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1. INTRODUCTION

Electronic structure methods based on wave functions, or
other many-electron quantities (Greens function, reduced n-
particle density matrices), are the most versatile tools in quantum
chemistry’s toolkit. Despite much progress in the past 80 years,
many types of queries of chemical relevance are still exceedingly
difficult to answer with the wave function methods. The predic-
tion of chemical equilibria and reaction rates, for example,
requires computation of energies of involved species accurate
to kT, or 2.5 kJ mol�1 at room temperature (this level of accuracy
in energy, rounded up to 1 kcal mol�1, is commonly referred to as
chemical accuracy). To control and systematically eliminate the
error to below this threshold is exceedingly difficult. For example,
the density functional theory (DFT) model chemistries are
efficient and accurate for many needs, but they do not permit
error control because the error of a given DFT computation can
only be estimated statistically, by benchmarking against large sets
of data. High-end wave function models, such as the coupled-
cluster singles and doubles augmented by perturbative treatment
of triples, CCSD(T), can approach the chemical accuracy thresh-
old for ground states of well-behaved molecules, but their
computational cost is very high. Last, to truly control the error,
many other contributions to the energy must be considered.

To illustrate how difficult it is to reach the chemical accuracy,
consider Figure 1. It displays the magnitude of various contribu-
tions to the heats of formation for the core test set of the HEAT
computational thermochemistry method.1,2 The HEAT model
defines the energy of a compound as the “exact” CCSD(T)
energy plus contributions from higher-order electron correlation
effects not included in CCSD(T), as well as relativistic, zero-point
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vibrational, post-Born�Oppenheimer, and spin�orbit effects.
The magnitude of each type of contribution past CCSD(T) is
compared to the mean absolute basis set error of the components
of the CCSD(T) energy. There are two conclusions: (1) the basis
set error of CCSD is the largest individual contributor to the total
basis set error of CCSD(T), and (2) it is larger than most “other”
contributions to the energy. Clearly, the basis set error of the
CCSD correlation energy is a major factor that determines the
overall error of the compound’s heat of formation.

The fact that the basis set limit of correlation energy is difficult
to compute precisely has been known for a long time. The origin
for this problem is that the conventional methods like CCSD
use antisymmetrized products of one-particle orbitals (Slater
determinants) to construct two-electron and higher-rank basis
sets. Slater determinants fail to model the exact wave functions at
short interelectronic distances. To solve this problem, the wave
function should be modeled explicitly in terms of the interelec-
tronic distances. The advantages of such explicitly correlated
wave functions have been known for a long time, but they have
become ready for use by chemists only since the emergence of a
particular group of explicitly correlated methods called R12
methods (also referred to by most developers as F12 methods
in their recent uses to reflect the difference in the form of the two-
electron basis; we will use these terms interchangeably here
because both terms refer to exactly the same formalism).

The recent developments in R12/F12 methods are the focus of
this Review. We will start the narrative with an introduction to the
electron correlation from the perspective of many-electron wave
functions (section 2). We will then briefly recap the history of
explicitly correlated methods (section 3), followed by an introduc-
tion to the central ideas of R12 methods (section 4). The two
recent thrusts of development of R12 methods, in the single-
reference (coupled-cluster) and multireference (perturbation the-
ory and configuration interaction) frameworks, will be covered in
sections 5 and 6, respectively. We will conclude with our thoughts
on the present status of the R12 methodology and speculate on its
future. The notation is described in its own section in the Appendix.

We attempted to make this Review present a “big picture” of
the field and be accessible to graduate students and postdocs in

the field of electronic structure. The technical nature of R12
technology made it sometimes difficult to balance the needs of
the less advanced readers with that of advanced practitioners of
the theory. The advanced readers are, of course, referred to the
original articles for the complete technical details.

The intense activity in the field has resulted in several recent
review articles6,7 and book chapters.8,9 The recent book on the
subject10 is a recommended read for the readers interested in the
field of explicitly correlated wave functions (not just R12methods).

2. ELECTRON CORRELATION IN ATOMS AND
MOLECULES

ThisReview focuseson the influenceof thebasis set on the electron
correlation energy. It is, therefore, imperative to start outwith a discus-
sion of the electron correlation as it applies to atoms and molecules.

2.1. What Is “Electron Correlation”?
“Electron correlation” in the statistical sense exists if there is a

difference between the ordinary, F(r), and conditional, F(r|r0),
probability densities of finding an electron at a particular point r.
The ordinary probability density is defined as the diagonal of the
density operator averaged over n � 1 electrons:

FðrÞ ¼ 1
n ∑

n

i¼ 1
FiðrÞ ð1Þ

FiðrÞ ¼
Z

jΨðr1, r2, :::rnÞj2dr1:::dri�1driþ1:::drn ð2Þ

(Integration over all spin degrees of freedom is implied.) Extension
of this concept to two electrons yields the pair probability density:

Fðr, r0Þ ¼ 1
nðn� 1Þ ∑

n

i 6¼j

Fijðr, r0Þ ð3Þ

Fijðri, rjÞ ¼
Z

jΨðr1, r2, :::rnÞj2dr1:::dri�1driþ1:::drj�1drjþ1:::drn

ð4Þ

Figure 1. The mean absolute basis set errors of the components of the CCSD(T) contribution relative to that of various “small” contributions to the
heats of formation for the core testset of the HEAT computational thermochemistry method.1,2 Cardinal numbers X = 2,3,4,5 correspond to the aug-cc-
pCVYZ basis sets3�5 with Y = D,T,Q,5, respectively.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200204r&iName=master.img-000.jpg&w=301&h=191
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In the absence of correlation, the pair probability density is expressed
as a product of the ordinary probability density:

Fðr, r0Þ ¼ FðrÞFðr0Þ ð5Þ

In other words, the conditional probability density, defined as

Fðrjr0Þ � Fðr, r0Þ
Fðr0Þ ð6Þ

does not differ from the ordinary probability density in the
absence of correlation:

no correlation: Fðrjr0Þ ¼ FðrÞ ð7Þ

with correlation: Fðrjr0Þ 6¼ FðrÞ ð8Þ
The conditional density depends parametrically on r0, indicated
by the use of the vertical line in eq 6.

The origin of electron correlation is identified with two effects:
(1) Electrons are indistinguishable and obey Fermi statistics,

which mandates the change of the wave function sign
under a permutation of labels of any two electrons; this is
known as the Fermi correlation.

(2) There is a Coulomb interaction between the electrons
that generally decreases the probability of finding two
electrons (of any spin) close to each other; this is known
as the Coulomb correlation.

These definitions are, unfortunately, imprecise, and their
use may lead to confusion. For example, the phenomenon of
shell structure, the foundation of the Periodic Table and all of
chemistry, can be understood as a consequence of Fermi
correlation that limits the orbital occupation numbers at two
and the Coulomb interaction that differentiates the energetics of l
subshells in the same n shell. Both of these effects cause statistical
correlation in the sense of eq 8; neither effect, however, is
considered part of “electron correlation” of electronic structure
theory.

The Fermi correlation is taken into account automatically by
using Slater determinants, that is, fully antisymmetrized products
of orbitals. The traditional starting point for the electronic
structure is the Hartree�Fock (HF) method, in which the wave
function is written as a single Slater determinant. The Hartree�
Fock for the ground state of a two-electron atom, one of the
central characters of this chapter, is expressed as

ΨHFðr1, r2Þ ¼ jϕðr1Þα1ϕðr2Þβ2æ

¼ ϕðr1Þϕðr2Þ 1ffiffiffi
2

p ðα1β2 � α2β1Þ ð9Þ

It is straightforward to see that conditions 5 and 7 are satisfied,
and therefore this wave function is not correlated:

FðrÞ ¼ jϕðrÞj2 ð10Þ

Fðr, r0Þ ¼ jϕðrÞj2jϕðr0Þj2 ð11Þ

Fðrjr0Þ ¼ jϕðrÞj2 ð12Þ

For the MS = 1 component of the lowest-energy triplet state,
however:

ΨHFðr1, r2Þ ¼ jϕ1ðr1Þα1ϕ2ðr2Þα2æ

¼ 1ffiffiffi
2

p ðϕ1ðr1Þϕ2ðr2Þ � ϕ1ðr2Þϕ2ðr1ÞÞα1α2

ð13Þ
conditions 5 and 7 do not hold, and the wave function is
correlated in that sense. The same can be said for any system
with more than two electrons. Thus, even a general Hartree�
Fock wave function is correlated in the statistical sense.

The traditional meaning of “electron correlation” in quantum
chemistry is what the Hartree�Fock wave function fails to
model. Following L€owdin,11 the electron correlation energy is
defined as the difference between the Hartree�Fock energy and
the “exact” nonrelativistic Born�Oppenheimer energy:

Ecorr � Eexact � EHF e 0 ð14Þ
Because the HF wave function includes Fermi correlation, the
term “electron correlation” as used by quantum chemists refers
primarily to Coulomb correlation.

Electron correlation can be described in several ways: (1) density
functional theory (DFT) includes this effect via a density-dependent
(and, recently, orbital-dependent) modification of the effective one-
electron potential; (2) quantum Monte Carlo (QMC) methods
explicitly compute averages over approximate or exact n-electron
wave functions by stochastic sampling; (3) wave function theory
(WFT) also involves the n-electron wave functions with known
analytic form; the expectation values of such wave functions are
computed explicitly, without sampling. This Review focuses exclu-
sively on the wave function methods and their use in solving the
electronic Schr€odinger equation with high accuracy.

2.2. Portrait of Electron Correlation in a Two-Electron Atom
Tounderstand howelectron correlation affects the electronicwave

functions in atoms, let us consider the ground state of the helium
atom. It is a simple example of correlation between two electrons that
orbit the same nucleus and span identical spatial scales. As shown
above, the Hartree�Fock wave function for this state is statistically
uncorrelated. The exact wave function can, therefore, be written as

Ψexactðr1, r2Þ ¼ ΨHFðr1, r2Þ þ Ψcorrðr1, r2Þ ð15Þ
where Ψcorr is orthogonal to ΨHF and encapsulates all electron
correlation not captured at the Hartree�Fock level (although some
authors refer toΨcorr as Coulombhole, this termwas originally given
a different meaning by Coulson and Neilson12). The exact wave
function written in this form has the intermediate normalization:

ÆΨHFjΨexactæ ¼ 1 ð16Þ
which is particularly convenient for working with many-body
expansions.

To develop an intuitive picture of changes in the wave function
due to electron correlation, consider Figure 2. It shows plots of
the conditional Ψcorr, defined as

Ψcorrðr2jr1Þ � Ψcorrðr1, r2Þ=ϕðr1Þ ð17Þ
as a function of the position of electron 2 in the xz-plane
parametrically dependent on the position of electron 1 fixed at
a particular point on the z axis. Note thatΨcorr(r2|r1) is the wave
function counterpart of the conditional pair density in eq 6. The
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reason to plot the conditional Ψcorr is to account for the
decreasing probability of finding an electron further away from
the nucleus: indeed, the magnitude of Ψcorr(r2|r1) is roughly
constant (on the order of 0.1) for the entire range of z1.

As is clearly seen from Figure 2, the shape of Ψcorr changes
qualitatively as electron 1 moves away from the nucleus. For small
values of r1, electron correlation “pushes” electron 2 away from the
nucleus (Ψcorr is negative near the nucleus and positive at
r2 > 1a0). This type of correlation is often referred to as in�out
correlation: when one electron is inside the sphere of radius Æræ,
the other is more likely to be found outside that sphere. As r1
increases, Ψcorr becomes more asymmetrical, and for r1 ≈
0.75a0, there is a significant increase of probability on the
opposite side of the nucleus. This type of correlation is known
as angular correlation: electrons are more likely to be found on

the opposite sides of the nucleus than on the same side. When
electron 1 is far away from the nucleus, electron correlation
coalesces electron 2 near the nucleus, as expected.

The dominant feature of Ψcorr is the Coulomb “hole” in the
vicinity of the electron punctuated by the cusp at its bottom. As we
discussed above, the structure of the wave function in this region is
determined primarily by the electron�electron cusp condition.
Two other features are the Coulomb “heap”13 where the probability
is increased due to the correlation, and the cusp at the position of the
nucleus. Whereas the existence of Coulomb holes and heaps is not
unexpected, the existence of the cusp inΨcorr at the position of the
nucleus appears counterintuitive. Its existence becomes obvious,
however, once we realize that the nucleus�electron cusps inΨ and
ΨHF do not cancel out exactly due to the difference in the wave
function values at the nucleus�electron coalescence. Thus nuclei

Figure 2. Visualization of the changes induced in the ground-state wave function of He atom by Coulomb correlation. On the left are plots of theΨcorr(r1,r2)/
ϕ(r1) with electron 1 fixed at {0,0,z1} (indicated by the orange vertical line) and electron 2 constrained to the xz plane; the location of the nucleus, {0,0,0}, is
indicated with the black vertical line. The corresponding contour plots are on the right. The correlation wave function was computed using a Hylleraas-type
expansion (eq 56) with ζ = 1.8109 and all terms with k + l + m e 6.

http://pubs.acs.org/action/showImage?doi=10.1021/cr200204r&iName=master.img-001.jpg&w=446&h=450
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are important players in the electron correlation in atoms and
molecules. Although the Coulomb correlation occurs due to the
interelectronic repulsion of electrons only, its effect on the prob-
ability density depends on the electron�nucleus relative coordi-
nates. This picture is in stark contrast to the idealized model of
electrons in solids, the uniform electron gas, where the correlation
effects are independent of position and thus can depend only on the
coordinates of electrons relative to one another.

2.3. Configuration Interaction Wave Functions for Two-
Electron Atoms

Configuration interaction (CI) expansion of an n-electron
wave function is a linear combination of Slater determinants
composed from a complete orthonormal set of orbitals {ϕi(r)}.
For example, the exact spin-free wave function for the ground
state of helium can be expressed as:

Ψexactðr1, r2Þ ¼ ∑
ij
Cijϕiðr1Þϕjðr2Þ ð18Þ

where ϕi are spin-free orbitals and thereforeCij =Cji. Without any
loss of generality, we will assume that this set includes the
Hartree�Fock orbital ϕ(r). It then is possible to representΨcorr

in a CI form:

Ψcorrðr1, r2Þ ¼ ∑
ij

0 Cijϕiðr1Þϕjðr2Þ ð19Þ

where the ij sum excludes the Hartree�Fock product. The most
important terms in this expansion can be deduced from the plots
of Ψcorr discussed above. With electron 1 fixed, the conditional
correlation wave function becomes an orbital expansion:

Ψcorrðr2jr1Þ ¼ ∑
ij
Cijϕiðr1Þϕjðr2Þ=ϕðr1Þ

� ∑
ij
Dijðr1Þϕjðr2Þ ð20Þ

For r1 = 0, the only nonzero contributions to this sum will be

Figure 2. Continued

http://pubs.acs.org/action/showImage?doi=10.1021/cr200204r&iName=master.img-002.jpg&w=446&h=446
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from s-type orbitals; the dominant contribution will come from
an s orbital with one radial node, that is, a 2s-like orbital (see
Figure 2a). For r1 = {0,0,0.75a0} (Figure 2d), the dominant
contribution to this sum will be from a 2pz-like orbital, and so on.
To modelΨcorr in a CI fashion, the basis therefore must include
an extra set of s and p functions. It is exactly the composition of
Dunning’s smallest correlation-consistent basis set, cc-pVDZ,3

for helium: in addition to one s function that models the Hartree�
Fock orbital, it includes one s and one p set of functions, for a total of
five functions per atom.

The structure of the Dunning base family of basis sets for He
atom3 bears strong similarity to the principal, or natural-orbital,
expansion of the ground-state wave function first introduced by
L€owdin and Shull.14,15 They showed that the best (not in the
sense of energy, but overlap!) CI approximation to the exact
wave function of He is obtained in terms of natural orbitals
(NO). NOs are defined as eigenfunctions of the exact one-

electron reduced density matrix (1-RDM):

γðr1, r10Þ ¼
Z

Ψ
�ðr1, r2ÞΨðr01, r2Þ dr2 ð21Þ

with the corresponding eigenvalues referred to as occupation
numbers. Next, the following CI wave function composed of
products of r NOs {ϕ~i} with the highest occupation numbers:

Ψrðr1, r2Þ � ∑
r

i¼ 1

~Cii~ϕiðr1Þ~ϕiðr2Þ ð22Þ

is the optimal in the least-squares (overlap) sense. This result is,
of course, related to the spectral theorem of functional analysis;
for the finite-dimensional case, the result can be proved trivially
via singular value decomposition16 of the matrix of CI coeffi-
cients. Contrary to popular belief, it is not obvious that this result
holds for systems with three and more electrons.

Figure 2. Continued

http://pubs.acs.org/action/showImage?doi=10.1021/cr200204r&iName=master.img-003.jpg&w=446&h=446
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Although NOs prescribe a simple way to construct the “best”
given-rank CI wave function, they do not guarantee optimality of
the energy computed with such CI wave function. In practice,
however, natural orbitals are believed to be close to optimal in the
energy sense as well! Numerical computations of NOs for He
found that the energy contribution from the vth NOwith angular
momentum quantum numbers17 {l,m} follows the following
empirical relationship:

δEvlm ≈ � 1
2
al ν þ l� 1

2

� ��6

ð23Þ

al ¼
0:42, l g 1
0:48, l ¼ 0

(
ð24Þ

Because the energy contribution depends on v + l � n, the
principal quantum number, it makes sense to use principal sets
of NOs, by including all NOs with n e N. The minimal NO set
(N = 1) for helium would include one s function, the next
smallest (N = 2) would include two s functions and one p set, and
so on:

NO series: 1s þ 2s2p þ 3s3p3d þ 4s4p4d4f þ ::: ð25Þ

The size of such a set:

∑
N

n¼ 1
∑
n � 1

l¼ 0
∑
m

m¼ � l
1 ¼ ∑

N

n¼ 1
n2 ¼ NðN þ 1Þð2N þ 1Þ

6
ð26Þ

grows cubically withN. Equation 23 can then be used to estimate
the error in the energy due to the finite NO set:

ΔEN � ∑
∞

n¼N þ 1
∑
n � 1

l¼ 0
∑
m

m¼ � l
δEvlm

¼ � 0:21 ∑
∞

n¼N þ 1

n2 þ 0:14

n� 1
2

� �6

∼ � 0:035ψð3Þ N þ 1
2

� �
þ 0:0088ψð4Þ N þ 1

2

� �

� 0:00068ψð5Þ N þ 1
2

� �
ð27Þ

where Ψ(k)(x) is the polygamma function of order k. Errors
predicted by this formula are in a remarkable agreement with the
basis set errors of CI energies computed with correlation-
consistent basis sets (see Table 1). The agreement underlies
strong similarities between the structure and function of the cc-
pVXZ basis sets and the principal NO sets.

Medium-sized basis sets of NOs are sufficient for errors in
the chemical accuracy range: for N = 4, eq 27 predicts the error
of 1.3 mEh = 0.8 kcal/mol, in a near-perfect agreement with
the actual error of the identical-size cc-pVQZ basis set (see
Table 1). The real problem is the painfully slow asymptotic rate
of convergence, easily obtained by the multipole expansion of
eq 27:

ΔEN ¼ � 0:07N�3 � 0:053N�4 þ O ðN�5Þ ð28Þ
To decrease the error by a factor of 8, wemust doubleN, and hence
increase size of theNOset by a factor of 8 also! In otherwords, every
digit of precision in correlation energy comes at the cost of

increasing the size of the basis set by a factor of 10. For the two-
electron atom, the length of NO-basis CI expansion (and hence its
computational complexity) grows linearly with the basis set size, and
hence thismeans roughly an order ofmagnitude increase in cost. Yet
for general n-electron systems, an order of magnitude increase in
orbital basis size means a steep (potentially, factorial) increase in
computational complexity of the CI expansion as well as high-order
polynomial increase in the computational cost of the matrix
elements of the Hamiltonian. The resulting increase in computa-
tional complexity will in general be many orders of magnitude.

