
TRPLSC 1754 No. of Pages 12
Opinion
Capsaicinoids: Pungency beyond Capsicum
Emmanuel Rezende Naves,1 Lucas de Ávila Silva,1 Ronan Sulpice,2 Wagner L. Araújo,1,3
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Highlights
Capsaicinoids are secondary metabo-
lites that confer Capsicum (‘chili’ pep-
pers) fruits their appealing pungency
(‘heat’) and have multiple proven
health benefits and industrial
applications.

Five Capsicum species have been
domesticated. However, even in fruits
of the same species, pungency is not
consistent owing to the strong influ-
ence of the environment on capsaici-
noid levels. Furthermore, multiple
Capsaicinoids are metabolites responsible for the appealing pungency of
Capsicum (chili pepper) species. The completion of the Capsicum annuum
genome has sparked new interest into the development of biotechnological
applications involving the manipulation of pungency levels. Pungent dishes are
already part of the traditional cuisine in many countries, and numerous health
benefits and industrial applications are associated to capsaicinoids. This raises
the question of how to successfully produce more capsaicinoids, whose
biosynthesis is strongly influenced by genotype–environment interactions in
fruits of Capsicum. In this Opinion article we propose that activating the
capsaicinoid biosynthetic pathway in a more amenable species such as tomato
could be the next step in the fascinating story of pungent crops.
agronomic issues are prevalent in chili
pepper cultivation, such as wilting in
hot days, flower drop, and virus
susceptibility.

Capsicum belongs to the Solanaceae
family, and recent completion of its full
genome sequence shows that inactive
genes for the biosynthetic pathway of
capsaicinoids are also present in
tomato. We propose that the use of
state-of-the-art genome engineering
techniques to activate capsaicinoid
biosynthesis in tomato is a suitable
option to exploit these valuable sec-
ondary compounds.
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The Nutritional Value of Capsaicinoids
The momentous voyage of Christopher Columbus in search of a new route to India was driven
by the European demand for spices – mainly black pepper (Piper nigrum L.), which at the time
fetched prices similar to gold [1,2]. Instead, Columbus arrived in Central America and brought
back a species that would quickly become ‘the world’s most popular condiment’: chili peppers
of the Capsicum genus [3]. The genus comprises more than 30 species, with only five
domesticated crops, namely the closely related C. annuum, C. chinense, and C. frutescens,
as well as C. baccatum and C. pubescens [4], which display a broad variety of fruit size, shape,
color, and pungency (see Glossary; Figure 1). The appealing pungency (‘heat’ or ‘bite’; Box 1)
of hot chilies is produced by the accumulation of a group of alkaloids, called capsaicinoids,
whose major representatives are capsaicin and dihydrocapsaicin [5]. These secondary metab-
olites are produced through a complex series of reactions involving the convergence of the
phenylpropanoid and branched-chain fatty acid pathways (Figure 2) [6].

In the context of the debate on food security, nutritional and nutraceutical properties are quickly
gaining importance alongside crop yield as breeding targets [7,8]. Plants represent a funda-
mental reservoir of chemical compounds beneficial to human health, mainly derived from their
extraordinarily rich secondary metabolism [9,10]. However, breeding efforts mostly focused
on attaining high yields have resulted in a serious nutritional decline of grains, fruits, and
vegetables [11]. Finding sustainable pathways to boost the production of vitamins and sec-
ondary metabolites such as polyphenols and carotenoids in crops is thus a top priority in the
plant research agenda [12,13]. Capsicum fruits contain high levels of antioxidants such as
vitamins A, C, and flavonoids [14]. Hot peppers also produce variable amounts of capsaici-
noids, which have demonstrated anti-inflammatory [15], antioxidant [16], antitumoral [17], and
weight-loss properties [18]. All of these effects suggest that a regular intake of capsaicinoids is
beneficial for health and that, therefore, hot peppers can be considered to be functional foods
[19]. Furthermore, topical capsaicin applications are an effective pain-management treatment
with low risk for adverse drug–drug interactions [20]. Remarkably, only Capsicum fruits contain
these appealing compounds. We next examine their physiological roles in plants.
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Glossary
Biofactory: a biological system used
to produce useful amounts of
chemical compounds. Many
organisms are ‘customized’ (through
selection or genetic manipulation) as
production platforms for the
manufacture of biopharmaceuticals
such as enzymes, recombinant
proteins (in E. coli or yeast), vaccines,
and antibodies (generally in plants).
Capsinoids: compounds that are
structurally similar to capsaicinoids,
but that lack the pungent taste. The
main capsinoids found in chili
peppers are capsiate,
dihydrocapsiate, and
nordihydrocapsiate. Many of the
health benefits described for
capsaicinoids have also been
attributed to capsinoids. Thus,
manipulation of the capsinoid
pathway is also an appealing
prospect given that a segment of the
population cannot tolerate the
pungent flavor.
Cisgenesis: a form of genetic
engineering whereby a crop plant is
genetically modified using DNA
fragments contained in the species
itself or in closely related, interfertile
species.
Directed deterrence hypothesis
(DDH): first proposed by Cipollini
and Levey in 1997 [25], the
hypothesis states that plants
produce secondary metabolites that
selectively preclude foraging by
specific animals (by being toxic or
unpalatable), but not by others that
can then act as efficient vectors for
seed dispersal.
Exaptation: a shift in the function of
a trait during evolution. In the case of
capsaicinoids, it is possible that their
original function was as protective
agents for the plants against attack
by pathogens, and subsequently
they acquired a role as deterrents of
fruit-eating mammals.

