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Abstract

Aggressive early deflation has proven to significantly enhance the convergence of the
QR algorithm for computing the eigenvalues of a nonsymmetric matrix. One purpose of
this paper is to point out that this deflation strategy is equivalent to extracting converged
Ritz vectors from certain Krylov subspaces. As a special case, the single-shift QR algo-
rithm enhanced with aggressive early deflation corresponds to a Krylov subspace method
whose starting vector undergoes a Rayleigh-quotient iteration. It is shown how these
observations can be used to derive improved convergence bounds for the QR algorithm.

1 Introduction

Let A be a complex n × n matrix. The aim of the QR algorithm is to compute a Schur
decomposition S = QHAQ, where Q ∈ Cn×n is unitary and S ∈ Cn×n is upper triangular. The
QR algorithm, as introduced by Francis [13] and Kublanovskaya [19], is an iterative process
that generates a sequence of unitarily similar matrices A0 ← A,A1, A2, . . . . Before each
iteration, m so-called shifts σ1, . . . , σm ∈ C are skillfully chosen, defining the shift polynomial
pi(λ) = (λ − σ1) · · · (λ − σm). The QR decomposition of pi(Ai−1) determines the unitary
similarity transformation that yields the next iterate:

pi(Ai−1) = QiRi, (QR decomposition)
Ai ← QH

iAi−1Qi.
(1)

Any practically viable implementation of (1) contains at least two further ingredients: initial
reduction to condensed form and deflation.

In the following, we assume that A is already in upper Hessenberg form [14]. It is well
known that this condensed form is preserved during the iteration (1) and greatly helps reduce
its computational cost. To be more precise, the implicit Q theorem [14] implies that if the
Hessenberg matrix Ai−1 is unreduced (all subdiagonal entries are different from zero) then (1)
is equivalent to reducing V HAi−1V back to Hessenberg form, where V is a unitary matrix that
maps the first column of pi(Ai−1) to a scalar multiple of the first unit vector e1. Such an
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implicit shifted QR iteration requires only O(mn2) flops (floating point operations), compared
to O(mn3) flops needed by a literal implementation of (1).

As the QR algorithm proceeds, one or more subdiagonal entries of Ai are expected to
approach zero. For example, if σ1, . . . , σm are chosen to be the eigenvalues of the trailing
m×m principal submatrix of the current iterate, then – under some mild extra assumptions
– the (n −m + 1, n −m) subdiagonal entry of Ai converges quadratically to zero [30]. The
classical deflation criterion is to consider a subdiagonal element a(i)

l,l+1 negligible if it satisfies∣∣a(i)
l,l+1

∣∣ ≤ u
(∣∣a(i)

l,l

∣∣+
∣∣a(i)
l+1,l+1

∣∣), (2)

where a(i)
kl denotes the (k, l) entry of Ai and u the unit roundoff. A negligible subdiagonal

entry is set to zero, effectively bringing Ai to block upper triangular form:

Ai =

[
A

(i)
11 A

(i)
12

0 A
(i)
22

]
, A

(i)
11 ∈ Cl×l, A

(i)
22 ∈ C(n−l)×(n−l).

This allows one to apply all subsequent QR iterations to the diagonal blocks A(i)
11 and A

(i)
22

separately and therefore deflates the problem of computing the Schur decomposition of an
n × n matrix into two smaller problems. The QR algorithm is said to have converged when
all deflated diagonal blocks are 1× 1.

The state-of-the-art LAPACK implementation of the QR algorithm attains high perfor-
mance by making use of level 3 BLAS operations [6, 20] and employing additional deflation
criteria going far beyond the classical criterion (2). Specifically, the aggressive early deflation
strategy developed by Braman, Byers, and Mathias [7] often detects converged eigenvalues
much earlier than (2) and therefore significantly decreases the overall number of QR itera-
tions needed until convergence. In this paper, we approach this deflation technique from a
rather different direction, based on Krylov subspace relations implicitly maintained during
the QR algorithm. It turns out that aggressive early deflation amounts to finding and ex-
tracting converged Ritz pairs from a Krylov subspace Kw(AH, un), where un denotes the last
column of the accumulated unitary transformation matrix. This not only complements the
analyses in [7, 32], partially explaining the remarkable success of aggressive early deflation,
but also allows for improved convergence bounds. In particular, we can combine the classical
convergence theory of the QR algorithm [30] with the convergence of Krylov subspaces to an
invariant subspace [4, 5, 24]. The obtained convergence bounds clearly exhibit the benefits of
aggressive early deflation.

The rest of this paper is organized as follows. In Section 2, we explore different Krylov
subspaces associated with the QR algorithm. The Krylov-Schur algorithm, a reliable means
to extract and lock converged Ritz pairs from these Krylov subspaces, is recalled in Section 3.
Reinterpreting this algorithm in terms of unitary transformations on the QR iterate Ai in
Section 4 reveals its equivalence to aggressive early deflation. Finally, in Section 5 we use
this relationship to derive convergence bounds for the QR algorithm with aggressive early
deflation. In the following, ‖ · ‖ denotes the 2-norm of a vector or matrix while ‖ · ‖F denotes
the Frobenius norm of a matrix.
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2 Krylov subspace relations

The QR algorithm can be viewed as a nested subspace iteration [3, 8, 23, 28, 31]. Well suited
for theoretical purposes, this approach forms the basis of the elegant convergence theory
developed by Watkins and Elsner [30]. Starting with a linear subspace S0 ⊆ Cn, it can be
shown that the QR iteration (1) effects a subspace iteration of the form

Si = pi(A)Si−1, i = 1, 2, . . . . (3)

If we let p̂i = pipi−1 · · · p1 denote the product of the shift polynomials then

Si = p̂i(A)S0, i = 1, 2, . . . . (4)

Setting A0 ≡ A, we can define

S0 = span{e1, e2, . . . , ek},

where k satisfies 1 ≤ k ≤ n and ej denotes the jth unit vector of appropriate length. It
is important to note that (3) and (4) hold for all k simultaneously (giving rise to a nested
subspace iteration).