Another way to construct a CI-type wave function in a two-
electron atom is a partial-wave (PW) expansion. It can be
thought of as an expansion in sets of functions saturated to each
angular momentum up to L:

PW series: 1s2s3s::: þ 2p3p4p::: þ 3d4d5d::: þ 4f5f6f ::: þ :::

ð29Þ
PW expansion can be defined, however, without any need to
specify basis sets. Consider the exact wave function for any S state
of helium. It can be expressed in terms of r1, r2, and θ12,

19 with
θ12 the angle between vectors r1 and r2, as a Legendre series:

Ψðr1, r2Þ � Ψðr1, r2,θ12Þ ¼ ∑
∞

l¼ 0
Plðcos θ12Þψlðr1, r2Þ ð30Þ

This expansion can be rewritten in a CI form by expanding the
radial functionsΨl in terms of products of radial basis functions F
and invoking the spherical harmonics addition theorem:

Ψðr1, r2Þ

¼ ∑
∞

l¼ 0

4π
2l þ 1 ∑

l

m¼ � l
ð � 1Þm ∑

ij
ClijFliðr1ÞYl,�mðθ1, ϕ1ÞFljðr2ÞYlmðθ2, ϕ2Þ

ð31Þ
The partial wave expansion of the exact wave function leads to
the corresponding partial wave expansion of the energy:

E ¼ ∑
∞

l¼ 0
δEl ð32Þ

The partial-wave expansion is exact only if a complete (infinite)
set of radial functions is used. In practice, the convergence to the
complete radial basis set limit for a given l value is fast in an
appropriate basis. However, the l sums in eqs 31 and 32 are very
slowly convergent. We can roughly estimate the asymptotic

Table 1. Basis Set Convergence of the Hartree�Fock and CI
Energies (in Eh) for the Ground-State Helium Atoma

basis set3 Lmax nbf E(HF) E(CI) ΔE(CI) ΔEN

cc-pVDZ 1 5 �2.855160 �2.887595 0.016129 0.010977

cc-pVTZ 2 14 �2.861153 �2.900232 0.003492 0.003115

cc-pVQZ 3 30 �2.861514 �2.902411 0.001313 0.001271

cc-pV5Z 4 55 �2.861625 �2.903152 0.000572 0.000645

cc-pV6Z 5 91 �2.861673 �2.903432 0.000292 0.000361

l
complete ∞ ∞ �2.86168b �2.903724377 0 0

a Each cc-pVXZ correlation-consistent basis set includes nbf basis func-
tions with angular momentum up to Lmax and corresponds to the natural
orbital expansion set with N = Lmax + 1. The two rightmost columns
compare the basis set error of CI energies with the values predicted for
the NO sets by eq 27. bReference 18.
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behavior of partial-wave energy increments in eq 32 using eq 23:

δEl ¼ ∑
∞

v¼ 1
∑
l

m¼ � l
δEvlm≈� 0:21ð2l þ 1Þ ∑

∞

n¼ l þ 1
n� 1

2

� ��6

¼ � 0:0035 l þ 1
2

� �
ψð5Þ l þ 1

2

� �

∼ � 0:084 l þ 1
2

� ��4

þ O l þ 1
2

� ��5
 !

ð33Þ

The asymptotic error due to truncation of the l sum at some finite
L is then:

ΔEL � ∑
∞

l¼L þ 1
δEl ≈ � 0:084 ∑

∞

l¼L þ 1
l þ 1

2

� ��4

≈ � 0:028ðL þ 1Þ�3 þ O ððL þ 1Þ�4Þ ð34Þ
Again, the error approaches zero very slowly: its reduction by an
order of magnitude demands doubling the angular momentum to
which the partial-wave expansion is computed.

Partial-wave expansions for atomic wave functions and proper-
ties can be computed numerically or analytically. In 1962,
Schwartz derived the following asymptotic formula for the PW
increment to the second-order energy in 1/Z perturbation theory
of ground-state He:20,21

δEð2Þl ¼ 45
256

l þ 1
2

� ��4

1� 5
4

l þ 1
2

� ��2

þ O l þ 1
2

� ��4
 !( )

ð35Þ
Note that only even powers of (l + (1/2)) appear. Kutzelnigg and
Morgan generalized this result to any state of a two-electron
atom.24 For all natural-parity singlet states (see section 2.4), the
leading order in the asymptotic expansion δEl

(2) is (l + 1/2)�4,
with the coefficient determined by an appropriate integral of the
zeroth-order wave function. Similarly, for triplet states the leading-
order contribution is sixth order in 1/(l + 1/2); for unnatural-
parity singlet states, it is eighth order. Analogous asymptotic results
hold for MP2 energies of atoms with any number of electrons. For
the third-order 1/Z energy, the PW increments converge faster
with l: for natural-parity singlet, triplet, and unnatural-parity singlet
states, the leading-order asymptotic terms are proportional to
(l + 1)�5, (l + 1)�7, and (l + 1)�9, respectively.

For variational and exact wave functions of two-electron atoms,
similar asymptotic expressions have been found. In 1965, Lakin
studied22 the exact ground-state wave function of He and its
relationship with Coulomb singularities in the Hamiltonian to
argue that the PW increment of the exact energy is proportional to
(l + 1/2)�4, a result in agreement with the earlier findings of
Schwartz for the second-order 1/Z energy (eq 35). In 1979
Carroll, Silverstone, and Metzger used sequences of CI computa-
tions that included functions up to l = 11 to arrive at a numerical
asymptotic expression of the PW increment to the CI energy:17

δEL ¼ C1 L þ 1
2

� ��4

þ C2 L þ 1
2

� ��5

þ O L þ 1
2

� ��6
" #

ð36Þ

where C1 = �0.074, C2 = �0.031. Later, Hill showed how to
express the coefficients in eq 36 as radial integrals of the exact
ground-state wave function:23

C1 ¼ 6π2
Z ∞

0
jΨðr, r, 0Þj2r5 dr ð37Þ

C2 ¼ 48π
5

Z ∞

0
jΨðr, r, 0Þj2r6 dr ð38Þ

whereΨ is the wave function expressed in terms of r1, r2, and θ12
(see eq 30). Hill’s findings were generalized to atomic states by
Kutzelnigg and Morgan in 1992.24

The main lesson of this section is this: the manner in which a
CI expansion is constructed does not matter as far as the basis set
incompleteness is concerned. Whether it is an NO expansion,
that is optimal in the least-squares sense, or a partial-wave
expansion, that lends itself to rigorous analysis, the fact remains
that the error of the CI expansion converges slowly with the basis
set size, at least for “normal” singlet states. The origin of this slow
convergence will be discussed in section 2.5. To prepare for that
discussion, we must now elaborate on the manner in which spin/
orbital angular momenta of the two electrons couple and how it
affects the behavior of the wave function at short interelectronic
distance.

2.4. Symmetries of Two-Electron Wave Functions
Consider an arbitrary state of a two-electron atom, with wave

function ΨL,ML,S,MS

n1 ,l1,n2,l2 (r1,r2), characterized by the total orbital and
spin angular momentum quantum numbers L,ML,S,MS and
whose zeroth-order description places electrons into n1l1 and n2l2
hydrogenic orbitals. We will focus on two fundamental symmetries
of such a state: (1) parity, that is, symmetry under inversion of the
coordinate system, and (2) particle exchange. Our discussion will
largely follow that of Morgan and Kutzelnigg.25

The parity of a hydrogenic orbital is (� 1)l, and hence the
parity of the wave function is (� 1)l1+l2:

Ψn1, l1, n2, l2
L,ML , S,MS

ð � r1, � r2Þ ¼ ð � 1Þl1 þ l2Ψn1, l1, n2, l2
L,ML , S,MS

ðr1, r2Þ
ð39Þ

The two-electron state is said to have natural parity if its parity is
the same as for a one-electron state with orbital angular mo-
mentum L, that is, (�1)l1+l2 = (�1)L, or L � l1 � l2 is even.
Otherwise the state is said to have unnatural parity. For example,
the 2p3p configuration produces S, P, and D atomic terms, all
with the same parity (+1, i.e., gerade). The S/D terms have
natural parity (same as an s/d atomic orbital), whereas the P term
has unnatural parity (opposite to that of a p atomic orbital).

To understand how the parity affects the form of the wave
function at short interelectronic distances, let us express the wave
function in terms of center of mass and relative coordinates of the
electron pair:

R12 � r1 þ r2
2

ð40Þ

r12 � r1 � r2 ð41Þ
In spherical polar coordinates, R12 = {R12,Θ12,Φ12} and r12 =
{r12,θ12,ϕ12}. The kinetic energy and interelectronic repulsion
separate in these coordinates, but the nuclear�electron attrac-
tion potential does not, except at infinitesimal interelectronic
distances. Hence, the wave function can be expanded in a
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Clebsch�Gordan series that is expected to converge quickly at
short r12:

Ψn1, l1, n2, l2
L,ML , S,MS

ðr1, r2Þ

¼ ∑
λ, μ, l,m

R λ, lðR12, r12ÞYλ, μðΘ12,Φ12ÞYl,mðθ12, ϕ12Þ
λ l L
μ m ML

 !

ð42Þ
in which λ,μ label orbital angular momentum of the electron pair
moving as a whole about the nucleus, and l,m label orbital angular
momentum of the internal motion within the electron pair. The
parity of each term in the sum is (�1)λ+l andmust be equal to the
parity of the state, (�1)l1+l2. For the natural parity states (�1)λ+l

= (�1)L, or L � λ � l is even; for the unnatural parity
counterparts (�1)λ+l = (�1)L+1, or L � λ � l is odd.

The electronic wave function must satisfy Fermi statistics, that is,
be antisymmetric with respect to the exchange of electronic labels
“1” and “2”. Because singlet/triplet (S = 0/1) spin wave functions
are antisymmetric/symmetric, the spatial part of the wave function
must be symmetric/antisymmetric. Yet particle exchange trans-
forms {r12,θ12,ϕ12} to {r12,π� θ12,π + ϕ12}, and thus changes the
sign of Yl,m(θ12,ϕ12) by (� 1)l. Therefore, to conform to Fermi
statistics, l must be even/odd for singlet/triplet states.

It is now straightforward to show that the interplay between the
angularmomentum coupling rules, parity requirements, and particle
exchange determines the short r12 behavior of the wave function.
• For singlet states l must be even; hence for natural parity
singlet states L � λ must also be even. Angular momentum
coupling of λ and l can produce L for any value of l: for l = 0,
λ must equal L; for l = 2, λ can be L, L + 2, or L � 2, etc.

• For unnatural parity singlet states lmust be even and L� λ
must be odd. Angular momentum coupling rules exclude the
possibility of l = 0: λ would then have to equal L, but that
contradicts the condition that L� λ is odd. All even lg 2 are
allowed; however, for l = 2, λ can be L + 1 or L � 1, etc.

• For triplet states l must be odd; hence for natural parity
triplet states L� λmust be also odd. Any odd value of lg 1
is allowed for such states: for l = 1, λ can beL + 1 orL� 1, etc.

• For unnatural parity triplet states l must be odd and L � λ
must be even. Angular momentum coupling rules allow any
odd lg 1: for l = 1, λmust equal L; for l = 3, λ can be L, L + 2,
or L � 2, etc.

Having determined the leading term (in l) in eq 42, we can
also understand short-r12 behavior as a function of spin and
parity. The solution to the radial Schr€odinger equation for two
electrons at short r12:

� 1
2r212

∂

∂r12
r212

∂

∂r12
þ lðl þ 1Þ

2r212
þ 1

r12
þ O ðr012Þ

� �
R λ, lðR12, r12Þ ¼ 0

ð43Þ
goes as r12

l , in complete analogy to the standard hydrogen atom
analysis.26 Thus, at r12 = 0 (the coalescence point), the natural
parity singlet wave function does not vanish, the triplet wave
function vanishes as r12, and the unnatural parity singlet wave
function vanishes as r12

2 . The first two facts are well-known; in
fact, the often-cited motivation for first Hund’s rule is that triplet
states have a Fermi hole around the coalescence point, which
makes triplet states lower in energy than the corresponding
singlet. The fact that there are singlet states that exhibit a feature
analogous to the Fermi hole is not well-known. Morgan and
Kutzelnigg modified Hund’s rules to account for the effects of

parity25 (such modifications had been known as the alternating
rule27) and were able to explain some notable failures of the
original Hund’s rules, such as the ground state of Ce, as well as
apply the new rules to explain energetic ordering of excited states.

Generalization of these results to molecules is simple: parity is no
longer a good quantum number; hence singlet states will be
characterized by eq 42 with even l g 0, and nonvanishing wave
function at r12 = 0. Triplet states will be characterized by eq 42 with
odd lg 1, andwave function vanishing at the coalescence point as r12.

As we are about to see, the short-r12 behavior of two-electron wave
functions also has important consequences for the electron correlation.

2.5. Cusp Conditions
Kato, while exploring properties of the many-particle Schr€odin-

ger equation, showed that discrete-spectrum wave functions are
continuous and have bounded continuous first derivatives, except
at the Coulomb singularities.28 He also showed that such dis-
continuity at the coalescence point of electrons i and j can be
expressed as

lim
rij sf0

∂Ψsphð:::ri, :::rj, :::Þ
rij

 !

¼ 1
2
Ψ :::

ri þ rj
2

, :::
ri þ rj

2
, :::

� �
ð44Þ

where sph denotes spherical averaging over the hypersphere rij =
const, ri + rj = const. Similar conditions hold for other types of
Coulomb singularities, such as at the electron�nucleus coales-
cence point. This result, known as the cusp condition, is rather
technical, and it deservedly bears Kato’s name.

The cusp condition can be obtained much more easily, albeit
without proofs of continuity, following the results of section 2.4.
Considering, without any loss of generality, the behavior near the
coalescence point of electrons 1 and 2, the exact solution to
Schr€odinger equation can be represented (see eq 43) in terms of
r12 as a spherical harmonic Ylm, with l determined by particle
exchange and/or other symmetries, times the radial part with the
r12
l leading term:

Ψðr1, r2, :::Þ≈ ∑
l

m¼ � l
rl12ðc0 þ c1r12

þ O ðr212ÞÞYlmðθ12, ϕ12ÞΦmðR12, :::Þ ð45Þ

where Φm is the part of the wave function that depends on the
center of mass of the electron pair and on the positions of other
electrons in the system. By substitution into eq 43, we can show
that c1 = c0/(2(l + 1)), hence:

Ψðr1, r2, :::Þ

≈ rl12 ∑
l

m¼ � l
1 þ r12

2ðl þ 1Þ þ O ðr212Þ
� �

Ylmðθ12, ϕ12ÞΦmðR12, :::Þ

ð46Þ

In the absence of particle exchange or other symmetries, l = 0 and
this condition:

Ψðr1, r2, :::Þ≈ 1 þ 1
2
r12 þ O ðr212Þ

� �
Φ0ðR12, :::Þ ð47Þ
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is equivalent to Kato’s result. In this form, it is easy to see why eq
47 is called the cusp condition: regardless of the direction in
which we approach the r12 = 0 point, the derivative of the wave
function with respect to r12 is the same; hence crossing the
coalescence point changes the sign of the first derivative. For
electrons whose spins are coupled to triplet, l = 1 and the cusp
condition is significantly different:

Ψðr1, r2, :::Þ

≈ r12 ∑
1

m¼ � 1
1 þ 1

4
r12 þ O ðr212Þ

� �
Y1mðθ12, ϕ12ÞΦmðR12, :::Þ

ð48Þ
The first derivative at the coalescence point is continuous for
the triplet case because the first-order spherical harmonic is
an odd function. For the case of an atomic unnatural-parity
singlet state l = 2:

Ψðr1, r2, :::Þ

≈ r212 ∑
2

m¼ � 2
1 þ 1

6
r12 þ O ðr212Þ

� �
Y2mðθ12, ϕ12ÞΦmðR12, :::Þ

ð49Þ
The above approach was first pursued by Pack and Byers

Brown in 196629 to eliminate the need for spherical averaging
and expressed Kato cusp condition in a form including l = 0 and
l = 1. Kutzelnigg and Morgan in 1992 were first to formulate the
cusp condition for atomic unnatural parity singlet states.24

Last, Tew pursued this approach to derive higher-order terms
in the partial-wave expansion around the cusp: the leading-order
cusp condition is universal, that is, system-independent, whereas
the second-order cusp condition includes system-dependent
coefficients.30

Kato’s groundbreaking achievement was to establish, for the
first time, properties of the exact wave function near Coulomb
singularities. Specifically, the structure of the wave function’s first
derivative can be universally described in terms of the inter-
particle coordinates. Although it was already known that wave
functions that depend on the interelectronic coordinates are very
efficient,31�33 Kato’s finding was not a mere rationalization of
such wave function, but a constructive suggestion that “it is quite
natural to expect that trial functions with the same type of
singularity would give a better approximation than functions
with different type of singularities”.28 As we shall see in section
4.4, modern explicitly correlated wave function can directly use
Kato’s cusp conditions to reduce the number of adjustable wave
function parameters.

2.6. Motivation for Explicitly Correlated Wave Functions
At the time of Kato’s discovery of cusp conditions in 1957,

there were strong hints that interelectronic distances are uni-
versally useful for constructing efficient wave functions. The
original motivation for the use of interelectronic distances,
however, was not a result of rigorous analysis of mathematicians.
In 1927, Slater attempted to construct a wave function for a two-
electron atom that satisfied both the Rydberg limit, in which one
electron is very far from the nucleus, and the “core” limit in which
both electrons are close to the nucleus. In the Rydberg limit, the
wave function should behave as ∼e�r1e�2r2 (in the absence of
penetration corrections), whereas near the core his analysis
suggested a simple form ∼e�2(r1+r2) + r12 that matches the
Rydberg limit. A similar wave function that included the r12

coordinate:

Ψðr1, r2, r12Þ ¼ e�2ðr1 þ r2Þ þ r12=2 ð50Þ
turned out to be an even better approximation overall and yielded
a remarkably good approximation to the energy,∼�2.856 Eh.

34

Slater published35 this analysis in 1928 and followed up later in
the same year with an application of the wave function in eq 50,
piecewise connected to another Rydberg-limit wave function, to
prediction of properties of helium, such as its diamagnetic
susceptibility.36

At around the same time, Hylleraas was pondering how to
refine his breakthrough variational wave function for the helium
ground state, in error by a mere 0.1 eV.37 He realized that his
wave function, expressed in terms of r1, r2, and cos θ12, included
even and odd powers of r1 and r2 but only even powers of r12 as
can be seen from:

r212 ¼ ðr1 � r2Þ 3 ðr1 � r2Þ ¼ r21 þ r22 � 2r1r2 cos θ12

ð51Þ
Almost miraculously, a very compact wave function with linear
dependence on r12 produced the energy of E =�2.902431 Eh, in
error from the exact Born�Oppenheimer nonrelativistic result
by 1.3 mEh ≈ 0.035 eV:31

Ψðr1, r2, r12Þ ¼ Nð1 þ c1ðr1 � r2Þ2

þ c2r12Þe�αðr1 þ r2Þ ð52Þ
where parameters α, c1, and c2 were determined variationally
(α =�1.81607, c1 = 0.130815, c2 = 0.291786; the corresponding
normalization constant is 1.330839). The error can be reduced
further by incorporating higher powers of r1 ( r2 and r12.

