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A previously proposed scheme for coupling short-range (sr) density functionals with wavefunction-based long-
range (lr) ab initio methods has been extended by (a) developing a new gradient-corrected sr functional of the
Perdew–Burke–Ernzerhof (PBE) type and (b) introducing coupled-cluster (CC) approaches (CC with single and
double excitations (CCSD), and with additional perturbative triples (CCSD(T))) at the ab initio side. The results
show that mixing-in of lr-ab initio correlation helps to remove deficiencies of currently used density functionals
for the treatment of van-der-Waals interactions. Compared to full ab initio calculations, the basis set dependence
is weaker so that the accuracy of the mixed results surpasses that of the ab initio ones for basis sets of triple-zeta
quality.

1. Introduction

Density functional (DFT) and wavefunction-based ab initio
methods are to some extent complementary. DFT provides a
very efficient (and yet reliable) treatment of dynamical correla-
tion effects, in a formally independent-particle framework with
modest basis sets. However, well-known shortcomings of DFT
are the inability to treat near-degeneracy effects and long-range
van-der-Waals (vdW) interactions correctly, and that there is
no way of systematically checking or improving the results. On
the other hand, ab initio methods allow an accurate treatment
of static correlation and near-degeneracies as well as long-
range correlation effects. There is a well established hierarchy
of methods that allow one to approach the full configuration
interaction (CI) and basis set limits systematically, but accurate
calculations usually require large basis sets and are expensive.
The question is whether it is possible to combine the merits
(rather than the shortcomings) of both brands of methods.

The reason for the need of large basis sets and long config-
uration expansions in ab initio methods is the difficulty of
explicitly describing the interelectronic cusp of the wavefunc-
tion. It has therefore been suggested1–3 to relieve ab initio
methods from the description of the cusp by splitting off the
short-range (sr) part, containing the singularity at rij ¼ 0, from
the interelectronic interaction operator 1/rij of the Hamilto-
nian. The sr (exchange-)correlation contributions are then
calculated by DFT, and ab initio methods are applied to the
smooth long-range (lr) part only.

In this work we started with an already existing implementa-
tion of the short-range local density approximation to DFT
(sr-LDA), coupled with long-range configuration interaction
(lr-CI).4–6 We added a new gradient-corrected short-range
density functional, cf. section 2, in order to improve the
performance of the method in the pure DFT limit, and
extended the coupling to include Møller–Plesset second order
perturbation theory (MP2), as well as the coupled-cluster
method with single and double excitations (CCSD), and with
additional perturbative triples (CCSD(T)), cf. section 3, in
order to provide size-consistent methods on the ab initio side
which faithfully describe long-range correlation effects. (In
parallel to our work, sr-LDA/lr-MP27 and sr-LDA/lr-
MCSCF8 implementations have been developed very recently.)

Our new sr-PBE/lr-CCSD(T) approach has been applied to the
treatment of homo- and heteronuclear rare gas dimers, in order
to get a consistent picture of its performance for van-der-Waals
bound systems, cf. section 4. Some conclusions are given in
section 5.

2. Functionals

The functionals to be described in this section refer to the
following separation of the interelectronic interaction operator
of the Hamiltonian into long- and short-range parts:

Vee ¼Vlr
ee þ Vsr

ee;

Vlr
ee ¼

X
ioj

erfðmrijÞ
rij

;

Vsr
ee ¼

X
ioj

1� erfðmrijÞ
rij

;

ð1Þ

where erf is the standard error function. The separation of the
energy expression into a long-range part to be treated by
wavefunction-based ab initio methods and a short-range part
to be treated by DFT can readily be done using Levy’s
constrained-search formalism:9

E0 ¼min
r

min
C!r
hCjT þ Vne þ Vlr

eejCi þ Esr
0 ½r�

� �
;

Esr
0 ½r� ¼min

C!r
hCjT þ VeejCi �min

C!r
hCjT þ Vlr

eejCi

¼Usr
H ½r� þ Esr

xc½r�:

ð2Þ

Here, E0 is the ground state energy, UH is the Hartree energy,
and Esr

xc defines the functional to be approximated. Note that
Esr
xc[r] is no longer a functional of the electron density r alone,

it also depends on the coupling parameter m. For m ¼ 0, its
definition coincides with that of the usual density functional,
but for m 4 0 the dependence on r will change.
LDA approximations to Esr

xc[r] are already available in the
literature.10,11 They rely on calculations for the homogeneous
electron gas with long-range interelectronic interaction.
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According to eqn (2) differences have to be formed between the
usual LDA exchange and correlation energies per particle and
the corresponding m-dependent functions for the homogeneous
electron gas with long-range interaction. These quantities,
eLDA
x (m,r) and eLDA

c (m,r), constitute the sr-LDA functional
via Esr

xc[r] ¼
R
d3r r(eLDA

x (m,r) þ eLDA
c (m,r)).