To avoid technical difficulties, we assume for the rest of this section that each pi(A) is
nonsingular (a singular pi(A) results in sudden convergence), which is equivalent to requiring
that none of the zeros of pi coincides with an eigenvalue of A. Then the concrete relation
of (3) to the QR iteration (1) is revealed by

Si = span{Q̂ie1, Q̂ie2, . . . , Q̂iek} (5)

for i ≥ 0 with Q̂i = Q1 · · ·Qi. Here, Q1, . . . , Qi are the unitary matrices computed during the
QR iteration while Q̂0 is defined to be the identity In. A simple way to show (5) is to note
that (1) implies a QR decomposition

p̂i(A) = Q̂i(RiRi−1 · · ·R1) (6)

with nonsingular, upper triangular RiRi−1 · · ·R1.
The circumstance that the implicit shifted QR algorithm operates on Hessenberg matri-

ces, links it intimately to Krylov subspace methods, see, e.g., [29] for a recent discussion.
Additionally assuming that A is in unreduced Hessenberg form, it is well known that

Si = Kk(A, u1) = span{u1, Au1, . . . , A
k−1u1}, (7)

where u1 denotes the first column of Q̂i. In fact, if we let uj denote the jth column of Q̂i and
partition

Ai = Q̂H
iAQ̂i =


k 1 n−k−1

k H11 H12 H13

1 H21 H22 H23

n−k−1 0 H32 H33

 (8)

then trivially
A[u1, u2, . . . , uk] = [u1, u2, . . . , uk]H11 + uk+1H21. (9)

Under the given assumptions, Ai is in unreduced Hessenberg form and hence the relation (9)
happens to be an unreduced Arnoldi decomposition, which implies (7) by [25, Thm. 5.1.1].
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Although occasionally mentioned in the literature [10, 28], it is less well known that S⊥i ,
the orthogonal complement of Si, is also a Krylov subspace. To show this, we employ the
“flip transpose” of a matrix. Given an l ×m matrix B let BF = FmB

HFl, where Fj denotes
the j × j flip matrix, having ones on the anti-diagonal and zeros everywhere else. It can be
directly seen that a square matrix BF is in upper Hessenberg (triangular) form if and only
if B is in upper Hessenberg (triangular) form. Setting w = n − k − 1, the partitioning (8)
immediately implies

AH[un−w+1, . . . , un−1, un] = [un−w+1, . . . , un−1, un]HH
33 + un−wH

H
32

and, after applying the flip matrix F ≡ Fw,

AH[un, un−1, . . . , un−w+1] = [un, un−1, . . . , un−w+1]HF
33 + un−wH

H
32F. (10)

Again, (10) is an unreduced Arnoldi decomposition and therefore

span{un, un−1, . . . , un−w+1} = Kw(AH, un)

holds for every w = 1, . . . , n. Adjusting w to w = n− k, this proves that S⊥i indeed coincides
with the Krylov subspace Kn−k(AH, un). Since p̂i(A) is invertible, (6) shows that un is parallel
to (p̂i(A)−1)Hen =: p̂i(A)−Hen. Therefore, using the fact that A and p̂i(A)−1 commute,

Kw(AH, un) = Kw(AH, p̂i(A)−Hen) = p̂i(A)−HKw(AH, en).

3 Extracting Ritz pairs from Krylov subspaces

Given an Arnoldi decomposition of the form (10), a conventional way to extract approxima-
tions to eigenvectors from the corresponding Krylov subspace is to compute Ritz pairs and
check their residuals. A Ritz value λ from the subspace Kw(AH, un) is defined as an eigenvalue
of the w × w matrix HF

33. The corresponding Ritz vector is given by x = Uwz, where z is an
eigenvector of HF

33 belonging to λ and Uw = [un−w+1, . . . , un−1, un]. Taken together, (λ, x)
form a so-called Ritz pair.

With the normalization ‖x‖ = ‖z‖ = 1, a Ritz pair is usually regarded as converged
towards an eigenpair of AH if the norm of the residual r = AHx − λx is sufficiently small. A
practical criterion for deciding upon smallness can be found in the ARPACK manual [22, Sec.
4.6]:

‖r‖ ≤ max{u‖HF
33‖F , tol× |λ|}, (11)

where u denotes the unit roundoff and tol is a tolerance chosen by the user. Note that (10)
implies r = (HH

32Fz)un−w and hence ‖r‖ = |HH
32Fz|. For tol = 0, the criterion (11) yields

normwise backward stability: (λ, x) is the exact eigenpair of the perturbed matrix AH+(4A)H,
where

4A = −xrH = −(zHFH32)(Uwz)uH
n−w (12)

satisfies ‖4A‖F = ‖r‖ ≤ u‖HF
33‖F ≤ u‖A‖F .
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3.1 Locking converged Ritz values

Stewart’s Krylov-Schur algorithm [26] provides a numerically reliable means to detect, extract
and lock converged Ritz pairs. For some Ritz value λ, an ordered Schur decomposition [14]
of HF

33 is computed such that λ appears in the top left corner of the triangular factor:

V HHF
33V =

[
λ T12

0 T22

]
, (13)

where V ∈ Cw×w is unitary and T22 ∈ C(w−1)×(w−1). A corresponding Ritz vector is given by
x = Uwz with z = V e1. If (11) is satisfied, we partition UwV = [x, Ûw−1] and

HH
32FV = [s̄1, s

H
2], (14)

where s1 = zHFH32. Together with (10), this implies

AH[x, Ûw−1] = [x, Ûw−1]
[
λ T12

0 T22

]
+ un−w[s̄1, s

H
2]. (15)

If (11) is not satisfied, we can test any other Ritz pair by reordering the eigenvalues in the
Schur form (13).

