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Preface

The history of musical instruments is nearly as old as the history of civilization
itself, and the aesthetic principles upon which judgments of musical quality
are based are intimately connected with the whole culture within which the
instruments have evolved. An educated modern Western player or listener
can make critical judgments about particular instruments or particular per-
formances but, to be valid, those judgments must be made within the appro-
priate cultural context.

The compass of our book is much less sweeping than the first paragraph
might imply, and indeed our discussion is primarily confined to Western
musical instruments in current use, but even here we must take account of
centuries of tradition. A musical instrument is designed and built for the
playing of music of a particular type and, conversely, music is written to be
performed on particular instruments. There is no such thing as an “ideal”
instrument, even in concept, and indeed the unbounded possibilities of modern
digital sound-synthesis really require the composer or performer to define a
whole set of instruments if the result is to have any musical coherence. Thus,
for example, the sound and response of a violin are judged against a mental
image of a perfect violin built up from experience of violins playing music
written for them over the centuries. A new instrument may be richer in sound
quality and superior in responsiveness, but if it does not fit that image then it
is not a better violin.

This set of mental criteria has developed, through the interaction of musical
instruments makers, performers, composers, and listeners, over several cen-
turies for most musical instruments now in use. The very features of particular
instruments that might be considered as acoustic defects have become their
subtle distinguishing characteristics, and technical “improvements” that have
not preserved those features have not survived. There are, of course, cases in
which revolutionary new features have prevailed over tradition, but these have
resulted in almost new instrument types—the violin and cello in place of the
viols, the Boehm flute in place of its baroque ancestor, and the saxophone in
place of the taragato. Fortunately, perhaps, such profound changes are rare,
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and most instruments of today have evolved quite slowly, with minor tonal
or technical improvements reflecting the gradually changing mental image of
the ideal instrument of that type.

The role of acoustical science in this context is an interesting one. Centuries
of tradition have developed great skill and understanding among the makers
of musical instruments, and they are often aware of subtleties which are
undetected by modern acoustical instrumentation for lack of precise technical
criteria for their recognition. It is difficult, therefore, for a scientist to point the
way forward unless the problem or the opportunity has been adequately
identified by the performer or the maker. Only rarely do all these skills come
together in a single person.

The first and major role of acoustics is therefore to try to understand all
the details of sound production by traditional instruments. This is a really
major program, and indeed it is only within the past few decades that we
have achieved even a reasonable understanding of the basic mechanisms
determining tone quality in most instruments. In some cases even major
features of the sounding mechanism itself have only recently been unravelled.
This is an intellectual exercise of great fascination, and most of our book is
devoted to it. Our understanding of a particular area will be reasonably
complete only when we know the physical causes of the differences between
a fine instrument and one judged to be of mediocre quality. Only then
may we hope that science can come to the help of music in moving the
design or performance of contemporary instruments closer to the present
ideal.

This book is a record of the work of very many people who have studied
the physics of musical instruments. Most of them, following a long tradition,
have done so as a labor of love, in time snatched from scientific or technical
work in a field of more immediate practical importance. The community of
those involved is a world-wide and friendly one in which ideas are freely
exchanged, so that, while we have tried to give credit to the originators
wherever possible, there will undoubtedly be errors of oversight. For these we
apologize. We have also had to be selective, and many interesting topics have
perforce been omitted. Again the choice is ours, and has been influenced by
our own particular interests, though we have tried to give a reasonably
balanced treatment of the whole field.

The reader we had in mind in compiling this volume is one with a reason-
able grasp of physics and who is not frightened by a little mathematics.
There are fine books in plenty about the history of particular musical in-
struments, lavishly illustrated with photographs and drawings, but there
is virtually nothing outside the scientific journal literature which attempts
to come to grips with the subject on a quantitative basis. We hope that
we have remedied that lack. We have not avoided mathematics where pre-
cision is necessary or where hand-waving arguments are inadequate, but
at the same time we have not pursued formalism for its own sake. Detailed
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physical explanation has always been our major objective. We hope that
the like-minded reader will enjoy coming to grips with this fascinating
subject.

The authors owe a debt of gratitude to many colleagues who have contri-
buted to this book. Special thanks are due to Joanna Daly and Barbara
Sullivan, who typed much of the manuscript and especially to Virginia
Plemons, who typed most of the final draft and prepared a substantial part
of the artwork. Several colleagues assisted in the proofreading, including
Rod Korte, Krista McDonald, David Brown, George Jelatis, and Brian Finn.
We are grateful to David Peterson, Ted Mansell, and other careful readers
who alerted us to errors in the first printing. Thanks are due to our many
colleagues for allowing us to reprint figures and data from their publica-
tions, and to the musical instrument manufacturers that supplied us with
photographs. Most of all, we thank our colleagues in the musical acoustics
community for many valuable discussions through the years that led to our
writing this book.

December 1988 Neville H. Fletcher
Thomas D. Rossing
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CHAPTER 1

Free and Forced Vibrations
of Simple Systems

Mechanical, acoustical, or electrical vibrations are the sources of sound in
musical instruments. Some familiar examples are the vibrations of strings
(violin, guitar, piano, etc), bars or rods (xylophone, glockenspiel, chimes,
clarinet reed), membranes (drums, banjo), plates or shells (cymbal, gong,
bell), air in a tube (organ pipe, brass and woodwind instruments, marimba
resonator), and air in an enclosed container (drum, violin, or guitar body).

In most instruments, sound production depends upon the collective be-
havior of several vibrators, which may be weakly or strongly coupled together.
This coupling, along with nonlinear feedback, may cause the instrument as a
whole to behave as a complex vibrating system, even though the individual
elements are relatively simple vibrators.

In the first seven chapters, we will discuss the physics of mechanical and
acoustical oscillators, the way in which they may be coupled together, and the
way in which they radiate sound. Since we are not discussing electronic
musical instruments, we will not deal with electrical oscillators except as they
help us, by analogy, to understand mechanical and acoustical oscillators.

Many objects are capable of vibrating or oscillating. Mechanical vibrations
require that the object possess two basic properties: a stiffness or springlike
quality to provide a restoring force when displaced and inertia, which causes
the resulting motion to overshoot the equilibrium position. From an energy
standpoint, oscillators have a means for storing potential energy (spring), a
means for storing kinetic energy (mass), and a means by which energy is
gradually lost (damper). Vibratory motion involves the alternating transfer of
energy between its kinetic and potential forms.

The inertial mass may be either concentrated in one location or distributed
throughout the vibrating object. If it is distributed, it is usually the mass per
unit length, area, or volume that is important. Vibrations in distributed mass
systems may be viewed as standing waves.

The restoring forces depend upon the elasticity or the compressibility of
some material. Most vibrating bodies obey Hooke’s law; that is, the restoring
force is proportional to the displacement from equilibrium, at least for small
displacement.



4 1. Free and Forced Vibrations of Simple Systems
1.1. Simple Harmonic Motion in One Dimension

The simplest kind of periodic motion is that experienced by a point mass
moving along a straight line with an acceleration directed toward a fixed
point and proportional to the distance from that point. This is called simple
harmonic motion, and it can be described by a sinusoidal function of time
t: x(t) = A sin2nft, where the amplitude A describes the maximum extent of
the motion, and the frequency f tells us how often it repeats.

The period of the motion is given by

T=-. (1.1)

That is, each T seconds the motion repeats itself.

A simple example of a system that vibrates with simple harmonic motion
is the mass—spring system shown in Fig. 1.1. We assume that the amount of
stretch x is proportional to the restoring force F (which is true in most springs
if they are not stretched too far), and that the mass slides freely without loss
of energy. The equation of motion is easily obtained by combining Hooke’s

law, F = — Kx, with Newton’s second law, F = ma = mx. Thus,
mx = —Kx
and
mx + Kx = 0,
where
_ d*x
T de?

The constant K is called the spring constant or stiffness of the spring
(expressed in newtons per meter). We define a constant w, = / K/m, so that
the equation of motion becomes

X+ wix=0. (1.2)
This well-known equation has these solutions:

x = Acos(wet + ¢) (1.3)

I—_>x
0000

NN

Fig. 1.1. Simple mass—spring vibrating system.
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Fig. 1.2. Relative phase of displacement x, velocity v, and acceleration a of a simple
vibrator.

or
X = Bcos wyt + Csin wyt, (1.4)

from which we recognize w, as the natural angular frequency of the system.
The natural frequency f, of our simple oscillator is given by f, =
(1/2m)./K/M , and the amplitude by ./B*> + C? or byA; ¢ is the initial phase
of the motion. Differentiation of the displacement x with respect to time gives
corresponding expressions for the velocity v and acceleration a:

v=X= —wydsin(wyt + ¢), (1.5)

and
a=%= —ws Acos(wt + ¢). (1.6)

The displacement, velocity, and acceleration are shown in Fig. 1.2. Note that
the velocity v leads the displacement by n/2 radians (90°), and the acceleration
leads (or lags) by 7 radians (180°).

Solutions to second-order differential equations have two arbitrary con-
stants. In Eq. (1.3) they are 4 and ¢; in Eq. (1.4) they are B and C. Another
alternative is to describe the motion in terms of constants x, and v,
the displacement and velocity when ¢ = 0. Setting t = 0 in Eq. (1.3) gives
Xxo = Acos ¢, and setting ¢t =0 in Eq. (1.5) gives vy = —wyAsing. From
these we can obtain expressions for 4 and ¢ in terms of x, 7ind v:

v 2
A= [x}+ (—°> ,
Wo
and (L7
¢ = tan! < —v°>.
WoXg

Alternatively, we could have set t = 0in Eq. (1.4) and its derivative to obtain
B = x4 and C = vy/w, from which

vy .
X = Xy COSwot + ao—sm Wpt. (1.8)
0
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1.2. Complex Amplitudes

Another approach to solving linear differential equations is to use exponential
functions and complex variables. In this description of the motion, the ampli-
tude and the phase of an oscillating quantity, such as displacement or velocity,
are expressed by a complex number; the differential equation of motion is
transformed into a linear algebraic equation. The advantages of this formu-
lation will become more apparent when we consider driven oscillators.

This alternate approach is based on the mathematical identity e */® =
coswyt + jsin wyt, where j = ./—1. In these terms, coswyt = Re(eT/*0t),
where Re stands for the “real part of.” Equation (1.3) can be written

x = Acos(wot + ¢) = Re[Ae/ @ 9] = Re(Aebeioot)
= Re(A4e). (1.9)

The quantity A = Ae’ is called the complex amplitude of the motion and
represents the complex displacement at ¢t = 0. The complex displacement X is
written

% = Aeoot, (1.10)
The complex velocity ¢ and acceleration d become
b = jwo A’ = jw, %, (1.11)
and _
= —wiAel = —wiX. (1.12)

Each of these complex quantities can be thought of as a rotating vector or
phasor rotating in the complex plane with angular velocity w,, as shown in
Fig. 1.3. The real time dependence of each quantity can be obtained from the
projection on the real axis of the corresponding complex quantities as they
rotate with angular velocity w,.

2
ws A

Fig. 1.3. Phasor representation of the complex displacement, velocity, and acceleration
of a linear oscillator.
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1.3. Superposition of Two Harmonic Motions in One Dimension

Frequently, the motion of a vibrating system can be described by a linear
combination of the vibrations induced by two or more separate harmonic
excitations. Provided we are dealing with a linear system, the displacement at
any time is the sum of the individual displacements resulting from each of the
harmonic excitations. This important principle is known as the principle of
linear superposition. A linear system is one in which the presence of one
vibration does not alter the response of the system to other vibrations, or one
in which doubling the excitation doubles the response.

1.3.1. Two Harmonic Motions Having the Same Frequency

One case of interest is the superposition of two harmonic motions having the
same frequency. If the two individual displacements are

%, =A, ei(wt+¢1)

and
%, = Ayel@r+dd),

their linear superposition results in a motion given by
Xy + Xy = (A6 + A, e*2)ei = el @9, (1.13)

The phasor representation of this motion is shown in Fig. 1.4.
Expressions for 4 and ¢ can easily be obtained by adding the phasors
A% and A,e™%: to obtain

A= /(A cos¢, + A;c0s4,)* + (A, sing, + A,sing,)?,  (1.14)

and

A,;sing, + A,sing, (1.15)

tan¢ =

A cosp, + Aycos @,

A,sing, + A,sing,

——————A4,cos¢, + Aycosy—>

Fig. 1.4. Phasor representation of two simple harmonic motions having the same
frequency.
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What we have really done, of course, is to add the real and imaginary parts
of %, and %, to obtain the resulting complex displacement X. The real dis-
placement is

x = Re(X) = A cos(wt + ). (1.16)

The linear combination of two simple harmonic vibrations with the same
frequency leads to another simple harmonic vibration at this same frequency.

1.3.2. More Than Two Harmonic Motions Having the Same Frequency

The addition of more than two phasors is accomplished by drawing them in a
chain, head to tail, to obtain a single phasor that rotates with angular velocity
. This phasor has an amplitude given by

A=/ A,cos4,)* + () A,5in4,)*, (1.17)

and a phase angle ¢ obtained from

Y A,sing,
Y A,cos ¢,

The real displacement is the projection of the resultant phasor on the real axis,
and this is equal to the sum of the real parts of all the component phasors:

x = Acos(wt + ¢) = 21 A,cos(wt + ¢,.) (1.19)

tang = (1.18)

1.3.3. Two Harmonic Motions with Different Frequencies: Beats

If two simple harmonic motions with frequencies f; and f, are combined, the
resultant expression is

=% +%= Alej(“"””’" + Azej(w2t+¢z), (1.20)

where A4, w, and ¢ express the amplitude, the angular frequency, and the phase
of each simple harmonic vibration.

The resulting motion is not simple harmonic, so it cannot be represented
by a single phasor or expressed by a simple sine or cosine function. If the ratio
of , to w; (or w, to w,) is a rational number, the motion is periodic with
an angular frequency given by the largest common divisor of w, and w;.
Otherwise, the motion is a nonperiodic oscillation that never repeats itself.

The linear superposition of two simple harmonic vibrations with nearly the
same frequency leads to periodic amplitude variations or beats. If the angular
frequency w, is written as

w, =0, + Ao, (1.21)

the resulting displacement becomes

%= Alej(w11+¢1) + Azej(w1t+Awt+¢2)

= [Alejm 4+ Azej(¢2+A“”)]ej“’". (1'22)



1.3. Superposition of Two Harmonic Motions in One Dimension 9

We can express this in terms of a time-dependent amplitude A(t) and a
time-dependent phase @(t):
% = A(t)ei@rt* e (1.23)

where

A(t) = /A2 + A3 + 24, A, cos(p, — ¢, — Awt), (1.24)
and
A, sing, + A,sin(¢, + Awt)
A cos@, + A,cos(d, + Awt)’

tang(t) = (1.25)
The resulting vibration could be regarded as approximately simple har-
monic motion with angular frequency w; and with both amplitude and phase
varying slowly at frequency Aw/2n. The amplitude varies between the limits
A, + A,and |4, — A4,|.
In the special case where the amplitudes 4, and A4, are equal and ¢, and
¢, = 0, the amplitude equation [Eq. (1.24)] becomes

A(t) = A, /2 + 2cos Aw, t (1.26)
and the phase equation [Eq. (1.25)] becomes
sin Aw, t
= — 1.27
tan 4(t) 1 + cos Aw, t (1.27)

Thus, the amplitude varies between 24, and 0, and the beating becomes very
pronounced.

The displacement waveform (the real part of X) is illustrated in Fig. 1.5. This
waveform resembles the waveform obtained by modulating the amplitude of
the vibration at a frequency Aw/27, but they are not the same. Amplitude
modulation results from nonlinear behavior in a system, which generates
spectral components having frequencies w; and w,; + Aw. The spectrum of
the waveform in Fig. 1.5. has spectral components w; and @, + Aw only.

Audible beats are heard whenever two sounds of nearly the same frequency
reach the ear. The perception of combination tones and beats is discussed in
Chapter 8 of Rossing (1982) and other introductory texts on musical acoustics.

2n/Aw

2njw,

Fig. 1.5. Waveform resulting from linear superposition of simple harmonic motions
with angular frequencies @, and w,.
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1.4. Energy

The potential energy E, of our mass—spring system is equal to the work done
in stretching or compressing the spring:

x x 1
E,= —J Fdx = j Kxdx = EKXZ' (1.28)

0 0

Using the expression for x in Eq. (1.3) gives
E, = 3K A*cos*(wot + ¢). (1.29)

The kinetic energy is E, = $mv?, and using the expression for v in Eq. (1.5)
gives
E = imw}A?sin?(wyt + @) = 1K A% sin%(wyt + ¢). (1.30)

The total energy E is then
E=E, + E, =1KA? = imw}A* = imU?, (1.31)

where U is the maximum velocity. The total energy in our loss-free system is
constant and is equal either to the maximum potential energy (at maximum
displacement) or the maximum kinetic energy (at the midpoint).

1.5. Damped Oscillations

There are many different mechanisms that can contribute to the damping of
an oscillating system. Sliding friction is one example, and viscous drag in a
fluid is another. In the latter case, the drag force F, is proportional to the
velocity:

F, = —RX%,

where R is the mechanical resistance. The drag force is added to the equation
of motion:
mx+ Rx+Kx=0

or (1.32)
%+ 20% + w3x =0,

where @ = R/2m and w3 = K/m.
We assume a complex solution % = Ae” and substitute into Eq. (1.32) to
obtain
(32 + 20y + wd)Ae” = 0. (1.33)

This requires that y2 + 2ay + w3 = 0 or that
y=—at. o —wj=—atj/oi—a’=—a+jo,;, (1.34)

where w; = (/w3 — o? is the natural angular frequency of the damped oscil-
lator (which is less than that of the same oscillator without damping). The
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Xo

—Xp

Fig. 1.6. Displacement of a harmonic oscillator with v, = 0 for different values of
damping. The relaxation time is given by 1/a. Critical damping occurs when a = .

general solution is a sum of terms constructed by using each of the two values
of y: ~
£ =e (A, e/ + AzeT i), (1.35)

The real part of this solution, which gives the time history of the dis-
placement, can be written in several different ways as in the loss-free case. The
expressions that correspond to Egs. (1.3) and (1.4) are

x = Ae”* cos(wyt + @), (1.36)

and
x = e *(Bcoswyt + Csinw,t). (1.37)

Setting t = 0 in Eq. (1.37) and its derivatives gives the displacement in terms
of the initial displacement x, and initial velocity v,:

x = e %(xycos wgt + @—Z’—ﬂsin wyt). (1.38)
d

Figure 1.6 shows a few cycles of the displacement for different values of x when

vy =0.

The amplitude of the damped oscillator is given by xye™®, and its motion
is not strictly periodic. Nevertheless, the time between zero crossings in the
same direction remains constant and equal to Ty = 1/fy = 2n/w,, which is
defined as the period of the oscillation. The time interval between successive
maxima is also Ty, but the maxima and minima are not exactly halfway
between the zeros.

One measure of the damping is the time required for the amplitude to
decrease to 1/e of its initial value x,. This time, 7, is called by various names,
such as decay time, lifetime, relaxation time, and characteristic time; it is given

by

—at

_2m

R (1.39)

1
T=—
o

When a = w,, the system is no longer oscillatory. When the mass is
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displaced, it returns asymptotically to its rest position. For o = w, the system
is critically damped, and the displacement is

X, = Xo(1 + at)e ™. (1.40)

For o > w,, the system is overdamped and returns to its rest position even
more slowly.

It is quite obvious that the energy of a damped oscillator decreases with
time. The rate of energy loss can be found by taking the time derivative of the
total energy:

dJdU(E, + Ex) = d/di[3Kx? + 3m3?] = Kx# + ms%
= X(Kx + mX) = X(—Rx) = —2amx?, (141)

where use has been made of Eq. (1.32). Equation (1.41) tells us that the rate of
energy loss is the friction force — Rx times the velocity x.
Often a Q factor or quality factor is used to compare the spring force to the
damping force:
Kx, K W,
Rwyx, Rw, 2a°

0=

(1.42)

1.6. Other Simple Vibrating Systems

Besides the mass—spring system already described, the following are familiar
examples of systems that vibrate in simple harmonic motion.

1.6.1. A Spring of Air

A piston of mass m, free to move in a cylinder of area-S and length-L [see
Fig. 1.7(a)], vibrates in much the same manner as a mass attached to a spring.
The spring constant of the confined air turns out to be K = yp,S/L, so the

O Qg (iiO,’.‘z:J :
Vv <2AL~
—L— mg

(a) (© (d)

Fig. 1.7. Simple vibrating systems: (a) piston in a cylinder; (b) Helmholtz resonator with
neck of length L; (c) Helmholtz resonator without a neck; and (d) simple pendulum.
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natural frequency is

1 [yp.S
= [Z 1.43
fo 22 mL (1.43)
where p, is atmospheric pressure, m is the mass of the piston, and v is a
constant that is 1.4 for air.

1.6.2. Helmholtz Resonator

In the Helmholtz resonator shown in Fig. 1.7(b), the mass of air in the neck
serves as the piston and the large volume of air V as the spring. The mass of
air in the neck and the spring constant of the confined air are given by the
expressions

m = pSL,

and (1.44)
K = pS%c?/V,

where p is the air density and c is the speed of sound.
The natural frequency of vibration is given by

1 (K ¢ S
= == [ 1.4
fo 271\/; 2n\ VL (143)

Note that the smaller the neck diameter, the lower the natural frequency of
vibration, a result which may appear surprising at first glance.

The Helmholtz resonator in Fig. 1.7(c) has no neck to delineate the
vibrating mass, but the effective length can be estimated by taking twice the
“end correction” of a flanged tube (which is 8/37 =~ 0.85 times the radius a).
Thus,

16
m= pSL = p(na2)<3—:> = 533pd’, (1.46)

The natural frequency of a neckless Helmholtz resonator with a large face is

thus expressed as
¢ [1.85a
= . 1.47
fo=5- | (147)

If the face of the resonator surrounding the hole is not large, the natural
frequency will be slightly smaller. The Helmholtz resonator is discussed in
Section 6.5 and the end correction in Section 8.3.

1.6.3. Simple Pendulum

A simple pendulum, consisting of a mass m attached to a string of length [
[Fig. 1.7(d)], oscillates in simple harmonic motion provided that x « . As-
suming that the mass of the string is much less than m, the natural frequency
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_1l /g
fo_g\/;, (1.48)

where g is the acceleration due to gravity. Note that the frequency does not
depend on the mass.

is given by

1.6.4. Electrical RLC Circuit

In the electrical circuit, shown in Fig. 1.8, the voltages across the inductor, the
resistor, and the capacitor, respectively, should add to zero:

dt

Differentiating each term leads to an equation that is analogous to Eq. (1.32)
for the simple mechanical oscillator:

i 1
L£+Ri+6jidt=0.

. .1
Li+Ri+—=i=0
1+ l+Cl

or } ) (1.49)
i+ 201 + wii =0,
where &« = R/2L and w3 = 1/LC.
The solution to Eq. (1.49) can be written as
i = Iye * cos(wyt + @), (1.50)

which represents a current oscillating at a frequency /w3 — a?/2n, with an
amplitude that decays exponentially. If « « w, (small damping), the frequency
of oscillation is approximately

Wy 1

% _ 1 1.51
fo=+ m JIC (L.51)

and the current has a waveform similar to that shown in Fig. 1.6.

—1

L
[

Fig. 1.8. Simple electrical oscillator with inductance L, resistance R, and capacitance C.
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1.6.5. Combinations of Springs and Masses

Several combinations of masses and springs are shown in Fig. 1.9, along with
their resonance frequencies. Note the effect of combining springs in series and
parallel combinations. Two springs with spring constants K; and K, will have
a combined spring constant K, = K; + K, when connected in parallel but
only K, = K, K,/(K; + K,) in series. When K; = K, the parallel and series
values become 2K, and K, /2, respectively. The combinations in Fig. 1.9 all
have a single degree of freedom. In Section 1.12, we discuss two-mass systems
with two degrees of freedom; that is, the two masses move independently.

(@) (b) (© @ ©

Fig. 1.9. Mass—spring combinations that vibrate at single frequencies:
@) fo = (1/2m)\/ K/2m; (b) fo = (1/2m)/ 2K/m; (c) fo = (1/2m)/ K/2m;
(d) fo = (1/2m)\/K/4m; and (¢) fo = (1/2n)/K/m.

1.6.6. Longitudinal and Transverse Oscillations
of a Mass—Spring System

Consider the vibrating system shown in Fig. 1.10. Each spring has a spring
constant K, a relaxed length a,, and a stretched length a. Thus, each spring
exerts a tension K(a — a,) on the mass when it is in its equilibrium position

(b)

Fig. 1.10. Longitudinal (a) and transverse (b) oscillations of a mass—spring system.
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(x = 0). When the mass is displaced a distance x, the net restoring force is the
difference between the two tensions:

F,=K(@—x—ay)—K(a+ x—ay) = —2Kx. (1.52)

The natural frequency for longitudinal vibration is thus given by

1 2K
fi=3. /7. (1.53)

Now, consider transverse vibrations of the same systems, as shown in
Fig. 1.10(b). When the mass is displaced a distance y from its equilibrium
position, the restoring force is due to the y component of the tension:

F,= —2K(/a® + y* — ag)sin0 = —2K(/a® + y* — ao)“\/%
a y

For small deflection y, the force can be written as

2\ -1/2
Ao y
F =-2Ky|l——|1+%=

K
—2Ky<1 — ‘;—") — 200y, (1.55)

i

e

When the springs are stretched to several times their relaxed length (a > a,),
the force is approximately — 2Ky, and the natural frequency is practically the
same as the frequency for longitudinal vibrations given in Eq. (1.53):

L= Lﬁ (1.56)
2n\ m

When the springs are stretched only a small amount from their relaxed
length (a = a,), however, the first term in Eq. (1.55) becomes very small, so the
vibration frequency is considerably smaller than that given in Egs. (1.53) and
(1.56). Furthermore, the contribution from the cubic term in Eq. (1.55) takes
on increased importance, making the vibration nonsinusoidal for all but the
smallest amplitude.

1.7. Forced Oscillations

When a simple oscillator is driven by an external force f(t), as shown in
Fig. 1.11, the equation of motion Eq. (1.32) then becomes

m% + Rx + Kx = f(t). (1.57)
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AN\

R

f®

X

Fig. 1.11. A damped harmonic oscillator with driving force f(t).

The driving force f(t) may have harmonic time dependence, it may be
impulsive, or it may even be a random function of time. For the case of a
sinusoidal driving force f(t) = F cos wt turned on at some time, the solution
to Eq. (1.57) consists of two parts: a transient term containing two arbitrary
constants, and a steady-state term that depends only on F and w.

To obtain the steady-state solution, it is advantageous to write the equation
of motion in complex form:

m% + R% + KX = Fei**, (1.58)

Since this equation is linear in x and the right-hand side is a harmonic
function with angular frequency w, in the steady state the left-hand side should
be harmonic with the same frequency. Thus, we replace X by Ae/** and obtain

Ae’'(—w®m + joR + K) = Fe*'. (1.59)
The complex displacement is

Fel™ F/m

£=K—w2m+ij T w0 — 0 + joo’ (1.60)
where F = Fe/*', w3 = K/m, and « = R/2m.
Differentiation of X gives the complex velocity &
jot ~
b= R+ j(f)jn “Kjo) 20 +I;c(oc{)r2n— w?) (1.61)
The mechanical impedance Z is defined as F/#:
Z=F/5=R + j(wom — K/w) = R + jX ., (1.62)

where X,, = wm — K/w is the mechanical reactance. The actual steady-state
displacement is given by the real part of Eq. (1.60):

F F
x = Re—= = —sin(wt + ¢). 1.63
o5 " wz e+ 9 (1.63)

A quantity x, = F/K = F/mw} can be defined as the static displacement of
the oscillator produced by a constant force of magnitude F. At very low
frequency, the displacement amplitude will approach F/K, and the oscilla-
tor is said to be stiffness dominated. When w = w,, the amplitude becomes

xo = F2amw, = Qx,. (1.64)
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In other words, Q becomes a sort of amplification factor, which is the ratio of
the displacement amplitude at resonance (w, = ) to the static displacement.

At high frequency (v > ,), the displacement falls toward zero. The fre-
quency response of a simple oscillator for different values of « (or Q) is shown
in Fig. 1.12(a). The magnitude of x is less than x, for frequencies above
Wo~/2 — 6% (where 6 = 1/Q = 2a/w,), which, for small values of «, is about

ﬁwo. Ifa> wo/ﬁ, X < x, at all frequencies.
The phase angle between the displacement and the driving force is the phase

resistance
x/x dominated
ol |
5k
4tk stiffness mass

dominated

dominated

0 wfwg
0.5 1.0 1.5 20 2.5
(@
|
0 |
1
|
¢x - ¢F
|
—90° j=
|
|
|
—180° 1 | L R
0.5 1.0 1.5 20 2.5

(b)

Fig. 1.12. Frequency dependence of the magnitude x and phase (¢, — ¢;) of the
displacement of a linear harmonic oscillator.
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angle of the denominator in Eq. (1.60):

20w
— ¢p=tan" ! ————.
¢x ¢F wz _ w(z)

(1.65)

At low frequency (0 = 0), ¢, — ¢r = 0. When o = w,, ¢, — ¢ = 90°, and at
high frequency (w » ), ¢, — ¢ = 180°, as shown in Fig. 1.12(b).

There are other convenient ways to represent the frequency response of a
simple oscillator. One way is to show how the real and imaginary parts of the
mechanical impedance Z(=F /D) or the mechanical admittance (mobility)
Y = 1/Z(=5/F) vary with frequency. At resonance, the real part of the admit-
tance has its maximum value, while that of the impedance remains equal to R
at all frequencies. The imaginary parts of both quantities are zero at resonance.
Figure 1.13 shows the real and imaginary parts of the mechanical impedance
and admittance for an oscillator of the same type as in Fig. 1.12. The graph
of imaginary part versus the real part in Fig. 1.12(c) is sometimes called a
Nyquist plot.

Do

(©)

(b)

Fig. 1.13. Real and imaginary parts of the mechanical impedance and admittance
for a harmonic oscillator of the same type as in Fig. 1.12: (a) mechanical impedance;
(b) mechanical admittance or mobility; (c) Nyquist plot showing the imaginary part of
admittance versus the real part, with frequency as a parameter.
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1.8. Transient Response of an Oscillator

When a driving force is first applied to an oscillator, the motion can be quite
complicated. We expect to find periodic motions at the natural frequency f,
of the oscillator as well as the driving frequency f (or at all its component
frequencies if the driving force is not harmonic). If the oscillator is heavily
damped, the transient motion decays rapidly, and the oscillator quickly settles
in to its steady-state motion. If the damping is small, however, the transient
behavior may continue for many cycles of oscillation. If the driving frequency
f 1s close to the natural frequency f,, for example, strong beats may be
observed.

In Section 1.5, the Q factor was defined by the equation Q = w,/2a =
wo7/2, where 7 is the time required for the amplitude of a free damped
oscillator to decrease to 1/e(=0.37) of its initial value. Thus, the decay
time 7 encompasses Q/ cycles of vibration. For Q = 10, for example, the
amplitude falls to 37% of its initial value in just over three cycles, and it
reaches 14% after six cycles, as shown in Fig. 1.14.

If we suddenly apply a sinusoidal excitation with frequency f to an oscil-
lator at rest, we observe aspects of both the impulsive response illustrated in
Fig. 1.14 and the steady-state response discussed in Section 1.7. The shock
of the start of the vibration excites the natural oscillation of the system
with frequency f;, and this dies away with a characteristic decay time .
Simultaneously, there is present the forced oscillation at frequency f, and the
resulting motion is a superposition of these two components. The simplest
case is that in which the exciting frequency f is the same as the resonance

0374

0.144

Fig. 1.14. Response of a damped oscillator (@ = 10) to impulsive excitation (by the
application of a large force for a very short time, for example). The amplitude falls to
37%; of its initial value in time 7, which corresponds to Q/r cycles.



1.8. Transient Response of an Oscillator 21

Fig. 1.15. Response of a simple oscillator to a sinusoidal force applied suddenly. The
ratio f/f, varies from 0.2 to 4.0, and Q = 10 in each case. Note that the scale of
amplitude is different in each case (from Fletcher, 1982).

frequency f;, for the whole motion then builds steadily toward its final
amplitude with time constant . More generally, however, we expect to see the
presence of both frequencies f and f; during the duration t of the attack
transient and, if f is close to f,, these may combine to produce beats at
frequency | f — f,|. These possibilities are illustrated in Fig. 1.15.

Mathematically, the problem is one of finding the appropriate general
solution of Eq. (1.57). Because Eq. (1.57) is a linear equation, the general
solution is a combination of the general solution of the homogeneous equa-
tion, Eq. (1.32), and a particular solution of Eq. (1.57), which we take to be the
steady-state solution [Eq. (1.63)].

F
x = Ae ™ cos(wyt + ¢) + Z)Esin (ot + 0), (1.66)

where A and ¢ are arbitrary constants to be determined by the initial con-
ditions. If the damping is small, w4 can be replaced by w,.

When the driving frequency matches the natural frequency (0 = w,), the
amplitude builds up exponentially to its final value without beats, as shown
in Fig. 1.15(c). Note that irrespective of how the oscillator starts its motion, it
eventually settles down to this steady-state motion.
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1.9. Two-Dimensional Harmonic Oscillator

An interesting oscillating system is the one shown in Fig. 1.16, which
results from adding a second pair of springs to the system in Fig. 1.11. The
displacement of the mass m from its equilibrium position is given by co-
ordinates x and y, and both pairs of springs exert restoring forces. For a
displacement in the x direction, the restoring force is approximately F, =
—2K,x — 2Kgx(1 — b,y/b), where b, is the unstretched length of one of a pair
of springs. For a displacement in the y direction, the restoring force is F, =
—2Kgy — 2Kpy(1 — ay/a).

When the mass is allowed to move in two dimensions, some interesting
coupling phenomena occur. The potential energy of the system can be written
as

E,= 3K/ (a + x)? +y*—apl* + %KA[\/ (a—x)+y* —ao]?
+ 3Ka[ /(b + »)* + x* — b1? + K[ /(b — y)* + x* — by ]%.  (1.67)

F, is obtained by differentiating Eq. (1.67). If we retain terms only to third
order in x and y, we obtain the expression

(1.68)

Note that the third term, which is of third order, couples the x and y motions.
For small amplitudes of vibration, however, the x and y motions are in-
dependent. Thus, we can solve the independent equations of motion,

i+ 2K, + 2K4(1 — bo/b)x

F,~ —2(K, + Kg)x +

m =5
and (1.69)
. 2K, (1 —agp/a) + 2K4 _
y + m y - 05
2
Z b
K @
r\\\\\ ez u\u/\
o
Ky
P b
o
{

Fig. 1.16. Two-dimensional oscillator consisting of a mass m and two pairs of springs.
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Fig. 1.17. Two-dimensional oscillator of Fig. 1.16 rotated through an angle 6. The
normal modes remain unchanged, but the normal coordinates are no longer x and y.

to obtain two independent or normal modes of vibration with natural
frequencies:

fi= 1 \/2KA + 2Kg(1 — by/b)

2n m
and (1.70)
7= 1 2K,(1 —ap/a) + 2K4
27 o m '

When a, and b, are much smaller than a and b, f; and f, differ only slightly.
When this oscillating system is set up on an air table and the mass is initially
set into motion at 45° to the x and y axes, a slowly changing Lissajous figure
is observed as the x and y components of motion change their relative phases.

Since each of the normal modes corresponds to motion along one co-
ordinate only, we call the x and y coordinates the normal coordinates of the
motion. In general, the normal coordinates of a two-dimensional oscillator
will not be the x and y axes. If the springs were oriented at angles 6 to the axes,
for example, the normal coordinates (which still lie in the directions of the
springs) would be ¥, = xcos8 + ysinf and Y, = ycosf — xsinf as illus-
trated in Fig. 1.17.

1.10. Graphical Representations of Vibrations: Lissajous Figures

There are several useful ways to represent a vibrating object with a graphic
display device, such as a cathode-ray oscilloscope or an X-Y plotter. Perhaps
the most common way is to make a plot of position (or velocity) versus time
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x(t)

- O
F(t)/ %~ x(0) / 4
i \

ety -1

=gl \ r

(a) (b)

Fig. 1.18. Two useful displays of (a) force F(t) and (b) displacement x(¢) from which the
phase angle ¢ can be determined.

by incorporating a transducer that gives an electrical output proportional
to position (or velocity). With a multiple-trace oscilloscope, the position,
velocity, and acceleration waveforms may be combined, giving a display of
the type shown in Fig. 1.2.

Another useful display combines force and displacement [Eq. (1.63)] or
force and velocity. This can be done by displaying force and displacement as
functions of time, as in Fig. 1.18(a), or by making a plot of displacement as a
function of time, as in Fig. 1.18(b). In Fig. 1.18(a), the phase angle ¢ would be
determined as a fraction of the total period (multiplied by 360° to obtain the
phase angle in degrees). In Fig. 1.18(b), the phase angle is obtained from the
relationship

B
= gin~1
¢ =sin e (1.71)

Note that the display must be centered when measuring 4 and B.

Two related harmonic motions with different frequencies are often repre-
sented in a display like that of Fig. 1.18(b). If w, = w, + Aw, as in Eq. (1.19),
the display will cycle between a straight line (¢ = 0, 180°), a horizontal or
vertical ellipse (¢ = 90°, 270°), and ellipses of other orientations, as ¢ advances
with a frequency Aw/2x.

When w, and w, are related by the relationship mw, = nw,, where m and
n are integers, stable patterns result. These patterns are called Lissajous figures
in honor of Jules Antoine Lissajous. Examples of such figures are shown in

Fig. 1.19.
1 1 3 2 3
2 1 2 1 1

Fig. 1.19. Lissajous figures obtained by displaying cosw,t versus cos w,t, where
mw, = nhw, for different integers m, n.

m=
n=
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1.11. Normal Modes of Two-Mass Systems

Further understanding of normal modes and normal coordinates of oscil-
lating systems comes from considering the two-mass system in Fig. 1.20(a).
The analysis is simplified by letting all three spring constants and both masses
be the same. Letting x,; and x, be the displacements of the two masses, we write
the equations of motion:

mx; + Kx; + K(x; — x,) =0,

and (1.72)
mX, + Kx, + K(x, —~ x;) =0.

In order to find the normal modes, we assume harmonic solutions x; =
A, coswt and x, = A, cos wt, and substitute them into Eq. (1.72) to obtain

2K K
—wPA, + A — — A4, =0,
m m

and

2K K
— Ay + Ay, — — A, =0.
m m

Letting K/m = w3 as before, these equations can be written as
(@* — 208) A, + w54, =0,

and (1.73)
w34 + (@? — 2wd)4, = 0.

The normal mode frequencies are obtained by setting the determinant of the
coefficients equal to zero:

w? — 2w3 }

2

o o 202 = 0=ow*—-40i0’ + 40§ — 0}, (174
0 - 0

from which @? = 2w3 + w3 and w = w,, \/gwo.
Itis easy to deduce the nature of these normal modes. The one with angular
frequency wq(= K/m) describes the two masses moving together in the same

K K

K
(@) 00Q00 00000 ~{m}~QQ0QQ
Xy X,

y K y@
K 11——» X, 21_» X, K

(b)

Fig. 1.20. Oscillating systems consisting of two masses and three springs. In (a) the
masses move in a line; in (b) they move in a plane, so transverse oscillations are possible
as well as longitudinal oscillations.
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direction (x, = x,) so that the center spring is not stretched. Thus, each mass
is acted on by one spring, and the frequency is the same as the one-mass
system in Fig. 1.1. The normal mode of higher frequency \/gcoo consists of the
masses moving in opposite directions (x; = —x,), so that the center spring is
stretched twice as much as either of the end springs.

This result can be obtained in a more formal way by substituting each value
of w into the Eq. (1.73), in turn, and solving for 4, and 4,:

w=wy (@)—2wfA, +wi4,=0 fromwhich A, =4,,
and (1.75)
o =30y (303 —202)A;, + w24, =0 from which A, = —A,.
The normal coordinates are thus written as
Y =Xy + X, and Y, =x; — X,

Now, consider the two-mass system in Fig. 1.20(b), where each mass is free
to move in two directions. We define four coordinates x,, x,, y,, and y,. By
analogy with the one-dimensional oscillator, we can see that there are now
four normal modes: two transverse modes (motion in the y directions) and two
longitudinal modes (motion in the x directions). Each longitudinal mode will
be higher in frequency than the corresponding transverse mode, as in the
one-mass system discussed in Section 1.6.4. Each mode can be described
as motion along a normal coordinate. A system given an initial excitation
along a single normal coordinate (or vibrating in a single normal mode) would
ideally remain in that same normal mode of vibration until it runs out of
energy. We will return to this subject in a later chapter.

1.12. Nonlinear Vibrations of a Simple System

Thus far, we have dealt almost exclusively with linear systems in which the
restoring force is proportional to the displacement. Vibrations of such a
system are harmonic; the equations of motion are linear differential equations.
The sum of any two solutions to a linear differential equation is itself a
solution. Thus, we construct a linear combination of simple solutions to fit the
particular requirements of the problem of interest; this is known as the
principle of superposition.

Nonlinear equations are more difficult to solve. Vibrations of a nonlinear
system can no longer be expected to be simple harmonic motion. The principle
of superposition does not hold; doubling the force does not necessarily double
the response. The response of a nonlinear system may depend on both the
frequency and the amplitude of the excitation.

Let us first consider a simple system with a cubic term in the restoring force:
F, = —kx — bx’. One such system could be the mass-spring system in Section
1.6.6, where b is found to be Ka,/a’ for transverse oscillations. If the amplitude
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is small, the ratio x3/a> is so small that the cubic force term can be ignored;
this is an example of a linear approximation. For increasing amplitude, how-
ever, a point is reached where this is no longer advisable.

The nonlinear equation of motion is

mx = —Kx — bx® — Fycos wt. (1.76)

As a first approximation to x, we select x; = A cos wt and substitute into the
right hand side of Eq. (1.76) to obtain a second approximation

mx, = —KAcoswt — bA3 cos® wt — F, cos wt, 1.77)

where X, is the second approximation to the exact value of x.
Using the identity cos® x = 3/4 cos x + 1/4 cos 3x gives

3bA®> F bA3
X, = —(ﬁ + ba + —3) cos wt — ——cos 3wt. (1.78)
m 4m

m 4m
Integration of Eq. (1.78) gives
( KA  3bA3 F, 3
x2 =

bA
- + - + mw2> cos wt + §6m—wicos 3wt. (1.79)

This process of successive approximation, sometimes called Duffing’s method,
works well if b, 4, and F, are sufficiently small. Note that the term bx? in the
force is responsible for the generation of a third harmonic (cos 3wt term in the
expression for x,).

If we equate the cos wt term in Eq. (1.79) to A cos wt, which was our first
approximation for x, we obtain

K 3bA* F,

Aw®* =—A+ +—
m 4m m
or (1.80)
4m K F
AA=—(?——= -2,
3b <a) m mA)

The relationship of amplitude to frequency (for a given driving force F,) from
Eq. (1.80) is shown in Fig. 1.21. Note that the curve is double valued for a
certain range of frequency. The dotted curve, obtained by setting F, = 0 in
Eq. (1.80), describes free oscillations of the system.

When b is positive, the effective spring constant increases with amplitude;
we call this a hardening spring system. In a hardening spring system, the
free-oscillation frequency increases with amplitude. When b is negative, the
effective spring constant and the frequency decrease with increasing ampli-
tude; this is called a softening spring system. Response curves for softening
and hardening spring systems are shown in Fig. 1.22. Damping has been added
in order to limit the amplitude.

Many other types of nonlinear oscillators exist in physics, and their equa-
tions of motion are, in general, more difficult to solve than the one we have
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A

K/m w?

Fig. 1.21. Amplitude versus frequency for a nonlinear oscillating system. The dashed
curve represents free oscillations.

briefly discussed. In an oscillator with several normal modes (and normal
coordinates ¥, ¥,, ..., ¥;), the spring constant K; used in the equation
describing the normal mode may include a function of other normal co-
ordinates: K; = K° + K'(y;). In general, this leads to coupling between the
normal modes at a finite amplitude of oscillation. Forces resulting from this
nonlinear coupling may be added to the driving force in the equation of
motion:

map; + Ry, + K, = f(t) + 3 F;(¥). (1.81)

In musical instruments, we encounter quite a number of cases where the
forcing function f(t) depends upon the vibration amplitude of the system being
driven. The force between a violin bow and string, for example, depends upon
their relative velocities, and the air flow through a clarinet reed depends upon
the pressure difference across it. Nonlinearities of these types, however, are
quite different from the nonlinear vibrations of simple systems discussed in
this section.

~

(@) (b) (©

Fig. 1.22. (a) Response curves for oscillating system with softening spring behavior
at small and large amplitudes. (b) Response curve for hardening spring behavior.
(¢) Response curve illustrating amplitude jumps at certain frequencies that lead to
hysteresis.
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APPENDIX
A.1. Alternative Ways of Expressing Harmonic Motion

We have written the solutions to the equation X + w}x = 0 in three ways:

x = Acos(wyt + 9), (1.2)
x = Bcoswgyt + Csinwgt, (1.3)
and o
x = Re(4e’), (Al1.1)
where -
A= Ae’ = Acos¢ + jAsing. (A1.2)

In order to establish a relationship between these constants, we can expand
the cosine in Eq. (1.2):

x = Acos¢coswyt — Asin g sinwyt. (A1.3)
Comparison with Eq. (1.3) gives the relationships
B = Acos ¢,
C = —Asing,

and (Al1.4)
¢ = arctan(— C/B).

Comparing Eq. (1.3) with Eq. (A1.2), it is clear that
Re(4) = Acos¢ = B,

and .
Im(A) = Asing = —C.

Yet, a fourth useful form is obtained by writing x = De” and noting
that this will be a solution to the differential equation when p?> = —} or
p = +iw,. The general solution can then be written as

x = Del®ot 4 D*eioot, (AL.5)

D and D* are complex conjugates, as are e/ and e /*°, of course; thus, the
general solution is real (since any number added to its complex conjugate is
real).

Expanding the exponentials in Eq. (A1.5) gives

x = Dcoswgt + jDsinwyt + D* cos wyt — jD* sin wyt.
Comparison with Eq. (A1.1) gives

D + D* = 2Re(D) = Acos ¢,



30 1. Free and Forced Vibrations of Simple Systems

and
j(O — D*) = —2Im(D) = — Asing. (A1.6)

To summarize, we have four forms of the solution given by Eqgs. (1.2), (1.3),
(A1.1), and (A1.5). Each form includes two arbitrary constants. Although in
Eqgs. (A1.1) and (A1.5) the constants are complex, x is real in each case. In
Eq. (A1.5), the real displacement x is obtained by taking the real part of a
complex displacement x; in Eq. (A1.5), however, the real displacement is
obtained by adding two terms that are complex conjugates.

A.2. Equivalent Electrical Circuit for a Simple Oscillator

Many mechanical systems are mathematically equivalent to corresponding
electrical systems. It is often helpful to represent a mechanical oscillating
system by an equivalent electrical circuit, so that electrical network theory can
be applied. The simple mechanical oscillator in Fig. 1.11 [and in Fig. A1.1(a)],
for example, can be represented by the equivalent electrical circuit in
Fig. A1.1(c). In the two electrical circuits, we identify velocity x with current
i, displacement x with charge g, and force f{t) with voltage v(t). Mass m is
then analogous to inductance L and stiffness to reciprocal capacitance 1/C;
resistance R appears in both circuits.
The mechanical and electrical impedances are

Z. =R+ jX,, = R + jlwm — K/w), (A1.7a)

and
Z,=R + jX.=R + j(wL — 1/wC). (A1.7b)

The resonance frequencies are

| VK | |€
I - .tﬂj |
X —»
m V@)
R R
mx + RX + Kx = f{(t) Ldi /\Rr\/v\q/v
xt l+E=V(t)

(@) (b) ©

Fig. Al.L (a) A simple mechanical oscillator. (b) Its equivalent electrical circuit. (c)
Circuit of electrical analogs.
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K
0, T
— = [0 K
R —>x m
g
R
()
®)
3 - 1

1/K
m

(©

K R
Fosion{m-L—e—st0 S0 R
[ ud =
Xm x
(d

Fig. A1.2. Mechanical oscillating systems and their equivalent electrical circuits.

and (A1.8)

1

Jo= e

The oscillator in Fig. Al.1(a) is represented by a series circuit, because all
the elements experience the same displacement x. If the force were applied to
the end of the spring opposite the mass, as in Fig. A1.2(a), the system would
be represented by the parallel circuit shown in Fig. A1.2(b). Similarly, the
system in Fig. A1.2(c) has the equivalent circuit shown in Fig. A1.2(d).

The reciprocal of electrical impedance is electrical admittance. In mechani-
cal systems, the reciprocal of impedance is calied mechanical admittance or
mobility. Mobility Y is velocity divided by force.

Note that the oscillating system in Fig. A1.2(a) is represented by a circuit
[Fig. A1.2(b)] in which the two reactive elements (1/K and m) are in parallel.

Velocity

Jo \/ifo

Frequency

Fig. AL.3. Frequency response of the oscillating system shown in Fig. A1.2(a) as
represented by the equivalent circuit in Fig, A1.2(b).
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At the natural frequency w,, X has a minimum rather than a maximum value
(although the velocity of the mass X,, does not). This behavior is called an
antiresonance rather than a resonance. At an antiresonance, the driving point
impedance reaches its maximum value and the admittance (mobility) reaches
a minimum.

References

Arnold, T.W,, and Case, W. (1982). Nonlinear effects in a simple mechanical system.
Am. J. Phys. 50, 220.

Beyer, R.T. (1974). “Nonlinear Acoustics” (Naval Sea Systems Command), Chapter 2.

Crawford, F.S. Jr. (1965). “Waves.” Berkeley Physics, Vol. 3, Chapter 1. McGraw-Hill,
New York.

Fletcher, N.H. (1982). Transient response and the musical characteristics of bowed-
string instruments. Proc. Wollongong Coop. Workshop on the Acoustics of Stringed
Instruments (A. Segal, ed.). University of Wollongong, Australia.

Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1982). “Fundamentals of
Acoustics,” 3rd ed., Chapter 1. Wiley, New York.

Lee, E.W. (1960). Non-linear vibrations. Contemp. Phys. 2, 143.

Main, 1.G. (1978). “Vibrations and Waves in Physics.” Cambridge Univ. Press, London
and New York.

Morse, P.M. (1948). “Vibration and Sound,” 2nd ed., Chapter 2. McGraw-Hill,
New York. Reprinted 1976, Acoustical Soc. Am., Woodbury, New York.

Rossing, T.D. (1982). “The Science of Sound,” Addison-Wesley, Reading, Mas-
sachusetts.

Skudrzyk, E. (1968). “Simple and Complex Vibrating Systems,” Chapters 1 and 2.
Pennsylvania State University, University Park, Pennsylvania.



CHAPTER 2

Continuous Systems in One Dimension:
Strings and Bars

In the last chapter, we considered vibrating systems consisting of one or more
masses, springs, and dampers. In this chapter, we will focus on systems in
which these elements are distributed continuously throughout the system
rather than appearing as discrete elements. We begin with a system composed
of several discrete elements, then allow the number of elements to grow larger,
eventually leading to a continuum.

2.1. Linear Array of Oscillators

The oscillating system with two masses in Fig. 1.20 was shown to have
two transverse vibrational modes and two longitudinal modes. In both the
longitudinal and transverse pairs, there is a mode of low frequency in which
the masses move in the same direction and a mode of higher frequency in
which they move in opposite directions.

The normal modes of a three-mass oscillator are shown in Fig. 2.1. The
masses are constrained to move in a plane, and so there are six normal modes
of vibration, three longitudinal and three transverse. Each longitudinal mode
will be higher in frequency than the corresponding transverse mode. If the
masses were free to move in three dimensions, there would be 3 x 3 =9
normal modes, three longitudinal and six transverse.

Increasing the number of masses and springs in our linear array increases
the number of normal modes. Each new mass adds one longitudinal mode and
(provided the masses move in a plane) one transverse mode. The modes of
transverse vibration for mass/spring systems with N = 1 to 24 masses are
shown in Fig. 2.2; note that as the number of masses increases, the system
takes on a wavelike appearance. A similar diagram could be drawn for the
longitudinal modes.

As the number of masses in our linear system increases, we take less and
less notice of the individual elements, and our system begins to resemble a
vibrating string with mass distributed uniformly along its length. Presumably,
we could describe the vibrations of a vibrating string by writing N equations
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Fig. 2.1. Normal modes of a three—mass oscillator. Transverse mode (a) has the lowest
frequency and longitudinal mode (f) the highest.

