity-norm circle
is a square in 2-D and a cube in 3-D (see Fig. 9.9).

Definition 9.10 (p-Norm Rotation) p-norm rotation R.p/ is the transform that
preserves the p-norm of the vectors, and geometrically moves the end points of
the vectors in the p-norm isometry set S

p

d, i.e.,

R.p/ W S
p

d ! S
p

d; 8 x 2 S
p

d; kxkp D kR.p/ xkp D d: (9.86)

Thus, a rotation transform that preserves 1-norm, 2-norm, or the infinity-norm
is a 1-norm rotation, 2-norm rotation, or an infinity-norm rotation, respectively. For
illustration, these types of rotations in 2-D space are shown in Fig. 9.9. They are
performed along the unit circles of 1-norm (the set S

1

1), 2-norm (the set S
2

1), and
infinity norm (the set S

1

1 ) counterclockwise with respect to the X axis.

Definition 9.11 (Angle of p-Norm Rotation) In 2-D space, the angle is the amount
of p-norm rotation between two vectors in S

p

d, which is measured by the ratio of the
runlength sweeping from the first vector to the second vector to the constant p-norm
radius:

�p D runlength

radius
: (9.87)

Thus, �2 = (arc length)/radius is the angle measure of a 2-norm rotation, and
�1 = (runlength)/(side length)/2 is the angle measure of an infinity-norm rotation.
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After rotating a complete circle, �2 D 2� and �1 D 8. The equivalent relation
between �1 and �2 for �2 2 h0; �

4
i is defined as

�1 D tan �2: (9.88)

Especially, �1 D 1 when �2 D �
4

, and �1 D 2 when �2 D �
2

. Other relations can
be found by combining the above rotations. These angle relations define the infinity-
norm rotations preserving constant dynamic range to approximate the corresponding
linear orthogonal transforms [22].

9.3.4.2 Properties of Infinity-Norm Rotations

Let R
.1/

.�1/ denote the rotation from point A to point B along an infinity-
norm isometry set by an angle �1. The infinity-norm rotations have the following
properties (some of them are also the properties of other p-norm rotations) [22]:

1. Composition: Composition of two infinity-norm rotations results in another
infinity-norm rotation.

2. Unique inverse: An infinity-norm rotation has a unique inverse rotation, if the
runlength is always the shortest.

3. Group of infinity-norm rotations: The set of all infinity-norm rotations of the
same center and radius forms a group.

4. Constant infinity norm:

kxk1 D kR
.1/

.�1/ xk1: (9.89)

5. Periodicity:

R
.1/

.�1/ x D R
.1/

.�1 C T/ x; (9.90)

where T is the period of the infinity rotation. In 2-D space, T D 8.
6. Reversibility property: For ˛1; ˇ1 2< 0;T/

R
.1/

.˛1/ x D R
.1/

.ˇ1/ x , ˛1 D ˇ1: (9.91)

7. Piecewise linearity: In general, all sides of a p-norm isometry set S
p

d are linear in
planes. Hence, the infinity-norm rotation from one point to another point on the
same plane of S

1

d can be expressed as a piece of linear transforms. The piecewise
linearity of infinity-norm rotation in 2-D plane is shown in Fig. 9.10.
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Fig. 9.10 The piecewise
linearity of infinity-norm
rotation in 2-D plane
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9.3.4.3 Piecewise Linear Implementation of Infinity-Norm Rotations

All the infinity-norm rotations can be formulated as piecewise linear transforms in
Euclidean space. With respect to Fig. 9.10 the XY plane is divided into eight regions
by four dashed lines. In each region, the infinity-norm rotation is a linear transform.
Denoting the runlength by RL, the corresponding formula for 2-D infinity-norm
rotation of a vector .x; y/T is defined as [22]

R
.1/

 
x
y

!

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

 
1 ��1

0 1

! 
x
y

!

;
y D a ^ x � �a C RL; region 2;
y D �a ^ x � �a � RL; region 6; 

0 �1
1 2

! 
1 ��1

0 1

! 
x

y

!

;
y D a ^ x � �a C RL; region 3;
y D �a ^ x � �a � RL; region 7; 

1 0

�1 1

! 
x

y

!

;
x D a ^ y � a C RL; region 4;
x D �a ^ y � a � RL; region 8; 

2 �1
1 0

! 
1 0

�1 1

! 
x
y

!

;
x D a ^ y � a � RL; region 1;
x D �a ^ y � a C RL; region 5;

(9.92)

where a D k.x; y/k1 D max fjxj; jyjg. Matrices on the right-hand side of (9.92)
are (unit and/or unit cross) lower and upper triangular, and using the algebra of (unit
and/or unit cross) triangular matrices their inverses are easily obtained to define
the inverse infinity-norm rotations. We note that the cross forms of (unit) triangular
matrices are obtained from their original (unit) triangular forms by reversing the
orders of their rows and columns [86].
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Although the infinity-norm rotation can result in generally a non-integer output
[see Eq. (9.88)], our interest is the reversible integer infinity-norm rotation. In this
case, for the 2-D vector .x; y/T the value of runlength is defined as [22]

runlength D round .k.x; y/k1 : �1/; (9.93)

where round./ is the rounding operator. Thus, the infinity-norm rotation on the
integer lattice can be formulated by (9.92) with runlength given by (9.93) [22].
To implement an infinity-norm rotation we need to find a proper rotation angle
corresponding to the linear orthogonal transform to be approximated. For example,
for the 2-norm rotation R

.2/

by the angle �
4

, according to (9.88) we find a rotation

angle �1 D 1 for R
.1/

. Then, the integer approximation of R
.2/

is obtained by R
.1/

with �1 implemented by (9.92) and (9.93).
In general, the theory of infinity-norm rotation transforms can be extended to a

N � N orthonormal transform. It is well known that based on QR factorization (see
Appendix A.6), the orthonormal transform can be decomposed and implemented by
a product of at most N.N � 1/=2 Givens–Jacobi rotations. It means that any higher
order orthonormal integer transform can be obtained by a cascade of 2-D integer
infinity-norm transforms which ensure the reversibility property. As an example,
the orthonormal 3-point DCT-II approximated by a product of two infinity-norm
rotations is shown in [22], where the orthonormal 3-point DCT-II is factored into
the following rotation-based product of two matrices

C
II

3 D
r
2

3

0

B
@

p
2
2

p
2
2

p
2
2p

3
2

0 �
p
3
2

1
2

�1 1
2

1

C
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0 �
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B
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2
2
0 �

p
2
2

0 1 0p
2
2
0

p
2
2

1

C
A : (9.94)

In summary, the infinity-norm rotation transforms enable us to construct the
reversible integer rotations. Thus, they are also very suitable for lossless data
compression as a viable alternative to the LUL or ULU structures, and to the
modulo transforms for realizing the reversible integer transforms and reversible
integer rotations.

9.3.5 Construction of the Analysis/Synthesis IntMLT Filter
Banks for MP3

In order to illustrate just discussed local methods to integer approximation, specif-
ically the reversible LUL or ULU computational structures, the reversible integer
modulo transform rotations, and the reversible integer infinity-norm transform
rotations, this subsection is focused on integer approximation of the complete
analysis/synthesis MLT for MP3, or equivalently, the complete analysis/synthesis
MDCT filter banks with the associated sine windowing function.
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As we mentioned the local methods to integer approximation are rather suitable
for the short transform sizes. Indeed, the MP3 audio coding standard [78] for the
time-to-frequency transformation of an audio signal and vice versa has adopted the
analysis and synthesis MLT filter banks [82] operating on the blocks of 12 samples
(the short blocks) or the blocks of 36 samples (the long blocks). From theory of
fast algorithms it is well known that using a permutation, the MLT or MDCT
block transforms can be always converted to the DCT-IV of half size. Although
many efficient implementations of the forward and backward MLT or MDCT
block transforms for MP3 have been developed up to now (see Chap. 5 for more
details) for integer approximation of the complete analysis and synthesis MLT filter
banks, we will consider the fast analysis MDCT filter bank with the incorporated
windowing and overlap procedure given by (9.30) and (9.34), and the fast synthesis
MDCT filter bank with incorporated windowing and overlap and add procedure
given by (9.35) and (9.40). In particular, from the definition of sine windowing
function we have: wn D sn D sin �.2nC1/

2N , and w N
2 �1�n D cn D cos �.2nC1/

2N ,

n D 0; 1; : : : ; N
4

� 1. The corresponding compact computational structures for the
efficient implementation of analysis MLT filter bank with incorporated windowing
and overlap procedure, and synthesis MLT filter bank with incorporated windowing
and overlap and add procedure are shown in Fig. 9.11a, b, respectively.

From Fig. 9.11 it can be seen that the compact computational structures for the
efficient implementation of both the analysis and synthesis N-point MLT filter banks

xn +

+
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(t)
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Fig. 9.11 Compact computational structures for the efficient implementation of: (a) analysis MLT
filter bank with incorporated windowing and overlap procedure, (b) synthesis MLT filter bank with
incorporated windowing and overlap and add procedure
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consist of the regular cascade of N
4

Givens–Jacobi rotations derived in matrix-vector
forms, respectively, as

0

@
y
.t/
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4 �1�n
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N
4 Cn
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A D � G
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n

x
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N
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!
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N

4
� 1;

(9.95)
and

 
x
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n
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N

4
� 1;

(9.96)
and the forward/inverse N

2
-point DCT-IV computational structure. Thus, for

the complete integer approximation of both analysis and synthesis MLT filter
banks for MP3 we still need a suitable regular rotation-based fast DCT-IV
algorithm/computational structure.

The fast even-length DCT-IV algorithm presented in Appendix C.2.2 has been
decomposed exclusively into sums of the Givens–Jacobi rotations [75]. Actually,
it has been derived from the fast analysis MLT filter bank with incorporated
windowing and overlap procedure given by (9.30) [76]. For N0 D N

4
being an odd

integer (when N D 12, N0 D 3, and when N D 36, N0 D 9), the Givens–Jacobi
rotation-based DCT-IV computational structure in the matrix-vector form is defined
as [75]

 
c

IV

2k

c
IV

N
2 �1�2k

!

D

j
N0

2

k
�1

X

nD0
Œ1; .�1/nC1�



G
.�'k;n/

2

�
an

bn

�
C .�1/k G

.'k;n/

2

�
aN0�1�n

bN0�1�n

��
;

 
c

IV

N
2 �2k

c
IV

2k�1

!

D

j
N0

2

k
�1

X

nD0
Œ.�1/n; 1�



G
.�'k;n/

2

�
bn

an

�
C .�1/k G

.'k;n/

2

�
bN0�1�n

aN0�1�n

��
;

'k;n D �.2n C 1/k

2N0 ; k D 1; 2; : : : ;

�
N0

2

�
; n D 0; 1; : : : ;

�
N0

2

�
� 1;

(9.97)

where b:c denotes the lower integer part of an argument. The data sequences fang
and fbng are given by

0

@
an

bn

1

A D G

�
�
�.2nC1/
2N

�

2

 
y
.t/

n

y
.t/

N
2 �1�n

!

; n D 0; 1; : : : ;N0 � 1; (9.98)
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where fy
.t/

n g is the time domain aliased data sequence given by (9.31). Finally, for
k D 0 the coefficients c

IV

0 and c
IV

N
2 �1 are given by

c
IV

0 D a N0�1
2

C
b N0

2 c�1X

nD0
.an C aN0�1�n/;

c
IV

N
2 �1 D .�1/ N0�1

2 C1 b N0�1
2

C
b N0

2 c�1X

nD0
.�1/nC1 .bn C bN0�1�n/: (9.99)

The vectors Œ1; .�1/nC1� and Œ.�1/n; 1� under sums on the right-hand sides
of (9.97) change the signs of components of rotated vectors after summing their
corresponding components. Trivial rotations of the vector Œa N0�1

2
; b N0�1

2
� by the

angles ��
2

k are realized by initializing summators for the coefficients c
IV

2k and

c
IV

N
2 �1�2k

as follows [75]
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Now, consider the analysis MLT filter bank with incorporated windowing and
overlap procedure for the short block when N D 12 (see Fig. 9.11a). For the
windowing and overlap procedure given by (9.95) we have
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The windowing and overlap procedure given by (9.101) includes three inverse
Givens–Jacobi rotations by three rotation angles � �

24
, ��

8
, and � 5�

24
. According

to (9.98) we have
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(9.102)

Equation (9.102) includes again three inverse Givens–Jacobi rotations by three
rotation angles � �

24
, ��

8
, and � 5�

24
. According to (9.100) and (9.97) for k D 1

and n D 0, the rotation angle '1;0 D �
6

, and we have
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Equation (9.103) includes four forward or inverse Givens–Jacobi rotations by one
rotation angle �

6
or ��

6
. Finally, according to (9.99) we have

c
IV

0 D a1 C .a0 C a2/; c
IV

5 D b1 � .b0 C b2/: (9.104)

Thus, for the short block the fast analysis MLT filter bank represented by the
compact computational structure shown in Fig. 9.11a includes totally ten Givens–
Jacobi rotations by four rotation angles, � �

24
, ��

8
, � 5�

24
, and 
�

6
.

Formulae for the fast synthesis MLT filter bank represented by the compact
computational structure shown in Fig. 9.11b can be easily obtained by following
the procedure indicated above.

9.3.5.1 IntMLT Implementation by the LUL or ULU Structures

For integer approximation of the analysis and synthesis MLT filter banks (IntMLT)
by the LUL or ULU computational structures we need to approximate inverse

Givens–Jacobi rotations G
.� �

24 /

2 , G
.� �

8 /

2 , G
.� 5�

24 /

2 , and forward/inverse Givens–Jacobi

rotations G
.˙ �

6 /

2 . We know that their integer approximation can be realized either
by introducing the rounding operator in subsequent computational steps, or alterna-
tively, the off-diagonal multipliers can be approximated by dyadic rationals. Using
the LUL or the ULU computational structure is left on a reader. For the rotation
angles �

24
, �
8

, 5�
24

, and �
6

the values of off-diagonal multipliers tan '

2
and sin' as

well as their relatively exact dyadic approximations are summarized in Table 9.2.

Note 10: The first integer approximation of the MLT block transform for MP3 audio
coding standard using LUL structures has been reported in [54, 55]. It is based
on the fast MDCT algorithm [77]. The required orthonormal 3-point and 9-point
DCTs-II are factored exclusively into Givens–Jacobi rotations. As an example, for
the short audio block the orthonormal 3-point DCT-II module is decomposed into
two Givens–Jacobi rotations according to (9.94). However, integer approximation of
the windowing operation for the complete analysis and synthesis MLT filter banks
was not considered.
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Table 9.2 Values of off-diagonal multipliers tan '

2
and sin' and their dyadic approximations for

LUL or ULU computational structures

Rotation angle Value Dyadic approximation Approximated value

tan �
48

0.065 543 463 17/256 0.066 406 250

sin �
24

0.130 526 192 33/256 0.128 906 250

tan �
16

0.198 912 367 51/256 0.199 218 750

sin �
8

0.382 683 432 49/128 0.382 812 500

tan 5�
48

0.339 454 259 87/256 0.339 843 750

sin 5�
24

0.608 761 429 39/64 0.609 375 000

tan �
12

0.267 949 192 69/256 0.269 531 250

sin �
6

0.500 000 000 1/2 0.500 000 000

Table 9.3 Values of rotation angles in radians and their appropriate approximations by
Pythagorean triads (c, s, c+1)

Rotation angle Value in radians Approximation by (c, s, c+1)
�
24

0.130 899 694 (15, 112, 113)
�
8

0.392 699 082 (5, 12, 13)
5�
24

0.654 498 469 (3, 4, 5)
�
6

0.523 598 776 (5, 12, 13) + (15, 112, 113)

9.3.5.2 IntMLT Implementation by the Modulo Transform Rotations

For the implementation of analysis and synthesis IntMLT filter banks by the modulo

transforms we need to approximate inverse Givens–Jacobi rotations G
.� �

24 /

2 , G
.� �

8 /

2 ,

G
.� 5�

24 /

2 and forward/inverse Givens–Jacobi rotations G
.˙ �

6 /

2 by Pythagorean triads
.c; s; c C 1/. With respect to Table 9.1, the values of rotation angles �

24
, �
8

, 5�
24

and �
6

in radians and their appropriate approximations by Pythagorean triads .c; s; c C 1/

are shown in Table 9.3.

9.3.5.3 IntMLT Implementation by the Infinity-Norm Transform
Rotations

For the implementation of analysis and synthesis IntMLT filter banks by the infinity-
norm rotation transforms for each forward/inverse Givens–Jacobi rotation we need
to calculate the angle �1 according to (9.88), and then the value of parameter
RL according to (9.93). Values of angles �1 are shown in Table 9.4. Integer
approximation is realized by Eq. (9.92) using the rounding operator.

Discussed local methods to integer approximation of the MLT block transform
(without integer approximation of the windowing and overlap procedure) for
MP3 audio coding standard have been evaluated and compared in terms of the
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Table 9.4 Values of angles
�1 D tan �2

�2 �1 D tan �2
�
24

0.131 652 498
�
8

0.414 213 562
5�
24

0.767 326 988
�
6

0.577 350 269

computational speed and accuracy in [57] with the following conclusion: IntMLT
approximated by the modulo transforms has the highest computational speed, while
IntMLT approximated by the infinity-norm rotation transforms has the highest
accuracy.

9.4 Global Methods to Integer Approximation

The local methods to integer approximation of a transform are applied to local parts,
usually to the orthogonal/orthonormal transforms of length 2 being the Givens–
Jacobi rotations and/or trivial rotations by the angle �

4
in the corresponding orthog-

onal (unitary) recursive sparse block matrix factorizations (9.1), (9.13), (9.24),
and (9.25). However, for long transform sizes the construction and computational
complexity as well as the number of rounding operations and approximation error
increase considerably.

In order to improve the integer transforms in terms of improved construc-
tion, computational complexity and improved approximation accuracy, the global
methods to integer approximation of a transform are used [15, 21, 36, 41–47, 49–
53, 56]. They are based on theory, algebra of block matrices, and block matrix
decompositions [80, 86] (see Appendix A.7). Essentially, in global approximation
methods large parts of transforms are calculated in floating-point arithmetic, only
output is component-wisely rounded and added/subtracted. In matrix terminology,
instead of multiplying by scalar elements (see LUL or ULU structures), block
matrix-vector multiplication is applied followed by component-wise rounding
operators. Consequently, the construction and computational complexity as well as
the number of rounding operations and approximation error are minimized. Thus,
global approximation methods are suitable not only for large transform sizes but
also for small transform sizes.

9.4.1 Generalized LUL and ULU Block Matrix Factorizations
of Windowing & Overlap and Windowing & Overlap &
Add Procedures

At first, in the following subsections the generalized LUL and ULU block matrix
factorizations of the windowing&overlap and windowing&overlap&add procedures
both for the fast analysis/synthesis MLT filter banks (see Fig. 9.11a, b), and fast
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analysis/synthesis MDCT filter banks with an arbitrary symmetric windowing func-
tion given by (9.34) and (9.40) are derived. The generalized LUL and ULU block
matrix factorizations consisting of products of lower and upper block triangular
matrices with unit diagonal blocks are invertible, thus, they enable us to construct
the reversible integer transforms in compact block matrix-vector forms.

9.4.1.1 The Analysis and Synthesis MLT Filter Banks

With respect to Fig. 9.11a the windowing and overlap procedure by the sine
windowing function in the fast analysis MLT filter bank is represented in the matrix-
vector form as

0

@
y
.t/

N
4 �1�n

	 N
4

n
y
.tC1/

N
4 Cn

o

1

A D �
0

@
cn sn

�sn cn

1

A
 

x
.tC1/

n

x
.tC1/

N
2 �1�n

!

; n D 0; 1; : : : ;
N

4
� 1;

(9.105)

where cn D cos �.2nC1/
2N and sn D sin �.2nC1/

2N . We begin with a simple example.
Consider (9.105) for N D 16. Then, for n D 0; 1; 2; 3 we have
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The set of above equations for N D 16 may be represented in a compact matrix-
vector form as
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or in the equivalent block matrix-vector form as
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where C4 and S4 are diagonal matrices of order 4. The last equation indicates that
the windowing and overlap procedure in the fast analysis MLT filter bank may be
represented in a generalized block matrix-vector form as
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(9.106)

where C N
4

D diagfcos �.2nC1/
2N g and S N

4
D diagfsin �.2nC1/

2N g, are diagonal matrices

of order N
4

. The first half of samples fx
.tC1/

n g on the right-hand side of (9.106) is in

natural order while the second half of samples fx
.tC1/

N
2 �1�n

g is in reverse order.

In order to obtain a reversible integer approximation of (9.106), the nonsingular
block matrix on the right-hand side of (9.106) is decomposed into the following
product of lower and upper block triangular matrices with unit diagonal blocks
as [51]
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where I N
4

is the identity matrix, 0 N
4

is the null matrix, both of order N
4

. T N
4

D
diagftan �.2nC1/

4N g, n D 0; 1; : : : ; N
4

� 1, is the diagonal matrix of order N
4

. Rounding
operators are introduced after T N

4
and S N

4
matrix multiplications with a vector.

Equation (9.107) defines the generalized ULU block matrix factorization. The
corresponding generalized ULU computational structure is shown in Fig. 9.12,
where fxng, fx N

2 �1�ng are input data sub-sequences and fy N
4 �1�ng, fy N

4 Cng are output

data sub-sequences for n D 0; 1; : : : ; N
4

� 1. It requires 3N
4

rounding operators.
Explicit estimates of component-wise accumulated approximation errors caused by
the rounding operators we can obtain from Theorem 9.1.
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Fig. 9.12 Generalized ULU computational structure. fxng, fx N
2 �1�ng are input data subsequences

and fy N
4 �1�ng, fy N

4 Cng are output data subsequences for n D 0; 1; : : : ; N
4

� 1

On the other hand, with respect to Fig. 9.11b the windowing and overlap and add
procedure in the fast synthesis MLT filter bank using the similar approach may be
represented in the block matrix-vector form as
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(9.108)

In order to obtain a reversible integer approximation of (9.108), transpos-
ing (9.107) and using the algebra of block triangular matrices we get the generalized
LUL block matrix factorization of nonsingular block matrix on the right-hand side
of (9.108) as
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The corresponding generalized LUL computational structure can be obtained from
the generalized ULU computational structure shown in Fig. 9.12 by reversing the
arrows.