38

The Hylleraas expansions can be easily generalized for the
two-electron atom by including higher powers of r12 and r1( r2.
One example is to restrict the sum of the powers:

ΨNðr1, r2, r12Þ ¼ e�αðr1 þ r2Þ ∑
i
ciðr1 þ r2Þniðr1 � r2Þli rmi

12 ,

ni þ li þ mi e N ð53Þ
The resulting wave function sequence converges very rapidly
with N (see Figure 3).

The rapid asymptotic convergence of the Hylleraas wave
functions relative to the slow convergence of the CI-type
expansions can be attributed to the presence of linear and other
odd powers of r12, as can be seen in Figure 3. CI-type wave
functions only contain even powers of r12 (see eqs 30 and 51) and
thus suffer from slow convergence near the cusp. Strictly speak-
ing, it is CI’s lack of odd powers of r12 combined with the global
support of Slater determinants that causes the slow convergence;
wave functions with local support could be used to mimic the
local feature such as the cusp efficiently even without the odd-
power terms.

One should not make the mistake of attributing the specta-
cular success of the three-term Hylleraas wave function (eq 52)
to the inclusion of the linear r12 term alone as it is often implied.
We have experimented with eq 52 by considering its general-
ization as a correlation prefactor times the uncorrelated orbital
product:
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Ψðr1, r2, r12Þ ¼ Nð1þ c1ðr1 � r2Þ2 þ c2f ðr12ÞÞΦðr1, r2Þ
ð54Þ

Φðr1, r2Þ � ϕðr1Þϕðr2Þ ð55Þ
Here, f(r12) is a function of r12 whose Taylor expansion includes
linear terms, and ϕ(r) is a spherically symmetric orbital. The
results of these experiments are collected in Tables 2 and 3 and
can be summarized as follows:
• Neither the r12 nor the (r1 � r2)

2 term by itself is sufficient
for high precision. Inclusion of both terms is essential.

• Reoptimization of the orbital shape is also crucial for high
precision. The use of Hartree�Fock orbitals, in single-
exponential or exact form, produces very poor wave func-
tions. The optimal orbitals for multiplicative account of
correlation are more compact than the Hartree�Fock orbi-
tals. This can be qualitatively rationalized as follows: in the
presence of correlation factors, the electrons can get closer to

the nucleuswhileminimizing their repulsion by staying on the
opposite sides of the nucleus. Similar findings, that the bare-
nucleus Hamiltonian orbitals are more appropriate for re-
covery of correlation, were pointed out by Kutzelnigg for He-
like atoms39 and by R€ohse et al. for H2 and H3

+.40

• The exact manner of dependence on r12 does not seem to
matter much as long as the Taylor expansion includes terms
linear in r12. For example, linear and exponential forms seem
to work equally well.

These findings suggest that to produce most compact wave
functions the use of r12 terms is necessary, but not sufficient.

The case for the use of explicitly correlated wave functions is
clear-cut: appropriate account for the cusps of the electronic
wave function is essential for rapid decay of the basis set errors of
many-electron wave functions. It is the high dimensionality of the
integrals that accompany the use of the interelectronic distances
rij that prevented a realization of the idea of Slater and Hylleraas
in practical methods. Turning that idea into a generally applicable
tool required finding clever ways to evaluate such integrals
efficiently. In the next section, we briefly review the history of
such developments.

3. EXPLICITLY CORRELATED METHODS: HISTORICAL
PERSPECTIVE

Extension of the idea of Hylleraas to general systems is
straightforward but technically challenging. The crucial obstacle

Figure 3. Convergence of the configuration interaction wave functions for the ground state of helium. Plotted are 1 auΨ(r,r,0) set to 0.032406. From
top to bottom as seen near the origin: (1) a 56-term CI expansion; (2) a 286-term CI expansion; (3) an 816-term CI expansion; (4) a 1540-term CI
expansion; and (5) a 346-term Hylleraas expansion. See footnotes to Figure 4 for the description of the wave functions.

Table 2. Comparison of the Three-Term Wave Function of
Hylleraas with its Analogues Reveals the Importance of the
(r1 � r2)

2 Term and Relative Insensitivity to the Form of the
r12-Dependent Term

a

Ψ EΨ, Eh

e�α(r1+r2) �2.847656

(1 + c1(r1 � r2)
2)e�α(r1+r2) �2.876675

(1 + c2r12)e
�α(r1+r2) �2.891120

(1 + c1(r1 � r2)
2 + c2r12)e

�α(r1+r2) �2.902431

(1 + c1(r1 � r2)
2 + c2e

�γr12)e�α(r1+r2) �2.902592

(1 + c1(r1 � r2)
2 + c2r12e

�γr12)e�α(r1+r2) �2.902585

exact �2.903724
aAll nonlinear as well as nonlinear parameters were fully optimized in
each case.

Table 3. Effect of the Orbital Form (O in Eq 54) on the
Effectiveness of the Three-Term Wave Function of Hylleraas

ϕ EΦ EΨ

e�1.68750r �2.847655 �2.892624

e�1.81607r �2.831126 �2.902431

Hartree�Fock �2.861680 �2.883707

optimal �2.833417 �2.902619

http://pubs.acs.org/action/showImage?doi=10.1021/cr200204r&iName=master.img-004.png&w=341&h=208
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is the high dimension of the required integrals. Therefore, the
explicitly correlated wave functions have been primarily used in
high-precision atomic and molecular physics. Only with the
recent developments of R12 methods have explicitly correlated
methods become applicable to general molecules. While the R12
methods are the primary focus of this Review, we will start with a
brief historical tour of the explicitly correlated methodology; for
an in-depth expos�e, interested readers are referred to a recent
book.10

3.1. Explicitly Correlated Wave Functions for Two-Electron
Systems

The wave functions of Hylleraas for helium atom that we
discussed in section 2.6 can be easily generalized to attain high
precision. A general Hylleraas-type wave function for an S state of
a two-electron atom is expanded linearly in terms of nonnegative
integer powers of r12, (r1 + r2), and (r1 � r2), with the orbital
exponent as the only nonlinear parameter:

Ψðr1, r2, r12Þ ¼ ∑
klm

cklme
�ζðr1 þ r2Þðr1 þ r2Þkðr1 � r2Þlrm12

ð56Þ
where l must be even/odd for singlet/triplet states. Schwartz
generalized eq 56 to include half-integer values of k and m,41,42

and Kinoshita extended it to allow negative integer values of k
and m.33,43 Nanohartree accuracy with Kinoshita expansion can
be easily achieved using a few hundred terms. All Hylleraas-type
expansions converge very rapidly as higher values of klm are
included; this convergence is much more rapid than that of CI
wave functions, which can be represented in the form of eq 56
with even values of m only. This is clearly illustrated in Figure 4
that compares the error of the Hylleraas expansion in eq 56
relative to that of a conventional CI wave function.

The error of Hylleraas expansion, especially for excited
states, can be further decreased by introducing several orbital
exponents.46,47 The Hylleraas approach is also a precursor to

related, even more compact expansions by Pekeris,48 Thakkar,49

and others. Last, we should note that the best estimate of
He ground-state energy at the moment, �2.903 724 377 034 -
119 598 311 159 245 194 404 446 696 924, was obtained with the
explicitly correlated free Iterative-Complement-Interaction
(ICI) wave function of Nakatsuji et al.,50 which can be viewed
as a wave function composed of terms that are produced by
repeatedly applying the Hamiltonian to a small trial wave
function, and regularizing each term.

The explicit dependence of the wave function on the inter-
electronic distance was also key to early accurate wave functions
for the hydrogen molecule by James and Coolidge. They used a
13-term explicitly correlated expansion to compute the ground-
state energy accurate to 1 mEh.

32 The James�Coolidge wave
function does not, however, describe the wave function correctly
in the dissociation limit; it was later generalized by Kozos and
Wolniewicz51 to yield some of the most accurate expansions
known for the hydrogen molecule, capable of nanohartree
accuracy.52

3.2. Explicitly Correlated Wave Functions for n-Electron
Systems

Application of explicitly correlated techniques to molecular
systems with more than two electrons faces one basic challenge:
the need to evaluate numerous and expensive many-electron
integrals. Even if we restrict each n-electron basis function to
depend on one of the interelectronic distances only, up to four-
electron integrals are necessary. Dealing with these integrals is
the central technical challenge in working with the explicitly
correlated wave functions. Over the years, the following methods
have been pursued:
• exact evaluation of integrals is possible for atoms or for
certain types of explicitly correlated basis functions; for
example, explicitly correlated Gaussian functions allow
analytic evaluation of integrals for molecules with any
number of electrons.53

Figure 4. The error of the helium ground-state energy computed with theHylleraas expansion and a conventional CI wave function. TheHylleraas wave
function (eq 56) with all terms k + l +me 2Lmax included. The orbital exponent ζwas fixed at 1.8149, the optimal value for the original 3-termHylleraas
wave function in eq 52.37 CI expansions were computed44 with the method of Brown and Fontana45 utilizing one-particle basis sets of modified
hydrogenic orbitals with angularmomentum up toLmax and principal quantum number up toLmax + 1, parametrized by a single orbital exponent that was
nonlinearly optimized for each wave function.45

http://pubs.acs.org/action/showImage?doi=10.1021/cr200204r&iName=master.img-005.png&w=408&h=197
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• similarity transformation of the Hamiltonian to eliminate
the Coulomb singularities analytically (transcorrelated
method);54,55 the resulting Hamiltonian is more compli-
cated and includes three-electron terms, but its wave func-
tions are cusp-less and thus can be represented efficiently by
Slater determinants.

• weak orthogonality functionals of Szalewicz et al. can be
used to avoid some high-dimensional integrals.56,57

• stochastic evaluation is used in variational Quantum Monte
Carlo (QMC) methods to evaluate n-electron integrals;
somewhat related to variational QMC are diffusion or other
“true” QMC methods,58 and Nakatsuji’s local Schr€odinger
equation (LSE) method.59

• resolution-of-the-identity (RI) is used in R12 methods39 to
reduce three- and four-electron integrals to two-electron
integrals only.

In this section, we will highlight how some of these methods
were employed in historical predecessors of R12 methods. The
use of RI in R12 methods will be discussed in section 4.2.
3.2.1. Hylleraas-CIMethodTheHylleraas-CI wave function60

is expanded as a linear combination of n-electron basis functions
composed from a set ofM standard Slater determinants (or CSFs)
Φm premultiplied by a nonnegative integer power of rij:

Ψ ¼ ∑
kmax

k¼ 0
∑
M

m
cm, k ∑

n

i < j
rkijΦm ð57Þ

For kmax = 0, the Hylleraas-CI wave function is equivalent to the
conventional CI. Terms with k = 1 introduce electron�electron
cusps and are most important after k = 0. Thus, setting kmax = 1 can
already produce a reasonable wave function and was often used in
practice.
At most, only one rij appears in individual term in eq 57,

whereas the most straightforward generalization of the Hylleraas
wave function to n-electron systems would introduce linked
products rijrjk, rijrjkrkl, etc. The resulting matrix elements in the
Hylleraas-CI method include up to four-electron integrals only,
which is a significant improvement over n-electron integrals of
the generalized Hylleraas method. More importantly, these
integrals can be computed analytically for atoms and numerically
for molecules. The number of such integrals and their expense
are dramatically greater than in conventional CI calculations.
The Hylleraas-CI method has been applied successfully to

systems with as many as 10 electrons.61 Most applications,
however, have been limited to extremely accurate computations
on few-electron atoms (He,62 Li,63 Be64), because the expense of
numerical integration inmolecules with three andmore electrons
seemingly outweighs possible benefits.65

3.2.2. Explicitly Correlated Gaussian Methods. Boys66

and Singer67 noted that the use of Gaussian explicitly correlated
basis functions (known as Gaussian geminals for two electrons)
leads to many-electron integrals, which can be evaluated analy-
tically for molecules.53 A primitive spherical Gaussian geminal:

gkðr1, r2Þ ¼ expð� α1kjr1 � Akj2 � α2kjr2 � Bkj2 � γkr
2
12Þ
ð58Þ

can be viewed as a product of two s-type Gaussians and a
Gaussian correlation factor exp(�γkr12

2 ). Although Gaussian
geminals do not satisfy the cusp condition (eq 44), a linear
combination of Gaussian geminals can efficiently approximate
the shape of the electronic wave function near the electron cusp due

to the explicit dependence on the interelectronic distance; this is
similar to how contracted one-electron Gaussian functions approx-
imate cusped orbital shapes near the nuclei. TheGaussian geminal is
a special (two-electron) case of the Exponentially Correlated
Gaussian (ECG) function, whose spatial part in Boys form66 reads:

Φkðr1:::rnÞ ¼ expð� ∑
n

i¼ 1
αk, ijri � Ck, ij2 � ∑

n

i < j
γk, ijjri � rjj2Þ ð59Þ

Modern variational calculations on systems with more than
four electrons usually restrict each n-electron basis function to at
most one rij,

68 in complete analogy to Hylleraas-CI (i.e., for a
given k only one γk,ij in eq 59 is nonzero). The resulting matrix
elements include up to four-electron integrals only. Nonfactoriz-
able n-electron integrals must be computed in the absence of
such restrictions, which is expensive but possible.69

ECGs have been traditionally used in accurate variational
computations on two- to four-electron systems.70 For example,
a 2400-term ECG wave function for the helium dimer produced
the energy accurate to 0.1 μEh. The main difficulty with ECG
wave functions is the need to optimize not only the linear
expansion coefficient but also the nonlinear parameters of each
Φk (αk,i, Ck,i, and γk,ij, a total of n(n + 7)/2 parameters for a
molecule without special symmetry).49,71

ECGs can also be used to represent molecular wave
functions.69 Using explicitly correlated basis functions is essential
in such computations because the molecular wave function must
be invariant (up a phase factor) with respect to translations;
therefore, basis functions should depend exclusively on distances
between the particles.
3.2.3. Many-Body Gaussian Geminal Methods. Explicitly

correlated Gaussians have been also used in accurate many-body
computations. Consider the standard coupled-cluster ansatz:

jΨæ ¼ eT̂ j0æ ð60Þ

T̂ ¼ T̂1 þ T̂2 þ ::: þ T̂k ð61Þ

T̂1 ¼ ∑
n

i
t̂1ðriÞ ð62Þ

T̂2 ¼ ∑
n

i < j
t̂2ðri, rjÞ, etc: ð63Þ

Cluster operators t̂1, t̂2 are defined in terms of cluster functions τi, τij:

t̂1ðrÞ � jτiðrÞæÆϕiðrÞj

t̂2ðr, r0Þ � jτijðr, r0ÞæÆϕiðrÞϕjðr0Þj, etc: ð64Þ
For example, the effect of t1 is to substitute orbital ϕi occupied in the
reference wave function |0æ with one-particle cluster function τi. In
the coupled-cluster singles and doubles (CCSD) model, only T̂1

and T̂2 are included.
In the conventional CCSD method, each cluster function is

expanded in terms of products of virtual orbitals (i.e., orbitals not
present and orthogonal to the occupied orbitals in |0æ):

jτiæ ¼ ∑
a
tiajϕaæ ð65Þ

jτijæ ¼ ∑
a < b

tijabjϕaϕbæ ð66Þ
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where ta
i and tab

ij are undetermined singles and doubles ampli-
tudes. In Gaussian geminal-based coupled-cluster methods, two-
electron cluster functions τij are expanded:

jτijðr1, r2Þæ ¼ Q̂ ð1, 2Þ ∑
K

k
tijk jgijkðr1, r2Þæ ð67Þ

where gijk are geminal basis functions specified by eq 58, K is the
number of geminals gijk per pair function τij, and tk

ij are unde-
termined geminal amplitudes. The role of the projector Q̂ (1,2) is
to make sure that τij is strongly orthogonal to products of
occupied orbitals:

Q̂ ð1, 2Þ ¼ ð1� Ôð1ÞÞð1� Ôð2ÞÞ ð68Þ

Ôð1Þ ¼ ∑
n

i
jϕiæÆϕij ð69Þ

The strong orthogonality condition ensures that t̂2 produces
“true” two-electron excitations relative to the reference wave
function and not simply one-electron excitations coupled with
some rotation of occupied orbitals.
Note that the Gaussian geminal coupled-cluster wave function

formally includes in its exponential expansion terms that depend
on several, up to n/2, interelectronic distances via terms like
gi(r1r2)gj(r3r4), etc. (terms like gi(r1r2)gj(r2r3) do not appear).
Using a linear expansion in terms of ECGs that depend on up to
n/2 interelectronic distances would require evaluation of up to
n-electron integrals. In the CC framework, however, only five-
electron integrals appear in the CCSD version of the method
(only four-electron integrals are necessary to compute MP2
energy with this approach). This is a substantial simplification
and allows one to extend coupled-cluster Gaussian geminal
framework to systems with more than four electrons.
The need to evaluate four- and five-electron integrals and to

perform nonlinear optimization of geminal parameters are sig-
nificant challenges. Several workarounds have been explored.
The weak orthogonality approach, proposed by Szalewicz et al.,56,57

reduced the dimensionality of the prerequisite integrals by
relaxing the strong orthogonality requirement on the geminal
functions at the cost of including a penalty function in the
Hylleraas functional of MP2 energy or the CCSD Lagrangian.
There is some evidence that in the context of R12-like methods
modified weak orthogonality functionals of Tew et al. should
be used.72

To reduce the cost and improve robustness of the optimiza-
tion procedure for nonlinear parameters, a variety of approaches
have been tried.73,74 Despite the substantial progress, the high
computational cost of nonlinear optimization and integral eva-
luation has prevented applications to molecules with more than
10 electrons;75 most benchmark applications were for systems
with up to four electrons (He, H2, Be, LiH).

76

3.2.4. Transcorrelated Method. The idea of the transcor-
related method of Boys and Handy54,55 is to use similarity
transformation to produce a Hamiltonian free of electro-
n�electron singularities:

ĤG ¼ e�ĜĤeĜ ð70Þ

Ĝ ¼ ∑
i < j

f ðri, rjÞ ð71Þ

where fij� f(ri,rj) can be a very general function.
77 TheHausdorff

expansion of the non-Hermitian H:

H̅ ¼ Ĥ þ ½T̂, Ĝ� þ 1
2!
½½T̂, Ĝ�, Ĝ� þ ::: ð72Þ

truncates exactly after the second term due to the multiplicative
nature of Ĝ. Therefore, H contains only up to three-electron
terms, of type (3i fij) 3 (3i fik).
Handy chose the following form for fij:

78

fij ¼ ∑
k
ckgkðri, rjÞ þ ∑

μ
dμϕμðriÞ ð73Þ

where gk is a Gaussian geminal of eq 58, and ϕμ is an atomic
orbital. The energy is obtained from

E ¼ ÆΦ0jH̅jΦ0æ ð74Þ

where Φ0 is a Slater determinant of MOs, which are also
optimized. Handy was able to apply the transcorrelated method
to several small systems (as large as H2O) and obtain good results
using a very small number of parameters.78

Ten-no has applied the transcorrelated method setting Ĝ to a
linear combination of Gaussian Geminals.79 Ĝ was optimized to
cancel electron repulsion in the vicinity of the coalescence point.
Initial applications to small systems (Ne, H2O) were promising
but highlighted the challenge of choosing a universal operator
Ĝ and the growing importance of three-body terms in the
transformed Hamiltonian.79,80 A recent report by Luo et al.
suggests that it may be possible to obtain high-quality results with
the transcorrelated method.81

4. CORE TECHNOLOGY OF MODERN R12 METHODS

The groundbreaking idea of Kutzelnigg that led to modern
R12 methods was to factorize all of the difficult many-electron
integrals into one- and two-electron integrals by inserting the
resolution of the identity (RI), and use the partial wave analysis
to show how to do this accurately.39 Starting with the MP2-R12
method, Kutzelnigg, Klopper, and co-workers have systemati-
cally introduced the “original” R12 technology into all main-
stream wave function methods. Unfortunately, the original
technology required the use of large basis sets and was not
scalable to larger systems. Thus, the attention of researchers
between 2002 and 2006 focused on making the R12 technology
more practical. The plethora of improvements that were intro-
duced during this period are not easy to navigate, even for a
specialist; thankfully, some consolidation of ideas has occurred.
Although there is still some variation in formalisms and nomen-
clature used by different developers of R12 methods, a consensus
set of formalisms, what we will call the modern R12 technology,
has mostly crystallized.82�85

In this section, we will describe the essential features of the
modern R12 technology using the MP2-R12 method as an
example. The same basic technology will apply to coupled-cluster
methods (section 5) and multiconfiguration R12 wave functions
(section 6).