(A) (B) (C) (D)
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(I) (J) (K) (L) (M)

Figure 1. Variation in Plant and Fruit Morphology in the Capsicum genus. Accessions of Capsicum annuum
(A–M) and Capsicum chinense (N). Scale bar, 10 cm.
The How and Why of Pungency in Capsicum
Pungency and Seed Dispersal
The development of nutritious and highly caloric fruits to enlist efficient agents of seed dispersal
presented plants with the conundrum of avoiding seed predators [21]. How a fruiting plant can
repel inefficient dispersal agents and favor more effective ones is a long-standing question in
angiosperm ecology [22]. One possible solution is the production of secondary metabolites,
which are thus abundant in fleshy fruits [23,24]. The directed deterrence hypothesis (DDH)
posits that fruit secondary metabolites can selectively repel seed predators without deterring
seed dispersers [25,26]. There is mounting evidence that secondary metabolites have indeed
been instrumental in shifting plant–animal relationships from predation to mutualism [27,28].
Experiments with captive animals showed that capsaicinoids in hot chili fruits were irritant to
mammals but not to birds. The basis for this selective toxicity of capsaicinoids was eventually
demonstrated at the molecular level. The vanilloid receptor 1 (VR1), a cation channel on sensory
Functional foods: whole, enhanced,
or fortified foods containing
ingredients that aid specific body
functions for health benefits (beyond
basic nutrition).
Knock-in: targeted insertion of a
DNA sequence that is integrated into
a specific genomic locus.
Mutualism: a cooperative
relationship between two organisms
whereby both benefit from the
interaction.

Box 1. The Measure of Chili Pungency

The most widely used measure of chili pepper pungency is the ‘Scoville scale’, after its inventor, Wilbur Scoville, who in
1912 created the Scoville organoleptic test [116]. Volunteers test serial dilutions of pepper extract, and the degree of
dilution is translated into Scoville heat units (SHU). The scale remains popular although it is unreliable and subjective; in
modern times has been superseded by the use of HPLC [117]. Pungency units are thus defined as parts of capsaicin per
million parts of pepper fruit dry mass. Pungency units can be converted to SHU by multiplying by 16 (e.g., pure capsaicin
is 16M SHU, pepper spray is 5M SHU). Some of the hottest chili pepper varieties can exceed 1M SHU, and have fanciful
names such as Scorpion, Carolina Reaper, or Dragon’s Breath.
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Predation: an interaction between
two organisms in which one (the
predator) kills and feeds off the other
(the prey).
Pungency: technical term for food
commonly referred to as ‘spicy’ or
‘hot’.
Secondary metabolism: pathways
and chemical products of
metabolism with specific functions
that are generally associated with
plant–environment interactions,
including stress responses. Humans
use a myriad of secondary
metabolites for a variety of purposes,
for instance alkaloids (nicotine,
caffeine, morphine), terpenes
(artemisin, limonene, pinene) and
flavonoids (hesperidin, rutin,
quercetin).
Synteny: conservation in the relative
position of genetic loci within a
chromosome among different
species. A powerful tool in
comparative genomics that is used
to infer gene function and
phylogenetic relationships between
species.
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Figure 2. Capsaicinoid Biosynthetic Pathway. (A) Cross-section of chili pepper fruit. (B) Schematic representations of
the subcellular locations of the main steps involved in capsaicinoid biosynthesis. The convergence of two pathways is
required – the phenylpropanoid pathway, which leads formation of vanillylamine, and the branched chain fatty acid
pathway, which forms the 8-methyl-6-nonenoyl-CoA; the two final compounds are condensed by capsaicinoid synthase
to form capsaicin. Abbreviations: ACS, acyl-CoA synthetase; AMT, aminotransferase; BCAT, branched-chain amino acid
aminotransferase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumaroyl-CoA ligase; COMT, caffeoyl-CoA 3-O-methyltrans-
ferase; CS, capsaicinoid synthase; FatA, acyl-ACP thioesterase; HCHL, hydroxycinnamoyl-CoA hydratase lyase; PAL,
phenylalanine ammonia-lyase. Redrawn from Mazourek et al. [6] and Kim et al. [95].
nerve endings which responds to noxious thermal stimuli, is activated by capsaicin in mice [29].
Cloning and functional characterization of the chicken VR1 ortholog showed that, in birds, it fails
to be activated by capsaicin owing to differences in the amino acid sequence at key positions
that affect ligand binding [30].