Note 11: Inverting (9.107) and using the algebra of block triangular matrices we get
the alternative generalized ULU block matrix factorization of (9.109) defined as
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Similarly, inverting (9.109) and using the algebra of block triangular matrices we
get the alternative generalized LUL block matrix factorization of (9.107) defined as
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Note 12: Consider the rotation matrix GN of order N given by (9.12) in the
orthogonal recursive sparse block matrix factorization (9.13) of the DCT-IV matrix
C

IV

N . Let us reorder the input data sequence fxng such that samples in its first half
are in natural order while samples in its second half are in reverse order. Then the
reordered rotation matrix OGN will have the following block matrix form
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where C N
2

D diagfcos �.2nC1/
4N g and S N

2
D diagfsin �.2nC1/

4N g, n D 0; 1; : : : ; N
2

� 1,

are diagonal matrices of order N
2

. Consequently, it can be decomposed into the
generalized LUL block matrix form given by (9.109) or (9.110). Note that the
diagonal matrix T N

2
D diagftan �.2nC1/

8N g for n D 0; 1; : : : ; N
2

� 1. Similarly,

the reordered rotation matrix OG
T

N in the orthogonal recursive sparse block matrix

factorization (9.24) of the DCT-IV matrix C
IV

N will have the following block matrix
form
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and it can be decomposed into the generalized ULU block matrix form given
by (9.107) or (9.111).

9.4.1.2 The Analysis and Synthesis MDCT Filter Banks

Just described approach for the analysis/synthesis MLT filter banks can be general-
ized for the fast analysis/synthesis MDCT filter banks with an arbitrary symmetric
windowing function fwng. Consider the fast analysis MDCT filter bank with
incorporated windowing and overlap procedure given by (9.34) and fast synthesis
MDCT filter bank with incorporated windowing and overlap and add procedure
given by (9.40). The matrices on the right-hand sides of (9.34) and (9.40) have unit
determinant, and substituting a D d D w N

2 �1�n and b D wn into (9.42) and (9.43)
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we easily obtain their LUL matrix factorizations defined, respectively, as
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Note that alternative ULU and LUL matrix factorizations can be obtained by
transposing or by inverting (9.114) and (9.115).

Following the simple example from previous subsection consider Eq. (9.34) for
N D 16. Then, for n D 0; 1; 2; 3 the corresponding set of equations for N D 16may
be represented in a compact matrix-vector form as
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or in the equivalent block matrix-vector form as
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where W4 and OW4 are diagonal matrices of order 4. Similarly, the last equation
indicates that the windowing and overlap procedure in the fast analysis MDCT filter
bank may be represented in a generalized block matrix-vector form as
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where OW N
4

D diag



.w N
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wn

�
and W N

4
D diagfwng are diagonal matrices of

order N
4

.

In order to obtain a reversible integer approximation of (9.116), we need a block
matrix factorization of nonsingular block matrix on the right-hand side of (9.116). In
fact, the block matrix on the right-hand side of (9.116) can be decomposed into the
following product of lower and upper block triangular matrices with unit diagonal
blocks as
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where I N
4

is the identity matrix, 0 N
4

is the null matrix, both of order N
4

. OW N
4

D
diag
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� 1, are the diagonal

matrices of order N
4

. Equation (9.117) is considered as the generalized LUL block
matrix factorization of (9.114).

Finally, the windowing and overlap and add procedure in the fast synthesis
MDCT filter bank given by (9.40) using the similar approach may be represented in
the block matrix-vector form as
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(9.118)

In order to obtain a reversible integer approximation of (9.118), transposing (9.117)
and using the algebra of block triangular matrices we get the generalized ULU block
matrix factorization of nonsingular block matrix on the right-hand side of (9.118) as
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Now, it remains for us only to construct reversible integer approximations of
the DCT-II block transform C

II

N given by orthogonal sparse block matrix factoriza-

tion (9.1), the DCT-IV block transform C
IV

N given by the orthogonal recursive sparse
block matrix factorizations (9.13) and (9.24), and the DFT block transform FN given
by the unitary sparse block matrix factorization (9.25).

9.4.2 Integer Transforms with an Expansion Factor

A global method to derive integer transform from a given arbitrary invertible linear
transform has been proposed in [15]. Principally, the method can be seen as an
extension of integer transform with expansion factors [10]. The construction of
invertible integer DCT is illustrated for the 8-point DCT-II.

For a general linear mapping OF W RN ! RN given by OF .x/ D HN x, where
HN is an invertible transform matrix, it can be found an invertible integer mapping
F W ZN ! ZN approximating OF by

OF.x/ D round.HNx/;

if HN satisfies the expansion condition h� 1
2
; 1
2
/N � HN..� 1

2
; 1
2
iN/, where

HN..� 1
2
; 1
2
iN/ D fHN r W r 2 .� 1

2
; 1
2
iNg is the image of unit cube h� 1

2
; 1
2
/N

under the linear mapping OF generated by HN . However, the transform matrix HN

frequently does not satisfy this condition. In this case we can apply to HN a suitable
expansion factor ˛N > 1 such that ˛NHN satisfies the expansion condition, i.e.,
˛N HN..� 1

2
; 1
2
iN/ completely covers the unit cube h� 1

2
; 1
2
/N . Then, an invertible

integer transform is simply given by

F.x/ D round.˛N HNx/:

This nonlinear integer transform is very close to the exact (scaled) transform
˛N HNx and the error ˛N HNx � F.x/ is at most 1

2
in each component.

The idea is applied to the DCT-II matrix to derive invertible integer DCT-II.
Generally, we just need to apply a fast DCT-II algorithm to the input data vector
x and to compute in floating-point arithmetic ˛N C

II

Nx, where ˛N is a relatively small
constant depending on the value of N. Finally, each DCT-II coefficient is rounded to
the nearest integer. The proposed integer transform has two advantages:

• The fast algorithm being already implemented for the DCT-II can be directly
applied.

• The difference between integer transform and exact (scaled) linear transform is
controlled.

Now consider the discrete trigonometric transforms where DCT matrices are
obviously orthogonal. But orthogonal matrices do not satisfy the expansion con-
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dition and need to be multiplied with a suitable expansion factor. For a given
trigonometric transform matrix HN generating the linear mapping OF W x ! HNx
it is necessary to find a minimal expansion factor ˛ > 0 such that ˛ HN satisfies
the expansion condition. In the following theorem is shown how to determine the
minimal expansion factor for trigonometric transform matrix [15].

Theorem 9.4 (The Nonlinear Integer Mapping for Trigonometric Transform
Matrix with the Minimal Expansion Factor) Let HN be an invertible matrix and
OF W RN ! RN with OF.x/ D HNx be the linear mapping generated by HN. Then the
nonlinear mapping F.x/ W ZN ! ZN given by

F.x/ D round.˛ HNx/: (9.120)

with ˛ 	 ˛N D kH
�1

N k1 is an invertible mapping, and we have

x D round

�
1

˛
H

�1

N F.x/
�
: (9.121)

Moreover, it follows that the error is

k˛ OF.x/ � F.x/k1 � 1

2
; (9.122)

i.e., F is close to the scaled linear mapping ˛ OF.
ut

The proof of Theorem 9.4 can be found in [15].
Specifically, for integer DCT-II the nonlinear invertible mapping F.x/ W ZN !

ZN approximating the DCT-II is defined by

F.x/ D round.˛ C
II

Nx/ (9.123)

with

˛ 	 ˛N D 1p
N

C 1p
2N

�
cot

�

4N
� 1

�
: (9.124)

The nonlinear mapping F is invertible, and we have

x D round

�
1

˛
ŒC

II

N �
TF.x/

�
D round

�
1

˛
C

III

N F.x/
�
: (9.125)

Moreover, comparing Ox D ˛ C
II

Nx and y D F.x/ component-wise, we find that

jyj � Oxjj < 1

2
; j D 0; 1; : : : ;N � 1; (9.126)
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i.e., in all components, the nonlinear mapping F rounds the exact (scaled) DCT-II
coefficients to the next integer. In particular, the constants ˛N satisfy ˛N � p

N,

i.e., we can replace the normalization factor
q

2
N in the definition of C

II

N by
p
2 and

apply a fast DCT-II algorithm to this scaled DCT-II.
Based on the above discussion, the algorithm for integer N-point DCT-II

computation is very simple. For integer input vector x 2 ZN the computation of
the forward integer N-point DCT-II consists of the following steps:

1. Compute Ox D ˛ C
II

Nx by a fast DCT-II algorithm, where ˛ 	 ˛N is chosen
suitably, for example, take ˛N D p

N.
2. Compute y D round.Ox/, where y 2 ZN approximates ˛ C

II

Nx.

For example, when N D 8 we can just take the factor ˛ D 2
p
2 > ˛N and use a fast

8-point DCT-II algorithm for 2
p
2 C

II

Nx.
The inverse integer N-point DCT-II algorithm is equivalently simple and consists

of the following steps:

1. Compute Oy D 1
˛
ŒC

II

N �
Ty D 1

˛
C

III

N y by a fast inverse DCT-II algorithm, where ˛ is
chosen as in the forward integer DCT-II algorithm.

2. Compute x D round.Oy/, where x 2 ZN is the original input vector.

Using the Theorem 9.4 the integer transforms can be derived for other discrete
trigonometric transforms analogously, i.e., also for the C

IV

N .

9.4.3 Multidimensional Computational Structure

The multidimensional computational structure (MDCS) is based on the factorization
of 2� 2 diagonal scaling matrix with unit determinant into the product of three unit
lower and unit upper triangular matrices as follows [35]
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The factorization (9.127) provides the basic idea to derive the MDCS computational
structure. It can be extended to cases where each scalar element in the factored
matrices is a square nonsingular matrix. In fact, for an arbitrary invertible matrix
TM of order M the following block matrix factorization is possible [36, 41, 51]
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Fig. 9.13 MDCS
computational structure
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where IM is the identity matrix, 0M is null matrix, both of order M. The MDCS
computational structure is defined exactly by the factorization of quasi-diagonal
matrix of order 2M into the product of lower and upper block triangular matrices of
order with unit diagonal blocks. It is shown in Fig. 9.13.

An alternative block matrix factorization but of a cross quasi-diagonal matrix
with opposite main diagonal is defined as [42]
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A reversible integer-to-integer mapping is simply constructed by the imple-
mentation of matrix-vector multiplications in floating-point arithmetic with the
results rounded to the nearest integer. The MDCS computational structure defined
by (9.128) or (9.129) requires 3M rounding operations. If the integer input vector
is applied to a matrix on the right-hand side of (9.128), the first (second) half of
integer values is processed by the matrix T

�1

M (TM) and then rounded to integer
values before adding to the second (first) half of integer values. Hence, the large
parts of the transforms are computed without rounding operations, only the results
of matrix-vector multiplications are rounded and added. A detailed rounding error
analysis of the MDCS computational structure is presented in [49–51].

The MDCS computational structure defined by (9.128) can be used for invertible
integer approximations of a transform TM or an invertible approximation of certain
scaling operations. Moreover, substituting the block factorization (9.128) into a
recursive sparse block matrix factorization of the transform matrix [for example,
C

IV

M , see Eqs. (9.13) and (9.24)] results in further reducing the overall computational
complexity compared to non-integer implementation of the transform. The MDCS
computational structure is especially suitable for large transform sizes because it
minimizes the total approximation error and the number of rounding operations.
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9.4.3.1 Integer Approximation of the DCT-IV (IntDCT-IV) via the MDCS

If the block matrix factorization (9.128) for M D N
2

is applied to the DCT-IV matrix

C
IV

N
2

and taking into account that ŒC
IV

N
2

��1 D C
IV

N
2

, it becomes [36, 41]
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The integer approximation of the DCT-IV (IntDCT-IV) via the MDCS computa-
tional structure (9.130) is simply obtained by applying rounding operators after
each DCT-IV matrix multiplication. For the DCT-IV matrix C

IV

N the block matrix
factorization (9.130) is substituted into the corresponding orthogonal recursive
sparse block matrix factorization (9.13) and (9.24). In order to construct the IntDCT-
IV via the MDCS computational structure, consider the orthogonal recursive sparse
block matrix factorization (9.24) of the matrix C

IV

N written in more compact form as
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Now, for the construction of IntDCT-IV we need to factorize the first three (block)
matrices on the right-hand side of (9.131). According to (9.113) the reordered

rotation matrix OG
T

N can be factorized using the generalized ULU block matrix form
given by (9.107) or (9.111). The second scaled block quasi-diagonal matrix can be
factorized using the MDCS computational structure (9.130) taking into account the

scaling factor
p
2
2

as
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Finally, the third block matrix on the right-hand side of (9.131) can be factorized
using the block LU decomposition (see the next subsection) as
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Thus, the complete invertible factorization of the matrix C
IV

N requires 3N rounding
operators. Note that the inversion of upper block triangular matrix on the right-hand
side of (9.133) is given by
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The most straightforward way of using the MDCS computational structure for
the implementation of IntMLT or integer MDCT (IntMDCT) is to apply the N

2
-point

DCT-IV to two blocks of time domain aliased signal simultaneously. These blocks
can either be from two succeeding overlapped data blocks or from the left and right
channel of a stereo audio signal, the so-called Stereo IntMDCT. The construction
and implementation of Stereo IntMDCT is presented in detail in [36, 41, 51]. Stereo
IntMDCT consists of the windowing and overlap procedure by the sine windowing
function followed by the DCT-IV block transform. The windowing and overlap
procedure is approximated by the generalized ULU block matrix factorization
given by (9.107) while the DCT-IV block transform is approximated by the MDCS
computational structure given by (9.130). A detailed rounding error analysis of
Stereo IntMDCT can be found in [49–51].

9.4.3.2 Integer Approximation of the FFT (IntFFT) via the MDCS

It is well known that the N
2

-point DCT-IV can be implemented by a complex
DFT (FFT) of half size with identical pre- and post-rotation stages [82] (see also
Appendix C.2.1). Thus, the N-point MLT or the MDCT, if are converted to the N

2
-

point DCT-IV, then they can be implemented alternatively by the N
4

-point complex
FFT.

Consider the unitary sparse block matrix factorization (9.25) of the DFT matrix
FN , and in particular, the first quasi-diagonal matrix on the right-hand side of (9.25).
Since the forward DFT may be realized by its inverse by swapping the real and
imaginary part as both pre- and post-processing [79], the first quasi-diagonal matrix
in (9.25) can be written in the following form [41]
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where I�
N
2

is such a matrix that all elements of the matrix which are multiplied

by I�
N
2

they become complex conjugate. If we substitute (9.135) into (9.25) we

obtain the modified unitary sparse block matrix factorization (9.25) of the DFT
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matrix FN . Finally, substituting TM D FM for M D N
2

into the block matrix
factorization (9.128), the corresponding MDCS computational structure of the
middle quasi-diagonal matrix on the right-hand side of (9.135) is defined as [41]
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The integer approximation of the FFT (IntFFT) via the MDCS computational
structure (9.136) is obtained by applying rounding operators after each DFT matrix
multiplication. For the DFT matrix FN the block matrix factorizations (9.135)
and (9.136) are substituted into the corresponding unitary recursive sparse block
matrix factorization (9.25). The block W N

2
in the second quasi-diagonal matrix

on the right-hand side of (9.25) corresponds to the Givens–Jacobi rotations (see
Appendix F.4), and consequently, its integer approximation can be obtained by
the local approximation methods (LUL computational structure given by (9.46)
or by the ULU computational structure given by (9.48)). Finally, the scaled block
butterfly matrix on the right-hand side of (9.25) can be factorized using the block
LU decomposition (see the next subsection) as
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Thus, the complete invertible factorization of the matrix F requires 4NC N
2

rounding
operators.

9.4.4 Block LU, LDU, LUD, and PLUS Matrix Decompositions

Through this chapter so far it has been demonstrated that the scalar and partially
block matrix decompositions are powerful mathematical tools to construct the
reversible (invertible) integer approximation of transforms. Several block matrix
decompositions of the C

II

N matrix [21], of the C
IV

N matrix [43, 44], and of the FN

matrix [45, 46] have been developed for their reversible integer approximation.
Although the block matrix decompositions proposed in [21, 43–46] are correct,
they have been presented almost without rigorous mathematical background except
for [18]. The theory and algebra of block matrices are discussed in detail in
Appendix A.7, while the block matrix decompositions are discussed in detail
in Appendix A.8. Block LU, LDU, LUD and PLUS matrix decompositions in
Appendix A.8 have been derived for a 2� 2 block nonsingular matrix and are ready
to be used for the reversible (invertible) integer approximation of transforms.
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Consider a 2 � 2 block nonsingular matrix partitioned to four square blocks of
the same order as

M D
�

A B
C D

�
;

and let det .A/ ¤ 0 and det .B/ ¤ 0, i.e., A and B are nonsingular. In the following
block LU, LUD, LDU and PLUS matrix decompositions of M are presented, where
P is a permutation matrix, L and S are lower block triangular with unit diagonal
blocks, U is an upper block triangular (with unit diagonal blocks), and D is a quasi-
diagonal matrix.

According to (A.55) in Appendix A.8, the block LU matrix decomposition of M
is defined by

�
A B
C D

�
D
�

I 0

CA�1 I

��
A B
0 U

�
; (9.138)

where U D D � CA�1B is the Schur complement of A in M.
According to (A.60) in Appendix A.8, the block LDU matrix decomposition of

M is defined by
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��
I A�1B
0 I

�
; (9.139)

and according to (A.62) in Appendix A.8, the block LUD matrix decomposition of
M is defined by
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�
: (9.140)

Finally, according to (A.63) in Appendix A.8, the block PLUS matrix decomposi-
tion of M is defined by

�
A B
C D

�
D
�

I 0

C � DH I

��
I B
0 G

��
I 0

H I

�
; (9.141)

where H D B�1A � B�1 and G D .DB�1A � C/B.
One can easily see that all block matrices on the right-hand sides of (9.138)–

(9.141) are invertible. Similarly, a reversible integer-to-integer mapping is simply
constructed by the implementation of matrix-vector multiplications in floating-point
arithmetic with the results rounded to the nearest integer. In general, to optimize
a block matrix factorization of a given block matrix, permutation matrices are
considered in the factorization to permute rows and columns of a factored block
matrix [18, 21, 45, 46]. However, this approach is suitable rather for low order block
matrices.
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9.4.4.1 IntDCT-IV via the Block Matrix Decompositions

In order to construct the IntDCT-IV via the block matrix decompositions, consider
the orthogonal recursive sparse block matrix factorization of the matrix C

IV

N given
by (9.24). Multiplying all block matrices on the right-hand side of (9.24) we get
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At first, using (9.113) the reordered rotation matrix OG
T

N can be factorized using the
generalized ULU block matrix form given by (9.107) or (9.111). The block matrix
on the right-hand side of (9.142) is partitioned into four blocks A, B, C and D as
follows:
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According to (A.43) in Appendix A.8, the determinant of this block matrix is equal
to det.AD � ACA�1B/ D det.�D N

2
/, where A�1 D p

2 C
IV

N
2

. Now, in order to

obtain a specific block matrix decomposition of the block matrix on the right-
hand side of (9.142), it is sufficient to substitute directly the blocks A, B, C and
D into the appropriate block matrix decomposition (9.138)–(9.140) or (9.141), and
to calculate necessary block elements in factored block matrices. For the block LU
matrix decomposition we have
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and the block LU matrix factorization is given by
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The block LU matrix factorization given by (9.143) requires 2N rounding operators,
and the complete block matrix factorization of C

IV

N given by (9.142) requires 3N C N
2

rounding operators. Further, the block LDU matrix factorization is given by
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whereas the block LUD matrix factorization is given by
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The block LDU matrix factorization given by (9.144) requires 3N
2

rounding opera-

tors, and the complete block matrix factorization of C
IV

N given by (9.142) requires
3N rounding operators. On the other hand, The block LUD matrix factorization
given by (9.145) requires 2N rounding operators, and the complete block matrix
factorization of C

IV

N given by (9.142) requires 3N C N
2

rounding operators. Finally,
the block PLUS matrix factorization is given by

p
2

2

0

BB
@

C
IV

N
2

C
IV

N
2

C
IV

N
2

D N
2

�C
IV

N
2

D N
2

1

CC
A D

0

B
@

I N
2

0

C
IV

N
2

D N
2

�p
2I N

2
� C

IV

N
2

�
I N
2

1

C
A

0

BB
@

I N
2

p
2
2

C
IV

N
2

0 �C
IV

N
2

D N
2

C
IV

N
2

1

CC
A

�

0

B
@

I N
2

0

I N
2

� p
2 C

IV

N
2

I N
2

1

C
A : (9.146)

The block PLUS matrix factorization given by (9.146) requires 2N rounding oper-
ators, and the complete block matrix factorization of C

IV

N given by (9.142) requires
3N C N

2
rounding operators. Note that the block PLUS matrix factorization (9.146)

of C
IV

N is quite similar to that of [43, 44].

9.4.4.2 IntFFT via the Block Matrix Decompositions

Consider the unitary sparse block matrix factorization (9.25) of the DFT matrix FN .
Again, multiplying all block matrices on the right-hand side of (9.24) we get
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The corresponding block LU, LDU, LUD, and PLUS matrix factorizations of FN

can be obtained following the same approach as for C
IV

N matrix.

9.4.5 Rounding Error Shaping Method

There is a serious problem when a signal is transformed by an integer transform.
Every rounding operator introduces the rounding error which is accumulated and
spread in the transform domain. Typically, the signal being compressed has energy
concentrated near low frequencies and decays at high frequencies. The accumulated
error spectrum is interpreted as the approximation error of the integer transform
and limits the lossless coding performance. For the high frequency range, where
signals usually contain a rather small amount of energy, the approximation error
can be larger than the actual signal. The impact is more critical for larger transform
sizes. When the spectral energy of signal is concentrated at low frequencies, it is
possible to improve the coding efficiency by attenuating error spectrum at high
frequencies, where error spectrum is dominant. Specifically, the error spectrum at
high frequencies may be shaped towards the low frequencies.