4.1. Derivation of MP2-R12 Equations
The first-order Møller�Plesset wave function is obtained

by minimizing Hylleraas functional for the second-order
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MP energy:

Hð2Þðψð1ÞÞ ¼ Æψð1ÞjĤð0Þ � Eð0Þjψð1Þæþ 2Æψð1ÞjĤð1Þjψð0Þæ
ð75Þ

where the intermediate normalization was assumed. The zeroth-
order MP Hamiltonian is the Fock operator. The principal
difference between the standard MP2 and MP2-R12 methods
is the form of the first-order wave function; the former includes
only conventional doubly excited determinants:86

jψð1Þ
MPæ ¼ ∑

i < j, a < b
tijabjabij æ ð76Þ

The MP1-R12 wave function also includes explicitly correlated
(geminal) functions:

jψð1Þ
MP �R12æ ¼ jψð1Þ

MPæ þ ∑
i < j, x < y

tijxyjxyij æ ð77Þ

The geminal basis functions are quasi-double excitations with
respect to the reference:

jxyij æ ¼
1
2
R̅ xy

αβ~a
αβ
ij jψð0Þæ ð78Þ

where Rαβ
xy are matrix elements of the explicitly correlated

geminal factor f(r12) projected by Q̂ 12:

Rxy
αβ ¼ ÆαβjQ̂ 12 f ðr12Þjxyæ ð79Þ

The purpose of the projector Q̂ 12 is to enforce strong orthogon-
ality of geminal functions |ij

xyæ, that is, their orthogonality to
any single excitations; usually Q̂ 12 also ensures orthogonality to
the standard doubly excited determinants |ij

abæ. The most com-
mon choice83 is

Q̂ 12 ¼ ð1� Ô1Þð1� Ô2Þ � V̂ 1V̂ 2 ð80Þ
but other Q̂ 12 values have also been considered.87,88 We also
note that the geminal-generating orbitals x and y are typically
the (active) occupied orbitals, but other choices have been
considered.89,90

Because many readers will be familiar with the standard
MP2 formalism that involves one-step inversion of the zeroth-
order Hamiltonian, we will first consider how to obtain
the MP2-R12 energy in the same manner. The Hylleraas
functional is formally minimized by the following first-order
wave function:

jψð1Þæ ¼ � P̂ð1ÞðĤð0Þ � Eð0ÞÞ�1P̂ð1ÞĤð1Þjψð0Þæ ð81Þ

where P̂(1) projects on the first-order interacting space: in the
case of MP method, it includes doubly excited determinants
|ij
abæ only, whereas in the case of MP-R12, it also includes the
geminal functions |ij

xyæ. Consider the matrix representation of
eq 81 in the MP2-R12 method:

TD

TR

 !
¼ � Hð0Þ

DD Hð0Þ
DR

Hð0Þ
RD Hð0Þ

RR

0
@

1
A
�1

Hð1Þ
D

Hð1Þ
R

0
@

1
A ð82Þ

where TD and TR are first-order coefficients of conventional
doubly excited determinants and their geminal counterparts

defined in eqs 76 and 77, respectively. Whereas HDD
(0) is

diagonal in canonical orbitals and is easily inverted in MP2
method, the zeroth-order matrix in MP2-R12 cannot be
directly inverted because HDR

(0) = (HRD
(0))† is nonzero; its

inversion by block-diagonalization is possible as follows.
Let us introduce a matrix:

Y ¼ � ðHð0Þ
DDÞ�1Hð0Þ

DR ð83Þ

It is easy to verify that the transformation matrix:

1 Y
0 1

 !
ð84Þ

block-diagonalizes the zeroth-order Hamiltonianmatrix in eq 82:

1 0
Y† 1

 !
Hð0Þ

DD Hð0Þ
DR

Hð0Þ
RD Hð0Þ

RR

0
@

1
A 1 Y

0 1

 !
¼ Hð0Þ

DD 0
0 B̅

0
@

1
A
ð85Þ

where

B̅ � Hð0Þ
RR � Y†Hð0Þ

DDY ¼ Hð0Þ
RR �Hð0Þ

RDðHð0Þ
DDÞ�1Hð0Þ

DR ð86Þ

Transforming eq 82 yields

TD

TR

 !
¼ � 1 Y

0 1

 !
ðHð0Þ

DDÞ�1 0
0 B̅�1

0
@

1
A Hð1Þ

D

V̅

0
@

1
A
ð87Þ

where

V̅ � Hð1Þ
R � Y†Hð1Þ

D ¼ Hð1Þ
R �Hð0Þ

RDðHð0Þ
DDÞ�1Hð1Þ

D ð88Þ

Matrix HDD
(0) is diagonal and trivial to invert, whereas B is block-

diagonal and can be inverted. In practice, the inversion is avoided
in favor of solving a linear system, directly or iteratively. This
linear system is often poorly conditioned and/or near-singular
(e.g., see ref 91). Thus, it is best to avoid the geminal coefficient
optimization altogether and use the SP ansatz of Ten-no (also
known as the diagonal orbital-invariant) that is discussed in
section 4.4.

The final first-order MP-R12 wave function is expressed as a
sum of conventional, R12, and “coupling” terms, respectively:

TD

TR

 !
¼ � ðHð0Þ

DDÞ�1Hð1Þ
D

0

0
@

1
A� 0

B̅�1V̅

 !
þ YB̅�1V̅

0

 !

ð89Þ
Although the standard doubles and geminal functions are
orthogonal to one another, their coefficients are coupled via
the off-diagonal HDR

(0) block of the zeroth-order Hamiltonian.
This zeroth-order coupling is relatively weak and quickly
vanishes as the basis set is enlarged.
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The second-order energy is represented as a sum of the
conventional MP2 energy and the R12 correction term:

Eð2ÞMP �R12 ¼ Æψð0ÞjĤð1Þjψð1Þæ ¼ Hð1Þ
D

Hð1Þ
R

0
@

1
A
†

TD

TR

 !

¼ � ðHð1Þ
D Þ†ðHð0Þ

DDÞ�1Hð1Þ
D � V̅†B̅�1V̅ ¼ Eð2ÞMP2 þ Eð2ÞR12 ð90Þ

Equation 90 is exact. As compared to the conventional MP2
method, it involves new matrices:

Hð1Þ
R : Æxyij jĤð1Þjψð0Þæ � Vxy

ij ð91Þ

Hð0Þ
RR : Æ

xy
ij jĤð0Þ � Eð0Þjwzij æ ¼ Æxyij jĤð0Þjwzij æ� Eð0ÞÆxyij jwzij æ
� Bwzxy � ðFii þ FjjÞXwz

xy � ð~BðijÞÞwzxy
ð92Þ

Hð0Þ
RD: Æ

xy
ij jĤð0Þ � Eð0Þjabij æ ¼ Æxyij jĤð0Þjabij æ � Cab

xy ð93Þ

which are formulated in terms of four special intermediates of
R12 theory, arranged in the order of difficulty:

Bowxy � Æxyjγ̂12F̂12γ̂12jowæ ð94Þ

Xow
xy � Æxyjγ̂†12γ̂12jowæ ð95Þ

Vxy
ij � Æijj 1

r12
γ̂12jxyæ ð96Þ

Cab
xy � Æxyjγ̂12F̂12jabæ ð97Þ

where

γ̂12 � Q̂ 12 f ðr12Þ ð98Þ
Intermediate B involves up to four-electron integrals, intermedi-
ates X and V up to three-electron integrals, and C is a two-
electron integral. These integrals can be evaluated analytically if
the correlation factor is Gaussian. This is the approach of Persson
and Taylor,92 who also used the Weak Orthogonality Functional
(WOF) to avoid four-electron integrals. The computational
complexity of such calculations is high.93 In the next two sections,
we will consider how the R12 technology makes possible fast and
accurate evaluation of these intermediates.

4.2. Approximate Treatments of Many-Electron Integrals
Let us consider matrix V expressed in opposite-spin orbitals

(same-spin expressions can be obtained by antisymmetrization
of the bra or the ket). By expanding the strong-orthogonality
projector, we obtain

Vxy
ij ¼ Æijj 1

r12
ð1� Ô1Þð1� Ô2Þð1� V̂ 1V̂ 2Þf ðr12Þjxyæ

¼ Æijjf ðr12Þ
r12

jxyæ� Æijj 1
r12

Ô1f ðr12Þjxyæ� Æijj 1
r12

Ô2f ðr12Þjxyæ
ð99Þ

þ Æijj 1
r12

Ô1Ô2f ðr12Þjxyæ� Æijj 1
r12

V̂ 1V̂ 2f ðr12Þjxyæ ð100Þ

The first term is a two-electron integral that can be evaluated
in Gaussian basis sets using standard technologies developed
for the electron repulsion integrals. Each of the last two
terms is a finite sum of products of two-electron integrals, for
example:

Æijj 1
r12

V̂ 1V̂ 2f ðr12Þjxyæ

¼ ∑
ab

Æijj 1
r12

jabæÆabjf ðr12Þjxyæ ¼ gabij r
xy
ab ð101Þ

However, the second and third terms involve sums of three-
electron integrals:

Æijj 1
r12

Ô1f ðr12Þjxyæ ¼ ∑
m

Æijmj 1
r12

f ðr23Þjmyxæ ð102Þ

Æijj 1
r12

Ô2f ðr12Þjxyæ ¼ ∑
m

Æijmj 1
r12

f ðr13Þjxmyæ ð103Þ

These expensive integrals can be reduced to sums of products of
two-electron integrals by inserting the approximate resolution of
the identity:

1≈
RI
P̂0 ¼ ∑

p0
jp0æÆp0j ð104Þ

into each integral:

Æijj 1
r12

Ô1f ðr12Þjxyæ≈RI Æijj 1r12 Ô1P̂
0
2f ðr12Þjxyæ ð105Þ

¼ ∑
mp0

Æijj 1
r12

jmp0æÆmp0jf ðr12Þjxyæ ð106Þ

¼ gmp
0

ij rxymp0 ð107Þ
Approximation 107 becomes exact in atoms when the RI basis
{|p0æ} is saturated up to angular momentum 3Locc, with Locc the
maximum angular momentum of the occupied orbitals. Although
this statement cannot be extended tomolecules due to the lack of
spherical symmetry, in practice the same guidelines for the RI
basis set may be used.

As a note of caution, the use of RI approximation in R12
method does not mean that all terms can be treated by RI. For
example, the integral of f(r12)/r12 operator in the V intermediate
must be evaluated in closed form, without RI, because its finite
partial-wave expansion has aO (L + 1)�3 error and approximat-
ing it via RI would defeat the purpose of the R12 method. All
special intermediates of R12 theory, exceptC, include at least one
such integral.

Most implementations of R12methods use Gaussian basis sets
for the resolution of the identity. In the early work expansion, eq
104 utilized the orthonormal orbitals of the orbital basis set
(OBS);82 Klopper and Samson later introduced a separate
auxiliary basis set (ABS) for this purpose.88 The ABS basis must,
however, include OBS for the RI approximation to be accurate.83

This issue is avoided in the complementary ABS (CABS)
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approach,83 in which Q̂ 12 of eq 80 is rewritten as83

Q̂ 12 ¼ 1� Ô1P̂
00
2 � P̂001Ô2 � P̂1P̂2 ð108Þ

where P̂00 � 1 � P̂ is the projector onto the orthogonal
complement to OBS. Instead of approximating the identity via
eq 104, CABS is used to approximate the P̂00 projector directly:

P̂00 ≈
CABS

∑
a0

ja0æÆa0j ð109Þ

Thus, the V matrix in CABS approximation becomes

Vxy
ij ¼ Æijj 1

r12
ð1� Ô1P̂2

00 � P̂1
00
Ô2 � P̂1P̂2Þf ðr12Þjxyæ

ð110Þ

≈
CABSðgrÞxyij � gma

0
ij rxyma0 � ga

0m
ij rxya0m � gpqij r

xy
pq ð111Þ

Just like the straight RI approximation, the CABS approximation
also becomes exact for atoms when CABS is saturated to 3Locc.

Atom-centered RI basis sets are convenient and not too
burdensome for p-elements, but require very high angular
momenta for heavy elements: to cover the entire Periodic Table,
functions of angular momentum 9 will be required. The angular
momentum requirement could be relaxed somewhat by a clever
rearrangement of the three-electron integrals prior to the RI
application, as suggested by Ten-no and Manby:94

Æijmj 1
r12

f ðr23Þjmlkæ

�
Z

dr1 dr2 dr3 ϕ
�
i ðr1Þϕ�j ðr2Þϕ�mðr3Þ

1
r12

f ðr23Þϕmðr1Þϕlðr2Þϕkðr3Þ

≈
RI
Z

dr1 dr2 dr3 ϕ
�
i ðr1Þϕmðr1Þ

1
r12

P̂0f ðr23Þϕ�j ðr2Þϕlðr2Þϕ�mðr3Þϕkðr3Þ

¼ ∑
p0

Z
dr1 dr2 ϕ

�
mðr1Þϕmðr1Þ

1
r12

ϕp0 ðr2Þ

�
Z

dr1 dr2 ϕ
�
mðr1Þϕ�j ðr2Þϕ�p0 ðr2Þf ðr12Þϕkðr1Þϕlðr2Þ

� ∑
p0

g1p
0

mj r
kl
mðjp0Þ ð112Þ

Perhaps the most promising approach is to evaluate the three-
electron integrals by numerical quadratures (QD).95,96 The QD
approach resembles the RI approximation, eq 104, formulated in
the basis set of grid points (delta functions). QD applied to eq
107 yields:

Æijj 1
r12

Ô1f ðr12Þjklæ

≈
QD
∑
m, g

Æijj 1
r12

jmδðr2 � rgÞæwgÆmδðr2 � rgÞjf ðr12Þjklæ ð113Þ

¼ ∑
m, g

Æij 1
jr1 � rg jjmæϕ

�
j ðrgÞwgϕlðrgÞÆmjf ðjr1 � rg jÞjkæ

ð114Þ
where g indexes grid points, with position rg and weight wg.
Whereas RI reduces the three-electron integrals in matrix V
to four-center two-electron integrals, only three-center one-
electron integrals appear in its QD formulation. The same
efficient technology of 3-D grid construction from the molecular
density-functional theory methods can be used here; its

drawback, however, is the number of grid points per atom is
O (104). Significant optimizations along the lines of the pseu-
dospectral method97 should be possible. Another issue with the
QD technology is that more complicatedmany-electron integrals
of the R12 methods either require six-dimensional quadrature
(hence computationally expensive) or must be combined with
the CABS or RI approximation in an atom-centered basis.96

Matrices B, X, and C can be treated in a similar spirit. The
simplest of these is the zeroth-order “coupling” matrix C, which
in CABS approximation becomes:

Cab
ij ¼CABS rijaa0Fa

0
b þ rija0bF

a0
a ð115Þ

Evaluation of X is essentially identical to that of V. The most
complex intermediate isB, in which one encounters four-electron
and other difficult three-electron integrals; its evaluation deserves
its own section.

4.3. Evaluation of the Fock Matrix in the Geminal Basis
Currently there are twomain approaches to evaluation of the B

intermediate. These approaches, labeled B and C, are closely
related and produce similar results. The main difference between
the two is that approach B involves analytic evaluation of single
commutators of the kinetic energy operators with the correlation
factor, whereas approach C implicitly treats these terms by the
resolution of the identity. Although there are reasons to prefer the
numerical properties of approach B (approach C, for example,
involves differences of two large terms which can cause loss of
numerical precision), all available evidence suggests that approach
C is technically somewhat simpler and as reliable as approach B.

Consider the following two integrals that occur in intermedi-
ate B upon expansion of the strong orthogonality projectors:

ÆpqjF̂1 f ðr12Þjowæ ð116Þ

Æxyjf ðr12ÞT̂1 f ðr12Þjowæ ð117Þ
The first integral can be evaluated via the direct RI insertion
(approach C):85

ÆpqjF̂1 f ðr12Þjowæ≈RI ÆpqjF̂1P̂01 f ðr12Þjowæ

¼ ∑
p0

ÆpjF̂1jp0æÆp0qjf ðr12Þjowæ ¼ Fp
0

p r
ow
p0q ð118Þ

or using RI and the commutator trick (approach B):82,88

ÆpqjF̂1 f ðr12Þjowæ
¼ Æpqj½F̂1, f ðr12Þ�jowæ þ Æpqjf ðr12ÞF̂1jowæ
¼ Æpqj½T̂1, f ðr12Þ�jowæ� Æpqj½K̂1, f ðr12Þ�jowæ

þ Æpqjf ðr12ÞF̂1jowæ
≈
RI
Æpqj½T̂1, f ðr12Þ�jowæ� Æpqj½K̂1, f ðr12Þ�jowæ
þ ∑

p0
Æpqjf ðr12Þjp0wæÆp0jF̂1joæ

¼ ½T, r�owpq � ½K, r�owpq þ rp
0w

pq F
o
p0 ð119Þ

Note that the only parts of the (nonrelativistic) Fock operator
that do not commute with f(r12) are the kinetic energy and
exchange. Integrals of [T̂i, f(r12)] are evaluated analytically in
approach B, whereas the exchange commutators are evaluated via
the RI approximation.
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Integral (eq 117) in both approaches is evaluated via a
combination of analytic and RI methods:

Æxyjf ðr12ÞT̂1f ðr12Þjowæ
¼ 1

2
Æxyj½f ðr12Þ, ½T1, f ðr12Þ��jowæ

þ 1
2
Æxyjf ðr12Þ2T̂1jowæ þ 1

2
ÆxyjT̂1f ðr12Þ2jowæ

≈
1
2
Æxyj½f ðr12Þ, ½T1, f ðr12Þ��jowæ

þ 1
2 ∑p0

Æxyjf ðr12Þ2jp0wæÆp0jT̂1joæ

þ 1
2 ∑p0

ÆxjT̂1jp0æÆp0yjf ðr12Þ2jowæ ð120Þ

The double commutator integrals and the f(r12)
2 integrals are

evaluated in closed form (without RI) in both approaches B and C.
For completeness, we also give the complete expression for

intermediate B in approach C:85

Bowxy ¼ ½r, ½T, r��owxy þ Ŝxy, ow½ð̅r 2Þp
0w
xy ðF þ KÞop0

þ ð̅r 2Þop0xy ðF þ KÞwp0 � � ̅r
p0q0
xy Kr0

p0 ̅r
ow
r0q0 � ̅r

p0m
xy Fr

0
p0 ̅r

ow
r0m

þ ̅r
mb0
xy Fnm ̅r

ow
nb0 �̅r pbxyF

r
p ̅r

ow
rb �2Ŝxy, owð̅r mb0xy Fp

0
m ̅r

ow
p0b0 þ ̅r

a0b
xy F

q
a0 ̅r

ow
qb Þ

ð121Þ
In addition to standardCoulomb integrals,MP2-R12 and other R12
methods involve analytic integrals of the following two-electron
operators: f(r12), f(r12)/r12, (f(r12))

2, [f(r12), [T̂1, f(r12)]], and, in
approach B, [T̂12, f(r12)]. Higher-order R12 methods (e.g., CC-
R12) will also require integrals of the (f(r12))

2/r12 operator. Note
that integrals over multiple distinct orbital spaces are involve; thus
management of the MO-basis integrals is more complicated in R12
methods than in their non-R12 counterparts.