The evolutionary emergence of pungency is considered to be a derived trait within the Capsicum
genus, and is not found in species of the Andean clade, the most ancient group of Capsicum
species [31]. However, it is not known for certain why pungency has been fixed in some species of
the genus and not in others. It could be the result of an ecological trade-off which allows the
biosynthetic pathway to remain active [32]. Pungency precludes fruit consumption by small
mammals, to avoid loss of seed viability in their digestive tract, and instead favors consumption
by birds, which can provide seed dispersion over greaterdistances [33]. Ironically, thecompounds
produced to deter mammal consumption were instrumental in the formation of a reciprocal
relationship with mammals that helped Capsicum to spread to all continents: humans [34]. Seeds
of pungent fruits are also less prone to infection by the fungal pathogen Fusarium, and thus
pungent individuals propagate their offspring more efficiently than non-pungent ones [35]. It is
possible that this was the original function of capsaicinoids and that the selective deterrence of
mammals was an exaptation occurring later during the evolution of Capsicum species [36].

Challenges of Producing Capsicum Fruits with Stable Pungency Levels
Growth and Cultivation of Capsicum Species
Unlike some of its domesticated counterparts in the Solanaceae family (tomato, Solanum
lycopersicum; potato, S. tuberosum; tobacco, Nicotiana tabacum), Capsicum species are
Trends in Plant Science, Month Year, Vol. xx, No. yy 3
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notoriously labor-intensive and difficult to cultivate crops. Pungent varieties are predominantly
cultivated in the open field, and are thus vulnerable to environmental conditions detrimental to
fruit yield. High air temperature, high CO2 concentration, and excess precipitation can all retard
growth and increase the incidence of disease [37]. Seed germination can be very slow and
uneven depending on species, cultivar, and post-harvest handling [38,39]. Seed viability is
affected by the maturity of fruits, and can be reduced considerably if they are harvested either
too early or too late [40].

Soil-borne diseases and nematodes are prevalent in Capsicum, and grafting onto disease-
resistant rootstocks is a common, although expensive and time-consuming, cultural practice
[41]. Capsicum yield is poorly responsive to N and K supply because most of the effect is
translated into vegetative instead of reproductive growth [42,43]. Fruit set can be erratic
owing to flower drop induced by excessive N fertilization, high wind, and lack of pollination
[44]. Capsicum species are self-pollinating, but their floral structure readily allows cross-
pollination (mostly by insects) [45], making the production of pure seed cumbersome and
costly [46]. Even if all these agronomic shortcomings can be resolved satisfactorily, the highly
variable nature of capsaicinoid biosynthesis, which is also under strong environmental
control, represents one further hurdle towards the production of consistent levels of pun-
gency in fruits [47].