Mode 1 2 3 4 5...24

N=1
N=2 " /\/
N=3 PN AL AN

N=4|/"\ "\/ /\_/\ ’V\/
N=s P50 Py acen A AAA

—uPmN Ny N\ M

Fig. 2.2. Modes of transverse vibration for mass/spring systems with different numbers
of masses. A system with N masses has N modes.
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of motion for N equally spaced masses and letting N go to infinity, but it is
much simpler to consider the shape of the string as a whole.

2.2. Transverse Wave Equation for a String

The study of vibrating strings has a long history. Pythagoras is said to have
observed how the division of a stretched string into two segments gave
pleasing sounds when the lengths of these two segments had a simple ratio
(2:1,3:1, 3:2, etc.). These are examples of normal modes of a string fixed
at its ends. Closer examination of the motion of a string reveals that the
normal modes depend upon the mass of the string, its length, the tension
applied, and the end conditions.

Consider a uniform string (Fig. 2.3) with linear density u (kg/m) stretched
to a tension T (newtons). The net force dF, restoring segments ds to its
equilibrium position, is the difference between the y components of T at the
two ends of the segment:

dF, = (T sin6), 4, — (T sin 0),.
of (x)

Applying the Taylor’s series expansion f(x + dx) = f(x) + a—dx +---to
T sin 0 and keeping first-order terms gives X

d(T sin 6)
——dx
0x

71— (Tsing), = 2L 40 2y

dF, = [(T sin0), + ax

K e = e - - ——— — -

Fig. 2.3. Segments of a string with tension T.
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For small displacement y, sin 8 can be replaced by tan 6, which is also dy/dx:

2
AT 0y/0%) 4 79V 4y 2.2)

dF, = X 0x?

The mass of the segment ds is uds, so Newton’s second law of motion becomes

0%y 0%y

Since dy is small, ds = dx. Also, we write ¢ = T/u and obtain
’y T aty 0%

¢y _2 9V _ 20 24
o2 u ox? e @4

This is the well-known equation for transverse waves in a vibrating string.

2.3. General Solution of the Wave Equation: Traveling Waves

The general solution of Eq. (2.4) can be written in a form credited to
d’Alembert (1717-1783):

y = filet — x) + fi(ct + x). 2.5)

The function f; (ct — x) represents a wave traveling to the right with a velocity

c; similarly, f,(ct + x) represents a wave traveling to the left with the same

velocity. The nature of functions f, and f, is arbitrary; they could be sinusoidal

or they could describe impulsive waves, for example. In fact, the two in-

dependent functions f; and f, can be chosen so that their sum represents any

desired initial displacement y(x,0) and velocity dy/dt = y(x, 0).
Differentiation of Eq. (2.5) by x and ¢ leads to

0y/ox = —f1 + %
and (2.6)

oy/ot = c(fy + f2)

where f] and f, are derivatives of the two functions with respect to their
arguments.

2.4. Reflection at Fixed and Free Ends

In order to understand wave reflection at the ends of a string, we first consider
what happens to a single pulse at fixed and free ends of a string, as indicated
in Fig. 2.4. By fixed end, we understand that the string is securely fastened,
but free end requires some explanation. We need to maintain tension in the
x direction, but we want the string to move freely in the y direction. Thus, we
imagine it is fastened to a massless ring that slides up and down on a rod
without friction.
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(b)

Fig. 2.4. Reflection of a pulse at a fixed end (a) and at a free end (b). In (a) the appropriate
boundary condition can be met by having an imaginary pulse of opposite phase meet
the real pulse at x = 0. In (b) the imaginary pulse has the same phase.

1. At a fixed end, y = 0. Assuming that the string is fixed at x =0, the
general solution [Eq. (2.5)] becomes

y=0= filct = 0) + fr(ct + 0),
from which 2.7
filet) = —fr(ct).
Thus, an up pulse reflects as a down pulse, as shown in Fig. 2.4(a).

2. At a frree end, dy/0x = 0 because no transverse force is possible.
Thus, from Eq. (2.6),
Ji(et) = fa(e). (2.8a)

Integration of Eq. (2.8a) gives
fi(et) = fy(ct). (2.8b)

An up pulse now reflects as an up pulse, as shown in Fig. 2.4(b).

Of couse, many other end conditions are possible. For example, the string
may be attached to a string with a different linear density , to a spring, or to
a mass. A particularly important case is that of an end support that is nearly
fixed but yields slightly, such as the bridge of a piano or violin.

2.5. Simple Harmonic Solutions to the Wave Equation

In order to see how simple harmonic motions are propagated along a string,
we let the functions f; and f, in the general solution [Eq. (2.5)] each consist
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of a sine term and a cosine term
y(x,t) = Asing(ct - X) + Bcos%)—(ct —x)+ Csin%(ct + x)
+ Dcos%(ct + x) = Asin(wt — kx) + Bcos(wt — kx)

+ Csin(wt + kx) + D cos(wt + kx), (2.9)

where k = w/c = 2n/A is known as the wave number.
Alternatively, we could have used the complex notation

Flx,t) = AeH@™k) 4 Beltwrthn, (2.10)

where §, A, and B are complex. In this case, y(x, ) = Re ji(x, ).

2.6. Standing Waves

Consider a string of length L fixed at x = 0 and x = L. The first condition
¥(0,t) = 0 requires that A = —C and B = —D in Eq. (2.9), so

y + A[sin(wt — kx) — sin(wt + kx)] + B[cos(wt — kx) — cos(wt + kx)].
(2.11)

Using the sum and difference formulas, sin(x + y) = sinxcos y + cos xsin y
and cos(x + y) = cosxcos y F sinxsin y,

y = 2Asinkx cos wt — 2B sin kx sin wt
= 2[ A cos wt — Bsin wt] sin kx. (2.12)

The second condition y(L,t) = 0 requires that sinkL = 0 or wL/c = nx.
This restricts w to values w, = nnc/L or f, = n(c/2L). Thus, the string has
normal modes of vibration:

Vu(x, ) = (4, sin w,t + B,cos w,t)sin a)zx . (2.13)

These modes are harmonic, because each f, is n times f; = c¢/2L.
The general solution of a vibrating string with fixed ends can be written as
a sum of the normal modes:

y =) (A,sinw,t + B,cos w,t)sink,x, (2.14)

and the amplitude of the nth mode is C, = ./A2 + BZ. At any point
Y, 8) =3 yalx, ).

Alternatively, the general solution could be written as
y =) C,sin(w,t + 4,)sink,x, (2.15)

where C, is the amplitude of the nth mode and ¢, is its phase.
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2.7. Energy of a Vibrating String

When a string vibrates in one of its normal modes, the kinetic and potential
energies alternately take on their maximum value, which is equal to the total
energy, just as in the simple mass-spring system discussed in Section 1.3. Thus,
the energy of a mode can be calculated by considering either the kinetic or the
potential energy. The maximum kinetic energy of a segment vibrating in its
nth mode is

_ o
2

dE, (A2 + B2) sinznnTxdx.

Integrating over the entire length gives
w?puL
4

_ il

E,
4

(42 + BY) = C2. (2.16)
The potential and kinetic energies of each mode have a time average value
that is E,/2. The total energy of the string can be found by summing up the

energy in each normal mode:
E=YE,

2.8. Plucked String: Time and Frequency Analyses

When a string is excited by bowing, plucking, or striking, the resulting vibration
can be considered to be a combination of several modes of vibration. For
example, if the string is plucked at its center, the resulting vibration will consist
of the fundamental plus the odd-numbered harmonics. Fig. 2.5 illustrates how
the modes associated with the odd-numbered harmonics, when each is present
in the right proportion, add up at one instant in time to give the initial shape
of the center-plucked string. Modes 3, 7, 11, etc., must be opposite in phase
from modes, 1, 5, and 9 in order to give maximum displacement at the center,
as shown at the top. Finding the normal mode spectrum of a string given its
initial displacement calls for frequency analysis or Fourier analysis.

/\ Relative
Harmonic amplitude Phase

Spectrum

/_._/_::-l 1 1 + 3 pe

2 0 =5
™, 3 4 - §

4 0 -
N~ AN S FO | 1 I I

6 0 N 3 i
= TING - 7 ol - Frequency

Fig. 2.5. Frequency analysis of a string plucked at its center. Odd-numbered modes of
vibration add up in appropriate amplitude and phase to give the shape of the string.
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Fig. 2.6. Time analysis of the motion of a string plucked at its midpoint through one
half cycle. Motion can be thought of as due to two pulses traveling in opposite
directions.

Since all the modes shown in Fig. 2.5 have different frequencies of vibration,
they quickly get out of phase, and the shape of the string changes rapidly after
plucking. The shape of the string at each moment can be obtained by adding
the normal modes at that particular time, but it is more difficult to do so
because each of the modes will be at a different point in its cycle. The resolution
of the string motion into two pulses that propagate in opposite directions on
the string, which we might call time analysis, is illustrated in Fig. 2.6. If the
string is plucked at a point other than its center, the spectrum or recipe of the
constituent modes is different, of course. For example, if the string is plucked
1 of the distance from one end, the spectrum of mode amplitudes shown in
Fig. 2.7 is obtained. Note that the 5th harmonic is missing. Plucking the string
1 of the distance from the end suppresses the 4th harmonic, etc. (In Fig. 2.5,
plucking it at 1 the distance eliminated the 2nd harmonic as well as other
even-numbered ones.)

A time analysis of the string plucked at £ of its length is shown in Fig. 2.8.
A bend racing back and forth within a parallelogram boundary can be viewed
as the resultant of two pulses (dashed lines) traveling in opposite directions.
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Fig. 2.7. Spectrum of a string plucked one-fifth of the distance from one end.
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Fig. 2.8. Time analysis through one half cycle of the motion of a string plucked one-fifth
of the distance from one end. The motion can be thought of as due to two pulses
[representing the two terms in Eq. (2.5)] moving in opposite directions (dashed curves).
The resultant motion consists of two bends, one moving clockwise and the other
counterclockwise around a parallelogram. The normal force on the end support, as a
function of time, is shown at the bottom.
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Each of these pulses can be described by one term in d’Alembert’s solution
[Eq. (2.5)].

Each of the normal modes described in Eq. (2.13) has two coefficients A4,
and B, whose values depend upon the initial excitation of the string. These
coefficients can be determined by Fourier analysis. Multiplying each side of
Eq. (2.14) and its time derivative by sinmnx/L and integrating from 0 to L
gives the following formulae for the Fourier coefficients:

L
A= L y(x,O)sinffodx, @.17)
2 L
B, = fL y(x,0)sin"%dx. 2.18)

Using these formulae, we can calculate the Fourier coefficients for the string
of length L plucked with amplitude h at one-fifth of its length, as shown in the
time analysis in Fig. 2.8. The initial conditions are

y(x,0) =0,

5h
= < x>
y(x,0) 3 X, 0<xz=LJs, 2.19)

Sh x
=—(1 — — < > L.
71— LSsxzl

Using the first condition in Eq. (2.17) gives A, = 0. Using the second condition
in Eq. (2.18) gives

2 (L5 5k nmx 2 (L x nmx
B==| Zxsin™ax+2| (1-2)sin™%4
" L_L Lxsm L x+LJL/5< L>Sm L x

25h . nm
= Wsm?. (220)
The individual B,’s become: B, = 0.7444h, B, = 0.3011h, B, = 0.1338h,
B, = 0.0465h, B; = 0, B = —0.0207h, etc. Figure 2.7 shows 20 log|B,| for
n = 0 to 15. Note that B, = 0 for n = 5, 10, 15, etc., which is the signature of

a string plucked at 1/5 of its length.

2.9. Struck String

In considering the plucked string, we assumed an initial displacement (varying
from O to 2h along the length of the string) but a zero initial velocity (every-
where) at t = 0. Now, we consider the opposite set of conditions: zero initial
displacement with a specified initial velocity. This velocity could be imparted
by a hard hammer that strikes the string at ¢t = 0, for example. Of course, a
blow by a real hammer does not instantly impart a velocity to the string; in
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fact, the nature of the initial velocity depends in a complicated way on a
number of factors, such as the compliance of the hammer. Various models
of hammer—string interaction are discussed in a series of papers by Hall
(1986, 1987a,b).

Suppose that the string is struck by a hard, narrow hammer having a
velocity V. After a short time ¢, a portion of the string with length 2¢t and mass
2uct is set into motion. As this mass increases and becomes comparable to the
hammer mass M, the hammer is slowed down and would eventually be
stopped. With a string of finite length, however, reflected impulses return while
the hammer still has appreciable velocity, and these reflected impulses interact
with the hammer in a rather complicated way, causing it to be thrown back
from the string.

At the point of contact, the string and hammer together satisfy the equation

%y dy
M—=TA{ = 2.21
ot* <6x ’ (2.21)
while elsewhere the string continues to satisfy Eq. (2.4). The discontinuity in
0 . .
the string slope A <%), according to Eq. (2.21), is responsible for the force

that slows down the hammer. Equation (2.21) is satisfied at the contact point
by a velocity
v(t) = Ve ', (2.22)

where 1 = Mc/2T may be termed the deceleration time (Hall, 1986). The
corresponding displacement is

y(@t) = V(1 — e ). (2.23)

The displacement at the contact point approaches VMc¢/2T, and the velocity
approaches zero. If the string were very long, the displacement and velocity
elsewhere on the string could be found by substituting t — [(x — x,)/c] for t
in Egs. (2.24) and (2.25), as shown in Fig. 2.9.

Only when the string is very long or the hammer is very light does the
hammer stop, as in Fig. 2.9. In a string of finite length, reflected pulses return
from both ends of the strings and interact with the moving hammer in a fairly
complicated way. Eventually, the hammer is thrown clear of the string, and
the string vibrates freely in its normal modes.

In general, the harmonic amplitudes in the vibration spectrum of a struck
string fall off less rapidly with frequency than those of the plucked strings
shown in Figs. 2.5 and 2.7. For a very light hammer whose mass M is much
less than the mass of the string M,, the spectrum dips to zero for harmonic
numbers that are multiples of 1/8 (where the string is struck at a fraction j
of its length), but otherwise does not fall off with frequency, as shown in
Fig. 2.10(a). (The spectrum of sound radiated by a piano, which may be
quite different from the vibration spectrum of the string, will be discussed in
Chapter 12).
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¢
I
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Fig. 2.9. Displacement and velocity of a long string at successive times after being struck
by a hard narrow hammer having a velocity V.

If the hammer mass is small but not negligible compared to the mass of the
string, the spectrum envelope falls off as 1/n (6 dB/octave) above a mode
number given by n,, = 0.73 M,/M, as shown in Fig. 2.10(b). Note that for
high harmonic (mode) numbers, there are missing modes between those in
Fig. 2.10(a).

The effect of hammer compliance and application to pianos will be discussed
in Chapter 12.
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Fig. 2.10. Spectrum envelopes for a string struck at a fraction f of its length: (a) hammer
mass M « string mass M; (b) M = 0.4 SM, (from Hall, 1986).
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2.10. Bowed String

The motion of a bowed string has interested physicists for many years, and
much has been written on the subject. In this chapter, we give only a brief
description of some of the important features; the subject will be discussed
more fully in a later chapter on string instruments.

As the bow is drawn across the string of a violin, the string appears to
vibrate back and forth smoothly between two curved boundaries, much like
a string vibrating in its fundamental mode. However, this appearance of
simplicity is deceiving. Over a hundred years ago, Helmholtz (1877) showed
that the string more nearly forms two straight lines with a sharp bend at the
point of intersection. This bend races around the curved path that we see,
making one round trip each period of the vibration.

To observe the string motion, Helmholtz constructed a vibration micro-
scope, consisting of an eyepiece attached to a tuning fork. This was driven in
sinusoidal motion parallel to the string, and the eyepiece was focused on a
bright-colored spot on the string. When Helmholtz bowed the string, he saw
a Lissajous figure (see Section 1.10). The figure was stationary when the tuning
fork frequency was an integral fraction of the string frequency. Helmholtz
noted that the displacement of the string followed a triangular pattern at
whatever point he observed it, as shown in Fig. 2.11. The velocity waveform
at each point alternates between two values.

Other early work on the subject was published by Krigar—Menzel and
Raps (1891) and by Nobel laureate C.V. Raman (1918). More recent experi-
ments by Schelleng (1973), Mclntyre, et al. (1981), Lawergren (1980), Kondo
and Kubata (1983), and by others have verified these early findings and have
greatly added to our understanding of bowed strings. An excellent discussion
of the bowed string is given by Cremer (1981).

The motion of a bowed string is shown in Fig. 2.12. A time analysis in
Fig. 2.12(A) shows the Helmholtz-type motion of the string; as the bow moves
ahead at a constant speed, the bend races around a curved path. Fig. 2.12(B)
shows the position of the point of contact at successive times; the letters
correspond to the frames in Fig. 2.12(A). Note that there is a single bend in
the bowed string, whereas in the plucked string (Fig. 2.8), we had a double
bend.

I LT

Fig. 2.11. Displacement and velocity of a bowed string at three positions along its
length: (a) at x = L/4, (b) at the center, and (c) at x = 3L/4.
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Midpoint of vibration
Rest-point of string

Displacement

Time

(B)

Fig. 2.12. Motion of a bowed string. (A) Time analysis of the motion, showing the shape
of the string at eight successive times during the cycle. (B) Displacement of the bow
(dashed line) and the string at the point of contact (solid line) at successive times. The
letters correspond to the letters in (A).

The action of the bow on the string is often described as a stick and slip
action. The bow drags the string along until the bend arrives [from (a) in
Fig. 2.12(A)] and triggers the slipping action of the string until it is picked up
by the bow once again [frame (c)]. From (c) to (i), the string moves at the speed
of the bow. The velocity of the bend up and down the string is the usual \/ T/p.

The envelope around which the bend races [the dashed curve in Fig.
2.12(A)] is composed of two parabolas with a maximum amplitude that is
proportional, within limits, to the bow velocity. It also increases as the string
is bowed nearer to one end.

The actual string motion may be a superposition of several Helmholtz-type
motions. Also, if the bowing point is at an integral fraction of the length, so
that certain harmonics are not excited, the displacement curves take on
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ripples. These and many other details of bowed string motion are treated
elegantly by Cremer (1981).

2.11. Driven String: Impedance

One way to excite a string is to apply a transverse force f(t) to one end. We
first consider an infinite string with tension T and a transverse force f(z) =
Fel® as shown in Fig. 2.13. Since the string is infinitely long and the force is
applied at the left end, the solution consists only of waves moving to the right.

y(x, 1) = Ae"@ T,

where A is a complex constant giving the amplitude and the phase with respect
to the driving force and k = w/c = 2r/A.

Since there is no mass concentrated at x = 0, the driving force should
balance the transverse component of the tension:

F=—Tsin0~ —T@j/ox) x=0. (2.24)
Substitution of f(f) = Fe/® and j(x, {) = Ae/@* gives
Fei®t = jkTAe

or -
A = FJjkT, (2.25)

SO

5 — —JjF J(wt—kx)
F(x, 1) = oT © .
The velocity @i = 07/0t becomes

Fo . Fc .
~ = J(ot—kx) - ](ﬂ)t—kx)‘ 226
i(x,t) T e T e (2.26)
We define the mechanical input impedance Z;, as the ratio of force to velocity
at the driving point, so _
- _Jo
00,0

2.27)

1)

Fig. 2.13. Forces at x = 0 on a string free to move in the y direction.
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In a string of infinite length (or a string terminated so that no reflections
occur), Z,, equals the characteristic impedance Z,, which is a real quantity;
the input impedance is purely resistive in an infinite string.

T
Zy, = =N /Tu = uc. (2.28)
The behavior of a string of finite length is more complicated because 0§/0x
at x = 0 depends upon the reflected wave as well.
Flx, 1) = Aef@ ™) 4 Bel@ =k, (2.29)

Assume that the string is fixed at x = L and driven at x = 0 as before.
Substitution of Eq. (2.29) into Eq. (2.24) gives

Fei® = T(jkA — jkB)e'". (2.30)
The boundary condition at x = L gives
0 = Ae ™ 4+ Be*L, (2.31)
Solving Egs. (2.30) and (2.31) together gives
- FeltL
A=,
2jkT cos kL
and
- Fe —jkL
B,
—2jkT cos kL
from which (2.32)
N _ F sink(L—x)
.0 = kT coskL °
and

_ JoF sink(L — x) .

Jjot
kT  coskL ) (2.33)

i(x,t)

The input impedance at x = 0 is

—jkT
)

Z.. = f(t)/ii(x,t) = cotkL = —jZ,cotkL. (2.34)
This impedance is purely reactive and varies from 0 (kL = =/2, 37/2, etc.) to
+joo (kL = 0, 7, etc.). These are the resonances and antiresonances of the
string, respectively.

2.12. Motion of the End Supports

In Section 2.6, we considered the string to be terminated by two rigid end
supports (y =0 at x = 0 and x = L). We will now consider what happens
when one of the end supports is not completely rigid.
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We can generally describe the termination by writing its complex im-
pedance. If the imaginary part of the complex impedance is masslike, the
resonances of the string will be raised slightly above those given by Eq. (2.13);
if it is springlike, on the other hand, the resonance frequencies will be lowered.
The real part of the complex impedance is indicative of the rate of energy
transfer from the spring to the support (the bridge and soundboard of a guitar,
for example).

Let us consider a string fixed at x = 0 and terminated at x = L by a support
that can be characterized by a mass m. The transverse force exerted on the
mass by the string is — T(0y/0x),-.. By Newton’s second law,

— T(95/0x), = m(0*5/0t%),. (2.35)
Applying the boundary condition at x = 0 to Eq. (2.11) gives
0 = Ae’™* + Be’™, (2.36)
so A = — B, and the harmonic solution becomes
J(x, 1) = A(—e™ + ek*)ei® = A'sin kxe/*". (2.37)

Substituting Eq. (2.37) into Eq. (2.35) gives
—kTAcoskL e = —@w*mA sin kL e/,

and (2.38)

2 k2 k
w'm ym_m=ﬁkL’

(kL =2 _
0 KT - T u M

where M = uL is the total mass of the string. The transcendental equation,
Eq. (2.38), can be solved graphically, as shown in Fig. 2.14, for two values of
m/M. As m »> M, the roots approach the values k = n= for the string fixed at
x = L as well as at x = 0. Note that the normal mode frequencies obtained

| m/M =2
cotkL

kL
I

|
|
|
I
|
I
I
|
|
|
I
|
l
|
|

Fig. 2.14. Graphical solution of cot kL = (m/M)kL.
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from Eq. (2.38) are slightly compressed from the harmonic relationship; the
frequency of the lowest mode is raised slightly more than the second.

2.13. Damping

Damping of vibrating strings can generally be attributed to three different loss
mechanisms: (1) air damping, (2) internal damping, and (3) transfer of energy
to other vibrating systems. The damping due to these mechanisms will vary
with frequency, and their contributions will be comparable in size in many
systems. (Fletcher, 1976, 1977).

2.13.1. Air Damping

A vibrating string is not a good sound radiator. The reason for this is that
the string acts as a dipole source, producing a compression in front and a
rarefaction behind as it moves; its radius is so small that these effectively cancel
each other. This does not mean, however, that the string has little interaction
with the air. Viscous flow of air around the moving string may be the major
cause of damping of its vibrations under some conditions.

The complex problem of viscous drag on a vibrating string was solved
long ago by Stokes, who showed that the force on the string has two com-
ponents. One is an additional masslike load that lowers the mode frequencies
very slightly; the other produces exponential decay of amplitude.

Over a range of wire diameters and frequencies encountered in musical
instruments, the retarding force experienced by a cylinder of length L and
radius r moving with a velocity v and frequency f is

21
F. = 2n%p, fon’L (% n 2M2>, (2.39)

where M = (r/2)\/2nf/n,, p.(=1.2 kg/m3)is the density of air, and n,(= 1.5 x
1075 m?/s) is the kinematic viscosity. For typical harpsichord strings, M is in
the range of 0.3 to 1.0.

Since F, oc v, the rate of loss varies as v2, which is proportional to kinetic
energy. Thus, for oscillation at a single frequency, the amplitude should decay
exponentially with a decay time constant 7.

P 2M?
2mp.f 22M + 1

(2.40)

1

The decay time is proportional to the wire density, but depends in a more
complicated way on wire radius and frequency. t, oc pr? at low frequency and
T, OC ,or/\/j7 at high frequency.
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2.13.2. Internal Damping

String material has so far been characterized by its radius, its density, and its
Young’s modulus, but more can be said than this. All real materials show an
elastic behavior in which, when a stress is applied, an instantaneous strain
occurs and then, over some characteristic time , the strain increases slightly.
This second elongation may be moderately large or extremely small, and the
time T may be anything from less than a millisecond to many seconds. In
viscoelastic materials, the second elongation increases slowly but without
limit.
Such behavior can be represented by making the Young’s modulus for the
material complex:
E=E, +iE,. (2.41)

According to a relaxation formula attributable to Debye, E, has a peak at
the relaxation frequency w = 1/1. Equation (2.41) can, however, be used in the
more general case where many relaxation times contribute, both E, and E,
varying with frequency. This behavior is simple to understand, E, being
contributed by normal elastic bond distortions and E, by relaxation processes
such as dislocation motion or the movement of kinks in polymer chains.
Typically E,/E; may be less than 107# in hard crystals, rather larger in
metals, and perhaps as large as 107! in some polymer materials, though in
such cases it may also depend on temperature. One elastic constant is really
inadequate to describe even isotropic materials, but we shall neglect this added
complication here.

By substituting Eq. (2.41) into the equation of motion, the decay time for
this internal damping can be found to be

1 E,
- nf E;

Clearly, internal damping is a material property independent of string
radius, length, or tension. It is generally negligible for solid metal strings but
may become the prime damping mechanism for gut or nylon strings or, more
particularly, for strings of nylon overspun with metal. The decay time due to

this mechanism is clearly shortest at high frequencies if, as is often the case,
E, is nearly independent of frequency.

T (2.42)

2.13.3. Energy Loss Through the Supports

In considering energy transfer to a movable support (and through it to
other vibrating systems), it is easier to consider admittance than impedance.
Admittance (the reciprocal of impedance) is the ratio of velocity to force, and
its real part G is called conductance.

For a given string mode n, the velocity imparted to the support can be

written
v, = aGF,, (2.43)
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Int

In f,

Fig. 2.15. Schematic behavior of decay times 7; caused by various mechanisms as
functions of the fundamental frequency f; of the string, which is assumed to be varied
by changing only the string length. 7, is determined by air damping, 7, by internal
damping, and 75 by loss to the support. Arrows indicate the directions in which the
curves would be shifted by an increase in the string radius r, the density tension T, and
the imaginary part of the Young’s modulus E,, and by the mechanical conductivity G
of the bridge (Fletcher, 1976).

where F, is the vertical component of the force and « is a constant. An analysis
of the energy loss process again leads to an exponential energy decay with a
time constant given by (Fletcher, 1977)

13 = (BuLf*G)™. (2.44)

When all three mechanisms contribute to damping, the decay time 7 is
obtained by adding reciprocals:

1/t = 1ty + 1)1, + U, (2.45)

This relationship is shown schematically in Fig. 2.15 on the assumption
that G and E, are independent of frequency. The curves show the various
contributions to the decay time as functions of frequency on the assumption
that we are dealing with a single string whose frequency is raised by reducing
its length. Also indicated are the directions in which the various curves would
move in response to increases in various string parameters. The curve for the
resultant decay time is a smoothed lower envelope to the individual decay time
curves.

In most musical instruments, the rate at which energy is transferred from
the string to the bridge and soundboard is quite small. For thin metal strings,
the decay time is determined mostly by air viscosity, and so the decay time for
the upper partials varies as 1/\/;‘. For instruments with gut or nylon strings,
internal damping becomes dominant for most modes, and the decay time for
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the upper partials varies as 1/f. Such strings therefore have a much less
brilliant sound than do metal strings. If a finger tip is used to stop the string
or if the bridge is so light that end losses predominate, the decay time for the
upper partials varies more nearly as 1/f2.

2.14. Longitudinal Vibrations of a String or Thin Bar

Longitudinal waves in a string are much less common than transverse waves.
Nevertheless, they do occur, and they may give rise to standing waves or
longitudinal modes of vibration. Unlike transverse waves, their velocity (and
hence their frequency) does not change with tension (except for possible
changes in the physical properties of the string). Longitudinal waves in a thin
bar travel at the same velocity as do longitudinal waves in a string of the same
material.

When a bar is strained, elastic forces are produced. Consider a short
segment of length dx of a bar having a cross section area S, as shown in
Fig. 2.16. The plane at x moves a distance w to the right while the plane at
x + dx moves a distance w + dw. The stress is given by f/S and the strain
(change in length per unit of original length) by dw/0x. If E is Young’s
modulus, Hooke’s law can be written

fow
§=E . (2.46)
Expanding f + df in a Taylor’s series, and differentiating Eq. (2.46) gives
2
df = f(x + dx) — f(x) = —f—dx - SEg 2 dx. 2.47)

The mass segment under consideration is pSdx, and thus, the equation of
motion becomes

0w 0w
pSdx— Freae Sng—zdx,
(2.48)
?*w Edw 0w
ar  p ox: Lo
This is a one-dimensional wave equation for waves with a velocity ¢; = \/E/p.

—_—ftdf

I
|
{
i |
A i
x X + dx

Fig. 2.16. Forces and strains in a short segment of a bar (or string).
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The general solution of Eq. (2.48) has the same form as the equation for
transverse waves in a string:

w = filcpt — x) + frlcpt + x). (2.49)

The normal modes of vibration depend upon the end conditions. If both ends
are fixed, or if both ends are free, the mode frequencies are given by

ﬁ,:ng—z n=1,23..., (2.50)

and for a bar fixed at one end and free at the other,

‘L
=m-— =135,.... 51
Ju=m aL m=1,3,5, (2.51)
If the bar (or string) is terminated by a movable support, the modal frequencies
are found by methods similar to that described in Section 2.12.

2.15. Bending Waves in a Bar

A bar or rod is capable of transverse vibrations in somewhat the same manner
as a string. The dependence of the frequency on tension is more complicated
than it is in a string, however. In fact, a bar vibrates quite nicely under zero
tension, the elastic forces within the bar supplying the necessary restoring force
in this case.

When a bar is bent, the outer part is stretched and the inner part is
compressed. Somewhere in between is a neutral axis whose length remains
unchanged, as shown in Fig. 2.17. A filament located at a distance z below the
neutral axis is compressed by an amount d¢. The strain is zd¢/dx, and the
amount of force required to produce the strain is

d¢

EdSz—-, (2.52)
dx

where dS is the cross sectional area of the filament and E is Young’s modulus.

le F(x + dx)
;7/ M, Q/
X
T 4 R-) I )

F(x) Yt
(@) (b)

neutral axis
dF -»{

Fig. 2.17. (a) Bending strains in a bar. (b) Bending moments and shear forces in a bar.



2.15. Bending Waves in a Bar 55
K =h/ /12

K =a/2

K =(/a® + b¥))2

Fig. 2.18. Radii of gyration for some simple shapes.

The moment of this force about the center line is dM = [E dS z(d¢/dx)] z,
and so the total moment to compress all the filaments is

d¢
dx

It is customary to define a constant K called the radius of gyration of the cross
section such that

[ dM = E=" | 2245. (2.53)

o

1
K? = S fzz ds, (2.54)
where S = | dS is the total cross section. The radius of gyration for a few

familiar shapes is shown in Fig. 2.18. The bending moment is thus

d¢ %y

M= E--SK? = —ESK*7, (2.55)

. %y
since d¢ =~ — il dx for small d¢.

The bending moment is not the same for every part of the bar. In order to
keep the bar in equilibrium, there must be a shearing force F with a moment
F dx, as shown in Fig. 2.17(b).

Fdx=M +dM)—- M = dM,

and
oM 3y
F=—=—ESK?>——;
0x ox3
But the shearing force F is not constant, either; the net force dF = (0F/dx)dx
produces an acceleration perpendicular to the axis of the bar. The equation
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of motion is
oF 0?
(—) dx = (pS dx)—2X

ox ot
o*y 0%y
—ESK? = = pS— 2.56
SK e = PS5 (2:36)
2y EK? d%
ot p ox*t

This is a fourth-order differential equation. It is not possible to construct
a general solution from transverse waves traveling with velocity v, as in
the longitudinal case. The velocity of transverse waves is, in fact, quite
dependent on frequency; that is, the bar has dispersion.

We write the complex displacement as j = Y(x)e/;

2%y S oty d*Y -  EK?d*Y
‘é;z‘: —(DzYeJ ' and W=W J t, SO —w2Y= —TW
or _
a*y po? . ot -
o B T Y
where

v? = wK./E/p = wKc;.
Note that the wave velocity v(f) is proportional to \/5
We now write Y(x) = Ae”™ and substitute

w4
y4Ae7x = ‘vT Ae‘r‘x’

2
()
2 — +_’
Y T2
or (2.57)
(9] Ko
Y= t+— or +j—.
v v

The complete solution is a sum of four terms, each corresponding to one of
the roots of Eq. (2.57):

P(x, 1) = e/(Ae®*” + Be™ @ 4 CeloIv + Do ioxlv). (2.58)

Since e** = coshx + sinhx and e*”* =cosx + jsinx, another way of
writing Eq. (2.58) is

) = cos(wt + ¢) I:A cosha;—x + Bsinh™X 4 CcosX 4 D sin%}, (2.59)
v v v

where A, B, C, and D are now real constants (Kinsler et al., 1982).
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Since the equation of motion is a fourth-order equation, we have four
arbitrary constants. We thus need four boundary conditions (two at each end)
to determine them.

2.16. Bars with Fixed and Free Ends

We will consider three different end conditions for a bar: free, supported
(hinged), and clamped. For each of these, we can write a pair of boundary
conditions. At a free end, there is no torque and no shearing force, so the
second and third derivatives are both zero, as given in Fig. 2.19. At a simply
supported (or hinged) end, there is no displacement and no torque, so y and
its second derivative are zero. At a clamped end, y and its first derivative are
Zero.

1. Example I: A bar of length L free at both ends. The boundary conditions
at x = 0 become

227)2) =0 = cos(wt + @) (%>Z(A - Q0),
and
3 3
8_); =0 = cos(wt + ¢) (Q) (B — D),
ox v

from which 4 = C and B = D, so the general solution [Eq. (2.59)] becomes

(%, 1) = cos(t + ¢) [A ( cosh X cosﬂ) + B<sinh95 + sinﬂﬂ.
v D v U

(2.60)

At x = L, the boundary conditions become

0? w)? wL oL
—)2) =0 = cos(wt + ¢) (—) A| cosh— — cos—
Ox v v v
., WL . oL
+ B| sinh— — sin—} |,
v v
Freeend [ 0%yjox? =0,83%y/ox> =0
Supported end );_ y=0,8%y/6x* =0

Clamped end %: y=0,0y/0x=0

Fig. 2.19. Three different end conditions for a bar.
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ik )3 ., oL . oL
—)31 =0 = cos(wt + ¢) <—> I:A (smhA + sin —~>
0x v \ v v
oL oL
+ B<cosh~‘ — cos—)].
v v

These equations can have a common solution only for certain values of w.
Setting the expressions in brackets equal to zero, and dividing the first by the
second gives

coshwL/v —coswL/v _ sinhwL/v — sinwL/v
sinhwL/v + sinoL/v ~ coshwL/v + sinwL/v’

Cross multiply and note that sin? x + cos? x = cosh? x — sinh?x = 1:
cosh?wL/v — 2 coshwL/vcos wL/v + cos? wL/v = sinh? wL/v — sin? wL/v,

L L
2— 2cosh2«cos9~—~ =0,
v v
or

L 1
coshgo—— =

v coswL/v’ @61)

This equation could be solved by graphing the two functions, but this is
not very practical since the hyperbolic cosine increases exponentially. An
alternative is to make use of the indentities:

tanx—- 1-—cosx

27 \J1+cosx

X coshx — 1
tanh— = [————,

2 ycoshx +1

so that Eq. (2.61) becomes

and

wL oL
tan— = +tanh—

. 2.62
2v 2v (2.62)

A graph of these two functions is shown in Fig. 2.20. The intersections of
these curves give roots wL/2v = n/4 (3.011, 5, ...). But v* = wK./E/p, so
w? = (v®n%/4L?)(3.0112,52,72,....), and the allowed frequencies are given by

K [E
=iz \/% [30112 5%, 72, ..., @n + 1)°]. 263)

The frequencies and nodal positions for the first four bending vibrational
modes of a bar with free ends are given in Table 2.1. Note that the frequencies
are not harmonically related as they were for longitudinal modes.
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2,
0 T ] T \\ /
\\ //‘/ tanwL/2v \\ /
\ \
\\ / tanh wL/2v \\ /
10 /N ¥ 75
\
// ){’ // \\
N L cotwL/2v N
\( yd / N
0 - = cot wL/2v——
s |
AN 4 —tanhwL/2v
|/ V%
~10 -
tanwL/2v \
N \
/N
20 [ 1\
"0 n/4 /2 3n/4 n Sn/4 3n/2

wL/2v

Fig. 2.20. Curves showing tangent, cotangent, and hyperbolic tangent functions (from
Kinsler et al., “Fundamentals of Acoustics,” 3rd ed., copyright © 1982, John Wiley &
Sons, Inc. Reprinted by permission).

2. Example IT: A bar of length of L clamped at x = O and freeat x = L. The
boundary conditions at x = 0 now lead to the result that A + C =0 = B + D.
The transcendental equation, which gives the allowed values of frequency, is
now [see equation 3.55 in Kinsler et al. (1982)]

cot oL _ +tanh oL
v 20
Again, we obtain the frequencies by using Fig. 2.20:
K |E
= %\/;[1.194{ 2.9882,5%,...,(2n — 1)%]. (2.64)

These frequencies are in the ratios f, = 6.267f;, fs = 17.55f, fa = 35391},

Table 2.1. Characteristics of transverse vibrations in a bar
with free ends.

Frequency Wavelength Nodal positions
(Hz) (m) (m from end of 1-m bar)
fi = 3.5607K/L%/E/p 1330L  0.224,0.776
2.756f, 0.800L 0.132, 0.500, 0.868
5.404f, 0.572L 0.094, 0.356, 0.644, 0.906

8.933f, 0.445L 0.073,0.277, 0.500, 0.723, 0.927
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e f:::" 0.1782 = 0.50

~ae S e - -

Fig. 2.21. Bending vibrations of (a) a bar with two free ends, (b) a bar with one clamped
end and one free end, and (c) a bar with two supported (hinged) ends. The numbers are
relative frequencies; to obtain actual frequencies, multiply by (nK/L?)./E/p.

etc. The lowest frequency has the frequency f; = 0.5598K/L%,/E/p, which is
only about £ of the lowest frequency of the same bar with two free ends.

3. Example I1I: A bar of length L with simple supports (hinges) at the ends.
The frequencies are given by

2nK |E
Lzﬁ\/;mz m=123... (269)

These frequencies are considerably lower than those given by Eq. (2.64), since
the bending wavelengths are longer than the corresponding modes of the free
bar, as shown in Fig. 2.21.

2.17. Vibrations of Thick Bars:
Rotary Inertia and Shear Deformation

Thus far, we have considered transverse motion of the bar due to the bending
moment only. Such a simplified model is often called the Euler-Bernoulli
beam. It is essentially correct for a long, thin bar or rod. The Timoshenko
beam, a model that considers rotary inertia and shear stress, is prefered in
considering thick bars.

As a beam bends, the various elements rotate through some small angle.
The rotary inertia is thus equivalent to an increase in mass and results in a
siight lowering of vibrational frequencies, especially the higher ones.

Shear forces, which we considered in deriving the equation of motion
[Eq. (2.56)], tend to deform the bar; in particular they cause rectangular
elements to become parallelograms and thus decrease the transverse deflection
slightly. Therefore, the frequencies of the higher modes are decreased slightly
in a thick bar as compared with a thin one.
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2.18. Vibrations of a Stiff String

In real strings, the restoring force is partly due to the applied tension and
partly due to the stiffness of the string (although the former usually dominates).
Thus, the equation of motion of a flexible string [Eq. (2.4)] can be modified
by adding a term appropriate to bending stiffness:
%y %y oy
—=T— — ESK?> . 2.66
Forr = " ax2 ox* (2.66)
In this equation, u is mass per unit length, T is tension, E is Young’s modulus,
S is the cross-sectional areas and K is the radius of gyration, as before.
Solving this equation is difficult, but if the stiffness of the string is small, the
mode frequencies can be written (Morse, 1948) as
2.2

fo= T+ B+ B+ ), 267)

where f’ is the fundamental frequency of the same string without stiffness and
B =(Q2K/L)/ES/T. For a string with a circular cross section, K is half the
radius a, so B = (a?/L),/nE/T. The second two terms in Eq. (2.67) raise the
frequency of all the modes, but the fourth term depends upon n? and thus
stretches the intervals between the higher modes.

String stiffness is of considerable importance in the tuning of piano strings.
To minimize beating between the upper strings and the inharmonic overtones
of the lower strings, octaves are stretched to ratios that are greater than 2: 1.
In a 108-cm (42-inch) upright piano, for example, the fourth harmonic of C,
(middle C) is about 4 cents (0.29) sharp, but this increases to about 18 cents
(1.1%) for C, (Kent, 1982). In a large grand piano with long strings, inhar-
monicity is considerably less, but in small spinets it is substantially greater.

The stiffness of a violin string is of considerable importance when it is
excited by bowing. In our discussion of Helmholtz-type motion in Section
2.10, we envisioned a very sharp bend propagating back and forth on an ideal
string with great flexibility. On a real string, however, the bend is rounded
appreciably by the stiffness of the string (and to a lesser extent by damping of
high-frequency components). The rounded Helmholtz bend is sharpened each
time it passes the bow, however, and so the resultant motion represents
an equilibrium between the rounding and sharpening process. Two effects
that depend upon rounding of the Helmholtz corner are noise due to small
variations in period (jitter) and the note flattening with increased bow pressure
(Cremer, 1981; MclIntyre and Woodhouse, 1982).

2.19. Dispersion in Stiff and Loaded Strings: Cutoff Frequency

Waves on an ideal string travel without dispersion; that is, the wave velocity
is independent of frequency. Thus, a pulse does not change its shape as it
propagates back and forth on an ideal, lossless string. Two sources of dispersion
in real strings are stiffness and mass loading. In addition, loss mechanisms in
strings are frequency dependent.
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Fig. 2.22. Graphs of o versus k for (a) an ideal string, (b) a stiff string, and (c) a string
loaded with masses spaced a distance a apart.

In an ideal string, w and k are related by the simple expression w = ck, so
the wave velocity equals the slope of the line obtained by plotting w versus k,
as in Fig. 2.22(a). In order to draw a graph of w versus k for a stiff string, we
write Eq. (2.67) as

4k* ES

n T
0, =2n— [—|1 L Sy
3L p( thh +8L2T">

T K2ES
= \/;<1+/3+B2+7k2>
T
=k\/;<1+ﬁ+ﬂ2+zxk2>. (2.68)

The graph of Eq. (2.68) is shown in Fig. 2.22(b). When the graph of w versus
k is a curved line, we observe two different wave velocities: a phase velocity v,
and a group velocity v,. These are given by

vy = w/k and v, = dw/dk. (2.69)

The phase velocity is the velocity of a wave crest or a given phase angle,
whereas the group velocity is the velocity of the wave envelope of a given
amplitude of the wave packet.

For a string loaded with equally spaced masses, dispersion of a different
type is observed. The dispersion relationship can be written (see p. 76 in

Crawford, 1965) as
[T
w(k) =2 [—sinka, (2.70)
ma

where a is the spacing between beads of mass 7. The maximum value of w
is 24/ 7/ma, which occurs when £k = w/a. The allowed values of k between
0 and 7/a equal the number of normal modes of the system, which is also
equal to the number of equally spaced masses.

The maximum value of w divided by 2= is called the cutoff frequency f:

I =l\/z (2.71)
T\ ma

It represents the highest frequency of wave disturbance that can propagate on
the loaded string. Note that when k = n/a, the group velocity v, = dw/dk = 0.
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2.20. Torsional Vibrations of a Bar

Torsional waves are a third type of wave motion possible in a bar or rod.
The equation of motion for torsional waves is derived by equating the net
torque acting on an element of the bar to the product of moment of inertia
and angular acceleration. Young’s modulus is replaced by the shear modulus.
The resulting wave equation is quite similar to the equation for longitudinal
waves.

Torsional waves in a bar, like compressional waves (but unlike bending
waves), are nondispersive; that is, they have a wave velocity that is independent
of frequency
GK;

pl
where K is the torsional stiffness factor that relates a twist to the shearing
strain produced, plI is the polar moment of inertia per unit length, p is density,
and G is the shear modulus. For a circular rod, K; 2 I, so the velocity is
/ G/p; for square and rectangular bars, it is slightly less, as shown in Fig. 2.23.

In many materials the shear modulus G is related to the Young’s modulus

E and Poisson’s ratio v by the equation
E
G—2(1+V). (2.73)
In aluminum, for example, v = 0.33, so G = 0.376E, and the ratio of torsional
to longitudinal wave velocity in a circular aluminum rod is 0.61.

The torsional modes of vibration of a bar with free ends have frequencies
that equal the torsional wave velocity times n/2L in direct analogy to the
longitudinal modes. (If one end of the bar is clamped, the frequencies become
mdL (m=1,3,5,...).

Bowing a violin string excites torsional waves as well as transverse waves.
For a steel E string tuned to 660 Hz, the torsional wave speed vy is about
7.5 times the transverse wave speed ¢, but for a gut E string, vy/c =2
(Schelleng, 1973). Gillan and Elliott (1989) found values of vy/c from 2.6 to 7.6
in violin strings and 5.7 for a steel cello string. Furthermore, they found
damping factors from 19 to 7.7%, which suggests that torsional damping is
dominated by internal damping in the string rather than reflection losses at
the bridge and nut. Torsional waves change the effective compliance of the
string and affect the mechanics of the bow/string interaction in other ways
as well (Cremer, 1981).

(y < {/ </

=JGlp =092/Glp ¢ =074 cr = (2h/w)/G/p

Fig. 2.23. Torsional wave velocities for bars with different cross sections.

2.72)

Cr =
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CHAPTER 3

Two-Dimensional Systems:
Membranes and Plates

In this chapter, we will consider two-dimensional, continuous vibrating sys-
tems, with and without stiffness. An ideal membrane, like an ideal string, has
no stiffness of its own, and thus, its oscillations depend upon the restoring force
supplied by an externally applied tension. A plate, on the other hand, like a
bar, can vibrate with fixed or free ends and with or without external tension.

3.1. Wave Equation for a Rectangular Membrane

The simplest two-dimensional system we can consider is a rectangular mem-
brane with dimensions L, and L, with fixed edges, and with a surface tension
T that is constant throughout.

Consider an element with area density o, as shown in Fig. 3.1. It has been
displaced a small distance dz, and the surface tension T acts to restore it to
equilibrium. The forces acting on the edges dx have the magnitude T dx, and
their vertical components are — T'sin a dx and — T'sin 8 dx. For small « and B,

. (62)
sino ~tano = | —
ay y+dy

sinff ~tanff = (g—;) .
y

oz 0z 0%z
F, = —Tdx||=— —{—) | = —Tdx—=dy.
¢ [<6y>y+dy <6y>y:| ayz y

Similarly, the vertical component of the forces acting on the edges dy is
2

F, = - Tdy — dx.
)’ayz X

The total restoring force on element dxdy is F = F, + F,, so the equation of

and

Therefore,
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z

T dy

Fig. 3.1. Forces on a rectangular membrane element.

motion (F = ma) becomes

52 02 2
dedy( 24 —i) = adxdszf

ox? dy
or
0%z T(d%z &%z 5
— ==+ |=c*V2z 3.1
i (ax2 + 6y2> vz 3D
This is a wave equation for transverse waves with a velocity ¢ = ./ T/o. It

is easily solved by writing the deflection z(x, ,t) as a product of three func-
tions, each of a single variable: z(x, y,t) = X(x) Y(»)T(¢). The second deriva-
tives are

0%z d’X %z  d?Y 0%z d*T
" "y T XT, == XY,
ox?  dx® 7 9yt dy* 7 and Y |
so that the equation becomes
1 d*T c2d*X 2 d*Y
——— =t — ——. 32
T2 X d | Y dy (32)

This equation can only be true if each side of the equation is a constant, which
we denote as —w?. This gives two equations:

T
F+w2T=O,

with solutions T'(t) = Esinwt + F cos wt, and

LdX o 14
X dx* & Yady
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Again, each side must equal a constant, which we will call k2. This gives

2X 2
d +(w—2—k2>X=0,

dx? c
with solutions X (x) = A sin/(w?/c?) — k? x + Bcos \/(w?/c*) — k? x, and
a’y
iKY =0,
dy? +

with solutions Y(y) = Csinky + Dcosky. For a rectangular membrane of
dimensions L, by L,, fixed at all four sides, the boundary conditions require
thatz=0for x =0, x = L., y = 0, and y = L,. From the first condition, we
see that B = 0; from the second,

2 2
Asin _a_)z_ —k’L, =0, 50 _a_)z_ —k*L,=mn, and
Ve Ve

mnx
X(x) = Asi
(x) sin 7

X

with m = 1, 2, ... . From the third, D = 0; and from the fourth, CsinkL, =0,
so kL, = nm and Y(y) = Csin(nn/L,)y, with n = 1, 2,.... Therefore,

mmnx

Zym = A sin Csin %X(E sinwt + F cos wt)

X Yy

mmnx

= sin sinn;j—y(M sinwt + N cos wt), m=12,.... (33)

x y

To determine the modal frequencies, solve /(w?/c?) — k* = mn/L, for w:

2 2 2
2 _ (M 2 4 202 = mn\" BT\
1 /T |m* n?
= — —_ — — = 1 cee o o
fmn 27[/; L% + L?, m’ n b 2, (3 4)

Comparison of Egs. (3.3) and (3.4) with Egs. (2.13) and (2.14), which describe
the modes in a string, suggests that the normal modes of a rectangular
membrane might be called two-dimensional string modes. Standing waves in
the x direction appear to be independent of standing waves in the y direction.
Some of the modes are illustrated in Fig. 3.2.

and

]
]
1
]
m=n=1 m=2n=1 m=1,n=2 m=n=2 m=3n=1 m=3n=2

Fig. 3.2. Some normal modes of a rectangular membrane.
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3.2. Square Membranes: Degeneracy

In a square membrane (L, = L,), fu» = fums the mn and nm modes are said
to be degenerate, since they have the same frequency. Although there are now
fewer allowed frequencies, there are just as many characteristic functions as in
the rectangular case. In fact, the membrane can vibrate with simple harmonic
motion at a frequency f,,, With any of an infinite number of different shapes
corresponding to different values of a and b in the equation.

2(X, Y, t) = (AZmp + DZym)COS Wy ~ Where a? + b% = 1. (3.5)

Various combinations of z, 5 and z5, are shown in Fig. 3.3.

An important difference between a string and a membrane is in the reaction
to a force applied at a single point, as shown in Fig. 3.4. A string pulled aside
by a force F applied a distance x from one end will deflect a distance 4 so that
T(h/x)and T[h/(L — x)] add up to F. An ideal membrane, on the other hand,
cannot support a point force F, and the displacement theoretically becomes
infinite no matter how small the force! If a force F is applied to a small circle

Fig. 3.3. Degenerate modes of vibration in a square membrane corresponding to
different values of @ and b in Eq. (3.5). Arrows point to the nodal lines (Morse, 1948).

Fig. 3.4. Reaction of a string and membrane to a force applied at a point.
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of radius r at the center of a membrane of radius q, the displacement becomes
2F  a

=—In-
A

which goes to infinity as r — 0 (Morse, 1948, p. 176).

(3.6)

3.3. Circular Membranes

For a circular membrane, the wave equation [Eq. (3.1)] should be written in
polar coordinates by letting x = rcos ¢ and y = rsin ¢.

0’z (0% 10z 1 0%z
Froa ('aﬁ*?ﬁ*ﬁw) 3.7
We write solutions of the form z(r,d,t) = R(r)®(¢)e’ leading to the
equations:
d?R 1dR [w? m?
—+-——+|—5——=)JR=0
dr? rdr + (cz r? > ’
and (3.8)
a’o
W + m?® = 0.