Continuing the described process for the Ritz values contained in T22 eventually leads to
a decomposition of the form

AH[X, Ûw−d] = [X, Ûw−d]

[
T̂11 T̂12

0 T̂22

]
+ un−w[ŝH

1, ŝ
H
2], (16)

where the upper triangular matrix T̂11 contains all d converged Ritz values on its diagonal
and

‖ŝ1‖ ≤
√
dmax{u, tol}‖HF

33‖F . (17)

The matrices Uw and [X, Ûw−d] span the same space, i.e., there is a unitary matrix V̂ such
that [X, Ûw−d] = UwV̂ .

3.2 Restoring the Arnoldi decomposition

Note that (16) is not a standard Arnoldi decomposition, which would require [ŝH
1, ŝ

H
2] to be a

multiple of eH
w. The vector ŝH

1 is negligible but ŝH
2 is not. Therefore, the last (optional) step

of the Krylov-Schur algorithm consists of transforming ŝH
2 back to a multiple of eH

w−d while

maintaining
[ bT11

0

bT12bT22

]
in upper Hessenberg form.

To achieve this goal, first a unitary matrix V1 is computed such that V H
1 ŝ2 = βew−d with

|β| = ‖ŝ2‖. By a row-oriented version of the usual Hessenberg reduction algorithm [25, Pg.
312], a unitary matrix V2 = Ṽ2⊕ 1 can be computed such that T̃22 = V H

2 (V H
1 T̂22V1)V2 is again

in Hessenberg form. Setting T̃12 = T̂12V1V2 and Ũw−d = Ûw−dV1V2 finally yields

AH[X, Ũw−d] = [X, Ũw−d]

[
T̂11 T̃12

0 T̃22

]
+ un−w[ŝH

1, β̄e
H
w−d], (18)

which becomes an Arnoldi decomposition after setting ŝ1 to zero.
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4 Aggressive early deflation

In this section, we reinterpret the extraction of Ritz pairs from the Arnoldi decomposition (10)
in terms of transformations operating on the n × n Hessenberg matrix Ai. Let us recall the
partitioning (8) with w = n− k − 1:

Ai = Q̂H
iAQ̂i =


n−w−1 1 w

w H11 H12 H13

1 H21 H22 H23

n−w−1 0 H32 H33

.
In the context of the QR algorithm, we refer to w as the deflation window size and assume
w � n to make sure that the cost of the extraction process remains modest in comparison to
the cost of a QR iteration.

4.1 Locking converged Ritz values

Note that all variables used in this section refer precisely to the same quantities introduced
in Section 3. A Ritz value λ has been defined to be an eigenvalue of HF

33 and z denotes
a corresponding normalized eigenvector. It directly follows that λ̄ is an eigenvalue of H33

having Fwz as a corresponding left eigenvector. Setting VF = FwV Fw, the ordered Schur
decomposition (13) implies

V H
F H33VF = Fw (V HHF

33V )H
Fw = Fw

[
λ̄ 0
T H

12 T H
22

]
Fw =

[
T F

22 Fw−1T
H
12

0 λ̄

]
, (19)

which is an ordered Schur decomposition for H33. Moreover, it follows from (14) that

V H
F H32 = FwV

H(FwH32) = Fw

[
s1

s2

]
=
[
Fw−1s2

s1

]
.

These two relations yield

(I ⊕ VF)HAi(I ⊕ VF) =


H11 H12 Ȟ13 Ȟ14

H21 H22 Ȟ23 Ȟ24

0 Fw−1s2 T F
22 T F

12

0 s1 0 λ̄

 ,
where we define

[
Ȟ13

Ȟ23

Ȟ14

Ȟ24

]
:=
[
H13

H23

]
VF. Note that the vector

[
Fw−1s2
s1

]
is called the spike

in [7] .
Let us recall that the residual r of the Ritz value λ satisfies r = (HH

32Fz)un−w = s̄1un−w
and hence ‖r‖ = |s1|. Thus if (11) is satisfied for tol = 0, the trailing spike element can be
safely set to zero and λ̄ can be regarded as a computed eigenvalue of A without spoiling the
numerical backward stability of the QR algorithm. If |s1| > u‖H33‖F , we can test any other
eigenvalue of H33 by considering a differently ordered Schur decomposition. This is equivalent
to the search for converged Ritz values, since the ordered Schur decompositions of H33 and
HF

33 are connected to each other in the one-to-one relationship (19).
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Extracting and locking further converged Ritz values of HF
33 as described in Section 3

eventually yields a unitary matrix V̂F ∈ Cw×w such that

Âi = (I ⊕ V̂F)HAi(I ⊕ V̂F) =


H11 H12 Ĥ13 Ĥ14

H21 H22 Ĥ23 Ĥ24

0 Fw−dŝ2 T̂ F
22 T̂ F

12

0 Fdŝ1 0 T̂ F
11

 , (20)

where the diagonal of the upper triangular matrix T̂ F
11 contains the complex conjugates of

all converged Ritz values. The d trailing spike elements in Fdŝ1 are all negligible, since (17)
amounts to ‖Fdŝ1‖ ≤

√
du‖H33‖F ≤

√
du‖A‖F for tol = 0.

4.2 Restoring the Hessenberg form

To continue the QR algorithm, the matrix Âi in (20) needs to be restored to Hessenberg
form. This is exactly what is achieved by the unitary transformations defined in Section 3.2.
Setting V1,F = Fw−dV1Fw−d and V2,F = Fw−dV2Fw−d yields

V H
1,F(Fw−dŝ2) = βe1, V H

2,F(V
H

1,FT̂
F
22V1,F)V2,F = T̃ F

22,

where T̃ F
22 is in upper Hessenberg form. Hence,

Ãi = (I ⊕ V1,FV2,F ⊕ Id)HÂi(I ⊕ V1,FV2,F ⊕ Id) =


H11 H12 H̃13 Ĥ14

H21 H22 H̃23 Ĥ24

0 βe1 T̃ F
22 T̃ F

12

0 Fdŝ1 0 T̂ F
11


with

[ eH13eH23

]
=
[ eH13eH23

]
V1,FV2,F. Setting ŝ1 to zero returns Ãi to Hessenberg form and the QR

algorithm can be continued on the leading (n− d)× (n− d) principal submatrix of Ãi.