Several strategies have been suggested for introducing a
gradient correction to the sr exchange functional.12–14 Here,
we adopt (and modify) the PBE-like construction of ref. 14.
The original functional of Perdew, Burke and Ernzerhof15

reads

EPBE
x ¼

Z
d3r reLDA

x ðrÞFxðsÞ;

FxðsÞ ¼1þ k� k
1þ bs2=k

;

s ¼ jrrj
2kFr

;

ð3Þ

where kF ¼ (3p2r)1/3. The parameters k and b were derived
from the Lieb–Oxford bound and from the requirement that
the gradient coefficient for exchange cancels that for correla-
tion. They have values of kPBE ¼ 0.840 and bPBE ¼ 0.219 51. In
the short-range case, eLDA

x (r), as well as the constants k and b
in Fx should become m-dependent, i.e. eLDA

x (r) - eLDA
x (m,r),

k - k(m), b - b(m). In test calculations, we found that
EPBE
x is only weakly dependent on k(m), so we retained the ori-

ginal PBE value of k for all m. For b(m), which is the
gradient coefficient in the expansion Fx ¼ 1 þ bs2 þ . . .,
Toulouse et al.14 inserted a function bT(~m) (~m ¼ m/(2kF)),
analytically determined by expansion of the short-range
exchange hole to second order in terms of the density
gradient:

bTð~mÞ ¼ �c1 þ c2e
1=ð4~m2Þ

c3 þ 54c4e1=ð4~m2Þ ; ð4Þ

where c1 ¼ 1 þ 22~m2 þ 144~m4, c2 ¼ 2~m2(�7 þ 72~m2), c3 ¼
�864~m4(�1 þ 2~m2) and c4 ¼ ~m2f�3� 24~m2 þ 32~m4 þ 8~m

ffiffiffi
p
p

erf ½1=ð2~mÞ�g: For m ¼ 0, this function does not reduce to PBE’s
original value of bPBE, since the latter was not derived from the
gradient expansion of the exchange energy but rather was
connected to the gradient expansion of the correlation energy.
Thus, in order to make our new sr-PBE functional compatible
with the original PBE one for m ¼ 0, we multiply bT(~m) by a
scaling factor bPBE/bT(0). Furthermore, test calculations show
that no improvement over a simple LDA is obtained with bT(~m)
for large m. We therefore introduce a cut-off function for bT(~m)
enhancing its damping for m - N. This cut-off function has
been fitted to the sr part of the non-local HF exchange energy
of the He atom (as to one of the simplest systems with
inhomogeneous density). It turns out that the m-dependence
of the He sr exchange energy (which we calculated pointwise
with the aug-cc-pVQZ basis set16) can be well described with a
simple Gaussian cut-off function, exp(�ax~m2), inserted in b(m).
An optimum value of ax ¼ 19.0 was determined by minimising
the integral

R 10
0 ELDA

x ðsrÞ � EHF
x ðsrÞ

�� ��dm. Accordingly, we sug-
gest the use of

bðmÞ ¼ bPBE

bTð0Þ b
Tð~mÞ expð�ax~m2Þ ð5Þ

in eqn (3); with this one-parameter fit, we interpolate between
the PBE value of b at m ¼ 0 and b ¼ 0 (i.e., a purely LDA
description of sr-exchange) in the limit m - N.

For the sr correlation functional, we are aware of only
two papers addressing the question of how to go beyond
LDA.3,14 The latter of these papers also gives a sr-GGA
functional of the PBE type. The original PBE correlation

functional15 reads

EPBE
c ¼

Z
d3r r½eLDA

c ðrÞ þHðr; tÞ�;

Hðr; tÞ ¼g ln 1þ bt2

g
1þ At2

1þ At2 þ A2t4

� �� �
;

A ¼ b
gðexpð�eLDA

c =gÞ � 1Þ ;

t ¼ jrrj
2ksr

;

ð6Þ

where ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kF=p

p
. The parameters b and g were determined

from the gradient expansion of the correlation energy of the
homogeneous electron gas and from the appropriate expres-
sion for the high-density limit. They have values of bPBE ¼
0.066 725 and gPBE ¼ 0.031 091. In the short-range case,
eLDA
c (r) as well as the constants b, g in H should become
m-dependent, i.e. eLDA

c (r) - eLDA
c (m,r), b - b(m), g - g(m). It

has already been argued in ref. 14 that g(m) can be kept
constant over m. We therefore set g ¼ gPBE. For b(m), which
is the gradient coefficient in the expansion H ¼ bt2 þ . . ., we
first tried to redo the calculation of Ma and Brueckner17 for the
long-range Coulomb interaction. The calculation of ref. 17 is
correct to order e2. However, due to the absence of the
singularity in the long-range interaction, the O(e2) contribution
to b vanishes, cf.ref. 18. This would mean that for the short-
range functional b becomes independent of m. Unfortunately,
this approximation is not optimum when applied to the
calculation of the correlation energy of the He atom, e.g.
Specifically, we calculated the sr-contribution to the correla-
tion energy of He, in CI calculations with the aug-cc-pV5Z
basis set,16 as a function of m. In order to fit this curve, we have
to satisfy the condition b(m)- 0 for m-N. This means that a
pure sr-LDA approximation without corrections is accurate
for m-N, which is in line with analytic results for this limit of
ref. 3. Thus, as in the case of exchange, we have to find a
function which interpolates between the standard PBE limit for
m ¼ 0 and zero for m - N. However, we find that a simple
Gaussian cut-off function does not lead to a satisfactory fit of
the ab initio CI results for the sr correlation energy of He
for intermediate values of m; instead, a parametrisation accor-
ding to

bðmÞ ¼ bPBE
eLDA
c ðm; rÞ
eLDA
c ð0; rÞ

� �ac

; ð7Þ

gives much better results. An optimum value of ac ¼ 2.83
was determined by minimising the integral