A method for shaping the rounding error in the transform domain (error shaping
filter) is presented in [49–51, 59, 68]. This error shaping filter is applied to
the rounding operations so that the error spectrum is shaped towards the low
frequencies. Consequently, the error spectrum is below the spectral envelope of
the signal at high frequencies and the lossless coding performance is improved.
Detailed design and analysis of rounding error shaping method can be found in
[49–51, 59, 68].

9.5 MPEG-4 HD-AAC/SLS Scalable Lossless Audio Coding
Standard

Almost all modern perceptual audio coding schemes developed up to now are
based on the transform-based approach. Specifically, they employ sub-band analysis
and synthesis filter banks, such as the MDCT or MLT, to obtain a block-wise
representation of the audio signal in the frequency domain. They operate in floating-
point arithmetic, and therefore are lossy in nature [78]. Due to increasing demand of
delivery of high sampling rate and high resolution digital audio at lossless quality for
high-quality applications, such as audio archiving systems, the lossy compression
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became inappropriate since every bit in the original audio signal has to be preserved.
On the other hand, the transition from lossy to lossless coding by a scalable way
would facilitate the digital audio services to interchange compressed audio across
various application domains using scalable lossy to lossless compressed formats.
Thus, a scalable to lossless audio coding technology that will support both lossy
and lossless audio compression simultaneously is desirable [58, 66]. Responding to
these demands, the MPEG audio standardization group decided to start a new work
item to explore a new innovative technology for lossless and near-lossless coding
of audio signals by issuing a call for proposals for this relevant technology in 2002
[60–62].

As a response to this call two scalable lossy to lossless perceptual audio coders
have been developed and evaluated: Advanced Audio Zip (AAZ), a fine grain
scalable to lossless (SLS) audio coder [66, 67, 71, 72], and a scalable lossless
enhancement of MPEG-4 AAC audio coder [58]. In particular, the AAZ was
adopted as the Reference model for MPEG-4 audio SLS work [67, 71]. The enabling
technology is the IntMDCT, an integer approximation of the MDCT. Indeed, based
on the perfect reconstruction property and the close approximation of the MDCT,
the IntMDCT allows to build a scalable lossless enhancement of the MDCT-
based perceptual audio coding schemes. A general structure of the scalable lossless
enhancement of MDCT-based perceptual audio codec is the following [58]:

• Encoder: The structure of encoder is an extension of a general structure of a core
perceptual audio codec. In addition to the usual MDCT spectral coefficients, the
IntMDCT spectral coefficients are calculated. For the lossless enhancement, the
difference between the IntMDCT spectral coefficients and the inverse quantized
MDCT spectral coefficients is calculated. These difference values are entropy
coded and transmitted in the lossless enhancement bit stream.

• Decoder: To achieve lossless decoding, the transmitted difference values in the
lossless enhancement bit-stream are decoded and added to the usual MDCT
coefficients. In this way the IntMDCT spectral coefficients are reconstructed
exactly, hence, the bit-exact audio signal is recovered.

For the extension to lossless operation of a MDCT-based perceptual audio scheme
as the core codec, the lossy MPEG-4 AAC codec has been used [58, 67].

Research and standardization efforts of MPEG audio group led to the speci-
fication of SLS (scalable lossless coding) technology in the form of amendment
to the MPEG-4 audio standard [63, 68–70]. As the extension of MPEG-AAC
perceptual audio codec, the MPEG-4 SLS codec includes a scalable lossless audio
coding solution that integrates the functionalities of high-compression, lossless
audio coding, perceptual audio coding, and fine granular scalable audio coding
into a single coder, while simultaneously provides the backward compatibility to
existing MPEG-4 AAC codec at the bit-stream level [68, 70]. The scalability is
achieved in the frequency domain using the IntMDCT. In order to achieve backward
compatibility to the existing MPEG-4 AAC codec, the MPEG-4 SLS adopts two
layer structure to code IntMDCT spectral coefficients: the AAC core layer, and a
lossless enhancement layer working on the top of AAC architecture. These two
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layers in the encoder generate the core layer bit stream which is MPEG-4 AAC
compliant, and the lossless enhancement layer bit stream providing the scalability
from lossy to lossless coding. AAC compliant bit stream is embedded in the final bit
stream. Bit-exact reconstruction of the input original audio signal in the decoder
is independent to the implementation accuracy of the AAC core codec. Since
MPEG-4 SLS provides the fine granular bit rate scalability from lossy to lossless
coding, it becomes a universal compression system for digital audio applications
which up to now required different audio coding technologies. Moreover, the need
for any transcoding is completely eliminated [68, 70]. It is important to note that
for an efficient implementation of the IntMDCT, SLS technology combines local
and global approximation methods discussed in this chapter. Similarly, other AAC
coding tools, such as Mid/Side (M/S) stereo coding and Temporal Noise Shaping,
are considered and implemented in an invertible integer way on the IntMDCT
spectral coefficients. An interested reader can find an overview of the MPEG-4 SLS
standard, its application scenarios, structure, and description of coding tools in [68].

The MPEG-4 SLS published in June 2006 as an ISO standard [63] still employed
two filter banks, the MDCT filter bank which is inherent to AAC core codec, and the
IntMDCT filter bank to enable the SLS technology. However, the presence of two
filter banks has increased the implementation complexity of the codec. It is well
known that the IntMDCT algorithm introduces rounding errors during the whole
coding process. Therefore, it was of interest to study and analyze the effect of
rounding errors introduced by IntMDCT algorithm for the operation of MPEG-4
SLS in lossy mode, or other words, to investigate the performance of IntMDCT
filter bank under lossy operation [64]. Based on this analysis it was found that the
error introduced by rounding operations in IntMDCT algorithm does not affect the
perceptual quality of the coded audio signal under any circumstances. This fact
suggested that the MDCT and IntMDCT filter banks are interchangeable in SLS
codec at lossy bit rate. Consequently, the MPEG-4 SLS can use only IntMDCT
filter bank instead of both. On the other hand, the difference between MDCT
and IntMDCT in the frequency domain is visible as a small noise floor, however,
typically much lower than the error introduced by perceptual coding. Thus, the
IntMDCT allows for efficient coding of the quantization error in the frequency
domain [64, 65]. It was concluded that the IntMDCT is only filter bank to be used
in MPEG-4 SLS for both lossy and lossless operations.

In 2007 the MPEG audio group has successfully concluded the standardiza-
tion process on enhanced SLS technology for lossless coding of high-definition
(HD) audio signals—ISO/IEC MPEG-4 High-Definition Scalable Advanced Audio
Coding (MPEG-4 HD-AAC/SLS) [59]. HD-AAC/SLS audio coding technology
provides a fine grain scalable lossless extension of the MPEG-4 AAC perceptual
audio coder up to fully lossless reconstruction at word lengths and sampling rates
typically used for HD audio. Enhanced HD-AAC/SLS technology generates a
universal digital audio format for a variety of (HD) applications including digital
audio archiving, network audio streaming, portable audio players, digital VCD and
DVD media, consumer electronics, and digital broadcasting [59].
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9.6 Summary

The local and global methods to integer approximation of perfect reconstruction
cosine/sine-modulated filter banks and cosine-modulated QMF banks have been
discussed in detail. They are based on computational methods of linear algebra,
matrix theory, and matrix computations, and in particular, on the scalar and
block matrix decompositions. In fact, the scalar and block matrix decompositions
are powerful mathematical tools to construct the reversible (invertible) integer
transforms. In general, any integer filter bank can be constructed as long as it
has a fast algorithm. IntMDCT or IntMLT enabled to design and implement the
innovative coding technology for scalable lossy to lossless audio coding in the latest
emerged MPEG standards for lossless audio coding, MPEG-4 SLS, and MPEG-4
HD-AAC/SLS.

Problems and Exercises

1. For the matrix T2 given by (9.41) find its inverse matrix.
2. Verify Eqs. (9.52) and (9.53).
3. Verify Eqs. (9.63)–(9.65).
4. Consider a two-dimensional integer lattice (grid) of size Œ�a W a;�b W b�,

a; b 2 N, with regularly spaced array of points. In order to verify one-to-
one mapping, for a given rotation angle implement by a computer program the
integer rotations (both forward and inverse) via:

• LUL (ULU) computational structures,
• Modulo transforms,
• Infinity-norm rotation transforms,

and visualize the original integer lattice versus rotated one.
5. With respect to Fig. 9.11, Eqs. (9.95), (9.96), and using the fast even-length

DCT-IV algorithm defined by (9.97)–(9.100) implement by a computer pro-
gram the complete analysis/synthesis IntMLT filter banks in MP3 audio coding
standard for the short and long blocks via:

• LUL (ULU) computational structures,
• Modulo transforms,
• Infinity-norm rotation transforms,

and compare implementations in terms of computational speed and accuracy.
6. Repeat exercise 5 for the complete analysis/synthesis IntMDCT filter banks for

an arbitrary symmetric windowing function, and compare implementations in
terms of computational speed and accuracy.

7. Chapter 5 discusses the efficient implementations of the MLT in MP3 audio
coding standard. Among many DCT-IV-based (DCT-IV/DCT-II-based) algo-
rithms does(do) exist some algorithm(s) which would be suitable for the integer
approximation?
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8. Prove that the block matrices given by (9.107) and (9.109) are inverses to each
other.

9. Implement by a computer program the IntDCT-IV by the global method with
an expansion factor described in Sect. 9.4.2.

10. Implement by a computer program the IntDCT-IV by the multidimensional
computational structure.

11. Implement by a computer program the IntFFT by the multidimensional compu-
tational structure.

12. Implement by a computer program the IntDCT-IV via the LU, LUD, LDU and
PLUS block matrix decompositions using (9.142), and compare implementa-
tions in terms of the number of rounding operators and accuracy.

13. Repeat exercise 12 using the orthogonal recursive sparse block matrix factor-
ization of the DCT-IV matrix given by (9.13).

14. Derive the LU, LUD, LDU and PLUS block matrix decompositions for the
IntFFT using (9.147), and implement them. Similarly, compare implementa-
tions in terms of the number of rounding operators and accuracy.

15. Implement by a computer program the complete analysis/synthesis IntMLT
filter bank in MP3 for the short and long blocks using the block matrix
decompositions. Then compare the best implementations obtained by local and
global approximation methods.

16. Implement by a computer program the complete analysis/synthesis IntMDCT
filter bank for an arbitrary symmetric windowing function using the block
matrix decompositions.

17. In this book, various perfect reconstruction cosine/sine-modulated filter banks
and cosine-modulated QMF banks are discussed in detail, and in particular,
their efficient algorithms. In general, any integer filter bank can be constructed
as long as it has a fast algorithm. Select a filter bank, design, and construct its
integer versions.
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Appendix A
Selected Mathematical Basics from Matrix
Theory and Linear Algebra

In this appendix the mathematical basics from classical matrix theory and
computational methods of linear algebra are summarized [17, 20–22, 24, 39, 43].

A.1 Generalized Inverse or Pseudoinverse Matrix

It is well known that if A is a real square nonsingular matrix, then there exists
its unique inverse matrix denoted by A�1. However in general, if A is an m � n
matrix (m 6D n), then the inverse matrix for A does not exist. Nevertheless,
for an arbitrary m � n matrix A exists a generalized inverse or pseudoinverse
matrix denoted by AC, which possesses some properties of the inverse matrix [22].
The pseudoinverse matrices are directly related to the minimum norm and they have
played an important role in solution of overdetermined systems of linear equations
(least squares problem) [21, 24].

Let A be a real m�n matrix of rank r (matrix A has the full rank if r D min .m; n/,
and it is rank deficient if r < min .m; n/). For an arbitrary matrix A there exists
exactly one n � m matrix AC satisfying four Moore–Penrose conditions [21, 24]

(a) AACA D A;

(b) ACAAC D AC;

(c) .ACA/T D ACA; .ACA/2 D ACA;

(d) .AAC/T D AAC; .AAC/2 D AAC: (A.1)

The matrix AC is said to be the generalized inverse or pseudoinverse of A.
Conditions (c) and (d) emphasize the fact that the matrices ACA and AAC are
Hermitian and involutory, i.e., they are symmetric and their second power is equal
to the original matrix. In the case of m � n matrix A, m > n, if rank .A/ D n, then
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the pseudoinverse matrix AC is given by AC D .ATA/�1AT , while if rank .A/ D
m D n, then AC D A�1. Generally, for an m � n matrix A of rank r we can perform
the so-called skeleton decomposition A D BC , where B is m � r and C is r � n
matrix [22]. If such a decomposition is known, then the pseudoinverse matrix AC
can be computed from the formula

AC D CCBC D CT.CCT/�1.BTB/�1BT : (A.2)

The pseudoinverse matrix AC can be alternatively obtained via the Singular Value
Decomposition (SVD) [24] or QR matrix factorization [21]. According to the SVD
for a real m�n matrix A of rank r there exists an orthogonal matrix U of order m, an
orthogonal matrix V of order n, and m � n diagonal matrix † of rank r with positive
diagonal elements that

UTAV D †; † D diag f�1; �2; : : : ; �r; 0; : : : ; 0g; (A.3)

where �1 	 �2 	 : : : 	 �r > 0 are called the singular values of A. Because U and
V are orthogonal matrices, UTU D UUT D I and VTV D VVT D I, where I is the
identity matrix, consequently

A D U†VT : (A.4)

From the SVD decomposition it follows that the pseudoinverse matrix AC is
given by

AC D V†CUT ; †C D diag



1

�1
;
1

�2
; : : : ;

1

�r
; 0; : : : ; 0

�
; (A.5)

and it satisfies four Moore–Penrose conditions. In particular, matrices AAC and
ACA are given by Fiedler [21]

AAC D U
�

I 0

0 0

	
UT ; ACA D V

�
I 0

0 0

	
VT ; (A.6)

where 0 is the null matrix. The computational methods for the SVD decomposition
are presented in [24].

According to QR matrix factorization of a real m�n matrix A, m > n, with linear
independent columns there exists uniquely an m � n matrix Q and an n � n matrix R
so that QTQ is diagonal matrix with positive diagonal elements di, and R is the unit
upper triangular matrix [21], that is

A D QR; QTQ D D D diagfd1; : : : ; dng: (A.7)
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If such QR factorization of the matrix A is known, then the pseudoinverse matrix
AC is given by

AC D R�1D�1QT ; QTQ D D: (A.8)

The algorithm for computation of QR factorization is presented in [21].

A.2 Hankel Matrices and the Efficient Hankel Matrix-Vector
Products

A symmetric matrix HN of order N, in general with complex-valued elements,
derived in the explicit form as [43]

HN D fhiCjgN�1

i;jD0 D

0

BBB
BBBBB
@

h0 h1 h2 : : : hN�2 hN�1
h1 h2 h3 : : : hN�1 hN

h2 h3 h4 : : : hN hNC1
:::

:::
:::

:::
:::

hN�2 hN�1 hN : : : h2N�4 h2N�3
hN�1 hN hNC1 : : : h2N�3 h2N�2

1

CCC
CCCCC
A

; (A.9)

is called the Hankel matrix. From the structure of HN one can observe that
all elements on opposite diagonals are identical., i.e., it has a cyclic structure.
Addition/subtraction of two Hankel matrices of the same order is a Hankel matrix.
Algebraic theory and properties of Hankel matrices are presented in [43].

Hankel matrices have played key role in the representation of short-length cyclic
convolutions and their efficient implementations by the so-called bilinear algorithms
for the computation of N-point Hankel matrix-vector products (multiplications of
N � N Hankel matrices and N-point vectors) [33]. The simplest case 2-point Hankel
matrix-vector product is defined as [33]

�
y0
y1

�
D
�

a b
b c

��
x0
x1

�
; a; b; c 2 R; (A.10)

and the corresponding bilinear algorithm for 2-point Hankel matrix-vector product
is shown in Fig. A.1. It consists of three sequential stages: The first and last stages of
additions and a middle stage of multiplications which are independent and therefore,
they can be realized concurrently (preferred in hardware implementations). A
bilinear algorithm for 3-point Hankel matrix-vector product can be found in [33].
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Fig. A.1 The bilinear
algorithm for 2-point Hankel
matrix-vector product
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A.3 Algebra of Real Square Matrices

Let A and B are square nonsingular matrices of order N. Then, the transposition and
inverse of the matrix product AB is, respectively, defined as [17, 20, 22, 24]

.AB/T D BTAT ; .AB/�1 D B�1A�1; (A.11)

i.e., the transposition/inverse of the matrix product AB is the reverse product of
the transposed/inverse matrices. Additionally, the transpose of the inverse matrix
.A�1/T is the inverse of the transpose [17, 24]

.A�1/T D .AT/�1: (A.12)

A.3.1 The Determinant

If A D faijg is a square nonsingular matrix of order N, then the determinant of A is
defined in terms of order N � 1 determinants [24]

det .A/ D
NX

jD1
.�1/jC1 a1j det .A1j/; (A.13)

where A1j is an .N � 1/ � .N � 1/ matrix obtained by deleting the first row and jth
column of A. Useful properties of the determinant include [17, 24]:

• det .AB/ D det .BA/ D det .A/ det .B/, A and B are nonsingular matrices,
• det .AT/ D det .A/,
• det .cA/ D cN det .A/, c 2 R,
• det .A/ ¤ 0 if A is nonsingular,

A.3.2 Orthogonal/Orthonormal Matrices

Matrix A is called orthogonal, if AAT D ATA D I, where I is the identity matrix.
Additionally, if the norm of each row (basis vector) of the matrix is equal to 1,
then the matrix is orthonormal. The orthogonal/orthonormal matrices possess a few
useful properties [20]:
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• The identity matrix I is orthogonal/orthonormal.
• If A is orthogonal/orthonormal, then A�1 D AT .
• If A is orthogonal/orthonormal, then AT is also orthogonal/orthonormal.
• The product of two orthogonal/orthonormal matrices is an orthogonal/

orthonormal matrix.
• The determinant of orthogonal/orthonormal matrix is equal to ˙1. If det .A/ D

C1, then A is called to be eigenorthogonal/eigenorthonormal. Otherwise, if
det .A/ D �1, then A is called to be non-eigenorthogonal/non-eigenorthonormal.

A.3.3 Algebra of Triangular Matrices

A matrix with all elements under/above the main diagonal equal to zero is called
an upper/lower triangular matrix. A unit triangular matrix is triangular matrix
with 1s on the main diagonal. There are a few useful properties about products,
determinants, and inverses of triangular matrices [24]:

• The product of two upper (lower) triangular matrices is upper (lower) triangular
matrix.

• The product of two unit upper (unit lower) triangular matrices is unit upper (unit
lower) triangular matrix.

• The determinant of upper or lower triangular matrix and in particular, the
determinant of a diagonal matrix, is equal to the product of its diagonal elements.

• The determinant of unit upper or unit lower triangular matrix is equal to 1.
• The inverse of upper (lower) triangular matrix is upper (lower) triangular.
• The inverse of unit upper (unit lower) triangular matrix is unit upper (unit lower)

triangular.

A.3.4 Matrix and Vector Norms

The matrix and vector norms are frequently used for the analysis of matrix
algorithms in linear algebra and matrix computations. They provide a measure
of distance on the space of matrices/vector space, or more precisely, the space
of matrices/vector space together with matrix/vector norms define a metric space
[17, 24]. In general, matrix norms are defined for an arbitrary matrix, i.e., also for
nonsquare matrices.

The norm of a matrix A D faijg is a real number kAk satisfying the following
properties [17, 24]:

• kAk 	 0, (kAk D 0 iff A D 0),
• k˛:Ak D j˛j:kAk; ˛ 2 R, and in particular k � Ak D kAk,
• kA C Bk � kAk C kBk,
• kABk � kAkkBk, and in particular kArk � kAkr, where r > 0 is integer.
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One important inequality between the norms of matrices A and B of the same type
is given by

kA � Bk 	 j kBk � kAk j: (A.14)

The matrix norm is called canonical, if satisfies additional properties:

• jaijj � kAk,
• The inequality jAj � jBj implies that kAk � kBk.

Subscripts on k:k are used to distinguish between various norms. The most
frequently used and easily computed matrix norms are [17, 24]

kAkF D
sX

i

X

j

jaijj2; Frobenius norm; (A.15)

kAk1 D max
i

X

j

jaijj; 1-norm; (A.16)

kAk1 D max
j

X

i

jaijj; 1-norm; (A.17)

It can be verified that matrix norms kAkF, kAk1 and kAk1 are canonical. For a
vector x D Œx1; x2; : : : ; xN �

T these norms are defined as

kxk2 D jxj D
q

jx1j2 C jx2j2 C : : :C jxN j2; Euclidean norm or 2-norm, (A.18)

kxk1 D jx1j C jx2j C : : :C jxN j; (A.19)

kxk1 D max
i

jxij; maximum norm: (A.20)

A unit vector with respect to the norm k:k is a vector x that satisfies kxk D 1. We
note that vector norms are derived from the class of the so-called vector p-norms
defined as [24]

kxkp D .jx1jp C jx2jp C : : :C jxN jp/ 1p ; p 	 1:

A very important property concerning the vector norms is Cauchy–Schwartz
inequality:

jxyT j � kxk2 kyk2: (A.21)

Finally, for the identity matrix of order N we have

kIkF D p
N; kIk1 D kIk1 D 1:
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A.3.5 Well- and Ill-Conditioned Matrices

In linear algebra the analysis of numerical sensitivity of direct methods for solving
systems of linear equations represented by a square nonsingular matrix is associated
with the notion of well- and ill-conditioned systems or matrices [21, 24]. Let
a system of linear equations is represented by Ax D b, where A is a square
nonsingular matrix, x and b are vectors. Aim of the analysis of numerical sensitivity
is to examine how the relative errors in A and b affect the solution x.

We say that the system of linear equations or matrix A is well-conditioned if has
the following property: For some matrix norm kAk, the number

 .A/ D kAk kA�1k; (A.22)

satisfying always  .A/ 	 1, is not substantially larger than 1 (for example 100�
or 1000�). Otherwise, the system of linear equations or matrix A is ill-conditioned.
The number  .A/ is called the condition number of A with respect to the matrix
norm kAk. Thus, the condition number  .A/ quantifies the sensitivity of the Ax D b
problem. If the condition number  .A/ D 1, then A is perfectly conditioned [24].