4.3 Comparison to classical deflation

The reader is invited to check that the presented deflation algorithm obtained via the extrac-
tion of Ritz pairs from the Krylov subspace Kw(AH, un) is precisely the same as the aggressive
early deflation algorithm originally described in [7]. Let us contemplate what the different
deflation criteria for the QR algorithm mean in terms of Krylov subspaces.

The classical deflation criterion (2) tests the smallness of |a(i)
l,l+1| for each l = 1, . . . , n− 1.

From the Arnoldi decomposition (10) it is immediately clear that |a(i)
l,l+1| is the minimal

norm of a backward error matrix 4A such that Kn−l(AH, un) becomes an invariant subspace
of (A + 4A)H. In other words, classical deflation considers the nested sequence of Krylov
subspaces

K1(AH, un), K2(AH, un), . . . , Kn−1(AH, un)

and checks whether any of them is a good approximation to an invariant subspace of AH as a
whole. If the shifts in the QR algorithm are chosen as the eigenvalues of the m×m trailing
submatrix, a choice sometimes called Francis shifts, then this is most likely to happen for
Kn−l(AH, un) with n− l ≤ m, as the convergence theory [30] states that Km(AH, un) converges
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locally quadratically to an invariant subspace of AH. Roughly speaking (neglecting the effects
of ill-conditioning), the approximation quality of Kn−l(AH, un) as a whole is determined by
the poorest Ritz vector approximation that can be extracted from Kn−l(AH, un). Hence,
slowly converging Ritz vectors hinder the deflation of other, quickly converging Ritz vectors.
Aggressive early deflation is fundamentally different and avoids this effect. Only one Krylov
subspace Kw(AH, un) for some fixed value of w is considered. Moreover, not the convergence
of Kw(AH, un) as a whole but the convergence of each individual Ritz vector to an eigenvector
of AH is checked. Provided that A has distinct eigenvalues, all Ritz vectors from the Krylov
subspace Km(AH, un) converge locally quadratically, but some may converge at a significantly
faster rate and can be deflated much earlier. This is demonstrated by the following example.

Example 1 We applied the QR algorithm with m = 4 Francis shifts to a 250× 250 random
matrix generated by the following Matlab commands:

randn(’state’,0); A = hess(randn(250)+1i*randn(250));

Classical deflation: |a(i)
l+1,l|, l = Aggressive early deflation: min ‖r‖, w =

n− 4 n− 3 n− 2 n− 1 2 4 6 8
i = 0 2.3×10+0 1.7×10+0 1.9×10+0 2.1×10+0 1.3×10+0 2.2×10−1 9.1×10−2 7.3×10−2

i = 1 9.1×10−1 1.2×10+0 1.8×10+0 2.7×10+0 1.2×10+0 6.0×10−2 1.5×10−2 6.4×10−3

i = 2 4.9×10−1 5.8×10−1 1.3×10+0 6.0×10−1 2.1×10−1 2.0×10−3 8.6×10−5 5.0×10−5

i = 3 4.6×10−2 9.2×10−2 1.7×10+0 1.8×10−2 8.5×10−3 1.2×10−6 9.6×10−9 7.7×10−9

Table 1: Magnitudes of trailing subdiagonal elements (columns 2–5) and minimal residuals for
the Ritz pairs extracted from Kw(AH, un) (columns 6–9) after i QR iterations with 4 Francis
shifts applied to the matrix from Example 1.

Table 1 compares classical with aggressive early deflation and clearly exhibits the advantages
of the latter. For example, consider the Krylov subspace K4(AH, un) after i = 3 QR iterations.
The norms of the residuals for the four corresponding Ritz pairs are 3.8×10−2, 1.3×10−3, 6.0×
10−4, and 1.2× 10−6. The magnitude of the corresponding subdiagonal element, |a(3)

n−4,n−3| =
4.6 × 10−2, is nearly the maximum of these numbers, demonstrating that the convergence of
K4(AH, un) as a whole is determined by the poorest Ritz pair approximation.

In Table 1, aggressive early deflation shows dramatic improvements already for w = m, i.e.,
when the size of the deflation window coincides with the number of Francis shifts. Choos-
ing w > m enlarges the Krylov subspace and adds a Krylov subspace acceleration to the
quadratically converging Ritz vectors. This is explored in more detail in the next section.

Remark 2 If each QR iteration is based on a single shift that is defined to be the (n, n) entry
of the current iterate then it is well known that un undergoes a Rayleigh-quotient iteration, see,
e.g., [25, Sec. 2.1]. To be more specific, let u(i−1)

n denote the last column of the accumulated
unitary transformation matrix Ui−1 satisfying Ai−1 = UH

i−1AUi−1. Then

u(i)
n =

(
AH − σ(i)

1

)−1
u

(i−1)
n∥∥(AH − σ(i)

1

)−1
u

(i−1)
n

∥∥ ,
provided that σ(i)

1 = u
(i−1)H
n Au

(i−1)
n is not an eigenvalue of AH. Using aggressive early de-

flation, we deflate converged Ritz pairs from the Krylov subspace Kw(AH, u
(i)
n ). This shows
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that the single-shifted QR iteration equipped with such a deflation strategy is in fact a Krylov
subspace method where the starting vector undergoes a quadratically convergent iteration.

There are situations for which the classical criterion detects deflations that go undetected
if only aggressive early deflation is used. Probably the most practically relevant one is that
linear convergence phenomena occur if the shifts vary little in the course of several QR itera-
tions. The typical consequence is that one or more of the leading subdiagonal elements of Ai
approach zero. As w � n, the Krylov subspace Kw(AH, un) will not benefit from this effect.
As a remedy, one could additionally use a variant of aggressive early deflation that considers
Ritz pairs from Kw(A, u1). However, numerical experiments reported in [17] reveal that these
linear convergence phenomena seem to be too rare to justify the extra computational effort.