The solution to the second equation is ®(¢) = Ae*™*. The first equation is a
form of Bessel’s equation (d?y/dx?) + (1/x)(dy/dx) + [1 — (m?/x*)]y = O with
y = Rand x = kr = wr/c. The solutions are Bessel functions of order m. Each
of these functions Jy(x), J;(x), ..., J.(x) goes to zero for several values of x as
shown in Fig. 3.5.

Jo(x)=0 when x = 2.405, 5.520, 8.654, ... .
Ji(x)=0 when x=0,3670,....
T I T I [ | 1 I I
Jo(x) J1(x)
. 4
J(x)

l L ! ! i t | I I

0 1 2 3 4 5 6 7 8 9

Fig. 3.5. First three Bessel functions.
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©,1) (1)) 2,1 ©0,2) 3.1 (1,2

1.000 1.594 2.136 2.296 2,653 2918
“1) 22 ©,3) .1 6.2 (6,1)
3.156 3.501 3.600 3.652 4.060 4.154

Fig. 3.6. First 14 modes of an ideal membrane. The mode designation (m, n) is given
above each figure and the relative frequency below. To convert these to actual fre-
quencies, multiply by (2.405/2na)./ T/o, where a is the membrane radius.

The nth zero of J,(kr) gives the frequency of the (m,n) mode, which has m
nodal diameters and n nodal circles (including one at the boundary). In the
fundamental (0, 1) mode, the entire membrane moves in phase. The first 14
modes of an ideal membrane and their relative frequencies are given in Fig. 3.6.

3.4. Real Membranes: Stiffness and Air Loading

The normal mode frequencies of real membranes may be quite different from
those of an ideal membrane given in Fig. 3.6. The principal effects in the
membrane acting to change the mode frequencies are air loading, bending
stiffness, and stiffness to shear. In general, air loading lowers the modal
frequencies, while the other two effects tend to raise them. In thin membranes,
air loading is usually the dominant effect.

The effect on frequency of the air loading depends upon the comparative
velocities for waves in the membrane and in air, and also upon whether the
air is confined in any way. A confined volume of air (as in a kettledrum,
for example) will raise the frequency of the axisymmetric modes, especially
the (0,1) mode. When a membrane vibrates in an unconfined sea of air,
however, all the modal frequencies are lowered, the modes of lowest frequency
being lowered the most. The confining effect of the kettle enhances this
frequency lowering in the non-axisymmetric modes such as (1, 1) and (2,1)
(Rossing, 1982b). Further discussion will be given in Chapter 18.

Stiffness to shear is a second-order effect whose effect on frequency can be
considerable if the amplitude of vibration is not small. Stiffness to shear is
encountered when one tries to distort a sheet of paper so that it will fit snugly
around a bowling ball, for example (Morse and Ingard, 1968). It is quite
different from bending stiffness, which is encountered when the paper is rolled
up. Bending stiffness will be discussed in Section 3.12.
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3.5. Waves in a Thin Plate

A plate may be likened to a two-dimensional bar or a membrane with stiffness.
Like a bar, it can transmit compressional waves, shear waves, torsional waves,
or bending waves; and it can have three different boundary conditions: free,
clamped, or simply supported (hinged).

A plate might be expected to transmit longitudinal (compressional) waves
at the same velocity as a bar: ¢;, = /E/p. This is not quite the case, however,
since the slight lateral expansion that accompanies a longitudinal compression
is constrained in the plane of the plate, thus adding a little additional stiffness.
The correct expression for the velocity of longitudinal waves in an infinite

plate is
| E
L= ——p(l ) 3.9

where v is Poisson’s ratio (v ~ 0.3 for most materials).

Actually, pure longitudinal waves [Fig. 3.7(a)] occur only in solids whose
dimensions in all directions are greater than a wavelength. These waves
travel at a speed cj, which is slightly less than the quasi-longitudinal waves
[Fig. 3.7(b)] that propagate in a bar or a plate (see Cremer et al., 1973).

,_ [ Ei—v
o+ —2v) (3.10)

Transverse waves in a solid involve mainly shear deformations, although
both shear stresses and normal stresses may be involved. Solids not only

I

a)

(

A
(b)

Fig. 3.7. (a) Pure longitudinal wave in an infinite solid. (b) Quasi-longitudinal wave in
a bar or plate.
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resist changes in volume (as do fluids), but they resist changes in shape as
well. Plane transverse waves occur in bodies that are large compared to the
wavelength in all three dimensions, but also in flat plates of uniform thickness
(see Chapter 2 in Cremer et al., 1973). Transverse waves propagate at the same
speed as torsional waves in a circular rod (¢y = /G/p). The shear modulus
G is considerably smaller than Young’s modulus E, so transverse and torsional
waves propagate at roughly 609, of the speed of longitudinal waves. The
radiation of sound in both cases is rather insignificant compared to the case
of bending waves, which we now discuss.
The equation of motion for bending or flexural waves in a plate is

0%z Eh? ‘

i + 12’0(1_‘)2)V z=0, (3.11)
where p is density, v is Poisson’s ratio, E is Young’s modulus, and 4 is the plate
thickness. For harmonic solutions, z = Z(x, y)e/®"

12p(1 — v*)w?
- %z =V4Z — k*Z =0, (3.12)

kz_\/ﬁw p(l —v?) /12w
h E T oeh

Bending waves in a plate are dispersive; that is, their velocity v depends upon

the frequency
o(f) = w/k = ~ whe /\/12 = /18 fhey . (3.13)

The frequency of a bending wave is proportional to k?:

viz

where

f = 0/2n = 0.0459%hc, k2. (3.14)

The values of k that correspond to the normal modes of vibration depend, of
course, on the boundary conditions.

3.6. Circular Plates

For a circular plate, V2 is expressed in polar coordinates, and Z(r, ¢) can be a
solution of either (V2 + k2)Z = 0 or (V2 — k?)Z = 0. Solutions of the first
equation contain the ordinary Bessel functions J,,(kr), and solutions to the
second, the hyperbolic Bessel functions I,,(kr) = j~™J,,(jkr). Thus, the possible
solutions are given by a linear combination of these Bessel functions times an
angular function:

Z(r, $) = cos(m¢ + o) [AJ,,(kr) + BI, (kr)]. (3.15)



3.6. Circular Plates 73

If the plate is clamped at its edge r = a, then Z = 0 and 0Z/0r = 0. The first
of these conditions is satisfied if AJ,(ka) + BI,(ka) = 0, and the second if
Ad, (ka) + BI, (ka) = 0.

The allowed values of k are labeled k,,,, where m gives the number of nodal
diameters and »n the number of nodal circles in the corresponding normal

mode:
ky, = 3.189/a, k,, =4.612/a, ky, = 5.904/a,

ko, = 6.306/a, k,, = 7.801/a, k,, = 9.400/a,
kos = 9.425/a, ki3 =10.965/a, k,3 = 12.566/a,
[k = (2n + m)/2a as n— o).

The corresponding mode frequencies are given in Table 3.1.

Table 3.1. Vibration frequencies of a circular plate with clamped edge.

Jor = 0.4694c h/a®  f,, = 2.08fy, J21 = 3411, 31 = 500/, Jar = 6.82fy,
foz = 3.89/0, Ji2=595f0, Ja2 = 8-28f01 f32 = 10-87f01 Jaz = 13711y,
foa = 8~72f01 f13 = 11-75f01 fzs = 15-()6f01 f33 = 18-63f01 f43 = 22-47f01

A plate with a free edge is more difficult to handle mathematically. The
boundary conditions used by Kirchofflead to a rather complicated expression
for k,,,, which reduces to (2n + m)z/2r for large ka (see Rayleigh, 1894). The
(2,0) mode is now the fundamental mode; the modal frequencies are given in
Table 3.2. The mode frequencies for a plate with a simply supported (hinged)
edge are given in Table 3.3.

Table 3.2. Vibration frequencies of a circular plate with free edge.

— — Sro=02413c h/a®  fyo =2328f50 fao = 411fs0
fm = 1-73fzo fn = 3~91fzo f21 = 6'71fzo f31 = 10-07fzo f41 - 13-92f20
Joz = 7-34fzo f12 = 114013 f22 = 15-97f20 f32 =21.19f3 f42 = 27-18f20

fso = 6'30f20
f51 = 18-24f20
Ss2=3331f)

Table 3.3. Vibration frequencies of a circular
plate with a simply supported edge.

Jor =02287c hja*  fi, = 2.80f,, for = 515fp,
Jo2 = 598fo, J12 =975f0, 22 = 14095,
Jo3 = 14914, Ji3 = 20.66f,, Sa3 = 269915,

The frequencies in Tables 3.1-3.3 are derived mainly from calculations
given by Leissa (1969). Measurements on two large brass plates by Waller
(1938) are in good agreement with the data in Table 3.2. Some modes of
circular plates are shown in Fig. 3.8.

Chladni (1802) observed that the addition of one nodal circle raised the
frequency of a circular plate by about the same amount as adding two nodal
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2,0 (3,0) (L,1)
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Fig. 3.8. Vibrational modes of circular plates: (a) free edge and (b) clamped or simply
supported edge. The mode number (n,m) gives the number of nodal diameters and
circles, respectively.

diameters, a relationship that Rayleigh (1894) calls Chladni’s law. For large
values of ka, ka ~ (m + 2n)n/2, so that f is proportional to (m + 2n)%. The
modal frequencies in a variety of circular plates can be fitted to families of
curves: f,,, = c(m + 2n)®. In flat plates, p = 2, but in nonflat plates (cymbals,
bells, etc.), p is generally less than 2 (Rossing, 1982c).

3.7. Elliptical Plates

The frequencies of an elliptical plate of moderately small eccentricity with a
clamped edge are given approximately by the formula (Leissa, 1969)

0.291¢, h 2(a\?* [a\*
f~———~°———\/1+§<5> +<E> s (3.16)

where a and b are the semimajor and semiminor axes. An elliptical plate with
a/b = 2 has frequencies 34%, greater than a circular plate with the same area.




3.8. Rectangular Plates 75

Waller (1950) shows Chladni patterns and gives relative frequencies for
elliptical plates with a/b = 2 and a/b = 5/4. The nodal patterns resemble those
in rectangular plates of similar shape.

3.8. Rectangular Plates

Since each edge of a rectangular plate can have any of the three boundary
conditions listed in Section 3.5 (free, clamped, or simply supported), there are
27 different combinations of boundary conditions, and each leads to a different
set of vibrational modes. Our discussions will be limited to three cases in
which the same boundary conditions apply to all four edges.

3.8.1. Simply Supported Edges

The equation of motion is easily solved by writing the solutions as a
product of three functions of single variables, as in the rectangular membrane
(Section 3.1).

The displacement amplitude is given by

.m+ Dnx . (n+ Dy
in sin

Z=A4s
L L

, (3.17)

x y

where L, and L, are the plate dimensions, and m and n are integers (beginning
with zero). The corresponding vibration frequencies are

1\? 1\2
fmn=0.453cLh|:<ij: ) +<"Zy )] (3.18)

The displacement is similar to that of a rectangular membrane, but the modal
frequencies are not. Note that the nodal lines are parallel to the edges; this is
not the case for plates with free or clamped edges, as we shall see.

It is convenient to describe a mode in a rectangular plate by (m, n), where
m and n are the numbers of nodal lines in the y and x directions, respectively
(not counting nodes at the edges). To do this, we use m + 1 and n + 1 in
Eq. (3.17) rather than m and n, as in a rectangular membrane [Eq. (3.4)]. Thus,
the fundamental mode is designated (0, 0) rather than (1, 1).

3.8.2. Free Edges

Calculating the modes of a rectangular plate with free edges was described
by Rayleigh as a problem “of great difficulty.” However, Rayleigh’s own
methods lead to approximate solutions that are close to measured values, and
refinements by Ritz bring them even closer. Results of many subsequent
investigations are summarized by Leissa (1969).

The limiting shapes of a rectangle are the square plate and the thin bar. The
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modes of a thin bar with free ends have frequencies [from Eq. (2.63)]
_ 0 113h

n

,5% ..., 2n+ 1)) (3.19)

The nth mode has n + 1 nodal lines perpendicular to the axis of the bar. As the
bar takes on appreciable width, bending along one axis causes bending in a
perpendicular direction. This comes about because the upper part of the bar
above the neutral axis (see Fig. 2.16) becomes longer (and thus narrower),
while the lower part becomes shorter (and thus wider). We have already
seen how Poisson’s constant v is a measure of the lateral contraction that
accompanies a longitudinal expansion in a plate (Section 3.5) and how the
factor 1 — v? appears in the expression for both longitudinal and bending
wave velocities [Egs. (3.9) and (3.13)].

Several bending modes in a rectangular plate can be derived from the
bending modes of a bar. The (m,0) modes might be expected to have nodal
lines parallel to one pair of sides, and the (0,n) modes would have nodes
parallel to the other pair of sides. Because of the coupling between bending
motions in the two directions, however, the modes are not pure bar modes.
The nodal lines become curved, and the plate takes on a sort of saddle shape
(i.e., concave in one direction but convex in the perpendicular direction). This
can be called anticlastic bending, and it is quite evident in the modes of two
different rectangular plates shown in Fig. 3.9.

Fig. 3.9. Chladni patterns showing the vibrational modes of rectangular plates of
different shapes: (a) L,/L, = 2; (b) L,/L, = 3/2 (Waller, 1949).
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(2,0) — (0,2)
0 .0 (1]
L.L,= 4 2 3/2 12/11 21/20 1
(2,0) +(0,2)
0,2) L] b O
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Fig. 3.10. Mixing of the (2,0) and (0, 2) modes in rectangular plates with different L, /L,
ratios (after Waller, 1961).

It is interesting to note how the combinations develop in a rectangle as
L,/L, approaches unity. Fig. 3.10 shows the shapes of two modes that are
descendents of the (2,0) and (0, 2) beam modes in rectangles of varying L,/L,.
When L, » L, the (2,0) and (0, 2) modes appear quite independent. However,
as L, —» L,, the beam modes mix together to form two new modes. In the
square, the mixing is complete, and two combinations are possible depending
upon whether the component modes are in phase or out of phase.

Frequencies for the modes that have as their bases the (2,0) and (0, 2) beam
modes are shown in Fig. 3.11. The frequencies have been normalized to L,,
and the normalized frequency of the (2,0) mode is seen to be relatively
independent of L,. The dashed curves are obtained from an approximate
formula using the Rayleigh method, whereas the solid curves are from a more
exact numerical calculation (Warburton, 1954).

3.0 ]
(2,0 (2,0) + (0,2)
[o]
2.5
./
Bf - =
20 -
7
Z DY
2100202
1.5 7 (2,00 —(0,2)
(0,2) /
1.0}b //
0.5 /
0
05 06 0.7 08 09 1.0

L/L,

Fig. 3.11. Normalized frequencies for the (2,0) and (0, 2) modes (and modes based on
combinations of these) in rectangular plates with free edges and varying L, /L, ratios
(from Warburton, 1954). B = 2.21(L2/h)./p(1 — v?)/E.
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3.9. Square Plates

It is obvious from Fig. 3.10 that in plates with L, >» L, (or L, » L,), two
normal modes are similar to the (2,0) and (0, 2) beam modes, with nodal lines
nearly parallel to the edges. As the plate becomes more nearly square, these
modes are replaced by normal modes that are essentially linear combinations
of the beam modes. The nodal patterns of the two modes can be understood
from the graphical construction in Fig. 3.12. Zeros denote regions in which
the contributions from the (2,0) and (0, 2) modes cancel each other and lead
to nodes. The (2,0) + (0,2) and (2, 1) — (0, 2) modes are sometimes referred to
as the ring mode and X mode, respectively, on account of the shapes of their
nodal patterns.

From Fig. 3.11, it is clear that the (2,0) + (0,2) ring mode has a higher
frequency than the (2,0) — (0,2) X mode. In the X mode, the bending motions
characteristic of the (2,0) and (0,2) beam modes aid each other through
an elastic interaction that we call Poisson coupling, since its strength de-

— o| -~ [e) —
4+ = [+ + + = |+| O |[+| = |+ +
4 N
— ol - To —
(a)
+ +| O |+
+ - [+ + - = - =
+ +| o [+
(b)
NN - |+ +[o]-1o y
+ |4 — lol-l9l-| = _
-lo|+|0 +
Lt - 1+ o+ o+ -
(¢)
+ | - +[o]- +
- |+ 3
+ —_ -O\+,____ &.
L i ol — o+ +
_+_ ~ N
+ - +| 0.} — |0, |~

(d)

Fig. 3.12. Graphical construction of combination modes in a square isotropic plate:
(a) (2,0 —0,2), X mode; (b) (2,0 +0,2), ring mode; (c) (2,1 — 1,2) mode; and
(d) (2,1 + 1,2) mode.
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(1)) (2,0) —(0,2) 2,0) +(0,2) 2,1 1,2)
B

1.00 - 1.52 1.94 271 271

2,2) (3,0) ©,3) 3,1)—(,3) 3,1)+(1,3)

AN
N | /]

4.81 5.10 5.10 5.30 6.00

Fig. 3.13. The first 10 modes of an isotropic square plate with free edges. The modes are
designated by m and n, the numbers of nodal lines in the two directions, and the relative
frequencies for a plate with v = 0.3 are given below the figures.

pends upon the value of Poisson’s constant. In the (2,0) + (0,2) ring mode,
however, there is an added stiffness due to the fact that the (2,0) and (0,2)
bending motions oppose each other. Thus, the Poisson coupling splits a modal
degeneracy that otherwise would have existed in a square plate. The ratio of
the (2,0 + 0,2) and (2,0 — 0, 2) mode frequencies is (Warburton, 1954)

/+ _ 1+ 0.7205v_ (3.20)
f— 1 — 0.7205v
Also shown in Fig. 3.12 are the (2,1) — (1,2)and (2, 1) + (1, 2) modes, which
have the same frequency as the (2, 1) and (1, 2) modes, since Poisson coupling
does not aid or oppose either combination. Thus, any of these four modes can
be excited depending upon where the driving force is applied. There are, in
fact, a large number of degenerate modes, all linear combinations of the (2, 1)
and (1, 2) modes, which can be excited.
The first 10 modes of an isotropic square plate with free edges are shown
in Fig. 3.13. The mode of lowest frequency, the (1, 1) mode, is a twisting mode
in which opposite corners move in phase. Its frequency is given by

cr h G h E he, 1—v
_Cr _ G_h B _ha 1oV 3.21
fu 2L, L,L, ﬁ L2\ 2p(1+v) L*\ 2 ° (3.21)

where the torsional wave velocity ¢ from Fig. 2.23 is used (subject to the
restriction that L, > 6h). In this equation, k is the thickness and G is the shear
modulus.

Note that the (2, 1) and (1, 2) modes form a degenerate pair, as do the (3,0)
and (0, 3) modes. However, Poisson coupling removes the degeneracy in the
case of the (3,1)/(1, 3) pair just as it does in the (2,0)/(0,2) case. The general
rule is that a nondegenerate pair of modes (m, n + n, m) exists in a square plate
whenm —n= +2,4,6,....
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Fig. 3.14. Modal frequencies of an isotropic aluminum plate (L, constant). Lines repre-
senting the (1, 1) and (2, 2) twisting modes have a slope of 1; lines representing the (0, 2)
and (0, 3) bending modes have a slope of 2 (from Caldersmith and Rossing, 1983).

The modal frequencies in an aluminum plate with a varying length to width
ratio are shown in Fig. 3.14. In this case, L, was kept constant as L, was varied,
so the frequency of the (3, 0) mode, for example, is unchanged. The (1, 1) mode
has a slope of 1, as predicted by Eq. (3.19). The (0, 3) bending mode has a
slope of 2, as does the (0,2) mode above and below the region of L, = L,. The
(2, 1) mode, which combines twisting and bending motions, has a slope of
about £.
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3.10. Square and Rectangular Plates with Clamped Edges

The first eight modes of a square plate with clamped edges are shown in
Fig. 3.15. There is considerable variation in the mode designation by various
authors, and so we have used the same designation that was used in Section
3.8.1 for a plate with simply supported edges: m and n are the numbers of nodes
in the directions of the y and x axes, respectively, not counting the nodes at
the edges. The fundamental (0,0) mode has a frequency: f,, = 1.654c, h/L?,
where h is the thickness, L is length, and ¢, = ./ E/p(1 — v?) is the longitudinal
wave velocity (Leissa, 1969). The relative frequencies of the modes are given
below the patterns in Fig. 3.15.

Comparing the modes of the square plate with clamped edges to one with
free edges, we note that

1. the (1, 1) mode has a frequency nearly 10 times greater than the (1,1) mode
in a free plate.

2. three other modes exist below the (1, 1) mode in the clamped plate.

3. the X mode and ring mode are only about 0.5%; different in frequency, and
the diameter of the ring node is smaller than it is in a free plate.

4. nondegenerate mode pairs (m,n + n,m) exist whenm —n= +2,4,6, ...,
as in the free plates, but the transition from modes characteristic of rect-
angular plates to those of square plates changes much more abruptly as
L, — L, in clamped plates than in free plates (Warburton, 1954).

Relative frequencies of rectangular plates with clamped edges (from Leissa,
1969) are given in Table 3.4. The actual frequencies can be obtained by
multiplying the relative frequencies by 1.654¢ h/L}.

0,0 (1,0) ©,1) (1, 1)

1.00 2.04 2.04 3.01
2,00 - (0,2) 2,0 +(0,2) (2,1) (1,2)
3.66 3.67 4.58 4.58

Fig. 3.15. Modal patterns for the first eight modes of a square plate with clamped edges.
Relative frequencies are given below the patterns.
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Table 3.4. Relative vibrational frequencies of rectangular plates with clamped edges.

Mode Mode L,/L,=1 1.5 2 2.5 3 0
00 [ ] 100 075 0.68 0.6 0.64 0.62
oy — 204 1.8 1.82 1.79 1.78 1.72
wo [J] 204 1.16 0.8

wy 3o 227 202 191 1.86 172

3.11. Rectangular Wood Plates

Wood can be described as an orthotropic material; it has different mechanical
properties along three perpendicular axes (longitudinal, radial, and tangential,
which we denote by L, R, and T). Thus, there are three elastic moduli and six
Poisson’s ratios, although they are related by expressions of the form (Wood
Handbook, 1974)

Vi Vi .
YoY% j=LRT
E_E )

Most plates in musical instruments are quarter-cut plates (the log is split or
sawed along two radii); the growth rings lie perpendicular to the plate. For a
quarter-cut plate, the axes L and R lie in the plane and the axis T in the
direction of the thickness. Thus, the constants of interest are E;, Eg, v g, and
veL = Vi Er/EL.

To describe the vibrational modes of wood plates generally requires four
elastic constants. These may be Young’s moduli along (E,) and across (E,) the
grain, the in-plane shear modulus G, and the larger of the two Poisson ratios
V,y- FOr a quarter-cut plate in the xy plane, E, = E, E, = Eg, G = Gig, Vyy =
vir, and v, = vgy. For other plate orientations, the elastic constants of the
plate may be combinations with other elastic constants of the wood (see
Fig. 1 in MclIntyre and Woodhouse, 1986).

Since E; > Eg in wood, the modal patterns in Fig. 3.13 that are particularly
characteristic of a square plate will not exist in square wood plates. However,
the corresponding modal patterns may appear in rectangular wood plates
when the ratio of length (along the grain) to width (across the grain) is

L, [E.\"

()"
For Sitka spruce, for example, E;/Eg = 12.8, vg;, = 0.029, and v g = 0.37
(Wood Handbook, 1974). Thus (2,0 + 0,2) combination modes of the type in
Fig. 3.15, for example, might be expected in a rectangular plate with L,/L, =

1.9. (This is somewhat greater than the value 1.5, which has appeared several
places in the literature.)
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Fig. 3.16. Modal frequencies of a quarter-cut spruce plate (L, constant). The (1, 1)
twisting mode has a slope of 1; the (0,2) bending mode has a slope of 2 (Caldersmith
and Rossing, 1983).

The modal frequencies of a quarter-cut spruce plate are shown in Fig. 3.16.
The (2,0 + 0, 2) ring mode and X mode occur at about L, /L, = 2, as expected.
The curve relating the frequency of the (1, 1) mode to L,/L, has a slope of one,
as in the aluminum plate in Fig. 3.14, and for the (2,0) mode, the slope is two.

Some modal patterns obtained in the same spruce plate are shown in
Fig. 3.17. The (2,0) and (0, 2) beam modes appear relatively unmodified when
L,/L, is well above or below the critical ratio of 2.08 where the X mode and
ring mode appear. Note that the (2, 0) and (0, 2) modes mix oppositely in phase
for L,/L, above and below 2.08.

Modes of vibration closely resembling the X mode and ring mode, along
with the (1, 1) twisting mode, have been used by violin makers for centuries to
tune the top and back plates of violins before assembling the instruments. If
a plate is held with the fingers at a nodal line and tapped at an antinode, the
trained ear of a skilled violin maker can ascertain whether the plate has a clear
and full ring. In recent years, many violin makers, following the lead of Carleen
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Fig. 3.17. Modal shapes of the A(2,0) + B(0,2) combination modes in a quarter-cut
spruce plate. In (a) and (e), | 4| « 1 (opposite in sign in the two cases). In (f) and (j),
|B] « 1.In (c) and (h), A/B = +1 (Caldersmith and Rossing, 1983).

Hutchins, have used Chladni patterns to test and guide the tuning of these
three important modes (see Fig. 3.18).

Many of the formulas in Chapters 2 and 3 for vibrations of bars and plates
of isotropic material are easily modified for wood by substituting E, or E, for
E and v,,v,, for v?. For example, Egs. (3.18) and (3.19) become

m+ 1)? n+1\? )
fmn = 0.453h [Cx (T) + Cy (T) :|, (318 )
where
¢ = E/p(1 —vvy) and ¢, =/ Ey/p(1 — vevy)
and

f= 0——'1Ll3h ¢ ¢,[(30112)%,5%,...,(2n + 1)*]. (3.19)

2
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Fig. 3.18. Chladni patterns showing two modes of vibration in the top and back of a
viola (Hutchins, 1977).

The torsional stiffness D,, of a wooden plate depends upon E,, E,, and G, but
it can be approximated by the geometric average \/D,D, of the bending
stiffness in the x and y directions (Caldersmith, 1984). Thus, Eq. (3.21) can be

written as
1 =V, V,
fu= LhL /9 < has | 34 (.21
xy p

LIN 2
The analogue to Eq. (2.73) is, approximately,

G=—>> """ _ ‘E"Ey (2.73")
2(1 + /vyvy)

3.12. Bending Stiffness in a Membrane

In Chapter 2, we described a stiff string as being slightly barlike and added a
term to the equation of motion to represent the bending stiffness. We follow
the same approach now by describing a stiff membrane as being slightly
platelike, and we add a term to the equation of motion [Eq. (3.1) or (3.7)] to
represent the bending stiffness:

P2z T h’E

—=—Viz——— V4 =2V — §*V*; 322

proial 250 =) z=c*V?’z Véz (3.22)
where T is tension, ¢ is mass per unit area, h is thickness, E is Young’s modulus,
p is density, v is Poisson’s ratio, and v is the velocity of transverse waves in the
membrane without stiffness.

Assuming a solution z = AJ,(kr) cos mf cos wt leads to the equation
k284 w?

c* c?

k2 +

=0. (3.23)
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Solving for the frequency gives

o ck k284

f—zn—27I 1+ Ea (3.24)
For a typical Mylar membrane used on a kettledrum, E = 3.5 x 10° N/m?,
h=19 x 10"*m, a(radius) = 0.328 m, p = 1.38 x 10° kg/m3,and o = 0.262
kg/m?, so that ¢ = 100 m/s, $* = 8.7 x 1073 m*/s2. With k = 10 m™, the
k2S*/v? term in Eq. (3.22) is about 1074, so the frequency of the drum is raised
about 0.5% by the effect of bending stiffness. In other drums, the frequency

change may be as large as 1%,

3.13. Shallow Spherical Shells

Vibrations of curved shells have been extensively studied, both theoretically
and experimentally, by various investigators. In addition to the flexural modes
of vibration found in a flat plate, a curved shell has many longitudinal,
torsional, and thickness shear modes. Fortunately, the lowest modes in a

Fig. 3.19. Calculated motion center B and frequency w for vibrations of amplitude A4
on a thin spherical-cap shell of dome height H. The normal mode frequency for
small-amplitude vibrations is w, (Fletcher, 1985).
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shallow shell are mainly flexural, and thus a simple theory of transverse
vibrations is quite accurate for treating the lowest modes.

Equation (3.11) for a flat plate can be suitably modified to describe a
shallow spherical shell by adding a term V2F/R, where R is the radius of
curvature of the shell, and F is Airy’s stress function:

0%z Eh? V2F

— v4 =0. 3.25

a2 T —v) ) “tR (323)
A second equation, in which h is the shell thickness, completes the problem
(Johnson and Reissner, 1958):

VAF — = 0. (3.26)
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Fig. 3.20. Calculated motion center B and frequency w for vibrations of amplitude A
on a spherical-cap shell of dome height H when the normalized shell thickness h/H has
the value shown as a parameter. The normal mode frequency for small-amplitude
vibrations is @,. The broken curve shows the limited range behavior of a moderately
thin everted shell (Fletcher, 1985).
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The modal frequencies of a spherical shell are generally somewhat greater
than those of a flat plate. In a clamped edge shell whose apex height H (above
the edge plane) equals shell thickness k, for example, the fundamental mode
has a frequency about 409, greater than that of a flat plate with the same radius
and thickness (Kalnins, 1963). Other modal frequencies for a shell with a
clamped edge are given in Kalnins (1963) and for a free edge in Reissner (1955).

In a very thin shell, in which flexural rigidity makes a minor contribution
to the restoring force, the frequency of the fundamental mode initially decreases
with amplitude A4, as shown in Fig. 3.19. After reaching a minimum at an
amplitude 4 ~ 0.8H, it increases with amplitude (Fletcher, 1985).

When the shell is not ideally thin, the flexural rigidity cannot be ignored,
the frequency can be calculated by using a variational method (Reissner, 1964).
The results for values of h/H up to 2.0 are shown in Fig. 3.20. Again, the
fundamental frequency in each case falls initially with increasing amplitude,
reaches a minimum, and then rises again to exceed the original frequency w,
for A greater than about 2H (Fletcher, 1985).

Also shown in Figs. 3.19 and 3.29 are calculated values of B, the centroid
of the oscillation. For very thin shells (k < 0.3H), there is a second equilibrium
position with B < — H, but this is stable only for small amplitude vibrations,
and for which the mode frequency is less than w.

In a curved shell, there are five possible edge conditions (free, fixed, clamped,
hinged, and simply supported), whereas in a flat plate there are only three
{free, clamped, and simply supported). The clamped and simply supported
conditions allow the edges of a shell to move tangentially, so that inextensional
modes can occur (Grossman et al., 1969).

3.14. Nonlinear Vibrations in Plates and Shallow Shells

Equation (3.11) can be extended to large-amplitude vibrations by adding a
term of the form — NV?2z, where N includes both radial and transverse stresses.
Physically, this represents an amplitude-dependent, membrane-type restoring
force due to stretching the plate on the outside of the bulge, compressing it on
the inside. The frequency of the fundamental mode rises approximately with
the square of the amplitude (Fletcher, 1985).

[~ f0[1 + 0.16(%)2]. (3.27)

Thus, a flat plate is said to exhibit hardening spring behavior (see Section 1.11).
In a shallow spherical shell, the nonlinearity at large amplitude can be
either of the hardening or softening spring type, depending upon the curvature.
In a shell with a fixed edge, softening occurs when the apex height H exceeds
the thickness h. When H = 2h and A = h, for example, the frequency is about
109, less than its small-amplitude value (Grossman et al., 1969).
The softening effect at moderately large amplitude offsets some of the
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increase in vibrational frequency with curvature. Again using as an example
a shell with a fixed edge having H = 2h, at small amplitude the fundamental
frequency is approximately twice that of a flat plate, but the ratio diminishes
to 1.6 when A = h.

Spherical, cylindrical, and conical shells all show nonlinear behavior of
the softening spring type at moderately large amplitude. A shell with two
independent radii of curvature R, and R, can show either hardening or
softening behavior, however. For most ratios of R,/R,, shells with a rect-
angular edge, for example, show an initial softening followed by a hardening
at very large amplitude. The hyperbolic parabola (R,/R, = —1), however,
shows the same type of hardening behavior as a flat plate (Leissa and Kadi,
1971).

An interesting case of nonlinear frequency shift has been noted in a small
gong used in Chinese opera. The gong, which has a slightly domed striking
surface, surrounded by conical shoulders, glides upward by about two semi-
tones after being struck (Rossing and Fletcher, 1983). That is, the frequency
at the large initial amplitude is some 129 lower than at small amplitude, thus
illustrating a nonlinearity of the softening spring type shown in Fig. 3.19.

Nonlinear behavior at large amplitude gives rise to harmonics of the
fundamental frequency. For small amplitudes, the amplitude A, of the second
harmonic varies with A2 and that of the third harmonic A, with A3, where 4,
is the fundamental amplitude. For 4, > H, however, the motion becomes
more nearly symmetric, and 4, decreases with increasing 4,. Indeed, in
the thin-shell approximation, A, is zero for A, > 0.8H (Fletcher, 1985). In
approximations of higher order, the influence of A, on A3, etc., is taken into
account, and the harmonic structure changes in a rather complex way with
amplitude.

3.15. Driving Point Impedance

In Section 1.7, we discussed the mechanical impedance Z (and its reciprocal,
the mobility or mechanical admittance ¥) of a simple oscillator. In Fig. 1.13(a),
the real part of the admittance reaches its maximum value at resonance, while
the imaginary part goes through zero. On the Nyquist plot in Fig. 1.13(b), the
entire frequency span from w = 0 to @ — oo represents a complete circle.

In a more complex system, the impedance depends upon the location at
which the force F and the velocity i are measured. If the force F is applied at
a single point and the velocity # is measured at the same point, the ° quotient

Fn )/ony) = Z,1s called the driving-point impedance. Measuring Fand 7 at
different locations gives a transfer impedance.

The driving point impedance is often measured by means of an impedance
head, which incorporates both a force transducer and accelerometer, as
shown in Fig. 3.21. Both transducers employ piezoelectric crystals, and the
accelerometer has an inertial mass attached to the crystal, as shown. Since
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Fig. 3.21. Impedance head consisting of an accelerometer and force transducer.

attaching the impedance head adds mass m to the structure, the measured
impedance Z; is the true driving point impedance Z, plus the impedance jom
of the added mass m below the force transducer:

Z, =Z, + jom. (3.28)

The second term can be minimized by placing the force transducer next to the
structure and making its mass as small as possible.

In practice, the impedance head is generally attached to an electromagnetic
shaker, which furnishes the driving force or excitation. The output of the
accelerometer is integrated to obtain a velocity signal, which is divided by the
force to obtain the admittance (or vice versa for impedance). The driving force
may be a swept sinusoid, random noise, or pseudorandom noise. When
random noise is used, it is necessary to employ a real-time spectrum analyzer
to obtain the admittance or impedance of the structure as a function of
frequency (often called the frequency response function).

3.15.1. Impedance of Infinite Bars and Thin Plates

The input impedance for longitudinal waves in an infinitely long bar is simply
ucy, where u is the mass per unit length and ¢ is the longitudinal wave speed.
The input impedance for flexural waves is a little more difficult to calculate,
since the speed of flexural waves is frequency dependent (Section 2.15), and
also because in flexure, there are exponentially decaying near fields in addition
to the propagating waves (Cremer et al., 1973). The impedance is

~ 1 i
2() = wo(f)— 2. 6.9

The impedance is complex and increases with \/f , as does the flexural wave
speed v(f), up to a certain limiting frequency.
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The input impedance of a thin, isotropic, infinite plate, on the other hand,
turns out to be real and independent of the frequency (Cremer et al.,, 1973):

| Eoc kK
Z=8\/BG'=8 ml—z—, (330)

where B is the flexural stiffness, o is the mass per unit area, h is the thickness,
and v is Poisson’s ratio.

3.15.2. Impedance of Finite Bars and Plates

When the driving point impedance or admittance of a finite structure is plotted
as a function of frequency, a series of maxima and minima are added to the
curves for the corresponding infinite structure. The normalized driving-point
impedance at one end of a bar with free ends is shown in Fig. 3.22. The heavily
damped curve (6 = 1) approximates Eq. (3.29) for an infinite bar, while the
lightly damped curve (6 = 0.01) has sharp maxima and minima.

The minima in Fig. 3.22 correspond to normal modes of the bar, whereas
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Fig. 3.22. Normalized driving-point impedance at one end of a bar with free ends. Note
that the horizontal axis is proportional to \/f ; the normalized impedance, which
includes a factor 1/f, decreases with frequency even though the actual driving-point
impedance increases as \/f_ . Three different values of damping are shown (Snowdon,
1965).
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Fig. 3.23. Driving-point admittance of a rectangular plate with simply-supported
edges: (a) driven at the center and (b) driven off center (after Cremer et al., 1973).

the maxima occur at frequencies for which the bar vibrates with a nodal line
passing through the driving point. Impedance minima (admittance maxima)
correspond to resonances, while impedance maxima (admittance minima)
correspond to antiresonances.

The driving-point admittance at two different locations on a rectangular
plate with simply supported edges is shown in Fig. 3.23. In these graphs,
resonances corresponding to normal modes of the plate give rise to maxima
on the curves. Note that some normal modes are excited at both driving points
but some are not (when a node occurs too near the driving point).

References

Caldersmith, G.W. (1984). Vibrations of orthotropic rectangular plates. Acustica 56,
144-152.

Caldersmith, G., and Rossing, T.D. (1983). Ring modes, X-modes and Poisson coupling.
Catgut Acoust. Soc. Newsletter, No. 39, 12-14.

Caldersmith, G., and Rossing, T.D. (1984). Determination of modal coupling in vibrating
rectangular plates. Applied Acoustics 17, 33-44.

Chladni, E.F.F. (1802). “Die Akustik,” 2nd ed. Breitkopf u. Hirtel, Leipzig.

Cremer, L. (1984). “The Physics of the Violin.” Translated by J.S. Allen, M.I.T. Press,
Cambridge, Massachusetts.

Cremer, L., Heckl, M., and Ungar, E.E. (1973). “Structure-Borne Sound,” Chapter 4.
Springer-Verlag, Berlin and New York.



References 93

Fletcher, N.H. (1985). Nonlinear frequency shifts in quasispherical-cap shells: Pitch
glide in Chinese gongs. J. Acoust. Soc. Am. 18, 2069-2073.

French, A.P. (1971). “Vibrations and Waves,” p. 181ff. Norton, New York.

Grossman, P.L., Koplik, B., and Yu, Y-Y. (1969). Nonlinear vibrations of shallow
spherical shells. J. Appl. Mech. 36, 451-458.

Hearmon, R.F.S. (1961). “Introduction to Applied Anisotropic Elasticity.” Oxford
Univ. Press, London.

Hutchins, C.M. (1977). Another piece of the free plate tap tone puzzle. Catgut Acoust.
Soc. Newsletter, No. 28, 22.

Hutchins, C.M. (1981). The acoustics of violin plates. Scientific American 245 (4), 170.

Johnson, M.W., and Reissner, E. (1958). On transverse vibrations of shallow spherical
shells. Q. Appl. Math. 15, 367-380.

Kalnins. A. (1963). Free nonsymmetric vibrations of shallow spherical shells. Proc. 4th
U.S. Cong. Appl. Mech., 225-233. Reprinted in “Vibrations: Beams, Plates, and
Shells” (A. Kalnins and C.L. Dym, eds.), Dowden, Hutchinson and Ross, Strouds-
burg, Pennsylvania 1976.

Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1982). “Fundamentals of
Acoustics,” 3rd ed., Chapter 4. Wiley, New York.

Leissa, A.-W. (1969). “Vibration of Plates,” NASA SP-160, NASA, Washington, D.C.

Leissa, A.W., and Kadi, A.S. (1971). Curvature effects on shallow spherical shell
vibrations, J. Sound Vibr. 16, 173-187.

Mclntyre, M.E., and Woodhouse, J. (1984/1985/1986). On measuring wood properties,
Parts 1, 2, and 3, J. Catgut Acoust. Soc. No. 42, 11-25; No. 43, 18-24; and
No. 45, 14-23.

Morse, P.M. (1948). “Vibration and Sound,” Chapter 5. McGraw-Hill, New York.
Reprinted 1976, Acoustical Soc. Am., Woodbury, New York.

Morse, P.M., and Ingard, K.U. (1968). Chapter 5. “Theoretical Acoustics,” McGraw-
Hill, New York. Reprinted 1986, Princeton Univ. Press, Princeton, New Jersey.

Rayleigh, Lord (1894). “The Theory of Sound,” Vol. 1, 2nd ed., Chapters 9 and 10.
Macmillan, New York. Reprinted by Dover, New York, 1945,

Reissner, E. (1946). On vibrations of shallow spherical shells. J. Appl. Phys. 17,
1038-1042.

Reissner, E. (1955). On axi-symmetrical vibrations of shallow spherical shells. Q. Appl.
Math. 13, 279-290.

Rossing, T.D. (1982a). “The Science of Sound,” Chapters 2 and 13. Addison-Wesley,
Reading, Massachusetts.

Rossing, T.D. (1982b). The physics of kettledrums. Scientific American 247 (5), 172—-178.

Rossing, T.D. (1982c). Chladni’s law for vibrating plates. American J. Physics 50,
271-274.

Rossing, T.D., and Fletcher, N.H. (1983). Nonlinear vibrations in plates and gongs. J.
Acoust. Soc. Am. 13, 345-351.

Snowdon, J.C. (1965). Mechanical impedance of free—free beams. J. Acoust. Soc. Am.
37, 240-249.

Ver, LL,, and Holmer, C.I. (1971). Interaction of sound waves with solid structures. In
“Noise and Vibration Control” (L.L. Beranek, ed.). McGraw-Hill, New York.

Waller, M.D. (1938). “Vibrations of free circular plates. Part I: Normal modes. Proc.
Phys. Soc. 50, 70-76.

Waller, M.D. (1949). Vibrations of free rectangular plates. Proc. Phys. Soc. London B62,
277-285.



94 3. Two-Dimensional Systems: Membranes and Plates

Waller, M.D. (1950). Vibrations of free elliptical plates. Proc. Phys. Soc. London B63,
451-455.

Waller, M.D. (1961). “Chladni Figures: A study in Symmetry.” Bell, London.

Warburton, G.B. (1954). The vibration of rectangular plates. Proc. Inst. Mech. Eng.
A168, 371-384.

Wood Handbook (1974). Mechanical properties of wood. In “Wood Handbook:
Wood as an Engineering Material.” U.S. Forest Products Laboratory, Madison,

Wisconsin.



CHAPTER 4

Coupled Vibrating Systems

4.1. Coupling Between Two Identical Vibrators

In Chapter 1, we considered the free vibrations of a two-mass system with
three springs of equal stiffness; we found that there were two normal modes of
vibration. Such a system could have been viewed as consisting of two separate
mass/spring vibrators coupled together by the center spring (see Fig. 1.20). If
the coupling spring were made successively weaker, the two modes would
become closer and closer in frequency.

A similar behavior is exhibited by two simple pendulums connected by
a spring, as in Fig. 4.1. Each pendulum, vibrating independently at small
amplitude, has a frequency given by

1 g
fo

“ T
where [ is the length of the pendulum and g is the acceleration of gravity.
The coupled system has two normal modes of vibration given by

fi = % % and  f, = % (% + 25) @.1)
where K is the spring constant and m is mass. The pendulums move in phase
in the mode of lower frequency and in opposite phase in the mode of higher
frequency.

The coupling can be expressed in terms of a coupling frequency w, =
/K./m, in which case o} = 0} and w? = wi + 2w?2. If either pendulum is
clamped in place, the other pendulum oscillates at a frequency w? = w3 + w?.
This is not a normal mode frequency, however. If the system is started with
pendulum A at its rest position and pendulum B in a displaced position,
for example, the resulting motion changes with time. During each swing,
pendulum B gives up some of its motion to pendulum A until pendulum B
finds itself at rest and pendulum A has all the motion. Then, the process
reverses. The exchange of energy between the two pendulums takes place at
a rate that depends on the coupling frequency w..
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Fig. 4.1. Two simple pendulums coupled by a spring.

4.2. Normal Modes

Solution of the equations of motion to obtain the normal modes is relatively
easy in this case. The equations of motion for small vibrations are

mi, + #x,\ + K(xs — xg) = 0, (4.22)

and

mig + gx,, + K(xg — x,) = 0. (4.2b)

These can be rewritten in terms of w, and w,, previously defined:
Fa + (02 + 0)x, — @2xp =0, (4.3a)

and
Xp + (02 + 0?)xg — @w2x, = 0. (4.3b)

If the two equations are added together, we obtain

2
W(XA + xg) + @w3(x, + x) = 0. (4.4a)

If they are subtracted, we obtain

dZ
W(XA — xg) + (03 + 2w2)(x, — x5) = 0. (4.4b)

These are equations for simple harmonic motion. In the first, the variable is
(xa + xp), and the frequency is wy/27. In the second, the variable is (x, — xg),
and the frequency is /w3 + 2w? /2n. These represent the two normal modes
described previously.

It is sometimes desirable to define normal coordinates ¢; and ¢, along
which displacements can take place independently. In this case, q; = X, + X
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Fig. 4.2. Relationship of the normal coordinates (q,,¢,) of two coupled oscillators to

the individual coordinates (x,, xg).

and q, = X, — Xg; the normal coordinates are rotated 45° from the old, as
shown in Fig. 4.2. Thus, the transformation from (x,, x3), the coordinates of
the individual pendulum, to (q,,¢,), the normal coordinates, can be found
geometrically. In mode 1, the system oscillates along the coordinate g, with
amplitude Q, and angular frequency w,, and in mode 2 it oscillates along q,
with amplitude Q, and angular frequency w,. [The actual frequencies are
given by Eq. (4.1).] Thus, x, and xy can be written as

XA

and

XB

cosw;t +
2

cosw,t —

0,

NG

COS W, t, (4.52)

&cos w,t. (4.5b)

NG

Q, and Q, are determined by the initial displacements.
If the system is given an initial displacement x,(0) = 4,, x5(0) = 0, then
0, = Ao/ﬁ, Q, = AO/\/E, and Egs. (4.5) become

A
X5y = TO(COS Wt + cos w,t), (4.6a)

and

A
Xg = —2(cOS W, — cOs W, 1). (4.6b)

These equations can be rewritten:

D1 t> cos (w—z%ai t> . 4.7a)

@,
X, = Agcos| ———
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Fig. 4.3. Motion of two coupled pendulums with flashlight bulbs attached to the bobs.
Pendulum B had an initial displacement; pendulum A had none. Note the exchange
of kinetic energy at a rate w,,/7, and also note the effect of damping (from French, 1971).

Xp = Agsin (‘”2 = at t) sin (“’2 er t' t>. (4.7b)

These can be interpreted as oscillations at a frequency @ = (w, + ®,)/2 with
the amplitude modulated at a frequency w,, = (0, — ®,)/2. Note that the
oscillations of the two pendulums at frequency @ are 90° different in phase,
and so are the oscillations in the amplitude at frequency ,,. The photograph
of two coupled pendulums in Fig. 4.3 illustrates this.

and

4.3. Weak and Strong Coupling

In the case we have been discussing, the average frequency and modulation

frequency are
- +
f=——w1=—(,/coo ¥ 207 + wo),
4.8)

and
CO —(O1
fm=———=—~(\/w0+2w — ).

In the weak coupling case, ®, < o, SO We can write

-1 2w2\? o ?
- C Do (g 4 2 .
f y I:a)()(l + o > + coo:| e ( + 2w§)’ (4.9a)

1 2 2\ 12 2
f,,,=*|:co0<1+ a‘;) ——wo:|z e (4.9b)

4nw,

and

When the coupling is weak, we can neglect the energy stored in the coupling
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Fig. 4.4. Motion of two strongly coupled pendulums with o, = 2w,.

spring and characterize the motion as an interchange of energy between
pendulum A and pendulum B at a rate given by f,,. The pendulum whose
amplitude is increasing is the one that is lagging in phase by 90°, as expected
for a vibrator absorbing power from a driving force at resonance. The two
pendulums alternate as the driver and the driven. When it comes to rest,
the driver suddenly changes phase by 180° so that it can become the driven
vibrator.

In the case where o, = 2w, (a strong coupling), f = 2f, and f, = f,.
The modulation frequency is half the average frequency, so the excursions are
alternately large and small. The kinetic energy is exchanged rapidly between
the two bobs, as shown in Fig. 4.4. The normal mode frequencies in this case
are in a 3:1 ratio: f; = f, and f, = 3f,. The initial conditions that give
the motion in Fig. 4.4 are x,(0) = A, and x5(0) = 0; that is, bob B is held at
its rest point while bob A is displaced and both are released together.

Note that the motions shown in Fig. 4.4 are described by Egs. (4.6a) and
(4.6b), but they could also be obtained graphically from Fig. 4.2 by marking
off appropriate time intervals between 4,/2 and — A4,/2 along both the ¢, and
g, axes. The displacements x, and xy at each time are found by projecting
q,(t) and g,(t) on the appropriate axis and adding them.

In the case of two coupled pendulums, the lower frequency w; is independent
of the coupling strength; this is not true of all coupled oscillations. What is
generally true, however, is that the separation between w, and w, increases
with the coupling strength, as shown in Fig. 4.5.

()

w,

W

Fig. 4.5. Dependence of the mode frequencies on the coupling strength for two coupled
pendulums.
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4.4. Forced Vibrations

We have seen how in a two-mass vibrating system, the motion of each mass
can be described as a superposition of two normal modes. For free vibrations,
the amplitudes and phases are determined by the initial conditions. In a system
driven in steady state, on the other hand, the amplitudes and phases depend
upon the driving frequency. Our intuition tells us that large amplitudes
will occur when the driving frequency is close to one of the normal mode
frequencies.

Consider the two-mass system in Fig. 4.6. The normal mode angular fre-
quencies are w; = /K/m = 0, and w, = \/(K/m) + 2K /m) = \/w} + 20?.
Suppose that a driving force F,coswt is applied to mass A. The equations
of motion are

F,
Xp + (0F + 02)xy — 02xg = ;Ocos ot, (4.10a)
and
Xp + (05 + 0)xp — 0ix, = 0. (4.10b)
Again, we introduce normal coordinates q; = x, + xg and ¢, = x, — Xxg;
we add and subtract Egs. (4.10a) and (4.10b) to obtain

F,
i, + wiq, = ;Ocoswt, (4.11a)

and

F,
4, + 0iq, = Eocos ot, (4.11b)

where w? = w3 and w3 = w3 + 2w?2. Note that the same driving force appears
in both normal mode equations.

These are the equations of two harmonic oscillators with natural frequencies
w; and w, and with no damping. The steady-state solutions are [see Eq. (1.39)]

Fy/m
q, = mcos ot (4.12a)
and
Fy/m
q, = mcos wt. (4.12b)

Fig. 4.6. Two-mass oscillator (compare Fig. 4.1.).
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The displacements of the masses A and B are

_q1+‘I2_Fow%_w2+w§_w2

= =_0 t
AT T T am@ — o)) (@l — o)
= & (@ + @) — o cos wt, (4.13a)
m (0] — 0*)(w3 — ®?)
and
4, —4q; _Fy 0 — 0’ — o} + o?
= = t
s 2 2m (w? — w?) (w3 — wz)cosa)
2
_fo De cOs wt. (4.13b)

m (0} — ®)(@; — w?)

The steady-state displacement amplitudes as functions of w, from Eq. (4.13),
are shown in Fig. 4.7(a). Below the first resonance @, the displacements x,
and xg are in the same direction, whereas above the second resonance w,,
they are in opposite directions. With no damping, the amplitudes approach
infinity at the resonance and the phase jumps abruptly. If damping were
included, the phase would vary smoothly as one goes through the resonances.

Note that at a frequency w, lying between w, and w,, x, goes to zero.
This is called an antiresonance, and it occurs at the natural frequency at which
mass B would oscillate if mass A were fixed. We can easily calculate this
frequency using Eq. (4.13a). x, goes to zero when

®? = 0! + 0? = W = 0wl - wl (4.14)
At this frequency, w3 — w? = —w? and wi — w? = w2, so Eq. (4.13b) gives
the result
Xg _F w? _—FR 1 -F
cosawt|, m(—o?)w) m o K.’

This result appears somewhat paradoxical, for it says that at w = w, the
driven mass does not move but the other mass does. There are several ways
to deal with this paradox (for example, any real driving force cannot have
a single frequency w, because this would imply that it has existed since
t = —o0), but it is perhaps best to note that the paradox does not exist in
a real system with damping, however small. In such a system, x, and x; both
have minimum values at w,, but neither one is zero.