A.4 Elementary Rotation Matrices

Elementary rotation matrices Gij are defined as [20]

Gij D

0

BBB
BBBBBB
BBB
@

1
: : :

c : : : �s
:::
: : :

:::

s : : : c
: : :

1

1

CCC
CCCCCC
CCC
A

; G
�1

ij D G
T

ij D

0

BBB
BBBBBB
BBB
@

1
: : :

c : : : s
:::
: : :

:::

�s : : : c
: : :

1

1

CCC
CCCCCC
CCC
A

; (A.23)

where c2 C s2 D 1, c D cos', s D sin' for some angle '. The subscript
indices i; j .i < j/ indicate positions of elements c and s in the matrix.
The elementary rotation matrices given by (A.23) differ from the identity matrix
only by four elements placed on crossing two rows and two columns. They are
orthogonal transformations playing a central role in the least squares solutions of
overdetermined systems of linear equations and symmetric eigenvalue problems
[24]. Elementary rotation matrices Gij are known as the Givens–Jacobi rotations.

They are eigenorthogonal, i.e., det .Gij/ D det
�

G
T

ij

�
D C1, whereby Gij and
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G
T

ij are inverses to each other. Through the pre-multiplications (multiplications on
the left) and/or post-multiplications (multiplications on the right) of a nonsingular
matrix by elementary rotation matrices we can reduce the given matrix into various
canonical forms introducing zero elements in the matrix by properly choosing the
rotation angle. For our purposes it is sufficient to consider the simplest case of 2� 2
elementary rotation matrices.

A 2 � 2 orthogonal (eigenorthogonal) matrix is called Givens–Jacobi rotation, if
it has the form [24]

G' D
0

@
cos' � sin'

sin' cos'

1

A ; G
�1

' D G
T

' D G�': (A.24)

The computational structures for efficient implementations of Givens–Jacobi rota-
tions are presented in Appendices F.2 and F.3.

A.5 Elementary Transformations of Matrices

Elementary transformations are elementary matrices of a special form frequently
performed upon matrices as follows [20]:

1. Multiplication to the elements of some row by a number ˛
2. Adding to the elements of some row numbers proportional (˛ multiple) to the

elements of some preceding row
3. Adding to the elements of some row numbers proportional (˛ multiple) to the

elements of some following row

Sometimes such elementary transformations are made upon the columns of
the matrix. Any elementary transformation of the rows is equivalent to a pre-
multiplication of the matrix by a nonsingular matrix of a special form. Thus, the
operation .1/ is equivalent to a pre-multiplication by the matrix

0

BBBBB
BBBBBB
@

1
: : :

1

˛

1
: : :

1

1

CCCCC
CCCCCC
A

: (A.25)
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Operation .2/ is equivalent to a pre-multiplication by the matrix

0

B
BBBBBB
BBBBB
@

1
: : :

1
:::
: : :

˛ : : : 1
: : :

1

1

C
CCCCCC
CCCCC
A

; (A.26)

and the operation .3/ is equivalent to a pre-multiplication by the matrix

0

BBB
BBBBBB
BBB
@

1
: : :

1 : : : ˛
: : :

:::

1
: : :

1

1

CCC
CCCCCC
CCC
A

: (A.27)

Operations .1/, .2/, and .3/ can be performed alternatively upon the columns in
post-multiplications of the matrix. It can be seen that the elementary matrix of the
form .2/ defined by (A.26) is unit lower triangular, and is called Gauss elementary
matrix. On the other hand, the elementary matrix of the form .3/ defined by (A.27)
is unit upper triangular. The inverses of elementary matrices of the form (A.26)
and (A.27) are, respectively, defined as

0

BB
BBBBB
B
BBBB
@

1
: : :

1
:::
: : :

�˛ : : : 1
: : :

1

1

CC
CCCCC
CCCCC
A

;

0

BB
BBBBB
BBBBB
@

1
: : :

1 : : : �˛
: : :

:::

1
: : :

1

1

CC
CCCCC
CCCCC
A

: (A.28)

Note: In general, the elementary rotation matrices can be thought of as the
elementary transformations, which are orthogonal.
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A.6 Matrix Decompositions

Matrix decompositions are factorizations of matrices into products of simpler
matrices. In linear algebra and matrix computations, a real nonsingular matrix
is reduced by elementary rotation matrices and elementary transformations into
various canonical forms in order to simplify subsequent computational steps of a
solved problem. Such procedures lead to various useful factorizations of the matrix
into the products of structurally simpler matrices.

A.6.1 QR Matrix Factorization

There exist two basic methods to reduce a real nonsingular matrix of order N into
equivalent upper triangular form. The first method is based on pre-multiplications
of the matrix by elementary rotation matrices. This procedure leads to the well-
known QR matrix factorization, where Q is an orthogonal matrix and R is an
upper triangular matrix. The following theorem and corollaries state the QR matrix
factorization [20].

Theorem 5 ([20], Chapter 1, p. 37) Arbitrary real square nonsingular matrix

A D

0

BBBB
BB
@

a
.0/

11 a
.0/

12 : : : a
.0/

1n

a
.0/

21 a
.0/

22 : : : a
.0/

2n
:::

:::
: : :

:::

a
.0/

n1 a
.0/

n2 : : : a
.0/

nn

1

CCCC
CC
A

can be reduced through successive pre-multiplications by elementary rotation
matrices Gij to an upper triangular matrix, whose all diagonal elements are positive
besides the last one, that is,

A.n�1/ D Gn�1;n : : : G13 G12 A D

0

BBB
BBB
@

a
.1/

11 a
.1/

12 : : : a
.1/

1n

0 a
.2/

22 : : : a
.2/

2n
:::

:::
: : :
:::

0 0 : : : a
.n�1/

nn

1

CCC
CCC
A

: (A.29)

Corollary 1 (QR Matrix Factorization) Arbitrary real nonsingular matrix A is
the product of an eigenorthogonal matrix Q and an upper triangular matrix R, i.e.,
A D QR, where

Q D .Gn�1;n : : : G13 G12/
�1 and R D A.n�1/: (A.30)
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Corollary 2 Any eigenorthogonal matrix A is the product of at most n.n�1/
2

elementary rotation matrices, i.e.,

A D G
�1

12 G
�1

13 : : : G
�1

n�1;n A.n�1/; where A.n�1/ D I: (A.31)

A.6.2 LU and LDU Matrix Factorizations

The second method to reduce a real nonsingular matrix to the upper triangular
form is based on pre-multiplications of the matrix by elementary transformations,
specifically, by elementary matrices of the form .2/ defined by (A.26). The
procedure leads to the well-known LU matrix factorization, where L is a lower
triangular matrix and U is an upper triangular matrix. The following theorem states
LU matrix factorization [20, 22, 24, 39].

Theorem 6 ([20], Chapter 1, p. 20, and Its General Form in [22], Chapter 2,
p. 50) On condition that the principal minors of the matrix

A D

0

BBBB
B
@

a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
: : :

:::

an1 an2 : : : ann

1

CCCC
C
A

are not equal to zero, i.e., that a11 6D 0; : : : ; det .A/ 6D 0, the matrix A may be
represented as the product of a lower triangular matrix and an upper triangular
matrix, that is

A D LU:

ut
Note: LU factorization of a matrix A will be uniquely determined if we prescribe
values for the diagonal elements of one of the triangular matrices. It is convenient
to consider, for example, that elements of U are equal to uii D 1; i D 1; 2; : : : ;N
[20, 22].

LU matrix factorization is actually originated from the method of Gaussian
elimination used for solving systems of linear equations [20, 22, 24, 39]. One
step of Gaussian elimination is equivalent to a pre-multiplication of the matrix by
elementary matrix of the form .2/ defined by (A.26) which actually is the unit lower
triangular and it is called Gauss elementary matrix. Thus, the transition from original
matrix A to its upper triangular form can be written as

Wm Wm�1 : : : W1 A D U; (A.32)
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where Wi; i D 1; 2; : : : ;m are Gauss elementary matrices. Then, we have

A D .Wm Wm�1 : : : W1/
�1 U D LU; (A.33)

whereby this LU factorization is unique [24]. From the algebra of triangular
matrices it follows that the matrix L is unit lower triangular because each W�1

i is
unit lower triangular and det .A/ D u11 : : : unn. Moreover, if det .A/ D C1, then
det .LU/ D det .L/ det .U/ D C1, hence det .L/ D C1 and det .U/ D C1.
Generally, if we take into account interchanges of two rows in the matrix during
the factorization process (the so-called pivoting operation in Gaussian elimination),
then we should consider in LU factorization pre-multiplied or post-multiplied
permutation matrices Pi.

In addition, according to the theorem ([22], Chapter 2, p. 53), an arbitrary matrix
A, whose all principal minors are not equal to zero, can be represented as the product
of A D LDU, where L is an unit lower triangular matrix, D is a diagonal matrix and
U is a unit upper triangular matrix.

A variant of Gaussian elimination is the Jordan elimination. Whereas the
Gaussian elimination leads to an upper triangular matrix, the Jordan elimination
leads to a diagonal matrix. One step of Jordan elimination is equivalent to a pre-
multiplication of the matrix by

0

B
BBBBB
BBBBBB
B
@

1 0 : : : ˛1;i : : : 0

0 1 : : : ˛2;i : : : 0
:::
:::
: : :

:::
:::

0 0 : : : ˛i�1;i : : : 0
0 0 : : : 1 : : : 0

0 0 : : : ˛iC1;i : : : 0
:::
:::

:::
: : :

:::

0 0 : : : ˛n;i : : : 1

1

C
CCCCC
CCCCCC
C
A

; (A.34)

called the Gauss–Jordan elementary matrix. It can be easily verified that Gauss–
Jordan elementary matrix is the product of elementary matrices of the form .2/

defined by (A.26) and of form .3/ defined by (A.27).
LU matrix factorization is the basic approach to factorize an invertible matrix

into the product of triangular matrices and possibly permutation matrices taking
into account row interchanges during the factorization process.

A.6.3 PLUS Matrix Factorization

In the special case, if a real nonsingular matrix A has its determinant equal to C1,
i.e., det .A/ D C1, then it can be formulated theorem for the general PLUS matrix
factorization of A [27, 37] as follows.
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Theorem 7 (PLUS Matrix Factorization [27, 37]) A real square nonsingular
matrix A has a factorization of A D PLUS if and only if det .A/ D det .P/ D C1,
where P is a permutation matrix, L is an unit lower triangular, U is an unit upper
triangular, and S is an unit lower triangular matrix of the form

S D

0

BBB
BBBBBB
B
@

1 0 : : : 0 0

0 1 : : : 0 0
:::
:::
: : :

:::
:::

0 0 : : : 1 0

s1 s2 : : : sn�1 1

1

CCC
CCCCCC
C
A

; where S
�1 D

0

BBB
BBBBBB
B
@

1 0 : : : 0 0

0 1 : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : 1 0

�s1 �s2 : : : �sn�1 1

1

CCC
CCCCCC
C
A

:

ut
Note: In general, any real square nonsingular matrix A can be customarily factorized
into three triangular matrices, A D PLUS customizable factorization, where P is a
permutation matrix (in some cases P may be the identity matrix), U is an upper
triangular matrix of which the diagonal elements d1; d2; : : : ; dN are customizable
and they can be given by all means as long as its determinant is equal to that of A
up to a possible sign adjustment, i.e., det .A/ D det .U/ D d1 d2 : : : dN . S is a unit
lower or upper triangular matrix of which all but N � 1 off-diagonal elements are
also flexibly customizable such as a single-row, single-column, bidiagonal matrix
or other specially patterned matrices. Besides PLUS, a customizable factorization
also has other alternatives, LUSP; PSUL and SULP for unit lower triangular S, and
PULS; ULSP; PSLU; SLUP for unit upper triangular S [26].

We note that any nonsingular matrix A with det .A/ D �1 can be scaled to have
its det .A/ D C1. More insight into the structure of PLUS factorization gives its
factorization algorithm [27, 37]. Let A be a real nonsingular (invertible) matrix of
order N

A D

0

BBBBB
B
@

a
.0/

11 a
.0/

12 : : : a
.0/

1n

a
.0/

21 a
.0/

22 : : : a
.0/

2n
:::

:::
: : :

:::

a
.0/

n1 a
.0/

n2 : : : a
.0/

nn

1

CCCCC
C
A

:

Then, there must exist a permutation matrix P1 for row interchanges such that

P1 A D

0

BB
BBBB
@

p
.1/

11 p
.1/

12 : : : p
.1/

1n

p
.1/

21 p
.1/

22 : : : p
.1/

2n
:::

:::
: : :

:::

p
.1/

n1 p
.1/

n2 : : : p
.1/

nn

1

CC
CCCC
A

;
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and p
.1/

1n 6D 0, and hence there must exist a number s1 such that p
.1/

11 � s1 p
.1/

1n D 1.

Then, we get s1 D p
.1/

11 �1
p
.1/

1n

and we obtain a product of

P1 A S0;1 D P1 A

0

B
BBBB
@

1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

�s1 0 : : : 1

1

C
CCCC
A

D

0

B
BBBBB
@

1 p
.1/

12 : : : p
.1/

1n

p
.1/

21 � s1p
.1/

2n p
.1/

22 : : : p
.1/

2n
:::

:::
: : :

:::

p
.1/

n1 � s1p
.1/

nn p
.1/

n2 : : : p
.1/

nn

1

C
CCCCC
A

:

The second step is Gaussian elimination of the first column and it is achieved by
pre-multiplication of the product P1 A S0;1 by the Gauss elementary matrix L1 as
follows

L1 P1 A S0;1 D

0

BBBBB
B
@

1 0 : : : 0

s1p
.1/

2n � p
.1/

21 1 : : : 0
:::

:::
: : :

:::

s1p
.1/

nn � p
.1/

n1 0 : : : 1

1

CCCCC
C
A

P1 A S0;1 D

0

BBBBB
B
@

1 a
.2/

12 : : : a
.2/

1n

0 a
.2/

22 : : : a
.2/

2n
:::
:::
: : :

:::

0 a
.2/

n2 : : : a
.2/

nn

1

CCCCC
C
A

:

Continuing the factorization process for k D 2; 3; : : : ;N � 1, where matrices Pk

define the row interchanges among the kth through Nth rows to guarantee that the
kth element in the N-th column are not equal to zero, i.e., p

.k/

kn 6D 0, matrices S0;k

convert elements a
.k/

kk into 10s, where sk D p
.k/
kk �1
p
.k/
kn

, and matrices Lk represent row

multipliers used for Gaussian elimination of column k. Completing the factorization
process we get the product:

LN�1PN�1 : : :L2P2L1P1AS0;1S0;2 : : : S0;N�1 D

0

B
BBBBBB
BBB
@

1 a
.N�1/

12 : : : a
.N�1/

1n

0 1 : : : a
.N�1/

2n

:::
:::

: : :
:::

0 0 : : : a
.N�1/

nn

1

C
CCCCCC
CCC
A

D U;

where U is the upper triangular. Since det .A/ D C1, a
.N�1/

nn D 1 and U is the
unit upper triangular. Having, respectively, multiplied all matrices S0;k together, all
permutation matrices Pk together, and all unit lower triangular matrices Lk together,
we have one matrix S

�1

, one pre-multiplying matrix PT and one unit lower triangular
matrix L�1. From algebra of triangular matrices it follows that the inverse of a unit
lower triangular matrix is also a unit lower triangular matrix and we have
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S0;1 S0;2 : : : S0;N�1 D

0

BBBBBB
BBBB
@

1 0 : : : 0 0

0 1 : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : 1 0

�s1 �s2 : : : �sn�1 1

1

CCCCCC
CCCC
A

D S
�1

and

LN�1PN�1 : : :L2P2L1P1

D LN�1
�

PN�1LN�2P
T

N�1
�
: : :
�

PN�1 : : :P2L1P
T

2 : : : P
T

N�1
�
.PN�1 : : :P2P1/

D L�1PT ;

where

L�1 D LN�1
�

PN�1LN�2P
T

N�1
�
: : :
�

PN�1 : : :P2L1P
T

2 : : :P
T

N�1
�

and

P
�1 D PT D PN�1 : : :P2P1:

Hence, finally we obtain L�1P�1AS�1 D U or A D PLUS matrix factorization.

A.7 Block Matrices and Algebra of Block Matrices

In linear algebra, matrix theory, and matrix computations the matrices with scalar
elements are frequently partitioned into sub-matrices or blocks [20–22, 24, 39]. Such
matrices are called block matrices. Although an m � n (non-square) matrix can be
partitioned, in general, into rectangular (non-square) sub-matrices or blocks [22],
pp. 55–64, for simplicity, we will consider square matrices only partitioned into
square sub-matrices all being of the same order.

Let A D faijg, i; j D 1; 2; : : : ; n, be a square matrix with scalar elements. A
partitioning of A is a representation of A in the form

A D

0

B
BBBB
@

A11 A12 : : : A1n

A21 A22 : : : A2n
:::

:::
: : :

:::

An1 An2 : : : Ann

1

C
CCCC
A
; (A.35)
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where square sub-matrices Aij are called blocks. Thus, the square matrix A in (A.35)
is partitioned into n � n blocks, or equivalently, A is a square block matrix. The
power of partitioning lies in the fact that the algebra of block matrices (sum
and products) interacts nicely with the algebra of scalar matrices, as long as
in general, the dimensions of partitions allow the indicated sums and products.
Then, sums/products of block matrices are formed by treating the sub-matrices or
blocks as scalars performing an ordinary addition/multiplication of sub-matrices.
In this Appendix we will consider block matrices of the same order with the same
partitioning. Such block matrices are called to be conformal.

Various forms of scalar matrices such as diagonal, (unit) upper and lower
triangular have block analogues [22, 39]. A block matrix A is the quasi-diagonal,
if Aij D 0 for i ¤ j. A block matrix A is the upper block triangular or the upper
quasi-triangular, if all blocks Aij D 0 for i > j, and is the lower block triangular or
the lower quasi-triangular, if all blocks Aij D 0 for i < j. The quasi-diagonal matrix
can be considered as a special form of the upper/lower block triangular matrix.
In particular, an upper/lower block triangular matrix having on main diagonal the
identity matrices then is the upper/lower block triangular with unit diagonal blocks.

A.7.1 Algebra of Block Triangular (Quasi-Diagonal) Matrices

There are a few useful properties about products, determinants, and inverses of block
triangular (quasi-diagonal) matrices [22]:

• The product of two upper (lower) block triangular matrices is upper (lower) block
triangular matrix.

• The product of two upper (lower) block triangular matrices with unit diagonal
blocks is upper (lower) block triangular matrix with unit diagonal blocks.

• The determinant of upper or lower block triangular matrix, and in particular the
determinant of quasi-diagonal matrix, is equal to the product of determinants of
diagonal blocks (Laplace decomposition).

• The determinant of upper or lower block triangular matrix with unit diagonal
blocks is equal to 1.

• The inverse of upper (lower) block triangular matrix is upper (lower) block
triangular.

• The inverse of upper (lower) block triangular matrix with unit diagonal blocks is
upper (lower) block triangular with unit diagonal blocks.

A.7.2 Block Elementary Transformations

Elementary transformations performed upon scalar matrices (see Appendix A.5)
have also block analogues [22], specifically, for block matrices the operation .1/ is
equivalent to a pre-multiplication by the elementary block matrix
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0

BB
BBBBB
BBBB
@

I
: : :

I
X

I
: : :

I

1

CC
CCCCC
CCCC
A

; (A.36)

operation .2/ is equivalent to a pre-multiplication by the elementary block matrix

0

BBBB
BBBBB
BBB
@

I
: : :

I
:::
: : :

X : : : I
: : :

I

1

CCCC
CCCCC
CCC
A

; (A.37)

and the operation .3/ is equivalent to a pre-multiplication by the elementary block
matrix

0

BB
BBBBB
BBBBB
@

I
: : :

I : : : X
: : :

:::

I
: : :

I

1

CC
C
CCCC
CCCCC
A

: (A.38)

where diagonal blocks I are identity matrices and X is a square sub-matrix or block,
all of the same order. Operations .1/, .2/, and .3/ can be performed alternatively
upon the columns in post-multiplications of a block matrix.

It can be easily seen that the elementary block matrices are nonsingular. The
elementary block matrix defined by (A.36) is quasi-diagonal and its determinant
is equal to det .X/. The elementary block matrix defined by (A.37) is the lower
block triangular with unit diagonal blocks and its determinant is equal to 1. It is
called the Gauss elementary block matrix. On the other hand, the elementary block
matrix defined by (A.38) is the upper block triangular with unit diagonal blocks
and its determinant is also equal to 1. Based on the algebra of block triangular
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matrices, the inverses of elementary block matrices of the form (A.37) and (A.38)
are, respectively, defined as

0

BB
BBBBBB
BBBB
@

I
: : :

I
:::
: : :

�X : : : I
: : :

I

1

CC
CCCCCC
CCCC
A

;

0

BB
BBBBBB
BBBB
@

I
: : :

I : : : �X
: : :

:::

I
: : :

I

1

CC
CCCCCC
CCCC
A

: (A.39)

A.7.3 Generalized Gauss Algorithm or Block Gaussian
Elimination

Let A D fAijg, i; j D 1; 2; : : : ; n, defined by (A.35) be a square block matrix whose
diagonal block A11 is a square nonsingular sub-matrix, i.e., det .A11/ ¤ 0.

Pre-multiplying the first row of A by �Ai1 A�1
11 , i D 2; 3; : : : ; n, and subsequently

adding the product to the ith row of A we get the following block matrix

B D

0

BBBBBB
@

A11 A12 : : : A1n

0 A.1/22 : : : A.1/2n
:::

:::
: : :

:::

0 A.1/n2 : : : A.1/nn

1

CCCCCC
A

; (A.40)

where

A.1/ij D �Ai1 A�1
11 A1j C Aij; i; j D 2; 3; : : : ; n; (A.41)

where 0s are null blocks. The transition from the block matrix A to the block matrix
B in (A.40) is equivalent to the successive pre-multiplications (multiplications on
the left) of A by the Gauss elementary block matrices defined by (A.37), where
X D �Ai1 A�1

11 , i D 2; 3; : : : ; n.