A quite different situation is pointed out in [7, Sec. 2.5] and it is interesting to see this
example in the light of Krylov subspaces. Let

A =


2 3 4 5 6
1 2 0 0 1
0 1 2 0 0
0 0 ε 2 0
0 0 0 1 2

 , (21)

where 0 < ε � 1. The norm of the residual for every Ritz pair from K4(AH, e5) is approx-
imately given by

√
ε, even though a perturbation of norm ε within the deflation window

deflates two eigenvalues. Caused by the high nonnormality of A(2 : 5, 2 : 5), standard Ritz
pair extraction fails to detect the converged left eigenvector contained in K4(AH, e5). Refined
Ritz pairs [15, 16] aim to avoid this effect. For each Ritz value λ, the refined Ritz vector is
chosen to minimize the norm of the corresponding residual. Unfortunately, for our example
each refined Ritz pair has residual norm of about

√
ε/2. In [18], a computational procedure

based on the distance to uncontrollability was described that optimizes both the refined Ritz
vector and value. For our example, this leads to a refined Ritz pair whose residual norm
nearly attains ε. So, in principle, refined Ritz pairs can be used to improve aggressive early
deflation even further. However, preliminary numerical experiments with several matrices
from the Matrix Market collection [2] indicate that a situation like (21) occurs rarely in prac-
tice, at least too seldom to justify the extra computational effort needed for extracting refined
Ritz pairs.

5 Convergence bounds

To discuss the impact of aggressive early deflation on the convergence of the QR algorithm,
let us return to the notation of Section 2. Watkins and Elsner [30, Theorem 6.3] have shown
that Si = Kn−m(A, u1) converges locally quadratically to an (n −m)-dimensional invariant
subspace X of A, provided that A has distinct eigenvalues and that in each iteration m Francis
shifts σ1, . . . , σm are chosen. To formalize this statement, let us employ the (containment)
gap between two subspaces S and T (not necessarily of the same dimension) defined as

d(S, T ) := sup
s∈S
‖s‖=1

inf
t∈T
‖s− t‖.

For convenience, we write d(y, T ) if S is spanned by a single vector y. With this notation,
the convergence statement reads as follows:
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If d(Si,X )→ 0 converges to zero as i→∞ then this convergence is quadratic.

At the time of writing, the task of finding conditions for global convergence, which seems to
hold almost always in practice, remains open and the results in this paper have nothing to
contribute to this question.

Relevant properties of the gap d(·, ·) are summarized, e.g., in [4, 30]. We have d(S, T ) = 0
if and only if S ⊆ T . If ΠS and ΠT denote orthogonal projections onto S and T , respectively,
then d(S, T ) = ‖(I − ΠT )ΠS‖. This readily implies d(T ⊥,S⊥) = d(S, T ). The last property
allows us to replace d(Si,X ) by

d(Y,S⊥i ) = d
(
Y,Km(AH, un)

)
= d
(
Y, p̂i(A)−HK(AH, en)

)
,

with Y = X⊥, in the convergence discussion of the QR algorithm. Note that Y is an invariant
subspace of AH, or, equivalently, a left invariant subspace of A.

5.1 Convergence of eigenvectors

As discussed in Section 4.3, aggressive early deflation has two advantages: (1) approximation
by Ritz vectors instead of the whole Krylov subspace, and (2) additional Krylov subspace
acceleration. The convergence theory by Watkins and Elsner must be modified in order to
accommodate both advantages; the following theorem addresses the first one.

Theorem 3 Let A ∈ Cn×n have a block Schur decomposition

QHAQ =
[
A11 A12

0 A22

]
, A11 ∈ C(n−m)×(n−m), A22 ∈ Cm×m,

for some unitary matrix Q ∈ Cn×n, such that λ(A11)∩ λ(A22) = ∅. Choose a left eigenvector
y belonging to a simple eigenvalue λ2 ∈ λ(A22). Moreover, let Y denote the left invariant
subspace of A belonging to λ(A22).

Consider a function f that is analytic and nonzero on the spectrum of A. Then

d
(
y, f(A)−HV

)
≤ CT

1− CT d(Y,V)
‖f(A11)−1‖ |f(λ2)| d(y,V), (22)

holds for any m-dimensional subspace V satisfying CT d(Y,V) < 1, where

CT =
(
‖PA11‖+

√
1 + ‖PA11‖2

)(
‖Pλ2‖+

√
1 + ‖Pλ2‖2

)
.

Here, PA11 ∈ Cn×n denotes the spectral projector for A associated with λ(A11), and Pλ2 ∈
Cm×m denotes the spectral projector for A22 associated with λ2.

Proof. In the following, κ(·) denotes the 2-norm condition number of a matrix. By [11],
there are invertible lower block triangular matrices T1, T2 with

κ(T1) = ‖PA11‖+
√

1 + ‖PA11‖2, κ(T2) = ‖Pλ2‖+
√

1 + ‖Pλ2‖2,

such that

T−1
1

[
A11 A12

0 A22

]
T1 =

[
A11 0
0 A22

]
, T−1

2 A22T2 =
[
Ã22 0
0 λ2

]
.
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The matrix T := QT1(I ⊕ T2) satisfies κ(T ) ≤ κ(T1)κ(T2) = CT and block diagonalizes A:

D := T−1AT = A11 ⊕ Ã22 ⊕ λ2. (23)

In the following, we first derive a bound for the accordingly transformed subspaces Ṽ = T HV
and f(D)−HṼ, which will then be turned into a bound for the original subspaces.