The basic R12 technology as described here can also be used
to evaluate geminal matrix elements of other types of one- and
two-electron operators, such as those found in relativistic
methods98,99 or in property computations.100

4.4. Geminal Amplitudes Can Be Determined by the Cusp
Conditions

The behavior of the exact wave function at the cusp is known
analytically and can be used to predetermine the asymptotic
values the geminal amplitudes. Near the cusp the behavior of the
exact pair functions is linear in r12 and completely determined by
the value at the coalescence and the relative angular momentum
of the two electrons; the first-order wave function can be written
for (natural-parity) singlet pairs and triplet pairs, respectively:

ψð1Þ
ij ðr1, r2Þ ¼ 1

2
r12ψ

ð0Þ
ij ðr, rÞ þ O ðr212Þ ð122Þ

ψð1Þ
ij ðr1, r2Þ ¼ 1

4
r12 ∑

1

m¼ � 1
jY1mðΩ12ÞæÆY1mðΩ12Þjψð0Þ

ij ðr, rÞ

þ O ðr212Þ
ð123Þ

These conditions are satisfied automatically by making the
correlation factor depend on spin:

jijijæ ¼
1
2
R̅ ij

αβ~a
αβ
ij jψð0Þæ ð124Þ

where

R ij
αβ � ÆαβjQ̂ 12f ðr12Þð12P̂0 þ 1

4
P̂1Þjijæ ð125Þ

Projectors P̂0 and P̂1 project onto S = 0 and S = 1 spin-pair states:

P̂0 ¼ jαβæ0Æαβj0 ð126Þ

P̂1 ¼ jββæÆββj þ jαβæ1Æαβj1 þ jααæÆααj ð127Þ
with

jαβæ0 ¼ 1ffiffiffi
2

p fαð1Þβð2Þ � βð1Þαð2Þg

jαβæ1 ¼ 1ffiffiffi
2

p fαð1Þβð2Þ þ βð1Þαð2Þg

Note that each pair function now includes only one geminal
function (compare eq 124 to eq 78).

Ten-no was first to propose this formulation under the name
“SP ansatz”.84 It is relatively straightforward to incorporate the
spin-projectors into the formulas for the R12 intermediates. It
should be noted that the implementation of this approach for
open-shell MP2-R12 with spin-unrestricted references leads to
unusual integrals whose counterparts do not appear in the standard
UMP2 method,101,102 such as ÆIαJβ|f(r12)|JβIαæ (where α
and β specify which spatial orbital is used; no spin functions
are included).

4.5. Correction of the Basis Set Error of the Reference Wave
Function

In single reference methods (typically with the Hartree�Fock
determinant as the reference), the total electronic energy sepa-
rates into two components: the reference energy EHF and the
correlation energy Ecorr. The error due to the finite basis set,
ΔEBSIE, can also be split into two corresponding parts: ΔEHF

BSIE

and ΔEcorr
BSIE. The R12 methods have been very effective in

reducing ΔEcorr
BSIE by introducing the interelectronic distance into

the wave function expansion. With Ecorr quickly converging to
CBS limits in R12 methods, ΔEHF

BSIE becomes the dominant
source of error. Therefore, it becomes necessary to reduce
ΔEHF

BSIE to achieve balanced accuracies.
In principle, a straightforward approach to decrease EHF is to

employ a large basis set that is used to expand occupied orbitals
only. However, with ABS introduced in R12 methods, introdu-
cing yet another basis for the purpose of ΔEHF

BSIE would further
complicate the already-complex method. The pragmatic solution
is to utilize the ABS to account for the basis incompleteness of
EHF perturbatively. This approach has proven to be very effective
and comes under the name “CABS singles”8,103�108 (for a
generalization to multireference theory, see section 6.6). Related
approaches developed in different contexts include dual-basis
methods and alike.109�113

The Hartree�Fock method minimizes the reference energy
by rotating orbitals between occupied and virtual spaces. Con-
ceptually (with CABS approximating the missing virtual space
with respect to CBS), we can attribute the source of ΔEHF

BSIE in a
finite OBS to the missing rotation between occupied space and
CABS.We can take the effect of themissing rotation, represented
by the Fock operator Fa0

i ai
a0 +hc (hc = hermitian conjugate), as the

perturbation Ĥ(1). To define a single set of equations for RHF,
UHF, and ROHF references and to be consistent with standard
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ROHF-MBPT, (Fa
i ai

a + hc) is also included in Ĥ(1). Thus, we
have

Ĥð0Þ ¼
Fij 0 0

0 Fab Fa
0
b

0 Fab0 Fa
0
b0

0
BB@

1
CCA, Ĥð1Þ ¼

0 Fai Fa
0
i

Fja 0 0

Fjb0 0 0

0
BB@

1
CCA

Applying the Rayleigh�Schr€odinger perturbation procedure,
with the Hartree�Fock determinant as the zeroth order func-
tion, yields the CABS singles energy correction. For UHF and
RHF references, although Fa

i = Fi
a = 0, the second-order correc-

tion will include contributions from the (OBS) virtual space due
to the coupling blocks Fb

a0 and Fb0
a present in Ĥ(0). If the coupling

blocks are included in Ĥ(1) instead of Ĥ(0), then at second-
order, the energy correction simplifies and only includes con-
tributions from CABS: �∑a0 ,i|Fi

a0|2/(ea0 � ei).
103�105 However,

the former treatment is more robust, especially for small basis
sets. The CABS singles approach incurs negligible cost in the
context of the MP2-R12 (without hybrid approximation)114 and
CC-R12 methods.

5. COUPLED-CLUSTER R12 METHODS

The technology of R12 methods described in the previous
section can be straightforwardly applied to extend any method.
Although the early development of R12 methods was within the
MP2-R12 framework, the MP2-R12 has very limited chemical
applicability. To reach its full potential, the R12 technology must
be applied in combination with highly accurate methods, such as
coupled-cluster methods that include at least triple excitations.

Although the first implementation of the CCSD-R12 method
utilizing the standard approximation appearedwithin 5 years ofMP2-
R12, a full implementationofCC-R12 in themodernR12 framework
is rather complicated and only appeared recently.115,156 Because of its
high computational complexity, rigorous (i.e., not using any approx-
imations other than the RI) CCSD-R12 is not suitable for general
applications. Thus, much recent activity has focused on the devel-
opment of practical approximations to CCSD-R12.

This section is split into two parts. The first part will cover the
full CC-R12 method, whereas approximate CC-R12 methods
will be discussed in the second part.

5.1. The CC-R12 Formalism
Noga et al.117,118 introduced theCC-R12wave function ansatz by

extending the standard CC cluster operator with the additional R12
(geminal) operator that takes care of the electron cusp. For example,
the CCSD-R12 wave function is parametrized as

jΨæ ¼ eT̂ j0æ ð128Þ

T̂ ¼ T̂1 þ T̂2 þ R̂ ð129Þ
where |0æ is the reference wave function, usually of the Hartree�
Fock kind. Operators

T̂1 ¼ tia~a
a
i ð130Þ

T̂2 ¼ 1

ð2!Þ2 t
ij
ab~a

ab
ij ð131Þ

are the standard single- and double-excitation CC cluster operators
parametrized by the corresponding amplitudes, ta

i and tab
ij , in

the given orbital basis set. The difference between CCSD and

CCSD-R12 is due to the presence of the geminal operator:

R̂ ¼ 1

ð2!Þ3 t
ij
xyR̅

xy
αβ~a

αβ
ij ð132Þ

One way to interpret the geminal operator is to put it in the
form of eq 131:

R̂ ¼ 1

ð2!Þ2
~tijαβ~a

αβ
ij ð133Þ

where we introduced effective amplitudes:

~tijαβ ¼ 1
2!
tijxyR̅

xy
αβ ð134Þ

that are analogous to the standard tab
ij amplitudes in eq 131. The

T̂1 and T̂2 operators alone are not sufficient to obtain the “exact”
CCSDwave function because the cluster operators are limited to
excitations within the finite set of unoccupied orbitals {a}. The
“exact” cluster operators must include excitations into the
formally complete set of virtuals:

T̂ 1 ¼ tiα~a
α
i ð135Þ

T̂ 2 ¼ 1

ð2!Þ2 t
ij
αβ~a

αβ
ij ð136Þ

In practice, one cannot construct operators T̂ 1 and T̂ 2 because the
{α} set of orbitals is infinite in size. Equation 133 portrays R̂ as an
operator that produces two-electron excitations into the formal
complete virtual space {α} and thereby complements the standard
T̂2 operator by accounting for the portionof T̂ 2 that ismissing in T̂2.

Unlike T̂ 2 that is parametrized by an infinite number of
parameters tαβ

ij , R̂ is parametrized by a finite set of coefficients txy
ij

in combination with a formally infinite number of matrix elements
Rαβ
xy of the correlation factor f(r12). For example, the so-called

diagonal R12 ansatz sets xy = ij, and the entire set of effective
amplitudes ~t is parametrized by a single coefficient, tij

ij. The reason
that the entire infinite set of amplitudes~t can be parametrized by few
coefficients is because the two-electron excitationsmissing in T̂2 but
present in T̂2 are high-energy and primarily describe the wave
function at short interelectronic distances. As we saw in section 2,
the analytic structure of the wave function in that region is
universally described by cusp conditions. Thus, very compact
parametrizations of R̂ are possible by using correlation factors that
model the cusp region of the wave function.

Yet another way to represent the geminal cluster operator is a
linear combination:

R̂ ¼ 1

ð2!Þ2 t
ij
xyγ~

xy
ij ð137Þ

where γ~ are elementary geminal excitation operators:

γ~xyij ¼ 1
2!
R̅ xy

αβ~a
αβ
ij ð138Þ

The geminal excitation operator γ~ij
xy is directly analogous to the

standard excitation operator ~aij
ab: the latter replaces the orbital

pair |ijæwith the orbital pair |abæ, whereas the former produces an
r12-dependent geminal:

γ~xyij jijæ ¼ Q̂ 12f ðr12Þjxyæ ð139Þ
The traditional CCSD-R12 method is obtained by substituting

theCCSD-R12 wave function (eq 128) into the time-independent
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Schr€odinger equation and multiplying on the left by the e�T̂

operator:

e�T̂ ĤeT̂ j0æ � H̅j0æ ¼ Ee�T̂ eT̂ j0æ ¼ Ej0æ ð140Þ
where we introduced the similarity-transformed coupled-cluster
Hamiltonian H. The energy is computed by left-projecting the
coupled-cluster Schr€odinger equation with the reference wave
function:

ECC�R12 ¼ Æ0jH̅j0æ ¼ Æ0jĤj0æ þ Æ0j½F̂, T̂�j0æ

þ Æ0j½Ŵ , T̂�j0æ þ Æ0j1
2
½½Ŵ , T̂�, T̂�j0æ

¼ E0 þ tiaF
a
i þ 1

4
tijabg̅

ab
ij þ 1

8
tijxyR̅

xy
αβg̅

αβ
ij þ 1

2
tiat

j
bg̅

ab
ij

¼ E0 þ tiaF
a
i þ 1

4
tijabg̅

ab
ij þ 1

4
tijxyV

xy
ij þ 1

2
tiat

j
bg̅

ab
ij ð141Þ

where F̂ and Ŵ � Ĥ � F̂ are the Fock and fluctuation operators,
respectively, and V is the intermediate we encountered in the
MP2-R12 method (section 4).

Corresponding projections onto conventional singly and
doubly excited determinants:

jai æ � ~aai j0æ ð142Þ

jabij æ � ~aabij j0æ ð143Þ
etc., as well as the geminal functions produced by the geminal
generators (eq 138):

jxyij æ � γ~xyij j0æ ð144Þ

determine the conventional amplitudes:

0 ¼ Æai jH̅j0æ ð145Þ

0 ¼ Æabij jH̅j0æ ð146Þ
etc., and the geminal cluster amplitudes:

0 ¼ Æxyij jH̅j0æ ð147Þ
Equations 141, 145, and 146 are analogous to those that define

the standard (non-R12) CCSD method, whereas eq 147 does
not appear in CCSD. Although the rank of the additional
amplitude equations is small (O (o4)), the implementation and
computational complexities of the CCSD-R12 are vastly greater
than that of CCSD and MP2-R12. First, in addition to the
“special” V, B, X, and C intermediates that appeared in MP2-R12
method:

Vpq
xy ¼ 1

2
g̅ pq
αβR̅

αβ
xy ð148Þ

Xow
xy ¼ 1

2
R̅ ow

αβR̅
αβ
xy ð149Þ

Bowxy ¼ R̅ ow
αγf

α
β R̅

βγ
xy ð150Þ

Cxy
ab ¼ R̅ xy

aα0 f α
0

b ð151Þ

CCSD-R12 requires two new special intermediates:

Powxy ¼ 1
4
R̅ ow

αβg̅
αβ
γδ R̅

γδ
xy ð152Þ

Zow;p
xy;m ¼ R̅ ow

αγg̅
αp
βmR̅

βγ
xy ð153Þ

where ow;p indicates antisymmetry with respect to permutation
of o and w only. Evaluation of intermediates V, X, B, and C was
discussed in section 4; here we focus only on the last two
intermediates. Their evaluation must utilize analytic evaluation
to prevent slowly convergent expansions in terms of atomic basis
functions. An expression for P in the CABS approach is obtained
as follows:115,119

Powxy ¼ 1
4
R̅ ow

αβg̅
αβ
γδ R̅

γδ
xy ¼ 1

2
Vow
γδ R̅

γδ
xy

¼ 1
2
ððgrÞowγδ �

1
2
g̅ rs
γδ ̅r

ow
rs � g̅ mα0

γδ ̅r
ow
mα0 ÞR̅ γδ

xy ð154Þ

¼ 1
2
ðgrÞowγδR̅ γδ

xy �
1
2
Vrs
xy ̅r

ow
rs � Vmα0

xy ̅r
ow
mα0 ð155Þ

¼ 1
2
ðgrÞowkλ ̅r kλxy �

1
2
ðgrÞowrs ̅r rsxy�ðgrÞowmα0 ̅r

mα0
xy

� 1
2
Vrs
xy ̅r

ow
rs � Vmα0

xy ̅r
ow
mα0 ð156Þ

¼ ðgr2Þowxy �
1
2
ðgrÞowrs ̅r rsxy � ðgrÞowmα0 ̅r

mα0
xy � 1

2
Vrs
xy ̅r

ow
rs � Vmα0

xy ̅r
ow
mα0

ð157Þ
Its computational and storage costs are similar to that of the B
intermediate. Evaluation of the Z intermediate is more
laborious:116

Zow;p
xy;m ¼CABS 1

2
½Â owðr2Þp

0w
xy g

op
p0m

þ Â xyðr2Þowp0ygp
0p

xm � � ̅r
ow
qs g

qp
rm ̅r

rs
xy � ̅r

ow
a0ng

a0p
b0m ̅r

b0n
xy � ̅r

ow
a0sg

a0p
rm ̅r

rs
xy

� ̅r
ow
qs g

qp
a0m ̅r

a0s
xy � ̅r

ow
na0g

np
p0m ̅r

p0a0
xy � ̅r

ow
p0a0g

p0p
nm ̅r

na0
xy þ ̅r

ow
na0g

np
km ̅r

ka0
xy

� ð̅r owa0c0gpa
0

b0m ̅r
b0c0
xy þ ̅r

ow
a0cg

pa0
b0m ̅r

b0c
xy þ ̅r

ow
ac0g

pa
bm ̅r

bc0
xy

þ ̅r
ow
a0c0g

pa0
bm ̅r

bc0
xy þ ̅r

ow
ac0g

pa
b0m ̅r

b0c0
xy Þ ð158Þ

Precomputing intermediate Z requires O (N8) operations and
O (N6) storage, which is a dramatic increase with respect to
standard CCSD. Direct computation of Z every iteration de-
creases the cost to O (N6) and avoids its storage, albeit at the
increased computational expense.

Besides the special intermediates necessary for CCSD-R12,
the sheer number of terms that appear in amplitude equations is
staggering. Thus, the pioneering work of Noga, Kutzelnigg, and
Klopper117,118,120 on the CC-R12 method utilized the so-called
standard approximation (SA)82 to dramatically simplify the
equations and the expressions for special intermediates; the
standard approximation can be viewed as an approximation to
the state-of-the-art R12 technology of today, and therefore we
will discuss Noga et al.’s work along with other approximate CC-
R12 methods in section 5.2. The modern (unabridged) formula-
tion of CC-R12 became possible only through automated
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equation derivation and implementation. Shiozaki et al. were the first
to implement CCSD-R12 using automated compiler smith115,121

and documented its performance for Ne, H2O, and F2. Their
comparison of CCSD-R12 to the CCSD(R12) and CCSD(2)R12
methods reviewedbelow showed that the latter twomethods differed
from the CCSD-R12 result by less than the residual basis set
incompleteness in a given basis, and therefore their approximations
were robust. Note that their implementation included all terms but
evaluated the Z intermediate via RI insertion and thus evaluated the
integral of f(r12)

2 (see the first two terms on the right-hand side of eq
158) by RI approximation. Later, K€ohn et al. implemented the
CCSD-R12 method using GECKO program with the Z intermediate
evaluated via eq 158; their results showed significantly reduced errors
due to the RI approximation and underscored the importance of
proper evaluation of the Z intermediate.

The automated approach also allowed Shiozaki et al. to
implement higher-rank CC-R12 methods, such as CCSDT-
R12 and CCSDTQ-R12,122 without any approximations other
than the RI. Although the R12 terms greatly reduced the error
due to the basis set incompleteness of the two-electron basis, the
basis set error of three- and four-electron bases was effectively
unchanged. These findings called for the use of explicitly
correlated terms in higher-rank basis functions as well.123,124

The geminal amplitude equation of CCSD-R12 involves o3v03

operations, whereas the cost of CCSD is o2v4. Thus, the
computational cost of CCSD-R12 scales asymptotically as the sixth
power of the system size, similar to CCSD. Despite the same scaling,
the absolute computational complexity of CCSD-R12 in terms of
operations and storage is significantly greater than that of CCSD.
Thus, the primary utility of the full CCSD-R12method is to provide
benchmarks for developing approximate CCSD-R12 methods. For
higher-rank CC-R12 methods, these approximations are not as
critical. For example, the computational complexity of the
CCSDT-R12 and CCSDTQ-R12 methods scales with the system
size in the samemanner as their respective non-R12 counterparts,121

as the 8th and 10th power of the system size.