The response of a similar system with damping is shown in Fig. 4.8. If w,
and w, are separated by an amount that is several times greater than their
line widths, then the two normal modes are excited independently at these
frequencies. Below w,, both masses move in phase with the driving force.
At o, they lag the driving force by 90° (see Fig. 1.8), and above w,, the phase
difference is 180°. Between w, and w,, mass A again moves in phase with
the driving force, while above w, mass B does so.
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Fig. 4.7. Frequency response of the two-mass coupled system in Fig. 4.6 to a driving
force applied to mass A. (a) Amplitudes of x, and x5. (b) Absolute values of amplitude
on a logarithmic scale. (c) Phases of masses A and B with respect to the driving force.
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@ Ixal Ixal

Fig. 4.8. (a) Amplitude of mass A or mass B as functions of driving frequency when a
force is applied to mass A. (b) Phases of masses A and B with respect to the driving
force. (c) Phase difference between x, and xg.

4.5. Coupled Electrical Circuits

We have already seen in Chapter 1 the usefulness of equivalent electrical
circuits in understanding mechanical oscillatory systems. We will now con-
sider some examples of coupled electrical circuits that are the bases of useful
equivalent circuits.

The electrical circuit shown in Fig. 4.9 consists of two RLC circuits having
natural frequencies w, and ©, when there is no coupling:

1 1
W, = and Wy, = .
L.C. /A
VAAAN/ M VWAAA
R, ¥\ R, _L
G,

L.
T La Lb

Fig. 4.9. Two RLC circuits coupled by mutual inductance M.
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We consider the effect of coupling through the mutual inductance M exist-
ing between the two inductors. The voltage equations in the two loops
are

di diy, 1
L=+ M=2 4+ Rji, + — | i,dt =
" + Mdt + R,i, + C. jladt 0;
and 4.15)
di di, . 1.
Lbd—: + Md_t + Rblb + EbJ\lbdt = 0.
Differentiating and dividing by L, and L, gives
P My Ry L Lo
L TLE LT
and
. M. R,. |
: M Ree L
Iy + Lbla + Lblb + Lbcblb

Assuming harmonic solutions i, = I,e/*"and i, = I,e’*, replacing 1/L,C, and
1/L,C, by »? and wZ, and assuming R, and R, to be small, we obtain

(@* — )], = —wZI:I.,,
and (4.16)
(0? — wd)I, = —wznla.
Multiplying these two equations together gives
M2
(0? — 0})(w? — i) = w4LaLb = kiw*, 4.17)

where k2 = M?/L,L, is the coupling coefficient. Solving for w gives the
resonance frequencies.
A particularly simple case occurs when w? = w. Then,

(@* — 07)* = K,
w? — w? = +ko?,

and

g
[
H+

The two positive frequencies are

©s a (4.18)

J1+k 1—k%

w, =
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Fig. 4.10. Behavior of the circuit of Fig. 4.9 for three values of the coupling constant k.

The current amplitudes for three different values of coupling are shown in
Fig. 4.10. With tight coupling, a pronounced dip occurs between the peaks
at w, and w,.

If the two circuits are identical (L, = L, = L and C, = C, = (),

o= and o, = o 4.19)

JC(L + M) JCL—M)
These values are shown in Fig. 4.11.
Next, we consider the circuit shown in Fig. 4.12, which consists of two LC
circuits plus a coupling capacitor C.. The differential equations are

. 1 1
Laia + C_aia + _(ia - lb) = Oa

C.

L2

Fig. 4.11. Variation of modal frequencies with mutual inductance M of identical
coupled circits.
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Fig. 4.12. Two LC circuits coupled by a coupling capacitor C..

and

LI
Lblb + C—blb + C—c(lb - la) = 0. (420)

Again, assuming harmonic solutions, i, = I, e’*' and i, = I,e’*, leads to

—w21+1 i+1 I—*~1 I,=0
T L\C CJ)* LcC 7

a a

and
-’ +L<L+L>I _ ! I,=0
" L\C, C.)" LC.
from which
(@* — ), = —lIy,
and 4.21)
(@0* — ), = — i,

Where COZ = (I/Laca) + (l/LaCc)7 wlza = (I/Lbcb) + (I/Lbcc)’ wfc = I/LaCc’
and wZ, = 1/L,C,. Multiplying the above equations together gives

(@ — o) (@* — wy) = = 050 (4.22)

L,L,C?
In the case w, = w,, we obtain
(@* — @]) = L O, 0, = T,
from which @ = \/m , and we obtain the two frequencies
o, = /0! — 0? = w,/1 -k,

and 4.23)
0y = J0? + 0? = w,4/1 + k.

In the special case where L, = L, = L and C, = C,, = C, we can designate
w; = /ol — o? as W,

SO 4.24)

W, = /i + 2w2,
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— 0,

Fig. 4.13. Normal mode frequencies of the circuit in Fig. 4.12. The dashed lines indicate
the uncoupled case (k — 0 or C, — o).

as in the mechanical systems shown in Figs. 4.1 and 4.6. Thus, the circuit in
Fig. 4.12 is the electrical analogue for both these systems, where the coupling
capacitor C, takes the place of the spring K.

It is instructive to plot w as a function of w, from Eq. (4.22). When 0w, =0
(no coupling), we obtain two straight lines (the dashed lines in Fig. 4.13). For
w, > 0, we obtain two curves that approach the dashed lines asymptotically.
Atw, = 0,, 0 = \/w? + »? asin Eq. (4.23). Note that in both limits o, « @,
and w, » w, the normal mode frequencies w, and w, approach those of
the uncoupled modes w, and w,, and the normal modes resemble those of the
uncoupled LC circuits.

4.6. Forced Vibration of a Two-Mass System

A coupled system with wide application is the two-mass system in which a
sinusoidal driving force is applied to mass m,, as shown in Fig. 4.14. This
system is the prototype, for example, of a bass reflex loudspeaker system,
a guitar with the ribs fixed, and the dynamic absorber used to damp machine
vibrations. The equivalent electrical circuit is also shown in Fig. 4.14.

The equations of motion for the two-mass system in Fig. 4.14 are

mi%; + Kyx; + Ky(x; — x,) = Fysinwt,

and
mzxz + Kz(Xz - xl) = 0
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Fysin wt

Fig. 4.14. Two-mass vibrator (a) and its equivalent electrical circuit (b).

Solutions of these equations lead to expressions for the displacement
amplitudes:

X, = (K, — w’m,)F,
e Ky + K, — 0’m) (K, — w*m,) — K3

Fo(w} — ?)

- 425
ol + KoKy — ofl@] —o?) — Kyw?” 2%
and
X, — k,F,
2T Ky +K; - wzml)(KZ - ‘Dzmz) - K%
F 2
0®2 (4.25b)

T om0 + K,/K;) — 0?2](0f — o) — K,0}

Like the two-mass system discussed in Section 4.4, this system has two reso-
nances and one antiresonance. X, goes to zero at the antiresonance frequency
® = w,, and both X, and X, approach infinity when the denominator goes
to zero.

A dynamic absorber consists of a small mass m, and spring K, attached
to the primary vibrating system and selected so that w, = w,. Then, the
amplitude of mass m, goes to zero at the original resonance frequency w,.
Similarly, a bass reflex speaker is often designed so that the resonance frequency
w, of the enclosure is the same as that of the loudspeaker cone w,. Then, the
cone is restrained from moving at its resonance frequency.

In a guitar or violin, m, and K, represent the mass and spring constant
of the top plate, m, is the effective mass of the air in the sound hole, and
K, is the spring constant of the enclosed air. In most instruments, w, is
substantially less than w,;, however.
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4.7. Systems with Many Masses

Consider the system in Fig. 4.15 with four masses and five springs. External
forces f; may act on any or all of the masses, so we have four equations of
motion:

my%; + Kyx; — Ky(x; — xy) = Fy,

my%; + Ky(x; — x1) — Kj(x3 — x3) = F3,
myX;y + K3(x; — x5) — Ky(xs — x3) = F;,

and
m4.£4 + K4(X4 - X3) + K5X4 = F4. (4.26)

Adding the four equations gives

4
Z mijéi =
i=1

Assuming harmonic solutions, x; = X, sin wt leads to four algebraic equations,
in which the coefficients of X, to X, form the determinant:

M

F,— K x; — Ksx,. 4.27)

1

Il
-

d —-K, 0 0
~K, d, -K, 0

0 0 dy -K,|

0 0 -K, d,

A:

where d, =K, + K, —m;0? d,=K, + K3 —myw? dy=K;+ K, ~
myw?, and d, = K, + K5 — myw? The amplitude X, is given by

F, -K, 0 0
1|F, d, —-K; 0
A|F, —K, dy —K,|

F, 0 —K, d,

and the other three amplitudes are given by analogous expressions (Jacobson
and Ayre, 1958).

Fig. 4.15. Four-mass vibrating system.
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4.8. Graphical Representation of Frequency Response Functions

There are several ways to represent the frequency response function of a
vibrating system (see the appendix to this chapter). One useful representation
is a mobility plot illustrated in Fig. 4.16 for a lightly damped system with two
degrees of freedom [a linear two-mass system as in Fig. 1.20(a), for example].
If a force F is applied to mass m,, the driving-point mobility is x,/F and
the transfer mobility is X, /F.

Note that individual mode curves in Fig. 4.16 have slopes of + 6 dB/octave
above and below resonance, as discussed in Appendix A.l. Their phases
relative to the driving force are not indicated, however. In Fig. 4.16(a), both
curves have the same phase (and thus are additive) below the first resonance
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Fig. 4.16. Mobility plot for a lightly damped system with two degrees of freedom: (a)
driving-point mobility and (b) transfer mobility. The lighter curves indicate the contri-
butions from the two normal modes of the system (after Ewins, 1984).
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and above the second one. Between the two resonances, they are subtractive,
however, which leads to an antiresonance where they cross. The opposite
situation occurs in the transfer mobility curves in Fig. 4.16(b), where the curves
are additive between the resonances but subtractive elsewhere. [This same
behavior is noted in Fig. 4.7(b).]

There is a general rule that if two consecutive modes have modal constants
with the same sign, then there will be an antiresonance at some frequency
between the natural frequencies of the two modes. If they have opposite signs,
there will not be an antiresonance, but just a minimum, as in Fig. 4.16(b).
The modal constant is the product of two eigenvector elements, one at the
drive point and one at the response point. In the case of driving-point mobility,
the two points are the same, so the modal constant must be positive. This
leads to alternating resonances and antiresonances, as appear in the driving-
point admittance (mobility) curves in Fig. 3.22 and also in the driving-point
impedance (reciprocal of mobility) curve in Fig. 3.21.

Figure 4.17 shows an example of a transfer mobility curve of a system with
four degrees of freedom (four normal modes). The compliance of this structure
is positive over part of the frequency range and negative over part of it. The
modal constant in this example changes sign from the first to the second mode
(resulting in an antiresonance) but not from the second to the third mode for
the driving and the observation points selected.

40 T Y T T TT 7T T T T T 177
20F E
— ! 4
&
)
i~ oF E
E
=)
3 - L
2
= —20} 4
]
= : -
—40F 4
—60 — " L s 4 2 4 A i " PR WY
1 5 10 50 100
Frequency (Hz)

Fig. 4.17. Example of a transfer mobility curve for a lightly damped structure with four
degrees of freedom. The lighter curves indicate the contributions from the four normal
modes, which contribute to the frequency response function (after Ewins, 1984).
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4.9. Vibrating String Coupled to a Soundboard

In Section 2.12, we considered a string terminated by a nonrigid end support
(such as the bridge of a string instrument). If the support is masslike, the
resonance frequencies will be raised slightly (as if the string were shortened).
On the other hand, if the support is springlike, the resonance frequencies will
be lowered (as if the string were lengthened).

When the string is terminated at a structure that has resonances of its own
(such as the soundboard of a piano or the top plate of a guitar), the situation
becomes a little more complicated. Below each resonance of the structure,
the termination appears springlike, while above each resonance it appears
masslike. Thus, the structural resonances tend to push the string resonances
away from the structural resonance frequency, or to split each string resonance
into two resonances, one above and one below the soundboard resonance.
More correctly described, two new modes of vibration have been created,
both of which are combinations of a string mode and a structural mode. This
is similar to the behavior of the coupled mechanical and electrical vibrating
systems we have considered (see Fig. 4.10 and 4.11).
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x 103

Fig. 4.18. Normal mode splitting as a function of the ratio of string mass m to
soundboard mass M times the mode number 7 on the string when the resonance
frequencies of the string and soundboard mode are the same. 2, and Q_ are the mode
angular frequencies in the coupled system, and Q-values for the soundboard appear
on each curve (Gough, 1981).
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Gough (1981) discusses systems both with weak coupling and strong cou-
pling when w, = wg (string and structural resonances at the same frequency).
Weak coupling occurs when m/n*M < n*/4Qy, where m/M is the ratio of
the string mass to the effective mass of the structural resonance, n is the
number of the resonant mode excited on the string, and Qy is the Q value
of the structural resonance.

In the weak coupling limit, the coupling does not perturb the frequencies
of the two normal modes (when the unperturbed frequencies of the string and
soundboard coincide). However, the damping of the two modes is modified
by the coupling.

In the strong coupling limit m/n*M > 7*/4Q;, however, the coupling splits
the resonance frequencies of the normal modes symmetrically about the
unperturbed frequencies and both modes now have the same Q value of 2Q;.
At the lower frequency, the string and soundboard move in phase, whereas at
the higher frequency, they move in opposite phase.

Figure 4.18 shows the frequency splitting as a function of m/n?M when
the string and soundboard mode frequencies coincide (0, = wg). Q. and Q_
are the mode frequencies in the coupled system, and »n is the number of the
string mode.

The frequencies of the normal modes, when the resonance frequencies of
the string and soundboard are different, are shown in Fig. 4.19 for the weak
and strong coupling cases. The mode frequencies are given by the solid curves
and the half-widths of the resonances by the dashed curves (Gough, 1981).

4.10. Two Strings Coupled by a Bridge

In most string instruments, several strings (from 4 in a violin to more than
200 in a piano) are supported by the same bridge. This leads to coupling
between the strings, which may be strong or weak, depending upon the relative
impedances of the bridge and strings. The discussion of coupled piano strings
by Weinreich (1977) and the discussion of violin strings by Gough (1981) are
especially recommended.

Although an exact description of the interaction of two strings coupled to
a common bridge would require the solution of three simultaneous equations
describing the three normal modes of the system in the coupling direction,
the problem can be simplified by recognizing that the string resonances are
generally much sharper than those of the bridge and soundboard. Thus, close
to a string resonance, the impedance of the bridge can be considered to be
a slowly varying function of frequency.

We consider first the case of two identical strings. When the impedance of
the bridge is mainly reactive, the coupling produces a repulsion between the
frequencies of the normal modes, as shown in Fig. 4.20(a). [This is quite
similar to the behavior of the string—soundboard coupling in Fig. 4.19(b).]
When the impedance of the bridge is mainly resistive, however (as it will be at
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Q, —w,

Fig. 4.21. The normal modes of two nonidentical strings with resistive coupling. Solid
curves give the frequencies and dashed curves the line widths (Gough, 1981).

a resonance of the soundboard), the frequencies of the normal modes coalesce
over a region close to the crossover frequency, as shown in Fig. 4.20(b).
Outside this region, the modes are equally damped by the bridge impedance,
but inside this region, the damping of the normal modes approaches maximum
and minimum values at coincidence (Gough, 1981).

Additional cases are of interest. Figure 4.21 represents the case in which
the admittance of the coupling bridge is complex. Frequencies of the two
normal modes are given for several different phases of the coupling admittance.
Figure 4.22 represents the coupling of two nonidentical strings with resistive
coupling. The coupling still tends to pull the frequencies of the normal modes
together [as in Fig. 4.20(b)], but they coincide only when the unperturbed
frequencies are equal (0, = ®,). As w, — @, = 0, the damping of one mode
approaches zero, while the damping of the other mode increases toward
a maximum value.

Several interesting effects of strings coupled by a bridge are observed in
musical instruments. The compound decay curve for piano sound is a direct
result of coupling between unison strings. The initial decay is fast while the
strings vibrate in phase, but as they fall out of phase, a slower decay rate
characterizes the aftersound (Weinreich, 1977). A violin player can simulate
the effect of a vibrato on the lowest open string by placing a finger on the next
string at the position corresponding to an octave above the bowed string and
rocking the finger back and forth to vary the intensity of the octave harmonic
(Gough, 1981).
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6

Fig. 4.22. The normal modes of a two-string system coupled by a bridge with a complex
impedance. The dotted curve represents the greatest reactance, the solid curve the least
(after Weinreich, 1977).

APPENDIX

A.1. Structural Dynamics and Frequency Response Functions

To determine the dynamical behavior of a structure in the laboratory, we
frequently apply a force F at some point (X, y, z) and determine the response
of the structure at the same point or some other point (x',y’,z"). To describe
the response, we may measure displacement r, velocity v, or acceleration a. In
the simplest case, F, r, v, and a are in the same direction, so we speak of
F, x, v, and a. Some examples of methods used to measure these variables are
as follows:

F can be measured with a load cell or force transducer;

a can be measured with an accelerometer;

v can be measured with a phonograph cartridge and stylus or it can be
determined by integrating a; probing the near-field sound with a micro-
phone provides a pretty good estimate of v at a point on a surface nearby;
and

x can be determined by holographic interferometry or by integrating v
or a.

From these measured variables, we can construct one or more frequency
response functions of interest. These include mobility (v/F), accelerance (a/F),
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Fig. A4.2. Three examples of frequency response functions of a lightly damped oscilla-
tor with a single degree of freedom (after Ewins, 1984).

compliance (x/F), impedance (F/v), dynamic mass (F/a), and stiffness (F/x).
The logarithmic minigraphs in Fig. A.4.1 illustrate how these relate to the
static parameters stiffness K, mass m, and resistance R. If (x, y,z) = (x', ', 2'),
we use the prefix driving point (e.g., driving-point mobility); otherwise, we use
the prefix transfer.

Combining all three elements (mass, stiffness, and resistance) into an oscil-
lator having a single degree of freedom with light damping leads to the
frequency response functions in Fig. A.4.2 (only three of the six functions
are shown). Note the +6 dB/octave slopes at high and low frequency in
the mobility plot, the — 12 dB/octave slope in the compliance plot, and the
+ 12 dB/octave slope in the accelerance plot, consistent with Fig. A.4.1.

Figures A.4.1 and A.4.2 show logarithms of absolute values of the parameters
of interest and therefore are devoid of information about phase. To represent
the phase as well as magnitude of the frequency response function of interest,
a second graph is often added, as in Fig. A.4.3. At a resonance, the phase
changes by 180° (0 to 180° in the compliance plot, 90° to 270° in the mobility
plot, or 180° to 360° in the accelerance plot), as indicated in Figs. 1.12 or 4.8.

Two other ways of indicating phase are shown in Figs. A4.4 and A4.5. In
Fig. A.4.4, the real and imaginary parts of the frequency response functions
are separately plotted as functions of frequency. In Fig. A.4.5, the imaginary
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Fig. A4.5. Nyquist plots show real and imaginary parts of (a) compliance, (b) mobility,
and (c) accelerance.

part is plotted as a function of the real part, with frequency shown as a
parameter on the curve (Nyquist plots).

A.2. Modal Analysis

Modal analysis may be defined as the process of describing the dynamic
properties of an elastic structure in terms of its normal modes of vibration.
Many papers have appeared recently describing the application of modal
analysis to a wide range of structures from fresh apples to large aircraft. Papers
on modal analysis generally deal with either mathematical modal analysis or
modal testing.

In mathematical modal analysis, one attempts to uncouple the structural
equations of motion by means of some suitable transformation, so that the
uncoupled equations can be solved. The frequency response of the structure
can then be found by summing the respective modal responses in accordance
with their degree of participation in the structural motion.

In experimental modal testing, one excites the structure at one or more
points and determines the response at one or more points. From these sets of
data, the natural frequencies (eigenfrequencies), mode shapes (eigenfunctions),
and damping parameters are determined, often by the use of multidimensional
curve-fitting routines on a digital computer. In fact it is the availability of
digital computers and sophisticated software that accounts for the growing
popularity of modal analysis.

Modal testing may be done with sinusoidal, random, pseudorandom, or
impulsive excitation. In the case of sinusoidal excitation, the force may be
applied at a single point or at several locations. The response may be measured
mechanically (with accelerometers or velocity sensors), optically, or indirectly
by observing the radiated sound field. Several good reviews of modal testing
with impact excitation have appeared in the literature (Ewins, 1984; Allemang
and Brown, 1987; Ramsey, 1975/1976; Marshall, 1986; Halvorsen and Brown,
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1977), and this technique has been applied to violins (Marshall, 1985; Jansson
et al., 1986), pianos (Suzuki, 1986; Kindel and Wang, 1987), guitars (Popp et
al., 1985), handbells (Hansen and Rossing, 1986), steel drums (Hansen and
Rossing, 1987), and other musical instruments.

In modal testing with impact excitation, an accelerometer is typically
attached to the structure at some key point and the structure is tapped at
a number of points on a grid with a hammer having a force transducer or
load cell. Each force and acceleration waveform is Fourier transformed, and
a transfer function H(w) is calculated. If a force is applied at i and the response
is measured at j, the transfer function H(w) gives the best estimate of the
frequency response function

SHw)Siw) _ G

B = @@ ~ G

i

where S¥*(w) is the complex conjugate of the force spectrum S;(w), G; is the
power spectrum of the exciting force, and Gj; is the cross spectrum of the force
and response.

Several different algorithms may be used to extract the modal parameters
from the measured frequency response functions. Single-degree-of-freedom
methods include a “peak picking” method, which uses the imaginary (quadra-
ture) component of the response function as the modal coordinate, and a
“circle fit” method, which fits the best circle to the data in the Argand plane
[whose coordinates are the real and imaginary parts of the response function,
as in the Nyquist plot in Fig. A.4.5(a)]. Multidegree-of-freedom methods
generally use a least-squares method to select the modal parameters that
minimize the differences between the measured frequency response function
and the function found by summing the contribution from the individual
modes. Still other methods, such as the complex exponential method and the
Ibrahim method, do the curve fitting in the time domain (Ewins, 1984).

A.3. Finite Element Analysis

The finite element method is a powerful numerical analysis method that can
be used to calculate the vibrational modes of elastic structures. The method
assumes that a structure or system can be modeled by an assemblage of
building blocks (called elements) connected only at discrete points (called
nodes). A complex structure is often divided into a number of familiar sub-
structures, such as plates, beams, shells, and lumped masses.

This concept of modeling a system as a collection of discrete points was
introduced by Courant (1943). His suggestion, that the Rayleigh—Ritz approach
using an assumed response function for the system could be applied to tri-
angular elements, became the mathematical basis for finite element analysis.
The actual finite element terminology was later introduced by Clough (1960)
and others. Clough’s method became widely adopted because digital com-
puters were available to perform the complex numerical calculations.



References 123

Finite element analysis is essentially an extension of matrix structural
analysis methods that have been applied to beams and trusses for some time.
This analysis is based on a set of equations of the form

(w)(K) = (F),

where (u) is a displacement vector, (F) is a force vector, and (K) is the stiffness
matrix in which a typical element K; gives the force F; at the ith node due
to a unit displacement u; at the jth node.

General purpose finite element codes, such as NASTRAN, ANSYS, SAP,
and ADINA, include routines for solving the equations of motion in matrix
form. ‘

M)@) + R)@) + (K)@w) = (F) cos(wt + ),

where (M), (R), and (K) are the mass, damping and stiffness matrices. Smaller
programs adapted from these large, general purpose systems have made it
possible to apply finite element methods to structures of modest size using
microcomputers.

To improve the efficiency of finite element calculations, so-called “eigen-
value economizer” routines are often used. These routines reduce the size of
the dynamical matrix by condensing it around master nodes (Rieger, 1986).
Guidance in the selection of such nodes can often be obtained from the results
of modal testing. In this and others ways, modal analysis and finite element
analysis have become complementary methods for studying the dynamical
behavior of large and small structures, including musical instruments.
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CHAPTER 5

Nonlinear Systems

Many of the mechanical elements comprising a musical instrument behave
approximately as linear systems. By this we mean that the acoustic output is
a linear function of the mechanical input, so that the output obtained from
two inputs applied simultaneously is just the sum of the outputs that would
be obtained if they were applied separately. For this statement to be true for
the instrument as a whole, it must also be true for all its parts, so that
deflections must be proportional to applied forces, flows to applied pressures,
and so on. Mathematically, this property is reflected in the requirement that
the differential equations describing the behavior of the system are also linear,
in the sense that the dependent variable occurs only to the first power. An
example is the equation for the displacement y of a simple harmonic oscillator
under the action of an applied force F(t):
2 d

m% + Rd% + Ky = F(r), (5.1)
where m, R, and K are respectively the mass, damping coefficient, and spring
coefficient, all of which are taken to be constants. Then, if y, (¢) is the solution
for F(t) = F,(t), and y,(t) that for F(t) = F,(t), the solution for F = F, + F,
willbe y =y, + y,.

A little consideration shows, of course, that this description must be an over-
simplification (Beyer, 1974). Mass is indeed conserved (apart from relativistic
effects), but spring coefficients cannot remain constant when displacements
approach the original dimensions of the system, nor can we expect damping
behavior to remain unchanged when turbulence or other complicated effects
intervene. It is therefore important to know how to treat such nonlinearities
mathematically so that we can make use of these techniques when we come
to examine the behavior of real musical instruments. Mathematically, the
problem is one of solving equations like Eq. (5.1) when at least one of the
coefficients m, R, or K depends on the dependent variable y. In interesting
practical cases, we will nearly always be concerned with small deviations from
linearity, so that these coefficients can be expanded as rapidly convergent
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power series in y or dy/dt, provided y is small compared with the dimensions
of the system.

One sort of problem exemplified by Eq. (5.1) is a percussion instrument or
a plucked string instrument in which the forcing function F(t) is external, of
limited duration, and given quite explicitly. The behavior of such impulsively
excited oscillators or resonators is relatively simple, as we shall see presently.

More complex, more interesting, and inherently more nonlinear is the
situation encountered in steady-tone instruments, such as bowed strings or
windblown pipes. Here, the forcing function F(t) consists of a steady external
part (the bow velocity or the blowing pressure) whose effect on the system is
somehow determined by the existing amplitude of the oscillation. Thus, for
example, the force between a bow and a string depends upon their relative
velocities, while the flow through a reed valve depends upon the pressure
difference across it. In this case, Eq. (5.1) is generalized to

az d d
m%—i—Rd—i]—{-Ky:F(y,%,t), (5.2)

where again m, R, and K may be weak functions of y. For such a system, as
we shall see presently, the whole behavior depends quite crucially upon the
various nonlinearities present in the coefficients and in the function F.

5.1. A General Method of Solution

The systems we shall meet in musical instruments will ultimately prove to be
much more complex than described by an equation like Eq. (5.2) since musical
oscillators such as strings, plates or air columns generally have infinitely many
possible vibrational modes rather than just a single one, but we can learn
a great deal as a necessary preliminary by studying the nonlinear oscillator
described by Eq. (5.2). In fact, musical instruments generally consist of a nearly
linear resonator, the string, plate, or air column, described by the left-hand
side of Eq. (5.2), excited by a generator F, which has quite nonlinear behavior.
The nonlinearity in F is crucial to the description of the system.

For convenience of notation, we rewrite Eq. (5.2) in the form

¥+ gy =gy 51), (53)
where a dot signifies d/dt, o, is the resonant frequency,

Wy = <5>1/2, (5.4)

m

and
_F—R}'}
T oom

g = f— 2ay, (5.5)

where we have written f = F/m and 2a = R/m.
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If the damping, nonlinearity, and driving force on the system are all small,
so that g — 0 in Eq. (5.3), then the solution has the sinusoidal form

y(t) = asin(wyt + @), (5.6)

where a is the amplitude and ¢ is the phase of the oscillation. If g is not
identically zero but is small compared with the terms on the left side of
Eq. (5.3), then it is reasonable to suppose that the true solution may have
a form like

y(t) = a(t) sin[weot + ¢(1)], (5.7)

where a and ¢ are both slowly varying functions of time. Now from Eq. (5.7),
it is clear that

y = asin(wet + @) + a(w, + §) cos(wet + ¢). (5.8)

This is a rather complicated expression, and it is clear that a given behavior
of y and y as functions of time could be described in several ways depending
on how this functional dependence was partitioned between d and ¢. There is
a great simplification if we can arrange matters so that

y = awqy cos(wyt + ¢), (5.9)
which requires that
asin(wot + @) + adcos(wyt + ¢) = 0. (5.10)

If we assume Eq. (5.10) to have been satisfied and substitute Egs. (5.7) and (5.9)
into Eq. (5.3), then we find

dwgy cos(wot + @) — awydsin(wyt + ¢) = g. (5.11)

Since Eqgs. (5.10) and (5.11) must be satisfied simultaneously, we can solve for
d and ¢ to obtain

a= icos(a)ot + ¢), (5.12)
W

and

j— 9
0= awg sin(wot + @), (5.13)

where g is written in terms of y and y given by Egs. (5.7) and (5.9).

The essence of the approximation is now to neglect all terms in Eqgs. (5.12)
and (5.13) except those that vary slowly in comparison with w,. The resulting
trends are then denoted by {a)> and (4>, respectively. When Egs. (5.12) and
(5.13) are substituted back into Eq. (5.7), we find that the effective frequency
at a given time ¢ is w, + {¢), and the amplitude is

a(t) = a(ty) + J t {aydt. (5.14)

Within this approximation, it is thus possible to calculate the entire behavior
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of the system once its initial state is known. We shall use this formalism quite
extensively in our later discussion.

5.2. Illustrative Examples

If this approach is to be convincing, then it is necessary, of course, that it
reproduce, with adequate accuracy, the standard results for simple cases. To
see that this does happen without undue labor, let us examine a few typical
examples.

First, consider the simple damped system with no external forcing. For this
case, in Eq. (5.5), f =0 and g = —2ay. Thus, from Eq. (5.12), (&) = —aa,
while from Eq. (5.13), (#> = 0. The solution is therefore

a(t) ~ a(ty)e ™" sin(wyt + @), (5.15)

which is in adequate agreement with the exact solution, provided o « w.
Next, take the case of a damped harmonic oscillator driven at some
frequency w that is close to its resonance. Here,

g = fsinwt — 2ay, (5.16)
so that, from Egs. (5.12) and (5.13),

@ = Jjosin[(w — wo)t — ¢] — aa, (5.17)

and

() = — cos[(w — we)t — ¢]. (5.18)

2aw,

The actual motion of the system clearly depends upon the amplitude and
phase of its initial state, but the important thing to check is the final steady
state as t — o0. If (¢ is to be constant, then from Eq. (5.18), we must have

¢ = (0 — wy)t + ¢y, (5.19)
so that

(P = — oS - (5.20)

2awm,
The requirement that Egs. (5.19) and (5.20) be consistent gives
2awg(w — wg)
5
so that the oscillator vibrates with frequency w, + {¢$> = w, in synchronism

with the external force. The steady amplitude for which {d) = 0 is given by
Eq. (5.17) as

Cos gy = — (5.21)

a=—; I sin g, (5.22)

0wy
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or, using Eq. (5.21),

|al

f |:1 B 4a’wi(w — coo)z:|1/2

~ 200, f?
S (0 — wo)?
> S [1 - ] (5.23)

which is the response near the top of a normal resonance curve. The phase
difference ¢, between the force and the resulting displacement is also correctly
given, being —90° at resonance (as shown in Fig. 1.12).

The method set out in Section 5.1 is called, for obvious reasons, the method
of slowly varying parameters (Van der Pol, 1934; Bogoliubov and Mitropolsky,
1961; and Morse and Ingard, 1968). In nearly all cases, it allows us to calculate
the entire time evolution of the system from a given initial state simply by
integrating Egs. (5.17) and (5.18), a procedure that must generally be carried
out numerically. The results again agree quite closely with the exact solutions,
where these can be obtained, subject only to the restrictions that w is close to
e and that small terms of higher frequency are neglected in the solution.

The method can also be used in an obvious way to follow the behavior
of nonlinear oscillators. A simple example is the case in which the spring
parameter K of the oscillator gets progressively stiffer or weaker as the
displacement y increases, for example, as K — K + fmy?*. This example was
treated by a different method in Chapter 1. Referring now to Egs. (5.3)—(5.5),
we find that

g = f(t) — 2ay — By*. (5.24)

The resulting form of Eq. (5.3) is known as Duffing’s equation. Some of its
more interesting properties have been discussed by Prosperetti (1976) and by
Ueda (1979). This expression [Eq. (5.24)] can be simply inserted in the (- )
forms of Egs. (5.12) and (5.13), and these equations integrated to give the
behavior.

If f(¢) is a sinusoidal excitation of frequency w, then we can readily calculate
the steady response curve of the oscillator. Two cases were shown in Fig. 1.22,
thatfor = b/m > 0, which corresponds to a spring that hardens with increas-
ing amplitude, and that for = b/m < 0, which corresponds to a softening
spring. The overhanging part of the curve represents an unstable situation and
the oscillator exhibits amplitude transitions with hysteresis, as shown by the
broken lines in Fig. 5.1. These transitions are given by integration of Egs. (5.17)
and (5.18).

It is useful at this stage to recall the treatment of Duffing’s equation given
in Chapter 1. The solution given by Egs. (1.79) and (1.80) similarly describes
the steady-state resonance curve of Fig. 5.1, or the earlier Fig. 1.22, and indeed
gives information about the third harmonic as well. Our present method,
however, allows us, in addition, to calculate the approach to the steady state
or to follow other time-varying phenomena. If f(t) is zero after an initial
impulsive supply of energy, for example, then the equations show that, as the
amplitude decays toward zero in a more or less exponential manner, the
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Fig. 5.1. The steady frequency response of a nonlinear oscillator of the Duffing type
excited by an external sinusoidal force. The dotted curves show the response for a
smaller exciting force, while the vertical broken lines show transitions as the frequency
is swept with a constant exciting force.

frequency glides from its large-amplitude value toward its limiting small-
amplitude value along the spine of the curve.

5.3. The Self-Excited Oscillator

Of particular interest in musical instruments, and indeed in many fields of
electronic technology as well, is an oscillator that is arranged so as to modulate
some external steady flow of air, electricity, or some other quantity, with
a part of the resulting modulated flow then being fed back in an appropriate
phase to excite the oscillator. The system equation has the general form

J+ iy =93y (5.25)

where the form of g depends on the arrangement of the system, and the
magnitude of g is related to the magnitude of the external force, which provides
energy to drive the oscillator.
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The best known case is the Van der Pol (1934) oscillator, for which
g = ya(l - »). (5.26)

Inserting this into Eq. (5.3), we see that the damping of the oscillator is nega-
tive for y* < 1 and positive for 3> > 1. Oscillations of small amplitude thus
tend to grow, while oscillations of large amplitude are damped. There is a stable
oscillation regime or “limit cycle” of amplitude a = 2 for which the energy
losses when y > 1 just balance the energy gains when y < 1. The oscillations
are fairly closely sinusoidal, provided a is not very much greater than unity
but, of course, there is some admixture of higher odd harmonics.

The behavior of a Van der Pol oscillator and indeed of other similar self-
excited systems is well encompassed by our formalism, and simple insertion
of the appropriate form of g(y, y) into the {---) forms of Egs. (5.12) and (5.13)
provides a prescription from which the development of the system can be
calculated. Discussion of specific cases will be left until the underlying physical
systems have been introduced, but a few general comments are in order. The
most important are the observations that the quiescent state y = 0 is always
a possible solution, but that this state is unstable to small fluctuations dy, dy,
if the part of g(dy, y) in phase with dy is positive. If this is true, then such
fluctuations will lead to growth of the displacement y. The second important
set of generalizations inquires whether or not the oscillation settles into
a stable limit cycle. This depends on the detail of the nonlinearity and thus
upon the physics of the system. Clearly, all musically useful systems do settle
to a stable cycle of nonzero amplitude.

5.4. Multimode Systems

All real systems of finite extent have an infinite number of possible vibration
modes and, in musically useful resonators, these modes are generally nearly
linear in behavior and have well-separated characteristic frequencies, often in
nearly harmonic relationship. This does not mean that musical oscillating
systems are nearly linear, but rather that such systems usually consist of
a nearly linear multimode resonator excited by some nonlinear feedback
mechanism.
Suppose that the equation describing wavelike propagation in the oscillator
has the form
2
Ly — Qf— =0, (5.27)
ot
where % is some linear differential operator typically involving V2 or V4.
If we separate variables by writing solutions to this equation as products
of spatial functions and a time variation like sinwt, then the eigenvalue
equation is
LY, + o2, = 0 (5.28)

where the eigenfrequencies w, are determined from the requirement that the



132 5. Nonlinear Systems

eigenfunctions , should satisfy appropriate boundary conditions, usually
¥, = 0 or Vi, = 0, at the surfaces of the resonator.

If we extend Eq. (5.27) to include on the right side a force of unit magnitude
(in appropriate units) and frequency w applied at the point r, then this
equation becomes

ZG, + 0*G, = —0(r —1y), (5.29)

where d(r —ry) is the Dirac delta function, and we have written ¥ as
G, (r,1y), which is the Green function for the system at frequency w, taken to
obey the same boundary conditions as do the y,. If we assume that G,, can be
expanded as

G, (r, 1) = Zaw (5.30)
and substitute this into Eq. (5.29), then, using Eq. (5.28),
Y. a(@F — @*),(r) = 6(r — xo). (5.31)

If we multiply both sides by ,(r) and integrate over the whole volume of the
resonator using the usual orthonormality condition

fmmmmmzam (5.32)

then we find an expression for g, that, substituted back into Eq. (5.30), gives
Yn(To) (1)

G,(rry) = En: wfo— P (5.33)

Clearly, this Green function has simple poles at ® = +w,, where the w, are
the resonance frequencies of the system.

Since the resonator system is assumed to be linear, and since G(r,r,) is the
response caused by a force of unit magnitude and frequency w applied at r,
we can write the general response W to a set of forces of different frequencies
w and phases @ and distributed over the resonator like the functions F,(r)
as the simple sum

Y, )=) [JGm(r, rO)Fw(ro)dr0:| sin(wt + 6). (5.34)
This formulation does not include damping. It could be included as an
extension to the linear theory and has the effect of moving the poles of G,
slightly off the real axis, but it is more conveniently incorporated along with
nonlinear effects at a later stage.

The essential feature of Eq. (5.34) for our present purpose is expressed
by Eq. (5.33), which shows that the mode y, with frequency w, is excited
principally by force components with frequency w lying close to w,. Indeed,
if we write the excitation of this nth mode in the form

Yn = ausin(@t + ¢,)¥, (1), (5.35)
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when it is being driven at frequency w by a force F,(r,) applied at the point
ro, then Egs. (5.33) and (5.34) are equivalent to the sum of the results from
the set of differential equations:

Vo + @2y, = F,sin(wt + 6,,). (5.36)

If we retain in Eq. (5.36) only those force components F,, with frequencies
near w,, then we can apply the method of slowly varying parameters as
developed previously for a simple oscillator. The forcing term on the right side
can be written to include the damping term — 2a, y, and, in a general situation,
it will contain driving forces with frequencies near w, derived from nonlinear
terms involving many of the other modes of the system. In general, therefore,
Eg. (5.36) has the form

n+ 02 Yn = GuVs Vs 3 I I -+, (5.37)

and we omit from g, as explicitly evaluated, all terms except those for which
the frequency is close to w,.

Equation (5.37) is a shorthand way of writing an infinite set of coupled
differential equations, one for each of the modes w,. In practice, however, the
very high frequency modes will have small excitation amplitudes, so that the
system can be reduced to a finite and indeed relatively small set of N coupled
equations describing those modes that are appreciably excited. Each of these
equations can be manipulated to give <d,> and <{g,>, and the resulting 2N
equations can be easily integrated numerically to define the behavior of the
system.

Clearly, the linear physics of a musical system resides in the study of the
modes ¥, and their characteristic frequencies w,,, while the nonlinear physics
involves elucidation of the coupling functions g,. Both these matters are quite
specific to individual systems, so we will not consider particular examples at
this stage of our discussion.

As with simple oscillators, so multimode systems can be divided into those
that are purely dissipative and can be excited only by an impulsive or time-
varying external force, and those that are self-exciting with only a steady
external supply of energy. Gongs are typical examples of the former class and
can exhibit many interesting phenomena as energy is passed back and forth
between the modes by the agency of the nonlinear coupling terms g,. Musical
instruments producing steady tones, such as winds or bowed strings, belong
to the second class.

5.5. Mode Locking in Self-Excited Systems

For many musical resonators, such as stretched strings or air columns in pipes,
the normal mode frequencies are very nearly, but not quite, in integral ratio.
Precisely harmonic systems do not exist. Now, if the coupling function g, in
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Eq. (5.37) is linear or has no nonlinear terms involving combinations of
different modes, then the system becomes essentially uncoupled and each
mode takes on an excitation frequency close to its natural frequency w,. These
frequencies are never precisely in integer ratios, so the resulting total excitation
has a nonrepeating waveform.

Sustained tones from real musical instruments do, however, have precisely
repeating waveforms, apart from deliberate vibrato effects, and so their in-
dividual modes must be somehow locked into precise frequency and phase
relationships despite the inharmonicities of the natural resonances. It is
important to see how this is accomplished (Fletcher, 1978).

Consider a system for which just two modes are appreciably excited by the
feedback mechanism and suppose that their natural frequencies w, and w,, are
related approximately, but not exactly, as the ratio of the two small integers
n and m:

mw, x nw,,. (5.38)

Now, from Eq. (5.38), the leading nonlinear term by which mode m can provide
a driving force at nearly the frequency of mode n involves the amplitudes
a, and a,, in the form ala™ . Similarly, mode n can influence mode m in
proportion to ajal~*. The coefficients of these terms depend upon the Taylor
expansion of the nonlinear driving functions g, and g, respectively, and
generally decrease sharply as n and m increase. These two functions will be of
the same general form but may differ in detail. The directions in which the
frequencies of modes m and n are pushed by their {¢) terms in Eq. (5.13) will
depend upon the combinations of phase angles ¢, and ¢,, involved, and these
will vary rapidly if the two modes are not locked together. Once locking
occurs, however, this represents a stable situation. This argument can be
generalized to the case of more than two interacting modes.

The conditions favoring mode locking are thus that the inharmonicity of
the modes not be too great, that the integers n and m linking the modes be as
small as possible, that the mode amplitudes be large, and that the nonlinearity
of the coupling function be as large as possible. When these conditions are
fulfilled, then all modes contributing to an instrumental sound will rapidly
settle down to give a phase and frequency locked repetitive waveform. This
situation is specially favored when one of the dominant modes excited by
the feedback mechanism is the fundamental, for then m = 1 and the integer
combination is as simple as possible.

Conversely, the conditions favoring nonlocking of modes and thus the
production of complex multiphonic effects are great mode inharmonicity
(often produced by peculiar venting arrangements in wind instruments), a
low excitation level, and preferential excitation of modes other than the
fundamental. The complexity of the possible variations on this theme makes
it desirable to consider it in the context of particular instruments. We shall
therefore return to make use of this discussion and of the more precise
analytical results derived in this section at several stages in our treatment of
musical instruments.
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Part 11
Sound Waves



CHAPTER 6

Sound Waves in Air

The sensation we call sound is produced primarily by variations in air pressure
that are detected by their mechanical effect on the tympana (ear drums) of our
auditory system. Motion of each tympanum is communicated through a
linked triplet of small bones to the fluid inside a spiral cavity, the cochlea,
where it induces nerve impulses from sensory hair cells in contact with a thin
membrane (the basilar membrane). Any discussion of details of the physiology
and psychophysics of the hearing process (Stevens and Davis, 1938; Gulick,
1971) would take us too far afield here. The important point is the dominance
of air pressure variation in the mechanism of the hearing process. Direct
communication of vibration through the bones of the head to the cochlea is
possible, if the vibrating object is in direct contact with the head, and intense
vibrations at low frequencies can be felt by nerve transducers in other parts
of the body, for example in the case of low organ notes, but this is not part of
the primary sense of hearing.

The human sense of hearing extends from about 20 Hz to about 20 kHz,
though the sensitivity drops substantially for frequencies below about 100 Hz
or above 10 kHz. This frequency response is understandably well matched to
human speech, most of the energy of which lies between 100 Hz and 10 kHz,
with the information content of vowel sounds concentrated in the range of
300 Hz-3 kHz and the information content of consonants mostly lying above
about 1 kHz. Musical sounds have been evolved to stimulate the sense of
hearing over its entire range, but again most of the interesting information lies
in the range of 100 Hz-3 kHz.

Since the ears respond to pressure only in their immediate vicinity, we
devote this and the following chapter to a discussion of the way in which
pressure variations—sound waves—propagate through the air and to the.
way in which vibrating objects couple to the air and excite sound waves.

6.1. Plane Waves

Waves will propagate in any medium that has mass and elasticity, or their
equivalents in nonmechanical systems. Solid materials, which have both shear
and compressive elasticity, allow the propagation of both shear (transverse)
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and compressive (longitudinal) waves so that their behavior can be very com-
plicated (Morse and Feshbach, 1953, pp. 142—151). Fluids, and in particular
gases such as air, have no elastic resistance to shear, though they do have
a viscous resistance, and the only waves that can propagate in them are
therefore longitudinal, with the local motion of the air being in the same
direction as the propagation direction of the wave itself.

When sound waves are generated by a small source, they spread out in all
directions in a nearly spherical fashion. We shall look at spherical waves in
detail a little later. It is simplest in the first place to look at a small section of
wave at a very large distance from the source where the wave fronts can be
treated as planes normal to the direction of propagation. In the obvious
mathematical idealization, we take these planes to extend to infinity so that
the whole problem has only one space coordinate x measuring distance in
the direction of propagation.

Referring to Fig. 6.1, suppose that £ measures the displacement of the air
during passage of a sound wave, so that the element ABCD of thickness dx
moves to A’'B'C'D’. Taking S to be the area normal to x, the volume of this
element then becomes

_ ¢
V+dV—de<1+5;>. (6.1)

Now suppose that p, is the total pressure of the air. Then the bulk modulus
K is defined quite generally by the relation

av

dp, = ~K—. .
p= —K%; 62)

We can call the small, vary'ng part dp, of p, the sound pressure or acoustic
pressure and write it simply as p. Comparison of Eq. (6.2) with Eq. (6.1), noting
that V is just Sdx, then gives

o¢

p=—Kz. (6.3)

Finally, we note that the motion of the element ABCD must be described by

A A’ C C
N [ T
T i
| dx I
l< ~N|
Area I dx(1 + 0/0x) | _—
N : : Wave
. 5 . : direction
< & + (6¢/0x) dx
] 1
B B’ D D’

Fig. 6.1. In passage of a plane wave of displacement &, the fluid on plane AB is displaced
to A'B’ and that on CD to C'D'.
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Newton’s equations so that, setting the pressure gradient force in the x
direction equal to mass times acceleration,

2
—S(fjgdx> = dexa ¢

0x o2’
or
op 0%
Then, from Egs. (6.3) and (6.4),
0%t K 0%
22> 6.5
o2 p ox*’ 65)

or, differentiating Eq. (6.5) again with respect to x and Eq. (6.3) twice with
respect to t,
’p K d*p

W - ;W. (6-6)

Equations (6.5) and (6.6) are two different versions of the one-dimensional
wave equation, one referring to the acoustic displacement ¢ and the other to
the acoustic pressure p. They apply equally well to any fluid if appropriate
values are used for the bulk modulus K and density p. For the case of
wave propagation in air, we need to decide whether the elastic behavior is
isothermal, and thus described by the equation

p.V = constant = nkT, 6.7)

where T is the absolute temperature, or whether it is adiabatic, and so
described by
p.V’ = constant, (6.8)

where y = C,/C, = 1.4 is the ratio of the specific heats of air at constant
pressure and at constant volume, respectively, and p,, as before, is the average
atmospheric pressure.

Clearly, the temperature tends to rise in those parts of the wave where the
air is compressed and to fall where it is expanded. The question is, therefore,
whether appreciable thermal conduction can take place between these two sets
of regions in the short time available as the peaks and troughs of the wave
sweep by. It turns out (Fletcher, 1974) that at ordinary acoustic wavelengths
the pressure maxima and minima are so far apart that no appreciable conduc-
tion takes place, and the behavior is therefore adiabatic. Only at immensely
high frequencies does the free-air propagation tend to become isothermal. For
sound waves in pipes or close to solid objects, on the other hand, the behavior
also becomes isothermal at very low frequencies—below about 0.1 Hz for
a 20 mm tube. Neither of these cases need concern us here.

Taking logarithms of Eq. (6.8) and differentiating, we find, using Eq. (6.2),

K = yp,, (6.9
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so that Eq. (6.6) becomes

?p  ,0%
where
K _7 (6.11)
p P

and similarly for ¢ from Eq. (6.5). As we shall see in a moment, the quantity ¢
is the propagation speed of the sound wave.

It is easy to verify, by differentiation, that possible solutions of the wave
equation [Eq. (6.10)] have the form

p(x,0) = fi(x — ct) + f,(x + cp), 6.12)

where f, and f, are completely general continuous functions of their arguments.
We can also see that f;(x — ct) represents a wave of arbitrary spatial shape
f1(x — xo) or of arbitrary time behavior f;(ct, — ct) propagating in the +x
direction with speed c. Similarly, f,(x + ct) represents a different wave
propagating in the — x direction, also with speed c. In the case of air, or any
other nearly ideal gas, Eqs. (6.7) and (6.11) show that

T 1/2
co(T)= <—> c(Ty), (6.13)
T,
where ¢(T) is the speed of sound at absolute temperature T. There is, however,
no variation of ¢ with atmospheric pressure. For air at temperature AT degrees
Celsius and 509 relative humidity,

¢~ 332(1 + 0.00166 AT) m s, (6.14)

giving ¢ & 343 m s™! at room temperature.

The wave equation [Eq. (6.10)] was discussed in detail in Chapter 2
in relation to waves on a string, and its two-dimensional counterpart in
Chapter 3. There is no need to repeat this discussion here except to remind
ourselves that it is usual to treat Eq. (6.10) in the frequency domain where the
solutions have the form

p = Ae **ei® 4 Beikxgiot (6.15)

where k = w/c and the A and B terms represent waves traveling to the right
and the left, respectively. [If we adopt the conventions of quantum mechanics
and write time dependence as exp(—iwt), as for example in Morse (1948),
then j should be replaced by —i.]

If we consider a wave of angular frequency w traveling in the + x direction,
then we can set B =0 and A = 1 in Eq. (6.15) and write

p = e %%l _ cos(—kx + wt), (6.16)

where the second form of writing is just the real part of the first. From Eq. (6.5),
¢ has a similar form, though with a different amplitude and perhaps a phase
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factor. We can connect p and & through Eq. (6.4), from which

o¢
jkp = joawr— .1
Jkp = jpor=, (6.17)
or, if we write u for the acoustic fluid velocity 0&/0t and remember that
k = w/c, then
p = pcu. (6.18)

The acoustic pressure and acoustic fluid velocity (or particle velocity) in the
propagation direction are therefore in phase in a plane wave.

This circumstance makes it useful to define a quantity z called the wave
impedance (or sometimes the specific acoustic impedance):

z=P = pe. (6.19)

u

It is clearly a property of the medium and its units are Pam ™' sorkgm™~2s7%,

sometimes given the name rayls (after Lord Rayleigh). For air at temperature
AT°C and standard pressure,

pc ~ 428(1 — 0.0017 AT) kg m~2 s, (6.20)

In much of our discussion, we will need to treat waves in 3 space dimensions.
The generalization of Eq. (6.10) to this case is

%p
ot?

This differential equation can be separated in several coordinate systems
to give simple treatments of wave behavior (Morse and Feshbach, 1953,
pp. 499-518, 655-666). Among these are rectangular coordinates, leading
simply to three equations for plane waves of the form of Eq. (6.10), and
spherical polar coordinates, which we consider later in this chapter.

Before leaving this section, however, we should emphasize that we have
consistently neglected second-order terms by assuming p « p,, so that the
resulting wave equation [Eq. (6.10) or Eq. (6.21)] is linear. This is of great
assistance in development of the theory and turns out to be an adequate
approximation even in very intense sound fields such as exist, for example,
inside a trumpet. At even higher intensities, however, and well below the
shock-wave limit, nonlinear terms begin to have a detectable effect (Beyer,
1974). It will not be necessary for us to use such extensions of the theory in
this book.