If the block A.1/22 is again a square nonsingular sub-matrix, i.e., det
�

A.1/22
�

¤ 0,

then the above process can be repeated to eliminate blocks in the second column of
B under block A.1/22 . After n�1 steps the block matrix A is reduced to an upper block
triangular form. Just described procedure defines the generalized Gauss algorithm
for block matrices (block Gaussian elimination). Since the block matrix A is reduced
to the upper block triangular form, then its determinant is equal to the determinant
of the upper block triangular matrix.
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A.7.4 Schur Formulae for the Determinant Calculation of a
2 � 2 Block Matrix

Consider the simplest case of 2�2 block matrix M partitioned to four square blocks
of the same order n as

M D
�

A B
C D

�
;

and let det .A/ ¤ 0, i.e., A is nonsingular. Our aim is to derive the so-called Schur
formulae for the determinant calculation of block matrix M of order 2n via the
determinants of order n [22].

Apply to the block matrix M the generalized Gauss algorithm. Pre-multiplying
the first row of M by �CA�1, and adding the product to the second row of M
corresponds to pre-multiplication of M by the Gauss elementary block matrix
defined by (A.37), where X D �CA�1, and we have

�
I 0

�CA�1 I

�
M D

�
A B
0 D � CA�1B

�
: (A.42)

Using the algebra of block triangular matrices from Eq. (A.42) we obtain

det .M/ D det .A/ det .D � CA�1B/ D det .AD � ACA�1B/; det .A/ ¤ 0:

(A.43)
Now let det .D/ ¤ 0, i.e., D is nonsingular and apply to the block matrix
M the generalized Gauss algorithm again. Pre-multiplying the second row of M
by �BD�1, and adding the product to the first row of M corresponds to pre-
multiplication of M by the Gauss elementary block matrix defined by (A.38), where
X D �BD�1, we have

�
I �BD�1
0 I

�
M D

�
A � BD�1C 0

C D

�
: (A.44)

Similarly, using the algebra of block triangular matrices from Eq. (A.44) we obtain

det .M/ D det .A � BD�1C/ det .D/ D det .AD � BD�1CD/; det .D/ ¤ 0:

(A.45)
Equations (A.43) and (A.45) define the Schur formulae for the determinant calcula-
tion of the block matrix M of order 2n via the determinants of order n. In particular,
if the blocks A and C are commuting, i.e., AC D CA, as well as the blocks C and D
are commuting, i.e., CD D DC, then the determinants of M are equal to [22]

det .M/ D det .AD � CB/; det .A/ ¤ 0;

det .M/ D det .AD � BC/; det .D/ ¤ 0: (A.46)

We can obtain additional six formulae by exchanging the roles of A and D, and then
the roles of B and C on the right-hand sides of (A.43), (A.45), and (A.46).
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A.7.5 Frobenius Formula for the Inverse of a 2 � 2 Block
Matrix

Consider a 2 � 2 block nonsingular matrix partitioned to four square blocks of the
same order n as

M D
�

A B
C D

�
;

and let det .A/ ¤ 0, i.e., A is nonsingular. We need to derive the inverse of M, M�1.
In the first step we apply to the block matrix M the generalized Gauss algorithm

pre-multiplying the first row of M by �CA�1, and adding the product to the second
row of M. This operation corresponds to the pre-multiplication of M by the Gauss
elementary block matrix as follows

�
I 0

�CA�1 I

�
M D

�
A B
0 S

�
; (A.47)

where S D D � CA�1B. Since M is nonsingular, det .M/ D det .A/ det .S/ ¤ 0,
then det .S/ ¤ 0. Inverting Eq. (A.47) we get

M�1
�

I 0

�CA�1 I

��1
D
�

A B
0 S

��1
: (A.48)

Now, the inverse block matrix on the right-hand side of (A.48) we will look for in
the form

�
A�1 U
0 S�1

�
:

From the equality

�
A B
0 S

��
A�1 U
0 S�1

�
D
�

I 0

0 I

�
;

we find that U D �A�1BS�1, and hence

�
A B
0 S

��1
D
�

A�1 �A�1BS�1
0 S�1

�
: (A.49)

Then from Eq. (A.48) we obtain

M�1 D
�

A B
0 S

��1 �
I 0

�CA�1 I

�
D
�

A�1 �A�1BS�1
0 S�1

��
I 0

�CA�1 I

�
:

(A.50)
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Finally, performing all products of block matrices on the right-hand side of (A.50)
we get

M�1 D
�

A�1 C A�1BS�1CA�1 �A�1BS�1
�S�1CA�1 S�1

�
; S D D � CA�1B: (A.51)

Equation (A.51) defines the Frobenius formula to obtain the inverse of block matrix
M. Alternatively, assuming that det .D/ ¤ 0 (instead of det .A/ ¤ 0), and
exchanging the roles of blocks A and D, we obtain the second form of Frobenius
formula as

�
A B
C D

��1
D
�

K�1 �K�1BD�1
�D�1CK�1 D�1 C D�1CK�1BD�1

�
; K D A � BD�1C:

(A.52)
Additionally, the derivation of Frobenius formulae also nicely demonstrates how to
obtain the formulae for inverses of 2� 2 upper and lower block triangular matrices.
The inverse of an upper block triangular matrix is defined by (A.49). The inverse of
a lower block triangular matrix can be obtained as follows. From equality

�
A 0

B S

��
A�1 0
U S�1

�
D
�

I 0

0 I

�
;

we find that U D �S�1BA�1, and hence

�
A 0

B S

��1
D
�

A�1 0

�S�1BA�1 S�1
�
: (A.53)

In particular, Eqs. (A.49) and (A.53) imply (A D S D I) that the inverses of
2 � 2 upper and lower block triangular matrices with unit diagonal blocks are,
respectively, defined as

�
I X
0 I

��1
D
�

I �X
0 I

�
;

�
I 0

X I

��1
D
�

I 0

�X I

�
: (A.54)

A.8 Block Matrix Decompositions

The block matrix decompositions are factorizations of block matrices into struc-
turally simpler block matrices [20, 21, 27, 37, 39]. Similarly as for scalar matrices,
in linear algebra and matrix computations a real nonsingular block matrix is reduced
by elementary block transformations into various canonical block forms in order to
simplify subsequent computational steps of a solved problem. Actually, the block
QR, LU, LDU, and PLUS matrix factorizations can be considered as generalized
analogues of those formulated for scalar matrices. The block matrix factorization
QR is discussed in [39], Chapter 4, p. 255.
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A.8.1 Schur Complement and Block LU Matrix Factorization

Schur complement plays an important role in matrix computations and leads to a
block LU matrix factorization [21, 39]. It has been heavily discussed in the previous
Appendix A.7, specifically in the generalized Gauss algorithm, the determinant
calculation and inverse of a 2 � 2 block matrix. In the following is generalized
the notion of Schur complement.

Definition (Schur Complement, [39], Chapter 3, p. 157) Let A be partitioned in
the form

A D
�

A11 A12
A21 A22

�
;

and suppose that A11 is nonsingular. Then the Schur complement of A11 in A is the
matrix S D A22 � A21A�1

11 A12.
ut

The following theorem states the block LU matrix factorization of A [39].

Theorem 8 (Block LU Matrix Factorization, [39], Chapter 3, p. 158) Let

A D
�

A11 A12
A21 A22

�
;

where A11 is nonsingular, and let S be the Schur complement of A11 in A. Then A is
nonsingular if and only if S is nonsingular.

ut
It is easy verified (see Eq. (A.42)) that A has a block LU matrix factorization of the
form

�
A11 A12
A21 A22

�
D
�

I 0

A21A�1
11 I

��
A11 A12
0 S

�
: (A.55)

The first factored matrix on the right-hand side of (A.55) is nonsingular, because it is
the lower block triangular with unit diagonal blocks. Hence, A is nonsingular if and
only if the second factored matrix is nonsingular. This factored matrix is the upper
block triangular and is nonsingular if and only if its diagonal blocks are nonsingular.
But by hypothesis the diagonal block A11 is nonsingular. Therefore, A is nonsingular
if and only if the second diagonal block S, Schur complement, is nonsingular [39].
Equation (A.55) defines the block LU matrix factorization of A. If A is nonsingular
and has a block LU matrix factorization, then this factorization is unique.

It is clear that the generalized Gauss algorithm generates a block LU matrix
factorization for block matrices. Thus, the generalized Gauss algorithm or block
Gaussian elimination provides the block LU factorization algorithm of a block
matrix.
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Note: A slightly different block LU matrix factorization of a 2 � 2 block matrix A
whose determinant is equal to 1 has been presented in [27] in the following form

�
A11 A12
A21 A22

�
D
�

I 0

A21A�1
11 S

��
A11 A12
0 I

�
;

where det .A11/ D 1.

Note: From historical point of view the first block LU matrix factorization is due to
Schur who wrote it in the following form [39]

�
A�1
11 0

�A21A�1
11 I

��
A11 A12
A21 A22

�
D
�

I A�1
11 A12

0 A22 � A21A�1
11 A12

�
:

Schur used the relation only to prove a theorem on determinants calculation (see
Appendix A.7.4) and he did not investigate it further.

A.8.2 Properties of Schur Complements

Schur complements have important properties which do not depend on the choice of
diagonal blocks in the block LU matrix factorization. They are summarized in the
following two theorems.

Theorem 9 ([39], Chapter 3, p. 165) In the partitioning

A D
�

A11 A12
A21 A22

�
;

suppose that A11 is nonsingular. Then A has a block LU factorization

�
A11 A12
A21 A22

�
D
�

L11 0

L21 L22

��
U11 U12

0 U22

�
; (A.56)

where L11 and U11 are nonsingular. Moreover, for any such factorization

1. L11U11 D A11,
2. L21U11 D A21,
3. L11U12 D A12,
4. L22U22 D A22 � A21A�1

11 A12 D A22 � L21U12,
5. U�1

11 U12 D A�1
11 A12,

6. L21L�1
11 D A21A�1

11 .
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If in addition A is nonsingular, then so are L22, U22, and hence the Schur
complement A22 � A21A�1

11 A12 D L22U22. If we partition

A�1 D
�

A�1
11 A�1

12

A�1
21 A�1

22

�
;

then

A�1
22 D U�1

22 L�1
22 D .A22 � A21A�1

11 A12/�1:

ut
Theorem shows that the Schur complement computed by a sequence of k steps of
classical Gaussian elimination is the same as the Schur complement of the leading
principal minor of order k [39].

The following theorem shows that any two sequences of scalar and block
elimination that terminate at the same leading principal sub-matrix compute the
same Schur complement. The proof of theorem can be found in [39].

Theorem 10 ([39], Chapter 3, p. 166) Let A be partitioned in the form

A D
0

@
A11 A12 A13
A21 A22 A23
A31 A32 A33

1

A ;

and assume that

A11 and

�
A11 A12
A21 A22

�
are nonsingular:

Let

S D
�

S11 S12
S21 S22

�

be the Schur complement of A11 in A. Then S11 is nonsingular, and the Schur
complement of

�
A11 A12
A21 A22

�

in A is equal to the Schur complement of S11 in S.
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A.8.3 Block LDU Matrix Factorization

Having defined the Schur complement, its properties, and the block LU factoriza-
tion, the following theorem states the existence and uniqueness of the block LDU
matrix factorization, where D is a quasi-diagonal matrix [21].

Theorem 11 (Block LDU Matrix Factorization [21], p. 29) Let A D fAijg, i; j D
1; 2; : : : ; r, is a block matrix whose blocks

0

B
BBBB
@

A11 A12 : : : A1k

A21 A22 : : : A2k
:::

:::
: : :

:::

Ak1 Ak2 : : : Akk

1

C
CCCC
A

are nonsingular for k D 1; 2; : : : ; r � 1. Then there exist a lower block triangular
matrix L with r unit diagonal blocks, an upper block diagonal matrix U with r unit
diagonal blocks, and a quasi-diagonal matrix D such that

A D L D U;

where the block matrices L, U and D are defined uniquely. The diagonal blocks
D1;D2; : : : ;Dr of D satisfy the following relations:

D1 D A11;

Dk D

2

666
4

0

BBB
@

A11 A12 : : : A1k

A21 A22 : : : A2k
:::

:::
: : :

:::

Ak1 Ak2 : : : Akk

1

CCC
A
=

0

BBB
@

A11 A12 : : : A1;k�1
A21 A22 : : : A2;k�1
:::

:::
: : :

:::

Ak�1;1 Ak�1;2 : : : Ak�1;k�1

1

CCC
A

3

777
5
; k D 2; 3; : : : ; r;

and diagonal blocks D1;D2; : : : ;Dr�1 are nonsingular. Dk D Œ.�/=.�/� for k D
2; 3; : : : ; r, are the Shur complements.

ut
Although Theorem 11 does not give a factorization algorithm, in order to illustrate
the existence of block LDU factorization, consider the simplest case of a nonsingu-
lar 2 � 2 block matrix A (i.e., k D 2 in Theorem 11) partitioned as

A D
�

A11 A12
A21 A22

�
:
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Since A is nonsingular, based on (A.55) it has the unique block LU factorization
which is actually obtained by pre-multiplying A (multiplication on the left) by the
Gauss elementary block matrix being the upper block triangular with unit diagonal
blocks as

�
I 0

�A21A�1
11 I

��
A11 A12
A21 A22

�
D
�

A11 A12
0 S

�
; (A.57)

where S D A22 � A21A�1
11 A12 is the Schur complement of A11 in A. The factored

matrix on the right-hand side of (A.57) is the upper block diagonal with nonsingular
diagonal blocks A11 and S. It can be further reduced to a quasi-diagonal form by
post-multiplying (multiplication on the right) by the elementary block matrix as

�
A11 A12
0 S

��
I �A�1

11 A12
0 I

�
D
�

A11 0
0 S

�
;

and equivalently, we have
�

A11 A12
0 S

�
D
�

A11 0
0 S

��
I A�1

11 A12
0 I

�
: (A.58)

Composing Eqs. (A.57) and (A.58) we have
�

I 0

�A21A�1
11 I

��
A11 A12
A21 A22

��
I �A�1

11 A12
0 I

�
D
�

A11 0
0 S

�
: (A.59)

Finally, by pre-multiplying the lower block triangular matrix with unit diagonal
blocks by its inverse followed by post-multiplying the upper block triangular matrix
with unit diagonal blocks by its inverse on both sides of (A.59) we get

�
A11 A12
A21 A22

�
D
�

I 0

A21A�1
11 I

��
A11 0
0 S

��
I A�1

11 A12
0 I

�
: (A.60)

Equation (A.60) defines the block LDU factorization of the 2 � 2 block matrix A.
According to Theorem 11, the blocks D1 D A11 and D2 D S.

Note: Now, consider the block LU matrix factorization of a nonsingular 2� 2 block
matrix A defined by (A.55), and in particular, the upper block triangular matrix on
the right-hand side of (A.55)

�
A11 A12
0 S

�
:

It can be alternatively reduced to a quasi-diagonal form as follows: By pre-
multiplying the second row by �A12S�1, and adding the product to the first row
corresponds to the pre-multiplication by the Gauss elementary block matrix and
we have
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�
I �A12S�1
0 I

��
A11 A12
0 S

�
D
�

A11 0
0 S

�
;

or equivalently

�
A11 A12
0 S

�
D
�

I A12S�1
0 I

��
A11 0
0 S

�
: (A.61)

Finally, substituting Eq. (A.61) into (A.55) we get

�
A11 A12
A21 A22

�
D
�

I 0

A21A�1
11 I

��
I A12S�1
0 I

��
A11 0
0 S

�
: (A.62)

Equation (A.62) defines a modification of the block LDU, the block LUD factoriza-
tion of the 2 � 2 block matrix A.

A.8.4 Block PLUS Matrix Factorization

The PLUS matrix factorization has also a block analogue. For any nonsingular block
matrix A with square diagonal blocks, in the block version of factorization A D
PLUS, P is still a permutation matrix at the scalar level (in some cases P may be the
identity matrix) while L is a lower block triangular matrix with unit diagonal blocks,
U is an upper block triangular matrix, and S is a lower block triangular matrix with
unit diagonal blocks [37].

More insight into the structure of block PLUS factorization gives its factorization
algorithm. Let A be a nonsingular square block matrix partitioned to n � n square
blocks as

A D

0

BBBBBB
@

A.0/11 A.0/12 : : : A.0/1n

A.0/21 A.0/22 : : : A.0/2n
:::

:::
: : :

:::

A.0/n1 A.0/n2 : : : A.0/nn

1

CCCCCC
A

:

Then must exist a permutation matrix P1 for row interchanges such that

P1A D

0

BBBB
BB
@

A.1/11 A.1/12 : : : A.1/1n

A.1/21 A.1/22 : : : A.1/2n
:::

:::
: : :

:::

A.1/n1 A.1/n2 : : : A.1/nn

1

CCCC
CC
A

;
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and the block A.1/1n is nonsingular. In the first step, there must exist a nonsingular

matrix H1 such that A.1/11 �H1A
.1/
1n D I. Then, we get H1 D

h
A.1/1n

i�1�A.1/11
h
A.1/1n

i�1

and obtain a product of

P1AS1 D P1A

0

BB
B
@

I 0 : : : 0

0 I : : : 0
:::

:::
: : :

:::

�H1 0 : : : I

1

CC
C
A

D

0

BB
BB
@

I A.1/12 : : : A.1/1n

A.1/21 � H1A
.1/
2n A.1/22 : : : A.1/2n

:::
:::
: : :

:::

A.1/n1 � H1A.1/nn A.1/n2 : : : A.1/nn

1

CC
CC
A
:

The second step is the block Gaussian elimination of the first column by pre-
multiplication of the product P1AS1 by the Gauss block elementary matrix L1 as
follows:

L1P1AS1 D

0

BBB
B
@

I 0 : : : 0

H1A
.1/
2n � A.1/21 I : : : 0
:::

:::
: : :

:::

H1A.1/nn � A.1/n1 0 : : : I

1

CCC
C
A

P1AS1 D

0

BBB
B
@

I A.2/12 : : : A.2/1n

0 A.2/22 : : : A.2/2n
:::
:::
: : :

:::

0 A.2/n2 : : : A.2/nn

1

CCC
C
A
:

Continuing the factorization process for k D 2; 3; : : : ; n � 1, where matrices Pk

define the row interchanges among the kth through nth rows to guarantee that
the block A

.k/

kn is nonsingular, matrices Sk convert diagonal blocks A.k/kk to the

identity matrix, where Hk D
h
A
.k/

kn

i�1 � A
.k/

kk

h
A
.k/

kn

i�1
, and matrices Lk represent

row multipliers used for block Gaussian elimination of column k. Completing the
factorization process we get the product:

Ln�1Pn�1 : : :L2P2L1P1AS1S2 : : : Sn�1 D

0

BBBBBB
BBBB
@

I A.n�1/
12 : : : A.n�1/

1n

0 I : : : A.n�1/
2n

:::
:::

: : :
:::

0 0 : : : A.n�1/
nn

1

CCCCCC
CCCC
A

D U;

where U is the upper block triangular. If det .A/ D 1, then det .A.n�1/
nn / D 1.

Having, respectively, multiplied all matrices Sk together, all permutation matrices
Pk together, and all Lk being the lower block triangular matrices with unit diagonal
blocks together, we have one matrix S�1, one pre-multiplying matrix PT , and one
lower block triangular matrix L�1 with unit diagonal blocks. From algebra of block
triangular matrices it follows that the inverse of a lower block triangular matrix with
unit diagonal blocks is also a lower block triangular matrix with unit diagonal blocks
and we have
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S1 S2 : : : Sn�1 D

0

BBBB
B
@

I 0 : : : 0 0

0 I : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : I 0

�H1 �H2 : : : �Hn�1 I

1

CCCC
C
A

D S
�1

and

Ln�1Pn�1 : : :L2P2L1P1

D Ln�1
�

Pn�1Ln�2P
T

n�1
�
: : :
�

Pn�1 : : :P2L1P
T

2 : : :P
T

n�1
�
.Pn�1 : : :P2P1/

D L�1PT ;

where

L�1 D Ln�1
�

Pn�1Ln�2P
T

n�1
�
: : :
�

Pn�1 : : :P2L1P
T

2 : : :P
T

n�1
�

and

P�1 D PT D PN�1 : : :P2P1:

Hence, finally we obtain L�1P�1AS�1 D U or A D PLUS block factorization.
In order to illustrate the existence of block PLUS factorization, consider the

simplest case of a nonsingular 2 � 2 block matrix M partitioned to square blocks as

M D
�

A B
C D

�
;

where the block B is nonsingular and P D I.
According to the PLUS factorization algorithm must exist a nonsingular block

H such that A � BH D I. Then we get H D B�1A � B�1 and obtain a product of

MS�1 D
�

A B
C D

��
I 0

�H I

�
D
�

I B
C � DH D

�
:

To complete factorization process, we apply the block Gauss elimination by pre-
multiplying the product MS�1 by the Gauss block elementary matrix L�1, and we
finally get

L�1MS�1 D
�

I 0

DH � C I

��
A B
C D

��
I 0

�H I

�
D
�

I B
0 .DH � C/B C D

�
D U;



592 A Selected Mathematical Basics from Matrix Theory and Linear Algebra

where L�1 and S�1 are lower block triangular with unit diagonal blocks, U is upper
block triangular, and

.DH � C/B C D D DB�1AB � DB�1B � CB C D D .DB�1A � C/B:

Using the algebra of block triangular matrices, pre-multiplying the product
L�1MS�1 by L, and post-multiplying by S we obtain the block PLUS factorization
of M as

�
A B
C D

�
D
�

I 0

C � DH I

��
I B
0 .DB�1A � C/B

��
I 0

H I

�
; (A.63)

where

H D B�1A � B�1:

If the blocks A and B are commuting, i.e., AB D BA, Eq. (A.63) can be simplified as

�
A B
C D

�
D
�

I 0

C � DH I

��
I B
0 DA � CB

��
I 0

H I

�
; (A.64)



Appendix B
Odd-Time Odd-Frequency Discrete Fourier
transform (O2DFT)

B.1 Definitions and Symmetry Properties

The odd-time odd-frequency discrete Fourier transform (O2DFT) has been
introduced in digital signal processing as an alternative method to efficiently
transform symmetric real-valued data sequences [1, 5]. Essentially, the fast O2DFT
algorithm for real-valued symmetric data sequences based on an N

4
-point complex-

valued DFT has played the key role in the efficient MDCT computation as well as
the efficient computation of DCT-IV/DST-IV [16, 23, 35].