R 10
0 ELDA

c ðsrÞ�
��

ECI
c ðsrÞjdm. In summary, we generated PBE-like exchange

and correlations functionals for use in sr-DFT/lr-ab initio
calculations, which rely on data for the homogeneous electron
gas and the He atom (with m-dependent interelectronic inter-
action) and contain two parameters for fitting the cut-off of
the gradient coefficients of exchange and correlations for large
m, ax and ac.
Let us now consider the performance of the various sr

exchange functionals. Fig. 1 assesses the reliability of the
sr-LDA approximation for the He atom. The quantity to be
approximated is the non-local short-range exchange energy
EHF
x (sr) (solid curve, right scale); it is equal to the full HF

exchange energy EHF
x , at m ¼ 0 (where the long-range part,

EHF
x (lr), vanishes) and gradually diminishes towards the m -

N limit (where EHF
x (lr) ¼ EHF

x ). Ideally, the ratio of the LDA
approximation for sr-exchange to the reference quantity,
ELDA
x (sr)/EHF

x (sr) (dashed curve, left scale), should be 1 for
all m. However, standard LDA underestimates the full HF
exchange by 14% for He, and therefore the curve starts with
0.86 at m ¼ 0. It is important to note that the quality of the
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approximation does not remain at this level for all m, but
gradually improves to 1, with a deviation of o1% for m Z 2.
This is in line with the findings of other workers:3,19 it has been
shown that LDA exchange becomes exact in the limit m - N.
It is to be noted, furthermore, that ELDA

x (sr) is coupled to
EHF
x (lr) in our combined sr-DFT/lr-ab initio approach, and this

mixing-in of the exact lr-HF exchange favourably affects the
ratio of the approximation of full exchange to the reference
value, (ELDA

x (sr) þ EHF
x (lr))/EHF

x (dotted curve, left scale in
Fig. 1). It starts again at the standard LDA value for He, of
0.86, at m ¼ 0, but reaches the ideal value of unity even faster
than ELDA

x (sr)/EHF
x (sr), with a deviation of o1% already for

m Z 1. Fig. 2 shows, again for He, the m-dependence of the
exchange energy with the PBE-like functionals of ref. 14
(PBET) and of the present work (PBE). Again, we plot the
ratio of the exchange energy in the combined sr-DFT/lr-HF
approach to the HF reference value, (EPBE

x (sr) þ EHF
x (lr))/EHF

x ,
which ideally should be equal to unity over the whole range of
m. The results with the PBE-like functional of ref. 14 are seen to
approximately halve the LDA errors, while our new modified
PBE functional starts with the much smaller error of the
standard PBE functional (E1%) at m ¼ 0, and remains
approximately constant over the whole range 0 r m o N. Of
course, the near-constancy with m is due to the construction of
our modified PBE functional, by fitting to the m-dependence of

EHF
x (sr) for the He atom. However, Fig. 3 shows that other

systems like Ne81 and Ne are also well described by our
functional, with deviations of r2.5% for EPBE

x (sr) þ EHF
x (lr)

from the full non-local HF exchange, over the whole range
of m.
Let us finally consider the performance of the various sr

correlation functionals. Fig. 4 assesses the reliability of the
sr-LDA approximation for the He atom. The quantity to be
approximated is the short-range correlation energy ECI

c (sr)
(solid curve, right scale), which we calculated as the difference
between the CI energy, ECI

c , of the He atom with full interac-
tion and the corresponding one for the long-range interaction,
cf. above. It is equal to ECI

c for m ¼ 0 (where the lr-interaction
vanishes) and approaches zero for m - N (where the lr-
interaction takes over). Ideally, the sr-LDA approximation
should reproduce ECI

c (sr), i.e. the ratio ELDA
c (sr)/ECI

c (sr)
(dashed curve, left scale) should be close to unity, for all m.
However, for m ¼ 0 we observe the well-known overestimation
of the exact He correlation energy by standard LDA, by nearly
a factor of 3, but (as for exchange) a significant increase of the
accuracy of the LDA approximation is found for m 4 0:
ELDA
c (sr)/ECI

c (sr) approaches values of 1 � 0.05 for m Z 2.
This improvement of LDA when applied to sr interaction only,
has consequences also for the treatment of the full correlation
energy in the sr-LDA/lr-ab initio approach, ELDA

c (sr) þ ECI
c (lr).

Fig. 1 Approximations for the exchange energy of He (aug-cc-pVQZ
basis set), as a function of the coupling parameter m: short-range HF
exchange energy, EHF

x (sr) (solid curve, right scale), the ratio of the
short-range LDA exchange energy, ELDA

x (sr), to EHF
x (sr) (dashed curve,

left scale), and the ratio of the mixed sr-LDA/lr-HF approximation,
ELDA
x (sr)þ EHF

x (lr), to the full HF exchange energy, EHF
x (dotted curve,

left scale).

Fig. 2 Approximations for the exchange energy of He (aug-cc-pVQZ
basis set), as a function of the coupling parameter m: ratio of the mixed
sr-DFT/lr-HF exchange approximation, EDFT

x (sr) þ EHF
x (lr), to the full

HF exchange energy, EHF
x , for DFT ¼ LDA,10 PBET,14 and our

modified PBE-like functional (PBE).

Fig. 3 Approximations for the exchange energy of He, Ne, Ne81

(aug-cc-pVQZ basis sets), as a function of the coupling parameter m:
(EPBE

x (sr) þ EHF
x (lr))/EHF

x is the ratio of the mixed sr-DFT/lr-HF
exchange approximation, with our modified PBE-like functional, to
the full HF exchange energy.