= ¢2V?p. (6.21)

6.2. Spherical Waves

When we assume a time dependence exp jwt, the wave equation, Eq. (6.21),
takes the form
V2p + k?*p =0, (6.22)
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where k = w/c. This is known as the Helmholtz equation and is separable,
and therefore relatively easily treated, in rectangular, spherical polar, and
cylindrical polar coordinates. In spherical coordinates,

, Lo ,op 1 a(. .op 1 0%

Vir= ﬁ&(’ 5) Y sin0%<sm0%> tantaag (02
and the solution to Eq. (6.22) is the sum of a series of products of radial
functions multiplied by spherical harmonics. The intensity pattern in the wave
can therefore be very complicated. Of particular interest, however, is the
simplest case in which p has no dependence on 6 or ¢ but spreads uniformly
from a single point at the origin.

For such a simple spherical wave, Eq. (6.23) becomes

vip= 2 2<r26—”>, (6.24)

and we can simplify matters even further by writing p = y/r, giving for

Eq. (6.22)
2

0

— + kW =0, 6.25
57‘2 + ./l ( )
which is just the one-dimensional wave equation. The general solution for p
is therefore a superposition of an outgoing and an incoming wave given by

A _. B . .
p= <7 ek 4 7e”"> el (6.26)

To find the acoustic particle velocity u we use the equivalent of Eq. (6.4)
in the form

ou op

—=—-Vp=—212, 6.27
P, p o (6.27)

where the second form of writing is possible since p depends only on r and .

Explicitly then, from Eq. (6.27) for the case of an outgoing wave (B = 0),

u= i(1 + L) e kreion, (6.28)
rpc Jjkr

In the far field, when r is much greater than one wavelength (kr » 1), u is
simply p/pc as in the plane wave case, as we clearly expect. Within about one
sixth of a wavelength of the origin, however, kr become less than unity. The
velocity u then becomes large and shifted in phase relative to p.

The wave impedance for a spherical wave depends on distance from the
origin, measured in wavelengths (i.e., on the parameter kr), and has the value

_p_ jkr
z="_=pc (1 +jkr>' (6.29)

Near the origin, |z| « pc, while |z| - pc for kr » 1.
The behavior of spherical waves with angular dependence involves more
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complex mathematics for its solution (Morse, 1948, pp. 314—321), and we will
not take it up in detail here, though we will meet the topic again in the next
chapter.

6.3. Sound Pressure Level and Intensity

Because there is a factor of about 10° between the acoustic pressure at the
threshold of audibility and the limit of intolerable overload for the human ear,
and because within that range subjective response is more nearly logarithmic
than linear (actually, it is more complicated than this—see Gulick, 1971,
pp. 108—134; Rossing, 1982, Chapter 6), it is convenient to do something
similar for acoustic pressures. We therefore define the sound pressure level
(SPL or L,) for an acoustic pressure p to be

14
L, = 20log,, (E)’ (6.30)

measured in decibels (dB) above the reference pressure p,. By convention both
p and p, are rms values and p, is taken to be 20 uPa, which is approximately
the threshold of human hearing in its most sensitive range from 1 to 3 kHz.
On this SPL scale, 1 Pa is approximately 94 dB and the threshold of pain is
about 120 dB. The normal range for music listening is about 40 to 100 dB. It
is usual, however, to specify sound pressure levels in the environment after
applying a filter (Type-A weighting) to allow for the decreased sensitivity of
human hearing at low and high frequencies. The SPL is then given in dB(A).

The sensitivity of normal human hearing is shown in Fig. 6.2, as originally

Fig. 6.2. Equal loudness curves for human hearing. The curve marked MAF (minimum
audible field) is the nominal threshold of binaural hearing for pure tones, and the
120-phon curve is the threshold of pain.
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determined by Fletcher and Munson (1933). Each contour passes through
points of subjectively equal loudness and is labeled with a loudness level in
phons, taken by definition to be the SPL associated with that contour at a
frequency of 1 kHz. The normal threshold of hearing for pure tones is a few
decibels above the 0 phon contour, and the threshold of pain, or at least
discomfort, is at about 120 phon. The A-weighting curve used in specifying
environmental (or musical) noise (or sound) levels is approximately the inverse
of the 0 phon contour.

Because human hearing responds to acoustic pressure at a point, or rather
at two points corresponding to two ears that have little acoustic coupling,
the sound pressure level is usually the relevant quantity to specify. The SPL,
however, depends on the environment and in particular on the reverberant
quality of the space in which the sound source and listener are situated. In
many cases, it is more useful physically to know the acoustic energy carried
through a surface by sound waves. This quantity is called the acoustic intensity
I and is measured in watts per square meter. Again, a logarithmic scale is
convenient, and we define the intensity level (IL or L) to be

1
L= 1010g10<1—> (6.31)
)

in decibels. [ The factor is 10 rather than 20 as in Eq. (6.30) since I is proportional
to p2.] The reference intensity I, is taken as 1072 W m~2, which makes the
SPL and the IL very nearly equal for a plane wave. For a standing wave, of
course, the sound pressure level may be large, but the intensity will be small
since the intensities in the two waves tend to cancel because of their opposite
propagation directions.

To evaluate the intensity of a plane wave, we first calculate the energy
density as a sum of kinetic and potential energy contributions and then
average over space and time. This energy is transported with the wave speed c,
so we just multiply by c to get the results. Without going into details (Kinsler
et al., 1982, p. 110), we find the result

2
I=peur =2 = pu, (6.32)

pc

where p and u are taken as rms quantities (otherwise, a factor of £ should be
inserted into each resuit).

Analysis for a spherical wave is more complex (Kinsler et al., 1982, p. 112)
because much of the kinetic energy in the velocity field near the origin—
specifically the part associated with the term 1/jkr in Eq. (6.28)—is not
radiated because of its 90° phase shift relative to the acoustic pressure. The
radiated intensity is given as in Eq. (6.32) by

2

;=P

= (6.33)
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where an rms value of p is implied, but the other forms of the result in
Eq. (6.32) do not apply.
The total power P radiated in a spherical wave can be calculated by
integrating I(r) over a spherical surface of radius r, giving
4nr?p(r)?
=

P (6.34)

From Eq. (6.26), P is independent of r, as is obviously required. To get some
feeling for magnitudes, a source radiating a power of 1 mW as a spherical
wave produces an intensity level, or equivalently a sound pressure level, of
approximately 79 dB at a distance of 1 m. At a distance of 10 m, assuming
no reflections from surrounding walls or other objects, the SPL is 59 dB.
These figures correspond to radiation from a typical musical instrument,
though clearly a great range is possible. The disparity between this figure and
the powers of order 100 W associated with amplifiers and loudspeakers is
explained by the facts that the amplifier requires adequate power to avoid
overload during transients and the normal operating level is only a few watts,
while the loudspeaker itself has an efficiency of only about 1% in converting
electrical power to radiated sound.

6.4. Reflection, Diffraction, and Absorption

When a wave encounters any variation in the properties of the medium in
which it is propagating, its behavior is disturbed. Gradual changes in the
medium extending over many wavelengths lead mostly to a change in the wave
speed and propagation direction—the phenomenon of refraction. When the
change is more abrupt, as when a sound wave in air strikes a solid object,
such as a person or a wall, then the incident wave is generally mostly reflected
or scattered and only a small part is transmitted into or through the object.
That part of the wave energy transmitted into the object will generally be
dissipated by internal losses and multiple reflections unless the object is very
thin, like a lightweight wall partition, when it may be reradiated from the
opposite surface.

It is worthwhile to examine the behavior of a plane pressure wave
A exp(—jkx) moving from a medium of wave impedance z, to one of imped-
ance z,. In general, we expect there to be a reflected wave Bexp(jkx) and a
transmitted wave C exp(—jkx). The acoustic pressures on either side of the
interface must be equal, so that, taking the interface to be at x = 0,

A+B=C. (6.35)

Similarly, the displacement velocities must be the same on either side of the
interface, so that, using Eq. (6.19) and noting the sign of k for the various
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waves,
A—B

23

= g (6.36)
Z3

We can now solve Eqgs. (6.35) and (6.36) to find the reflection coefficient:

B_z—n 6.37)

A z,+z, '
and the transmission coefficient:

C 2

R (6.38)

A z,+ 2z,

These coefficients refer to pressure amplitudes. If z, = z,, then B =0 and
C = A as we should expect. If z, > z,, then, from Eq. (6.37), the reflected wave
is in phase with the incident wave and a pressure maximum is reflected as
a maximum. If z, < z,, then there is a phase change of 180° between the
reflected wave and the incident wave and a pressure maximum is reflected as
aminimum. If z, > z, or z, « z,, then reflection is nearly total. The fact that,
from Eq. (6.38), the transmitted wave will have a pressure amplitude nearly
twice that of the incident wave if z, > z, is not a paradox, as we see below,
since this wave carries a very small energy.

Perhaps even more illuminating than Egs. (6.37) and (6.38) are the corre-
sponding coefficients expressed in terms of intensities, using Eq. (6.32). If the
incident intensity is I, = A?/z,, then the reflected intensity I, is given by

I, Zy — 21 \2
— = , 6.39
I, (zz + zl> ( )

and the transmitted intensity I, by

I, 4zyzy

K B (z2 + z1)% (640

Clearly, the transmitted intensity is nearly zero if there is a large acoustic
mismatch between the two media and either z, » z; or z, « z,.

These results can be generalized to the case of oblique incidence of a plane
wave on a plane boundary (Kinsler et al., 1982, pp. 131-133), and we then
encounter the phenomenon of refraction, familiar from optics, with the re-
ciprocal of the velocity of sound ¢; in each medium taking the place of its
optical refractive index.

All these results can be extended in a straightforward way to include cases
where the wave impedances z; are complex quantities (r; + jx;) rather than
real. In particular, the results [Eqs. (6.39) and (6.40)] carry over directly to
this more general situation, the reflection and transmission coefficients then
depending upon the frequency of the wave.

If the surface of the object is flat, on the scale of a sound wavelength, and
its extent is large compared with the wavelength, then the familiar rules
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of geometrical optics are an adequate approximation for the treatment of
reflections. It is only for large areas, such as the walls or ceilings of concert
halls, that this is of more than qualitative use in understanding behavior
(Beranek, 1962; Rossing, 1982; Meyer, 1978).

At the other extreme, an object that is small compared with the wavelength
of the sound wave involved will scatter the wave almost equally in all direc-
tions, the fractional intensity scattered being proportional to the sixth power
of the size of the object. When the size of the object ranges from, for example,
one-tenth of a wavelength up to 10 wavelengths, then scattering behavior is
very complex, even for simply shaped objects (Morse, 1948, pp. 346-356;
Morse and Ingard, 1968, pp. 400—449).

There is similar complexity in the “sound shadows” cast by objects. Objects
that are very large compared with the sound wavelength create well-defined
shadows, but this situation is rarely encountered in other than architectural
acoustics. More usually, objects will be comparable in size to the wavelength
involved, and diffraction around the edges into the shadow zone will blur its
edges or even eliminate the shadow entirely at distances a few times the
diameter of the object. Again, the discussion is complex even for a simple plane
edge (Morse and Ingard, 1968, pp. 449—-458). For the purposes of this book,
a qualitative appreciation of the behavior will be adequate.

Even in an unbounded uniform medium, such as air, a sound wave is
attenuated as it propagates because of losses of various kinds (Kinsler et al.,
1982, Chapter 7). Principal among the mechanisms responsible are viscosity,
thermal conduction, and energy interchange between molecules with differing
external excitation. If we write

k —»fg —ja, (6.41)

so that the wave amplitude decays as exp(—ax) for a plane wave or as
(1/ryexp(—ar) for a spherical wave, then «, or rather the quantity 8686a
corresponding to attenuation in decibels per kilometer, is available in standard
tables (Evans and Bass, 1986). In normal room air with relative humidity
greater than about 509, most of the attenuation is caused by molecular energy
exchange with water vapor. The behavior is not simple, but for a frequency f,
in hertz, it has roughly the form

ax 4 x 1077f, 100 Hz < f < 1 kHz,

6.42
a~1x 10712 2KkHz < f < 100 kHz (642

If the relative humidity is very low, say less than 20%, then « is increased by
as much as a factor 10 over most of this frequency range. For completely dry
air, « is increased by nearly a factor 30 below 100 Hz but is decreased by
a factor of about 4 between 10 kHz and 100 kHz.

For many musical applications in small rooms, this absorption can be
neglected, but this is not true of large concert halls, since the absorption at
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10 kHz amounts to about 0.1 dB m™!. This gives a noticeable reduction in
brightness of the sound at the back of the hall.

More important, in most halls, is the absorption of sound upon reflection
from the walls, ceilings, furnishings, and audience. If an impulsive sound
is made in a hall, then the sound pressure level decays nearly linearly, corre-
sponding to an exponential decay in sound pressure. The time Ty, for the level
to decay by 60 dB is known as the reverberation time. Details of the behavior
are complicated, but to a first approximation Ty, is given by the Sabine
equation:

0.161V

60 = S ws,” (6.43)

where V is the hall volume (in cubic meters) and the S; are areas (in square

meters) of surface with absorption coefficients ;. Satisfactory reverberation

time is important for good music listening but depends on building size and

musical style. For a small hall for chamber music, Ty, may be as small as 0.7 s,

for a large concert hall, it may be 1.7 to 2 s, and for a large cathedral suitable

for nineteenth century organ music, as long as 10 s (Meyer, 1978; Beranek,
1962, pp. 555-569).

In musical instruments, we will often be concerned with sound waves
confined in tubes or boxes or moving close to other surfaces. In such cases,
there is attenuation caused by viscous forces in the shearing motion near
the surface and by heat conduction from the wave to the solid. Both these
effects are confined to a thin boundary layer next to the surface, the thickness
of which decreases as the frequency increases. The viscous and thermal
boundary layers have slightly different thicknesses, d, and 4,, given by (Benade,
1968)

” 1/2
N -12 o 1. -3,-1/2
o, <2np> f 1.6 x 1073112
and (6.44)

2
5= ()" 12 x 19 x 10732
' \2npC, ’

where p is the density, # the viscosity, k the thermal conductivity, and C, the
specific heat of air (per unit volume). For sound waves in musical instruments,
these boundary layers are thus about 0.1 mm thick. We shall return to consider
these surface losses in more detail in Chapter 8.

6.5. Acoustic Components at Low Frequencies

Although most of the instruments we deal with in music have dimensions
comparable with the wavelength of the sound they produce, there are often
parts of those instruments that are quite small and can be analyzed separately.
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Examples are the mouthpiece cups of brass instruments, the finger holes of
woodwinds, and the f holes of violins. All these have dimensions much smaller
than a wavelength, so that the pressure is uniform throughout, and their
acoustic behavior is, at least to a first approximation, very simple.

In Eq. (6.19), we defined a wave impedance z, which related acoustic
pressure p to acoustic particle velocity u. We now need to define a related
quantity for the case of a wave propagating into an aperture of area S. This
we call the acoustic impedance at the aperture, and it is defined by

p p
Z= U su (6.45)
where U = Su is the acoustic volume velocity. There is no specific name for
the units of acoustic impedance (Pa m~3 s) but, by analogy with electricity,
the unit is often called an acoustic ohm. To get a feel for magnitudes, we
can note that for a wave propagating into an infinite straight duct of cross
section S there is no reflected wave and from Egs. (6.45) and (6.19) the input
impedance, also called the characteristic impedance in this case, is

z, =" (6.46)
S
For a cylindrical tube 20 mm in diameter, such as we might encounter in a
woodwind instrument, Z, ~ 1.4 x 10° acoustic ohms or 1.4 acoustic megohms.
The acoustic megohm is thus a convenient unit of acoustic impedance when
we are dealing with musical instruments. In passing, we note that it is some-
times convenient to use the acoustic admittance Y, defined by

Y=2" (6.47)

In the simple case of an infinite tube, p and U are always simply propor-
tional, so that Z is a real number. This is not generally true, and we need to
define Z at a particular angular frequency w. For a pressure wave p with
a time variation exp(jwt), Z and Y are then complex numbers with a phase
shift. We shall usually take this into account by splitting Z and Y into real
and imaginary parts and writing

Z=R+jX,

and (6.48)
Y =G +jB.

All these definitions are completely general and we will apply them extensively
in later chapters, but first let us look at small components in the low-frequency
limit (Beranek, 1954).

A short, open tube is a simple starting point. We suppose that an acoustic
pressure p at frequency w is applied to one end only and we calculate the
resulting volume flow. If S is the cross section and L the length of the tube,
then the enclosed air behaves like a simple slug of air of mass pLS under the
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and the acoustic impedance of the cavity is

_ ()L
Z. = ( v >ja) (6.57)

By analogy with the electrical case, such an impedance is capacitive or, more
properly, compliant. The compliance is V/pc?.
The third case we consider is acoustic flow through a perforated plate or
a plug of wool fiber, the dimensions of the passages of which are small, ideally
less than the boundary layer thicknesses J, and 8, defined in Eq. (6.44). The
flow is then dominated by viscous and thermal losses and is in phase with
the driving pressure, so that
p=RU, (6.58)

where R is determined by the number, size, and length of the aperture channels.

For this case,
Z. =R, (6.59)

and the behavior is simply resistive.

All common small acoustic components can be described by a combination
of Z\uve> Zecavitys and Z, . To illustrate this, we consider two configurations
of a simple combination of the three elements in the form of a Helmholtz
resonator, as shown in Fig. 6.3. This was discussed briefly in Section 1.6.2.
In Fig. 6.3(a), the resonator is driven by an external sound wave, while in
Fig. 6.3(b), it is driven by the motion of a part of the wall. In each case, we

()

Fig. 6.3. Two versions of the Helmholtz resonator. In (a), the resonator is excited by
an external acoustic wave of pressure p,, while in (b), it is excited by the motion of a
small piston of area S, . The network describing case (a) is shown in (c), and the network
describing case (b) is shown in (d).
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action of a force pS, so that we write

dv
= pLS—
pS=p i

or (6.49)
_pLdU . (pL
P=s _]<S oU.
The acoustic impedance of the tube is therefore

L
Z, = (%) o). (6.50)

By analogy with the electrical case (pressure — voltage, volume flow — current)
we may call pL/S an acoustic inductance or, more properly, an inertance. We
shall see later, in Section 8.3, that end effects associated with the conversion
of the plane wave motion in the tube to spherical wave motion outside its
open end add to its geometrical length L an end correction AL, which, for
an unflanged circular pipe of radius a, has the value 0.62a. If the end of the
pipe protrudes through a plane baffle of a size much larger than a wavelength,
then AL is 0.85a. We shall accommodate this in our formulas by using an
effective length:

L'=L+ AL. (6.51)

An important practical case in musical instruments is that of a hole of area
S in a flat plate of small thickness. Allowing for the baffle effect of the plate
and for an end correction on both sides, we find for this case

L'~ 2AL ~ S'?, (6.52)

with the exact value depending on the shape of the hole.

Next, consider a simple cavity of volume V. From Eq. (6.2), if an acoustic
pressure p = dp, is applied to the cavity, then its volume will decrease by
an amount —dV given by

=—-K d (6.53)
p - V ] N
where K is the bulk modulus of air at atmospheric pressure p,, given by
Eqgs. (6.9) and (6.11) as
K = yp, = pc2. (6.54)

If the volume occupied by the original gas decreases by —dV, then a further
volume —dV of air can flow into the cavity. For a volume flow U,

U

—dV=J‘Udt='—, (6.55)
jo

so that

2 2 U
p="|va=(P")", (6.56)
| 4 V Jjo
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suppose, realistically, that the tube has viscous losses at its walls and radiation
losses at its open end—a point to which we return in the next chapter. Since
the inductive impedance Z, and the resistance Z, both impede the flow, they
are effectively in series.

In case (a), the flow through this combination clearly enters the cavity, so
that the acoustic circuit is as in Fig. 6.3(c). It is always well to show cavities
with several input connections since this can be the situation in practice. Here,
p; is the external acoustic pressure and p the pressure inside the cavity.
Clearly,

D1

= 6.60
Z+Z 127, (6.60)
and
p=Z.U. (6.61)
From the explicit forms of Egs. (6.50), (6.57), and (6.59) then,
P1 (6.62)

U= ,
R + j(pL'w/S — pc*/Vw)

where L’ includes the end correction AL. This is a simple resonance curve of
the sort we examined in Chapter 1. The resonance frequency is

S 1/2
W = C(Z_V> , (6.63)

and the flow has its maximum value, p,/R, at this frequency. The Q of
the resonance is determined by the value of R. Correspondingly, the input
impedance at the entry to the tube has its minimum value R at w,. From
Eq. (6.61), the internal pressure p is also a maximum at @, and, indeed, it was
for this purpose that Helmholtz devised his spherical resonator, a small nipple
at the base of the sphere serving to communicate the internal pressure to
the ear.

The arrangement in Fig. 6.3(b) has the same network as shown in Fig. 6.3(d),
but external connections are different. Instead of the open tube being fed by
an external pressure generator of zero, or at least very low, internal impedance,
this port is effectively short circuited, the radiation impedance being taken
into account in AL and R. The input, correspondingly, now appears as
a volume flow U, injected into the cavity. The equations describing the
network are

p=Z +2Z)U=2(U,-0), (6.64)
from which
Zc Ul

U= P 6.65
Z+Z +Z, (6.65)

The flow through the open mouth is again a maximum at ®,, but the
mechanical input impedance Z ., defined as force divided by velocity at
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the driving point, is

_pSt_(Z. +2)Z.S?

Z = = >
mech U1 Zr + Zt + Zc

(6.66)

which is a maximum at w,.

We encounter the Helmholtz resonator in several places in this book, for
it is the acoustic analog of the mechanical simple harmonic oscillator. For the
present, it has served largely to illustrate the general behavior of combinations
of small acoustic elements at low frequencies.
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CHAPTER 7

Sound Radiation

In Chapter 6, we discussed some of the basic properties of sound waves and
made a brief examination of the way sound waves are influenced by simple
structures, such as tubes and cavities. In the present chapter, we take up
the inverse problem and look at the way in which vibrating structures can
generate sound waves. This is one of the most basic aspects of the acoustics
of musical instruments—it is all very well to understand the way in which
a solid body vibrates, but unless that vibration leads to a radiated sound wave,
we do not have a musical instrument. We might, of course, simply take the
fact of sound radiation for granted, and this is often done. This neglects,
however, a great deal of interesting and important physics and keeps us from
understanding much of the subtlety of musical instrument behavior.

Our plan, therefore, will be to look briefly at the properties of some of the
simplest types of sources—monopoles, dipoles, and higher multipoles—to see
the behavior we might expect. We then look at radiation from vibrating
cylinders, since vibrating strings are so common in musical instruments, and
then go on to the much more complicated problem of radiation from the
motion of reasonably large and more-or-less flat bodies. These are, of course,
the essential sound-radiating elements of all stringed and percussion in-
struments. The radiation of sound from the vibrating air columns of wind
instruments presents a related but rather different set of problems that we defer
for discussion in Chapter 8.

7.1. Simple Multipole Sources

The simplest possible source is the point source, which is the limit of a
pulsating sphere as its radius tends to zero. Suppose the sphere has a small
radius a and that the pulsating flow has a frequency w and amplitude

Q = 4na*v(a), (7.1)

where v(a) is the radial velocity amplitude at the surface. This object clearly
generates a spherical wave, and, from our discussion in Chapter 6 and specifi-
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cally from Egs. (6.26) and (6.28), the pressure and velocity amplitudes in such
a wave at radius r are given by

p(r) = (A/r)e ", (7.2)
and

A j .
o(r) = —(1 - J—) e, (1.3)

pcr kr
Matching Eq. (7.3) to Eq. (7.1) on the surface of the sphere and assuming
ka « 1, we find a value for 4 from which Eq. (7.2) gives

pir) = Qe . (7.4)

This result does not depend on the sphere radius a, provided ka « 1, and so
it is the pressure wave generated by a point source of strength Q. Such a source
is also called a monopole source. Its radiated power P is simply 1p?/pc
integrated over a spherical surface, whence

wZ 2
P= 82?. (71.5)

Note that for a given source strength Q the radiated power increases as the
square of the frequency.

The next type of source to be considered is the dipole, which consists of
two simple monopole sources of strengths + Q separated by a distance dz, in
the limit dz — 0. A physical example of such a source is the limit of a small
sphere oscillating to and fro. Referring to Fig. 7.1, if . and r_ are, respectively,
the distances from the positive and negative sources in the dipole to the
observation point (r,6), then the acoustic pressure at this point is, from

Ba. (7.4) _ [ Jjop ek, gikr_ 7.6
=% )5 0. (7.6)

_Q

Fig. 7.1. A dipole source. In the limit dz — 0, Q — oo, the dipole moment is u = Q dz.



158 7. Sound Radiation

As dz — 0, this difference can be replaced by a differential, so that
: —jkr
b= jop @ (e > 0d:

AN

w?p 1 .
= 1+— |e™* 0, 7.7

4ncr< + jkr>e peos @.7)
where we have let Q —» oo as dz — 0, so that the dipole moment u = Qdz
remains finite. The velocity field can be found by taking the gradient of p as
usual. In the far field, where kr >» 1, Eq. (7.7) can clearly be simplified by
neglecting 1/jkr relative to 1. The radiated power P is simply

1((p* ;. w*pp’
=—||—= did¢g = . 7.8
P 2jJ‘pcr sin 0 d6 d¢ Yanc® (7.8)

The power radiated by a dipole is thus a very strong function of frequency,
and dipole sources are very inefficient radiators at low frequencies. From
Eq. (7.7), the radiation is concentrated along the axis of the dipole.

The process of differentiating the field of a monopole to obtain that of
a dipole, as expressed in Eq. (7.7), can be thought of as equivalent to reflecting
the monopole source, and its radiation field, in a pseudomirror, which changes
the sign of the source. The limit operation as we go from Eq. (7.6) to Eq. (7.7)
is equivalent to moving the source closer and closer to the mirror plane.

The next step in complication is to reflect the dipole in another mirror
plane, as shown in Fig. 7.2, to produce a quadrupole. This can be done in two
ways to produce either an axial (longitudinal) quadrupole, in which the four
simple poles lie on a straight line, or a plane (lateral) quadrupole, in which
they lie at the corners of a square. The sign of the reflection is always chosen
so that the quadrupole has no dipole moment. A physical example of a
quadrupole source is a sphere, vibrating so that it becomes alternately a
prolate and an oblate spheroid.

The pressure field for a quadrupole can be found by differentiating that for
a dipole, Eq. (7.7), either with respect to z for an axial quadrupole or x for a
plane quadrupole. To find the far-field radiation terms, the differentiation can
be confined to the exponential factor. If the monopole source strength is Q,

(o]

e O|lO ©
(¢]
[ ]

—
»
-
—_
o
-
—_

C

-~

)

Fig. 7.2. Generation of two possible configurations of a quadrupole by successive
reflection of a monopole, with a sign change on each reflection: (a) monopole, (b) dipole,
(c) axial quadrupole, and (d) planar quadrupole.
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then we clearly have the following sequence of results for the far-field pressure
generated by monopole, dipole, and quadrupole sources, respectively:

. C itr
Pm=Jjk (—’;ﬁ) e v, (7.9)
d .
ps= —k? (” fgzr Z> cos(r, z)e =¥, (7.10)
and
dzd .
p, = —jk* (%) cos(r, z) cos(r, x)e ¥, (7.11)

The notation is obvious and, for an axial quadrupole, x is replaced by z in
Eq. (7.11). The important points to note are the increasingly complex angular
behavior and more steeply decreasing radiation efficiency at low frequencies
as we proceed through the series.

7.2. Pairs of Point Sources

To guide our later discussion, it is now helpful to examine briefly the radiation
behavior of combinations of several point sources whose separation is not
necessarily small compared with the sound wavelength. First, let us treat the
case of two monopoles of strength Q separated by a distance d as shown in
Fig. 7.3. The sources can be of either the same or opposite sign, and we seek
the pressure p at a large distance r > d in direction 8. For r ~ d, the expression
is complicated, as in Eq. (7.6), but for r > d, we have

PR (j:uprQ)e—jkr(eI/ijdcosﬂ + e—1/2jkdcoso), (7.12)
T

where the plus sign goes with like sources and the minus sign with sources of

Fig. 7.3. Radiation from a pair of separated monopoles.
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opposite phases. The absolute value of the square of p is

2 _ pr 2 2 l . ein2 1
Ip |_<2nr> [cos <2kdcos(9 ; sin 2kdcos@ , (7.13)

where cos? goes with the plus and sin? with the minus sign. The total radiated
power is then

1 PN 5 . _ 0*pQ? sin kd
P—2JJ<; r“sinfdfd¢ = y— 1+ | (7.14)

The results in Eqgs. (7.13) and (7.14) contain a great deal of information.
From Egq. (7.13), the angular variation of the acoustic intensity p2/pc is very
complex if kd is not small relative to unity, and there are many values of 6 for
which the intensity vanishes, whether the two sources are in phase or out of
phase. From Eq. (7.14), however, the behavior of the total radiated power is
much simpler. Comparing Eq. (7.14) with the result in Eq. (7.5) for a monopole
source of strength Q, we see that if kd < 1 then the radiated power is either
zero or four times that for a single source, corresponding to coherent superposition
of the radiation from the two monopoles. On the other hand, if kd > 1, then
P is just twice the value for a single source, irrespective of the phases of the
two sources, corresponding to incoherent superposition of the individual
radiations. The transition between these two forms of behavior is shown in
Fig. 7.4. This important general result is true of the radiation from any two
sources, irrespective of exact similarity. If the separation between the sources
is greater than about half a wavelength (kd > 3), then the total radiated power
is very nearly equal to the sum of the powers radiated by the two sources

(++)

p/p, 2}

0 10 20
kd
Fig. 7.4. Total power P radiated from a pair of monopoles of the same (+ +) or

opposite (+ —) phase and separation d, as functions of the frequency parameter kd.
The power radiated from an isolated monopole is P,.
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treated independently. A more detailed treatment along the same lines as that
given above (Junger and Feit, 1986, Chapter 2) gives information about the
angular variation of acoustic intensity and of the acoustic pressure in the
near-field region where r ~ d, this pressure generally being higher than given
by the far-field approximation [Eq. (7.12)] if used for the near field. These
details need not concern us here.

7.3. Arrays of Point Sources

In some fields of acoustics, for example in sonar, we need to be concerned with
arrays of point sources all related in phase. Something rather similar may
apply to radiation from the open finger holes of a woodwind instrument. More
usually, we will be concerned with radiation from an extended vibrating
source, such as a drumhead or a piano soundboard, which is divided by nodal
lines into areas vibrating in antiphase with their neighbors. It is instructive to
look at the point-source approximations to these systems.

Suppose we have a line of 2N sources of strength Q, each separated from
its neighbors by a distance d. If we choose the origin to be at the midpoint of
the line of sources, then, by analogy with Eq. (7.12), the acoustic pressure p at
a distance r > 2Nd is

ps z(j(:pg>e—ﬂ" ). (& I [ee et 1 g--iDides] - (7.15)
- r n=1

where the plus sign applies to a line of sources all with the same phase and the
minus sign to a line in which the phase alternates between 0 and 7. We rewrite
Eq. (7.15) as

< (19P2\ -iwr ¥ n 1 .
pi~<4nr >e ";(il) 2cos|(n 5 kdcos9 |;

2jsin |:<n — %) kd cos 9:|}, (7.16)

where the cosine form refers to p, and the sine form to p_. These series are
readily summed from Eq. (7.15) to give

JjopQ\ ;.| sin(Nkdcos6)
z —_— ——— .1
P+ < 4nr )e [sin(%kd cosb) |’ (7.17)
and
JopQ\ . [(=1)"sin(Nkd cos 0)
- r . 71
P < 4nr >e |: cos(3kd cos 6) (7-18)

These results indicate a rather complex radiation pattern in the 8 coordinate,
but the important features are immediately clear. Let us look first at the case
where the sources are all in phase, giving radiated acoustic pressure p... The
term in square brackets in Eq. (7.17) is always large when 6 = 90°, the zero in
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the numerator being balanced by one in the denominator, and has at that
angle the value 2N. The radiation intensity at 8 = 90° is thus equivalent to
that from a source of strength 2NQ, and, from the form of the bracket, the
width of this radiation lobe in radians is approximately 2n/Nkd = A/Nd,
where A is the acoustic wavelength. If kd < 2x or 4 > d, then this is the only
large maximum of the term in square brackets, which is of order unity at all
other angles. The radiation pattern of the array at low frequencies is thus as
shown in Fig. 7.5(a).

If the frequency is higher, so that 1 < d or kd > 2x, then the denominator
in the square brackets of Eq. (7.17) can vanish at other angles 8* for which

. _ . —1f2nm
0* = cos <kd >, (7.19)
and this will have solutions for one or more values of the integer n. Each zero
in the denominator is again balanced by a zero in the numerator, and the
bracket again has the value 2N. The radiation pattern now has the form shown
in Fig. 7.5(b), with more lobes added at higher frequencies.

The total power radiated by the in-phase array can be found by integrating
the intensity p2 /pc over the surface of a large sphere surrounding the source.
The behavior is broadly similar to that shown for the in-phase source pair
in Fig. 7.4, except that the high-frequency power approaches NP, and the

(@) (b) (©

Fig. 7.5. Radiation intensity patterns for (a) a linear co-phase array of sources of
separation d for kd < 2n or A > d; (b) a co-phase array for kd > 2r, 1 < d; and (c) an
antiphase array for kd > n, A < 2d. There is very little radiation from an antiphase
array with kd < 7, 1 > 2d.
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low-frequency power approaches N2P, when the wavelength is greater than
the length of the entire array, P, being the power radiated by a simple source
of strength Q.

The antiphase array, with radiated pressure p_, behaves rather differently.
If A > 2d so that kd < =, then there are no zeros in the denominator and the
term in square brackets is of order unity at all angles 0. The radiated pressure
is thus only comparable with that from a single source of strength Q and the
radiation process is very inefficient. Most of the flow of the medium is simply
a set of closed loops from one source to its antiphase neighbors and, though
the acoustic pressure is actually large at distances less than about d from the
source line, very little of this escapes as radiation.

At frequencies sufficiently high that A < 2d or kd > =, a frequency that is
half that for an in-phase source, zeros occur in the denominator of Eq. (7.18)

for angles 6* given by
6* = cos™! [WJ (7.20)

for one or more positive integers n. The radiation pattern then has the form
shown in Fig. 7.5(c), and the total radiated power becomes approximately
NP,.

We can extend these methods to the practically important case of a square-
grid array of antiphase sources as a prototype for the radiation to be expected
from the complex vibrations of plates or diaphragms. It is not necessary to go
through this analysis in detail, however, since the important results can be
appreciated from the linear case treated above. If the centers of the antiphase
regions, represented in the model by point sources, are less than about half of
the free-air acoustic wavelength apart, then the radiation efficiency is low
(assuming the numbers of co-phase and antiphase sources to be equal) and
about equivalent to that of a single simple source. Except in the case of bells,
this is nearly always the situation for the free vibrational modes of plates,
shells, and diaphragms in musical instruments, because the speed of transverse
mechanical waves in the plate is generally much less than the speed of sound
in air. However, these modes can be driven at higher frequencies by externally
applied periodic forces, and the radiation condition can then be satisfied, as
we discuss further in Section 7.6.

7.4. Radiation from a Spherical Source

Although a spherical source pulsating in radius would not at first sight seem
to be a good model for any musical instrument, it turns out that the radiation
from a source with a pulsating volume, such as a closed drum, is very little
dependent on its shape provided its linear dimensions are small in comparison
to the relevant sound wavelength in air. We will, however, look at radiation
from a pulsating sphere rather more generally than this.
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Suppose that the sphere has radius a and pulsates with surface velocity
uexp(jot). If we set this equal to the radial velocity at distance a from a simple
source, as given by Eq. (7.3), then from Eq. (7.2) the acoustic pressure at
distance r becomes

jocka*u (1 —jka\ .. .
= ), 21
p(r) r <1 + k%a? ¢ (7.21)
There are obvious simplifications if ka « 1. The radiated power P is then
2npck?a*u?
= 7.22
1 + k%a® (7.22)
2
s 2mpca’u? = g;gz if kax1 (7.23)
2
- 2npe(ka)*a*u® = <’8’CQ2> (ka> if ka1, (7.24)
na

where Q is the volume flow amplitude of the source. For a given surface
velocity u, the radiated power per unit area increases as (ka)? while ka « 1 but
then saturates for ka > 1. Most musical instruments in this approximation
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Fig. 7.6. Real and imaginary parts of the mechanical load R, + jX,, on the surface of
a sphere of radius a pulsating with frequency w and velocity amplitude u. R, and X,
are given in units of pcS, where S = 4na®. R and X are corresponding acoustic
quantities in units of pc/S (after Beranek, 1954).
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operate in the region ka < 1, so that, other things being equal, there is usually
an advantage in increasing the size of the flexible radiating enclosure.

It is also useful to know the mechanical load on the spherical surface. From
Eq. (7.21), this is simply

k2a® + jka

F = 4ra’p(a) = pcS (W

>u = (R, +jXu, (7.25)
where S = 4rna? is the area of the sphere. The real part R, u of this force, which
increases as (ka)® until it saturates at pcSu, represents the dissipative load of
the radiation. The imaginary part X ,u, which increases as ka for ka < 1 and
decreases as (ka)™! above ka = 1, represents the mass load of the co-moving
air. Equation (7.25) is plotted in Fig. 7.6. The load on pulsating volume sources
of all shapes behaves very similarly. Also shown in Fig. 7.6 are the acoustic
quantities R and X, defined by Egs. (6.45) and (6.48). From the definition, these
are just 1/S? times their mechanical counterparts.

7.5. Line Sources

The only common line sources in musical acoustics are transversely vibrating
strings. As a first approach, it is convenient to idealize such a string as
a cylinder of infinite length and radius a, vibrating with angular frequency
. Such a source has a dipole character, so that, from the discussion of
Section 7.1, we expect it to be an inefficient radiator at low frequencies.

A detailed discussion of this problem is given by Morse (1948, pp. 299-300).
All that we need here are the final results for intensity I and total radiated
power P for ka « 1. These are

34,2
npw’a*u
I~ (T) cos ¢, (7.26)
and
2.3.4,2
prtw3atu
Pry— o —, 7.27
4c? (7.27)

where uexp jowt is the vibration velocity of the string. The waves are, of course,
cylindrical. Clearly, there is a very strong dependence on both w and a and,
in fact, the directly radiated acoustic power is almost negligibly small for the
string diameters and frequencies commonly met in musical instruments.

For the vibration of a string in its fundamental mode, the infinite cylinder
approximation is reasonable, but for higher modes we must recognize that
adjoining sections of string vibrate in antiphase relation. Since the transverse
wave velocity on the string is significantly less than c, these string sections are
separated by less than half the sound wavelength in air, so there is an addi-
tional cause for cancellation of the radiated sound intensity, as discussed in
Section 7.3.
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It is therefore reasonable to neglect the contribution of direct radiation
from vibrating strings to the sound of musical instruments. It is only when
a vibrating cylinder has a quite large radius, as in the cylinders of tubular bells,
that direct radiation becomes significant.

7.6. Radiation from a Plane Source in a Baffle

Few, if any, musical radiators consist of some sort of moving part set in
an infinite plane baffle, but we examine the behavior of this system because
it is the only case for which a simple general result emerges. Fortunately, it
also happens that replacement of the plane baffle by an enclosure of finite size
does not have a really major effect on the results, though the changes are
significant.

Referring to Fig. 7.7, suppose that the area S on an otherwise rigid plane
baffle is vibrating with a velocity distribution u(r') and frequency w normal to
the plane, all points being either in phase or in antiphase. The small element
of area dS at r' then constitutes a simple source of volume strength u(r') ds,
which is doubled to twice this value by the presence of the plane which restricts
its radiation to the half-space of solid angle 2z. The pressure dp produced by
this element at a large distance r is

dp(r) =12P g~ —rly () gs. (7.28)
2nr

If we take r to be in the direction (0, ¢) and r’ in the direction (7/2, ¢'), then we

r(0,¢)

ds
0% #)

Fig. 7.7. A vibrating plane source set in an infinite plane baffle. Radiation pressure is
evaluated at a point at a large distance r in the direction shown.
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can integrate Eq. (7.28) over the whole surface of the plane, remembering that
u = 0 outside S, to give

p(r,0,¢4) = J..w_pe—jkr J‘ Jejkr' sin 0cos(¢-¢’)u(l.r)r, d¢' dr'. (7.29)
2nr s

The integral in Eq. (7.29) has the form of a spatial Fourier transform of the
velocity distribution u(r’). This is our general result, due in the first place to
Lord Rayleigh.

It is now simply a matter of algebra to apply Eq. (7.29) to situations of
interest. These include a rigid circular piston and a flexible circular piston
(Morse, 1948, pp. 326—335) and both square and circular vibrators excited in
patterns with nodal lines (Skudrzyk, 1968, pp. 373—429; Junger and Feit, 1986,
Chapter 5). There is not space here to review this work in detail, but we shall
select particular examples and relate the conclusion to the simplified treat-
ments given in the earlier sections of this chapter.

The integral in Eq. (7.29) can be performed quite straightforwardly for
the case of a circular piston of radius a with u constant across its surface. The
result for the far field (Morse, 1948, pp. 327-328) is

—jkr .
» L jopud® <e : )[2]1 (kasin 0):|, (730)

kasin 6

where J; is a Bessel function of order one. The factor in square brackets is
nearly unity for all 8 if ka « 1, so the radiation pattern in the half-space
0 < 0 < /2 isisotropic at low frequencies. For higher frequencies, the bracket
is unity for 8 = 0 and falls to zero when the argument of the Bessel function

is about 3.83, that is for
3.83
* = 1 _1 —_—
6 sin <ka ) (7.31)

The angular width 26* of the primary radiated beam thus decreases nearly
linearly with frequency once ka > 4. There are some side lobes, but the first
of these is already at — 18 dB relative to the response for § = 0, so they are
relatively minor.
The force F acting on the piston (Morse, 1948, pp. 332-333; Olson, 1957,
pp. 92-93) is
F =R, +jX,)u=pcSu(A + jB), (7.32)

where
J,Qka) _ (ka)*  (ka)* (ka)®
ka ~— 2 223 2%2-32-4

—Lka? for kax1

-1 for ka>1, (7.33)

A=1
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and

1 [(@ka)® (ka)®* = (2ka)
T rk2a?| 3 32.5  32.52.7

— 8ka/3n for ka«1
— 2/nka for ka > 1. (7.34)

We shall return to the exact form of these functions in Chapter 8. For the
moment, we simply note the close agreement between their asymptotic forms
and the same quantities for a pulsating sphere of radius a as given in Eq. (7.25)
and Fig. 7.6.

When we consider the radiation from a vibrating circular membrane or
plate of the type discussed in Chapter 3, we realize that a rigid piston is not
a good model for the motion. Indeed, for a membrane, the first mode has
the form of a Bessel function Jy(ar), and higher modes are of the form
J,(a,r) cos ng, with the «,, determined by the condition that the functions
vanish at the clamped edge. All except the fundamental J, mode have either
nodal lines or nodal circles or both, and there is a good deal of cross flow and
hence low radiation efficiency. All the axisymmetric modes Jy(o,,r), however,
have a nonzero volume displacement and hence some monopole radiation
component. The J, modes with n # 0 have no monopole component, and
their radiation is therefore much less efficient. No explicit tabulation of this
behavior is readily available, but Morse (1948, pp. 329-332) details a related
case for free-edge modes for which the radial slope of the displacement is
required to vanish at the boundary—a condition appropriate to a flexible
piston closing a flanged circular pipe.

Detailed discussion of radiation from flexible plane vibrators with nodal
lines is algebraically complex but reflects the behavior we found for antiphase
arrays of point sources, provided that allowance is made for the fact that
a finite vibrator may have a net volume flow and hence a monopole radiation
contribution. As has already been remarked, antiphase point-source arrays
with spacing less than half a wavelength of sound in air are inefficient radiators,
and their source strength is of the order of that of a single one of their
component sources. Exactly the same result is found for continuous vibrators,
with the effective source arising from noncancelling elements at the center and
around the edges of the vibrator (Skudrzyk, 1968, pp. 419-429).

Only for the free vibrations of thick metal plates do we reach a situation in
which the transverse wave speed in the plate exceeds the sound speed in air,
so that high intensity radiated beams can be produced, as shown in Fig. 7.5(c).
At 1kHz, this requires a steel plate about 10 mm in thickness (Skudrzyk,
1968, p. 378)—a situation often encountered in heavy machinery but scarcely
applicable to musical instruments.

There is an interesting and important consequence of these conclusions that
is investigated in some detail by Skudrzyk (1968, pp. 390—398). If a localized
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force drives an elastic plate, such as a piano soundboard, then it excites
all vibrational modes to amplitudes that are dependent on the frequency
separation between the exciting force frequency w and the resonance frequency
w, of the mode in question. If w > w,, then the amplitude of mode n will be
small, but, because its nodal lines are far apart, it will radiate efficiently at
frequency w. Conversely, a mode with w, = w may be strongly excited, but,
because of the small distance between its nodal lines, it may radiate very
poorly. The total power radiated by the forced plate must be found by
summing the contributions from all the efficiently radiating modes as well as
the smaller contributions from higher modes. This effect acts to smooth the
frequency response of a large planar forced vibrator.

7.7. Unbaffled Radiators

Few if any musical instruments involve a large plane baffle, even one that
extends for about a wavelength around the vibrating plate or membrane. In
instruments like the timpani, the baffle is folded around so that it encloses one
side of the membrane and converts it to a one-sided resonator; the body of
the violin serves a somewhat similar function, though there is considerable
vibration of the back as well. In instruments like the piano, both sides of the
soundboard are able to radiate, but the case provides a measure of separation
between them. Only in the case of cymbals, gongs, and bells is there no baffle
at all.

For a half-enclosed radiator, like the membrane of the timpani, the enclosed
air does, of course, have an effect on the vibration of the membrane. From the
point of view of radiation, however, the source is still one-sided, and the major
difference from the baffled case arises from the fact that radiation is into
a whole space of solid angle 4= rather than into a half-space of solid angle 27.
For high frequencies, such that ka > 4, this effect is not large, for the energy
of the radiation is concentrated into a broad beam along the direction of the
axis (0 = 0), and little of it passes into the halfplane 8 > n/2 anyway. For low
frequencies, ka < 1, however, the radiation tends to become isotropic and to
fill nearly uniformly the whole 4z solid angle. The vibrating membrane thus
experiences a radiation resistance at low frequencies that is only half that for
the baffled case, so that the power radiated is reduced by a factor 2, or 3 dB,
for a given membrane velocity amplitude. More than this, since the radiation
is into 4x rather than 2, the intensity in any given direction is reduced by
a further factor of 2, or 3 dB. Thus, for a given radiator velocity amplitude,
the absence of a large baffle leaves the radiated intensity and power unchanged
at high frequencies (ka > 4) but reduces the radiated intensity in the forward
half-space by 6 dB and the total radiated power by 3 dB at low frequencies
(ka < 1).

These phenomena can have a significant effect on the fullness of tone



170 7. Sound Radiation

quality of an instrument in its low-frequency range, and it is usual to increase
the bass intensity by providing a reflecting wall close behind the player. This
recovers 3 dB of intensity in the bass, and a further 3 dB, relative to anechoic
conditions, can be recovered from close floor reflections. Of course, these
effects are subjectively assumed when listening to normal playing—it is only
in anechoic conditions that the loss of intensity at low frequencies becomes
noticeable.

Instruments such as the piano have a case structure that goes some way
toward separating the two sides of the soundboard acoustically. This is, of
course, desirable since they vibrate in antiphase. We have seen, however, that
antiphase source distributions cancel each other only if their separation is less
than about half a wavelength. A semiquantitative application of this principle
gives a distance of about 2 m between the top and bottom of the soundboard
of a piano and hence suggests that such cancellations should not occur above
about 70 Hz. The different geometries of the lid and the floor in any case ensure
that cancellation is only partial. Cancellations do, of course, occur between
neighboring antiphase regions on the same side of the soundboard.

Finally, let us look briefly at radiation from cymbals and bells. For a nearly
planar radiator, such as a cymbal or tam-tam, cancellation of radiation from
opposite surfaces may clearly be very significant. An unbaffled plane piston
radiator with both sides exposed acts as a dipole source at low frequencies
and, to a good approximation, the mechanical radiation resistance presented
to each side is (Olson, 1957, pp. 98—99)

R, ~ 3 x 107 2pcS(ka)*, ka < 2,
(1.35)
=~ pcS, ka > 3.

Much of the low-frequency radiation is therefore suppressed. The initial
amplitude of the lower modes is, however, usually high, so that some of their
sound is heard. Much of the effect of such a gong depends on the shimmer of
high frequency modes, which have comparable radiation efficiency despite
near cancellation of radiation from neighboring antiphase areas. Details of the
residual radiation from noncancelling areas around the edge of such a gong
are discussed by Skudrzyk (1968, pp. 419-429). This overall cancellation has
another effect, of course, and that is to reduce the radiation damping of the
oscillation and prolong the decay of the sound.

Radiation from curved shells, such as found in bells, is a very complex
subject (Junger and Feit, 1986, Chapter 7). There is significant cancellation of
radiation from neighboring antiphase regions, but their different geometrical
environments inhibit cancellation between the interior and the exterior of the
shell. Indeed, modes that would seem at first to be of high order, such as the
quadrupole mode associated with the circular to elliptical distortion of a bell,
can lead to a change in interior volume and therefore an inside-to-outside
dipole source. Further discussion is best left to Chapter 21.
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CHAPTER 8

Pipes and Horns

The wave propagation phenomena in fluids that we have examined in previous
chapters have referred to waves in infinite or semi-infinite spaces generated by
the vibrational motion of some small object or surface in that space. We now
turn to the very different problem of studying the sound field inside the tube
of a wind instrument. Ultimately, we shall join together the two discussions
by considering the sound radiated from the open end or finger holes of the
instrument, but for the moment our concern is with the internal field. We
begin with the very simplest cases and then add complications until we have
a reasonably complete representation of an actual instrument. At this stage,
we will find it necessary to make a digression, for a wind instrument is not
excited by a simple source, such as a loudspeaker, but is coupled to a complex
pressure-controlled or velocity-controlled generator—the reed or air jet—and
we must understand the functioning of this before we can proceed. Finally,
we go on to treat the strongly coupled pipe and generator system that makes
up the instrument as played.

8.1. Infinite Cylindrical Pipes

The simplest possible system of enclosure is an infinite cylindrical pipe or tube
with its axis parallel to the direction of propagation of a plane wave in the
medium (Morse and Ingard, 1968). If the walls of the pipe are rigid, perfectly
smooth, and thermally insulating, then the presence of the tube wall has no
effect on wave propagation. A pressure wave propagating in the x direction
has the form

p(x,t) = pexp[ j(—kx + wt)], &.1)

and the resultant acoustic volume flow is, as we saw in Chapter 6,

Ux,t) = <Z—I:> exp[j(—kx + wt)], (8.2)

where w is the angular frequency, k is the angular wave number k = 2n/4 = w/c,
and S is the cross-sectional area of the pipe. As usual, p is the density of and
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¢ the velocity of sound in air. The acoustic impedance of the pipe at any
point x is

p(x,8) _ pc
Uan- S (8.3)

To treat this problem in more detail, we must solve the wave equation
directly in cylindrical polar coordinates (r,4,x). If a is the radius of the
pipe and its surface is again taken to be perfectly rigid, then the boundary
condition is

Zo(x) =

op
or
which implies that there is no net force and therefore no flow normal to the
wall. The wave equation in cylindrical coordinates is
10 < 0p> 1 0% 0% %p
2 b

1
ra\ar) TR Tl &)

0 at r=a, 8.4)

and this has solutions of the form

P, 6:) = (), (“";"’) xpLi(—kmx + 0], (86)

where J,, is a Bessel function and g,,, is defined by the boundary condition
[Eq. (8.4)], so that the derivative J,,(nq,,,) is zero. The (m,n) mode thus has
an (r, ¢) pattern for the acoustic pressure p with n nodal circles and m nodal
diameters, both m and n running through the integers from zero. In the full
three-dimensional picture, these become nodal cylinders parallel to the axis
and nodal planes through the axis, respectively.

In Fig. 8.1, the pressure and flow velocity patterns for the lowest three
modes of the pipe, omitting the simple plane-wave mode, are shown. The

Sl
DD
I©)

1,0) (2,0) ©,1)

Fig. 8.1. Pressure and transverse flow patterns for the lowest three transverse modes
of a cylindrical pipe. The plane-wave mode is not shown.
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pressure patterns have nodal lines as already observed, and there are similar
nodal diameters in the transverse flow patterns. Nodal circles for pressure
occur for modes of the type (0,n), which have n such nodal circles within
the boundary. A general mode (m, n) has both nodal lines and circles in the
pressure.