An arbitrary real-valued data sequence fxng; n D 0; 1; : : : ;N � 1, can be split
into its odd and even parts, respectively, as

un D 1

2
.xn � xN�1�n/; vn D 1

2
.xn C xN�1�n/; n D 0; 1; : : : ;N � 1:

(B.1)
Then, odd part fung and even part fvng have the corresponding odd and even
symmetry, respectively, given by

un D �wN�1�n; vn D vN�1�n; n D 0; 1; : : : ;
N

2
� 1: (B.2)

It is obvious that xn D un C vn; n D 0; 1; : : : ;N � 1.
Let fxng; n D 0; 1; : : : ;N � 1, represent an input data sequence and ffkg; k D

0; 1; : : : ;N �1, represent O2DFT frequency coefficients, where N is an even integer.
Then, the forward and inverse O2DFT are, respectively, defined as [1, 5]

fk D O2DFTfxng D 1

N

N�1X

nD0
xn W

�.2nC1/.2kC1/

4N ; k D 0; 1; : : : ;N � 1; (B.3)

xn D O2DFT�1ffkg D
N�1X

kD0
fk W

.2nC1/.2kC1/

4N ; n D 0; 1; : : : ;N � 1; (B.4)

© Springer International Publishing AG 2018
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where W
�nk

N D e�i 2�nk
N D cos 2�nk

N 
 i sin 2�nk
N , and i D p�1. If fxng is real-

valued, then ffkg possesses the basic conjugate symmetry property given by

fN�1�k D �f
�

k ; k D 0; 1; : : : ;
N

2
� 1; (B.5)

where � denotes complex conjugate. Due to this basic symmetry property it is
sufficient to calculate the transform for even indices only [1, 5]. Similarly, if ffkg
is real-valued, then

xN�1�n D �x
�

n ; n D 0; 1; : : : ;
N

2
� 1: (B.6)

Additionally, when the input data sequence fxng is real-valued and odd symmetric,
i.e., xN�1�n D �xn; n D 0; 1; : : : ; N

2
�1, then ffkg is purely real and odd symmetric.

When fxng is even symmetric, i.e., xN�1�n D xn; n D 0; 1; : : : ; N
2

� 1, then ffkg is
purely imaginary and even symmetric. N is an integer multiple of 4.

The O2DFT is equivalent to the generalized discrete Fourier transform of type
IV (GDFT-IV) which is related to the generalized discrete Hartley transform of type
IV (GDHT-IV) of real-valued data sequences [10]. Additionally, the real/imaginary
parts of both the O2DFT and GDFT-IV of real-valued data sequences are intrinsi-
cally related to the DCT-IV/DST-IV of half sizes [10, 23, 35]. Consequently, the
DCT-IV/DST-IV computation can be efficiently realized via the double length fast
O2DFT algorithm of odd/even extended real-valued data sequences [23].

B.2 The Fast O2DFT Algorithm

The following fast algorithm can be used for the efficient computation of the forward
O2DFT [5]

fk D f2k C i f N
2 C2k D 2

N

N
4 �1X

nD0

�
x2n � i x N

2 C2n

�
W

�.4nC1/.4kC1/

4N

D 2

N
W

�.8kC1/

8N

N
4 �1X

nD0

h�
x2n � i x N

2 C2n

�
W

�.8nC1/

8N

i
W

�nk

N
4

;

k D 0; 1; : : : ;
N

4
� 1: (B.7)

The transform kernel W
�.4nC1/.4kC1/

4N D W
�.8kC1/

8N W
�nk

N
4

W
�.8nC1/

8N is uniformly split into

two equal parts N
4

-point forward complex-valued DFT (CDFT). The necessary
separation process in the above fast algorithm is given by

f2k D <e ffkg; f N
2 C2k D =m ffkg; k D 0; 1; : : : ;

N

4
� 1: (B.8)
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This separation process is less obvious for real-valued even symmetric data
sequences because the corresponding transform is purely imaginary, and it is given
by Cramer and Gluth et al. [16]

f2k D i =m ffkg; f N
2 C2k D �i <e ffkg; k D 0; 1; : : : ;

N

4
� 1: (B.9)

Since for an arbitrary real-valued data sequence the following relation holds:

xn D O2DFT�1ffkg D O2DFT
n

f
�

k

o
; (B.10)

the inverse O2DFT computation can be realized by the same algorithm as

xn D x2n C i x N
2 C2n D

N
4 �1X

kD0

�
f2k C i f N

2 C2k

��
W

�.4nC1/.4kC1/

4N

D W
�.8nC1/

8N

N
4 �1X

kD0

h�
f2k � i f N

2 C2k

�
W

�.8kC1/

8N

i
W

�nk

N
4

;

n D 0; 1; : : : ;
N

4
� 1: (B.11)

The necessary separation process in the above fast algorithm is given by

x2n D <e fxng; x N
2 C2n D =m fxng; n D 0; 1; : : : ;

N

4
� 1: (B.12)

The fast O2DFT algorithm is not restricted to real-valued data sequences with the
odd/even symmetry but it is also valid for any purely imaginary data sequences with
the odd/even symmetry [16]. In this case ffkg has the basic conjugate symmetry
property given by

fN�1�k D f
�

k ; k D 0; 1; : : : ;
N

2
� 1; (B.13)



Appendix C
Fast DCT/DST Computational Structures

C.1 Fast DCT-II/DCT-III Computational Structures

The unnormalized forward N-point DCT-II is defined by Malvar [32] and Britanak
et al. [11]

c
II

k D
N�1X

nD0
xn cos

�
�.2n C 1/k

2N

	
; k D 0; 1; : : : ;N � 1; (C.1)

while unnormalized inverse DCT-II, the DCT-III, is defined by Malvar [32] and
Britanak et al. [11]

xn D
N�1X

kD0
c

II

k cos

�
�.2n C 1/k

2N

	
; n D 0; 1; : : : ;N � 1; (C.2)

where fxng is an input data sequence and
n
c

II

k

o
are DCT-II transform coefficients.

Exchanging the roles of time and frequency indices n and k in (C.1), the DCT-II
can be equivalently written as

xn D
N�1X

kD0
c

II

k cos

�
�.2k C 1/n

2N

	
; k D 0; 1; : : : ;N � 1: (C.3)

Substituting N � n for n D 1; 2; : : : ;N, into (C.3) we obtain the following useful
relation:

xN�n D
N�1X

kD0
c

II

k .�1/k sin

�
�.2k C 1/n

2N

	
; n D 1; 2; : : : ;N; (C.4)
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598 C Fast DCT/DST Computational Structures

where the sine transform kernel in (C.4) is recognized as that of corresponding
type-II discrete sine transform (DST-II) [11]. In contrast to the DCT-IV, the DCT-
II is not symmetric transform. Indeed, representing the DCT-II defined by (C.1)
by the matrix C

II

N and the DCT-III defined by (C.2) by the matrix C
III

N we have:
h
C

II

N

i�1 D C
III

N D
h
C

II

N

iT
or vice versa,

h
C

III

N

i�1 D C
II

N D
h
C

III

N

iT
, where T denotes

matrix transposition. It means that the DCT-III computation can be realized by a fast
DCT-II computational structure which has to be inverted or performed in the reverse
direction.

C.1.1 Fast Recursive Even-Length DCT-II

Although many fast (recursive) DCT-II/DCT-III algorithms for the N D 2n lengths
are available in the literature [4, 6, 11, 13, 30, 32, 40], perhaps the most suitable
algorithm in terms of the generality and simplicity is the well known even-length
fast recursive DCT-II algorithm defined as [30]

c
II

2k D
N
2 �1X

nD0
.xn C xN�1�n/ cos

�
�.2n C 1/k

2.N=2/

	
;

c
II

2kC1 D
N
2 �1X

nD0

�
.xn � xN�1�n/ 2 cos

�.2n C 1/

2N

�
cos

�
�.2n C 1/k

2.N=2/

	
� c

II

2k�1;

k D 0; 1; : : : ;
N

2
� 1: (C.5)

Denoting the sum in the second expression of (C.5) by y2kC1, the odd-indexed DCT-
II frequency coefficients are obtained as

2 c
II

1 D y0; if k D 0;

c
II

2kC1 D y2kC1 � y2k�1; k D 1; 2; : : : ;
N

2
� 1: (C.6)

Thus, the even-length N-point DCT-II is decomposed into two N
2

-point DCTs-II
given by (C.5) and the recursive post-addition stage given by (C.6). When N D 2n

(the so-called radix-2 algorithm), the decomposition defined by (C.5) and (C.6) is
repeated recursively until only 2-point DCTs-II remain. The arithmetic complexity
of computing 2n-point DCT-II is given by Kok [30]

M
II

2n D N

2
n; A

II

2n D N

2
.3n � 2/C 1; (C.7)
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where M
II

2n and A
II

2n denote, respectively, the number of multiplications and additions.
When N is a composite number, i.e., it is of the form N D 2n � q, n > 0, where q
is an odd positive integer (the so-called mixed-radix algorithm being a combination
of radix-2 and radix-q algorithms), the decomposition defined by (C.5) and (C.6)
is repeated recursively m times until only 2n odd q-length DCTs-II remain [3, 4].
The arithmetic complexity of computing the N-point DCT-II for composite lengths
is given by Kok [30]

M
II

2n�q D 2n � M
II

q C N

2
n; A

II

2n�q D 2n � A
II

q C 3N

2
n � 2n C 1; (C.8)

where M
II

q and A
II

q denote, respectively, the number of multiplications and additions
of an odd q-length DCT-II.

C.2 Fast DCT-IV/DST-IV Computational Structures

The unnormalized forward and inverse N-point DCT-IV transforms are, respec-
tively, defined by Malvar [32] and Britanak et al. [11]

c
IV

k D
N�1X

nD0
x
.c/

n cos
h �
4N
.2k C 1/.2n C 1/

i
; k D 0; 1; : : : ;N � 1; (C.9)

x
.c/

n D
N�1X

kD0
c

IV

k cos
h �
4N
.2k C 1/.2n C 1/

i
; n D 0; 1; : : : ;N � 1; (C.10)

where
n
x
.c/

n

o
is an input data sequence and

n
c

IV

k

o
are DCT-IV transform coefficients.

Since the cosine transform kernel in (C.9) and (C.10) is symmetric with respect to
the time and frequency indices n and k, the DCT-IV is the symmetric transform.
Indeed, representing the forward and inverse DCT-IV respectively given by (C.9)

and (C.10) by the matrix C
IV

N we have:
h
C

IV

N

i�1 D C
IV

N D
h
C

IV

N

iT
, i.e., C

IV

N is self-

inverse. T denotes the matrix transposition. Consequently, the forward and inverse
DCT-IV can be realized by an identical fast computational structure.

On the other hand, the unnormalized forward and inverse N-point DST-IV
transforms are, respectively, defined by Britanak et al. [11]

s
IV

k D
N�1X

mD0
x
.s/

n sin
h �
4N
.2k C 1/.2n C 1/

i
; k D 0; 1; : : : ;N � 1; (C.11)

x
.s/

n D
N�1X

kD0
s

IV

k sin
h �
4N
.2k C 1/.2n C 1/

i
; n D 0; 1; : : : ;N � 1; (C.12)
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where
n
x
.s/

n

o
is an input data sequence and

n
s

IV

k

o
are DST-IV transform coefficients.

There exists a close relation between the DCT-IV and DST-IV and vice versa.
Specifically, substituting N � 1 � k for k into Eq. (C.11) and then N � 1 � n for
n into (C.12) we, respectively, obtain:

s
IV

N�1�k D
N�1X

kD0
.�1/n x

.s/

n cos
h �
4N
.2k C 1/.2n C 1/

i
; k D 0; 1; : : : ;N � 1: (C.13)

x
.s/

N�1�n D
N�1X

kD0
s

IV

k .�1/k cos
h �
4N
.2k C 1/.2n C 1/

i
; n D 0; 1; : : : ;N � 1: (C.14)

Further, substituting N � 1 � k for k into Eq. (C.9) and then N � 1 � n for n
into (C.10) we, respectively, obtain:

c
IV

N�1�k D
N�1X

kD0
.�1/n x

.c/

n sin
h �
4N
.2k C 1/.2n C 1/

i
; k D 0; 1; : : : ;N � 1: (C.15)

x
.c/

N�1�n D
N�1X

kD0
c

IV

k .�1/k sin
h �
4N
.2k C 1/.2n C 1/

i
; n D 0; 1; : : : ;N � 1: (C.16)

Relations (C.13), (C.14), (C.15), and (C.16) imply that the forward and inverse DST-
IV can be realized via the corresponding DCT-IV, or vice versa. Finally, substituting
N � 1 � k for k into (C.16) we obtain

x
.c/

N�1�n D .�1/n
N�1X

kD0
c

IV

N�1�k .�1/N�1�k cos
h �
4N
.2k C 1/.2n C 1/

i
;

n D 0; 1; : : : ;N � 1: (C.17)

Relations (C.16) and (C.17) are very useful in the derivations of the fast algorithms
for cosine-modulated filter banks.

C.2.1 Fast 2m-Length DCT-IV/DST-IV Computational
Structures

For the efficient DCT-IV computation various fast algorithms for N D 2n lengths
may be adopted [7, 9, 11, 13, 23, 32, 35]. However, the most suitable 2n-length fast
DCT-IV algorithm which combines the theoretical efficiency with a very regular
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computational structure and achieving the lowest multiplicative complexity [23, 32,
35] is based on a fast O2DFT algorithm derived for odd/even symmetric real-valued
data sequences [5]. For the forward N-point DCT-IV computation it is defined as
[23, 32]

fk D exp

�
�i
�.8k C 1/

8N

� N
2 �1X

nD0

��
x
.c/

2n C i x
.c/

N�1�2n

�
exp

�
�i
�.8n C 1/

8N

�	

exp

�
�i
2�nk

N=2

�
;

k D 0; 1; : : : ;
N

2
� 1; (C.18)

where ffkg are complex-valued DFT transform coefficients, and i D p�1
is the imaginary unit. Complex-valued twiddle factors exp

�
�i �.8kC1/

8N

�
and

exp
�
�i �.8nC1/

8N

�
in (C.18), correspond to the identical blocks of N

2
Givens–Jacobi

pre- and post-rotations. The complex exponential transform kernel exp
�
�i 2�nk

N=2

�

corresponds to the N
2

-point complex forward FFT. The final DCT-IV coefficients
are obtained as

c
IV

2k D <e ffkg; c
IV

N�1�2k D �=m ffkg; k D 0; 1; : : : ;
N

2
� 1: (C.19)

On the other hand, the fast FFT-based algorithm for the inverse N-point DCT-IV
computation is defined as [23, 32]

fn D exp

�
�i
�.8n C 1/

8N

� N
2 �1X

kD0

��
c

IV

2k C i c
IV

N�1�2k

�
exp

�
�i
�.8k C 1/

8N

�	

exp

�
�i
2�nk

N=2

�
;

n D 0; 1; : : : ;
N

2
� 1; (C.20)

and the data sequence fx
.c/

n g is obtained as

x
.c/

2n D <e ffng; x
.c/

N�1�2n D � =m ffng; n D 0; 1; : : : ;
N

2
� 1: (C.21)

Comparing Eqs. (C.18) and (C.20) for exchanged time and frequency indices n and
k results in the identical fast DCT-IV computational structure both for the forward
and inverse DCT-IV computation. Block diagram of the fast DCT-IV computational
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(N/2)-point
forward

FFT

j+1)
8N( )exp -i j+1)

8N( )exp -i k

n

f2n N-1-2n
(c) (c)

IV IV )2k N-1-2k

Fig. C.1 Block diagram of the fast DCT-IV computational structure based on FFT

structure based on FFT is shown in Fig. C.1. Its arithmetic complexity for N D 2n

lengths is given by [32]

M
IV

N D N

2
.n C 2/; A

IV

N D 3N

2
n; (C.22)

where M
IV

N and A
IV

N denote, respectively, the number of real multiplications and real
additions.

For completeness, the corresponding FFT-based fast algorithm for the forward
N-point DST-IV computation is defined as [23]

fk D exp

�
�i
�.8k C 1/

8N

� N
2 �1X

nD0

��
x
.s/

2n � i x
.s/

N�1�2n

�
exp

�
�i
�.8n C 1/

8N

�	

exp

�
�i
2�nk

N=2

�
;

k D 0; 1; : : : ;
N

2
� 1; (C.23)

and the final DST-IV coefficients are obtained as

s
IV

2k D � =m ffkg; s
IV

N�1�2k D <e ffkg; k D 0; 1; : : : ;
N

2
� 1: (C.24)

The fast FFT-based algorithm for the inverse N-point DST-IV computation is
defined as [23]

fn D exp

�
�i
�.8n C 1/

8N

� N
2 �1X

kD0

��
s

IV

2k � i s
IV

N�1�2k

�
exp

�
�i
�.8k C 1/

8N

�	

exp

�
�i
2�nk

N=2

�
;
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b

Fig. C.2 Bilinear computational structure for the efficient implementation of complex multiplica-
tions by twiddle factors exp .�i 'j/ D cos'j � i sin'j, where 'j D �.8jC1/

8N , j D 0; 1; : : : ; N
2

� 1

n D 0; 1; : : : ;
N

2
� 1; (C.25)

and the data sequence fx
.s/

n g is obtained as

x
.s/

2n D � =m ffng; x
.s/

N�1�2n D <e ffng; n D 0; 1; : : : ;
N

2
� 1: (C.26)

The fast DCT-IV computational structure shown in Fig. C.1 can easily be adopted
for the DST-IV computation.

Two identical blocks of twiddle factors in Eqs. (C.18) and (C.20) are complex
numbers of the form: exp .�i 'j/ D cos'j � i sin'j, where 'j D �.8jC1/

8N , j D
0; 1; : : : ; N

2
�1. Multiplication of two complex numbers ŒaCib� and Œcos'j �i sin'j�

can be written in the equivalent matrix-vector notation as
� <e f:g

=m f:g
�

D
�

cos'j sin'j

� sin'j cos'j

��
a
b

�
; (C.27)

where the 2 � 2 matrix on the right-hand side of (C.27) is a Givens–Jacobi rotation
matrix [24]. Two identical blocks of twiddle factors in Eqs. (C.18) and (C.20)
defining the fast DCT-IV computational structure which is shown in Fig. C.1 can be
replaced by the bilinear computational structures for the efficient implementation of
Givens–Jacobi rotations (see Appendix F.3). The bilinear computational structure
shown for efficient implementation of complex multiplications by twiddle factors is
shown in Fig. C.2.

C.2.2 Fast Even-Length DCT-IV Computational Structure

An even-length fast DCT-IV algorithm based on two DCTs-II of half sizes has been
proposed in [9]. The so-called N-point fast DCT-IV computational structure with
constant geometry is defined as



604 C Fast DCT/DST Computational Structures

c
IV

2k D
N
2 �1X

nD0
an cos

�
�.2n C 1/k

2.N=2/

	
C bn sin

�
�.2n C 1/k

2.N=2/

	
;

c
IV

2k�1 D
N
2 �1X

nD0
an cos

�
�.2n C 1/k

2.N=2/

	
� bn sin

�
�.2n C 1/k

2.N=2/

	
; k D 1; 2; : : : ;

N

2
� 1;

(C.28)

where

an D yn cos
�.2n C 1/

4N
C y N

2 �1�n sin
�.2n C 1/

4N
;

bn D � yn sin
�.2n C 1/

4N
C y N

2 �1�n cos
�.2n C 1/

4N
; n D 0; 1; : : : ;

N

2
� 1:
(C.29)

Thus, the N-point DCT-IV is decomposed into the block of N
2

Givens–Jacobi
rotations given by (C.29), an N

2
-point DCT-II and a corresponding N

2
-point type-

II discrete sine transform (DST-II), whose outputs are combined to obtain the final
DCT-IV frequency coefficients. For k D 0 in the first sum and for k D N

2
in the

second sum of (C.28), we, respectively, get

c
IV

0 D
N
2 �1X

nD0
an; c

IV

N�1 D �
N
2 �1X

nD0
.�1/n bn: (C.30)

Further, denoting the N
2

-point DCT-II of fang and N
2

-point DST-II of fbng in
Eq. (C.28), respectively, by

c
II

k D
N
2 �1X

nD0
an cos

�
�.2n C 1/k

2.N=2/

	
; s

II

k D
N
2 �1X

nD0
bn sin

�
�.2n C 1/k

2.N=2/

	
;

k D 1; 2; : : : ;
N

2
� 1;

and using the relation between the DCT-II and the DST-II [11], i.e., substituting
N
2

� k for k into the second sum above we get

s
II

N
2 �k

D
N
2 �1X

nD0
.�1/n bn cos

�
�.2n C 1/k

2.N=2/

	
D

N
2 �1X

mD0
b0

n cos

�
�.2n C 1/k

2.N=2/

	
;

k D 1; 2; : : : ;
N

2
� 1:
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Fig. C.3 Regular 10-point fast DCT-IV computational structure [9]

Thus, the N
2

-point DST-II of fbng is converted to an N
2

-point DCT-II of fb0
ng. Then

Eqs. (C.28) and (C.30) can be rewritten in a simplified equivalent form as

c
IV

2k D c
II

k C s
II

N
2 �k
; c

IV

0 D c
II

0 ;

c
IV

2k�1 D c
II

k � s
II

N
2 �k
; c

IV

N�1 D � s
II

N
2

; k D 1; 2; : : : ;
N

2
� 1: (C.31)

Two unnormalized N
2

-point DCTs-II in (C.31) can be implemented by the fast
recursive DCT-II algorithm described in the Appendix C.1.1. As an example, the
regular 10-point fast DCT-IV computational structure consisting of three stages is
shown in Fig. C.3. The required efficient 5-point DCT-II/III modules additionally
optimized together with their arithmetic complexity are presented in Appendix D.7.
Note that the last butterfly stage in Fig. C.3 may be reorganized so that the DCT-
IV frequency coefficients are obtained in natural order [9]. When N D 2n, using
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Eq. (C.7) the arithmetic complexity of the fast DCT-IV computational structure is
given by (C.22). When N is a composite number (N D 2n � q, n > 1, q is an
odd positive integer), using Eq. (C.8) the arithmetic complexity of the fast DCT-IV
computational structure is given by

M
IV

2n�q D 2n � M
II

q C N

2
.n C2/; A

IV

2n�q D 2n � A
II

q C N

2
.3n C2/�2n: (C.32)

Since the DCT-IV is symmetric with respect to the time and frequency indices,
i.e., the DCT-IV matrix is self-inverse, the forward and inverse DCT-IV can be
realized by the identical fast computational structure.