Fig. 4 Approximations for the correlation energy of He (aug-cc-pV5Z
basis set), as a function of the coupling parameter m: short-range
correlation energy from CI calculations, ECI

c (sr) (solid curve, right scale),
the ratio of the short-range LDA correlation energy, ELDA

c (sr), to
ECI
c (sr) (dashed curve, left scale), and the ratio of the mixed sr-LDA/

lr-CI approximation, ELDA
c (sr) þ ECI

c (sr), to the full CI correlation
energy, ECI

c (dotted curve, left scale).
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The ratio of this quantity to ECI
c (dotted curve, left scale),

which should ideally be equal to unity, independent of m,
rapidly improves from the standard LDA value of E3 at
m ¼ 0, to values around 1 for m 4 0, with deviations from
the exact value of o10% for m 4 1.5. Fig. 5 compares the
sr-LDA functional with the sr-PBE functionals of ref. 14 and
the present work. As for exchange, the sr-PBE functional of
ref. 14 yields values half-way between LDA and the exact ones,
when applied with lr-CI for the determination of the He
correlation energy. Our own sr-PBE modification yields values
within 3% of the exact He correlation energy for all values of m.
This accuracy somewhat deteriorates (to E10%) for other
systems not used for fitting, like Ne81 and Ne, cf. Fig. 6, but
this is partly due to the fact that also the errors of the standard
PBE functional (for m ¼ 0) increase for these cases (to 5% for
Ne, 9% for Ne81).

3. Implementation

We implemented the sr-DFT/lr-ab initio coupling within the
MOLPRO 2002 ab initio suite of programs.20 The implementa-
tion is currently restricted to the closed-shell case. (Extension
to the open-shell case would require spin-polarised sr correla-
tion functionals which are currently not available.) The avail-

able (non-spin-polarised) functionals are sr-LDA, in the
parametrisation of Savin et al.,10,11 and our own parametrisa-
tion of sr-PBE, the exchange part of which was obtained as a
modification of the PBE-like GGA functional of ref. 14. These
sr functionals can readily be used for orbital optimisation in a
hybrid sr-DFT/lr-HF calculation. Based on the optimised
orbitals, a sr-DFT/lr-ab initio calculation including lr correla-
tion can be performed at the MP2, CCSD, CCSD(T),21,22 or
(internally contracted) MRCISD23,24 levels. Usually, the re-
sulting density is very similar to the input density from sr-DFT/
lr-HF, and the influence of a density update on properties is
negligible as shown in test calculations. However, this may be
different in non-single-reference cases, and in these cases the
calculation of lr correlation should be repeated with an up-
dated density for the sr-DFT part. For single-reference cases
without density update, the sr-DFT exchange can optionally be
replaced by its non-local HF counterpart (the results with this
option are denoted DFT(c) in section 4).

4. Results and discussion

The calculation of van-der-Waals (vdW) interactions is a
notorious case where DFT with current local and semi-local
density functionals fails and where a long-range ab initio
correction may be of help. In order to systematically study
the usefulness of our mixed sr-DFT/lr-ab initio approach for
this case, we applied it to all homo- and heteronuclear rare gas
dimers of the He, Ne, Ar, Kr, and Xe atoms. (These calcula-
tions supplement sr-LDA/lr-MP2 calculations for the homo-
nuclear dimers He2–Kr2 which have been published during the
course of our work.7)
The first problem encountered is the question of how to

choose the coupling parameter m, within the sr-DFT/lr-ab initio
calculations. This choice should follow from the general idea
that intraatomic effects are treated by DFT, while the ab initio
formalism is invoked for interatomic interactions only. As is
apparent from eqn (1), the spatial coupling of DFT and
ab initio is controlled by the cut-off function erf(mrij). Hence,
m plays the role of an inverse distance, m ¼ 1/Rij, where
interelectronic interactions with rij o Rij are in the DFT realm,
while the ab initio treatment comes into play for rij 4 Rij. (Of
course, this is not a strict separation, since the transition is a
gradual one; at rij ¼ Rij, E84% of the interelectronic interac-
tion is attributed to lr, but still a 11% lr contribution is
obtained at rij ¼ Rij/10.)
For the homonuclear rare gas dimers, the length scales are

set by the interatomic distances Re; RvdW ¼ Re/2 can be defined
as the van-der-Waals radii of the atoms. Thus, it seems natural
to set m ¼ 1/RvdW ¼ 2/Re. With this choice, E99% of the truly
interatomic interaction at rij ¼ Re is treated at the lr-ab initio
level. Note, however, that this does not mean that DFT has no
chance to contribute to bonding any more: DFT contributions
will certainly arise from the internuclear region where the
densities of the two atoms start to overlap. Note also that
the hri expectation values of the ns and np orbitals of the rare
gas (Rg) atoms are considerably smaller than RvdW, e.g. for Ar
by factors of 2.5 and 2.1. At such distances, 60% and 50% of
the interelectronic interaction are classified as sr when choosing
m ¼ 1/RvdW. It does not come as a surprise then that intraa-
tomic properties of the Rg atoms are strongly influenced by
DFT with this choice of m. Even the atomic polarisabilities
(which are on the average too high by 5%, in standard PBE
calculations with aug-cc-pVTZ basis sets) remain more similar
to pure DFT than to pure CCSD(T) when mixing-in
lr-CCSD(T) with m ¼ 1/RvdW.
For the heteronuclear dimers, two different vdW radii are

involved, but a common m is needed. For consistency reasons,
we stick to the prescription m ¼ 2/Re also in this case.
It might be argued that these choices of m, although physi-

cally sensible, are not really uniquely fixed and not a priori

Fig. 5 Approximations for the correlation energy of He (aug-cc-pV5Z
basis set), as a function of the coupling parameter m: ratio of the mixed
sr-DFT/lr-CI correlation approximation, EDFT

c (sr) þ ECI
c (lr), to the full

CI correlation energy, ECI
c , for DFT ¼ LDA,10 PBET,14 and our

modified PBE-like functional (PBE).