Since ỹ := T Hy is a left eigenvector of the block diagonal matrix D = T−1AT belonging to
the simple eigenvalue λ2, we must have ỹ = βen for some β ∈ C. To simplify the description,
we assume without loss of generality that ỹ = en. Analogously, we have

Ỹ := T HY = span
[

0
Im

]
. (24)

By [30, Lemma 4.1], the condition CT d(Y,V) < 1 implies d(Ỹ, Ṽ) < 1, Hence, no vector in Ṽ
is perpendicular to Ỹ. Taking (24) into account, this means that no nonzero vector contained
in Ṽ can have m trailing zero entries. Therefore we can choose a basis of the form V =

[
F
Im

]
for Ṽ. The norm of F determines the distance between Ṽ and Ỹ. Specifically, we have

‖F‖ = d(Ỹ, Ṽ)/
√

1− d(Ỹ, Ṽ)2, (25)

see, e.g., [27].
To obtain a bound on d

(
en, f(D)−HṼ

)
, we select the particularly convenient vector

v1 = V em =
[
Fem
em

]
∈ Ṽ. (26)

We have

f(D)−Hv1 =
[
f(A11)−HFem

1/f(λ2)em

]
,

which implies

d
(
en, f(D)−Hv1

)
≤ ‖f(A11)−HFem‖|f(λ2)| ≤ ‖f(A11)−1‖|f(λ2)| ‖en − v1‖. (27)

Note that v1 is in general not the vector in Ṽ that is closest to en, so we cannot simply re-
place ‖en−v1‖ by d

(
en, Ṽ

)
in (27). In fact, the closest vector is the solution of the minimization

problem d(en, Ṽ) = inf
v∈eV ‖en − v‖ and takes the form v0 = V (V HV )−1V Hen = V (V HV )−1em.

Lemma 8 from Appendix A reveals the relationship

‖en − v1‖ ≤
√

1 + ‖F‖2√
1 + ‖F‖2 − ‖F‖

‖en − v0‖ =
‖en − v0‖

1− d(Ỹ, Ṽ)
, (28)

where we used (25) for the latter equality.
Combining (27) with (28) shows

d
(
en, f(D)−HṼ

)
≤ d
(
en, f(D)−Hv1

)
≤ ‖f(A11)−1‖|f(λ2)|

1− d(Ỹ, Ṽ)
d(ỹ, Ṽ).
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Recall that y = T−Hen, V = T−HṼ, and f(A)−HV = T−Hf(D)−HṼ. Using Lemma 9 from
Appendix A, we obtain

d
(
y, f(A)−HV

)
≤ CT

‖f(A11)−1‖ |f(λ2)|
1− d(Ỹ, Ṽ)

d(y,V),

using κ(T ) ≤ CT . The proof is completed after applying the estimate d(Ỹ, Ṽ) ≤ CT d(Y,V).

Remark 4 The condition CT d(Y,Km(AH, en)) < 1 in Theorem 3 is an artifact of the proof
technique and can be removed. Let U denote the right invariant subspace of A belonging to
λ(A11). Then U ∩ V = {0} is sufficient to guarantee that the condition d(Ỹ, Ṽ) < 1 needed in
the proof of Theorem 3 is satisfied. Hence, there is a constant C independent of f such that

d
(
y, f(A)−HV

)
≤ C ‖f(A11)−1‖ |f(λ2)| d(y,V),

even under this rather mild assumption. Note that U ∩ V = {0} is always satisfied if A is in
unreduced Hessenberg form and V = Km(AH, en) [30].

Theorem 3 is applied to the convergence analysis of the QR algorithm by setting f = p̂i
and V = Km(AH, en). The classical convergence analysis [30, Lemma 4.4] provides bounds of
the form

d
(
Y, p̂i(A)−HKm(AH, en)

)
≤ C ‖p̂i(A11)−1‖ ‖p̂i(A22)‖ d(Y,Km(AH, en)) (29)

for some constant C. All shifts (i.e., the roots of pi) need to converge simultaneously to
eigenvalues of A22 in order to attain superlinear converge. In contrast, the bound (22) predicts
superlinear convergence even if only one shift converges to a simple eigenvalue of A22.

Corollary 5 Under the notation of Theorem 3, let p1, p2, . . . be a sequence of monomials of
bounded degree such that p̂i(A) is invertible for all p̂i = p1p2 · · · pi. Assume that one root of
pj converges to a simple eigenvalue λ2 as j →∞, while the other roots and pj(A11)−1 remain
bounded. Then for every ρ > 0 there is a constant C so that

d
(
y, p̂i(A)−HKm(AH, en)

)
≤ Cρi,

provided U ∩ Km(AH, en) = {0}, where U denotes the right invariant subspace of A belonging
to λ(A11).

Proof. Let d be the maximal degree of pj and let C2 = max{1, C̃2 + |λ2|}, where C̃2 is a
uniform upper bound for the magnitude of all roots of pj for j = 1, 2, . . .. Then |pj(λ2)| ≤
Cd−1

2 |λ2 − σ(j)|, where σ(j) denotes the root that converges to λ2. Moreover, there is a
constant C1 such that ‖pj(A11)−1‖ ≤ C1 for all j. Choosing k sufficiently large guarantees
C1C

d−1
2 |λ2 − σ(j)| ≤ ρ for all j ≥ k. Hence, there is a constant C̃ such that

‖p̂i(A11)−1‖ |p̂i(λ2)| ≤
(
C1C

d−1
2

)i i∏
j=1

|λ2 − σ(j)| ≤ C̃ρi.

Combined with Theorem 3 and Remark 4, this concludes the proof.
The following theorem incorporates the Krylov subspace acceleration benefited from choos-

ing the deflation window size w larger than m.
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Theorem 6 Under the notation of Theorem 3, assume that CT d(Y,Km(AH, en)) < 1. Then
for any function f that is analytic and nonzero on the spectrum of A,

d
(
y, f(A)−HKw(AH, en)

)
≤ CT ‖f(A11)−1‖ |f(λ2)|d(y,Km(AH, en))

1− CT d(Y,Km(AH, en))
inf

φ∈Pw−m

‖φ(A11)‖
|φ(λ2)|

, (30)

where Pw−m denotes the set of all polynomials of degree at most w −m.