5.2. Approximate CC-R12 Methods
A variety of practical approximations for CCSD-R12 exist.

They can be broadly divided into two categories, iterative and
noniterative. The iterative group of approaches is characterized
by doubles and/or singles amplitude equations that are different
from those of CCSD; noniterative approaches depart from the
standard CCSD equations and introduce the geminal terms
perturbatively. Both types of approaches can be further simplified
by the use of cusp conditions to fix the values of geminal
amplitudes, as described in section 4.4; this simplification could
be viewed as a separate CC-R12 ansatz rather than as a way to
approximate eq 132.
5.2.1. CC-R12 in Standard Approximation. The starting

point for our discussion is the original implementation of CC-
R12 by Noga, Kutzelnigg, and Klopper within the standard
approximation. Standard approximation is characterized by the
use of the orbital basis set for the RI approximation. Hence, the
SA CC-R12 method can be obtained from the modern formula-
tion by dropping all terms that include sums over CABS indices.
For example, the V intermediate in standard approximations can
be obtained from eq 110 by dropping the second and third terms
on its right-hand side:

Vpq
xy ¼SAðgrÞpqxy � g̅ pq

rs ̅r
rs
xy ð159Þ

Noga et al. implemented SACCSD-R12,117,125 CCSD[T]-R12,117,126

and CCSD(T)126 using linear correlation factor; they also dis-
cussed the formalism of CCSDT-R12.118 SA CCSD(T)-R12
was recently reimplemented with nonlinear (Slater-type) cor-
relation factor in a simplified manner by utilizing the cusp
conditions to fix the values of geminal amplitudes (see sections
4.4 and 5.2.2).127

The simplifications due to SA come at a steep price: the need
for extended primitive atomic basis sets nearly saturated to at
least 3Locc, where Locc is the maximum angular momentum of the
occupied atomic orbitals. Therefore, practical applications of SA
CC-R12 are limited mostly to highly accurate studies of atoms
and small molecules. Nevertheless, SA CC-R12 methods were a
crucial milestone for R12 methodology.
5.2.2. CC-R12 Using Cusp Conditions. A drastic simplifi-

cation of the CC-R12 method is possible by taking advantage of
Ten-no’s idea84 that coefficients of geminal terms in the wave
function can be simply prescribed by the cusp conditions. Using
fixed geminal amplitudes eliminates the need to solve the poorly
conditioned geminal amplitude equations,120,128 reduces the
overall computational expense, and eliminates the geminal super-
position error.129 Therefore, the use of fixed amplitudes is the
standard practice in most practical applications.
The simplest way to use the fixed geminal amplitudes in

CCSD-R12 is to solve the singles and doubles amplitude
equations, and evaluate the energy via eq 141. However, this
method yields the error in the energy that is linear with respect to
the error in the geminal amplitudes introduced by using the cusp
conditions. The error can be made quadratic by using the
variational (Lagrangian) formulation of the traditional coupled-
cluster method. Consider the CCSD-R12 Lagrangian:

LCCSD �R12ðfλg, ftgÞ ¼ ECC �R12 þ λai Æ
a
i jH̅j0æ

þ λabij Æ
ab
ij jH̅j0æ þ λxyij Æ

xy
ij jH̅j0æ � Æ0jð1 þ Λ̂ÞH̅j0æ ð160Þ

where the CC-R12 energy is given by eq 141. The CCSD-R12
lambda operator Λ̂ introduced in eq 160 is defined similarly to
the cluster operator T̂:

Λ̂ ¼ Λ̂1 þ Λ̂2 þ L̂ ð161Þ

Λ̂1 ¼ λai ~a
i
a ð162Þ

Λ̂2 ¼ 1

ð2!Þ2 λ
ab
ij ~a

ij
ab ð163Þ

L̂ ¼ 1

ð2!Þ2 λ
xy
ij ðγ~xyij Þ† ð164Þ

Making Lagrangian stationary with respect to both parameter
sets, λ and t renders its value equal to the CCSD-R12 energy
computed with fully optimized t amplitudes via eq 141. If
these parameters are not fully optimized (hence, some or all t
amplitudes are not optimal), the value of the Lagrangian deviates
from the exact CCSD-R12 energy quadratically with the devia-
tion of the t amplitudes. In practice, only approximately
quadratic error can be expected because geminal lambda
amplitudes are approximated also in the same manner as the
geminal t amplitudes. Nevertheless, the difference between the
optimized and fixed-amplitude approaches rapidly decreases
with the basis set.
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Although the use of fixed geminal amplitudes eliminates the
need to solve the associated equations, the use of the Lagrangian
formalism requires evaluation of the Æijxy|H|0æ residual once. The
evaluation of this residual is expensive in the unabridged CCSD-
R12 method. Therefore, this residual is usually approximated
further, as we discuss below.
5.2.3. Perturbative Approximations to CC-R12. Although

the perturbative CC-R12 framework of Valeev et al.130 was not the
first post-SA iterative approximation,131 it is more natural to discuss
the perturbative approaches first because perturbation theory argu-
ments support all iterative CC-R12 approximations as well.
To develop a perturbative expansion of the CC-R12 energy

and wave function, we must choose the zeroth-order state and
the corresponding Hamiltonian. Among the infinite set of
possibilities, the following two choices stand out:
• the MBPTn (or MPn) framework, in which the zeroth-order
state is the standard single-determinant reference (Hartree�
Fock), |0æ, and the Fock operator (in finite-basis or otherwise)132
plays the role of the zeroth-order Hamiltonian.

• the CC(n) framework,133 in which the zeroth-order state is
the standard CCwave function (e.g., CCSD), and the zeroth-
order Hamiltonian is obtained by L€owdin partitioning134 of
the similarity-transformed Hamiltonian.

Both approaches have been productively used in the past to
analyze and construct approximations to high-rank CC wave
functions.135�141 For example, the successful CCSD(T) method132

in which the CCSD energy is perturbatively corrected for the effect
of connected triples was initially motivated by arguments based on
the MBPT analysis of the CCSDT energy. Later, Stanton and
Gauss142,143 pointed out that the (T) correction can be viewed as an
approximation to the second-order energy computed within the
CC(n) framework in which the CCSD wave function and Hamil-
tonian were chosen as zeroth-order. The relative simplicity of this
“derivation” of the CCSD(T) method suggests that the CC(n)
frameworkmight be preferred over theMBPTn framework in terms
of consistency. The CC(n) approach also allows one to construct
perturbative expansions of energies but also wave functions.
These considerations prompted Valeev to develop a CC(n)-

type perturbation expansion of the CCSD-R12 energy and wave
function.130 Consider the CCSD-R12 Lagrangian (eq 160). It
can be rewritten in matrix form as

LCCSD �R12ðfλg, ftgÞ ¼ LþH̅R ð165Þ
where H is the matrix representation of similarity-transformed
CCSD-R12 Hamiltonian in the basis that includes reference
determinant 0 � |0æ, singles S � {|i

aæ}, doubles D � {|ij
abæ}, and

the explicitly correlated geminal substitutionsΓ� {|ij
xyæ}. L andR

are column vectors that represent the ground-state left- and right-
hand eigenstates of the CCSD-R12 Hamiltonian, that is, the (1 +
Λ̂)†|0æ and |0æ states. To construct a perturbative expansion of
the CCSD-R12 Lagrangian around the CCSD state (tij

xy = 0, λij
xy =

0), it is convenient to partition the O x S x D x Γ space into
reference space, P � 0 x S x D, and the external space, Q � Γ.
The matrix representation of the CCSD Hamiltonian, H =
e�T̂1 � T̂2ĤeT̂1 + T̂2, in these spaces:

H̅ ¼ H̅PP H̅PQ

H̅QP H̅QQ

 !
ð166Þ

can be straightforwardly used to develop a L€owdin-type pertur-
bation expansion.134 Such an expansion can be defined in a

number of ways; one possibility is to partition the Hamiltonian
as:

H̅ð0Þ ¼ H̅PP 0
0 H̅ð0Þ

QQ

 !
ð167Þ

H̅ð1Þ ¼
0 H̅PQ

H̅QP H̅ð1Þ
QQ

0
@

1
A ð168Þ

whereHQQ =HQQ
(0) +HQQ

(1) . The zeroth-order vectors L and R are
defined in terms of the ground-state CCSD eigenvectors, L and
R , as

Lð0Þ ¼ L
0

 !
ð169Þ

Rð0Þ ¼ R
0

 !
ð170Þ

The zeroth-order Lagrangian, (L(0)) +H(0)R(0), then equals
the ground-state CCSD energy, the first-order Lagrangian
vanishes, and the second-order contribution takes the follow-
ing form:144

Lð2ÞðLð1ÞQ ,Rð1Þ
Q Þ ¼ L †H̅PQR

ð1Þ
Q þ ðLð1ÞQ Þ†HQPR

þ ðLð1ÞQ Þ†ðH̅ð0Þ
QQ � Eð0ÞSQQ ÞRð1Þ

Q ð171Þ
where the overlap matrix for space Q appears because the
geminal functions as defined in eq 144 are not orthonormal.
The second-order energy is obtained by extremization of this
Lagrangian, or by plugging in the geminal amplitudes fixed by the
cusp conditions (section 5.2.2). Choosing the Fock operator
as HQQ

(0) makes the correction maximally similar to that of the
MP2-R12 method. However, the main difference is the asym-
metric character of the CC correction due to its dependence on
two sets of geminal amplitudes (LΓ

(1) and RΓ
(1)), rather than one

set in MP2-R12. The asymmetric character of the correction is a
consequence of the non-Hermitian character of the coupled-
cluster Hamiltonian and, therefore, naturally appears in pertur-
bative CC approaches. Also note that the correction requires
knowledge of not only t CCSD amplitudes, but also the λ CCSD
amplitudes. That is also a known feature of CC(n) approaches:
see, for example, the asymmetric,145 or Λ,146 (T) correction
to CCSD.
The second-order Lagrangian in eq 171 requires evaluation of

the same types of special intermediates that already appear in the
MP2-R12 method; its implementation by Shiozaki, Hirata, and
Valeev will be documented soon. Valeev et al. implemented a
simplified version of the theory, dubbed CCSD(2)R12, by employ-
ing what they called screening approximations (ScrA).130,147,148

The screening approximations make it possible to formulate a
Hylleraas-type second-order functional for the R12 correction of
CCSD(2)R12 that does not require CCSD λ amplitudes for its
evaluation. The (2)R12 Lagrangian is expressed as:

Lð2ÞR12ðftijxygÞ ¼ 1
2
V̅ xy

ij t
ij
xy þ 1

8
towij ð~BðijÞÞxyowtijxy ð172Þ

The second term also appears in the MP2-R12 Lagrangian; the
only difference is in the first term, where the standard Vij

xy
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intermediate of MP2-R12 is replaced with its counterpart149

V̅ ij
xy � Vij

xy þ 1
2
ðVab

xy þ Cab
xyÞtijab þ Â i, jV

aj
xyt

i
a ð173Þ

“dressed” by the CCSD amplitudes ta
i and tab

ij . The original
implementation of CCSD(2)R12 also discarded the terms that
include C and ta

i . As pointed out by H€attig et al., the C-including
term is important, especially for small basis sets.150

The t-dependent terms in eq 176 account for the entire
difference between the R12 correction of MP2-R12 and CCSD-
(2)R12. This difference can therefore be identified with the
observed empirical connection between the size of the basis set
error and the type of the electron correlation model, also known
as the basis set “interference” effect.151 It is empirically known
that the basis set error ofMP2 energy is larger than that of higher-
level CC andCI correlationmodels, and in practice theMP2-R12
correction is larger than that of CCSD(2)R12.
It is also straightforward to include the effects of triples

and higher-rank excitations using the approach outlined here,
by including the appropriate determinants into Q. In the
most important case, geminals and triples are included: Q �
Γ x T. Valeev and Crawford argued148 that the smallness
of the coupling between the geminal and triples suggests using
the simplest zeroth-order Hamiltonian, the Fock operator, in
which the effect of geminals and triples is completely de-
coupled. Thus, the energy of the CCSD(T)R12 method is
defined as:

ECCSDðTÞR12 ¼ ECCSD þ EðTÞ þ Eð2ÞR12 ð174Þ
The CC(n) perturbative framework has also been extended by
Shiozaki et al. to include the effects of high-rank conventional
excitations, including up to second- and third-order terms
in energy, into the CCSD-R12 and CCSDT-R12 methods
with exact and approximate (R12) treatment of geminal
functions.152 Their findings confirmed that the R12 terms only
correct the basis set incompleteness of the two-electron part of
the wave function, that is, that attributed to doubles.
The (2)R12 approach is an excellent approximation to the

“exact” CCSD-R12: the differences between the CCSD(2)R12
and CCSD-R12 correlation energies (absolute and relative) are
significantly smaller than the residual basis set error of CCSD-
R12.122,150 The perturbative CC-R12 methods are very easy to
implement because the standard coupled-cluster amplitude
equations are not modified. The (2)R12 method is currently
available to the scientific community in the free open-source
MPQC package.153

5.2.4. The CCSD(R12) Method. To make the CCSD-R12
method affordable without the use of SA, Klopper and co-
workers proposed the CCSD(R12) method.131,154,155 The
“(R12)” approximation (1) retains the terms that are at most
linear in geminal amplitudes, and (2) additionally omits the [Ŵ ,
R̂] term from the geminal amplitude equation. While the singles
equation (eq 145) is the same as in the CCSD-R12 method, the
doubles and geminal amplitude equations (eqs 146 and 147)
take the following simpler form in CCSD(R12):131

Æabij jH̅SD þ ½H̅SD, R̂�j0æ ¼ 0 ð175Þ

Æxyij jH̅SD þ ½F̅SD, R̂�j0æ ¼ 0 ð176Þ

where the “SD” subscript denotes similarity-transformation with
singles and doubles cluster operators only:

H̅SD � e�T̂1 � T̂2ĤeT̂1 þ T̂2

¼ e�T̂1 � T̂2 F̂eT̂1 þ T̂2 þ e�T̂1 � T̂2ŴeT̂1 þ T̂2

� F̅SD þ W̅SD ð177Þ

The (R12) approximation can also be similarly formulated
for higher-rank CC-R12 methods, as was done by Shiozaki
et al.122

The (R12) approximation can be rationalized from a pertur-
bation theory viewpoint that assumes the smallness of geminal
amplitudes and is reminiscent of the CC2 and CC3 methods156,157

as well as, for example, of the CCSDT-1 method.158 These
approximations dramatically reduce the computational complexity
of the method relative to the CCSD-R12. For example, approxima-
tion (2) allows one to avoid P and Z intermediates completely;
K€ohn et al. found that this assumption decreased the cost signifi-
cantly but at the cost of insignificant deterioration of the error with
respect to the full CCSD-R12.116 The (R12) simplification in the
equations allows CCSD(R12) to be implemented by a modest
extension of the computational elements developed in the MP2-
R12 implementations.
The CCSD(R12) method was found to be an excellent

approximation to CCSD-R12 (the difference between the two
methods is typically much smaller than the residual basis set error
of CCSD-R12).115,116 The method is straightforward to utilize
with the fixed geminal amplitudes (see section 5.2.2).159 The
(R12) approximation is also amenable for formulation of re-
sponse and excited-state CC-R12 methods.160�163

Recently, H€attig et al. proposed additional simplifications of
the (R12) approach, dubbed CCSD[F12] and CCSD(F12*).150

These simplifications are obtained from CCSD(F12) by further
perturbative screening of the amplitude equations and are
reminiscent of the simplifications involved in the CCSD-F12x
(5.2.5) and CCSD(2)R12 methods (section 5.2.3). These meth-
ods seems to perform as well as CCSD(F12), at the cost
approaching that of CCSD. Recently, K€ohn and Tew further
extended the perturbation theory analysis that led to the [F12]
and (F12*) approximations.164

The CCSD(R12) method is widely available to the scientific
community in the TURBOMOLE package. It is also implemented
in programs of the Ten-no group (GELLAN) and K€ohn group
(GECKO), as well as the MPQC package.
5.2.5. The CCSD-F12x Methods. In 2007, Adler et al.

proposed a family of iterative approximations to CCSD-R12,
dubbed CCSD-F12x (x = a,b),104,106 that can be viewed as a
further simplification of CCSD(R12). First, the geminal ampli-
tudes in these methods are always fixed by cusp conditions or,
optionally, at their MP2-R12 values. Second, the same singles
amplitude equations are used as in CCSD-R12 and CCSD(R12)
(eq 148), whereas the doubles equations differ from CCSD-
(R12) by the omission of the [[Ŵ , T̂2], R̂] term. Third, all
summations over CABS indices, except those appearing in
special intermediates V, X, B, and C of MP2-R12, are omitted.
For example, the Vxy

ij intermediate is evaluated using eq 110, but
the Vxy

ab intermediate that appears, for example, in the Æijab[Ŵ ,
R̂]|0æ term is evaluated as

Vab
xy ¼F12xðgrÞabxy � g̅ ab

rs ̅r
rs
xy ð178Þ
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This expression is equivalent to standard approximation (eq 159);
thus, CCSD-F12x can be viewed as CCSD-R12 with some terms
dropped and SA applied to terms that do not appear in MP2-R12.
Because the geminal amplitudes are fixed in CCSD-F12x, the

energy is evaluated via the CC Lagrangian (eq 160). Both singles
and doubles amplitude equations are solved exactly; therefore, the
terms including singles and doubles lambda amplitudes can be
dropped. Further, the geminal lambda amplitudes are set to the
same values as the geminal t amplitudes, and the geminal residual is
approximated. The CCSD-F12b energy expression becomes:

ECCSD �F12x ¼ ECC �R12 þ ðtijxyÞ†Æxyij j½F̂, T̂2� þ Ŵ

þ ½Ĥ, R̂�j0æ

In CCSD-F12a, the geminal residual is further approximated by
replacing [Ĥ, R̂] with [F̂, R̂]. The computational complexity of
CCSD-F12x methods is essentially similar to that of CCSD (the
additional cost ofMP2-R12 computation can be usually neglected).
In practice, the CCSD-F12x method in either variant involves

approximations that are more severe than CCSD(R12), but
considering its low computational cost it is an excellent compro-
mise. The implementation of CCSD-F12x methods in the
MOLPRO package makes them widely available to the chemistry
community.
5.2.6. Comparison of the CC-R12 Methods. To highlight

the relative performance of the various CC-R12 methods, we
present results of comparison of several CC-R12 methods
recently published in H€attig, Tew, and K€ohn.150 Table 4 includes
the results of statistical analyses of basis set errors of correlation
energies (per valence electron) for two data sets: (1) the
atomization energies of 30 small molecules containing the
elements H, C, N, O and F, and (2) the energies of decomposi-
tion reactions for a 25-molecule subset into the molecules H2, F2,
N2, CO2, and CO. The performance on the second set can be
considered representative for heats of formation. All computa-
tions utilized cc-pVXZ-F12 basis sets165,166 and the SP ansatz84

of Ten-no (see section 4.4).
The last two methods, CCSD[F12] and CCSD(F12*), were

designed by H€attig et al.145 by omitting certain terms in CCSD-
(F12) so that the overall performance is not compromised
substantially. Their computational cost is lower than that of
CCSD(F12) and is similar to that of CCSD-F12b. Therefore, all
methods in Table 4, except (2)R12, are iterative approximations
to CCSD-R12.
As expected, atomization energies suffer from larger basis set

errors because there will be necessarily a number of electron pairs
broken in the course of atomization, whereas in these reactions
the number of pairs stays constant. Nevertheless, maximum
errors can be just as large for reactions when the smallest
double-ζ basis set is used. Therefore, it is imperative to consider
maximum errors in evaluating the performance of these methods.
For reaction energies, the best performing of all listed methods

is CCSD(F12). Only when the largest quadruple-ζ basis set is
used can slightly smaller errors be obtained with the CCSD
(2)R12 method or the CCSD[F12] method. Its performance,
however, is closely matched by that of CCSD(F12*). CCSD-
[F12], a slight simplification of CCSD(F12*), is also an excellent
approximation to CCSD-F12. CCSD-F12x methods generally
perform worse than the other iterative methods; keep in mind that
they are, however, the cheapest iterative CC-R12 methods exam-
ined here. The noniterative CCSD (2)R12 method is only slightly

worse than CCSD(F12) for the double- and triple-ζ basis sets and
is among the best performers with the quadruple-ζ basis set.
For atomization energies, the best performers with the double-

ζ basis set are CCSD[F12] and, unexpectedly, CCSD-F12a.
With the largest basis set, however, the best two methods are
again CCSD(F12) and CCSD(F12*), with F12b close behind.
The performance of the lone noniterative CC-R12 approxima-
tion, CCSD (2)R12, is again comparable, but slightly worse than
CCSD(F12).
It is difficult to pinpoint the reasons for a better or poorer

performance of a particular approximations to CCSD-R12. The
most thorough job to date has been done by K€ohn and Tew.164

Of course, all analyses of this type are largely empirical in nature.
In practice, the differences between various approximations are
rather small, and almost always will be smaller than the residual
errors of the computation (such as those due to the lack of
higher-order excitations, etc.). Therefore, pragmatically speak-
ing, the current set of approximate CCSD-R12 methods is good
enough, with some slight variation in performance, and the focus
of R12 field is likely to shift to other, more pressing problems.