The propagation wave vector k,,,, for mode (m, n) is obtained by substituting
Eq. (8.6) into Eq. (8.5), whence

K2, = <9>2 - <%>2 8.7)
(4 a

Thus, while the plane-wave mode with m = n = 0 will always propagate with
k = koo = w/c, this is not necessarily true for higher modes. In order for
a higher mode (m, n) to propagate, the frequency must exceed the critical value;
_ TG mnC
==

8.8)

(4

For frequencies less than w,, k,,, is imaginary and Eq. (8.6) shows that the
mode is attenuated exponentially with distance. The attenuation is quite rapid
for modes well below cutoff, and the amplitude falls by a factor e, or about
10 dB, within a distance less than the pipe radius.

The first higher mode to propagate is the antisymmetric (1, 0) mode, which
has a single nodal plane, above a cutoff frequency w, = 1.84 c/a. Next is the
(2,0) mode, with two nodal planes, for @ > 3.05 c¢/a, and then the lowest
nonplanar axial mode (0, 1), for @ > 3.80 c/a. Propagating higher modes are
thus possible only when the pipe is greater in diameter than about two-thirds
of the free-space acoustic wavelength. The nonpropagating higher modes are
necessary to explain certain features of the acoustic flow near wall irregularities,
such as finger holes or mouthpieces. Indeed, it is possible to match any
disturbance distributed over an opening or a vibrating surface in a duct with
an appropriate linear combination of duct modes. The plane wave component
of this combination will always propagate along the duct away from the
disturbance, but this will not be true for modes with g,,, values that are too
large. The propagating wave will thus be a low-pass filtered version of the
disturbance while the nonpropagating modes will simply modify the flow in
the near neighborhood of the source.

It is helpful to sketch the three-dimensional acoustic flow streamlines
associated with a few of these modes for both propagating and nonpropagating
cases. This can be done from the form of the pressure pattern given by Eq. (8.6)
together with the relation

J
u= o Vp (8.9)
for the flow velocity u in a mode excited at frequency w. Figure 8.2 shows this
for the (1,0) and (0, 1) modes. In the case of the propagating modes, the flow
pattern itself moves down the pipe with the characteristic phase velocity of
the mode—nearly the normal sound velocity ¢, except very close to cutoff
when the phase velocity is higher than c.
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Fig. 8.2. Acoustic flow patterns and pressure maxima and minima for higher modes in
a cylindrical duct. (a)-(c) are modes propagating to the right at a frequency a little
above cut-off; (d) and (e) are evanescent modes below cutofT.

It is not important to go into detail about the impedance behavior of these
higher modes, since this depends greatly upon the geometry with which they
are driven, the net acoustic flow along the pipe axis being zero except for the
plane (0,0) mode. The impedance is always a real function multiplied by w/kp,,
so it is real for w above cutoff, becomes infinite at cutoff, and is imaginary
below cutoff.

8.2. Wall Losses

So far in our discussion, we have assumed a rigid wall without introducing
any other disturbance. In a practical case this can never be achieved, though
in musical instruments the walls are at least rigid enough that their mechanical
vibrations can be neglected—we return to the subtleties of this statement
later. More important, however, are viscous and thermal effects from which
no real walls or real fluids are immune.

Detailed consideration of these effects is complicated (Benade, 1968), but
the basic phenomena and final results are easily discussed. The walls con-
tribute a viscous drag to the otherwise masslike impedance associated with
acceleration of the air in the pipe. The relative magnitude of the drag depends
upon the thickness of the viscous boundary layer, itself proportional to the
square root of the viscosity n divided by the angular frequency w, in relation
to the pipe radius a. A convenient parameter to use is the ratio of pipe radius
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to the boundary layer thickness:

1/2
r, = (“:7—"> a. (8.10)

Similarly, thermal exchange between the air and the walls adds a lossy re-
sistance to the otherwise compliant compressibility of the air, and the relative
magnitude of this loss depends on the ratio of the pipe radius a to the thermal
boundary layer thickness, as expressed by the parameter

1/2
r o= <%CP> a, 8.11)

K

where C, is the specific heat of air at constant pressure and « is its thermal
conductivity. Near 300 K (27°C), we can insert numerical values to give
(Benade, 1968)

r, & 632.8af 12(1 — 0.0029 AT), 8.12)

and
r,~ 532.2af *?(1 — 0.0031 AT), (8.13)

where a is the tube radius in meters, f is the frequency in hertz, and AT is
the temperature deviation from 300 K.

It is clear that the effect of these loss terms will be to change the characteristic
impedance Z; of the pipe from its ideal real value pc/S to a complex quantity.
This, in turn, will make the wave number k complex and lead to attenuation
of the propagating wave as it passes along the pipe.

The real and imaginary parts of the characteristic impedance Z,, as frac-
tions of its ideal value pc/S, are shown in Figs. 8.3 and 8.4, both as functions
of r,. The correction to Z, begins to be appreciable for r, < 10, while forr, < 1
the real and imaginary parts of Z, are nearly equal and vary as r, ..

It is convenient to rewrite the wave vector k as the complex number
w/v — ja, where o is now the attenuation coefficient per unit length of path

10 A
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v

Fig. 8.3. Real part of the characteristic impedance Z,, in units of pc/S, as a function of
the parameter r, (after Benade, 1968).
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Fig. 8.4. Imaginary part of the characteristic impedance Z,, in units of p¢/S, as a
function of the parameter r, (after Benade, 1968).

and v is the phase velocity. We can then most usefully plot the phase velocity
v, measured in units of the free-air sound velocity ¢, and the attenuation
coefficient o, divided by f, both as functions of r,. This is done in Figs. 8.5
and 8.6. The phase velocity v is significantly less than ¢ for pipes so narrow
that r, < 10, while the attenuation coefficient exceeds A if r, < 6. Since
the phase velocity and attenuation coefficient for relatively wide tubes are
both of fundamental significance for the physics of musical instruments, it is
useful to restate Benade’s (1968) versions of Rayleigh’s (1894) approximate
formulas, which are good for r, > 10 and useful down to about r, = 3. They
are

1 (y— 1):| |: 1.65 x 10“3]
vrc|l— — ~c|ll—-——5—1, 8.14
|: rv\/i rt\/i af '? 619
and
1 -1 3 x 1075f12
azg[ 40 )] NERL I ey 8.15)
¢ r,,\/i rt\/i a
1 —
/
v/e //
0.1/
0.01
0.1 1 10 100

r

v

Fig. 8.5. The phase velocity v, relative to the free-air sound velocity ¢, as a function of
the parameter r, (after Benade, 1968).
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Fig. 8.6. The attenuation coefficient « in (meters) ™! at frequency f, plotted as a/f, as a
function of the parameter r, (after Benade, 1968).

where « is given in (meters) ™ if a is in meters. Here, y is the ratio of specific
heats C,/C,, which for air is approximately 1.40.

In most of the more practical discussions that follow, we will find it
adequate simply to use a complex form for k, with real and imaginary parts
derived from Eqs. (8.14) and (8.15). The fact that Z, has a small imaginary part
is not generally significant for the main pipes of musical instruments. For
a few discussions, such as those related to the smaller tubes of finger holes, the
more general results shown in the figures may be necessary.

8.3. Finite Cylindrical Pipes

All of the pipes with which we deal in musical instruments are obviously of
finite length, so we must allow for the reflection of a wave from the remote
end, whether it is open or closed. Because we are concerned with pipes as
closely coupled driven systems, rather than as passive resonators, we shall
proceed by calculating the input impedance for a finite length of pipe terminated
by a finite load impedance Z, , rather than examining doubly open or closed
pipes in isolation. The terminating impedance Z; will generally represent
an open or a closed end, but it is not restricted to these cases. The development
here is essentially the same as that set out in Chapter 2 for a string stretched
between nonrigid bridges but, since the results are central to our discussion
of pipes and horns, we start again from the beginning.
Suppose the pipe extends from x = 0 to x = L, and that it is terminated at
x = L by the impedance Z; . The pressure in the pipe is a superposition of two
waves, moving to the right and left, respectively, with amplitudes 4 and B,
taken as complex quantities so that they can include a phase factor. Thus, at
the point x,
p(x,t) = [Ae™** + Bel**]ei®, (8.16)
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The acoustic particle velocity is similarly a superposition of the particle
velocities associated with these two waves and, multiplying by pipe cross
section S, the acoustic flow becomes, from Eq. (8.3),

Ux,t) = (%) [Ae ™ — Bei**]eiot, 8.17)

At the remote end x = L, pressure and flow are related as required by the
terminating impedance Z, , so that

p(L,t)
UL,y "V

(8.18)

and this equation is enough to determine the complex ratio B/A. If we write
for the characteristic impedance of the pipe

Zy = pc/S (8.19)
as in Eq. (8.3), then
omfgz) e
and the power reflected from Z; has a ratio to incident power of
B> |z, -2Z,?
R=|— = ﬁ ) (8.21)

Clearly, there is no reflection if Z, = Z, and complete reflection if Z; =0
or oo. Since Z, is real for a lossless tube, there is also perfect reflection if Z, is
purely imaginary; however, if Z; has a real part that is nonzero, then there
will always be some reflection loss.

The quantity in which we are interested now is the input impedance Zyy at
the point x = 0. From Egs. (8.16)—(8.19), this is

A+B
Z = Zo [—i—] (8.22)

or from Eq. (8.20),

zZ L + jZysinkL
Zy = 0|: LCOSKL + jZ,sin ] 8.23)

JZ,sinkL + Z,coskL

Two important idealized cases are readily derived. The first corresponds
to a pipe rigidly stopped at x = L so that Z, = oo. For such a pipe,

Z8D = —jZ, cotkL. (8.24)

For the converse case of an ideally open pipe with Z; =0, which is not
physically realizable exactly, as we see below,

ZQ{P = jZ,tankL. (8.25)
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The familiar resonance frequencies for open and stopped pipes arise from
applying the idealized condition that the input end at x = 0 is also open, so
that resonances occur if Z;y =0. For a stopped pipe, this requires that
cotkL = 0, giving

2n — D=nc

6T _
o®P =
2L ’

(8.26)

corresponding to an odd number of quarter wavelengths in the pipe length,
while for an ideally open pipe, tan kL = 0, giving

nmc

OP) _
o' )_L’

(8.27)

corresponding to an even number of quarter wavelengths, or any number of
half wavelengths, in the pipe length.

While Eq. (8.24) applies quite correctly to a physically stopped pipe, the
treatment of a physically open pipe is more difficult since, while Z; « Z,, it is
not a sufficient approximation to set it to zero. It is relatively straightforward
to calculate the radiation load Z,; on a pipe that terminates in a plane flange
of size much larger than a wavelength (and therefore effectively infinite). The
formal treatment of Rayleigh (1894) (Olson, 1957) makes the assumption that
the wavefront exactly at the open end of the pipe is quite planar, normally
a very good approximation, and gives the result

Z® =R +jX, (8.28)
where, as discussed for Egs. (7.32)—(7.34),
(ka)*  (ka)* = (ka)®
R = _ — e :
ZO[ 2 23 tpaa ) (8.29)

X (8.30)

_ Zo [@kay (2ka)® = (2ka)
T nk?a®| 3 32.5 ' 32.52.7 ’

and a is the radius of the pipe.

The behavior of R and X as functions of frequency, or more usefully as
functions of the dimensionless quantity ka, is shown in Fig. 8.7. If ka « 1, then
|Z®| « Z, and most of the wave energy is reflected from the open end. If
ka > 2, however, then Z® =~ Z;, and most of the wave energy is transmitted
out of the end of the pipe into the surrounding air.

In musical instruments, the fundamental, at least, has ka « 1, though this
is not necessarily true for all the prominent partials in the sound. It is therefore
useful to examine the behavior of the pipe in this low-frequency limit. From
Eqgs. (8.29) and (8.30), X » R if ka « 1, so that

8a
Z® ~iZk[—]. .
iZo (3n) (831)

By comparison with Eq. (8.25), since ka « 1, this is just the impedance of
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Fig. 8.7. The acoustic resistance R and the acoustic reactance X, both in units of pc/na?,
for a circular piston (or open pipe) of radius a set in an infinite plane baffle, as functions
of the frequency parameter ka (after Beranek, 1954).

an ideally open short pipe of length

8
A® — % ~ 0.85a. (8.32)

It is thus a good approximation in this frequency range to replace the real
flanged pipe by an ideally open pipe of length L + A®, and to neglect the
radiation loss. From Fig. 8.7, it is clear that the end correction A®, which is
proportional to X /ka, decreases slightly as ka — 1 and continues to decrease
more rapidly as ka increases past this value.

A real pipe, of course, is not generally flanged, and we need to know the
behavior of Z; in this case. The calculation (Levine and Schwinger, 1948)
is very difficult, but the result, as shown in Fig. 8.8, is very similar to that
for a flanged pipe. The main difference is that for ka « 1 R is reduced by
about a factor 0.5 and X by a factor 0.7 because the wave outside the pipe
has freedom to expand into a solid angle of nearly 4n rather than just 2.
The calculated end correction at low frequencies is now

A® x 0.61a. (8.33)

The calculated variation of this end correction with the frequency parameter
ka is shown in Fig. 8.9.
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Fig. 8.9. The calculated end correction A for a cylindrical pipe of radius a, plotted as
A/a, as a function of the frequency parameter ka, (after Levine and Schwinger, 1948).
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8.4. Radiation from a Pipe

One of our later interests, of course, will be to calculate the sound radiation
from musical wind instruments and, as part of this task, it is helpful to know
the transformation function between the spectrum of sound energy within the
pipe and the total radiated sound energy. This transformation is simply
proportional to the behavior of R as a function of frequency, so that, to a good
approximation, it rises as (frequency)?, that is 6 dB per octave, below the
reflection cutoff frequency, defined so that ka = 2. Above this frequency, the
transformation is independent of frequency. This remark refers, of course,
to the total radiated power and neglects directional effects that tend to
concentrate the higher frequencies at angles close to the pipe axis.

It is useful to summarize these directional effects here, since they are derived
in the course of calculation of the radiation impedance Z; . The flanged case
is simplest (Rayleigh, 1894; Morse, 1948) and gives a radiated intensity at
angle 0 to the pipe axis proportional to

|:2J1 (kasin (9)]2 (8.34)

kasin @

The result for an unflanged pipe (Levine and Schwinger, 1948) is qualitatively
similar except, of course, that @ can extend from O to 180° instead of just to
90°. The angular intensity distribution for this case is shown in Fig. 8.10 for
several values of ka, the results being normalized to the power radiated along
the axis (Beranek, 1954). The directional index (DI) is the intensity level on the
axis compared to the intensity level produced by an isotropic source with the
same total radiated power. The trend toward a narrower primary beam angle
along the pipe axis continues for values of ka larger than those shown.

8.5. Impedance Curves

Finally, in this discussion, we should consider the behavior of pipes with
physically realistic wall losses. Provided the pipe is not unreasonably narrow,
say r, > 10, then Figs. 8.3 and 8.4 show that we can neglect the small change
in the characteristic impedance Z, and simply allow the possibility that k is
complex for propagation in the pipe. This new k is written (/v — ja) with
v given by Eq. (8.14) and « given by Eq. (8.15). This can be simply inserted
into Eq. (8.23), along with the appropriate expression for Z,, to deduce the
behavior of the input impedance of a real pipe. The result for an ideally open
pipe (Z, = 0) of length L is

ZIN = Zo[

(8.35)

tanh aL + jtan(wL/v)
1 + jtanhaL tan(wL/v) |

This expression has maxima and minima at the maxima and minima, respec-
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Fig. 8.10. The directional patterns calculated by Levine and Schwinger for radiation
from an unbaffled circular pipe of radius a. The radial scale is in each case 40 dB and
the directional index has the calculated value shown (after Beranek, 1954).



8.5. Impedance Curves 185

tively, of tan(wL/v). The value of Z;y at the maxima is Z,cothalL, and at
the minima it is Z, tanh L. By Eq. (8.15), « increases with frequency as w'?,
so these extrema decrease in prominence at higher frequencies, and Zy
converges toward Z,. For a pipe stopped at the far end, the factor in square
brackets in Eq. (8.35) should simply be inverted.

For narrow pipes the lower resonances are dominated by this wall-loss
mechanism, but for wider open pipes radiation losses from the end become
more important, particularly at high frequencies. To illustrate some features
of the behavior, we show in Fig. 8.11 calculated impedance curves for two
pipes each 1 m long and with diameters respectively 2 cm and 10 cm. The low
frequency resonances are sharper for the wide pipe than for the narrow pipe
because of the reduced relative effect of wall damping, but the high frequency

100 |

10}

[Zin/Zol 1

2kHz

0.1}

0.01f

100}

10

|Zin/Zo| 1

0.1F

0.01} (b)

Fig. 8.11. Magnitude of the acoustic input impedance Z,y, in terms of the characteristic
impedance Z,, for open cylindrical pipes of length 1 m and diameters of (a) 2 cm and
(b) 10 cm.
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resonances of the wide pipe are washed out by the effects of radiation damping.
We can see that all the impedance maxima and minima have frequencies that
are nearly harmonically related, that is as the ratio of two small integers.
In fact, because the end correction decreases with increasing frequency, the
frequencies of these extrema are all slightly stretched, and this effect is more
pronounced for the wide than for the narrow pipe.

It is worthwhile to note incidentally that, because these input impedance
curves have been plotted on a logarithmic scale, the corresponding admittance
curves can be obtained simply by turning the impedance curve upside down.
We will see later that sometimes we will be required to think of admittance
maxima and sometimes of impedance maxima, depending upon the way in
which the pipe is used.

When we come to consider musical instruments in detail, we will find that
several of them rely upon cylindrical pipes as their sound generators. The most
obvious of these is the pipe organ, in which most of the pipes are cylindrical
(a few are conical). Tone quality of air jet driven pipes is varied by the use of
closed and open tubes, by differences in relative diameters, and by differences
in the sort of termination at the open end—some are simple open ends, some
have slots, some have bells, and some have narrow chimneys. These variations
can all be treated on the basis of the above discussion supplemented by
a separate consideration of the form of Z; produced by the termination. We
will return to consider these matters later on.

8.6. Horns

Following this introductory discussion of cylindrical pipes, we are now ready
to begin a treatment of sound propagation in horns, a horn being defined
quite generally as a closed-sided conduit, the length of which is usually large
compared with its lateral dimensions. In fact, we shall only treat explicitly
horns that are straight and have circular cross section, but much of the
discussion is really more general than this.

Formulation of the wave propagation problem in an infinitely long horn
simply requires solution of the wave equation

10%p

Vip =527,
b= 2%

(8.36)
subject to the condition that n-Vp = 0 on the boundaries, n being a unit
vector normal to the boundary at the point considered. More simply, we
suppose the wave to have a frequency w so that Eq. (8.36) reduces to the
Helmholtz equation

V2p + k?p =0, (8.37)

where k = w/c. Solution of this equation is simple provided that we can choose
a coordinate system in which one coordinate surface coincides with the walls
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of the horn and in which Eq. (8.37) is separable. Unfortunately, the Helmholtz
equation is separable only in coordinates that are confocal quadric surfaces
or their degenerate forms (Morse and Feshbach, 1953). There are 11 varieties
of these coordinate systems, but only a few of them are reasonable candidates
for horns. These are rectangular coordinates (a pipe of rectangular cross
section), circular cylinder coordinates, elliptic cylinder coordinates, spherical
coordinates (a conical horn), parabolic coordinates, and oblate spheroidal
coordinates, as shown in Fig. 8.12. Of these, we have already dealt with the
circular cylinder case, and the rectangular and elliptic cylinder versions differ
from it only in cross-sectional geometry and hence in their higher modes. The
parabolic horn is not musically practical since it cannot be made to join
smoothly onto a mouthpiece, so we are left with the conical horn and the horn
derived from oblate spheroidal coordinates, which will prove to be of only
passing interest.

We deal with the oblate spheroidal case first, because it illustrates some of
the difficulties we will have to face later. The hornlike family of surfaces
consists of hyperboloids of revolution of one sheet, as shown in Fig. 8.12.
At large distances, these approach conical shapes, but near the origin they
become almost cylindrical. Indeed, one could join a simple cylinder parallel
to the axis in the lower half plane to a hyperboloid horn in the upper half plane
without any discontinuity in slope of the walls. The important thing to notice,
however, is the shape of the wavefronts as shown by the orthogonal set of
coordinate surfaces. These are clearly curved and indeed they are oblately
spheroidal, being nearly plane near the origin and nearly spherical at large

Fig. 8.12. The oblate spheroidal coordinate system in which the wave equation is
separable. If the hyperboloid of revolution (shown in heavy outline) is taken as the
horn, then the oblate spheroidal surfaces orthogonal to this and lying within it are the
wave fronts. Note that such a hyperboloid horn can be smoothly joined to a cylindrical
pipe of appropriate diameter, as shown.
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distances. Waves can propagate in this way as a single mode, like the plane
waves in a cylinder. Such behavior is possible only for separable coordinate
systems. For nonseparable systems that we may try to separate approximately,
there will always be an admixture of higher modes. Horn systems resembling
a cylinder joined to a narrow-angle hyperboloid horn as described above are
in fact used in many brass instruments, though not because of any considera-
tion of separability of the wave equation. Indeed, once the length of the horn
is made finite, we produce an unresolvable inseparability near the open
end so that there is no real practical design assistance derived from near
separability inside the horn.

Rather than setting out the exact solution for a hyperboloid or a conical
horn in detail, let us now go straight to the approximate solution for propaga-
tion in an infinite horn of rather general shape. We assume that we have some
good approximation to the shapes of the wavefronts—something more or less
spherical and, since the wave fronts must be orthogonal to the horn walls,
centered approximately at the apex of the cone that is locally tangent to the
horn walls, as shown in Fig. 8.13. This description will be exact for a conical
horn, but only an approximation for other shapes. If S(x) is the area of this
wavefront in the horn at position x, defined by its intersection with the axis,
then, during an acoustic displacement &, the fractional change in the volume
of air in the horn at position x is (1/S) 8(S&)/0x. This contrasts with the simpler
expression 0¢/0x for a plane wave in unconfined space. Proceeding now as for
the plane wave case, we find a wave equation of the form

10/ op 1 0%
§a<sa> 2@ (8.38)

which is known as the Webster equation (Webster, 1919; Eisner, 1967), although

S\ &— wavefront

Fig. 8.13. In a horn, the wavefront has approximately the form of a spherical cap of
area S and effective radius r based upon the local tangent cone and cutting the axis at
a point with coordinate x.
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its origins date back to the time of Bernoulli. Actually, in Webster’s case,
the curvature of the wave fronts was neglected so that x was taken as the
geometrical distance along the horn axis and S as the geometrical cross section
at position x. This plane-wave approximation is good for horns that are not
rapidly flaring, but breaks down for a horn with large flare, as we see later.

We have assumed that p is constant across the wave front in the horn, which
is equivalent to assuming separability. This is not a bad approximation for
horns that do not flare too rapidly, but we must not expect too much of it in
extreme cases. In this spirit, we now make the transformation

p=yS 12 (8.39)

in the reasonable expectation that, with the even spreading of wave energy
across the wavefront, ¥ should be essentially constant in magnitude, inde-
pendent of x. If we also assume that p varies with angular frequency w and
write S in terms of a local equivalent radius a so that

S = na?, (8.40)
then Eq. (8.38) becomes
Xy , 10%
W+<k SEL) P (8:41)

where k = w/c. This form of the equation, attributable to Benade and Jansson
(1974), serves as a good basis for discussion of the behavior of horns.

The first thing to notice about Eq. (8.41) is that the wave function ,
and hence the original pressure wave p, is propagating or nonpropagating

according as
ow\?> _ 1d%a
k*=(—) 2-——=F. .
<c> S F (8.42)

The frequency w = w, for which we have equality is called the cutoff frequency
at this part of the horn, and the expression F on the right of Eq. (8.42) may be
called the horn function. It clearly plays a very important part in the theory
of horns. A visual estimate of the magnitude of F at a given position x can be
made, asillustrated in Fig. 8.14, by observing that a is essentially the transverse
radius of curvature Ry of the horn at point x while (d2a/dx?)! is close to the
external longitudinal radius of curvature R;, provided that the wall slope
da/dx is small. Thus,

(8.43)

Of course, this is no longer a good approximation when the wall slope, or
local cone angle, is large, and we must then use the expression

F_ldza

= (8.44)
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Fig. 8.14. The geometry of a horn at any one place is characterized by the external
longitudinal radius of curvature Ry and the internal transverse radius of curvature Ry.

with a interpreted as the equivalent internal radius measured along the wave-
front as discussed previously.

Of particular theoretical simplicity is the class of horns called Salmon horns
(Salmon, 1946a, b), for which the horn function F, and therefore the cutoff
frequency w,, is constant along the whole length of the horn (Morse, 1948).
Clearly, from Eq. (8.44), this implies

a = Ae™ + Be™ ™, (8.45)

where F = m? and m is called the flare constant. It is more convenient to
rewrite Eq. (8.45) as

a = ag[cosh(mx) + T sinh(mx)], (8.46)

where T is an alternative parameter. The pressure wave in the horn then has
the form

p= (”—°> ot/ (8.47)

a

and is nonpropagating if k < m. These expressions should strictly all be
interpreted in terms of curved wavefront coordinates, as in Fig. 8.13, but it is
usual to neglect this refinement and simply use the plane wave approximation.

The family of horns described by Eq. (8.46) has several important degenerate
forms. If T = 1, then we have an exponential horn:

a = ayexp(mx). (8.48)
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If T = 0, then we have a catenoidal horn:
a = ay cosh(mx), (8.49)

which has the nice feature of joining smoothly to a cylindrical pipe extending
along the negative x axis to the origin, as was the case for the hyperboloidal
horn. If T = 1/mx, and m — 0, then we have a conical horn:

a=a, (1 + i), (8.50)
Xo

with its vertex at —x, and a semiangle of tan™!(a,/x,). Consideration of the

value of the horn function given by Eq. (8.44) shows that F = 0 for this case,

so that the conical horn has no cutoff.

8.7. Finite Conical and Exponential Horns

Many of the uses of horns that are discussed in textbooks involve situations
in which the diameter of the open end of the horn is so large that there is
no appreciable reflection. The horn then acts as an efficient impedance trans-
former between a small diaphragm piston in the throat and a free spherical
wave outside the mouth. Exponential and catenoidal horns have near-unity
efficiency, as defined by Morse (1948), above their cutoff frequencies, while
the efficiency of a conical horn never becomes zero but rises gradually with
increasing frequency until it reaches unity. We shall not discuss these situations
further—those interested should consult Morse (1948) or Olson (1957). It is,
however, worthwhile to quote results analogous to Eq. (8.23) for the throat
impedance of a truncated conical or exponential horn terminated by a given
mouth impedance Z; , which is typically the radiation impedance, though this
requires some modification in careful work because of the curvature of the
wavefronts (Fletcher and Thwaites, 1988).

For a conical horn with a throat of area S, located at position x,, a mouth
of area S, at position x, and length L = x, — x,, we find (Olson, 1957)

_pc JZ, [sin k(L —0,)/sin k8,1 +(pc/S,)sinkL
8, |Z,[sin k(L + 8, —8,)/sin k6, sin kB, 1—( jpc/S,) [sin k(L + 0, )/sin k6,14’
(8.51)

ZlN

where k@, = tan™! kx, and k6, = tan™"! kx,, both x, and x, being measured
along the axis from the position of the conical apex. Similarly, for an ex-
ponential horn of the form of Eq. (8.48) and length L,

__pc| Zycos(bL + 0) + j(pc/S,)sinbL
™78, | jZ,sinbL + (pc/S;)cos(bL — 6) |’
where b2 = k* — m? and 6 = tan"!(m/b). It is not simple to allow for wall

effects in these expressions, since the imaginary part of k varies with position
in the horn. For a horn with a wide mouth and not too narrow a throat,

(8.52)
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radiation effects may dominate so that k can be taken as real. This is, however,
not a valid approximation in musical instruments, which use long horns
of quite small diameter. We shall see that more complex calculations are
necessary in such cases.

The expression [Eq. (8.51)] for the input impedance of a conical horn,
measured at the end that is at a distance x; from the apex, deserves some
further discussion. In the first place, we should note that it is applicable for
the impedance at either the wide or the narrow end of a conical pipe. For
a flaring cone, x, > x; and L > 0, while for a tapering cone, x, < x, and
L <0.

In the second place, we should examine several special cases of open
and stopped cones, making the approximation that Z; = 0 at an open end
and Z; = o at a closed end. For a cone of length L with an ideally open
end Z, = 0, Eq. (8.51) gives, for either the large or the small end of a cone,

the formal result
[ pc\sinkL sin k6,
In=jl=—)—. 8.53
N J<Sl>sink(L+01) 8:53)

This does not imply that the input impedance is the same from both ends,
since, as noted above, the sign of L and the magnitude of 6, are different in
the two cases.

Zeros in Zpy occur at frequencies for which sinkL = 0, so that these
frequencies are the same in each case and exactly the same as those for
a cylindrical pipe with the same length L. To allow for the finite reactance
associated with the radiation impedance Z_, it is approximately correct, for
a narrow cone, to simply add an appropriate end correction equal to 0.6 times
the open end radius to the geometrical length L, as discussed in relation to
Eq. (8.33).

The infinities in Z,;y occur, however, at frequencies that differ between the
two cases and are not simply midway between those of the zeros, as was
the case with a cylindrical pipe. Rather, the condition for an infinity in Z,y is,
from Eq. (8.53),

sink(L + 60,) =0, (8.54)

or equivalently,
kL = nm — tan"' kx,. (8.55)

For a cylinder, x, = o so that tan™! kx, = /2, as we already know. For
a cone measured at its narrow end, L is positive and, since tan™! kx, < 7/2,
the frequencies of the infinities in Z;y are higher than those for a cylinder
of the same length. The converse is true for a tapering cone. If the cone is nearly
complete, so that kx; « 1, then tan'kx, ~ kx, and, since L = x, — x4,
Eq. (8.55) becomes kx, ~ nm, so that the frequencies of the infinities in
impedance approach those of an open cylinder of length x,/2. Figure 8.15
shows an input impedance curve for an incomplete cone calculated for the
narrow end.
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Fig. 8.15. The input impedance Z;y of a conical horn of length 1 m, throat diameter
1 cm, and mouth diameter 10 cm, relative to the impedance Zy, = (pc/S,), as a function
of frequency.

Cones that are stopped at the remote end are of less musical interest. If
Z, = o0, then, from Eq. (8.51),

. (pc) sin k(L — 6,)sin k0,

— (< . 8.56
Zon=I\ 5. ) Sink(L + 0, — 6,) (8.56)

The zeros are given by k(L — 6,) = nx, which, writing L = x, — x,, becomes
(kx, —tan ' kx,) — k,x; = nm. (8.57)

Thus, if we are considering a tapering cone and the distance x, from the
stopped end to the imaginary apex is small enough that kx, is rather less than
unity, the bracketed terms nearly cancel and the cone behaves approximately
as though it is of length x, and complete to its vertex. No such simplification
occurs for a flaring cone or for the infinities in the impedance, for which the
condition is that k(L + 0, — 0,) = n=.

An extensive discussion of the conical horn in musical acoustics has been
given by Ayers et al. (1985). Using straightforward physics, this paper treats
both conical frusta and complete cones and points out a number of miscon-
ceptions, or at least erroneous expositions, in the standard physics literature.

The particular theoretical attraction of the family of horns defined by
Eq. (8.46) is that they have a constant cutoff frequency along their length.
Unfortunately, it is only in the cases of cylindrical and conical horns that
this property can be combined with the musical requirement that the modes
for a finite horn, defined by the condition of minimum or maximum input
impedance, should have harmonically related frequencies. For this reason,
there is little to be gained here by a more detailed discussion of exponential
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horns based upon Eq. (8.52). Instead, we shall go on to discuss more general
types of horns.

8.8. Bessel Horns

One particular family of horns that is worthy of attention because of its formal
simplicity and that provides a good approximation to musically useful horns
(Benade, 1959; Benade and Jansson, 1974) is the Bessel horn family, defined by

S=Bx* or a=bx" (8.58)

where x is the geometrical distance measured from a reference point x = 0. If
¢ = 0, the horn is cylindrical, and if e = —1 it is conical, so that these two
degenerate cases are included in the picture. More usefully for our present
discussion, we suppose ¢ to be positive, in which case the horn has a rapid
flare at the origin x = 0, which thus represents the open mouth of the horn as
shown in Fig. 8.16. The particular analytical simplicity of the Bessel horns
arises from the fact that, in the plane-wave approximation, the wave equation,
Eq. (8.38), in the form Eq. (8.41) has, for the case of an ideally open horn mouth
at x = 0, the standing wave solution (Jahnke and Emde, 1938)

Y= x1/2J5+1/2 (kx), (8.59)

where J is a Bessel function, hence the name of the horn family. From
Eq. (8.39), the pressure standing wave has the form

p(x) = Ax*2J 15 (kx). (8.60)

The existence of this analytical solution is a great help for semiquantitative
discussion of the behavior of this family of horns, whose shape can be made
to vary very considerably by choice of the parameter ¢. If we are considering

Fig. 8.16. The form of a Besssel horn with parameter ¢ > 0.
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a horn composed of segments of different Bessel horns joined end to end, then
Eq. (8.60) must be supplemented in each segment by a similar term involving
the Neumann function N,,,,(kx). We can then calculate the behavior, in the
plane-wave approximation, of composite horns having sections of Bessel,
exponential, conical, and cylindrical geometry joined end to end (Pyle, 1975).
We will not follow such a course in detail but, instead, we will examine briefly
the behavior of waves near the mouth of a Bessel horn to show some of the
complications involved.

As we saw in Eqgs. (8.41)—(8.44), the propagation of a wave in a flaring horn
is governed by the value of the horn function F at the point concerned. If
F is greater than k2, the wave is attenuated exponentially with distance and
a reflection occurs rather than propagation. For a horn mouth of Bessel
type, F is easily calculated in the plane-wave approximation, in which wave
coordinate x is replaced by the axial geometrical coordinate, and has the form
shown in Fig. 8.17(a). F goes to infinity at the mouth of the horn, so that
waves of all frequencies are reflected, and the reflection point for waves of
low frequency (small k) is further inside the mouth than for those of high
frequency.

Close to the open mouth, however, the plane-wave approximation is clearly
inadequate, and the spherical approximation gives a much better picture

(b)

x=0 —_>X

Fig. 8.17. The horn function F for a Bessel horn calculated on the basis of (a) the plane
wave approximation and (b) the spherical wave approximation. When k2 < F, the
wave is attenuated instead of being propagated (after Benade and Jansson, 1974).
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(Benade and Jansson, 1974). The function F in this approximation is shown
in Fig. 8.17(b). Its form is similar to the plane-wave version, but F never
becomes infinite, so that there is an upper cutoff frequency above which waves
can propagate freely from the mouth without reflection. An infinite F, as in
the plane-wave approximation, would in fact confine all sound energy within
the horn because of the infinite barrier height; the more realistic curve given
by the spherical approximation allows some wave energy to leak out at any
frequency by tunneling through the barrier.

When we consider the losses in a real horn in detail, not only must
we supplement the standing wave solution [Eq. (8.60)] with extra terms in
N, 11,2(kx), which combine to represent the small fraction of energy contained
in propagating waves lost through the mouth of the horn, but we must also
take account of wall losses by adding a small imaginary part —ju to k. For
a horn more complicated in profile than a simple cylinder, « depends on the
local horn radius and therefore varies from place to place along the horn.
The calculations are then quite involved (Kergomard, 1981). Fortunately, we
can ignore these complications in our present discussion though they must be
taken into account in any really accurate computations.

Because the horns of real musical instruments do not conform exactly to
any of the standard types we have considered, we will not go into further
detailed discussion of them at this stage, but defer this until we come to
describe the instruments themselves in a later chapter.

8.9. Compound Horns

As we see in Chapter 14, most brass wind instruments actually have horn
profiles that are nearly cylindrical for about half their length, starting from the
mouthpiece, and then expand to an open flaring bell. In modern instruments,
the profile of this flaring section is well approximated by a Bessel horn of the
form of Eq. (8.58), while for older instruments and some of the more mellow
modern instruments, much of the expanding section is nearly conical.

It is not worthwhile to model such compound horns in detail, since real
instruments do not conform precisely to any such oversimplified prescription.
The complications of mode tuning are illustrated, however, by consideration
of the frequencies of the input impedance maxima-—which are the sounding
modes—for a compound horn consisting of a cylindrical and a conical section
smoothly joined together. Part of the complication is produced by the acoustical
mismatch at the joint, but similar mode behavior would be found for other
profiles.

The input impedance Z_ for a conical horn of length L, is given by
Eq. (8.51). We can simplify our discussion by taking the radiation impedance
Z; at the open mouth to be zero, giving, as another form of Eq. (8.53),

. [\t
z. =2 (cotkL, + —) , 8.61)
S, kx,
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Fig. 8.18. Frequencies of the input impedance maxima for a compound horn, of the
shape shown, as a function of the fraction of horn length that is conical.

where S, is the throat area and x, is the distance from the throat to the vertex
of the cone, as shown in Fig. 8.18. We now take Z, as the terminating
impedance for the cylindrical section of length L, and matching area §,.
From Eq. (8.23), the input impedance to the compound horn then becomes
infinite if

JZ.sinkL, + (%) coskL, = 0, (8.62)
1
and, with Eq. (8.61), this immediately leads to the condition
1
tankL, — cotkL, — <—> =0. (8.63)
kx,

Solution of this equation for k = w/c then gives the frequencies of the im-
pedance maxima. The same calculation for a cylinder joined to an exponential
horn would have used Eq. (8.52) and led to the formally similar result

tankL, — (%) cotbL, — <%> =0, (8.64)

where b = (k2 — m?)'2.
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The behavior of the frequencies of the first few modes of a cylinder—cone
compound horn of roughly trumpet dimensions is shown in Fig. 8.18. The
total length L, + L, and the mouth and throat areas are all kept constant,
while the fraction of the length that is conical is varied. Clearly, the frequency
variation of individual modes is complicated, but note that the modes of a
horn with half its length conical are nearly harmonic. Compound horns with
other profiles show rather similar behavior.

For a complete understanding of horn acoustics, we must, of course, include
the effect of the nonzero radiation impedance at the open mouth, take account
of wall losses if the horn is narrow, and calculate a complete impedance curve.
The mathematical apparatus for all this is contained in our discussion.

8.10. Perturbations

As a final part of this chapter, let us consider the effect of a small perturbation
in the shape of some idealized horn. This is important for several reasons.
The first of these is that if the effect of such perturbations is understood
then the instrument designer can use them to adjust the horn shape slightly
in order to properly align or displace horn resonances in which he or she is
interested. The second is that in instruments with finger holes in the side of
the horn perturbations are unavoidable, and it is important to understand and
control their effects.

Suppose that we know a standing wave solution py(x, t) for a horn of profile
So(x) that corresponds to a mode of frequency w,, as described by Eq. (8.38),
with appropriate terminating impedances at each end of the horn. Now, let
the bore of the horn be altered by a small amount so that the new cross section
becomes

S(x, t) = So(x, 1) + S(x,1). (8.65)

This perturbation will change the resonance frequency w, to a new value w,
which we write
0 =y + dw, (8.66)

and the pressure distribution will become

p(x,t) = Bpo(x, 1) + p1(x,1), (8.67)

where f ~ 1 and p, is functionally orthogonal to p,. If we substitute Egs.
(8.65), (8.66), and (8.67) into Eq. (8.38) and also use the unperturbed version of
Eq. (8.38) with S,, w,, and p,, then we can collect all the terms of first order
in the perturbations to give

1 déS dp, S dS, dp, 2w 0w

S e dx S de dx = o Po + terms in p,. (8.68)
0 0

Now, we multiply by S,p, and integrate over the whole length of the horn.
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The terms in p, vanish since they are orthogonal to p,, and we find

_ c? d (68\ dp,
ow = J0gN ISO Ix <S0>p0 Ix dx, (8.69)
where
N = jSop(z, dx. (8.70)

Clearly, these two equations allow us to calculate the shift dw in the resonance
frequency produced by the bore perturbation 4S(x).

It is easiest to evaluate the effect of such perturbations by considering what
happens when the bore is enlarged by a small amount A at a position x,.
To do this, we write

0S(y) = Ad(x — xq), 8.71)

where §(x — x,) is a Dirac delta function. Substituting this into Eq. (8.69) we
find, since dé(x — x,)/dx under an integral yields the negative of the derivative
of the integrand at x,, that

A Td dp,
ow = 2w0N Ija (poa>j|x=xo. (872)

To see what this means, suppose that in some region of the horn the pres-
sure pattern has a spatial variation like sin kx. Then the bracket in Eq. (8.72)
behaves like cos 2kx,. Thus, when the perturbation is near a maximum in
the pressure variation (sin kx, & 1), cos 2kx, & — 1 and dw has its maximum
negative value. Conversely, if sinkx, = 0, then cos 2kx, = +1, so that near
a maximum in the velocity dw has its maximum positive value. Both these
remarks assume that A is positive, so that the bore is being enlarged by the
perturbation. Opposite conclusions apply for a constriction in the bore. Since
different modes have their pressure maxima at different places in the horn, it
is possible to change the relative frequencies of selected modes and so effect
musically desirable changes in the behavior of the horn.

A few examples make this point clear. Suppose we consider the modes of
a cylindrical pipe open at the end x = 0 and closed at the other end, x = L.
The nth normal mode then has a pressure pattern like sin[(2n — 1)7x/2L].
If the pipe diameter is enlarged near the open end (x = 0) then, by Eq. (8.72),
dw is positive for all n, and the frequencies of all modes are raised. Conversely,
if the diameter is enlarged near the closed end, the frequencies of all modes
are lowered.

More interesting is the case in which the bore is enlarged at a point
one-third of the length away from the closed end, that is at x = 2L/3. The
bracket in Eq. (8.72) then behaves like cos(2n/3) = —0.5 for the first mode,
n = 1, and like cos 2z = +1 for the second mode, n = 2. Thus, the frequency
of the first mode is lowered while that of the second mode is raised.
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8.11. Numerical Calculations

With the ready availability of computers, it is often practically convenient,
though generally less instructive, to calculate the behavior of horns numerically.
This can be done conveniently only in the plane-wave approximation or the
local spherical-wave approximation, so that its accurate use is limited to horns
with small flare, but this is adequate for many wind instruments.

The bare bones of the procedure have already been set out, but its use in
this way has not been made explicit. The basis of the method is the recognition
that an arbitrary horn can always be represented to very good accuracy by
a succession of small conical sections joined end to end. In the limit in which
the length of the sections becomes infinitesimal, the representation is exact.
Now, in the spherical-wave approximation, the input impedance of a section
of conical horn of length L is related to its terminating impedance Z; by
Eq. (8.51). Indeed, if the length L is small so that the cross section is nearly
constant, the propagation constant k in Eq. (8.51) can be made complex to
allow for wall losses according to Eqs. (8.14), (8.15), and (8.35). To make
a numerical calculation for an arbitrary horn therefore, we simply start from
the open end, with Z; the radiation impedance shown in Fig. 8.8. We then use
Eq. (8.51) successively for short distances back along the horn until the input
throat is reached. A modification of the program readily allows the pressure
distribution along the horn to be calculated at the same time. In Chapters
14-16, we will refer to calculations for particular musical instruments that
have been carried out in this way.

For the plane-wave version of this calculation, which trades off a simpler
calculation at each step against an increased number of steps, we can approxi-
mate the horn by a series of very short cylindrical sections. Equation (8.23)
replaces the more complicated conical form of Eq. (8.51), but each cylindrical
section must be made very short in order to give a reasonable approximation
for a flaring horn.

8.12. The Time Domain

Nearly all of our discussion has been carried on in the frequency domain—we
have examined the propagation in a horn of sinusoidal waves of steady
frequency w. While this is generally the most convenient framework in which
to study the physics of musical instruments, it is sometimes helpful to revert to
the time domain and examine the buildup and propagation of pressure dis-
turbances along the horn and their reflection from its open end. This is clearly
a good way to treat the initial transients of musical sounds, and the time-
domain method can also be used for steady tones. Formally, treatment of a
problem in the time domain or the frequency domain must give identical
results, but in practice we are forced to make approximations in our analysis
in order to get a reasonable answer, and the nature of these approximations
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can be quite different in the two cases, so that one can usually be employed
more easily than the other (Schumacher, 1981; Mclntyre et al., 1983).

In Sections 8.3 and 8.7, we gave explicit expressions for the input impedance
Z(w) of horns of various profiles, while Figs. 8.11 and 8.15 illustrated the
behavior of Z(w) relative to the characteristic impedance Z, = pc/S; of an
infinite cylindrical tube having the same area S, as the throat of the horn. In
general, Z(w) displays a long series of more or less sharp impedance peaks at
frequencies w, that are, for useful musical instruments, related moderately
closely to some harmonic series nwg.

If now we seek the pressure waveform p(t) observed in the mouth of the
horn when the acoustic flow into it is U(t), we can proceed in two ways. Either
we express U(t) as a Fourier integral,

U@t) = J U(w)e’ dw, (8.73)
and use the definition of Z(w) to write
p(t) = f Z(w)U(w)e’ dw (8.74)

or else we define an impulse response function G(t —t’), which gives the
pressure response at time ¢ to a unit impulse of flow at time ¢’, and then write
directly the convolution integral

t
p(t) = f Gt —t"U(t')dr' (8.75)
As we remarked before, these results are formally equivalent, and, indeed,
the impulse response function G(t) can be shown to be simply the Fourier
transform of the impedance function Z(w).

As Schumacher (1981) has pointed out, the problem with using Eq. (8.75)
as a computational formula from which to derive p(t) arises from the fact that
G(t — t') has a considerable extension in time; an acoustic flow pulse injected
into the horn reflects from its two ends for some tens of periods before its
amplitude is reduced enough for it to become negligible. This follows at once
from the sharply peaked nature of Z(w), which is an equivalent feature in
the frequency domain.

A useful way out of this computational problem is to note that for a short
time after the injection of a flow pulse and before any reflections have returned
to the throat from discontinuities along the horn the input impedance of
a cylindrical horn is the simple resistive quantity Z,. This suggests that we
should write

G(t) = Z,6(t) + G(1), (8.76)

where d(t) is a Dirac delta function. It is clear then that G(1) ~ Ofort less than
the wave transit time 7 from the throat of the horn to the first significant
reflecting discontinuity—often the open mouth—and back. In fact G(t) is



202 8. Pipes and Horns

the impulse response of the horn if it is assumed that its throat is blocked

by a nonreflecting termination. G(t) shows the effect of reflections from all

irregularities along the horn as well as the reflection from its open mouth.
Schumacher (1981) has shown that G(f) can be usefully expressed as the

Fourier transform of the reflection coefficient r(w) of the horn as seen from its

throat, as defined by

_Z(w) = Z,

=" 8.77
@ =Gz ®77)
and from this he derives the result
p(t)=Z,U(t) + J r()[Z,U(t —t') + p(t — t')]dt, (8.78)
0

where r(t) is the Fourier transform of r(w). It turns out that r(¢) is nearly zero
for ¢ less than the wave transit time t and that r(¢) has a significantly smaller
extension in time than the original impulse function G(t). It is therefore
relatively straightforward to use Eq. (8.78) as an integral equation from which
to calculate numerically the transient behavior of a tube-loaded acoustic
generator.

As an example, let us apply Eqgs. (8.77) and (8.78) to the case of a uniform
cylindrical tube open at its far end. Neglecting radiation corrections at the
open mouth, we have, from Eq. (8.25),

Z =jZytankL, (8.79)
where L is the length of the tube and k = w/c. Then, from Eq. (8.77),
r(w) = —e HeLle, (8.80)
Taking the Fourier transform,
r(t) = —fej“"e"j“’”‘ do = —6(t — 1), (8.81)
where
T =2LJc. (8.82)
Substituting into Eq. (8.78), we find
p(t) = Z,U(t) — Z,U(t — 1) — p(t — 1), (8.83)
and applying Eq. (8.78) again to p(t — 1),
p(O)=pt—27)+ Z,[U@Y) - 22Ut — 1)+ Ut — 27)]. (8.84)

For a lip-driven or reed-driven instrument, Z,U(t) is always much smaller
than p(t), since the excitation mechanism is pressure controlled. We can
therefore neglect the U terms to give

p(®) = p(t — 27), (8.85)

so that the pipe acts as a quarter-wave resonator with frequency 1/21 = ¢/4L.
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The behavior of a nearly complete conical horn is rather more complex and
really requires a different derivation, but the pressure wave reflects to the
throat with a time delay t given by Eq. (8.82) as before. When we consider
Eq. (8.83), however, we find from Eqgs. (6.26) and (6.27) that the terms Z,U
behave like 1/r2 near the origin and so dominate the terms in p, which behave
like 1/r. We can therefore ignore the p terms in Eq. (8.83) and conclude that,
in the steady state,

U@)=U( — 1), (8.86)

so that the horn acts as a half-wave resonator with frequency 1/t = c¢/2L.

A detailed discussion of the impulse response of a conical horn has been
given by Ayers et al. (1985) and includes the more complex case when the
conical frustum is not nearly complete.

For a more general type of horn, such as is found in brass wind instruments,
there is usually an initial cylindrical section which then flares to conical
or Bessel form near the mouth. We expect the reflection behavior to be
intermediate between that of a cylinder and a cone of the same length, but the
reflected pulse will be considerably distorted by dispersion effects. Details can
be found either by direct measurement or by taking the Fourier transform of
the input impedance.
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CHAPTER 9

Guitars and Lutes

The modern six-string guitar is a descendant of the sixteenth-century Spanish
vihuela, which has its roots in antiquity. Although Boccherini and other
composers of the eighteenth century included the guitar in some of their
chamber music, the establishment of the guitar as a concert instrument took
place largely in the nineteenth century. Fernando Sor (1778-1839) was the
first of a long line of Spanish virtuosos and composers for the guitar.

The Spanish luthier Antonio de Torres (1817—1892) contributed much to
the development of the modern classical guitar when he enlarged the body
and introduced a fan-shaped pattern of braces to the top plate. Francisco
Tarrega (1852—-1909), perhaps the greatest of all nineteenth century players,
introduced the apoyando stroke and generally extended the expressive capa-
bilities of the guitar. Excellent accounts of the historical development of the
guitar are given by Jahnel (1981) and by Turnbull (1974).

9.1. Design and Construction of Guitars

The modern guitar, shown in Fig. 9.1, has 6 strings, about 65 cm in length,
tuned to E,, A,, D5, G;, B;, and E, (f = 82, 110, 147, 196, 247, and 330 Hz).
The top is usually cut from spruce or redwood, planed to a thickness of about
2.5 mm. The back, also about 2.5 mm thick, is usually a hardwood, such as
rosewood, mahogany, or maple. Both the top and back plates are braced, the
bracing of the top plate being one of the critical design parameters.

Acoustic guitars generally fall into one of four families of design: classical,
flamenco, flat top (or folk), and arch top. Classical and flamenco guitars have
nylon strings; flat top and arch top guitars have steel strings. Steel string
guitars usually have a steel rod embedded inside the neck, and their sound-
boards are provided with crossed bracing. Several designs for bracing are
shown in Fig. 9.2.
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Fig. 9.2. Various designs for bracing a guitar soundboard: (a) traditional (Torres) fan
bracing; (b) Bouchet (France); (c) Ramirez (Spain); (d) crossed bracing (Rossing, 1982a).

9.2. The Guitar as a System of Coupled Vibrators

The guitar can be considered to be a system of coupled vibrators. The plucked
strings radiate only a small amount of sound directly, but they excite the
bridge and top plate, which in turn transfer energy to the air cavity, ribs, and
back plate. Sound is radiated efficiently by the vibrating plates and through
the sound hole.

Figure 9.3 is a simple schematic of a guitar. At low frequency, the top plate
transmits energy to the back via both the ribs and the air cavity; the bridge
essentially acts as part of the top plate. At high frequency, however, most of
the sound is radiated by the top plate, and the mechanical properties of the
bridge may become significant.

Most of these elements have already been discussed separately. Vibrations
of a plucked string were discussed in Section 2.8; plates were discussed in
Chapter 3; coupled systems were discussed in Chapter 4; and sound radiation
was discussed in Chapter 7. We now proceed to examine them in more detail
and apply them to the guitar.
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Fig. 9.3. Simple schematic of a guitar. At low frequency, sound is radiated by the top
and back plates and the soundhole. At high frequency, most of the sound is radiated
by the top plate.