Proof. As in the proof of Theorem 3, we first block diagonalize A and obtain bounds for
the accordingly transformed subspaces. Let T−1AT = D with D as in (23) and set ỹ = T Hy,
Ỹ = T HY. Without loss of generality, we may again assume ỹ = en. Moreover, we have

T Hf(A)−HKw(AH, en) = Kw(DH, t)

with t = f(D)−HT Hen. It follows that

d(en,Kw(DH, t)) = inf
v∈Kw(DH,t)

‖en − v‖ = inf
p∈Pw−1

‖en − p(DH)t‖

= inf
φ∈Pw−m

inf
q∈Pm−1

‖en − φ(DH)q(DH)t‖ (31)

= inf
φ∈Pw−m

inf
q∈Pm−1

1
|φ(λ2)|

‖φ(DH)(en − q(DH)t)‖

= inf
φ∈Pw−m

inf
v∈Km(DH,t)

1
|φ(λ2)|

‖φ(DH)(en − v)‖. (32)

The implicit assumption that no root of φ coincides with λ2 can be justified by the following
simple argument. If φ(λ2) is zero then ‖en−φ(DH)q(DH)t‖ ≥ 1. But since already the choice
φ ≡ q ≡ 0 gives ‖en − φ(DH)q(DH)t‖ = 1, the infimum in (31) is not increased if φ(λ2) 6= 0 is
imposed.

The vector v̂ = −f(λ2)f(D)−Hv1 with v1 defined as in (26) satisfies v̂ ∈ Km(DH, t) and

en − v̂ =
[
f(λ2)f(A11)−HFem

0

]
.

Choosing v = v̂ in (32) and using (28) yields

d(en,Kw(DH, t)) ≤ ‖f(A11)−H‖|f(λ2)|
1− d(Ỹ,Km(DH, t))

d(en, Ṽ) inf
φ∈Pw−m

‖φ(A11)‖
|φ(λ2)|

.

Together with Lemma 9 from Appendix A, this completes the proof.
Remark 4 applies analogously to Theorem 6. Comparing (30) with (22), the bound gains

the factor infφ∈Pw−m ‖φ(A11)‖/|φ(λ2)|. Consider a compact set Ω1 ⊂ C containing the eigen-
values of A11 and define κ(Ω1) to be the smallest constant for which

‖g(A11)‖ ≤ κ(Ω1) max
z∈Ω1

|g(z)| (33)

holds uniformly for every analytic function g on Ω1. Then, trivially,

inf
φ∈Pw−m

‖φ(A11)‖
|φ(λ2)|

≤ κ(Ω1) inf
φ∈Pw−m

max{|φ(z)| : z ∈ Ω1}
|φ(λ2)|

.
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Such approximation problems play a prominent role in the convergence analysis of Krylov
subspace methods for nonnormal matrices. It is clear that infφ∈Pw−m max{|φ(z)| : z ∈
Ω1}/|φ(λ2)| cannot be larger than 1 (choose φ ≡ 1) and decays as w − m becomes larger.
Estimates for this decay can be found using potential theory, see [4, 12], but this is beyond
the scope of this paper.

In LAPACK 3.1 [1], the default values for the number of shifts and the size of the deflation
window for 3000 ≤ n < 6000 are m = 128 and w = 192, respectively. As explained in more
detail in [9], this choice was based on computational experiments with pseudo-random matri-
ces and matrices from [2]. A good choice of these parameters is crucial for the performance
of the QR algorithm. For example, choosing a larger w increases the cost of the deflation
procedure (which requires O(w2n) operations) but also results in earlier deflations and there-
fore in fewer multishift QR iterations (each requires O(mn2) operations). While Theorem 6
does not provide any new insight into the choice of m, it does shed some light on a beneficial
choice of w. Unfortunately, the exact computation of the quantity infφ∈Pw−m

‖φ(A11)‖
|φ(λ2)| in (30)

is infeasible, simply because A11 and λ2 are available only after the Schur form of A has been
computed. The results in this paper should thus be understood only as a first step towards
developing a strategy that chooses w nearly optimal in each iteration. For this purpose, cheap
estimates on the decay of infφ∈Pw−m

‖φ(A11)‖
|φ(λ2)| as w increases need to be developed, possibly

using heuristics on the distribution of the eigenvalues of A11.

5.2 Convergence of invariant subspaces

Not only the convergence of individual eigenvectors but also the convergence of the left in-
variant subspace Y as a whole is improved using Krylov subspaces of larger dimension. To
quantify this effect, we can combine the bound (29) with results by Beattie, Embree, and
Rossi [4] on the convergence of invariant subspaces in Krylov subspaces.

Theorem 7 Let A ∈ Cn×n have a block Schur decomposition

QHAQ =
[
A11 A12

0 A22

]
, A11 ∈ C(n−m)×(n−m), A22 ∈ Cm×m,

for some unitary matrix Q ∈ Cn×n, such that λ(A11) ∩ λ(A22) = ∅. Let Y denote the left
invariant subspace of A belonging to λ(A22). Assume that CTd

(
Y,Km(AH, en)

)
< 1, where

CT = ‖PA11‖+
√

1 + ‖PA11‖2 with PA11 being the spectral projector belonging to A11.
Then for any function f that is analytic and nonzero on the spectrum of A,

d
(
Y, f(A)−HKw(AH, en)

)
≤ C ‖f(A11)−1‖‖f(A22)‖ inf

φ∈Pw−m

‖φ(A11)‖‖φ(A22)−1‖, (34)

where

C =
C2
T d(Y,Km(AH, en))√

1− C2
T d(Y,Km(AH, en))2

.

Proof. There is an invertible lower block triangular matrix T1 with κ(T1) = ‖PA11‖ +√
1 + ‖PA11‖2 such that

(QT1)−1A(QT1) =
[
A11 0
0 A22

]
=: D.
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Let T = QT and Ỹ = T HY. Then

T Hf(A)−HKw(AH, en) = Kw(DH, f(D)−Hu)

with u = T Hen. Partition u =
[
u1

u2

]
with u2 ∈ Cm. Then Theorem 3.4 in [4] states

d
(
Ỹ,Kw(DH, f(D)−Hu)

)
≤ C1 inf

φ∈Pw−m

‖φ(A11)‖‖φ(A22)−1‖,

where

C1 = max
ψ∈Pm−1

‖ψ(A11)Hf(A11)−Hu1‖
‖ψ(A22)Hf(A22)−Hu2‖

.