Fig. 6 Approximations for the correlation energy of He, Ne, Ne81

(aug-cc-pVQZ basis sets, with additional functions for core-valence
correlation in the case of Ne), as a function of the coupling parameter
m: (EPBE

c (sr) þ ECI
c (lr))/ECI

c is the ratio of the mixed sr-DFT/lr-CI
correlation approximation (lr-CCSD(T) in the case of Ne), with our
modified PBE-like functional, to the full CI or CCSD(T) correlation
energy.
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better than other similar choices. Moreover, in a calculation
with more than one vdW pair, we would have to choose a
common m anyway which necessarily cannot be optimum for
both individual pairs (even if we would know this optimum).
We therefore consider in the following also the use of an average
m value, with �m ¼ 2/ �Re ¼ 0.290 95 (where �Re is averaged over the
Rg2 pairs (Rg ¼ He,. . ., Xe)), for all RgRg0 dimers.

Results with the choice m ¼ 2/Re are collected for bond
lengths Re, dissociation energies De, and harmonic wavenum-
bers oe, in Tables 1–3, respectively. These data were derived
from seven points equally spaced with distances of 0.1 Å on the
potential curve around the mininum, by means of a least-
squares-fit to a function of the form

P4
i¼�1 aiR

i. The results of
Tables 1–3 have been obtained with the highest-level methods
which we have at our disposal, i.e., our new PBE-like func-
tional at the short-range side, and the CCSD(T) method for
long-range effects. In order to monitor the basis-set depen-
dence of our results, we compare values obtained with two
different basis sets, aug-cc-pVTZ and aug-cc-pVQZ.16,25–27 We
consider a triple-zeta quality of the basis set to be necessary for
obtaining converged DFT results. Much larger basis sets are
needed, on the other hand, for achieving basis set convergence
in CCSD(T) calculations, but we cannot go beyond quadruple-
zeta quality (i.e. include functions with l 4 4) because of
technical reasons in the DFT code we use.20 These basis sets
were used in all-electron calculations for He, Ne, Ar, while
corresponding valence basis sets for the (n�1)spd nsp shells in
connection with small-core ECPs28 were used for Kr and Xe.
Basis set superposition errors were dealt with using the coun-
terpoise method.29 All valence ns, np orbitals were correlated in
CCSD(T). In each case, the results with the mixed method were
compared to the limiting cases of pure PBE calculations (m -
0) and standard CCSD(T) calculations (m - N). Finally,
comparison is also made to experimental data,30,31 and mean
absolute errors (MAE) from these data are given for Re, De,
and oe. Here, oe was determined from the zeroth-order
coefficient of the Dunham expansion.

The following observations can be made from Tables 1–3.
Firstly, the coupled sr-PBE/lr-CCSD(T) results are accurate to
E0.04 Å for Re, E15 mEh for De, and 3 cm�1 for oe on the
average, with maximum errors of 0.2 Å for Re(He2), 38 mEh for
De(KrXe), and 11 cm�1 for oe(He2). Secondly, the basis-set
dependency of the results is very weak: the MAEs change by
E0.003 Å for Re, 3 mEh for De, and 0.1 cm�1 for oe. (Addi-
tional calculations using aug-cc-pV5Z basis sets without h

functions confirm these findings.) Thirdly, while the basis set
dependency is similar as in pure PBE calculations, the mixed
sr-PBE/lr-CCSD(T) method significantly outperforms the pure
PBE one: bond-length errors are smaller by a factor of four,
errors of binding energies by an order of magnitude. Moreover,
the trends are much more consistent than in pure PBE calcula-
tions which strongly overestimate binding in He2 and Ne2 (by
up to a factor of three), but underestimate it in Ar2, Kr2, and
Xe2 (also by up to a factor of three). Finally, the mixed sr-PBE/
lr-CCSD(T) method also significantly outperforms the pure
CCSD(T) method, which has a much stronger basis-set depen-
dency, with errors in Re and De changing by about a factor two
when improving the basis quality from triple-zeta to quadru-
ple-zeta. The MAEs with sr-PBE/lr-CCSD(T) are smaller by
factors of four for Re and six for De as compared to pure
CCSD(T) calculations with triple-zeta basis; triple-zeta sr-PBE/
lr-CCSD(T) even surpasses the accuracy of the pure CCSD(T)
results with quadruple-zeta basis by a factor of two for Re and
three for De. Summarising, sr-PBE/lr-CCSD(T) seems to pro-
vide a means to accurately describe vdW bonds with moderate

Table 1 Bond lengths Re (Å) of the Rg dimers from standard DFT

calculations with PBE functional, standard CCSD(T) calculations and

mixed sr-PBE/lr-CCSD(T) calculations. In each case, results with aug-

cc-pVTZ and aug-cc-pVQZ basis sets are given in the form . . ./. . .