9.3. Force Exerted by the String

The force exerted by a plucked string on the bridge can be estimated by
reference to Fig. 2.8. To a first approximation, the force normal to the top
plate will be T'sin 6, and the force parallel to the top plate T cos 8, where T is
the string tension and 6 is the angle between the string and the plate.

The tension T changes during the cycle, however, as the length of the string
changes (see Fig. 2.8). If the string has a cross-sectional area 4 and an elastic
(Young’s) modulus E, we can write

EA
T=T,+AT =T, + —AL.
L,

For small 8, the transverse and longitudinal forces become

Fr =(T, + AT)sin 0,

EA
FL = (TO + AT)COSO =~ TO + AT = To '+‘ L_AL

0
The change in the transverse force during a cycle is primarily due to the change
in the direction or slope. If the string is displaced through a distance d at a

point L, from the bridge and then released,
d d
sinf; ~— and sinf, = —————.
' BL, 2T (1-B)Lo

The change in the longitudinal force, on the other hand, is due mainly to
the slight change in length of the string during the cycle. The maximum value
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Fig. 9.4. Waveform of the force on a guitar bridge when a string is plucked with a
displacement d = £ of the distance from the bridge to the nut (similar waveforms were
calculated by Houtsma et al., 1975).

of AL is given by
ALy = /BPLE + d* + /(1 — B)2LE + d* —
d? 1
N X
2L, B(1—P)

The minimum value of AL is

2712 ( 2ﬁ)ZLO 2 \/ 2 ( zﬂ)zLO 2
AL_. = _
Lo \/4/3 L3+ = )2L0 ~——- 1 —2p>2L3 + = ﬁ)zLo —— - 2
- d? 8 1-28
2Ly~ 2B — B*

For B=1/5 AL, = 3.13d*/L,, AL,;, = 0.94d*/L,, sin6, = 5d/L,, and
sin 8, = (5/4)d/L,. The force waveforms are shown in Fig. 9.4.

For a typical high-E nylon string, L, = 65c¢m, 4 = 0.36 mm?% E = 5 x 10®
N/m? and T, = 82 N. For a deflection d =3 mm, Tyd/L, = 0.38 N and
EAd?/L% = 0.038 N, so the maximum transverse force is roughly 16 times
greater than the maximum increase in longitudinal force; more importantly,
the amplitude of the transverse force pulses is about 40 times greater than the
longitudinal pulses and they couple more efficiently to the top plate. However,
the longitudinal force pulses are proportional to d*> compared to d for the
transverse pulses, so the difference diminishes with increasing amplitude.

The elastic (Young’s) modulus for steel is about 40 times greater than for
nylon, and static string tensions are about 509, greater, so the longitudinal
and transverse force amplitudes will be more nearly equal.

Note that both F; and F, increase in amplitude as f is made smaller; in fact
for B « 1, both are proportional to 1/, so plucking nearer the bridge not
only leads to greater forces on the bridge but also to an emphasis on the higher
harmonics. A larger plucking force is required to achieve the same deflection
d, however.

The waveforms and spectra of the transverse bridge force for an ideal
flexible string plucked at its center (f = 1), one-fifth (8 = 1), and one-twentieth
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Fig. 9.5. Waveforms and spectra of the transverse bridge force for a string plucked at
its center (a), at { of its length (b), and at 5 of its length (c) from the bridge. Also shown
above the waveforms are the string shapes at successive intervals during the vibration
period (Fletcher, 1976b).



212 9. Guitars and Lutes

(B = 45) of its length from the bridge are shown in Fig. 9.5. Also shown above
the waveforms are the string shapes at successive intervals during the vibration
period (compare Fig. 2.8). Note that each fth harmonic is missing from the
spectra. Fourier analysis of the transverse force gives the following expression
for the amplitude F, of nth harmonic (Fletcher, 1976a):

_ 2T, |
" nnL, B(1 - B)
Well below the first missing harmonic, sin ar ~ fnr, so

F, ~
L,

sin fnm.

np « 1.

The discussion thus far has assumed an ideal flexible string, rigid end
supports, and a plectrum that is ideally sharp and hard. In the case of a soft
broad plectrum, the initial shape of the string before release is two straight
segments joined by a smooth curve rather than a sharp angle. If the width of
the soft plectrum is J, then modes with wavelengths shorter than about 26 are
excited very little. This is equivalent to a high-frequency cutoff in the string
spectrum at a mode number n ~ L/ (Fletcher, 1976a).

Some effects of string stiffness were discussed in Sections 2.18 and 2.19 and
of nonrigid end supports in Section 2.12. If one of the supports is not rigid,
nonlinear mode coupling causes the missing harmonics to be excited, typically
with a time constant of 0.1 s (Legge and Fletcher, 1984).

It is well known by guitar players that guitar strings, especially the lower
strings which are wrapped, become “dead” after a short period of playing. The
aging problem is especially critical for steel strings. This problem has been
studied theoretically and experimentally in steel strings (Allen, 1976) and in
nylon strings (Hanson, 1985), and the conclusion seems to be that the main
cause is increased damping due to foreign material that quickly becomes
imbedded between the windings. Boiling the strings in a cleaning solution
often rejuvenates them.

The tension needed to bring a string to the right pitch depends, of course,
on the mass of the string, which in turn depends upon its diameter. Players
select strings of different gauges, and thus string tensions vary from one
instrument to another. Nylon strings typically require tensions of 50 to 80 N,
whereas steel strings require tensions of 100 to 180 N. There appears to be
some advantage in selecting string gauges in such a way that the tensions in
all six strings will be nearly the same (Houtsma, 1975).

9.4. Modes of Vibration of Component Parts

A guitar top plate vibrates in many modes; those of low frequency bear
considerable resemblance to the modes of a rectangular plate described in
Chapter 3. The mode shape and frequencies change quite markedly when
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Fig. 9.6. Vibration modes of a guitar plate blank (without braces) with a free edge
(adapted from Rossing, 1982b).

the braces are added, however, and in addition, they are totally different if
the plate is tested with its edge free, clamped, or simply supported (hinged).
Relatively few studies of guitar top plate modes, especially with a free edge,
have been reported.

Figure 9.6 shows the observed mode shapes and frequencies of a guitar
plate without braces (with a free edge), and Fig. 9.7 shows the modes calculated
for a plate with traditional fan bracing (also with a free edge), which are
reported to be in good agreement with observed mode frequencies and shapes
(Richardson and Roberts, 1985). Mode shapes and frequencies for the first five
modes in a classical guitar sans back are shown in Fig. 9.8. These are also in
reasonably good agreement with the modes calculated by Richardson and
Roberts (1985) for a clamped edge, although the actual boundary condition
probably is somewhere between clamped and hinged.

Obviously, the observed modal shapes and frequencies of the top plate
depend upon the exact boundary conditions and acoustic environment during
testing. A very convenient and readily reproducible arrangement is to immo-
bilize the back and ribs of the guitar (in sand, for example) and to close the
soundhole; a number of guitars have been tested in this way by various
investigators.

Figure 9.9(a) shows the modes of a folk guitar top measured with the back
and ribs in sand and the soundhole closed by a lightweight sheet of balsa wood.
The modes are quite similar to those of the classical guitar in Fig. 9.8, except
that the (1,0) mode now occurs at a higher frequency than the (0, 1) mode, and
the (2,0) mode has moved up in frequency and changed its shape because of
the crossed bracing.

Generally, the back plate of a guitar is rather simply braced with a center
strip and three (most classical guitars) or four (folk guitars) cross braces, as



214 9. Guitars and Lutes

Fig. 9.7. Vibration modes of a classical guitar top plate with traditional fan bracing
(adapted from Richardson and Roberts, 1985).

Fig. 9.8. Vibration modes of a classical guitar top plate glued to fixed ribs but without
the back (Jansson, 1971).

shown in Fig, 9.9(b). Some vibrational modes of the back are shown in Fig.
9.9(b).

Also shown in Fig. 9.9 are the modes of the air cavity of a folk guitar. These
were measured with the top, back, and ribs immobilized in sand but with the
soundhole open. The lowest mode is the Helmholtz resonance, whose fre-
quency is determined by the cavity volume and the soundhole diameter.!
Higher air modes resemble the standing waves in a rectangular box.

Frequencies of the principal modes of the top plate, back plate, and air
cavity in two folk guitars and two classical guitars are given in Table 9.1. The

! There is also a small dependence upon the cavity shape and the soundhole placement,
but these are usually not variables in guitar design. The term “Helmholtz resonance”
is sometimes applied to the lowest resonance of the guitar (around 90-100 Hz), but
this resonance involves considerable motion of the top and back plates.
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Fig. 9.9. (a) Modes of a folk guitar top (Martin D-28) with the back and ribs in sand.
(b) Modes of the back with the top and ribs in sand. (c) Modes of the air cavity with
the guitar body in sand. Modal designations are given above the figures and modal
frequencies below (Rossing et al., 1985).

Table 9.1. Frequencies of the principal modes of the top plate, back plate, and air
cavity in four guitars.?

Top plate
Folk
Martin D-28
Martin D-35
Classical
Kohno 30
Conrad

Back plate
Folk
Martin D-28
Martin D-35
Classical
Kohno 30
Conrad

Air cavity

Folk
Martin D-28
Martin D-35
Classical
Kohno 30
Conrad

0,0 ©01n (1o ©02 @1y ©O3) 0 (L2
163 326 390 431 643 133 756

135 219 313 397 576 626 648 777
183 388 296 466 558 616 660
163 261 228 382 474 497
0,0 ©on @©2 1o @©3) @@1LY @0 (L2
165 257 337 369 480 509 678 693
160 231 306 354 467 501 677

204 285 368 417 537 566 646 856
229 277 344 495 481 573 830 611
H(A,) A, A, Ay A, As
(Helmholtz)  (0,1) (1,0) (L1) (0,2 (2.0)

121 383 S04 652 722 956

118 392 512 666 730 975

118 396 560 674 780

127 391 558 711 772 1033

2 From Rossing et al. (1985).
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main difference is in the relative frequencies of the (1,0) and (0, 1) modes in the
top plates. In the fan-braced classical guitars, the (0, 1) mode occurs at a higher
frequency than the (1,0) mode, while in the cross-braced top plate of the folk
guitars and in all the back plates, the reverse is true. In the Martin D-28, the
fundamental modes of the top plate and back plate are tuned to almost the
same frequency.

9.5. Coupling of the Top Plate to the Air Cavity:
Two-Oscillator Model

If we ignore, for the moment, motion of the back plate and ribs, the guitar can
be viewed as a two-mass vibrating system of the type discussed in Chapter 4,
particularly Section 4.6. The two-mass model and its electrical equivalent
circuit are shown in Fig. 9.10. The vibrating strings apply a force F(¢) to the
top plate, whose mass and stiffness are represented by m, and k,. A second
piston of mass m,, represents the mass of air in the soundhole, and the volume
V of enclosed air acts as the second spring.

The equivalent electrical circuit in Fig. 9.10(b), one of several possible
choices for representing Fig. 9.10(a), is an acoustical impedance representa-
tion (Beranek, 1954). The equivalent voltage is the force applied to the top
plate divided by the effective top plate area, and the equivalent currents are
volume velocities (in m3/s). The following symbols are used:

M, = m,/A? is the inertance (mass/area) of the top plate (kg/m*),
M, = m,/A? is the inertance of air in the soundhole (kg/m*),

C, = A*/K, is the compliance of the top plate (N/m?>),

C, = V/pc? is the compliance of the enclosed air (N/m?),

U, is the volume velocity of the top plate (m?/s),

U, is the volume velocity of air in the soundhole (m?*/s),

R, is the loss (mechanical and radiative) in the top plate,

R,, is the due to radiation from the soundhole, and

R, is the loss in the enclosure.

(b)

Fig. 9.10. (a) Two-mass model representing the motion of a guitar with a rigid back
plate and ribs. (b) Equivalent electrical circuit for the two-mass model. The equivalent
currents are volume velocities (Rossing et al., 1985).
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Fig. 9.11. Low-frequency response curve for a Martin D-28 folk guitar with its back
plate and ribs immobilized in sand. The bridge was driven on its treble side by a
sinusoidal force of constant amplitude, and the acceleration was recorded at the driving
point.

The two-mass model predicts two resonances with an antiresonance be-
tween them. At the lower resonance, air flows out of the soundhole in phase
with the inward moving top plate. In the equivalent circuit in Fig. 9.9(b), this
corresponds to U, and U, being essentially in phase (they would be exactly in
phase if R, = R, = 0). At the upper resonance, U, and U, are essentially
opposite in phase; that is, air moves into the soundhole when the top plate
moves inward. The antiresonance represents the Helmholtz resonance of the
enclosure; U, and U, are equal and opposite, and thus U, is a minimum. This
behavior, which is dominant in a guitar at low frequency, is analogous to that
of a loudspeaker in a bass reflex enclosure (Caldersmith, 1978).

In Fig. 9.11, the response curve for a folk guitar, with its back and ribs
immobilized, illustrates the two-mass model. The two resonances occur at f;
and f, and the antiresonance at f,. The two resonances f; and f, will span the
lowest top plate mode f, and the Helmholtz resonance f,; that is, f, and f,
will lie between f; and f,. In fact, it can be shown that f2 + f7 = f2 + f;}
(Ross and Rossing, 1979; Christensen and Vistisen, 1980). If f, > f, (asitisin
most guitars, f, will lie closer to f; than to f, (Meyer, 1974).

9.6. Coupling to the Back Plate: Three-Oscillator Model

A three-oscillator model that includes the motion of the back is shown in Fig,
9.12 along with its electrical equivalent circuit. The ribs are immobilized, so
that the coupling of the top plate to the back plate is via the enclosed air.
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Fig. 9.12. (a) Three-mass model of a guitar representing coupled motion of the top
plate, back plate, and enclosed air. (b) Equivalent electrical circuit for three-mass
model. Symbols are similar to those used in Fig. 9.10 (Rossing et al., 1985).
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Fig. 9.13. Frequency response curve predicted by the three-mass model. A third
resonance and a second antiresonance have been added to the response curve of the
two-mass model.

Additional circuit elements are the mass M,, compliance C,, loss R, and
volume velocity U, of the back plate.

The response curve for the three-mass model has a third resonance and a
second antiresonance, as shown in Fig. 9.13. In addition f; has been moved
to a slightly lower frequency, and f, may be moved either upward (for f, < f,)
or downward (for f, > f), depending upon the resonance frequencies f, and
f, of the top and back alone (Christensen, 1982). In most guitars, f, > f,, so
both f; and f, are shifted downward by interaction with the flexible back
(Meyer, 1974).

The three-mass model predicts that [ + f2 = fZ + f#. This relationship
has been verified by experimental measurements in several guitars with the
ribs immobilized (Rossing, et al., 1985).

9.7. Resonances of a Guitar Body

The frequency response of a guitar is characterized by a series of resonances
and antiresonances. In order to determine the vibrational configuration of the
instrument at each of its major resonances, it is usually driven sinusoidally at
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one or more points, and its motion observed optically, acoustically, electri-
cally, or mechanically. Optical sensing techniques include holographic inter-
ferometry (Stetson, 1981) and laser velocimetry (Boullosa, 1981). Acoustical
detection techniques have included using an array of microphones (Strong
et al., 1982) and scanning with a single microphone (Ross and Rossing, 1979).
An electrical pickup relies on variation in capacitance as the instrument
vibrates, and a mechanical pickup consists of an accelerometer or a velocity
transducer of very small mass (such as a phonograph cartridge).

The response function depends upon the location of the driving point and
sensing point and also on how the guitar is supported. A driving point on the
bridge is usually selected, but for at least one prominent resonance there is a
nodal line near the bridge, and thus it may be overlooked when the drive point
or the sensing point lies on the bridge. It is difficult to overemphasize the
importance of clearly describing the driving and sensing points and the
method of support when reporting experimental results. Suspending the guitar
by rubber bands has proved to be quite a satisfactory test configuration.

The configuration of a guitar at one of its resonances is often called a mode
of vibration, but it is not necessarily a normal mode or eigenmode of the
system. A resonance may result from exciting two or more normal modes.
Only when the spacing of the normal modes is large compared with their
natural widths does the vibration pattern at a resonance closely resemble that
of a normal mode of vibration (Arnold and Weinreich, 1982).

When a guitar is driven at the bridge, the lowest resonance is usually a
barlike bending mode. In the Martin D-28 folk guitar that we tested, it
occurred at 55 Hz, and probably has little or no musical importance because
it lies well below the lowest string frequency. Barlike bending modes at higher
frequencies should not be overlooked, however.

Most guitars have three strong resonances in the 100-200 Hz range due to
coupling between the (0,0) top and back modes and the A, (Helmholtz) air
mode. In addition to the coupling via air motion discussed in Section 9.6, the
top and back plates in a free guitar are coupled through the motion of the ribs.
At the lowest of the three resonances, however, the top and back plates move
in opposite directions (i.e., the guitar “breathes” in and out of the soundhole),
and so the motion of the free guitar is very little different from the case in which
the ribs are clamped. In the D-28, this breathing mode occurs at 102 Hz.

The other two resonances that result from (0, 0)-type motion of the com-
ponent parts usually occur a little above and below 200 Hz, depending upon
the stiffness of the top and back plates. In the D-28, they occur at 193 and 204
Hz, as shown in Fig. 9.14. Note the motion of the air in the soundhole; in the
upper two resonances, it moves in the same direction as the top plate, thus
resulting in strong radiation of sound. At the middle resonance, the lower ribs
and tail block move opposite to the main part of the top and back plates. Thus,
clamping the ribs lowers this resonance considerably (from 193 to 169 Hz in
the D-28; compare Fig. 9.13).

The (1,0) modes in the top plate, back plate, and air cavity generally
combine to give at least one strong resonance around 300 Hz in a classical
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Fig. 9.14. Vibrational motion of a freely supported Martin D-28 folk guitar at three

strong resonances in the low-frequency range.

436 Hz

4 . V. E 3
Jo (] |

/ )
It :i \ ': *I ?'\I
(tet )(et )
\t*a Jleia o)
NG W

Fig. 9.15. Vibrational configurations of a Martin D-28 guitar at two resonances
resulting from “see-saw” motion of the (1,0) type.

268Hz (0=52)
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Fig. 9.16. Time-averaged holographic interferograms of top-plate modes of a guitar
(Guitar BR11). The resonant frequencies and Q values of each mode are shown below
the interferograms (Richardson and Roberts, 1985).
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guitar but closer to 400 Hz in a cross-braced folk guitar. In the D-28, this
coupling is quite strong at 377 Hz. Motion of the (0, 1) type also leads to fairly
strong resonances around 400 Hz in most guitars (Fig. 9.15).

Above 400 Hz, the coupling between top and back plate modes appears to
be relatively weak, and so the observed resonances are due to resonances in
one or the other of the two plates. A fairly prominent (2, 0) top plate resonance
is usually observed in classical guitars around 550 Hz, but this mode is much
less prominent in folk guitars. Vibrational configurations of a classical guitar
top plate at its principal resonance are shown in Fig. 9.16.

9.8. Response to String Forces

In Section 9.3, we considered the parallel and perpendicular forces a string
exerts on the bridge when it is plucked. The parallel force at twice the funda-
mental string frequency was found to be small at ordinary playing amplitudes
but increases quadratically, so it can become a factor in loud playing. This
force exerts a torque whose magnitude depends upon the bridge height and
which could be a factor if it occurred at a frequency near a resonance of the
(0, 1), (0,2), or similar mode having a node near the bridge.

There are, of course, an infinite number of planes in which the string can
vibrate; we consider the directions parallel and perpendicular to the bridge.
The force parallel to the bridge encourages rocking motion, and thus it can
easily excite resonances of the (1,0) type. A perpendicular force anywhere on
the bridge can excite the fundamental (0, 0) resonances, and if it is applied at
the treble or bass sides, it can excite the (1,0) resonances as well.

The effect of various string forces can be better understood by referring to
the holographic interferograms in Fig. 9.17. These show the distortion of the
top plate that results from static perpendicular and parallel bridge forces and
also a torque caused by twisting one of the center strings.

Fig.9.17. Holographic interferograms showing top plate distortions for (a) a static force
at 1.0 N applied to the sixth string parallel to the bridge, (b) a force of 0.5 N applied
to the first string perpendicular to the bridge, (c) a longitudinal force of 2.0 N applied
to the first string, and (d) a torque caused by twisting the third string one full turn
(Jansson, 1982).
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Fig. 9.18. Decay rates of guitar tone for different plucking directions (Jansson, 1983).

Presumably, a player can greatly alter the tone of a guitar by adjusting the
angle through which the string is plucked. Not only do forces parallel and
perpendicular to the bridge excite different sets of resonances, but they result
in tones that have different decay rates, as shown in Fig. 9.18. When the string
is plucked perpendicular to the top plate, a strong but rapidly decaying tone
is obtained. When the string is plucked parallel to the plate, on the other hand,
a weaker but longer tone results. Thus, a guitar tone can be regarded as having
a compound decay rate, as shown in Fig. 9.18(c). The spectra of the initial and
final parts of the tone vary substantially, as do the decay rates.

1 2 3
— B —
o [ ] o ‘0‘
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1 2 3
—
— -

o o o o o \0‘
Fig. 9.19. Finger motion and resulting string motion of apoyando and tirando strokes.

Tirando
In the apoyando stroke, the finger comes to rest on an adjacent string; in the tirando
stroke, it rises enough to clear it (after Taylor, 1978).
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Classical guitarists use primarily two strokes, called apoyando and tirando
(sometimes called the rest and free strokes). The fingernail acts as sort of a
ramp, converting some of the horizontal motion of the finger into vertical
motion of the string, as shown in Fig. 9.19. Although the apoyando stroke
tends to induce slightly more vertical string motion, there is little difference
between the two strokes in this regard. The player can change the balance
between horizontal and vertical string motion by varying the angle of the
fingertip, however (Taylor, 1978).

9.9, Sound Radiation

Sound radiation from a guitar, like any musical instrument, depends on
direction and frequency. Even with sinusoidal excitation at a single point (such
as the bridge), the radiated sound field is complicated, because several different
modes of vibration with different patterns of radiation will be excited at the
same time. As pointed out in Section 7.6, some low-frequency modes will
radiate quite efficiently when driven well above their natural frequency. This
tends to smooth out the sound spectrum, even when measured in a single
direction. Figure 9.20 shows the sound spectrum one meter in front of a Martin
D-28 folk guitar in an anechoic room when a sinusoidal force of 0.15 N is
applied to the treble side of the bridge. Also shown is the mechanical frequency
response curve (acceleration level versus frequency). Note that most of the

90— T T T T 1 T 1T 71T 71

Sound pressure level (dB)

Mechanical response

v
L
v 1 1 | 1 1 1 1
300 400 500 600 700 800 900 1000

Frequency (Hz)

Fig. 9.20. Mechanical frequency response and sound spectrum 1 m in front of a Martin
D-28 folk guitar driven by a sinusoidal force of 0.15 N applied to the treble side of the
bridge. Solid curve, sound spectrum; dashed curves, acceleration level at the driving
point.



224 9. Guitars and Lutes

Fig. 9.21. Sound radiation patterns at four resonance frequencies in a Martin D-28 folk
guitar (compare with Figs. 9.14 and 9.15, which show the corresponding vibrational
configurations) (from Popp and Rossing, 1986).

mechanical resonances result in peaks in the radiated sound, but that the
strong resonances around 376 Hz and 436 Hz [which represent “seesaw”
motion (see Fig. 9.15)] do not radiate strongly in this direction. The “air
pumping” mode at 102 Hz radiates efficiently through the soundhole.

Figure 9.21 shows polar sound radiation patterns in an anechoic room for
the modes at 102, 204, 376, and 436 Hz. The modes at 102 and 204 Hz radiate
quite efficiently in all directions, as would be expected in view of their mode
shapes (see Fig. 9.14). Radiation at 376 Hz, however, shows a dipole character,
and at 436 a strong quadrupole character is apparent, as expected from Fig.
9.15 (Popp and Rossing, 1986).

In an ordinary listening room, the directionality of the sound radiation is
obscured by reflections from the walls, ceiling, and other surfaces. Further-
more, the sound spectrum for plucked notes will be quite different from that
obtained by applying a sinusoidal driving force to the bridge. Nevertheless,
quite a different sound spectrum can be expected at every different location in
the room.

9.10. Resonances, Radiated Sound, and Quality

The output spectrum of the guitar may be constructed by multiplying the
bridge force spectrum (Fig. 9.5) by the frequency response function of the
guitar body. This is greatly complicated, however, by the rapid change in the
force spectrum with time after the pluck (see Fig. 9.18 and related text).

Caldersmith and Jansson (1980) measured the initial sound level and the
rate of sound decay for played notes on guitars of high and medium quality.
They found that both the initial sound level and the rate of decay replicate the
frequency response curve of the guitar, as shown in Fig. 9.22. At strong
resonances, however, the initial levels are slightly lower, and the levels decay
faster than predicted by the frequency response curves.
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Fig. 9.22. Comparison of the sound level of the fundamentals of played notes (bars) to
the guitar frequency response function (solid curve) with its level adjusted for a good
fit. A graph of the rate of sound decay (dB/s) versus frequency similarly follows the
frequency response curve (Caldersmith and Jansson, 1980).

The results of these experiments suggested one criterion for quality in a
guitar. The high-quality guitar had both a higher initial sound level and a
faster decay rate than the guitar of medium quality, especially for the sixth
string, and it would probably be the instrument of choice in a concert hall.
However, the instrument with the slower decay rate might well be preferred
for playing slow music in a small, quiet room.

Some extensive listening tests were conducted at the Physikalisch-
Technische Bundesanstalt in Braunschweig, Germany, to try to correlate
quality in guitars to their measured frequency response (Meyer, 1983a). Some
of the features that showed the greatest correlation with high quality were

1. the peak level of the third resonance (around 400 Hz),

2. the amount by which this resonance stands above the resonance curve level,
3. the sharpness (Q value) of this resonance,

4. the average level of third octaves in the range 80-125 Hz,

5. the average level of third octaves in the range 250—400 Hz,

6. the average level of third octaves in the range 315-500 Hz,

7. the average level of third octaves in the range 801000 Hz, and

8. the peak level of the second resonance (around 200 Hz).

Negative correlations were found with

1. the sharpness (Q) of first resonance (around 100 Hz),

2. the average level of third octaves in the range 160-250 Hz,
3. the maximum of the third octave levels above 1250 Hz, and
4. splitting of the second resonance into two peaks.
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Fig. 9.23. Examples of asymmetric top plates.

It is interesting to note the importance of the (0, 1)-type resonance around
400 Hz in determining guitar quality. Meyer’s experiments indicate that the
resonance peak should be tall and sharp, thus boosting the sound level of a
rather narrow band of frequencies. However, in most guitars the bridge lies
close to the nodal line for the (0, 1) mode, and so it does not drive this mode
very efficiently.

In a second paper, Meyer (1983b) explores the dependence of this resonance,
as well as other quality features, on the constructional details of the guitar,
such as number and spacing of struts, addition of transverse braces, size and
shape of the bridge, etc. For example, he finds using fewer struts, varying their
spacing, adding transverse bracing, and reducing the size of the bridge to have
desirable effects.

Although most classical guitars are symmetrical around their center plane,
a number of luthiers have had considerable success by introducing varying
degrees of asymmetry into their designs. Most asymmetrical designs use
shorter but thicker struts on the treble side, thus making the plate stiffer. Three
such top plate designs are shown in Fig. 9.23.

The very asymmetric design in Fig. 9.23(c) was proposed by Kasha (1974)
and developed by luthiers R. Schneider, G. Eban, and others. It has a split
asymmetric bridge (outlined by the dashed line) and closely spaced struts of
varying length. A waist bar (WB) bridges the two long struts and the soundhole
liner.

9.11. Electric Guitars

Although it is possible to attach a contact microphone or some other type of
pickup to an acoustic guitar, the electric guitar has developed as a distinctly
different instrument. Most electric guitars employ electromagnetic pickups,
although piezoelectric pickups are also used.
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Electric guitars may have either a solid wood body or a hollow body.
Vibrations of the body are relatively unimportant, and since the strings
transfer relatively little energy to the body, electric guitars are characterized
by a long sustain time. The solid-body electric guitar is less susceptible to
acoustic feedback (from loudspeaker to guitar) than an amplified acoustic
guitar or a hollow-body electric guitar.

An electromagnetic pickup consists of a coil with a permanent magnet. The
vibrating steel strings cause changes in the magnetic flux through the coil, thus
inducing electrical signals in the coil. Most pickups provide a separate magnet
pole piece for each string. The coil windings surround all six pole pieces, or
else six individual coils are connected in a series. The pole pieces, which are
adjustable in height, are usually set to be about 1.5 mm below the vibrating
string.

Because of the low level of the string-induced signal, guitar pickups are
especially susceptible to picking up stray 60-Hz hum from AC power lines.
This led to the development to “humbucking” pickups, which combine the
outputs of two coils wound in opposite directions so that stray pickup will be
largely cancelled.

Most electric guitars have two or three pickups mounted at various posi-
tions along the strings that favor various harmonics, as shown in Fig. 9.24(b).
The front pickup (nearest the fingerboard) provides the strongest fundamental,
whereas the rear pickup (nearest the bridge) is more sensitive to higher
harmonics. Switches or individual gain controls allow the guitarist to mix the
signals from the pickups as desired.

Most piezoelectric pickups employ a ceramic material, such as lead zir-
conate titanate (PZT). Piezoelectric pickups may be in direct contact with the
string (at the bridge saddle, for example) or they may be placed in contact with
the bridge or soundboard of an acoustic guitar.

An important type of electric guitar is the bass guitar or electric bass, widely
used in rock and jazz bands. The electric bass generally has four strings tuned
in fourths (E,,A,,D,,G,) and a longer fretboard (90 cm) than the normal
electric guitar.

Bridge Pickups
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Fig. 9.24. (a) Electromagnetic pickup for a guitar. (b) Arrangement of multiple pickups
to sample various modes of vibration of the string.



228 9. Guitars and Lutes

M\ A n pnoononon M

Nut —Xx—b Bridge
P d >

Fig. 9.25. Fret placement. According to the rule of eighteen, each fret is placed 1/18 of
the remaining distance d to the bridge saddle, or x = d/18. (Greater accuracy is
obtained by using 17.817 rather than 18.)

9.12. Frets and Compensation

Spacing the frets on the fretboard presents some interesting design problems.
Semitone intervals on the scale of equal temperament correspond to frequency
ratios of 1.05946. This is very near the ratio 18:17, which has led to the
well-known rule of eighteen. This rule states that each fret should be placed
+5 of the remaining distance to the bridge, as shown in Fig. 9.25. Obviously,
the fret spacing x decreases as one moves down the fingerboard.

Since the ratio 1% equals 1.05882 rather than 1.05946 (an error of about
0.0690), each semitone interval will be slightly flat if the rule of eighteen is used
to locate the frets. By the time the twelfth fret is reached, the octave will be 12
cents (7% semitone) flat, which is noticeable to the ear. Thus, for best tuning,
the more exact figure 17.817 should be used in place of 18; in other words,
each fret should be placed 0.05613 of the remaining distance to the bridge.

Another problem in guitar design is the fact that pressing down a string
against a fret increases the tension slightly. This effect is much greater in steel
strings than nylon, since a much greater force is required to produce the same
elongation. Fretted notes will tend to be sharp compared to open ones. The
greater the clearance between strings and frets, the greater this sharpening
effect will be.

To compensate for this change in tension in fingering fretted notes, the
actual distance from the nut to the saddle is made slightly greater than the
scale length used to determine the fret spacings. This small extra length is
called the string compensation, and it usually ranges from 1 to 5 mm on
acoustic guitars but may be greater on an electric bass. Bass strings require
more compensation than treble strings, and steel strings require considerably
more than nylon strings. A guitar with a high action (larger clearance between
strings and frets) requires more compensation than one with a lower action.
Some electric guitars have bridges that allow easy adjustment of compensation
for each individual string.

9.13. Lutes

The lute, which probably originated in the Near East, became the most
popular instrument throughout much of Europe in the sixteenth and seven-
teenth centuries. (The name lute appears to have come from the Arabic phrase
“al-oud,” which means “made of wood.”) Many different designs and varia-
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tions on the basic design have existed through the ages. The long lute, having
a neck longer than the body, dates back to at least 2000 B.C. and has modern
descendents in several different countries (e.g., the tar of Turkey and Iran, the
sitar and vina of India, the bouzouki of Greece, the tambura of India and
Yugoslavia, and the ruan of China). The short lute, which dates from about
800 B.C,, is the ancestor of the European lute as well as many other plucked
string instruments around the world.

Instruments of the sixteenth century generally had 11 strings in 6 courses
(all but the uppermost consisting of 2 unison strings), which might be tuned
to A,, D;, G;, B;, E,, and A,, although the tuning was often changed to fit
the music being played. Sometimes the lower 3 courses were tuned in octaves.
In the seventeenth century, an increasing number of bass courses were added,;
these usually ran alongside the fingerboard, so that they were unalterable in
pitch during playing. Lundberg (1988) describes a family of Italian sixteenth/
seventeenth century lutes as follows:

Small octave: four courses, string length 30 cm;
Descant: seven courses, string length 44 cm;
Alto: seven courses, string length 58 cm;

Tenor: seven courses, string length 67 cm;

Bass: seven courses, string length 78 cm;
Octave bass: seven courses, string length 94 cm.

The pear-shaped body of the lute is fabricated by gluing together a number
(from 9 up to as many as 37) of thin wooden ribs. The table or soundboard is
usually fabricated from spruce, 2.5 to 3 mm thick, although other woods, such
as cedar and cypress, have also been used. The table is braced by transverse
bars (typically seven) above, below, and at the soundhole (see Jahnel, 1981).
A sixteenth century lute is shown in Fig. 9.26.

Only a few studies on the acoustical behavior of lutes have been reported.
Firth (1977) measured the input admittance (driving point mobility) at the
treble end of the bridge and the radiated sound level 1 m away, which are
shown in Fig. 9.27.

Firth associates the peak at 132 Hz with the “Helmholtz air mode” and the
peaks at 304, 395, and 602 Hz with resonances in the top plate. Figure 9.28
illustrates 5 such resonances and also shows how the positions of the nodal

Fig. 9.26. A sixteenth-century lute.
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Fig. 9.27. (a) Mechanical input impedance (mobility at the treble end of a lute bridge
and (b) sound pressure level 1 m from top plate (belly) (Firth, 1977).

Fig. 9.28. (a) Barring pattern and nodal patterns in the top plate of a lute at five
resonances and (b) locations of nodes compared to the bridge and the bars (Firth, 1977).

lines are related to the locations of the bars. The modes at 515 and 652 Hz are
not excited to any extent by a force applied to the bridge because they have
nodes very close to the bridge.

9.14. Other Plucked String Instruments

A sampling of plucked string instruments is shown in Fig. 9.29. The ud from
Irag has a common ancestry with the European lute. The mandolin is a
descendant of the mandola, a small lute of the seventeenth century. Citterns
were popular in Europe during the sixteenth and seventeenth centuries.
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Fig. 9.29. Plucked string instruments: (a) ud (Iraq), (b) p’i—p’a (China), (c) mandolin
(Italy), (d) gekkin (Japan), (e) cittern (seventeenth-century Europe), (f) balalaika
(Russia), (g) sitar (North India), (h) vina (South India), and (i) tampura (India).

The Chinese p’i-p’a has four strings tuned to A,, D5, E;, and A;. The top
plate of wu-t'ung wood carries the frets, and the back is carved from a solid
piece of red sandalwood or maple. The bamboo bridge lies near the end of the
top plate [see Fig. 9.27(b)]. Major resonances in the top plate occur about
450, 550, and 650 Hz (Feng, 1984).

The sitar is the principal string instrument of North India. The main strings
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are tuned in fourths, fifths, and octaves to approximately F¥, C#, G#, G7,
C%,C#,and CZ. There are also 11 sympathetic strings tuned to the notes of
the raga. The measured and calculated inharmonicities are small (Benade and
Messenger, 1982). The high, curved frets allow the player to perform with
vibrato and glissando, and the curved bridge leads to both amplitude and
frequency modulation due to rolling and sliding of the string.

The tambura (or tampura) of India is a four-string instrument used to
accompany singing and other string instruments (such as the sitar). The strings
of the ladies’ tambura are tuned to nominal frequencies of 180, 240, 240, and
120 Hz; those of the larger gents’ tambura are tuned at 120, 160, 160, and
80 Hz (Sengupta et al., 1985). The tumba, a resonator made from a dried gourd,
is attached to the hollow wooden neck.

A string of cotton, called the jwari or jurali (life giver), is carefully placed
between the string and the bridge so that the strings buzz against the bridge.
If the instrument is played without the thread, the curved bridge creates
a nonlinear modulation effect by periodically changing the effective string
length (Houtsma and Burns, 1982).
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CHAPTER 10

Bowed String Instruments

Bowed string instruments have held a special place in music for many years.
They form the backbone of the symphony orchestra, and they are widely used
as solo instruments and in chamber music as well. They are instruments of
great beauty and versatility. Unlike many other musical instruments, bowed
string instruments have been the objects of considerable scientific study. Even
so, their acoustical behavior is just beginning to be understood.

The violinist draws the bow across the violin strings in order to set them
into vibration. The vibrating strings exert forces on the bridge that set the
body into vibration, and the body radiates sound. Hidden by this simple
description of violin mechanics, however, are the many subtleties that dis-
tinguish highly prized instruments from those of lesser quality.

10.1. A Brief History

No one knows who invented the violin, since it developed gradually from the
various bowed string instruments used in Europe during the Middle Ages,
such as the rebec, the gigue, the lyra, and the vielle.

During the sixteenth century, two families of viols developed: the viola da
gamba or “leg viol” and the viola da braccio or “arm viol.” These instruments,
which normally had six strings tuned in fourths (except for a major third
separating the third and fourth strings), developed in different sizes from treble
to bass. They were given a waist to make them easier to bow, and gut frets
were attached to their fingerboards. They have remained popular to this day,
especially for playing music from their period and accompanying singing.

The instruments in the violin family were developed in Italy during the
sixteenth and seventeenth centuries and reached a peak in the eighteenth
century in the hands of masters such as Antonio Stradivari (1644—1737) and
Giuseppe Guarneri del Gesu (1698—1744) of Cremona. The surviving instru-
ments of these masters continue to be regarded as some of the finest ever
produced, although nearly all of them have been altered to produce the more
powerful sound required for large concert halls. The alterations include a
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slightly longer neck set back at a greater angle, longer strings at a higher
tension, a higher bridge, and a heavier bass bar.

The viola, tuned a perfect fifth below the violin, is the alto member of
the violin family. It is a distinctly different instrument, however, as is the
violoncello or cello, the baritone member of the family (its name means little
bass viol). The double bass or contrabass, which is tuned in fourths, has mainly
developed from the bass viol.

The all-important bow was given its present form by Francois Tourte
(1747-1835). Two important characteristics of his bows are the inward
curving stick of pernambuco wood and the frog with a metal ferrule to keep
the bow hair evenly spread. A modern violin bow is 74 to 75 cm long with
about 65 cm of free hair. The cello and double bass bows are shorter and
heavier than the violin bow.

10.2. Research on Violin Acoustics

Hutchins (1983) has traced the history of violin research from Pythagoras
(sixth century B.C.) to the present. Scientific understanding of vibrating strings
began with Galileo Galilei (1564—1642) and Marin Mersenne (1588—1648).
In his Harmonie Universelle, Mersenne discussed stringed instruments and
indicated that he could hear at least four overtones in the sound of a vibrating
string. The stick and slip action of the bow on the string appears to have been
first recognized by Jean-Marie Duhamel (1797-1872).

Significant studies on the violin itself were carried out in the first half of the
nineteenth century by Felix Savart (1791-1841), some of them in collaboration
with the renowned violin maker Jean Baptiste Vuillaume (1798—1875). Savart
constructed experimental instruments for his studies, and collaborated with
Vuillaume in developing the large, 12-foot octobasse, whose three thick strings
are stopped with the aid of levers and pedals. Savart studied the vibrations of
top and back plates on Stradivarius and Guarnerius violins loaned to him by
Vuillaume, and by careful experiments he correctly deduced the function of
the soundpost.

Herman von Helmholtz (1821-1894) contributed to our understanding of
bowed string instruments both by his physical and psychoacoustical experi-
ments. By listening through spherical resonators of graduated sizes (which
have come to be known as Helmholtz resonators), he identified some of the
various partials in the tones of violins as well as other musical instruments.
Using a vibration microscope proposed by Lissajous (1822-1880), Helmholtz
observed the stick-slip motion of a violin string during bowing, from which
he deduced the sawtooth waveform of the string displacement, now commonly
referred to as Helmholtz motion.

A large number of different types of Helmholtz motion were observed
by Krigar-Menzel and Raps (1891) using an ingenious optical recording
method. These were explained in a comprehensive theoretical treatment of
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bowed string motion by Nobel laureate C.V. Raman (1888-1970). Raman used
a mechanical bowing machine in his own experiments, which showed that the
minimum bowing force needed to maintain stable motion of the string varies
directly as the speed of the bow and inversely as the square of the distance
from the bridge.

During the decade 1930-1940, significant work was done in Germany
by Erwin Meyer, Hermann Backhaus, and Hermann Meinel. After World
War 11, this tradition was continued by Werner Lottermoser, Frieder Eggers,
and Jiirgen Meyer. Particularly noteworthy has been the work of Lothar
Cremer (1905— ) plus his students and colleagues, including J. Beldie,
H. Lazarus, F. Lehringer, H. Miiller, W. Reinecke, and E. Vélker. This work
is presented in Cremer’s book The Physics of the Violin, now published in
English (1984) as well as in German (1981), which is rapidly becoming the
standard work on the subject.

The pioneer researcher in violin acoustics in the United States was Frederick
Saunders (1875-1963), who, like Raman, is best known for his work in
spectroscopy. Saunders made acoustical comparisons for many violins, old
and new, and he also developed a mechanical bowing machine. Saunders,
along with Carleen Hutchins, John Schelleng, and Robert Fryxell, founded
the Catgut Acoustical Society, an organization that still promotes research in
violin acoustics. Among the accomplishments of this organization is the
development of the violin octet, a carefully scaled ensemble of eight new violin
family instruments (Hutchins, 1967).

10.3. Construction of the Violin

The essential parts of a violin are shown in the exploded view in Fig. 10.1. The
four strings of steel, gut, or nylon (wound with silver, aluminum, or steel) are
tuned to G;, D,, A,, and Es. The top plate is generally carved from Norway
spruce (Picea abies or Picea excelsis) and the back, ribs, and neck from curly
maple (Acer platanoides). The fingerboard is made of ebony and the bow stick
from pernambuco (Caesalpinia echinata). Running longitudinally under the
top is a bass bar, and a sound post is positioned near the treble foot of the
bridge.

Exact dimensions of violins vary with different makers, but the violin body
is usually about 35 cm long and 16 to 20 cm wide in the upper and lower bouts,
respectively. Ribs are typically 30 to 32 mm high. A finished top plate varies
in thickness from 2.0 to 3.5 mm, a back plate from 2.0 to 6.0 mm. The
maximum height of the arch in both plates is about 15 mm.

Traditionally, violin makers have relied on the sound of “tap tones” and
the “feel” of the wood under bending to guide them in carving the plates to
their final thickness. More recently, however, many makers have followed the
lead of Carleen Hutchins in relying to a large extent on Chladni patterns of
three important plate modes to guide them (Hutchins, 1981). A small channel
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Fig. 10.1. Parts of a violin (from Rossing, 1982).

or groove is cut out along the edge of the plate and inlaid with thin strips of
wood called purfling. This allows the plates to vibrate more as if they were
hinged (simply supported) rather than clamped at the edge.

The total tension in the four strings of a violin is typically about 220 N
(501b), and this results in a downward force on the bridge of about 90 N. This
down-bearing is supported, in part, by the bass bar and the soundpost at
opposite sides of the bridge.

10.4. Motion of Bowed Strings

A brief description of the motion of a bowed string was given in Section 2.10.
Analysis of the motion showed that one or more bends race around a curved
envelope with a maximum amplitude that depends on the bow speed and the
bowing position. We now examine the motion in a little more detail.

Raman’s model of Helmholtz motion in the string assumed the string to be
an ideal, flexible string terminated in real, frequency-independent mechanical
resistances. Bowing at a single point, x,, divided the string into two straight
segments with lengths in the ratio (L — x,)/x, = p. Raman considered both
rational and irrational values of p. (Irrational values of p can be represented
by rather straightforward geometrical constructions).

Raman’s velocity and displacement curves for the simplest case, with one
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(b)

Fig. 10.2. Helmholtz motion with a single discontinuity in a bowed string: (a) velocity
diagram and (b) displacement diagram (Raman, 1918).

discontinuity, are shown in Fig. 10.2. In this case, the positive and negative
velocity waves are of the same form, and at the instant at which they are
coincident, the velocity diagram is a straight line passing through one end of
the string with a discontinuity at the other. As this discontinuity moves along
the string, the velocity diagram consists of parallel lines passing through its
two ends, and the velocities at any point before and after its passage are
proportional to the distances from the two ends. The displacement diagrams
consist of two straight lines passing through the ends of the string and meeting
at the point up to which the discontinuity in the velocity diagram has traveled.
The displacement of the string can be written as

yx,0) =73 a, sinnZ—xsin not. (10.1)
n=1

Raman’s velocity and displacement curves for the case with two dis-
continuities are shown in Fig. 10.3. The point at which the two discontinuities
coincide has been arbitrarily chosen to be the center of the string, which causes
the string to vibrate in two segments at twice the fundamental frequency. If
the discontinuities cross elsewhere, however (and thus cross twice as often),
the frequency of vibration will be that of the fundamental. Note that displace-
ments are measured from the equilibrium configuration of the string under
the steady frictional force exerted by the bow (a triangle with its apex at the
bowing position), not from the equilibrium position with the bow removed.
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Fig. 10.3. Helmholtz motion with two discontinuities in a bowed string: (a) velocity
diagram and (b) displacement diagram (Raman, 1918).

@ (b)

Fig. 10.4. Helmholtz motion of a string bowed at x, = L/2: (a) velocity diagram and
(b) displacement diagram (Raman, 1918).
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Fig. 10.5. Helmholtz motion of a string bowed at x, = L/3: (a) velocity diagram and
(b) displacement diagram (Raman, 1918).

10.4.1. Bowing at a Rational Division Point: Missing Partials

Helmholtz (1877) observed that the nth partial and its overtones are absent if
the string is bowed at a rational fraction m/n of its length. [In Eq. (10.1), y, = 0
when x, = mL/n, where m is an integer.] This results in deviations from the
idealized displacement curve, which Helmholtz described as ripples.

Raman’s geometric constructions for x, = L/2 and x, = L/3 are shown in
Figs. 10.4 and 10.5. Note the differences from Figs. 10.2 and 10.3. The velocity
curves are rectangles rather than triangles, and the displacement curves have
flat tops.

Generally, a string is bowed about 2 to 4 cm from the bridge. In the case
of an open string, this would mean that bowing could occur at the nodes of
partials 8 through 16. However, the bow has a finite width, and the increasing
damping at high frequency tends to even out steps and corners. Consequently,
Helmholtz’s ripples are of little practical importance (Cremer, 1984).

10.4.2. Bowing Speed and Bowing Force

String players know that it is possible to play louder by bowing faster and
nearer to the bridge. Cremer (1984) points out that under normal playing
conditions, both the maximum displacement y,, of the string and the peak
transverse force at the bridge F,, are proportional to v,/x,, and he sub-
stantiates this with experimental data by H. Miiller and E. Volker. The
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Fig. 10.6. Range of bowing force for different bow-to-bridge distances for a cello bowed
at 20 cm/s (after Schelleng, 1973).

relationships can be written
Uy

Vo = %i—: and  Fp=pe (10.2)
In these expressions, v, is the bow speed, x,, is the distance from the bridge to
the bowing point, f is the frequency, u is the mass per unit length, c is the wave
speed, and the quantity uc is the characteristic impedance of the string.

For each position of the bow there is a minimum and a maximum bowing
force (musicians often refer to it as “bowing pressure”) at which the bend can
trigger the beginning and end of slippage between the bow and string, as
shown in Fig. 10.6. The closer to the bridge the instrument is bowed, the less
leeway the player has between minimum and maximum bowing force. Bowing
close to the bridge (sul ponticello) requires considerable bowing force and the
steady hand of an experienced player. According to Cremer and Lazarus
(1968), the minimum bowing force is proportional to v,/x,, but Cremer (1984)
expresses second thoughts about the validity of this simple relationship. In
fact, it appears as if it might be more nearly proportional to vy/x2.

Askenfelt (1986) used a bow equipped with a resistance wire and strain
gauges to record the bowing speed and bowing force employed by two
professional violinists under a variety of playing conditions. The bow force
was found to vary between 0.5 and 1.5 N; the lowest bow force that still
produced a steady tone was 0.1 N. The bow speed varied between 0.1 and
1 m/s; the lowest speed that still produced a steady tone was about 0.04 m/s.
A range of 38 dB in bow velocity produced a change in the top plate vibration
level of about 30 dB. This discrepancy suggests that the bow to bridge distance
changed between the highest and lowest bow force.

Although most studies of bowing speed and bowing force have considered
only steady-state behavior, Pickering (1986a) studied the effect of bowing



Fig. 10.7. Starting characteristics of a violin A string with different bow forces:
(@) 0.2 N, (b) 0.6 N, and (c) 0.8 N. Fundamental and second harmonic components of
string motion are shown (Pickering, 1986a).
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Fig. 10.8. Starting characteristic of a violin D string as a function of bow force and bow
speed (Pickering, 1986a).

parameters on the starting characteristics of violin tones. The bow was rapidly
accelerated to a constant speed, while the amplitudes of both the fundamental
and second harmonic components of string motion were observed as functions
of time. Three cases are shown in Fig. 10.7. With a relatively small bow force
of 0.2 N (20-gram load), the second harmonic develops more rapidly than the
fundamental. The optimum response occurs when the bow force is increased
to 0.6 N. With a bow force of 0.8 N, periodic breakdown of the Helmholtz
motion leads to “squawking.”

Starting times for two different bowing positions are shown in Fig. 10.8.
Note that bowing closer to the bridge [12-17 mm away in Fig. 10.8(a)]
requires a greater bowing force than is required when bowing farther from the
bridge [19-24 mm in Fig. 10.8(b)].

10.4.3. Effect of Stiffness

Real strings have stiffness, and as a result, the Helmholtz corner is not perfectly
sharp. This leads to at least two phenomena of interest to string players. One
is a slight flattening of pitch as the bow force increases. The other is a type of
noise called jitter that is caused by random variations in the period of the
string. Variations up to 30 cents between the shortest and longest cycles have
been found. The amount of jitter is roughly proportional to the amount of
corner rounding (McIntyre and Woodhouse, 1978).

When a rounded Helmholtz bend passes the bow, it is sharpened by the
nonlinear friction to an extent that depends upon the bow force. Thus, the
actual motion of the string represents an equilibrium between corner rounding
by the string and its terminations and corner sharpening by the bow. Further-
more, the amount of corner sharpening is not the same at the two bends,
being greater during the transition from slipping to sticking (McIntyre and
Woodhouse, 1978).
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Another consequence of corner sharpening by the bow is the generation of
ripples. When the shape of the bend is changed at the bow, a reflected wave is
generated. These secondary waves reflect back and forth between the two
bends (Cremer, 1984).

10.4.4. Longitudinal and Torsional Motion

Anyone who has listened to a violin played by an unskilled player will
recognize the beginner’s squeak that results from bowing with a heavy bow
force at a slight forward angle along the string. Longitudinal vibrations of the
string give rise to sounds that are easily noticed, since their frequencies are
not harmonically related to the main transverse vibrations and they lie in a
frequency range (1-5kHz) of high sensitivity for hearing. Lee and Rafferty
(1983) observed longitudinal modes with frequencies of 1350 Hz and 2700 Hz
for the G and D strings, respectively, of a violin. Longitudinal and transverse
vibrations are difficult to excite simultaneously in the same string, however.

Torsional vibrations in bars and strings were discussed in Section 2.19.
Torsional waves travel at a speed given by

o= [OKT 2.75)
pl

where G is the shear modulus, K is the torsional stiffness factor, p is the
density, and I is the polar moment of inertia. For a homogeneous circular
string, Ky = I, so

G
cr= [—. 10.3
T . (10.3)

In many materials the shear modulus G is related to Young’s modulus E and
Poisson’s ratio v by the equation

E
G"2(1 +v)

so the ratio of torsional and longitudinal wave speeds becomes

er G/ E_ 1

(2.76)

a NelNe JS2i+v

For steel strings, v = 0.28, so this ratio is 0.63.