Capsicum Breeding and Biotechnology
Varieties with more consistent pungency levels could be produced by either breeding or
biotechnological manipulation. Classical breeding programs have contributed to the creation
of elite Capsicum varieties, although numerous interspecific crossing barriers are present within
the genus that prevent the full exploitation of favorable traits [48]. The alternative is to
manipulate traits of interest by Agrobacterium-mediated genetic transformation [49]. Capsicum
species, however, are notoriously recalcitrant to transformation by Agrobacterium [50]. In vitro
regeneration capacity is not an obstacle, and protocols can be adjusted for each particular
genotype of interest [51]. The limiting step appears to be the introduction of exogenous DNA
into the plant. Multiple factors influence the process of DNA transfer and integration into the
plant genome, many of which are not fully understood [52]. Currently available Capsicum
transformation protocols have low efficiency, poor reproducibility, and high genotype-depen-
dence [53,54]. Thus, biotechnological manipulation of capsaicinoids in Capsicum is not a
suitable option in the toolbox of the breeder.

The Dynamics of Capsaicinoid Accumulation in Fruits
Capsaicinoid levels are highly dynamic during fruit development. Their levels appear to be
influenced by the ontogenetic trajectory of the fruit. Capsaicinoids begin to accumulate from the
early stages (10 days after pollination, DAP) of fruit development, peak at around 40 DAP, and
then decrease sharply [55–58]. The late decrease in capsaicinoid content appears to result
from high peroxidase activity which oxidizes capsaicinoids in the presence of H2O2 [59,60].
Therefore, the final amount of capsaicinoids in the fruit depends on a complex balance between
the factors that stimulate their synthesis and degradation. Capsaicinoid levels are thus highly
plastic and are most likely determined by a complex set of ecological and physiological trade-
offs with strong input from the environment.

Light
Light stimulates capsaicinoid formation in fruits harvested immature and kept under artificial
lighting [61]. Moreover, ripe pepper fruits maintained under a fluorescent light contained twice
the capsaicin content of peppers stored in darkness [62]. Keeping fruits constantly illuminated
4 Trends in Plant Science, Month Year, Vol. xx, No. yy
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at moderate irradiance (150–350 mmol m�2 s�1) was found to be more inductive of capsai-
cinoid biosynthesis than maintaining plants at high luminous intensities in the greenhouse
during the summer season [63]. This suggests that photoperiod is seemingly more important to
capsaicin accumulation than light intensity per se. Light has a positive influence on the
expression of the capsaicin synthase gene (CS, discussed further below), which harbors
light-responsive motifs in its promoter region [64], KAS (keto-acyl ACP synthase) and AMT
(aminotransferase) [65], and a negative effect through the induction of peroxidases that
degrade capsaicin [60]. It is hitherto unknown how this balance is controlled and fine-tuned.

Temperature
Pungency level is highly variable in response to air temperature between cultivars and species
[66], and therefore there is no consensus regarding the temperature effects on capsaicinoid
synthesis and accumulation. For some varieties, higher temperature favors the accumulation of
total capsaicinoids, while in others the accumulation of capsaicinoids is affected negatively. It
has been hypothesized that respiration might play an important role in temperature responses
by altering the consumption of photoassimilates and carbon partitioning between plant growth,
lignin, and capsaicinoid synthesis [67]. Furthermore, high night-time temperatures can have a
greater impact on capsaicin contents than daylight temperatures [63]. The CS gene promoter
region contains heat stress consensus elements (HSEs) which could possibly stimulate the
synthesis of capsaicinoids in response to high temperature [64].

Water
In general, water stress reduces fruit yield and increases capsaicinoid accumulation in hot
pepper, albeit in a strongly variety-dependent manner [68]. Water stress decreases fruit size
compared to well-watered plants, but affect less the formation of placental tissue, leading to a
higher proportion of placental tissue per fruit [69]. This is consistent with a higher production of
capsaicinoids because the placenta is their site of synthesis and accumulation. This effect,
however, is also cultivar-dependent [70]. Drought increases the activity of enzymes necessary
for capsaicin biosynthesis (PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxy-
lase; and CS) and reduces capsaicin degradation by peroxidases [69,71]. By contrast, the
proportion of pungent plants in wild Capsicum populations native from Bolivia increases under
higher moisture [32]. In this case, pungency could be beneficial because capsaicinoids protect
the fruit from pathogens, especially from fungi that thrive under high-moisture conditions. Thus,
pungency is increased by both water shortage and excess, but for different ecological and
physiological reasons.