C.3 Fast DCT-IV Algorithm Based on the DCT-II and Fast
DCT-II/DCT-III Algorithm Based on DCT-IV

In general, for the computation of DCT-II/DCT-III we need two separate fast
computational structures, one for the DCT-II and one for the DCT-III [6]. In order
to minimize memory resources, it is possible to propose alternative fast DCT-II and
DCT-III computational structures based on a relation between the DCT-IV and the
DCT-II defined by a matrix product as follows. It is well known that the matrix C

IV

N

is related to C
II

N matrix by Britanak et al. [11]

C
IV

N D LN C
II

N DN ; (C.33)

where DN D diag
n
2 cos �.2nC1/

4N

o
, n D 0; 1; : : : ;N � 1, is the diagonal matrix of

order N, and LN is a lower triangular matrix of order N given by

LN D

0

BBBBB
BBB
@

1
2

0 0 0 � � � 0
� 1
2

1 0 0 � � � 0
1
2

�1 1 0 � � � 0
� 1
2

1 �1 1 � � � 0
:::

:::
:::
:::
: : :

:::

� 1
2

1 �1 1 � � � 1

1

CCCCC
CCC
A

: (C.34)

Equation (C.33) has a twofold importance. Firstly, it provides an alternative
fast DCT-IV algorithm realized via the DCT-II of the same size at the cost of
additional N multiplications and N �1 recursive additions. However, in the efficient
implementations of filter banks multiplications by the factors 2 cos �.2nC1/

4N can
be simply absorbed into the windowing operations in the encoder/decoder, i.e.,
the windowing function is modified. On the other hand, for the inverse DCT-IV
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computation a fast DCT-II computational structure has to be inverted. With respect
to (C.7) the arithmetic complexity of fast forward/inverse DCT-IV computation via
DCT-II/DCT-III is given by

M
IV

N D N

2
n; A

IV

N D 3N

2
n: (C.35)

Secondly, Eq. (C.33) provides a basis to construct alternative fast DCT-II and
DCT-III computational structures via the DCT-IV of the same size. Matrices DN and
LN in (C.33) are nonsingular, and therefore their inverse matrices exist. Performing
matrix multiplications on both sides of (C.33), i.e., left-multiplying by L

�1

N , then

right-multiplying by inverse diagonal matrix D
�1

N , we get

C
II

N D L
�1

N C
IV

N D
�1

N ; (C.36)

where D
�1

N D diag
n
1=.2 cos �.2nC1/

4N /
o
, n D 0; 1; : : : ;N � 1, and L

�1

N is a lower

bidiagonal matrix of order N given by

L
�1

N D

0

BBBBBB
BB
@

2 0 0 � � � 0 0 0
1 1 0 � � � 0 0 0
0 1 1 � � � 0 0 0
:::
:::
:::
: : :

:::
:::
:::

0 0 0 � � � 1 1 0
0 0 0 � � � 0 1 1

1

CCCCCC
CC
A

: (C.37)

Equation (C.36) defines the fast DCT-II computational structure based on the DCT-
IV. Further, by transposing both sides of (C.36) we get

h
C

II

N

iT D C
III

N D D
�1

N C
IV

N

h
L

�1

N

iT
; (C.38)

where
h
L

�1

N

iT
is an upper bidiagonal matrix of order N given by

h
L

�1

N

iT D

0

BB
BBBBBB
@

2 1 0 0 � � � 0 0
0 1 1 0 � � � 0 0
0 0 1 1 � � � 0 0
:::
:::
:::
:::
: : :

:::
:::

0 0 0 0 � � � 1 1
0 0 0 0 � � � 0 1

1

CC
CCCCCC
A

: (C.39)
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Equation (C.38) defines the fast DCT-III computational structure again based on the
DCT-IV. The diagonal matrix D

�1

N includes N pre- or post-multiplications. Both

band bidiagonal matrices
h
L

�1

N

iT
and L

�1

N include N � 1 pre- or post-additions

[22, 24, 39]. Hence, the DCT-III or DCT-II can be realized via the DCT-IV only
by simple pre- or post-processing of input and output data sequences. If we adopt
the fast DCT-IV computational structure defined by (C.18), according to (C.22) the
arithmetic complexity of proposed fast DCT-II/DCT-III computational structures via
the DCT-IV for N D 2n lengths is given by

M
II=III

N D N

2
.n C 4/; A

II=III

N D N

2
.3n C 2/ � 1: (C.40)

Although the fast DCT-II and DCT-III computational structures via the DCT-
IV require exactly 2N more multiplications and N more additions than classic fast
DCT-II and DCT-III algorithms (see the arithmetic complexity given by (C.7)),
nevertheless the composition of (C.18), (C.36), and (C.38) provides the elegant and
simple compact computational system for the efficient implementation of all the
discrete orthogonal transforms, DCT-IV, DCT-II, and DCT-III, in terms of structural
simplicity, regularity, and memory requirements.



Appendix D
Optimized Efficient Short Odd-Length Complex
DFT, Real-Valued DFT, and (S)DCT Modules

The optimized efficient odd-length modules represent the unscaled, unnormalized
version of the appropriate discrete sinusoidal unitary transform. For each efficient
odd-length module the corresponding total arithmetic complexity is also specified.

We note that in all odd-length efficient modules, additions and multiplications
(shifts) are sequenced and must be executed in the specified order. When there are
several expressions to a line, they are read left to right before proceeding to next line.

D.1 Table of Constants for All the Optimized Efficient Short
Odd-Length Modules

u D 2�
3

d1 D cos .u/ d2 D sin .u/

u D 2�
9

d3 D cos .4u/ d4 D cos .2u/ d5 D cos .u/
d6 D sin .4u/ d7 D sin .2u/ d8 D sin .u/

d9 D 2 d2 d10 D 2 d3 d11 D 2 d4 d12 D 2 d5
d13 D 2 d6 d14 D 2 d7 d15 D 2 d8

d16 D tan . u
2
/ d17 D tan . u

4
/ d18 D tan .u/

D.2 Optimized Efficient 3/9-Point Complex-Valued DFT
(CDFT) Modules

The optimized efficient 3=9-point CDFT modules have been derived from short-
length Winograd Fourier transform algorithms for N D 3 and 9 [12, 19, 34]. The
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efficient 3=9-point CDFT modules represent fast algorithms for the forward 3=9-
point DFT computation. In general, if the inverse 3=9-point DFT computation is
required, then there exist two simple methods how to use a forward CDFT module
for the inverse CDFT computation:

• Substituting �u for u in the above table of constants and performing the forward
CDFT module [19].

• Exchanging the real and imaginary parts in the input complex-valued data
sequence, then performing the forward CDFT module and finally, exchanging
the real and imaginary parts of the result [18].

D.2.1 3-point CDFT Module: 2 Real Mults, 12 Real Adds,
and 2 Shifts

The input data sequence fx0; x1; x2g is complex-valued, the output data sequence
fF0;F1;F2g is complex-valued and i D p�1.

a1 D x1 C x2 a2 D x1 � x2 a3 D x0 C a1

m1 D �i d2 a2 s1 D d1 a1 D � 1
2

a1

a4 D x0 C s1

F0 D a3
F1 D a4 C m1

F2 D a4 � m1

D.2.2 9-Point CDFT Module: 16 Real Mults, 84 Real Adds,
and 4 Shifts

The input data sequence fx0; x1; : : : ; x8g is complex-valued, the output data sequence
fF0;F1; : : : ;F8g is complex-valued, and i D p�1.

a1 D x1 C x8 a2 D x1 � x8 a3 D x2 C x7 a4 D x2 � x7
a5 D x3 C x6 a6 D x3 � x6 a7 D x4 C x5 a8 D x4 � x5
a9 D x0 C a5 a10 D a1 C a3 a11 D a10 C a7 a12 D a3 � a7
a13 D a1 � a7 a14 D a1 � a3 a15 D a2 � a4 a16 D a15 C a8
a17 D a4 C a8 a18 D a2 � a8 a19 D a2 C a4
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m1 D �i d2 a6 m2 D �d3 a12 m3 D �d4 a13 m4 D �d5 a14
m5 D �i d2 a16 m6 D �i d6 a17 m7 D �i d7 a18 m8 D �i d8 a19
s1 D 1

2
a5 s2 D 1

2
a11

a20 D x0 � s1 a21 D a20 C m2 a22 D a20 � m2 a23 D a20 C m3

a24 D m1 C m6 a25 D m1 � m6 a26 D m1 C m7 a27 D a21 � m4

a28 D a22 � m3 a29 D a9 � s2 a30 D a23 C m4 a31 D a26 � m8

a32 D m7 � a25 a33 D a24 C m8

F0 D a9 C a11
F1 D a27 C a33
F2 D a28 C a32
F3 D a29 C m5

F4 D a30 C a31
F5 D a30 � a31
F6 D a29 � m5

F7 D a28 � a32
F8 D a27 � a33

D.3 Optimized Efficient 3/9-Point Real-Valued DFT (RDFT)
Modules

The optimized efficient 3=9-point forward and inverse RDFT modules are derived
from the corresponding 3=9-point CDFT modules simply using the conjugate
symmetry of DFT coefficients [38]. They are used to derive optimized efficient 3=9-
point DCT-II and DCT-III modules.

D.3.1 3-Point Forward RDFT Module: 1 Mult, 4 Adds,
and 1 Shift

The input data sequence fx0; x1; x2g is real-valued and the output data sequence
fF0;F1;F2g is real-valued.

a1 D x1 C x2 a2 D x1 � x2

m1 D �d2 a2 s1 D � 1
2

a1
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F0 D x0 C a1
F1 D x0 C s1
F2 D m1

D.3.2 3-Point Inverse RDFT Module: 1 Mult, 4 Adds,
and 1 Shift

The input data sequence fF0;F1;F2g is real-valued and the output data sequence
fx0; x1; x2g is real-valued.

m1 D �d2 F2 s1 D � 1
2

F1

a1 D F0 C F1 a2 D F0 C s1

x0 D a1
x1 D a2 C m1

x2 D a2 � m1

D.3.3 9-Point Forward RDFT Module: 8 Mults, 34 Adds,
and 2 Shifts

The input data sequence fx0; x1; : : : ; x8g is real-valued and the output data sequence
fF0;F1; : : : ;F8g is real-valued.

a1 D x1 C x8 a2 D x1 � x8 a3 D x2 C x7 a4 D x2 � x7
a5 D x3 C x6 a6 D x3 � x6 a7 D x4 C x5 a8 D x4 � x5
a9 D x0 C a5 a10 D a1 C a3 a11 D a10 C a7 a12 D a3 � a7
a13 D a1 � a7 a14 D a1 � a3 a15 D a2 � a4 a16 D a15 C a8
a17 D a4 C a8 a18 D a2 � a8 a19 D a2 C a4

m1 D �d2 a6 m2 D �d3 a12 m3 D �d4 a13 m4 D �d5 a14
m5 D �d2 a16 m6 D �d6 a17 m7 D �d7 a18 m8 D �d8 a19
s1 D 1

2
a5 s2 D 1

2
a11

a20 D x0 � s1 a21 D a20 C m2 a22 D a20 � m2 a23 D a20 C m3

a24 D m1 C m6 a25 D m1 � m6 a26 D m1 C m7
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F0 D a9 C a11
F1 D a21 � m4

F2 D a22 � m3

F3 D a9 � s2
F4 D a23 C m4

F5 D a26 � m8

F6 D m5

F7 D m7 � a25
F8 D a24 C m8

D.3.4 9-Point Inverse RDFT Module: 8 Mults, 34 Adds, and 2
Shifts

The input data sequence fF0;F1; : : : ;F8g is real-valued and the output data sequence
fx0; x1; : : : ; x8g is real-valued.

a1 D F0 C F3 a2 D F1 C F2 a3 D a2 C F4 a4 D F2 � F4
a5 D F1 � F4 a6 D F1 � F2 a7 D F8 � F7 a8 D a7 C F5
a9 D F7 C F5 a10 D F8 � F5 a11 D F8 C F7

m1 D �d2 F6 m2 D �d3 a4 m3 D �d4 a5 m4 D �d5 a6
m5 D �d2 a8 m6 D �d6 a9 m7 D �d7 a10 m8 D �d8 a11
s1 D 1

2
F3 s2 D 1

2
a3

a12 D F0 � s1 a13 D a12 C m2 a14 D a12 � m2 a15 D a12 C m3

a16 D m1 C m6 a17 D m1 � m6 a18 D m1 C m7 a19 D a13 � m4

a20 D a14 � m3 a21 D a1 � s2 a22 D a15 C m4 a23 D a18 � m8

a24 D m7 � a17 a25 D a16 C m8

x0 D a1 C a3
x1 D a19 C a25
x2 D a20 C a24
x3 D a21 C m5

x4 D a22 C a23
x5 D a22 � a23
x6 D a21 � m5

x7 D a20 � a24
x8 D a19 � a25
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D.4 Optimized Efficient 3/9-Point DCT-II and DCT-III
Modules

The optimized efficient 3=9-point DCT-II and DCT-III modules are, respectively,
derived from the corresponding 3=9-point forward and inverse RDFT modules.
There exists a relation between any odd-length DFT and DCT-II of the same length
[28]. If N is an odd integer, then the DCT-II of length N can be computed by simply
permuting the input data sequence fxng using the index mapping defined as

Oxn D

8
ˆ̂̂
<

ˆ̂̂
:

x.�1/nC.NC1/=2C1 nC N�1
2
; n D 0; 1; : : : ; N�1

2
;

x.�1/nC.NC1/=2C1 .N�n/C N�1
2
; n D NC1

2
; NC3

2
; : : : ;N � 1; (D.1)

and performing the identical-length DFT of fOxng with a DFT algorithm for real-
valued inputs or equivalently with a RDFT algorithm. Then, the DCT-II coefficients
can be extracted as

C2k D .�1/k <e f OFkg; k D 0; 1; : : : ;
N � 1
2

;

CN�2k D .�1/kC1 =m f OFkg; k D 1; 2; : : : ;
N � 1
2

: (D.2)

This relation enables us to derive odd-length DCT-II algorithms from the corre-
sponding forward odd-length RDFT algorithms using the above equations. A similar
relation holds between an odd-length DCT-III, being inverse of the DCT-II, and the
inverse RDFT of the same length. Thus, the odd-length DCT-III algorithms can be
derived from the corresponding inverse odd-length RDFT algorithms by using the
inverse index mapping implied by above equations.

D.4.1 3-Point DCT-II Module: 1 Mult, 4 Adds, and 1 Shift

The input data sequence is fx0; x1; x2g and the output data sequence is fC0;C1;C2g.

a1 D x0 C x2 a2 D x0 � x2

m1 D d2 a2 s1 D � 1
2

a1

C0 D x1 C a1
C1 D m1

C2 D �x1 � s1
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D.4.2 9-point DCT-II Module: 8 Mults, 34 Adds, and 2 Shifts

The input data sequence is fx0; x1; : : : ; x8g and the output data sequence is
fC0;C1; : : : ;C8g.

a1 D x3 C x5 a2 D x3 � x5 a3 D x6 C x2 a4 D x6 � x2
a5 D x1 C x7 a6 D x1 � x7 a7 D x8 C x0 a8 D x8 � x0
a9 D x4 C a5 a10 D a1 C a3 a11 D a10 C a7 a12 D a3 � a7
a13 D a1 � a7 a14 D a1 � a3 a15 D a2 � a4 a16 D a15 C a8
a17 D a4 C a8 a18 D a2 � a8 a19 D a2 C a4

m1 D �d2 a6 m2 D �d3 a12 m3 D �d4 a13 m4 D �d5 a14
m5 D �d2 a16 m6 D �d6 a17 m7 D �d7 a18 m8 D �d8 a19
s1 D 1

2
a5 s2 D 1

2
a11

a20 D x4 � s1 a21 D a20 C m2 a22 D a20 � m2 a23 D a20 C m3

a24 D m1 C m6 a25 D m1 � m6 a26 D m1 C m7

C0 D a9 C a11
C1 D m8 � a26
C2 D m4 � a21
C3 D m5

C4 D a22 � m3

C5 D a25 � m7

C6 D s2 � a9
C7 D a24 C m8

C8 D a23 C m4

D.4.3 3-Point DCT-III Module: 1 Mult, 4 Adds, and 1 Shift

The input data sequence is fC0;C1;C2g and the output data sequence is fx0; x1; x2g.

m1 D �d2 C1 s1 D 1
2

C2

a1 D C0 � C2 a2 D C0 C s1

x0 D a2 � m1

x1 D a1
x2 D a2 C m1
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D.4.4 9-Point DCT-III Module: 8 Mults, 34 Adds, and 2 Shifts

The input data sequence is fC0;C1; : : : ;C8g and the output data sequence is
fx0; x1; : : : ; x8g.

a1 D C0 � C6 a2 D C4 � C2 a3 D a2 C C8 a4 D C4 � C8
a5 D �C2 � C8 a6 D �C2 � C4 a7 D C7 C C5 a8 D a7 � C1
a9 D �C5 � C1 a10 D C7 C C1 a11 D C7 � C5

m1 D �d2 C3 m2 D �d3 a4 m3 D �d4 a5 m4 D �d5 a6
m5 D �d2 a8 m6 D �d6 a9 m7 D �d7 a10 m8 D �d8 a11
s1 D � 1

2
C6 s2 D 1

2
a3

a12 D C0 � s1 a13 D a12 C m2 a14 D a12 � m2 a15 D a12 C m3

a16 D m1 C m6 a17 D m1 � m6 a18 D m1 C m7 a19 D a13 � m4

a20 D a14 � m3 a21 D a1 � s2 a22 D a15 C m4 a23 D a18 � m8

a24 D m7 � a17 a25 D a16 C m8

x0 D a22 � a23
x1 D a21 C m5

x2 D a20 � a24
x3 D a19 C a25
x4 D a1 C a3
x5 D a19 � a25
x6 D a20 C a24
x7 D a21 � m5

x8 D a22 C a23

D.5 Optimized Efficient 3/9-Point Scaled DCT-II (SDCT-II)
Modules

The optimized efficient 3=9-point SDCT-II modules are derived from the corre-
sponding 3=9-point DCT-II modules [31].

D.5.1 3-Point SDCT-II Module: 1 Mult, 4 Adds, and 1 Shift

The input data sequence is fx0; x1; x2g and the output data sequence is fC0;C1;C2g.

a1 D x0 C x2 a2 D x0 � x2

m1 D d9 a2
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C0 D x1 C a1
C1 D m1

C2 D a1 � 2 x1

D.5.2 9-Point SDCT-II Module: 8 Mults, 34 Adds, and 2 Shifts

The input data sequence is fx0; x1; : : : ; x8g and the output data sequence is
fC0;C1; : : : ;C8g.

a1 D x3 C x5 a2 D x3 � x5 a3 D x6 C x2 a4 D x6 � x2
a5 D x1 C x7 a6 D x1 � x7 a7 D x8 C x0 a8 D x8 � x0
a9 D x4 C a5 a10 D a1 C a3 a11 D a10 C a7 a12 D a3 � a7
a13 D a1 � a7 a14 D a1 � a3 a15 D a2 � a4 a16 D a15 C a8
a17 D a4 C a8 a18 D a2 � a8 a19 D a2 C a4 a20 D 2 x4 � a5

m1 D �d9 a6 m2 D �d10 a12 m3 D �d11 a13 m4 D �d12 a14
m5 D �d9 a16 m6 D �d13 a17 m7 D �d14 a18 m8 D �d15 a19

a21 D a20 C m2 a22 D a20 � m2 a23 D a20 C m3 a24 D m1 C m6

a25 D m1 � m6 a26 D m1 C m7

C0 D a9 C a11
C1 D m8 � a26
C2 D m4 � a21
C3 D m5

C4 D a22 � m3

C5 D a25 � m7

C6 D a11 � 2 a9
C7 D a24 C m8

C8 D a23 C m4

D.6 Optimized Efficient 3/9-Point Scaled DCT-IV (SDCT-IV)
Modules

Scaled DCT-IV (SDCT-IV) of an input data sequence fxng is defined as [29]

c
IV

k D p
2

N�1X

mD0
xn cos

h �
4N
.2n C 1/.2k C 1/

i
; k D 0; 1; : : : ;N � 1: (D.3)
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The optimized efficient 3=9-point SDCT-IV modules are derived from the radix-q
DCT-IV algorithm [8, 29], where q is an odd positive integer. If the outputs of SDCT-

IV modules are scaled by
p
2
2

the corresponding DCT-IV modules are obtained.
Since the DCT-IV matrix is symmetric and self-inverse, the forward and inverse
3=9-point DCT-IV computation can be realized by the identical efficient module.