Of greater interest to the violin player, however, is the ratio of ¢y to ¢, the
transverse wave speed. This varies from string to string, since c is a function
of tension. For a steel E string, ¢;/c = 7.7, whereas for a gut E string, cr/c = 2,
since gut has a much lower shear modulus G (Schelleng, 1973). For wound
strings, the ratio will generally be somewhere between these values.

Torsional waves are rather strongly excited by bowing. If we assume that
the outside of the string moves at the speed of the bow v, then the center of
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Fig. 10.9. Lissajous pattern of a steel string showing torsional motion and Helmholtz
motion (Kondo et al., 1986).

the string moves at a speed
v, = v, — @4, (10.4)

where w is the angular velocity of the string and a is its radius. Thus, the
transverse speed of the string’s center of mass fluctuates above and below the
bow speed due to torsional oscillations.

Cornu (1896) observed these torsional oscillations by attaching a tiny
mirror parallel to the string and perpendicular to the bowing direction. More
recently, Kondo et al. (1986) have studied torsional motion by observing
helical patterns on the string. The striking photograph in Fig. 10.9 of a string
with several helical scratches was made with an anamorphic camera, which
exaggerates transverse motion.

10.4.5. Physical Properties of Commercial Strings

The physical properties of some widely used violin strings have been carefully
measured by Pickering (1985, 1986b). Among the parameters tabulated are the
minimum and maximum diameters, the mass per unit length, the torsional
stiffness, the normal playing tension, the elasticity, and the inharmonicity of
the overtones.

The nominal tension varies from 34.8 to 84.0 N. Apparently, modern
violinists do not heed Leopold Mozart’s advice to strive for equal tension in
all four strings. The tension range among D strings alone is 34.8 to 61.7 N,
whereas E strings tend to run uniformly high (72.3 to 81.0 N), whether solid
or wound.

What Pickering calls elasticity is a measure of how much the tension (and
hence the pitch) changes for a given change in length; presumably, it is
proportional to the elastic modulus E. The elasticity of a steel string is about
three times greater than a synthetic string and as much as seven times greater
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than gut. Not only are steel strings more difficult to tune, but their tension
changes appreciably when pressed against the fingerboard.

The frequency of a newly fitted string drops after its initial tuning, and
continues to do so for a considerable period of time before its tuning becomes
stable. Steel strings tend to stabilize in a few minutes, synthetic strings require
about 8 h, while gut strings require as much as 48 h (Pickering, 1986b).

With the aid of a scanning electron microscope, Firth (1987) has studied
the construction details of violin strings having a gut core, nylon overwrap,
and an outer wrap of silver or aluminum. These details are compared to the
inharmonicity and to the preferences of players. Surprisingly, the strings with
the lowest inharmonicity ranked low in player preference, but that is probably
because of other factors. For one thing, the maximum bow force (Fig. 10.6) is
greater with heavier, stiffer strings, which allows the skilled player to put in
more energy. Also, greater stiffness tends to weaken the higher overtones, so
the player can use greater bow force without producing too sharp a timbre.

Reduction of inharmonicity is most easily accomplished by reducing the
core diameter, but it may also be accomplished by using a core of low elastic
(Young’s) modulus and by using a stranded and twisted cable as the core.

10.5. Violin Body Vibrations

Probably the most important determinant of the sound quality and playability
of a string instrument is the vibrational behavior of its body. Although violin
body vibrations have been studied for 150 years or more, most of our under-
standing has been gained during the last 50 or 60 years. The development
of optical holography, sophisticated electronic measuring instruments, and
digital computers has greatly contributed to our understanding in the past
20 years. Research from 1930 to 1973 is well documented by the articles
reprinted in Hutchins (1976).

The normal modes of vibration or eigenmodes of a violin are determined
mainly by the coupled motions of the top plate, black plate, and enclosed
air. Smaller contributions are made by the ribs, neck, fingerboard, etc. The
coupling between the various oscillators is more difficult to model than in the
guitar, for example, partly because of the soundpost. Although the vibrational
modes of free plates have been successfully modeled by finite element methods
(Rodgers, 1986; Rubin and Farrar, 1987; Richardson, Roberts, and Walker,
1987), most of our knowledge about eigenmodes of complete instruments is
based on experimental studies.

Mode shapes appear to differ rather widely in different instruments. This
is apparent in Fig. 10.10, which shows the mechanical admittances (mobilities)
measured at the bridge in six different violins. The most consistent mode in
these six instruments is the mode termed the “air resonance” or “f-hole
resonance” which occurs around 260-300 Hz. Several prominent resonances
(peaks) and antiresonances (dips) occur in the 400- to 800-Hz octave.
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Fig. 10.10. Mechanical admittances of six violins as measured at the bridges (Beldie,
1974, as presented by Cremer, 1985).

Although the frequencies of the prominent peaks are quite different in the
admittance curves of Fig. 10.10, their overall shapes are quite similar, and that
is probably why all six instruments sound like violins. We will discuss this in
a later section.

Different investigators have used different systems of nomenclature for the
various resonances observed in violins. We will follow, for the most part, that
employed by Erik Jansson and his co-workers at the Royal Institute of



10.5. Violin Body Vibrations 249

Technology (KTH) in Stockholm. They identify modes according to the
primary vibrating element as follows:

Air modes (Ag, A, A,,...): motion of enclosed air;

Top modes (T, T,, T;, ...) : motion primarily of the top plate;

Back modes (B,, B, Bs,...) : motion primarily of the back plate;

Body modes (C,,C,,Cs,..., also N) : modes in which the top and back plate
move similarly; modes N (neck) and C, (corpus) are one-dimensional
bending modes, modes C,, C;, ... are two-dimensional flexing modes.

The first bending mode C, is like the first bending mode of a bar, having
one nodal line near the bridge and one halfway up the neck. The second
bending mode N features the motion of the fingerboard. Neither of these
modes radiates sounds very efficiently, but they probably contribute to the
“feel” of the instrument, and they may interact with some radiative modes
having nearly the same frequencies.

The lowest mode of acoustical importance is the main air resonance or
f-hole resonance A,, in which a substantial amount of air moves in and
out of the f-holes. It is sometimes called the “Helmholtz air resonance,” but
this is misleading, because the term Helmholtz resonance usually describes
the resonant motion of air in and out of a container with rigid walls. The
Helmbholtz air resonance of a violin cavity with stationary walls appears as an
antiresonance or admittance minimum when a driving force is applied to the
top plate or bridge. This antiresonance usually dppears just above the f-hole
resonance on the response curve. Frequency ranges for various types of
resonances are shown in Fig. 10.11.

Mode shapes for the first four body modes, C,, C,, C;, and C,, are shown
in Fig. 10.12 along with the A, air resonance and the first top plate mode T,.
The two-dimensional body modes C,, C;, C, are quite similar in shape to
three modes in a free top plate (often designated as “modes 3, 2, and 5,”
respectively; see Hutchins, 1981).

Caldersmith (1981) suggested that modes C, and T, form a “plate funda-
mental doublet,” so that modes A,, C,, and T; would be analogous to the

T T T T T T T T T
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8 Body
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Fig. 10.11. Frequency ranges for different types of resonances or eigenmodes in a violin
(from Alonso Moral and Jansson, 1982a).
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Fig. 10.12. Modal shapes for six modes in a violin.

C, (185 Hz): one-dimensional bending;

A, (275 Hz): air flows in and out of the f-holes;

C, (405 Hz): two-dimensional flexure;

T, (460 Hz): mainly motion of the top plates;

C,; (530 Hz), C, (700 Hz): two-dimensional flexure.

Top plate and back plate are shown for each mode. The heavy lines are nodal lines;
the direction of motion is indicated by + or —. The drive point is indicated by a small
triangle (after Alonso Moral and Jansson, 1982a).

three (0,0) modes found in guitars because of coupling of the lowest modes of
the top plate, back plate, and air cavity (see Chapter 9). However, from the
mode shapes in Fig. 10.12, it appears more as if T, and C; form a sort of
doublet pair. In a violin, the top and back plates are strongly coupled by the
soundpost as well as the ribs, so it is not surprising that there are few modes
in which the entire top plate or back plate moves in the same direction.

The modes designated Ay, T, C;, and C, in Fig. 10.12 appear to be the
most important low-frequency modes in a violin. They are identified on the
admittance curve of a Guarneri violin in Fig. 10.13. Further evidence for the
important role of modes T,, C;, and C, came from examining 24 violins
entered in a Scandinavian violin maker’s competition. Alonso Moral and
Jansson (1982b) found that the violins judged highest in quality tended to have
uniformly high levels of admittance for these modes (when driven on the bass
bar side). Another criterion of quality was a rapid increase in admittance from
1.4 and 3 kHz. Admittance curves for the best violin, driven on both the bass
bar and soundpost sides, are shown in Fig. 10.14.
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Frequency (kHz)

Fig. 10.14. Input admittance (driving point mobility) for the best violin in a violin
makers competition. Solid curve is driven on the bass bar side and dashed curve on
the soundpost side. Note the uniform high level of the T;, C;, and C, peaks (for the
bass bar drive) and the steep rise from 1.4 to 3 kHz (Alonso Moral and Jansson, 1982b).

10.5.1. Experimental Methods for Modal Analysis

Quite a number of different experimental methods have been used to study
violin body vibrations. The agreement between the results of different investi-
gators using different methods on different violins is not always good.

Early work by Backhaus and Meinel, as well as investigations by Eggers
during the 1950s (all reported in Hutchins, 1976), made use of capacitive
sensors to detect the plate displacements as a function of position. Menzel
and Hutchins (1970) used an optical proximity detector. Luke (1971) and
Lee (1975) scanned the plates with optical sensors. Luke applied a sinusoidal
force to the bridge, while Lee excited his violin by bowing the open strings.

Several optical interferometric techniques, employing laser light sources,
provide very accurate records of violin body motion. One is time-average
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holographic interferometry (Powell and Stetson, 1965), which was used to
study violin body resonances by Reinecke and Cremer (1970) and by Jansson
et al. (1970). This method records the location of nodal lines with great
accuracy and also provides a sort of contour map of displacement amplitude
in the antinodal regions. It has the disadvantage of requiring that the instru-
ment be fixed in position, generally by clamping at two or more points, which
may affect its modal shapes.

Laser speckle interferometry (Archbold et al. 1969) has been applied to
violins by Jansson (1973) and his colleagues. Although it provides consider-
ably less detail about the vibrational modes than time-average holographic
interferometry, it has the great advantage that observations can be viewed in
real time without being first recorded on a photographic emulsion.

Real-time holographic interferometry (Stetson and Powell, 1965) may be
accomplished by recording a hologram of the object at rest, creating an
interference pattern between this hologram (in precisely the same position as
during recording!) and the original object, which is then set into vibration at
one or more of its resonance frequencies. Strobing the laser beam sharpens
the definition of the modal patterns. Another real-time holographic method
creates interference patterns in a vidicon tube, so that modal patterns can be
viewed on a television monitor (Ek and Jansson, 1985).

Modal analysis using structural testing methods (see Appendix A.4.2 in
Chapter 4) has been successfully applied to violins (Miiller and Geissler, 1983;
Marshall, 1985; Jansson et al., 1986). Impact excitation allows investigation
of the motion at a number of frequencies at one time. The usual technique
consists of attaching an accelerometer at a key point on the violin and tapping
at a large number of points on the instrument (including bridge, neck, finger-
board, etc.) with a hammer having a force transducer or load cell. From the
Fourier transforms of the force and acceleration at each pair of locations, it
is possible to compute the modal parameters of interest, including modal
frequencies, damping, and mode shapes.

Modal analysis with impact excitation is a fast and convenient method for
determining the vibrational modes of an elastic structure. The modal shapes
obtained by this method appear to be in only fair agreement with those
obtained by more precise holographic methods, however. In particular, the
locations of antinodes are in better agreement than the locations of nodal lines
(Jansson et al., 1986). It is probably too early to determine how widely modal
analysis with impact excitation will be used in violin research.

Other methods for modal analysis include the time-honored method of
Chladni patterns, scanning the near-field sound next to the vibrating surfaces
with a microphone, and scanning the vibrating surfaces with a very small
accelerometer. Chladni patterns are quite effective for mapping the modes of
free plates, but they are somewhat impractical for finished violins.

Jansson et al. (1986) compared three different systems for applying sinu-
soidal excitation and also three different arrangements for supporting the
instrument during testing (hung on rubber bands, loosely clamped at the neck,
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clamped at the neck and supported at the tailpiece end). Sinusoidal drive was
compared to impact excitation.

It is well to point out that each of the experimental methods described in
this section has its own advantages and disadvantages. Applying two or more
methods to the same instrument and comparing the data is probably the most
effective strategy for modal analysis of violin body vibrations.

10.5.2. Free Plates and Assembled Violins

Violin makers have traditionally attached great significance to the vibrations
of free top and back plates as determined by listening to tap tones and, more
recently, by visual observation of the mode shapes. The vibrational modes of
the finished violin, however, are quite different from those observed in the free
plates from which they are constructed.

Holographic interferograms of a well-tuned top plate and back plate are
shown in Fig. 10.15. More recently, Carleen Hutchins and several other
luthiers have recommended tuning the X-mode (mode # 2) and the ring mode
(mode #5) to the same frequencies (preferably an octave apart) in both the
top plate and the back plate, referred to as double octave tuning. Approximate

TOP PLATE

BACK PLATE

Fig. 10.15. Time-average holographic interferograms of a free violin top plate and back
plate (Hutchins et al., 1971).



254 10. Bowed String Instruments

suggested frequencies are given by Hutchins (1987):

X-mode (#2) O-mode (#5) Type of instrument

165 330 Violin for soft-bowing players and students
170 340 Violin for chamber music and orchestral players
180-185 360-370 Violin for soloists of exceptional bowing technique
115-125 230-250 Violas from 164 to 174 in. in length

60—65 120-130 Cellos

In a cello, mode #1 can be tuned an octave below mode #2 in both plates,
but in violins and violas the interval should be less than an octave in the back
plate.

An interesting study on the relationship between the free plate mode
frequencies and those of an assembled violin was made by Alonso Moral
(1984). Three top plates, three back plates, and three sets of ribs, with different
stiffness, were used to assemble twelve different violins for testing. The plates
and ribs were rated as pliant (P), normal (N), or resistive (R). The masses of
the top plates varied from 67 to 93 g, and those of the back plates from 115
to 147 g. The mode frequencies (modes #2 and #5) in the top plates were
189 Hz + 119/ and 388 Hz + 119; in the back plates, they were 194 Hz + 119
and 385 Hz + 10%. The frequency ratios of the two modes were close to 2 in
each plate, and the plates were not varnished.

Alonso Moral found that the A, and T, resonances were most strongly
influenced by the properties of the top plate, the C, resonance was most
strongly influenced by the back plate, and the C; resonance was equally
influenced by both the top and back plates. More specifically:

1. The level of the A, resonance is very sensitive to the level of the free top
plate resonance, but the frequency of the A, resonance is insensitive to the
top and back plate frequencies.

2. The frequency and level of the T, resonance are very sensitive to the
frequency and level of the top plate resonance.

3. The frequency shift in the C; resonance is about 20% of the shifts in
frequencies of the top and/or back plate. The level increase is about 50%,
of the level increase in the top plate resonance, but decreases by about 409,
of the level increase in the back plate.

4. The frequency shift in the C, resonance is about 409, of the shifts in
frequency in the top and/or back plates, but the level is more sensitive to
a shift in the level of the back plate resonance.

Alonso Moral found that combinations of the pliant top with a pliant or
normal back plate led to violins judged the highest in quality, but this is not
surprising since the plates were all fairly stiff according to the recommended
frequencies given earlier in this section.

Studies by Niewczyk and Jansson (1987) indicate that resonance frequencies
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in the assembled instrument are considerably less sensitive to plate thickness
than the modes of the free plate. The thickness near the edge of the plate, which
is one of the least important parameters in the free plate, appears to be one of
the most important parameters in the assembled instrument.

10.6. The Bridge

The primary role of the bridge is to transform the motion of the vibrating
strings into periodic driving forces applied by its two feet to the top plate of
the instrument. However, generations of luthiers have discovered that shaping
the bridge is a convenient and effective way to alter the frequency response
curve of the instrument. As Savart (1840) described it:

If we take a piece of wood cut like a bridge and glue it on to a violin, the instrument
will have almost no sound; it begins to improve if feet are formed on the bridge; if we
make two lateral slots, the quality of sound takes on increasing value as we cut the
bridge completely to the usual form. It is astonishing that by feeling our way we have
arrived at the shape currently used, which seems to be the best of all that could be
adopted.

Careful experiments by Minnaert and Vlam (1937) confirmed early obser-
vations by Raman and others that the bridge has a large number of vibration
modes, and that these vibrations are not confined to the plane of the bridge.
By attaching mirrors to both the broad and narrow sides of the bridge and
observing the deflection of light beams during bowing, they were able to
separately identify longitudinal, flexural, and torsional vibrations.

Bladier (1960) and Steinkopf (1963) studied the frequency response functions
of cello bridges. Bladier concluded that the bridge acts as an acoustical level
or amplifier with a gain of about 2 (6 dB) between 66 and 660 Hz, decreasing
to 1 or below above 660 Hz. Steinkopf modeled the cello bridge as a three-port
device, having one input port (the vibrating string) and two output ports (the
feet). He observed a major resonance at 1000—1500 Hz in various bridges, and
showed that below this resonance the bridge acts like a stiff spring with a
reactance varying as 1/f.

Reinecke (1973) attached piezoelectric force sensors at the string notch and
under both feet. In addition, he measured velocity at the upper edge of the
bridge with a capacitive sensor, so that he was able to determine both the
input impedance and the force transfer functions. He observed resonances
around 1000 and 2000 Hz in cello bridges and around 3000 and 6000 Hz in
violin bridges standing on a rigid support. The upper curve in Fig. 10.16 shows
the input impedance (F,/v,), and the lower curve the force transformation
functions from the string notch to the two feet (F,/F, and F,/F)).

Note that the force transfer functions have a constant value 0.5 up to
about 1000 Hz; equal and opposite forces appear at the two feet. At higher
frequencies, the forces are uneven; at some frequencies, the force on the
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Fig. 10.16. Frequency response of a violin bridge. (a) Input impedance and (b) force
transfer from input (string notch) to outputs (bridge feet); solid curve is soundpost foot
and dashed curve is bass bar foot (after Reinecke, 1973).

soundpost foot predominates; at some, it is the bass bar foot. Furthermore,
Fig. 10.14 shows that the mobility (ratio of velocity to force) is different on the
two sides. At any rate, Helmholtz’s statement that the bass bar foot alone
sets the top plate into motion does not seem to be correct. At the bridge
resonances, the impedance reaches a minimum and the force transfer functions
have maximum values.

Holographic interferometry provides an effective way to determine the
vibrational modes of a bridge. The motions of a violin and a cello bridge at
their two main resonances are shown in Fig. 10.17. The motion of the violin
bridge at its first resonance is mainly rotational, while in the cello it is mainly
bending of its slender legs. Cremer (1984) picturesquely compares their legs to
those of a Dachshund and a Great Dane, respectively. Note that the second
resonance of the violin mode is excited by a vertical force, and that is why it
is less prominent in Fig. 10.16.

In order to darken the sound of a string instrument, the player attaches a
mute to the bridge. The main effect of this additional mass is to shift the bridge
resonances to lower frequency. Conversely, the resonance frequencies may
be raised by additional elasticity in the form of tiny wedges pushed into the
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3060 Hz 6100 Hz 985 Hz 2100 Hz

Fig. 10.17. First two vibrational modes of a violin bridge (left) and a cello bridge (right)
(after Reinecke, 1973).

slits (Miiller, 1979). The effect on the force transfer function is illustrated in
Fig. 10.18.

The change in the first resonance frequency with added mass is found
to follow a simple mass/spring oscillator model. Hacklinger (1978) determined
the stiffness in one violin bridge to be 166,000 N/m and from the resonance
frequency, calculated an effective mass of 0.52 g. Adding mutes with masses of
0.32 g and 0.86 g lowered the main resonance from 2850 Hz to 2240 and
1745 Hz, respectively. Other bridges ranged in stiffness from 160,000 to
950,000 N/m.
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Fig. 10.18. Force transfer function of the bridge with additional mass (1.5g) and
additional stiffness (data of Reinecke cited in Miiller, 1979).
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D
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Fig. 10.19. Tilting the bridge slightly so that « = § will result in equal tension in both
string segments (Hacklinger, 1980).

For aesthetic reasons bridges are generally carved quite symmetrically.
However, Hacklinger (1979) suggests that the treble side should probably be
made thicker (stiffer) than the bass side. Because of greater tension in the
higher strings, the static force on the soundpost foot is roughly twice that on
the bass bar foot. Furthermore, the E string vibrates nearly parallel to the top
plate, whereas the G string makes roughly a 50° angle.

Hacklinger (1980) also recommends tilting the bridge slightly away from
vertical so that angles « and f (Fig. 10.19) will be equal. This posture makes
the tension equal in both segments of the string as well.

10.7. Sound Radiation

A complete description of the sound radiated by a musical instrument should
include information about the radiated intensity as functions of both fre-
quency and location. Ordinarily, the measurements should be made in a free
field environment (in an anechoic room or outdoors away from reflecting
surfaces), although there are methods to determine sound intensity in a
nonanechoic environment by using two or more microphones.

Thus far, we have discussed the motion of bowed strings, the way in which
the bridge transmits the string force to the top plate, and the motion of various
parts of the body. The final link in the chain is a discussion of how the moving
parts radiate sound. Throughout the discussions, we have described various
parts of the violin by transfer functions, which relate output to input. Transfer
functions found throughout the literature have been expressions of mobility
or admittance (velocity divided by force) or of force transfer (output force
divided by input force) as functions of frequency. Another useful transfer
function might be radiated sound power divided by bridge force (or top
plate velocity at the bridge). This would not give us information about the
directivity of the sound radiation, however.

Weinreich (1985) proposes the term radiativity to describe the amplitude
of the sound field per unit of force exerted by the string on the bridge.
Presumably, the term without a modifier would be defined as total radiated
sound divided by the string force. One might speak of directional radiativity
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Fig. 10.20. Directional characteristics of two violins driven sinusoidally at the bridge
(Meyer, 1975).

or frontal radiativity to describe the sound radiated into a certain solid angle,
or dipole radiativity to describe the part of the radiated sound having a certain
spatial distribution.

Many “sound spectra” of violins and other instruments appear in the
literature. Unfortunately, many of them do not adequately describe the
location or the environment of the microphone(s). Only on rare occasions is
the radiated sound power or power level (or sound pressure level at a specified
location) compared to the force (or other measure) of excitation.

The directional characteristics (in the plane of the bridge) of two violins
driven sinusoidally at the bridge are shown in Fig. 10.20. Note the rather
dramatic changes that can occur when the frequency is changed by a small
amount near a resonance. At higher frequencies, the sound radiation field
becomes even more directional, as seen in Fig. 10.21.

Fig. 10.21. Directional characteristics of two violins in the plane of the bridge.
(a) Meinel (1937); (b) Backhaus and Weymann (1939).
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Fig. 10.22. Directional characteristics of a violin in a longitudinal plane at 880 Hz.
Solid curve: measured characteristics; dashed curve: synthesized with directional
Green’s functions (Cremer and Lehringer, 1973).

The directional characteristics in Figs. 10.20 and 10.21 were measured in
the plane of the bridge. Directional characteristics perpendicular to the body
in the plane of the strings are shown in Fig. 10.22. Cremer and Lehringer
(1973) were able to generate a sound field with similar characteristics by means
of six small loudspeakers mounted in a violin body (four in the top plate, two
in the back) and also to synthesize the field with directional Green’s functions.

10.7.1. Multipole Expansion of the Sound Field

In Chapter 7, it was shown that the sound field radiated by a complex source
can be approximated by combining the fields of two or more simple sources
(monopoles, dipoles, quadrupoles), appropriately phased. Mathematically,
this amounts to a series expansion of the sound pressure in functions having
the proper spatial dependence.

The monopole radiativity of two very simple violin models is shown in
Fig. 10.23. The first model has no f-holes and its body has a single resonance.
At very low frequencies, the radiativity is determined by the (static) stiffness
of the wood plus the enclosed air. The radiativity increases as the resonance
is approached, and above the resonance frequency it changes sign. The second
model adds a single f-hole. At low frequency, air is “pumped” in and out
of the f-hole, so that there is no net volume change, hence no monopole
radiativity. As the air resonance is approached, the volume motion of the air
becomes greater than that of the shell (assuming the air resonance is lower in
frequency than the wood resonance), and the monopole radiativity has the
opposite sign from the one due to motion of the wood plates alone.

It is interesting to note that the dipole radiativity, though small, remains
finite as the frequency goes to zero, since the volume displaced by the moving
plate is equal and opposite to that pumped in and out of the f-hole. If
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Fig. 10.23. Monopole radiativity of two very simple violin models. (a) Model with no
f-holes has only a single body resonance. (b) Model with an f-hole adds an air resonance

(Weinreich, 1985).

the model had two f-holes, symmetrically located with respect to the anti-
node of the wood vibration, the dipole moment would go to zero but the
(linear) quadrupole moment would remain finite. This is of little practical
value, however, because dipole and quadrupole radiation are very weak at
low frequency.

The monopole radiativity of a violin of medium quality is shown in
Fig. 10.24. The solid curves give the magnitude and phase of the radiativity
when a sinusoidal force is applied parallel to the violin top, and the dotted
curve gives the magnitude of the radiativity for a force perpendicular to the

Fig. 10.24. Monopole radiativity of a violin at low frequency. Solid curve is for force
parallel to the top plate; dotted curve is for a perpendicular force (Weinreich, 1985).
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Fig. 10.25. Monopole radiativity curves of violins by Vuillaume (left) and C. Hutchins
(right). Scale is the same as in Fig. 10.24 (Weinreich, 1985).

top. Note that the phase advances 180° at each resonance and retreats 180°
at each antiresonance (compare Fig. 4.7); ignore jumps of 360°. These graphs
are based on a definition of the monopole moment as a volume velocity, and
hence the in-phase motion of the plate and air between the air and wood
resonances (300 to 450 Hz) is characterized by a phase of —90° rather than 0.
Above 450 Hz is a cluster of resonances that collectively act as the “main body
resonance,” above which the motion of the top plate is governed by inertia
rather than elasticity (Weinreich, 1985). The narrow resonances of the strings
(294, 392, 440, 588, 660, 784 Hz, etc.) cause no net phase change.

Monopole radiativity curves of violins by Vuillaume (1862) and by Hutchins
are shown in Fig. 10.25. They are quite similar to the one in Fig. 10.24.

10.7.2. Radiation at Higher Frequencies

Since the speed of bending waves in a plate increases with the square root of
frequency (see Chapter 3), it will catch up to the speed of sound (in air) at some
frequency that depends upon the elastic properties of the plate. This is called
the critical frequency or coincidence frequency. The dramatic increase in
radiation by a vibrating plate that occurs above the critical frequency was
discussed in Chapter 7 (p. 163, 168).
In an infinite plate, flexural waves above the critical frequency radiate at
an angle 0 given by
. ¢
0 = arcsin o)’ (10.5)
where ¢ is the speed of sound (in air) and v(f) is the speed of bending waves
in the plate. This angle 0 is similar to the Mach angle for shock waves radiated
by a supersonic airplane. Thus, the radiation by the supersonic flexural wave
is nearly parallel to the plate when v(f) is only slightly greater than c, but it
occurs at greater angles for v(f) » c.

180°
O—l—— /(A= /"~ — oji\‘/__fk\kf\m%_
180° . . 1 {/ —180° L L L L"'
200 400 600 800 1000 200 400 600 800 1000
Hz Hz
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Fig. 10.26. Directional characteristics of a symmetrically oscillating two-plate system
with varying numbers of half bending waves n. Frequency is proportional to n?; n = 4
represents the critical frequency (Cremer, 1984).

The radiation behavior of finite plates is somewhat more complicated. The
directional characteristics of a symmetrically oscillating two-plate system at
various ¢/v( f) ratios is shown in Fig. 10.26. The number n denotes the number
of half bending waves on the plate, so the frequency is proportional to n2. The
n = 4 case, where Ay = A;, represents the critical frequency; radiation parallel
to the plate (f = 0) is maximum in this case. As n increases, the radiation
pattern approaches that of an infinite plate with maxima at 6, as given in
Eq. (10.5).

The critical frequency is difficult to calculate for violin plates. By com-
parison to a flat plate with approximately the dimensions of a violin, Cremer
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(1984) estimates critical frequencies of 4870 Hz along the grain and 18,420 Hz
across the grain for a violin plate 2.5 mm thick. In a 4.4-mm-thick cello plate,
however, the critical frequency for bending waves along the grain would be
only 2800 Hz.

The most extensive study of directivity in string instruments is reported by
Meyer (1972). He represents the directivity of a cello in the vertical plane
(parallel to the strings, perpendicular to the top plate) by the probability
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Fig. 10.27. Average directivity for five cellos. Probability distributions show angular
regions in the vertical plane for which the intensity remains above one-half of its
maximum value (Meyer, 1972).
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Fig. 10.28. Principal radiation directions for the cello in the vertical (left) and horizontal
(right) planes (Meyer, 1972).

distributions for 5 cellos in Fig. 10.27. Note the evidence for a critical frequency
somewhere above 2000 Hz at which the two preferred radiation angles are
more or less symmetrical around 6 = 0 (the direction perpendicular to the top
plate).

Another way to represent the cello data is shown in Fig. 10.28. The principal
radiation directions are shown both in the vertical plane (as in Fig. 10.27) and
in the plane of the bridge.

Directivity curves for violins are shown in Figs. 10.29 and 10.30. There is
some evidence for a critical frequency around 4500 Hz, but the effect is not
nearly so clear as in the cello.

A graph of sound level versus frequency for a sinusoidally driven violin is
shown in Fig. 10.31. The sound level is averaged over 6 microphones 1 m from
the violin, so it provides a reasonably good indication of the total radiated
power. The power level appears to fall off at a rate of about 9 dB/octave.

Another way to measure the sound power of a source is to measure the
sound pressure level in a reverberant room. Narrow bands of noise, rather
than sine functions, are used as drive signals in order to average out the
resonances of the room. This method was used to obtain the power spectrum
in Fig. 10.32(a); the bridge input admittance for the same instrument is shown
in Fig. 10.32(b). The drive force was kept constant. Note that the air resonance
(just below 300 Hz) is more prominent in the radiation curve than in the
admittance curve.
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Fig. 10.30. Principal radiation directions for the violin in the horizontal plane (Meyer
1972).

Fig. 10.31. Sound pressure level averaged over six microphones 1 m away from a
sinusoidally driven violin. Straight line has a slope of —9 dB/octave (Jansson et al.,
1986).
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Fig. 10.32. (a) Sound pressure level of a violin in a reverberant room and (b) bridge
input admittance for the same violin on a logarithmic scale (Beldie, 1974).

10.7.3. Sound Radiation from Bowed Violins

In most studies of sound radiation, a sinusoidal force has been applied to
the bridge. When the violin is bowed, however, the complex driving force
(whose waveform approximates a sawtooth wave) is rich in harmonic par-
tials. Quite a different power spectrum is then obtained. The fundamental
is generally the strongest partial; between the fundamental and the bridge
resonance (2500-3000 Hz), the partials decrease about 6 dB/octave because
of the sawtooth character of the bow excitation. Above 3000 Hz, the spectrum
has a slope of roughly —15 dB/octave because of the sawtooth excitation
(—6dB/octave) combined with the sinusoidal frequency response curve
(—9 dB/octave; see Fig. 10.31).

Saunders (1937) used total intensity curves to compare different violins. To
record these curves, the instruments were played as loudly as possible without
allowing the tone to break, and the sound intensity level was recorded. Total
intensity curves for five Stradivarius violins are shown in Fig. 10.33. Hutchins
refers to curves employing the hand-bowing technique, in which each note is
bowed loudly with fast vigorous bow strokes, as Saunders loudness curves.

Another useful technique for analyzing the sound of bowed instruments is
to compute long-term-average spectra (LTAS). Scales played on the violin are
tape recorded and analyzed by means of 23 filters whose center frequencies
and bandwidths approximate the critical bands of hearing (alternatively, the
spectrum analysis may be done on a digital computer programmed to simulate
the 23 filters). If the directional characteristics of the radiated sound are
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Fig. 10.33. Total intensity curves for five Stradivarius violins bowed one note at a time
(Saunders, 1937).

Fig. 10.34. Long-term-average spectra of bowed scales on a violin recorded at five
different microphones in an anechoic room (left) and a reverberation room (right). The
sound field in the reverberation room is relatively independent of microphone position.
“Bark” corresponds to the number of the critical band (Jansson, 1976).
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desired, the recording should be done in an anechoic room; if the total sound
power is desired, a reverberation chamber is preferred. Both environments are
illustrated in Fig. 10.34.

10.8. The Bow

Nearly all string players agree about the great importance of using a bow of
high quality. Thus, it is rather surprising that relatively little scientific study
has been directed at the behavior of the bow.

Static properties of the bow include its size and shape, mass, camber,
stiffness, the position of its center of mass, its center of percussion, and the
longitudinal compliance of its bow hairs. Dynamic properties include bow
hair admittance and vibrational modes of the stick.

A few properties of three violin bows and one viola bow are supplied by
Reder (1970):

Property Violin bow #1  Violinbow #2  Violin bow #3  Viola bow
Stick length (cm) 72.8 72.8 72.8 719
Mass (gm) 64 58 53 67.5
Camber (mm) 17.7 17.7 20 18.6
Center of mass (cm) 24.8 252 23.95 25.0
Center of percussion (cm) 44.5 44.1 450 43.7
Deflection (mm)

0.2-kg load 2.00 195 2.10 1.50

0.4-kg load 3.95 3.90 4.20 3.00

0.6-kg load 5.90 5.85 6.50 4.80
Playing quality Excellent Very good Good Excellent

If anything can be concluded from the static properties listed in this table, it
is that the violin bow of lower quality was lighter and less stiff than the best
bow and had greater camber (perhaps to compensate for less stiffness). The
viola bow was heavier and stiffer than the violin bows.

The first longitudinal resonance of the bow hair lies between 1500 and
2000 Hz for a 62-cm length, giving a longitudinal wave speed of 1900 to
2500 m/s. From this, a characteristic impedance of 30 kg/s and a tension of
0.3 N on each hair or 60 N for 200 hairs are estimated (Schumacher, 1975). In
some preliminary experiments, stick modes were found to have an average
spacing of about 300 Hz up to 2000 Hz.

The playing characteristics of bows are most likely dependent on the
low-frequency transverse oscillations, for which 65 Hz is a typical frequency
in a cello bow. These oscillations, which lead to a periodic variation in bowing
pressure, are governed by the wooden parts as well as the tension on the bow
hairs.
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10.9. The Wolf Tone

Ordinarily, the characteristic impedance of the string [given as uc in
Eq. (2.38)] is about {4 of the impedance of the bridge, as seen by the string.
This impedance mismatch is more than enough to provide the strong reflection
needed for oscillations to build up on the string. At the frequency of a
strong body resonance, however, the bridge impedance is greatly reduced (by
approximately the Q of the resonance), and thus the reflection may be too
weak to sustain the oscillation of the string.

Initially, the quiet bridge provides a sufficiently strong reflection for the
string oscillation to build up, but as the body vibration builds up in amplitude
near a strong resonance, the bridge appears “soft” to the string, and energy is
absorbed from the string causing its oscillation to die down. When the string
oscillation dies down, the body vibration is deprived of its energy source, and
it soon dies out also, making a new cycle possible. The net result is that the
string and the body vibrations alternately grow and diminish in amplitude, in
somewhat the same fashion as the coupled pendula described in Chapter 4.
When this occurs, the player finds it difficult, if not impossible, to maintain a
steady sound by bowing. Rather the tone varies strongly and harshly at the
exchange frequency, which is typically about 5 Hz. The note at which this
unstable situation occurs is called the wolf tone. The alternating amplitudes
of the string and body are evident in Fig. 10.35.

There are two reasons why the viola and especially the cello are more
susceptible to wolf tone trouble than the violin. One is that the string/body
impedance mismatch is less in the larger instruments; that is, their dimensions
have not increased in proportion to 1/f. As Schelleng (1963) described it, “The
chronic susceptibility of the cello to this trouble is the price paid for the
convenience of a small instrument, small compared to one completely scaled.”

The second reason has to do with the bridge height. When the much taller

Belly

String

Fig. 10.35. Oscillograms of the body and string showing alternate growth of amplitude
characteristic of a wolf tone (Raman, 1916).
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bridge of the cello (see Fig. 10.17) rocks back and forth in response to the
vibration of the top plate, it acts as a longer lever in reducing the impedance
seen by the string. The reduction in impedance increases as the square of the
lever length, which is 2.4 times greater in the cello. Both factors considered,
Cremer (1984) estimates that it is 3.4 times easier to generate wolf tones in the
cello.

There have been a number of suggestions as to how to suppress wolf tones.
Damping the top plate is probably not a good solution, because it would
reduce the Q of other resonances as well as the one that causes the wolf tone.
One possibility is to couple yet another oscillator with the same resonance
frequency but with greater damping than the body resonance. A convenient
way to do this is to attach an appropriate mass to the extension of a string
between the bridge and tailpiece. A material with high internal damping, such
as Plasticine or modeling clay, can be used for the required mass. Other
dampers attach directly on the body or mount inside the instrument (Giith,
1978). An experienced player can usually suppress a wolf tone by increasing
the bowing force or changing the point of bowing, but “an ounce of prevention
is worth a pound of cure.”

10.10. Tonal Quality of Violins

A question musical acousticians are often asked by musicians as well as
laypersons is “Do you think ‘they’ will ever discover the secrets of Stradivari?”
There is little doubt that instruments crafted by the old Italian masters are
highly treasured. Although they have undergone substantial modifications to
bring them up to modern pitch standards, most surviving instruments of these
masters still have excellent tonal and playing qualities.

The sound quality of a musical instrument depends upon a number of
factors. Although most of them are acoustical, relating to the way the instru-
ment vibrates and radiates sound, there are nonacoustical factors that can
have a psychological effect on the player as well. If a violin appears to have
been made by a master craftsman, it will probably be played accordingly. This
is especially true if the player knows of the maker and his reputation. Every
string instrument has its own unique playing characteristics, and if you are
given the opportunity to play (or to own) a Stradivarius violin, you will no
doubt take great care to adapt your playing technique to bring out the best
in the instrument.

In a paper presented at the Stockholm Music Acoustics Conference in 1983,
Jirgen Meyer attempted to answer two questions:

(1) Does the vibration behavior of old Italian violins differ from that of other
violins?

(2) Is it possible to imagine sound qualities of a violin making it appear
superior to an old Italian violin, without its losing the typical sound of a
violin?
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To answer these questions, it is important to try to distinguish between the
influence of the player on the instrument and the acoustical properties of the
instrument itself.

The main parameters at the player’s disposal are related to bowing: bow
speed, bow force, and bowing position on the string (and the way in which
these relate to each other, especially during the attack). Additional parameters
have to do with holding the instrument, correct intonation, and vibrato
technique. Although these playing parameters profoundly affect the overall
tonal quality, Meyer found that their effect on the sound spectrum is small,
being mainly restricted to the slope of the envelope toward high frequencies.
Thus, violins need not be bowed by machines in order to compare their
playing spectra.

The frequencies of the air resonance (f) and the first body resonance (f;)
in 100 violins are compared in Fig. 10.36. Included in this group are 6 violins
by Stradivari and 14 by other old Italian masters. The characteristic that
stands out is the low tuning of the plate resonance (T, in Fig. 10.12) in the old
Italian instruments.

Analysis with one-third octave filters provides information about energy
distribution. Figure 10.37 shows the levels in two adjacent third-octave bands

Fig. 10.38. Response curves of three groups of violins. Top: ten old Italian violins;
center: master violins; bottom: factory-made violins (Diinnwald, 1983).
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Fig. 10.39. Quality parameters L and N for 350 violins. (m = old Italian violins;
e = others) (Diinnwald, 1985).

having center frequencies of 315 and 400 Hz. Each point below the dashed line
represents a violin whose level in the 315-Hz band is greater than its level in
the 400-Hz band, a characteristic of 13 old Italian instruments (including all
6 Strads), but of very few others.

Response curves of three groups of violins are compared in Fig. 10.38. The
old Italian violins are characterized by a broad maximum around 2500 Hz,
followed by a marked roll-off toward high frequency. This maximum, which
occurs in the range of greatest hearing sensitivity, is quite similar to the singer’s
formant found in the spectra of most opera singers. (Several other remarkable
similarities between the violin and the singing voice were noted by Rakowski,
1985, as well.)

More recently, Diinnwald (1985) has found that two parameters L and N
could be used to characterize the sound of old Italian violins. L is the relative
sound level at the air resonance frequency, and N is the percentage of tones
from an instrument in which the strongest partial lies within the frequency
range 1300 to 2500 Hz. All except one of the old Italian violins lie in one corner
of the graph of L versus N in Fig. 10.39.

10.11. Viola, Cello, and Double Bass

Acoustical research on bowed string instruments has traditionally been con-
centrated on the violin. Although in a typical orchestra there are about one-
third as many violas and cellos as violins, one must search diligently to find 1
or 2% as much published material on their acoustical behavior.
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Fig.10.40. Sound level of a played viola. When notes are played on two different strings,
the solid curve represents the lower string and the dashed curve the higher string
(Barnes et al., 1983).

The viola is tuned a fifth lower than the violin (C;, G;, D,, and A,).
However, its dimensions are only about 15%, greater than those of the violin,
and the principal resonances lie from 20 to 409, below those of the violin. The
air resonance and main body resonance tend to lie between the open string
frequencies instead of on them, as in the violin. Thus, the viola is not a
scaled-up violin; it is a distinctly different instrument. A sound level curve for
a bowed viola is shown in Fig. 10.40. Note that the lowest notes played on the
D and A strings (dashed curves) produce more power than the same notes
played on the G and D strings (solid curve). The body resonances in this viola
(denoted by W) were lower in frequency than those reported by Firth (1974).

The violoncello or cello also departs from violin scaling. Tuned a twelfth
below the violin and an octave below the viola (C,, G,, D;, and A;), its
dimensions are about double those of the violin except for the rib height, which
is about four times that of the violin. Its lowest air resonance is close to the
open second string frequency, as it is in the violin. Tunings and resonances of
the violin, viola, cello, and double bass are compared in Fig. 10.41.

Interestingly enough, the double bass (also known as the contrabass or bass
viol) has received more attention in the musical acoustics literature than either
the viola or cello. It still retains features of the viol family: sloping shoulders,
flat back, and tuning in fourths (E,, A, D,, G,) rather than fifths. Some
players hold the bow in the manner of viol playing, with the hand underneath
the stick.

The input admittance (mobility) of a high-quality double bass is shown in
Fig. 10.42. The air resonance around 60 Hz and the main body resonance (T;)
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Fig. 10.41. Tunings and resonances of the violin, viola, cello, and double bass. The air
resonance is denoted by A and the main body resonance by W. The open strings are
denoted by o.

at 98 Hz are easily identified. Smaller peaks nearby are probably caused by
modes similar to the C,, C;, and C, modes in violins. Between 120 and
400 Hz is a series of body resonances, and the bridge resonance lies around
400 Hz. The high-frequency response reaches its maximum around 600 Hz
and then rolls off fairly rapidly.

The double bass plays down to E; (41 Hz). Notes near the bottom of its
range will have two or more partials in each critical band, which will tend
to give roughness to its sound. The series of peaks between 120 and 220 Hz
in the admittance curve in Fig. 10.42, by acting as a sort of comb filter that
de-emphasizes every other partial, may alleviate this roughness somewhat;
this may be one of the features that contributes to the high quality of this
instrument (Askenfelt, 1982).
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Fig. 10.42. Input admittance curve for a high-quality double bass (Askenfelt, 1982).
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10.12. Viols

Viols were popular instruments during the sixteenth and seventeenth cen-
turies, dropped from favor in the eighteenth century, and have enjoyed a
considerable renaissance in the twentieth century. The three most common
members of the viol family are the treble, tenor, and bass. Each has six strings,
tuned in fourths except for the major third at the center:

Basss D, G, C; E; A; D,
Tenor: A, D; G; B; E, A,
Treble: Dy, G; C, E, A, D

Toward the end of the seventeenth century, a descant viol or pardessus de viole,
tuned a fourth above the treble viol (G;C,F,A,D;sG;), was added. In
addition to these rather standard instruments, the viol family has had several
other members: the double-bass viol, division (small bass) viol, lyra viol
(“viola bastarda”), viola d’amore, and baryton (the latter two with sympathetic
strings).

A viol differs from a violin primarily in that its back is flat and braced by
three cross bars, the middle one supporting the sound post. The top plate has
a shallower arch than that of the violin, and it has c-holes rather than f-holes.
The ribs are considerably higher than those of the violin. Bowed loudness
curves for a treble and a bass viol are shown in Fig. 10.43 (compare with Fig.
10.33).

e} o} o O [¢] e}
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Fig. 10.43. Bowed loudness curves for a treble viol and bass viol. A and W denote the
air resonance and main body resonance (cf. modes A, and T, in Fig. 10.12). Frequencies
of the open strings are noted (Agren, 1968).
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Fig. 10.44. Holographic interferograms of a treble viol top plate. The first two plate
modes probably resemble the modal shapes at the air and main body resonances (244
and 440 Hz) in the completeoinstrument, since the edge is attached to a jig and a
soundpost presses against it (Agren and Stetson, 1972).

The treble viol appears to be the first musical instrument to be studied by
holographic interferometry (or at least to be reported in the literature). Figure
10.44 shows time-average holographic interferograms of the top plate of the
treble viol shown in Fig. 10.43. The top plate was held in a jig, an artificial
sound post was pushed against it, and it was excited at the back of the bass
bar opposite the place where the bass bridge foot would rest.

10.13. A New Violin Family

In 1958, composer Henry Brant suggested to violin researchers Frederick
Saunders and Carleen Hutchins that they design and construct a family of
scaled violin-type instruments to cover the entire range of orchestral music.
Saunders and Hutchins accepted the challenge and, with the help of John
Schelleng and other members of the Catgut Acoustical Society, created a new
family of eight violins. Several sets of these instruments now exist, and they
have been heard in a number of concerts. The reaction of performers and
listeners has ranged from great enthusiasm to polite acceptance.

Design of the new family of violins was guided by a theoretical scaling
relationship called the general law of similarity. This law states that if all linear
dimensions of an instrument are increased by a factor K, keeping all materials
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the same, the natural vibrational modes decrease in frequency by a factor 1/K:

L
K="= é. (10.6)
L2 fl
The truth of this law is easy to show for two simple vibrators: a Helmholtz
resonator and a flat plate. The natural frequency of a Helmholtz resonator is

c A
f= %\/; (1.28)

If all linear dimensions are scaled up by a factor K, we obtain

,_c | K4 _C j4 1
fo= 5z (K3V)(K1)"2nK\/;“Kf°' (107)

For a plate with dimensions L, by L, and thickness h supported at its edges,

Scaling to the violin

707

»----# Theoretical length
o——— New instruments
o—-——o Conventional

Relative body length
log scale

Horizontal instruments

o

Pochette-x . +0.75
large small tensor violin gorang s treble
bass bass  cello violin  viola violin * _violin
0.167 0.25 0.33 0.5 0.67 1.0 1.33 2.0

Relative frequency

Fig. 10.45. Theoretical and actual scalings of the new violin family and conventional
instruments compared to the violin (= 1.0) (adapted from Hutchins, 1980).



10.13. A New Violin Family 281

Fig. 10.46. The eight instruments in the new violin family (photograph by John
Castronova).

the lowest frequency is

1 1
fi1 = 0.0459V, h [F + L—3] (3.17)

Scaling L, L, and h by a factor K gives

, 1
fix=xhi (108)

This simple law of similarity, it turns out, is approximately, but not
exactly, correct for the complicated shapes and vibration modes of real string
instruments.

If all dimensions of the cello were three times as great as those of the violin,
the natural frequencies of its body should have exactly the same relationship
to those of the open strings as in the violin. In a real cello, however, the main
body resonance lies 4 to 5 semitones higher (see Fig. 10.42). A cello three times
as long as the violin (and with 3* = 27 times the weight) would be considered
quite impractical for the role it fulfills. The similarity requirements are even
more difficult to fulfill in the viola (Cremer, 1984).

From a musical point of view, there would be both advantages and dis-
advantages to having physical similarity between instruments. Similarity could



Table 10.1. Tunings, measurements, and scalings of the new violin family compared to
conventional bowed string instruments (underlined).?

Instrument Length (cm) Relative scaling factors

Body Resonance String
Name Tuning Hz Overall Body String length placement tuning

G 392
Treble D 587 48 28.6 26 75 .50 .50
A 880
E 1319
C 262
Soprano G 392 54-55 31.2 30 .89 .67 67
D 587
A 880
G 196
Mezzo D 294 62-63 382 327 1.07 1.00 1.00
A 440
E 659
G 196
Violin D 294 59-60 355 327 1.00 1.00 1.00

E 659
C 132
Viola G 196 70-71 43 37-38 1.17 1.33 1.50
D 294
A 440
C 132
Alto G 196 82-83 50.2 43 1.44 1.50 1.50
D 294
A 440
G 98.0
Tenor D 147 107 654 60.8 1.82 2.00 2.00
A 220
E 330
C 65.4
Cello G 98.0 124 75— 68-69 213 2.67 3.00
D 147 76
A 220
C 65.4
Baritone G 98.0 142 86.4 72 242 3.00 3.00
D 147
A 220
A 550
Small bass D 734 171 104.2 92 2.92 4.00 4.00
G 98.0
C 131
E 41.2
Bass A 550 178- 109 104 3.09- 4.00 6.00
D 734 198 122 117 343
G 98.0
E 41.2
Contrabass A 55.0 213- 130.0 110 3.60 6.00 6.00
D 73.4 214
G 98.0

# From Hutchins, 1980.
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improve balance in small ensembles, but the difference in timbre between
dissimilar instruments might be missed.

Getting back to the new violin story: by 1962, the Catgut group had
constructed a set of six scaled violins for testing. In 1965, the full set of eight
was ready for its first concert performance. Since then, they have appeared in
a number of successful concerts in Europe and North America.

The theoretical and actual scalings of the new violin family are shown in
Fig. 10.45, along with the scaling of conventional string instruments. Included
in Fig. 10.45 is a new mezzo violin, with a body length of 38 cm (15 in.) rather
than the conventional 36 cm (14 in.). This new instrument, which provides an
average power increase of 3 to 4 dB over the conventional violin, appears to
play in better balance with the rest of the new violin family.

The eight instruments in the new violin family, shown in Fig. 10.46, range
in length from 48 cm (treble) to 214 cm (contrabass). Table 10.1 compares their
tuning, measurements, resonance frequencies, and scaling factors to those of
conventional bowed string instruments (underlined).
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CHAPTER 11

Harps, Harpsichords, and Clavichords

In Chapter 9, we discussed plucked-string instruments of the guitar and lute
families, having a relatively small number of strings, the sounding length of
which can be varied by pressing them with a finger against a set of fixed frets.
These instruments are further characterized by being light in weight and
having a bulbous hollow sound box and a long neck and fingerboard.

The distinction between these instruments and those of the family we are
now to describe is not at all sharp, and many instruments of transitional design
have been developed (Baines, 1966), though most of them are now obsolete.
The shapes of these instruments varied widely, and they had different com-
binations of free and fretted strings in profusion. Various classifications have
been devised, and the history of many types has been documented by Marcuse
(1975, pp. 177-234). For our present discussion, it is convenient to ignore the
fretted instruments and consider only those with one open string per note. The
hand-plucked instruments then divide conveniently into those with a sound-
ing board parallel to the strings—the zither, the psaltery, and the koto are
examples—and those with the soundboard nearly at right angles to the plane
of the strings, which belong to the harp family proper. Again, this is only a
classification of convenience, and intermediate types do exist. Two members
of the zither family are shown in Figs. 11.1 and 11.2.

It is interesting to note that, on the basis of this classification, the harpsichord
is really a mechanized psaltery or box zither, rather than a mechanized harp.
Some of this former class of instruments, occasionally the psaltery but par-
ticularly the dulcimer, were played by striking the strings with hammers
instead of plucking them, and so are the ancestors of the clavichord and
particularly of the pianoforte.
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