Mineral Nutrition
Mineral nutrition influences the metabolism of capsaicinoids. In this sense, N and K are the main
players. N availability directly affects capsaicin accumulation because the synthesis of a single
capsaicin molecule involves three amino acids – phenylalanine, valine, and leucine – and the still
unidentified amino donor required for the formation of vanillylamine (Figure 2). The capsaicinoid
content in Capsicum fruits has been associated positively with available N in the soil [42,43].
Similarly, high nitrate nutrition enhanced capsaicin levels in placenta from Capsicum fruits
cultured in vitro [72] or harvested from hydroponic plants [73]. C. annuum fruits from plants
grown under different concentrations of K did not show alterations in capsaicinoid accumula-
tion [42]. By contrast, even though K does not participate in capsaicinoid metabolism, an
increase in K application resulted in a significant decrease of capsaicin levels and leaf N content
in C. chinense [43]; thus, the level of K levels might indirectly affect capsaicin accumulation
through its effects on fruit development [74].
Trends in Plant Science, Month Year, Vol. xx, No. yy 5
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Environmental factors have complex and sometimes contrasting effects on pungency levels
(Figure 3). Genotypes, either species or cultivars, are highly variable in their response to specific
environmental conditions. Analysis of 49 accessions of C. chinense, collected in different
regions of Brazil, revealed wide variation in metabolic parameters [75]. Similar results were
found for 32 accessions of Capsicum with respect to productivity, fruit pigments and mor-
phology, capsaicinoids, capsinoids, and vitamins C and E [24]. The relative scarcity of data in
this area makes it difficult to draw definitive conclusions. Studies harnessing the abundant
natural variation in the genus, associated with high-throughput genotyping, may shed more
light on this interesting topic [76–78].

Activating Pungency Biosynthesis in Tomato Fruits: Towards ‘Hot’ Tomatoes
The Capsicum and tomato clades split at least 19 Mya ago [79]. The genomes of Capsicum and
tomato are well preserved, with a basic chromosome number of x = 12 in both species and
major conserved syntenic segments between them [80]. Capsicum fruits are generally
considered non-climacteric; however, the physiological and morphological events during
fruit-set are similar to those in tomato [81,82]. Yields of hot pepper seldom exceed 3 tons
per hectare on the field in about 4–5 months of culture [83]. For tomato, on the other hand, it is
not uncommon to reach 110 t/ha on the field over a 120 day cropping cycle [84]. In addition to
being one of the main horticultural crops in the world, tomato is a well-established model
species [85] that is highly amenable to biotechnological manipulation [86], and there are
miniature model cultivars, such as Micro-Tom, that can be grown quickly and in large numbers
in reduced space [87]. Thus, engineering tomato into a capsaicinoid biofactory is a concep-
tually promising approach for sustainable production of these secondary compounds [88,89].

Capsaicinoids consist of at least 23 different chemical species [90], of which capsaicin (trans-8-
methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin (8-methyl-N-vanillylnonanamide)
together account for �90% of the total fruit capsaicinoid content [56]. Capsaicinoids are
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Figure 3. Some Factors Directly or Indirectly Influencing Pungency Levels in Capsicum. The expression of the
gene (CS) encoding capsaicinoid synthase is directly affected by irradiance, temperature, and wounding. Higher
temperatures and wounding also increase this enzyme activity. The supply of N directly influences the capsaicin pathway
because this element is directly related to the production of the precursor molecules of capsaicin. K influences devel-
opment of the fruit, and thus indirectly influences the size of the placenta by allowing the production of larger fruits. The
scheme does not apply to all varieties in all situations but presents the standard behavior in most cases.
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synthesized in the fruit placenta through the integration of two different biochemical pathways
that involve multiple intracellular compartments (Figure 2). Using phenylalanine as a substrate,
the phenylpropanoid pathway provides vanillylamine, whereas the branched-chain fatty acid
pathway produces 8-methyl nonenoic acid from valine. The enzyme CS, also known as PUN1,
combines both compounds to produce capsaicin and, by condensing vanillylamine with
different fatty acid substrates, other capsaicinoids [91,92]. The intracellular location and
molecular mechanism of this last step is not yet clear, although it appears to be located in
the cytosol. Tomato has an active phenylpropanoid pathway in the fruit peel that can be
upregulated by overexpression of specific transcription factors [93]. Although valine is found in
the tomato fruit, the intermediary compounds in the branched-chain fatty acid pathway have
not hitherto been described, either because of technical limitations or because their levels are
below the level of detection with currently available methods [94].