6. MULTIREFERENCE R12 METHODS

Major efforts of the R12 developers have been until recently
focused on single referencemethods, in which theHartree�Fock
determinant is assumed to provide a proper zeroth-order de-
scription of the electronic state. However, there are situations
where the wave function has significant contributions from
multiple configurations; for example, for stretched covalent bonds,
electronically excited states, and transition metal compounds,
there are often degenerate or nearly degenerate configurations.
In those scenarios, multireference (MR) methods are mandated,

Table 4. Comparison of Various Approximate CCSD-R12
Methodsa

RE AE

method X mean σN rms max mean σN rms max

(F12) D �0.10 0.10 0.14 �0.32 �0.61 0.21 0.65 �1.05

T �0.01 0.01 0.02 �0.06 �0.08 0.08 0.11 �0.33

Q 0.00 0.01 0.01 0.01 0.04 0.05 0.06 �0.13

(2)R12 D �0.13 0.15 0.20 �0.42 �0.72 0.44 0.85 �1.48

T �0.02 0.02 0.03 �0.08 �0.13 0.17 0.21 �0.53

Q 0.00 0.00 0.00 0.01 0.04 0.08 0.09 �0.19

F12a D �0.14 0.20 0.25 �0.50 �0.37 0.27 0.46 �0.79

T �0.02 0.04 0.05 �0.11 0.19 0.09 0.21 0.58

Q 0.00 0.01 0.01 0.02 0.27 0.06 0.28 0.45

F12b D �0.16 0.20 0.26 �0.53 �0.85 0.38 0.93 �1.54

T �0.03 0.05 0.06 �0.12 �0.16 0.12 0.20 �0.40

Q 0.00 0.01 0.01 �0.03 0.05 0.06 0.07 0.14

[F12] D �0.09 0.11 0.14 �0.30 �0.32 0.23 0.39 �0.76

T �0.01 0.02 0.02 �0.05 0.05 0.09 0.10 �0.26

Q 0.00 0.00 0.00 �0.01 0.10 0.05 0.11 0.17

(F12*) D �0.10 0.10 0.14 �0.32 �0.60 0.21 0.64 �1.04

T �0.01 0.01 0.02 �0.06 �0.08 0.08 0.11 �0.33

Q 0.00 0.01 0.01 0.01 0.04 0.05 0.06 �0.13
aCCSD basis set error statistics for reaction energies (RE) and
atomization energies (AE) computed using CCSD-F12 models and
cc-pVXZ-F12 basis sets in kJ/mol per valence electron from Hatting
et al. (see Table 1 in ref 150).
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the ans€atze of which explicitly take into account the multiconfi-
gurational nature and often employ (but are not restricted to) a
complete active space self-consistent-field (CASSCF) wave func-
tion as the reference function.

Because the cusp conditions dictate the behavior of the wave
function at short interelectronic distances, regardless of the
electronic state, and the conventional MR methods also employ
the usual determinantal expansion in a one-particle basis, they
also suffer the slow convergence of electronic (correlation)
energies with respect to the basis. To accelerate the convergence,
it is essential to incorporate terms directly dependent on the r12
into the wave function, especially considering the tremendous
progress and already promising performance of single reference
R12 (SR-R12) approaches. Evidently, the key technologies
evolved from the development of SR-R12 methods, such as the
RI, etc., will be also essential for the MR-R12 methods.

To ease further discussion, instead of using the strong-
orthogonality two-particle projector Q̂ 12 in eq 79, we will employ
determinant-based state-specific many-electron projectors Q̂
(following the notation in ref 167), assuming that a reference
state |0æ is predefined. These projectors simplify the formalism of
MR-R12 methods by reducing the number of projection opera-
tors in the expressions. Q̂αβ,ij is defined as the projector onto the
determinantal space {aij

kλ|0æ = |ijkλæ," k,λ,i,j}; Q̂ k,i is the projector
onto the space {ai

k|0æ = |ikæ,"k,i}, etc. Notice that if |0æ is a single
determinant, the determinants {|i

kæ} are orthonormal and thus
Q̂ k,i = |i

kæÆik|; in contrast, if |0æ is a multideterminantal function,
the simple equality does not hold, because the configurations are
in general neither orthogonal nor normalized. In that case, an
explicit expression of Q̂ in terms of configurations will involve a
metric matrix. The same situation applies to Q̂ kλ,ij, etc. With the
notation Q̂ , we purposely avoid the explicit expressions and
implementations of the projectors (there may be multiple ways
to express them) and use Q̂ to reformulate the theories under
discussion at our convenience to unify them to some extent.

In the MR-R12 methods developed so far, the conventional
wave function is augmented by an explicitly correlated compo-
nent. Except the R12-MRCI and R12-MR-ACPF methods of
Gdanitz, the explicitly correlated terms are introduced in a
contracted manner; that is, given a multideterminantal reference
function |0æ = ∑RtR|Ræ, a universal R12 operator acts on |0æ as a
whole to generate the explicitly correlated function:

Q̂
1
2
tijklr

kl
kλa

kλ
ij

� �
j0æ

¼ Q̂
1
2
tijklr

kl
kλa

kλ
ij

� �
∑
R

tRjRæ ð179Þ

¼ Q̂ R̂12j0æ ð180Þ
Here, R̂12 produces a single explicitly correlated function from a
general multideterminantal reference. In contrast, the earlier
MR-R12 methods of Gdanitz generated many explicitly corre-
lated functions from each individual reference determinant;
optimization of the resulting large number of parameters posed
a serious numerical problem. The idea of internal contraction in
MR-R12 was first introduced by Ten-no in the development of
MRMP-F12;84 it leads to a dramatically more compact, yet
robust, parametrization and alleviates the numerical challenges
faced by the uncontracted ans€atze, because now there is only one
set of geminal amplitudes to be determined (or none in the SP

ansatz) and its number does not grow with the number of
reference determinants. The numerical stability of MR-R12
was further enhanced by adopting the SP ansatz,84 as was first
realized in MRMP-F12 of Ten-no. The combination of internal
contraction and SP ansatz in MR-R12 paved the way for
developing efficient and numerically stable MR-R12 methods
and was followed by all later MR-R12 developments.

These common features result in an R12 operator (generator
of the explicitly correlated basis functions) of the following form:

R̂12 ¼ tijklr
kl
kλE

kλ
ij ¼ ~rijkλE

kλ
ij ð181Þ

where E is the spin-free substitution operator, t is fixed by the
cusp condition, and ~r is introduced for convenience:

Ekλij ¼ ∑
u, v ∈ fα,βg

akuλviu jv ð182Þ

tijkl ¼
3
8
δikδ

j
l þ

1
8
δilδ

j
k ð183Þ

~rijkλ ¼ 3
8
rijkλ þ 1

8
r jikλ ð184Þ

6.1. R12-MRCI
The first MR-R12method was formulated by Gdanitz168,169 in

the 1990s, where a linear correlation factor is used, that is, f(r12) =
r12. In R12-MRCI of Gdanitz, the conventional MRCI is aug-
mented by an explicitly correlated component with coefficients
to be optimized:

jΨæ ¼ jΨMRCIæ þ ∑
I
Q̂ I tijklðIÞrklkλakλij jIæ ð185Þ

where I refers to any determinant in the reference space, i/j/k/l
denote any internal orbitals. (If for some i/j, the orbitals are not
occupied in I, the operator aij

kλ will annihilate the reference
determinant I and thus those terms will not contribute. There-
fore, it is not necessary to confine i/j to orbitals occupied in I.)
The uncontracted MRCI wave function is represented as

jΨMRCIæ ¼ ∑
I
tIjIæþ ∑

S
∑
a
tSa jΦa

Sæþ ∑
P
∑
a, b

tPabjΦab
P æ

ð186Þ
a and b denote external orbitals (not occupied in any reference
configurations), and S and P denote internal N � 1 and N � 2
electron hole states. |Iæ, |Saæ, and |ΦP

abæ denote internal, singly
external, and doubly external configurations, respectively.

The reference determinant dependent projector Q̂ I (i.e., with
|Iæ as the reference function of the projector) ensures that the
explicitly correlated functions are orthogonal to the conventional
MRCI wave function, and it is defined as

Q̂ I ¼ Q̂ I
kλ, ij � Q̂ I

pq, ij ð187Þ
To simplify the theory, the author suggested to restrict the orbital
pair kl to few pairs selected by chemical arguments.169 This
restriction makes R12-MRCI lose the orbital invariance. Along
the same line, Gdanitz developed the explicitly correlated multi-
reference averaged coupled-pair functional R12-MR-ACPF. The
methods were applied to the potential energy surfaces
of N2,

169,170 Be2,
171 He2,

174,173 Ne2,
174 HF,175 the reaction

F2 + H f HF + H,176 the atomic ground states and ionization
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potentials,177 electron affinities,178 and the valence excited states
of methylene.179

6.2. MRMP2-F12
Ten-no developed an R12 correction180 in the framework of

MRMP2 theory.181,182 If the zeroth-order wave function is
represented by |0æ, the R12 augmented first-order wave function
is

jΨð1Þæ ¼ jΨð1Þ
MRMPæþ Q̂ R̂12j0æ¼ jΨð1Þ

MRMPæ þ jΨð1Þ
R12æ

ð188Þ
R̂12 is defined as in eq 181, where i/j refer to the internal orbitals.
The projector Q̂ is chosen as (Q̂αβ,ij� Q̂ ab,ij). The semi-internal
excitations are excluded from the geminal operator, based on the
analogy with atomic cases, where their contribution vanishes
once OBS is saturated up to 3 Locc (“occ” refers to occupied
orbitals in |0æ). It was also demonstrated by the example of O2

that the semi-internal contribution to the correlation energy is
rather insensitive to the basis set.

The second-order energy correction with R12 contribution is
obtained from the minimization of the Hylleraas functional:

H ð2Þ ¼ 2Æ0jĤð1ÞjΨð1Þæþ ÆΨð1ÞjĤð0Þ � Eð0ÞjΨð1Þæ ð189Þ
and upon introducing further approximations, simplifies to an
additive form:

H ð2Þ ¼ Eð2Þconv þ Eð2ÞR12 ð190Þ
where ER12

(2) = 2Æ0|Ĥ(1)|ΨR12
(1) æ + ÆΨR12

(1) |Ĥ(0)|ΨR12
(1) æ. The evalua-

tion of the second term is further simplified by an approximate
Fock operator along with the so-called approximation A. The
Hylleraas functional reduces to the MP2-F12/A*(SP) energy for
a Hartree�Fock reference function.96 MRMP2-F12 is applied to
the excitation energy of carbon atom, the atomization energy of
CH2, and the potential energy curve of O2.

6.3. [2]R12
Torheyden and Valeev formulated a generally applicable

second-order R12 correction, dubbed [2]R12.
147 Given an arbi-

trary electronic state |0æ, the explicitly correlated function |Ψ(1)æ
is generated by the R̂12 operator:

jΨð1Þæ ¼ Ω̂
ð1Þj0æ ¼ Q̂ R̂12j0æ ð191Þ

The projector is defined as (Q̂ kλ,ij� Q̂ pq,ij� Q̂α0 ,i). Despite the
apparent formal difference, the above simpler expression is an
equivalent reformulation of the first-order wave function given in
ref 147. Because only the orbital pairs pq fromOBS are projected
out from the double excitations, semi-internal excitations are
included in |Ψ(1)æ, and this was found to be important for [2]R12.
In addition, the singly excited configurations {|i

α0
æ} (a subset of

the semi-internal excitations) are excluded via the projector Q̂α0 ,i,
because these determinants are considered as the source of one-
particle incompleteness and will be taken care of independently.

The second-order energy correction is computed by evaluat-
ing the Hylleraas functional (see eq 189), with Ĥ(0) = F̂ = Fλ

kak
λ.

Because of the existence of semi-internal contributions, the
evaluation of the geminal�geminal block of ÆΨ(1)|Ĥ(0) �
E(0)|Ψ(1)æ requires 4-RDM and is relatively complicated. There-
fore, two additional approximations are introduced: (1) 3- and
4-RDM are approximated by 1- and 2-cumulants; and (2) in the
spirit of screening approximations,183 all diagrams are omitted, in
which two r matrix elements or a r and a Coulomb (g) matrix

elements are connected via a 2-cumulant. These further approx-
imations lead to an approximate Hylleraas functional.

An important feature of [2]R12 is its general applicability: it
applies to any electronic state as long as the 2-RDM is available.
This was demonstrated by applying the correction to a MRCI
wave function, that is, |0æ = |ΨMRCIæ. In that case, all orbitals in
OBS are occupied orbitals. The potential energy surfaces of HF
and N2 were studied.

With a MRCI wave function as the reference function, [2]R12 is
relatively expensive. Amuch less expensive alternative is to correlate
only the dominant contribution of |ΨMRCIæ. The simplest choice
may be the CASSCF wave function, that is, |0æ = |ΨCASSCFæ. In
addition, the original [2]R12 (termed as SO-[2]R12 to distinguish
from the spin-free version) is formulated in spin�orbital basis due
to the use of a spin�orbital Fock operator. It will be advantageous
to develop a spin-free [2]R12 to further reduce the cost and avoid
biasing toward any particular spin components. This is achieved by
using the spin-averaged Fock operator instead of the spin�orbital
one. These extensions are incorporated in the development of
SF-[2]R12 by Kong and Valeev,184 and the Hylleraas functional is
expressed in terms of spin-free RDMs. In addition, a different
approximation to the geminal�geminal block is introduced to
partially avoid high-rank RDMs:

ÆΨð1ÞjðĤð0Þ � Eð0ÞÞΩ̂ð1ÞjΨð0Þæ≈ ÆΨð1Þj½Ĥð0Þ, Ω̂
ð1Þ�jΨð0Þæ

ð192Þ
This approximation is valid in SR-R12 methods if we consider the
Brillouin condition and assume the generalized Brillouin condition.
With this approximation, only up to 3-RDM is required to evaluate
the Hylleraas functional. The screening approximation and a spin-
free cumulant approximation185 are then invoked for further
simplicity. The method was benchmarked with the bond-breaking
of HF and N2 and the singlet�triplet separation of methylene.

6.4. CASPT2-F12 and MRCI-F12
Shiozaki and Werner developed the MR-R12 methods named

CASPT2-F12167 and MRCI-F12.186 In CASPT2-F12, based on
the methods of Werner and Knowles,187,188 the conventional
wave function is augmented by the explicitly correlated part:

jΨæ ¼ ðtIjIæ þ tSa jΦa
Sæ þ tijpab jΦab

ijpæÞ þ Q̂ R̂12j0æ ð193Þ
(p = (1 corresponds to singlet and triplet coupling of external
electrons, respectively; the doubly excited configurations are
internally contracted |Φijp

abæ = (1/2)(Ei
aEj

b + pEi
bEj

a)|0æ.) The
projector is chosen to be (Q̂kλ,ij� Q̂ pq,ij), which is equivalent to
the projector defined by eq 4 in the original paper (they produce
the same wave function when acting on R̂12|0æ). Therefore, the
semi-internal excitations are included, but the singly excited
configurations are not projected out. Instead, the authors used
normal ordered operators to approximately project out the
singles:

R̂12 ¼ ~rklkλfEkλij g ð194Þ
where {} denotes normal order of Mukherjee and Kutzelnigg.189

The current ansatz is essentially equivalent to the ones presented
by the authors in ref 167, where the semi-internal component of
the R12 function is further decomposed using explicit singles
projectors for practical reasons. The Hylleraas functional (eq
189) is then minimized to determine the conventional ampli-
tudes and the second-order energy, with Ĥ(0) = F̂. In comparison
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to MRMP-F12 and [2]R12, the amplitudes of the conventional
wave function are modified due to the coupling with the explicit
correlation. CASPT2-F12 was applied to the singlet�triplet
splitting of methylene, the dissociation energy of ozone, and
low-lying excited states of pyrrole.

In MRCI-F12 of Shiozaki and Werner,186 the ansatz reads:

jΨæ ¼ jΨMRCIæ þ jΨR12æ

¼ ðtI jIæ þ tSa jΦa
Sæþ tijpab jΦab

ijpæÞ þ tF12Q̂ R̂12j0æ ð195Þ
The ansatz is similar to CASPT2-F12, but a direct diagonalization
procedure is taken instead of a perturbative treatment. One
additional parameter tF12 is introduced to allow for more flexibility
(if tF12 is set to 1, the ansatz is called the FIX ansatz; it is called
the SFIX ansatz if tF12 is optimized). The projector is defined as
(Q̂ kλ,ij � Q̂ pq,ij � Q̂α0 ,i), so the singles are excluded, in line
with [2]R12. The energy expectation value ÆΨ|Ĥ|Ψæ/ÆΨ|Ψæ is
then minimized to determine the amplitudes of the MRCI wave
function (the R12 amplitudes are fixed) and the energy. Addi-
tional approximations are introduced to simplify MRCI-F12:
ÆΨR12|(Ĥ� E0)|ΨR12æ is approximatedby ÆΨR12|(F̂� E(0))|ΨR12æ;
for most of the terms appearing in the evaluation of the coupling
term ÆΨMRCI|Ĥ|ΨR12æ, Ĥ is replaced by F̂. Similarly, MRACPF-
F12 is developed, which has much smaller size-extensivity error
as compared to MRCI. MRCI-F12 and MRACPF-F12 are
applied to the singlet�triplet splitting of methylene, the dis-
sociation energy of ozone, properties of diatomic molecules, and
the reaction barrier and exothermicity of the F + H2 reaction.

Shiozaki and Werner also extended MRCI-F12 to a multistate
version, using multiple reference functions to deal with avoided
crossings and conical intersections.190 For a state M, the MRCI-
F12 wave function is parametrized as

jΨMæ ¼ jΨMRCIæ þ jΨR12æ ð196Þ

¼ ðtMI jIæ þ tS,Ma jΦa
Sæ þ ∑

N
tij,MN
ab jΦab

ij,NæÞ

þ ∑
N

tMN
F12 Q̂ R̂12jNæ ð197Þ

Therefore, internally contracted doubly external configurations
with respect to multiple reference functions, both conventional
and explicitly correlated parts, are present in the ansatz to relax
the external functions. The projector is essentially the same as in
the single state MRCI-F12. For the term ÆM|R̂12

† Q̂ ĤQ̂ R̂12|Næ, it
is approximated by

ÆMjR̂†
12Q̂ F̂ þ 1

2
Eð1ÞM þ 1

2
Eð1ÞN

� �
Q̂ R̂12jNæ

where EM
(1) = ÆM|Ĥ � F̂|Mæ. To avoid humps on the potential

energy surfaces, the reference functions are generated by linear
combinations of the CASSCF functions from diagonalizing the
Fock operator so that:

ÆMjF̂jNæ ¼ δMNF
M
M ð198Þ

The multistate MRCI-F12 and MRACPF-F12 are applied to the
avoided crossing of LiF, excited states of ozone, and the H2 +
OH(A2Σ+) reaction.