Experimental data (Exp) are taken from ref. 30 and 31

PBE PBE/CCSD(T) CCSD(T) Exp

He2 2.754/2.754 3.155/3.170 3.041/3.011 2.970

HeNe 2.928/2.912 3.097/3.101 3.122/3.074 3.031

HeAr 3.457/3.420 3.511/3.540 3.592/3.541 3.480

HeKr 3.631/3.634 3.722/3.726 3.815/3.748 3.693

HeXe 3.901/3.901 3.994/3.994 4.138/4.059 3.978

Ne2 3.122/3.092 3.050/3.087 3.218/3.150 3.091

NeAr 3.557/3.541 3.417/3.437 3.615/3.547 3.489

NeKr 3.733/3.727 3.577/3.577 3.808/3.719 3.621

NeXe 3.958/3.950 3.782/3.773 4.087/3.981 3.861

Ar2 4.021/4.000 3.738/3.745 3.894/3.827 3.756

ArKr 4.179/4.173 3.870/3.866 4.038/3.959 3.881

ArXe 4.406/4.396 4.060/4.059 4.261/4.178 4.067

Kr2 4.330/4.336 3.993/3.975 4.169/4.076 4.008

KrXe 4.548/4.551 4.178/4.159 4.379/4.280 4.174

Xe2 4.766/4.762 4.354/4.334 4.576/4.471 4.363

MAE 0.186/0.183 0.042/0.045 0.153/0.077

Table 2 Dissociation energies De (mEh) of the Rg dimers from

standard DFT calculations with PBE functional, standard CCSD(T)

calculations and mixed sr-PBE/lr-CCSD(T) calculations. In each case,

results with aug-cc-pVTZ and aug-cc-pVQZ basis sets are given in the

form . . ./. . . Experimental data (Exp) are taken from ref. 30 and 31

PBE PBE/CCSD(T) CCSD(T) Exp

He2 116.1/119.9 21.4/21.7 27.1/29.6 34.7

HeNe 150.5/149.7 45.2/49.5 47.1/56.0 65.5

HeAr 136.1/146.9 80.5/78.5 71.0/81.1 91.6

HeKr 137.0/141.4 79.0/79.6 70.6/82.8 91.1

HeXe 131.2/135.5 73.4/74.9 64.8/77.0 86.6

Ne2 177.4/180.4 100.7/115.8 81.7/105.9 133.8

NeAr 197.3/202.0 197.6/204.8 137.9/171.3 214.0

NeKr 215.2/208.9 207.9/229.0 143.3/184.0 226.7

NeXe 224.0/217.1 212.4/241.0 138.9/181.6 235.0

Ar2 201.1/224.4 468.0/454.0 325.2/378.8 453.6

ArKr 222.1/235.3 540.8/542.0 375.8/449.2 575.4

ArXe 230.4/243.8 600.2/603.1 410.1/493.0 597.3

Kr2 247.9/251.4 643.7/667.4 449.5/550.2 637.2

KrXe 260.0/263.8 744.9/776.9 508.6/624.8 739.4

Xe2 273.8/278.4 860.0/899.8 595.7/734.7 894.0

MAE 189.7/187.9 17.3/14.3 108.6/58.4

Table 3 Harmonic wavenumbers oe (cm�1) of the Rg dimers from

standard DFT calculations with PBE functional, standard CCSD(T)

calculations and mixed sr-PBE/lr-CCSD(T) calculations. In each case,

results with aug-cc-pVTZ and aug-cc-pVQZ basis sets are given in the

form . . ./. . . Experimental data (Exp) are taken from ref. 30 and 31

PBE PBE/CCSD(T) CCSD(T) Exp

He2 67.6/69.3 22.1/21.9 29.0/30.4 33.2

HeNe 53.3/54.4 25.9/27.3 29.1/32.2 35.0

HeAr 42.0/50.1 30.4/28.2 30.2/32.4 34.8

HeKr 41.7/41.9 27.0/26.5 27.6/30.4 32.0

HeXe 38.2/38.6 24.1/24.1 24.4/27.2 29.1

Ne2 34.2/34.6 25.5/26.9 21.5/25.8 28.5

NeAr 28.8/29.6 29.0/27.5 22.1/25.1 28.2

NeKr 25.4/24.7 24.3/25.6 19.3/22.6 26.2

NeXe 23.3/23.0 22.8/24.7 17.2/20.4 24.3

Ar2 21.2/22.5 30.8/29.2 25.8/27.9 30.9

ArKr 18.4/18.9 27.3/26.9 22.8/25.2 27.9

ArXe 16.8/17.4 26.1/25.8 21.3/23.7 27.1

Kr2 15.2/14.9 22.9/23.6 19.3/21.8 23.6

KrXe 13.4/13.2 21.4/22.2 17.7/20.1 22.7

Xe2 11.5/11.4 19.8/20.5 16.2/18.5 20.9

MAE 9.6/10.4 3.1/3.0 5.4/2.7
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basis sets and is, in that respect, superior to the pure PBE and
CCSD(T) limits.

Let us now discuss how sensitive the sr-DFT/lr-ab initio
results are with respect to the coupling parameter m and the
methods to be used for the DFT and the ab initio parts of the
calculations. As to the first point, Table 4 shows results of sr-
PBE/lr-CCSD(T) calculations with a common value �m (cf.
above) for all of the RgRg0 pairs. When comparing with the
corresponding results in Tables 1–3, which were obtained with
individual m values for each RgRg0 pair, it is seen that there are
only marginal changes for the MAEs of Re and oe; only the De

MAE deteriorates by E10 mEh (to E25 mEh).
What about the effect of reducing the theoretical level at the

ab initio side? Quite remarkably, triple excitations which are
very important in pure CCSD(T) calculation (their omission
enlarges the MAE values by E0.07 Å for Re, E60 mEh for De)
do not play a significant role in the mixed sr-PBE/lr-CCSD(T)
approach, cf. Table 5 – omitting them leaves the MAE values
virtually unchanged, for the values of the coupling parameters
used in Tables 1–3.