Using the fact that ψ(D)H and f(D)−H commute,

C1 ≤ ‖f(A11)−1‖‖f(A22)‖ max
ψ∈Pm−1

‖ψ(A11)Hu1‖
‖ψ(A22)Hu2‖

= ‖f(A11)−1‖‖f(A22)‖ maxh
v1
v2

i
∈Km(DH,u)

‖v1‖
‖v2‖

≤ ‖f(A11)−1‖‖f(A22)‖
d
(
Ỹ,Km(DH, u)

)√
1− d

(
Ỹ,Km(DH, u)

)2 ,
where the latter inequality follows as in the proof of Lemma 4.4 in [30]. The proof is concluded
by applying Lemma 4.2 in [30] twice, relating the distances between the transformed subspaces
to the distances of the original subspaces.

Once again, an analogue of Remark 4 applies, showing that CT d
(
Y,Km(AH, en)

)
< 1

can be replaced by the weaker assumption U ∩ Km(AH, en) = {0}. Comparing (34) with the
classical bound (29), the extra factor infφ∈Pw−m ‖φ(A11)‖‖φ(A22)−1‖ is gained. If Ω1,Ω2 ⊂ C
are compact sets containing λ(A11), λ(A22), respectively, then

inf
φ∈Pw−m

‖φ(A11)‖‖φ(A22)−1‖ ≤ κ(Ω1)κ(Ω2) min
φ∈Pw−m

max{|φ(z)| : z ∈ Ω1}
min{|φ(z)| : z ∈ Ω2}

,

where κ(Ω1)κ(Ω2) are defined as in (33). Note that the factor κ(Ω2) can actually be removed,
see [5, Theorem 3.3], at the expense of having a different polynomial approximation problem.
In any case, the bound can be expected to decay as w −m increases, see [4, Sec. 4] and [5,
Sec. 3] for estimates of this decay. When using Francis shifts, this means that besides the
quadratically vanishing p̂i(A22) we have an additional factor that may become very small for
larger w, resulting in nearly superquadratic convergence.

Finally, let us remark that there is always a polynomial q, depending on A and f , such
that q(A) = f−1(A). This implies an equivalence between the QR algorithm and the Arnoldi
method with polynomial restarts, as discussed by Lehoucq [21]. In principle, this connection
could be used to apply the bounds in [4, 5] verbatim to the QR algorithm. In contrast,
Theorem 7 treats the convergence obtained from the shifts and from the Krylov subspace
separately, having the advantage that it allows more insight into the benefits gained from
choosing a larger deflation window.
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6 Conclusions

This paper contributes to the understanding of why aggressive early deflation works so well in
practice. A very intuitive explanation can be drawn from practical experiences with Krylov
subspace methods for computing eigenvalues. Extracting Ritz pairs (= aggressive early defla-
tion) is a much more effective strategy for detecting converged eigenvalues than only testing
the subdiagonal entries of the Hessenberg factor in an Arnoldi decomposition (= classical de-
flation). The convergence bounds from Section 5 provide a mathematical explanation, stating
individual bounds for each converging eigenvalue and showing that the bounds are multiplied
by a factor that approaches zero as the deflation window size w increases.

This paper should be seen as a first step towards developing a strategy for choosing w
optimally in each QR iteration. In a serial computing environment, the current default value
for w implemented in LAPACK already delivers good performance across a wide range of
examples and more sophisticated strategies might not lead to significant speedup. However,
in a parallel computing environment, where aggressive early deflation will constitute a bot-
tleneck, we expect the performance to become more sensitive with respect to the choice of
w.

Finally, it is tempting to ask whether other Ritz pair extraction techniques, such as refined
Ritz vectors, could be used to enhance the convergence of the QR algorithm even further.
Although preliminary numerical experiments have indicated no obvious beneficial effect on the
average performance of the QR algorithm, the use of these techniques in avoiding exceptional
global convergence failures remains to be studied.
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A Appendix

This section collects two elementary facts needed in the proofs of Section 5.

Lemma 8 Let V =
[
F
Im

]
∈ Cn×m. Then

‖en − V em‖ ≤
√

1 + ‖F‖2√
1 + ‖F‖2 − ‖F‖

∥∥en − V (V HV )−1em
∥∥ .

Proof. Set r0 = en − V (V HV )−1em and r1 = en − V em. Then

r0 =
[
−F (I + F HF )−1

I − (I + F HF )−1

]
em =

[
−(I + FF H)−1F
(I + F HF )−1F HF

]
em

=
[

(I + FF H)−1 F (I + F HF )−1

−(I + F HF )−1F H (I + F HF )−1

]
r1 = (I + E)r1,
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where

E =
[
−F (I + F HF )−1F H F (I + F HF )−1

−(I + F HF )−1F H −F H(I + FF H)−1F

]
.

A singular value decomposition of F verifies ‖E‖ = ‖F‖/
√

1 + ‖F‖2. Thus ‖E‖ < 1 and
(I + E) is invertible. Finally,

‖r1‖ ≤ ‖(I + E)−1‖‖r0‖ ≤
1

1− ‖E‖
‖r0‖ =

√
1 + ‖F‖2√

1 + ‖F‖2 − ‖F‖
‖r0‖

concludes the proof.

Lemma 9 Let T ,U be subspaces and let P be an invertible matrix. Then for any s ∈ Cn,
d(s, T ) ≤ αd(s,U) implies d(Ps, PT ) ≤ α‖P‖‖P−1‖ d(Ps, PU).

Proof. Without loss of generality, we may assume ‖s‖ = 1. Then

d(Ps, PT ) = inf
t∈T

‖Ps− Pt‖
‖Ps‖

≤ ‖P‖
‖Ps‖

inf
t∈T
‖s− t‖

≤ α
‖P‖
‖Ps‖

inf
u∈U
‖s− u‖ ≤ α ‖P‖‖P−1‖ inf

u∈U

‖Ps− Pu‖
‖Ps‖

= α ‖P‖‖P−1‖ d(Ps, PU).
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