6.5. G-CASSCF
The idea of explicit correlation is explored in a different

direction by Varganov and Martínez.191 When studying ab initio
nonadiabatic quantum dynamics, it is desirable to describe
multiple electronic states accurately and CASPT2 is often used
for this purpose, because dynamical correlation is often impor-
tant to properly treat the states (while CASSCF only considers
the static correlation), and it is taken into account by CASPT2 in
a relatively efficient manner. However, CASPT2 is rather sensi-
tive to the choice of the active space, partially due to the intricate
interplay between static correlation and dynamical correlation.
Varganov and Martínez introduced the G-CASSCF method, in
which the dynamical correlation is fixed by a geminal f12(r12).
The ansatz for a two electron system reads:

jΨæ ¼ G ∑
I
cI jIæ ¼ ð1� f12ðr12ÞÞ ∑

I
cI jIæ ð199Þ

In the presence of the dynamical correlation, the MCSCF coeffi-
cients cI and the orbitals are optimized. Themethod is applied to the
ionic and covalent dissociation channels of of H2 and HeH

+.

6.6. MR CABS Singles Correction
In the applications of MR-R12 methods, it is noticed that

the R12 correction has significantly reduced the basis error of
the dynamical correlation energy so that the basis error in the
reference energy needs to be taken care of to achieve a balanced
accuracy, a phenomenon also observed in SR-R12 methods.
Toward that purpose, Kong and Valeev have developed a singles
correction method termed as [2]S (“S” stands for “singles”) to
deal with the one-particle incompleteness.192 [2]S is a second-
order perturbative correction, and the cost of the correction
scales as o2X2 (o is the number of occupied orbitals in CASSCF
and X is the dimension of CABS), negligible in comparison to
that of the R12 computation.

For the same purpose, Shiozaki and Werner developed a
configuration-interaction approach.177 The missing singly ex-
cited configurations due to the incomplete basis are included in
the singles wave function ansatz:

jΨM
S æ ¼ j ~Mæ þ ∑

N
ti,MN
α0 Eα

0
i j~Næ ð200Þ

| ~Mæ is a unitary transformation of the reference functions {|Mæ},
whichmaximizes the overlap with theMRCI-F12 wave functions.
Diagonalizing the Hamiltonian in the space {Ei

α0|~N} then yields
the energy ES

M. The CABS singles correction ΔES
M is defined

as ES
M � Æ ~M|~H| ~Mæ.

6.7. Comparison of MR-R12 Methods
Because most of the developments in MR-R12 methods are

quite recent, the data available in literature are not sufficient to
carry out an extensive comparison between the different meth-
ods. Here, we present a preliminary comparative study. The data
for [2]R12 are from the variant SF-[2]R12, and the reference
function |0æ is from CASSCF. When necessary, we will denote
the choice of the reference function in parentheses, for example,
SF-[2]R12(CAS).

In the following calculations, an exponential correlation factor
was adopted,84 f(r12) = exp(�γr12)/γ. When the aug-cc-pVXZ
basis3 (abbreviated as “aXZ”) was employed as OBS, γ = 1.5 was
used; with the cc-pVXZ-F12 basis165 (abbreviated as “XZF”) of
Peterson as OBS, the recommended values for γ were adopted.
The MRCI (without internal contraction) was based on
CASSCF, with core orbitals frozen in MRCI.
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In SF-[2]R12(CAS), the correlation energy from the explicit
correlation is decoupled from the conventional contribution; it is
also missing by definition in MRMP2-F12 of Ten-no (third-
order MRMP3-F12 would include such effect).180 As compared
to SF-[2]R12(CAS), Ten-no’s method invoked more dramatic
approximations and arrived at a rather simple expression. The
two approaches are closely related, but SF-[2]R12(CAS) is an
alternative, more general treatise of the explicitly correlated
terms. To compare the twomethods, we computed the excitation
energies (1D�3P) of carbon atom and the atomization energy of
CH2 (

1A1 state).
180 For computational details and results, see

Table 5. For the C atom excitation energy, the twomethods differ
by 0.024 eV in aDZ, but the difference decreases to as small as
0.001 eV in aQZ. For the atomization energy of CH2, the results
are also very similar; in aQZ, the difference is around 0.7 kJ mol�1

(about 0.007 eV). Considering the rather different approxima-
tions introduced in each method, the similarity of the results is
remarkable. More testing is needed, however, to make stronger
conclusions about the similarities between our SF-[2]R12(CAS)
method and Ten-no’s MRMP-F12 method.

To compare SF-[2]R12 and MRCI-F12, we take as an example
the basis set error of the adiabatic excitation energy (Te) from
the lowest triplet to the lowest singlet state of methylene,
E(~a1A1)�E(~X3B1). The results are tabulated in Table 6. On

one hand, even in DZF, SF-[2]R12 reduces the basis error from
0.048 eV to a very small value of 0.003 eV, even better than the
quality in QZF; moreover, the correlation energy contribution to
Te quickly converges, once SF-[2]R12 is included. For example,
with SF-[2]R12, the difference between TZF and QZF is as small
as 0.001 eV, in contrast to 0.01 eV without the correction.
Therefore, the convergence (to the SF-[2]R12 basis limit) is
greatly accelerated. On the other hand, as compared to the CBS
limit value, we notice that SF-[2]R12 overestimates the CBS limit
of the correlation energy; for example, in QZF, the SF-[2]R12
corrected Te is �0.075 eV, 0.008 eV lower than the estimated
CBS value. It is clear from the table that even with SF-[2]R12, the
rapid initial convergence to the CBS limit becomes slow in the
asymptotic limit. In comparison, MRCI-F12186 converges to the
exact limit more quickly. The major difference of SF-[2]R12-
(CAS) fromMRCI-F12, in which the conventional correlation is
optimized in the presence of the explicit correlation, is the lack of
first-order coupling between the conventional and R12 correla-
tion wave function contributions. The R12 correction is based
purely on CASSCF and is independent of the correlation
models, either MRCI and MRPT, etc. Essentially, the “inter-
ference effect” between the correlation methods and basis-set
hierarchies193,194 is not taken into account in SF-[2]R12(CAS).
Such an approach is expected to converge to the basis set limit as
slowly as the correlation energy itself, just like its slowly
convergent single-reference counterpart, the difference between
the basis set error ofMP2 and CCSD. To estimate the magnitude
of the interference effect, we computed theMP2 and CCSD basis
set errors with MP2-R12 and d-CCSD(2)R12

144 for the two
states, and the results are contained in Table 6 (only R12
contributions to Te are shown). Comparison of the two sets of
data spotlights the interference effect: the difference converges
quite slowly, and even at QZF, the difference is still as large as
0.019 eV. This effect should and does extend to MR methods,
and it accounts for the major difference between SF-[2]R12 and
MRCI-F12. We emphasize that the issue under discussion is not
inherent in the general theory SF-[2]R12; it emerges only because
we are investigating the particular variant SF-[2]R12(CAS) and
employ the uncorrelated CASSCF reference functions (in the
sense that the dynamical correlation is missing).Work to account
for the interference effectwithin our scheme is currently underway,
and preliminary resuls look promising. In the end, we stress that
even the estimated MRCI CBS limit still differs from the experi-
mental value by about 0.04 eV, much larger than the interference
effect at TZF or QZF. Thence judging from the particular case
study, even with CASSCF references, practically SF-[2]R12 is a

Table 5. Comparison between [2]R12 and MRMP2-F12a

CASSCF MRMP2 corr corr+F12 corr+[2]R12

C Atom Excitation Energy (eV): 1D�3P

aDZ 1.595 1.409 �0.186 �0.290 �0.314

aTZ 1.513 1.262 �0.250 �0.307 �0.310

aQZ 1.513 1.228 �0.284 �0.314 �0.315

CH2 (
1A1 State) Atomization Energy (kJ mol�1)

aDZ 639.5 681.1 41.6 73.6 73.9

aTZ 654.9 715.0 60.0 72.2 71.6

aQZ 656.3 722.7 66.4 72.1 71.4
aThe “corr” denotes the correlation energy contribution to the proper-
ties under investigation. “F12” denotes the pure F12 contribution of
MRMP2-F12 (excluding the MRMP2 correlation energy). For all
calculations, the 2s and 2p valence orbitals define the active space.
The core orbitals are optimized in state-specific CASSCF computations
and then frozen in the MRMP2. The geometry of CH2 (D2h symmetry)
and the MRMP2 and MRMP2-F12 energies are taken from ref 180:
RCH = 1.1068 Å, and —HCH = 102.03�. “aXZ” refers to the aug-cc-pVXZ
basis set.

Table 6. Comparison between [2]R12 and MRCI-F12 for the Singlet�Triplet Separation of CH2 in eV: 1A1�3B1
a

CASSCF MRCI corr corr+F12 corr+[2]R12 MP2-R12 CCSD(2)R12

DZF 0.457 0.438 �0.019 �0.054 �0.070 �0.093 �0.034

TZF 0.437 0.391 �0.047 �0.065 �0.074 �0.046 �0.012

QZF 0.436 0.379 �0.057 �0.067 �0.075 �0.027 �0.006

CBS 0.435 0.368 �0.067

exp (ref 195) 0.406

DMC (ref 196) 0.406(4)
aThe “corr” denotes the correlation energy contribution to the properties under investigation. “F12” denotes the pure F12 contribution of MRCI-F12
(excluding the MRCI correlation energy). For all calculations, the 2s and 2p valence orbitals define the active space. The core orbitals are optimized in
state-specific CASSCF computations and then frozen in theMRCI. The geometries, MRCI/MRCI-F12 (the SFIX version) energies, and CBS limits are
taken from ref 186 (Table 4). “XZF” refers to the cc-pVXZ-F12 basis set. “DMC” stands for diffusion Quantum Monte Carlo. MP2-R12 and
CCSD(2)R12 refer to purely the R12 contributions (excluding the conventional contributions).
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very reasonable approximation to the more rigorousMRCI-F12, if
other high order effects are not considered.

6.8. Summary
The development of MR-R12 methods within the modern

R12 framework has started only recently. Among the methods
developed so far, MRMP2-F12 of Ten-no and SO/SF-[2]R12
methods of Valeev et al. are the simplest. Both are applicable
within the second-order multi reference perturbation theory
framework. The latter have also been applied to arbitrary
correlated wave function, requiring only up to 2-RDM. When
using a CASSCF function instead of the correlated total wave
function as the reference, the cost of [2]R12 is similar to a single-
referenceMP2-R12. BothMRMP2-F12 and [2]R12 are posteriori
corrections and can be viewed as relatively simple extensions to
MP2-R12. CASPT2-F12 and MRCI-F12 are more rigorous R12
methods; the coupling between conventional and explicitly
correlated terms is included, and the amplitudes of the conven-
tional part are optimized in the presence of explicit correlation.

7. CONCLUSION

This concludes our Review of recent developments in ex-
plicitly correlated R12/F12 methods of electronic structure. R12
methods are broadly applicable, efficient realizations of the same
ideas that go back to the work by Hylleraas and Slater in the late
1920s. By employing interelectronic distances explicitly in the
wave function expansion, the R12 methods dramatically decrease
the basis set error of accurate wave function methods and yield
much smaller errors at the same cost. The keys to R12 methods
practicality are (1) their use of explicitly correlated terms along-
side the standard determinantal terms, and (2) the ingenious use
of the resolution of the identity (RI) to approximate three- and
four-electron integrals in terms of only one- and two-electron
integrals. The essential features of this idea were described by
Werner Kutzelnigg in 1985; many technical advances had to
happen since then to turn R12 methods practical and usable by
chemists today. Among the key advances are the introduction of
a short-range (exponential) geminal as correlation factor, robust
numerical approximations for many-electron integrals, and sim-
plified coupled-cluster R12 methods. This list will surely be
extended in the years to come.

The current technology of R12 methods has been especially
optimized for computation of valence correlation energies for
molecules including the first three rows of the Periodic Table.
The use of specialized cc-pVXZ-F12 basis sets of Peterson
et al.165,204 in combination with simplified CCSD(T)-R12 meth-
ods permits essentially black-box applications: the user only
needs to specify the cardinal number of the cc-pVXZ-F12 basis
sets, and all other “parameters” of the R12 theory (RI basis set,
geminal exponent, etc.) can be determined automatically. On the
other hand, there are still problematic cases that demand user
intervention. For example, the recent application of CC-R12
methods to the potential energy of argon dimer197 noted poor
performance of the R12 methodology, whereas it should be likely
attributed to the use of basis sets that are poorly suited for
computations on such dispersion-bound species.

We must comment on whether the current R12 technology
can compete with the basis set extrapolationmethods. Inmodern
quantum chemistry, there are a number of basis set extrapolation
methods, the main two groups being extrapolations with correla-
tion consistent basis set families of Dunning198 and the CBS
model chemistries of Petersson and co-workers.199 Among the

most often used extrapolation formula for correlation energies is
the inverse cubic extrapolation of Helgaker et al.:200

EðXÞ ¼ ECBS þ a
X3

ð201Þ

whereE(X) is the correlation energy computed with a correlation
consistent basis set with cardinal number X, ECBS is the complete
basis set limit, and a is a parameter determined by fitting, typically
to E(X) and E(X + 1). Equation 201 can be motivated from the
analysis of natural orbital expansion for a two-electron atom (eq
28), but all extrapolation formulas should be considered empiri-
cal. Equation 201 and similar formulas are currently the domi-
nant method to account for the basis set incompleteness of
molecular energy when high accuracy is sought. The success of
the extrapolation approaches is due to their simplicity and
effectiveness. Their obvious limitation, however, is that they do
not improve the wave function directly; hence only some (not
all) properties can be improved. The advantage of R12 methods
is that all properties can, in principle, be improved. Do R12
methods offer comparable or superior performance to extrapola-
tion methods for energies and other properties?

In the regime of ultrahigh accuracy necessary for computational
spectroscopic studies, the R12 methods have been established as
superior to extrapolation due to their improved asymptotic
convergence rate.201,202 In the chemical accuracy regime, the
answer seems to be also “yes”. For reaction energies, K€ohn and
Tew find that already with the cc-pVDZ-F12 basis the explicitly
correlated CCSD energies have smaller basis set error than the
energies extrapolated from conventional aug-cc-pVTZ and QZ
CCSD energies, the latter clearly more expensive than the former.
Similarly, a recent comparison of R12 methods and extrapolation
for harmonic and anharmonic vibrational frequencies by Huang,
Valeev, and Lee149 suggested that the R12 methods are always at
least as reliable as extrapolated results. While more extensive
benchmarking is needed, the R12 methods should now be
preferred for all practical computations that require high accuracy.

In conclusion, we will turn our attention to the future of R12
methods. Explicitly correlated wave functions are as old as
quantum mechanics itself, and they played a role in establishing
it as a quantitatively correct theory of atoms and molecules. Yet
they did not emerge as broadly applicable computational tools
until the mid 2000s. Looking back, the development of R12
theory looks like a series of tackling the most pressing issues of
the time: basic framework (Kutzelnigg 1985), CC-R12 (Noga
1992), efficient resolution of the identity (Klopper 2002, Valeev
2004, Ten-no 2004), short-ranged correlation factor and cusp
conditions (Ten-no 2004), practical CC-R12 (Klopper 2005,
Adler 2007, Valeev 2008), and R12-optimized basis sets
(Peterson 2008). Our safe guess is that the attention of the
community will be focused on solving the current problems of
modern R12 theory. Now we are at a point where R12 methods
are ready to be used by chemists. Therefore, we foresee a major
effort to make R12 methods widely applicable and black-box. In
fact, we anticipate that, thanks to R12 methods, the basis set
some day will no longer be a required part of computation’s
input. There is much room for developing analytic algorithms for
computing properties with R12 wave functions, to be usable in a
routine manner. We are likely to see the development of R12
variants of new methods, for example, such as those used for
strong correlation, as well as cross-fertilization of ideas with other
methods, such as Quantum Monte Carlo.
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We also posit that the ideas of R12 methods are likely to be
useful in other contexts, such as in quantum chemical computa-
tions with nonstandard numerical representations. Quantum
chemistry is attempting to solve a highly singular, highly dimen-
sional, partial differential equation, which is complicated enough,
and we should deliberately use all of the a priori knowledge we
have. The R12 methods have taught us that very few terms, with
some or no adjustable parameters, can describe the nonanalytic
behavior of the wave function near the electron�electron singula-
rities. In finite-element representations, the appearance of non-
analytic, or high-frequency, components in the wave function
mandates the use of finely spaced grids. In one-electron methods,
such as plane-wave DFT, the high-frequency components that
include the electron�nuclear cusp are problematic and require the
use of pseudopotentials; in correlation methods, analogous issues
will appear due to the interelectronic cusp. Just like the use of
pseudopotentials in DFT lead to much more efficient numerical
representations of electronic orbitals, addition of explicitly corre-
lated terms in the R12 spirit will reduce the complexity of
numerical representation of the two-electron wave functions.

Despite the lack of certainty about the new ideas and direc-
tions that may be spurred by the R12 methodology, we are
certain that some sections of this Review will need to be updated
soon to keep up with the rapid pace of progress in the field. The
R12 methods have deservedly garnered much attention in the
theoretical chemistry community, and the number of studies and
applications of R12 methods will continue to increase rapidly.

APPENDIX: NOTATION

The present notation is similar to that used in other R12
studies.82,85,120,203

Orthonormal spin�orbital spaces are defined in Table 7.
Tensor notation for second-quantized expressions has been
described in detail elsewhere, for example, refs 204 and 82. There
is a direct correspondence between tensor and Dirac notations:

Oq
p ¼ ÆpjOð1Þjqæ ð202Þ

Grs
pq ¼ ÆpqjGð1, 2Þjrsæ ð203Þ

Antisymmetrized matrix elements are denoted with a horizontal
line above the operator symbol:

G̅rs
pq ¼ Grs

pq � Gsr
pq ð204Þ

Summation is implied over all pairs of indices that appear in the
same term of an expression both in bra and in ket (the Einstein

summation convention). When diagonal matrix elements (Op
p)

appear in an expression, then the summation is shown explicitly.
Matrix elements of one- and two-body operators featured in

the R12 theory are denoted as follows:
Fqp ¼ ÆpjF̂1jqæ Kq

p ¼ ∑
m

gqmmp

grspq ¼ Æpqjr�1
12 jrsæ rrspq ¼ Æpqjf ðr12Þjrsæ

r, ½T, r��rspq ¼ Æpqj½f ðr12Þ, ½T̂1 þ T̂2, f ðr12Þ��jrsæ ðr2Þrspq ¼ Æpqjf ðr12Þ2jrsæ
ðgrÞrspq ¼ Æpqjr�1

12 f ðr12Þjrsæ ðgr2Þrspq ¼ Æpqjr�1
12 f ðr12Þ2jrsæ

where T̂i and F̂i are the kinetic energy and Fock operator for the ith
electron, respectively. The present notation for thematrix elements
uses capital letters for all one-electron operators and lower case
character for all two-electron operators. Thematrix elements of the
Fock operator are denoted Fp

q and should not be confused with
matrix elements of the correlation factor, f(r12), denoted as rpq

rs .
It is important to distinguish pairs of orbital indices that

correspond to the correlation operator (Rαβ
ij ) from the usual pairs

of occupiedMO indices ij. We will therefore use a separate group
of occupied orbital symbols to indicate such pairs of indices
(xyow), for example:

Vxy
ij ¼ 1

2
R̅ xy

αβg̅
αβ
ij ð205Þ

The non-Hermitian character of V is thus apparent.
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