Comparison of the Capsicum genome to that of tomato has revealed the presence of all the
necessary genes for capsaicinoid production in the tomato genome [82,95]. Genes of the
capsaicinoid biosynthetic pathway have been analyzed in both species to better understand
the absence of pungency in tomato. In sweet peppers, loss of pungency can occur through a
variety of different mutations that affect gene expression in the pathway [96,97]. Pungency,
therefore, appears to be under transcriptional control, as borne out by the higher expression
levels of capsaicinoid biosynthesis genes in the placental septum of pungent cultivars [58,98].
Compared to chili peppers, in tomato some genes have lower levels of expression (PAL; C4H;
ACL, acyl carrier protein, and AMT, aminotransferase); some have lower expression levels with
temporally restricted expression (COMT, caffeoyl-CoA 3-O-methyltransferase; and FaTA, acyl-
ACP thioesterase), in addition to KAS; and two genes are not expressed at all (BCAT,
branched-chain amino acid aminotransferase, and CS) [95].

Two genome-engineering strategies could be used in tandem to activate capsaicinoid biosyn-
thesis in the tomato (Figure 4, Key Figure). One is the use of transcriptional activator-like
effectors (TALEs), a suite of proteins secreted by pathogenic Xanthomonas spp. bacteria when
they infect plant hosts [99]. Tools for robust transcriptional activation of endogenous genes
exploiting customized TALEs have recently been developed that allowed multiplex activation of
up to four genes in plants [100]. Rapid assembly of the TALE genes into a single T-DNA vector is
possible using a MultiSite Gateway recombination system [101,102] and would allow simul-
taneous upregulation of the expression of PAL, KAS, COMT, and FaTA. Interestingly, recent
work has shown that a CaMYB31 transcription factor of the R2R3–MYB family regulates
positively the transcription of multiple key capsaicinoid biosynthesis genes (C4H, COMT, Kas,
and AMT) [65]. It remains to be determined whether the transcript levels achieved will be
sufficient for the capsaicinoid pathway to be functional because expression could either be to
low, and thus insufficient to activate the capsaicinoid pathway, or too high, which could trigger
gene silencing [100].

The second strategy is the use of genome engineering for targeted replacement of promoters.
The feasibility of this method has been demonstrated in tomato using a constitutive 35S
promoter inserted upstream of the ANT1 gene, which encodes an R2R3–MYB transcription
factor regulating anthocyanin biosynthesis [103]. Promoter regions of the inactive genes in the
capsaicinoid pathway (BCAT, CS), could be replaced with endogenous tomato fruit-specific
promoters, such as E8 [104], to produce cisgenic plants with transcriptionally active genes
[105,106]. It remains to be determined, however, if the products of these genes are fully
functional, biochemically active, and catalyze the appropriate reactions.
Trends in Plant Science, Month Year, Vol. xx, No. yy 7
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Figure 4. Transcriptional profile of genes related to the metabolism of pungency in hot pepper, sweet pepper, and tomato
(adapted from [14]). The relative values are the highest measured over all the course of fruit development. Abbreviations:
PAL, phenylalanine ammonia-lyase; BCAT, branched-chain amino acid aminotransferase; C4H, cinnamate 4-hydroxylase;
COMT, caffeoyl-CoA 3-O-methyltransferase; AMT, aminotransferase; FatA, acyl-ACP thioesterase; CS, capsaicinoid
synthase; KAS, keto-acyl ACP synthase; ACL, acyl carrier protein. Pungency in tomato could be achieved increasing the
expression of PAL, KAS, COMT, and FaTA, and by activating the expression of BCAT and CS using state-of-the-art
genome engineering techniques.
Technical Challenges of Engineering Capsaicin Biosynthesis in Tomato
The most frequently described type of genome modification up to date is the creation of loss-of-
function alleles using TALENs or CRISPR/Cas9 [107]. Three recently published studies have
used the latter to perform genome editing of wild relatives of the tomato by multiplex editing of a
suite of genes to improve agronomic performance [108–110]. While this type of modification
occurs through the pathway of non-homologous end-joining for DNA repair in somatic cells,
more precise modifications such as base substitutions or targeted insertions require the use of
homology-directed repair. This involves further technical challenges because sequence-spe-
cific nucleases induce double-strand breaks in a specific sequence while a DNA donor template
is provided for homologous recombination repair to insert the desired alteration. Homology-
directed repair is not the preferred type of repair in plant cells, but efficient methods to create
knock-ins are still forthcoming, although successful integration of promoters [103] or larger
DNA sequences, including entire genes [111,112], has been reported.