More important is a reduction of the theoretical level to MP2,
cf. Table 5. Use of MP2 instead of CCSD(T) is seen to lead to a
small, but significant increase of theMAEs for Re and oe, and to
a deterioration of the De MAE by E40 mEh. Note that pure
MP2 overestimates correlation contributions to binding energies
for the heavy Rg dimers, thus partly cancelling basis-set errors,
while the mixed sr-PBE/lr-MP2 results are consistently poorer
than the sr-PBE/lr-CCSD(T) ones for all the Rg dimers.

Interestingly, replacing PBE by LDA (i.e., reducing the
theoretical level at the DFT side) has a smaller effect than
substituting CCSD(T) by MP2, cf. Table 6: the MAEs of Re,
De and oe are in-between the sr-PBE/lr-CCSD(T) and the sr-
PBE/lr-MP2 errors; the De MAE is larger than the sr-PBE/lr-
CCSD(T) one byE20 mEh only. This is truly remarkable, since
pure LDA (not shown in the tables) is much worse than pure
PBE; bond lengths are underestimated by E0.4 Å, while
dissociation energies are overestimated by factors of 2–10. This
means that mixing-in of lr-CCSD(T) leads to a huge improve-
ment, by factors 10 and 40 for Re and De, respectively.

Finally, we consider the effect of replacing the short-range
DFT exchange by the full non-local Hartree–Fock exchange,
within sr-PBE/lr-CCSD(T). Here, the results are less good,
about of the accuracy of the standard PBE ones (although the
trends are better), cf. Table 6. Once more one observes that xc-
DFT with a local description of both exchange and correlation

is better than a combination of non-local HF exchange with
local DFT correlation. In fact, the latter combination does not
even produce potential curves with a minimum, for the Rg
dimers, when applied in a pure DFT context.
How can we understand the success of sr-PBE/lr-CCSD(T)

in reliably describing bonding in vdWmolecules with moderate
basis sets? Let us discuss this point at the example of Ar2. Note
that a simple mixing of PBE and CCSD(T) would not be
successful, since both PBE and CCSD(T) considerably under-
estimate the bond strengths with moderate (e.g. triple-zeta)
basis sets by factors of 2.3 and 1.4, respectively (cf. Tables 1
and 2). The key point is that the mixing is not done in an
additive way but is connected with a short-range/long-range
separation. Short-range DFT is more accurate than standard
DFT (which is applied to the full interelectronic interaction),
and long-range ab initio methods are less basis-set dependent
than in the case where they have to describe the inner parts of
the correlation cusp. This is illustrated in Table 7 for Ar2 at the
equilibrium bond length Re, where we separated the CCSD
correlation energy into pair contributions from atom-localised
orbitals. In a standard CCSD calculation, the dominant

Table 4 Bond lengths Re (Å), dissociation energies De (mEh) and

harmonic wavenumbers oe (cm
�1) of the Rg dimers from sr-PBE/lr-

CCSD(T) calculations with an average value of the coupling para-

meter, �m ¼ 0.290 95, cf. text. In each case, results with aug-cc-pVTZ

and aug-ccpVQZ basis sets are given in the form . . ./. . .

Re De oe

He2 3.085/3.124 17.5/17.0 21.4/19.7

HeNe 2.990/3.009 43.7/47.2 30.0/30.2

HeAr 3.496/3.529 78.5/75.6 30.5/27.9

HeKr 3.727/3.730 79.8/80.6 27.0/26.6

HeXe 4.025/4.021 77.6/80.3 24.3/24.6

Ne2 2.970/3.023 106.5/118.6 32.0/30.3

NeAr 3.405/3.425 196.7/202.5 29.3/28.0

NeKr 3.575/3.575 207.7/228.9 24.3/25.7

NeXe 3.807/3.795 212.2/241.2 22.0/23.9

Ar2 3.741/3.746 475.4/464.2 30.8/29.3

ArKr 3.875/3.869 557.5/564.3 27.3/27.1

ArXe 4.069/4.065 626.8/640.3 26.1/26.0

Kr2 3.998/3.979 673.0/704.3 23.0/23.8

KrXe 4.183/4.163 776.1/818.3 21.5/22.3

Xe2 4.363/4.340 912.3/970.7 19.8/20.7

MAE 0.040/0.042 21.3/26.1 3.0/2.8

Table 5 Bond lengths Re (Å), dissociation energies De (mEh) and

harmonic wavenumbers oe (cm
�1) of the Rg dimers from sr-PBE/lr-ab

initio calculations with aug-cc-pVTZ basis sets. In each case, results

with lr-CCSD and lr-MP2 are given in the form . . ./. . .