D.6.1 3-Point SDCT-IV Module: 1 Mult, 6 Adds, and 1 Shift

The input data sequence is fx0; x1; x2g and the output data sequence is fC0;C1;C2g.

a1 D x0 C x2 a2 D x0 � x2 a3 D x1 C 1
2

a2

m1 D d2 a1

C0 D m1 C a3
C1 D a2 � x1
C2 D m1 � a3

D.6.2 9-Point SDCT-IV Module: 17 Mults, 53 Adds, and 3
Shifts

The input data sequence is fx0; x1; : : : ; x8g and the output data sequence is
fC0;C1; : : : ;C8g.

a1 D x0 C x8 a2 D x0 � x8 a3 D x1 C x7 a4 D x1 � x7
a5 D x2 C x6 a6 D x2 � x6 a7 D x3 C x5 a8 D x3 � x5

m1 D d16 a1 a9 D m1 � a2 m2 D d8 a9
a10 D a1 � m2 m3 D d16 a10 a11 D a9 C m3

m4 D d2 a3 a12 D m4 C 1
2

a4 s1 D 1
2

a12 a13 D s1 � a4

m5 D d17 a5 a14 D m5 � a6 m6 D d6 a14
a15 D a5 � m6 m7 D d17 a15 a16 D a14 C m7

m8 D d18 a8 a17 D a7 � m8 m9 D d7 a17
a18 D a8 C m9 m10 D d18 a18 a19 D a17 � m10
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a20 D x4 C a12 a21 D a10 C a15 a22 D a21 C a18 a23 D x4 � s1
a24 D a10 � a15 a25 D a10 � a18 a26 D a11 C a16 a27 D a16 C a19
a28 D a11 � a16 a29 D a28 C a19 a30 D a24 � a25 a31 D a27 � a26

m11 D d4 a24 m12 D d5 a25 m13 D �d3 a30 m14 D d7 a26
m15 D d8 a31 m16 D d6 a27 m17 D d2 a29

a32 D a20 C a22 a33 D �a23 C m11 a34 D a33 C m12 a35 D a23 C m13

a36 D a35 C m12 a37 D �a20 C 1
2

a22 a38 D a23 C m11 a39 D a38 � m13

a40 D a13 C m14 a41 D a40 C m15 a42 D a13 � m15 a43 D a42 � m16

a44 D �a13 C m14 a45 D a44 � m16

C0 D a32
C1 D a34 � a41
C2 D a34 C a41
C3 D a36 � a43
C4 D a36 C a43
C5 D a37 � m17

C6 D a37 C m17

C7 D a39 � a45
C8 D a39 C a45

D.7 Efficient 15-Point PFA DCT-II/III Module

The efficient 15-point DCT-II module was derived in [2, 4] by the prime factor
decomposition (PFA) method, and it is shown in Fig. D.1. Full lines represent
transfer factors C1 while dashed lines represent transfer factors �1. Symbol ı
represents addition. The corresponding 15-point PFA DCT-III module can be
obtained by transposing the 15-point PFA DCT-II module, i.e., by its reversing and
performing inverse operations.

The efficient 15-point PFA DCT-II module consists of the first stage of three
5-point DCT-II modules in parallel and the second stage of five 3-point DCT-II
modules in parallel followed by the post-butterfly stage. The outputs and inputs
between stages of 5-point and 3-point DCT-II modules are interconnected according
to the following relations:

.In/3n D .Out/n; .In/3nC1 D .Out/5Cn; .In/3nC2 D .Out/10Cn; n D 0; 1; 2; 3; 4:

No twiddle factors are required among stages. The required efficient 3-point DCT-
II [3, 28] and DCT-III modules additionally optimized together with their arithmetic
complexity are presented in Appendix D.4. Similarly, the required efficient 5-point
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Fig. D.1 Efficient 15-point
PFA DCT-II module [2, 4]
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DCT-II [3, 28] and DCT-III modules additionally optimized together with their
arithmetic complexity are presented below. The arithmetic complexity of efficient
15-point PFA DCT-II/DCT-III module is given by 17 multiplications, 67 additions,
and 8 shift operations.

D.7.1 Optimized Efficient 5-Point DCT-II Module: 4 Mults, 13
Adds, and 1 Shift

The input data sequence is fx0; x1; x2; x3; x4g and the output data sequence isn
c

II

0 ; c
II

1 ; c
II

2 ; c
II

3 ; c
II

4

o
. Note that the multiplication factor 1

4
C cos 2�

5
D

p
5
4

.

a1 D x0 C x4 a2 D x0 � x4
a3 D x1 C x3 a4 D x1 � x3
a5 D a1 C a3 a6 D a1 � a3
a7 D a2 C a4 a8 D x2 � 1

4
a5

m1 D a6
�
1
4

C cos 2�
5



m2 D a7 cos �
10

m3 D a4
�
cos �

10
� cos 3�

10



m4 D a2
�
cos �

10
C cos 3�

10
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D.7.2 Optimized Efficient 5-Point DCT-III Module: 4 Mults, 13
Adds, and 1 Shift

The input data sequence is
n
c

II

0 ; c
II

1 ; c
II

2 ; c
II

3 ; c
II

4

o
and the output data sequence is

fx0; x1; x2; x3; x4g.

a1 D c
II

2 C c
II

4 a2 D c
II

2 � c
II

4

a3 D c
II

1 C c
II

3 a4 D c
II

0 C 1
4

a2

m1 D a1
�
1
4

C cos 2�
5



m2 D a3 cos �
10

m3 D c
II

3

�
cos �

10
� cos 3�

10



m4 D c
II

1

�
cos �

10
C cos 3�

10



a5 D m2 � m3 a6 D m4 � m2

a7 D a4 C m1 a8 D a4 � m1

x0 D a7 C a5
x1 D a8 C a6
x2 D c

II

0 � a2
x3 D a8 � a6
x4 D a7 � a5

D.8 Efficient 15-Point WFTA DCT-II/III Module

From Appendix D.4 it is known that the odd q-length DCT-II and DCT-III modules
can be derived, respectively, from the corresponding odd q-length forward and
inverse RDFT modules. We recall that there exists a relation between any odd q-
length DFT and DCT-II of the same length [28]. This relation enables us to derive
q-length DCT-II algorithms from the corresponding odd q-length forward RDFT
algorithms. If N is an odd integer, and hence when q D 15, then a 15-point DCT-II
can be derived by simply permuting the input data sequence defined by (D.1) and
applying an identical-length RDFT algorithm for real-valued inputs. The DCT-II
coefficients are extracted according to (D.2).

A 15-point DFT can be efficiently implemented by the Winograd Fourier
transform algorithm (WFTA) [12] which uses efficient Winograd’s prime-length 3-
and 5-point DFT modules in a prime factor mapping. Combining the permutation
defined by (D.1) and 15-point WFTA DFT algorithm, an efficient 15-point WFTA
DCT-II module has been derived [14, 15, 36]. The corresponding sparse matrix
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Fig. D.2 Efficient 15-point WFTA DCT-II module [14, 15]

factorization of 15�15DFT matrix in detail is presented in [15]. The corresponding
signal flow graph of efficient 15-point WFTA DCT-II module is shown in Fig. D.2.
Full lines represent transfer factors C1 while dashed lines represent transfer factors
�1. Symbol ı represents addition. The arithmetic complexity of 15-point WFTA
DCT-II module is given by 17multiplications and 67 additions. The 15-point WFTA
DCT-III module can be obtained by transposing the 15-point WFTA DCT-II module,
i.e., by its reversing and performing inverse operations.

Twiddle factors fdig, i D 1; 2; : : : ; 17 in the signal flow graph of efficient 15-
point WFTA DCT-II module in Fig. D.2 are defined as follows [14, 15]:

u D � 2�
5
; v D � 2�

3
;

d1 D 1
2
.cos u C cos 2u/ � 1; d2 D 1

2
.cos u � cos 2u/; d3 D sin u C sin 2u;

d4 D sin 2u; d5 D sin u � sin 2u; d6 D cos v � 1;
d7 D d1 d6; d8 D d2 d6; d9 D d3 d6;
d10 D d4 d6; d11 D d5 d6; d12 D sin v;
d13 D d1 d12; d14 D d2 d12; d15 D � d3 d12;
d16 D � d4 d12; d17 D � d5 d12:
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In [36] it has been shown that among 17 twiddle factors fdig, 3 are dyadic rational
numbers of the form

d1 D � 5
4
; d6 D � 3

2
; d7 D 15

8
:

Thus, efficient 15-point WFTA DCT-II/III module requires 14 nontrivial irrational
multiplications and 67 additions. Multiplications by dyadic rationals can be imple-
mented only by addition and shift operations [11].



Appendix E
Optimized Efficient Short-Length
Forward/Backward MDCT Modules

E.1 Optimized Efficient 4/2-Point Forward/Backward
MDCT Modules

The optimized efficient 4=2-point forward/backward MDCT modules are derived
from the DCT-IV-based fast MDCT algorithm [9]. Note that cos �

8
C sin �

8
Dp

2 cos �
8

and cos �
8

� sin �
8

D p
2 sin �

8
.

E.1.1 Forward 4-Point MDCT Module: 3 Mults and 5 Adds

The input data sequence is fx0; x1; x2; x3g and the output data sequence is fc0; c1g.

a1 D x0 � x1 a2 D �x2 � x3 a3 D a1 C a2
m1 D �a1

p
2 sin �

8
m2 D a2

p
2 cos �

8
m3 D a3 cos �

8

c0 D m1 C m3

c1 D m2 � m3

E.1.2 Backward 2-Point MDCT Module: 3 Mults and 3 Adds

The input data sequence is fc0; c1g and the output time domain aliased data sequence
is fOx0; Ox1; Ox2; Ox3g.

© Springer International Publishing AG 2018
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a1 D c0 � c1
m1 D �c0

p
2 sin �

8
m2 D �c1

p
2 cos �

8
m3 D a1 cos �

8

Ox0 D m1 C m3

Ox1 D �Ox0
Ox2 D m2 � m3

Ox3 D Ox2

E.2 Optimized Efficient 6/3-Point Forward/Backward
MDCT Modules

The optimized efficient 6=3-point forward/backward MDCT modules are derived
directly from the MDCT matrix-vector representation [42].

E.2.1 Forward 6-Point MDCT Module: 1 Mult, 6 Adds, and 1
Shift

The input data sequence is fx0; x1; x2; x3; x4; x5g and the output data sequence is
fc0; c1; c2g.

a1 D x0 � x2 a2 D x3 C x5
a3 D 1

2
a1 � x4 m1 D a2 cos �

6

c0 D a3 � m1

c1 D �a1 � x4
c2 D a3 C m1

E.2.2 Backward 3-Point MDCT Module: 1 Mult, 4 Adds, and 1
Shift

The input data sequence is fc0; c1; c2g and the output time domain aliased data
sequence is fOx0; Ox1; Ox2; Ox3; Ox4; Ox5g.

a1 D c0 C c2 a2 D c0 � c2
m1 D � a2 cos �

6
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Ox0 D 1
2

a1 � c1
Ox1 D 0

Ox2 D �Ox0
Ox3 D m1

Ox4 D �a1 � c1
Ox5 D Ox3

E.3 Optimized Efficient 18/9-Point Forward/Backward
MDCT Modules

Based on the generalized fast mixed–radix MDCT algorithm for composite lengths
2n � 9 [25], the correct optimized efficient 18=9-point forward/backward MDCT
modules are derived directly from the forward/backward MDCT matrix-vector
representation.

E.3.1 Forward 18-Point MDCT Module: 8 Mults, 42 Adds,
and 2 Shifts

The input data sequence is fx0; x1; : : : ; x17g and the output data sequence is
fc0; c1; : : : ; c8g.

a1 D x0 � x8 a2 D x1 � x7 a3 D x2 � x6 a4 D x3 � x5
a5 D x9 C x17 a6 D x10 C x16 a7 D x11 C x15 a8 D x12 C x14

a9 D a1 C a3 a10 D a9 C a8
a11 D a4 � a5 a12 D a11 C a7
a13 D a2 C x13 a14 D 1

2
a2 � x13 a15 D 1

2
a12 C a13

m1 D a6 cos �
6

m2 D a10 cos �
6

m3 D .a1 � a3/ sin 4�
9

m4 D .a1 � a8/ sin 2�
9

m5 D .a3 � a8/ sin �
9

a16 D m4 C m5 � m1 a17 D m3 � m4 � m1a18 D m3 C m5 C m1

m6 D .a4 C a5/ cos 4�
9

m7 D .a4 � a7/ cos 2�
9

m8 D .a5 C a7/ cos �
9

a19 D m6 � m8 C a14 a20 D m7 C m8 C a14 a21 D m6 C m7 � a14
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c0 D a16 C a19
c1 D �m2 � a15
c2 D �a17 C a20
c3 D a18 � a21
c4 D a12 � a13
c5 D �a18 � a21
c6 D a17 C a20
c7 D m2 � a15
c8 D �a16 C a19

E.3.2 Backward 9-Point MDCT Module: 8 Mults, 34 Adds, and
2 Shifts

The input data sequence is fc0; c1; : : : ; c8g and the output time domain aliased data
sequence is fOx0; Ox1; : : : ; Ox17g.

a1 D c0 � c8 a2 D c1 � c7 a3 D c2 � c6 a4 D c3 � c5
a5 D c0 C c8 a6 D c1 C c7 a7 D c2 C c6 a8 D c3 C c5

a9 D a1 � a3 a10 D a9 � a4
a11 D a5 C a7 a12 D a11 C a8
a13 D a6 C c4 a14 D 1

2
a6 � c4 a15 D 1

2
a12 � a13

m1 D a2 cos �
6

m2 D � a10 cos �
6

m3 D .a1 C a3/ sin 4�
9

m4 D .a1 C a4/ sin 2�
9

m5 D .a3 � a4/ sin �
9

a16 D m4 � m5 a17 D m3 � m4 a18 D �m3 C m5

m6 D .a5 � a7/ cos 4�
9

m7 D .a5 � a8/ cos 2�
9

m8 D .a7 � a8/ cos �
9

a19 D m6 C m8 a20 D �m7 C m8 a21 D �m6 � m7

Ox0 D a16 � m1

Ox1 D a15
Ox2 D a17 � m1

Ox3 D a19 � a14
Ox4 D 0

Ox5 D �Ox3
Ox6 D �Ox2
Ox7 D �Ox1
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Ox8 D �Ox0
Ox9 D a20 C a14
Ox10 D m2

Ox11 D a21 � a14
Ox12 D a18 � m1

Ox13 D �a12 � a13
Ox14 D Ox12
Ox15 D Ox11
Ox16 D Ox10
Ox17 D Ox9



Appendix F
Efficient Implementations of Givens–Jacobi
Rotations

F.1 Definitions

A 2 � 2 orthogonal matrix denoted as G' is called Givens–Jacobi rotation, if it has
the form [24]:

G' D
0

@
cos' � sin'

sin' cos'

1

A ; G
�1

' D G
T

' D G�'; (F.1)

where G' and G�' are inverses to each other. T denotes matrix transposition.

F.2 LUL and ULU Computational Structures

The first method for an efficient implementation of Givens–Jacobi rotations is based
on LUL matrix factorization of G' , where L is a unit lower triangular and U is a unit
upper triangular matrix. Provided that the determinant of G' and G�' is unity, i.e.,
det .G'/ D det .G�'/ D C1, then applying the PLUS factorization algorithm (see
Appendix A.6) to G' (in this case P D I is the identity matrix) we get LUS and
hence LUL factorizations of G' and G�' defined as [11]

G' D
0

@
1 0

tan '

2
1

1

A

0

@
1 � sin'

0 1

1

A

0

@
1 0

tan '

2
1

1

A ; (F.2)
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G�' D
0

@
1 0

� tan '

2
1

1

A

0

@
1 sin'

0 1

1

A

0

@
1 0

� tan '

2
1

1

A : sin' 6D 0: (F.3)

Since G' D G
T

�' from (F.2) and (F.3) we obtain the alternative ULU factorizations
of G' and G�' given by

G' D
0

@
1 � tan '

2

0 1

1

A

0

@
1 0

sin' 1

1

A

0

@
1 � tan '

2

0 1

1

A ; sin' 6D 0: (F.4)

G�' D
0

@
1 tan '

2

0 1

1

A

0

@
1 0

� sin' 1

1

A

0

@
1 tan '

2

0 1

1

A : (F.5)

Although G' and G�' are eigenorthogonal, the factored matrices on the right-
hand sides of (F.2), (F.3), (F.4), and (F.5), the so-called Gauss elementary matrices
being unit lower and unit upper triangular matrices, are not longer orthogonal;
however, they are still invertible. LUL and ULU factorizations of G' and G�' define
the corresponding LUL and ULU computational structures, respectively, for the
efficient implementation of forward and inverse Givens–Jacobi rotations. We note
that from computational point of view, LUL and ULU structures are equivalent.
The LUL computational structure for the efficient implementation of y D G' x and
x D G�' y, where x D Œx0; x1�T is the input vector and y D Œy0; y1�T is rotated
vector, is shown in Fig. F.1.

The products of Givens–Jacobi rotations have the following useful properties

G˛ Gˇ D Gˇ G˛ D
0

@
cos.˛ C ˇ/ � sin.˛ C ˇ/

sin.˛ C ˇ/ cos.˛ C ˇ/

1

A D G˛Cˇ;

G�˛ Gˇ D Gˇ G�˛ D G�.˛�ˇ/;

G�˛ G�ˇ D G�ˇ G�˛ D G�.˛Cˇ/: (F.6)

Fig. F.1 LUL computational
structure for the efficient
implementation of y D G' x
and x D G�' y

sin

x0 0

++

tan /2

_

tan /2

x1 1 1 1

0 0
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Fig. F.2 Bilinear
computational structure for
the efficient implementation
of y D G' x and x D G�' y

1

2

3

sin s
s

sin s
co

x1 1

+ x

x

x +

+

m1

m2

m3

0 0

1 1x0 0

F.3 Bilinear Computational Structure

An alternative method to efficiently implement G' and G�' is to use the bilinear
algorithm for the computation of 2-point Hankel matrix-vector product [33].
Exchanging columns in the matrix G' in (F.1) it becomes the Hankel matrix (see
Appendix A.2) and therefore, the bilinear algorithm for 2-point Hankel matrix prod-
uct can be applied to the reordered matrix G' . The resulting bilinear computational
structure for the efficient implementation of y D G' x and x D G�' y is shown in
Fig. F.2.

LUL (ULU) and bilinear computational structures require 3 multiplications and
3 additions. However, while in the LUL (ULU) computational structure all the
multiplications have to be performed sequentially, in the bilinear computational
structure all the multiplications are independent and can be realized concurrently.
Moreover, the LUL or ULU computational structure requires determinant of the
matrix to be unity. Therefore, the scaled Givens–Jacobi rotations of the form ˛ G'

and ˛ G�' , where ˛ 2 R have to be realized by the bilinear computational structure.

F.4 Conversion of Complex Multiplication to the
Givens–Jacobi Rotation

All twiddle factors in FFT algorithms are complex numbers with the unit magnitude,
i.e., every twiddle factor can be expressed in the form:

e�i ' D cos' 
 i sin' D c 
 is; c2 C s2 D 1;

where i D p�1. The complex multiplication y D .c 
 is/ x, where x D a C ib, can
be written in the equivalent matrix-vector notation as

yT D .c � is/ x D .1 i/

�
c �s
s c

�
xT ;

yT D .c C is/ x D .1 i/

�
c s

�s c

�
xT ; s ¤ 0:

Thus, complex multiplications correspond to Givens–Jacobi rotations G' and G�'
applied to the vector x.



Appendix G
Symmetry/Anti-Symmetry and
Periodicity/Anti-Periodicity of a Sequence
(Function)

Special kinds of data sequences (functions), the symmetric and anti-symmetric
sequences, the periodic and anti-periodic sequences, are fundamental notions in
harmonic analysis, convolution, and correlation of signals [41].

G.1 Symmetry and Anti-Symmetry of a Sequence

A data sequence (finite or infinite) may be treated as samples taken from a
continuous function. The symmetry or anti-symmetry of a data sequence reflects
the symmetry of the function from which these samples are taken. Importantly,
the symmetry or anti-symmetry of a data sequence depends on the choice of the
symmetry center [41].

If one of the sampling points is chosen to be the symmetry center, the symmetry
or anti-symmetry of a data sequence is referred to as odd symmetry or odd anti-
symmetry. This symmetry type is referred to as odd symmetry type. Let fxng, n D
0; 1; : : : ;M � 1, be a data sequence of the length M.

Definition 1 Sequence fxng is said to be odd symmetric if x�n D xn.

Definition 2 Sequence fxng is said to be odd anti-symmetric if x�n D �xn.
In the odd symmetry type, all sampling points are integers. As an example, the

DFT is based on this symmetry type [41].
There is another symmetry type, called the even symmetry type. If the midpoint

between two adjacent sampling points is chosen to be the symmetry center, the
symmetry or anti-symmetry of a data sequence is referred to as even symmetry or
even anti-symmetry. This type of symmetry is referred to as even symmetry type.

Definition 3 Sequence fxng is said to be even symmetric if x�n�1 D xn.

Definition 4 Sequence fxng is said to be even anti-symmetric if x�n�1 D �xn.
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In the even symmetry type, all sampling points are half integers. A number is
called a half integer if it is the sum of an integer and 1

2
. Thus, there are two choices

of symmetry type in both spatial and frequency domains [41].

G.2 Periodicity and Anti-Periodicity of a Sequence

Now, we recall the definitions of periodic and anti-periodic sequences. Let fxng,
n D 0; 1; : : : ;M � 1, be a data sequence of the length M.

Definition 5 A data sequence fxng is called a periodic sequence if xnCM D xn,
where M > 0 is called the period of periodic sequence fxng.

Definition 6 A data sequence fxng is called an anti-periodic sequence if xnCM D
�xn, where M > 0 is the period of anti-periodic sequence fxng.

An anti-periodic sequence fxng may be treated as a periodic sequence with period
2M because xnC2M D �xnCM D xn. However, the properties of fxng depend only
upon its values in one period M. The periodicity and anti-periodicity of sequences
are closely related to their symmetry and anti-symmetry properties, respectively.
Properties (sums and products) of periodic and anti-periodic sequences with a
common period can be found in [41].
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E
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Block transform, 87
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comparison of implementations, 447
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unified effcient implementations, 447
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Fast analysis MDCT (MLT) filter bank, 309,

501
fast windowing&overlapp procedure, 310,

501
Fast DCT/DST computational structures

DCT–II/DCT–III, 597
DCT-IV/DST-IV, 599

Fast ELT algorithm, 171
Fast low delay MDCT algorithms, 467

comparison of algorithms, 477
DCT–IV–based, 473
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393, 472
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DCT–IV–based, 188
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G
Gauss elimination, 574
Generalized Gauss algorithm, 580
Givens–Jacobi rotation, 569, 631

efficient implementations, 631
bilinear computational structure, 633
LUL computational structure, 631
ULU computational structure, 631

Global integer approximate methods, 535
block LU, LDU, LUD and P LUS matrix

decomposition, 548
generalized LUL and ULU block matrix

factorizations, 535
integer transforms with expansion factor,

542
multidimensional computational structure,

544

I
Infinity–norm rotation transforms, 525

infinity-norm rotation, 525
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