The creation of novel ‘expression alleles’, namely gene variants with differential transcription
compared to the original allele, can be achieved by two alternative approaches. The first is the
use of TALE or CRISPR/Cas9 transcriptional activators, which have been successfully applied
in N. benthamiana, Arabidopsis thaliana, and tomato [100,113]. The second, described above,
is the targeted insertion of a promoter sequence upstream of the gene of interest [114]. This
requires a priori knowledge of the spatial and temporal expression profiles produced by specific
8 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Box 2. Production of Other Valuable Metabolites in Tomato

Successful implementation of the approach proposed here would represent an important proof-of-concept that could
be extended to the production of other valuable metabolites in tomato in the future. Other pathways that could
potentially be manipulated using this approach include production of the food and cosmetic pigment bixin (annatto).
Bixin is the second most important natural color additive used in industry and it is produced by a single tropical plant
species, Bixa orellana [118]. Three B. orellana genes encode the enzymes necessary to convert lycopene into bixin:
carotenoid cleavage dioxygenase 1 (CCD1) or lycopene cleavage dioxygenase (LCD), bixin aldehyde dehydrogenase
(BADH), and norbixin methyltransferase (BMT). Because tomato has a high fruit lycopene content and also harbors
orthologs of those genes, their manipulation might allow bixin production in a species that is cultivated worldwide with
improved agronomic practices. Alternatively, editing of the tomato lycopene b-cyclase gene (SlCyc-b) could improve
b-carotene (provitamin A) accumulation at expense of lycopene (and vice versa) [109]. b-Carotene is a powerful
antioxidant that is readily available in large amounts in sweet potato (Ipomoea batatas), winter squash (Cucurbita pepo),
and carrot (Daucus carota). However, 45% of the population carry a genetic mutation that reduces their ability to convert
b-carotene into the more active retinol (vitamin A) [119,120]. Tomatoes with massively increased levels of b-carotene
(with subsequent cleavage into vitamin A) would therefore represent a valuable addition to their diet.

Outstanding Questions
Given that other species of Solana-
ceae, such as tomato, harbor the bio-
synthetic pathway for capsaicinoids,
what is the evolutionary explanation
for the restriction of pungency to spe-
cies of the Capsicum genus?

Could capsaicinoid biosynthesis be
activated specifically in the tomato fruit
using state-of-the-art genome-engi-
neering platforms?

Would the novel genomically engi-
neered ‘hot tomatoes’ yield relevant
and stable amounts of capsaicinoids
under different environmental condi-
tions and cultural practices?
promoter sequences and also knowledge of the desired expression pattern. Some further

challenges to be addressed include the expression levels that can be achieved, in particular the
coordination of expression between genes, both at the spatial (tissue specificity) and temporal
(developmental stage) levels, as well as the subcellular localization of the resulting gene
products. These hurdles, however, are not insurmountable if a systems-biology approach
is employed, integrating knowledge from multiple research areas [115].

Concluding Remarks and Future Perspectives
Capsaicinoids are the secondary metabolites that are responsible for the appealing pungency
of hot peppers, a central element in the culinary activities of many countries. Their multiple
health benefits make capsaicinoids a valuable nutraceutical product, which is likely to
increase in demand in the coming years. Given the notorious challenges of producing stable
yields of Capsicum with consistent levels of pungency in the fruit, we are here proposing, and
working towards, an alternative approach by harnessing recent advances in genome engi-
neering. The completion of the Capsicum genome, and the discovery that the tomato
contains the full suite of genes necessary for pungency, paves the way for the production
of ‘hot tomatoes’ as capsaicinoid biofactories through targeted genome manipulation. The
convergence of basic knowledge with the rapidly growing repertoire of genome-manipulation
tools should pave the way for engineering this and other more imaginative biosynthetic
pathways (Box 2) using the tomato fruit as a chassis [88]. Our approach could provide not
only new basic knowledge to help to elucidate the capsaicinoid biosynthetic pathway but also
to understand its evolution and divergence in different Solanaceae species. Furthermore, it
could allow the development of new functional foods appealing to a wide range of consumers
(also see Outstanding Questions).
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