Re De oe

He2 3.155/3.218 21.4/15.4 22.1/18.7

HeNe 3.097/3.139 45.2/35.2 25.9/22.5

HeAr 3.511/3.546 80.3/64.6 30.3/27.7

HeKr 3.723/3.758 78.7/64.3 26.9/24.5

HeXe 3.995/4.028 73.0/61.0 24.0/22.1

Ne2 3.051/3.074 100.6/84.1 25.5/23.3

NeAr 3.418/3.435 197.1/171.3 28.9/27.6

NeKr 3.578/3.596 207.1/182.4 24.2/23.0

NeXe 3.783/3.798 211.4/190.4 22.8/21.9

Ar2 3.739/3.762 466.2/400.6 30.7/29.1

ArKr 3.871/3.894 538.1/466.4 27.2/25.8

ArXe 4.061/4.082 596.6/524.1 26.0/24.8

Kr2 3.994/4.016 640.0/558.8 22.9/21.7

KrXe 4.179/4.200 739.1/653.5 21.4/20.4

Xe2 4.355/4.374 853.3/760.0 19.7/18.9

MAE 0.041/0.052 17.2/56.3 3.2/4.8

Table 6 Bond lengths Re (Å), dissociation energies De (mEh) and

harmonic wavenumbers oe (cm
�1) of the Rg dimers from sr-DFT/lr-

CCSD(T) calculations with aug-cc-pVTZ basis sets. In each case,

results with sr-LDA and sr-PBE(c) are given in the form . . ./. . . For

the definition of PBE(c), cf. text

Re De oe

He2 3.181/3.195 22.1/14.4 22.2/18.6

HeNe 3.126/3.221 45.5/26.8 26.0/19.4

HeAr 3.534/3.726 81.7/43.4 30.3/20.9

HeKr 3.734/3.988 82.0/40.8 27.6/18.2

HeXe 4.000/4.347 77.4/35.6 24.9/15.4

Ne2 3.099/3.256 94.0/50.5 23.2/14.8

NeAr 3.451/3.719 188.1/85.8 26.9/15.6

NeKr 3.615/3.949 199.9/84.9 23.1/12.8

NeXe 3.822/4.278 205.1/76.3 21.7/10.7

Ar2 3.773/3.977 440.8/243.6 29.1/20.4

ArKr 3.906/4.134 508.5/274.9 25.7/17.6

ArXe 4.100/4.359 558.8/296.1 24.3/16.3

Kr2 4.030/4.273 603.3/322.7 21.5/14.6

KrXe 4.222/4.460 687.9/384.8 19.9/13.9

Xe2 4.402/4.656 784.2/434.0 18.1/12.5

MAE 0.047/0.272 33.1/177.4 4.0/12.2
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attractive correlation contributions are seen to come from
interatomic pairs, while intraatomic correlation is repulsive
and smaller in magnitude by a factor of four. In the mixed
sr-PBE/lr-CCSD calculation, a similar analysis shows that the
explicitly treated intraatomic sr correlation is nearly comple-
tely damped off (i.e., smaller by an order of magnitude than in
the full CCSD calculation), but also the interatomic part is
significantly reduced (by a factor of two). This is quite im-
portant because it is mainly the interatomic part of the
correlation energy which is responsible for the basis-set depen-
dency of the binding energy in the full CCSD calculation. With
the restriction to lr interaction (with the coupling parameter m
chosen as described at the beginning of this section), not only
the explicitly treated interatomic correlation contributions are
reduced in magnitude but also the relative importance of the
basis-set effects, cf. Table 7. Of course, this depends on a
judicious choice of m : m should be thus small that DFT can
contribute to interatomic bonding. On the other hand, for
interatomic distances, where there is no significant interatomic
overlap any more and where local and semi-local density
functionals cannot contribute to bonding, ab initio should take
over completely. This condition seems to be more or less
satisfied with our choice of m, cf. Table 7. For R ¼ 1.25Re,
where HF repulsion is one order of magnitude smaller than
interatomic correlation (it is only smaller by a factor of two at
Re!), the explicitly treated interatomic correlation contribu-
tions in the mixed sr-PBE/lr-CCSD calculation are very similar
to those in the full CCSD calculation, and also the basis-set
dependence is very similar.

5. Conclusions

The scheme for coupling short-range (sr) density functionals
(DFT) with wavefunction-based long-range (lr) ab initio meth-
ods has been extended by (a) developing a new gradient-
corrected sr functional of the Perdew–Burke–Ernzerhof
(PBE) type and (b) introducing coupled-cluster (CC) ap-
proaches (CC with single and double excitations (CCSD),
and with additional perturbative triples (CCSD(T))) at the
ab initio side.

Test calculations of the rare gas dimers RgRg0 (Rg, Rg0 ¼
He,. . ., Xe) show very encouraging results, when the coupling
parameter m is connected to the inverse bond length according
to m ¼ 2/Re. At the highest level of approximation, i.e. sr-PBE/
lr-CCSD(T) with aug-cc-pVQZ basis sets, mean absolute
errors (MAE) of 0.045 Å and 14.3 mEh are obtained for Re

and De, respectively. These errors are much smaller than those
of standard PBE (and even smaller than those of standard
CCSD(T)). They are also virtually unchanged, when reducing
the basis-set quality to aug-cc-pVTZ and when leaving out
triple excitations on the ab initio side (i.e., using lr-CCSD).

Of course, further test calculations of other vdW systems
and for more general intermolecular interactions are necessary
to corroborate these findings. Moreover, use of efficient

ab initio schemes (of the local correlation variety, e.g. ref. 32)
is needed to make the method competitive in computational
effort with standard DFT calculations. Finally, extension to
the open-shell case is an important issue for the future. Work
along these lines is in progress in our laboratory.
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Table 7 Breakdown of binding energies (mEh) from sr-PBE/lr-CCSD

and standard CCSD calculations for Ar2, at two different internuclear

distances, into explicitly treated intraatomic and interatomic correla-

tion contributions. Additionally, we list sr-PBE/lr-HF and HF con-

tributions to binding energies. In each case, results with aug-cc-pVTZ

and aug-cc-pVQZ basis sets are given in the form . . ./. . .

R ¼ Re R ¼ 1.25Re

PBE/CCSD Intraatomic �25.7/�26.5 �10.3/�10.6
Interatomic 474.2/490.7 202.1/210.4

DFT/HF 17.4/�1.3 29.6/25.9

CCSD Intraatomic �209.3/�211.5 �38.8/�40.7
Interatomic 841.4/902.7 186.9/196.5

HF �424.9/�430.8 �13.1/�13.0
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