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1. An Overview of Results

Suppose that is a finite or infinite interval and that: 7 — [0, co) is a measurable
function, positive on a set of positive measure, and with all moments

/xjw(x)dx, j=012...,

I

finite. Then we may define orthonormal polynomials

Pn(x) == pu(w, x) = yux" + -+, ¥, >0,
satisfying

/1 PnPmW = Sy 1)
One of their characteristic features is the three-term recurrence relation

xpn(x) = Apr1ppr1(x) + By pn(x) + Ay pp—1(x), 2)
where

=t o0 b= [0 pswudr e R ©)

n 1

The number of applications of orthonormal polynomials seems to grow ex-
ponentially with time; they are useful in topics ranging from combinatorics to
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guantum mechanics; from graph theory to group representations; from numerical
analysis to number theory; from statistical physics to signal processing. To review
such a vast enterprise would require a proceedings even more extensive than that
of the 1990 NATO conference [88].

Some of the applications involve orthogonal polynomials of fixed degree; others
involve the behaviour op, asn — oo. In this paper, we shall focus on a small
slice of the latter. Amongst the notable applications of these asymptotics are:

() analysis of linear predictors in the theory of stochastic processes [43];
(I) analysis of processes of approximation such as numerical integration, conver-
gence of orthonormal expansions and polynomial and rational interpolation;
[32, 79, 110];
(1) universality conjectures in random matrix theory [21, 26, 92];
(IV) investigation of numerical analysis algorithms for finding eigenvalues of ma-
trices, for example the QD algorithm [52];
(V) Fisher—Hartwig conjectures related to Ising models with large numbers of
particles [13, 14];
(VI) estimation of entropy in various contexts [4, 5].

In attempting to review the myriad of asymptotics that are currently available,
one is forced to take account of two classifying featuresrég@n of validity that
is the range ot for which the behavior op,(z), n — oo is being described; and
thestrength of the asymptotic

Some insight into the former is provided by the Chebyshev polynomials

T,(x) ;= cognarccosx) = 2" %" + ..., n>1,

with orthogonality relation

/lT( VT ()2 Zs >1
n\ X)L\ X) —F/——= = S %mn, m,n = 1.
-1 1—x2 2
The identity
T,(cost) = cosnb, 6 € [—m, 7] (4)

may be regarded as an exact asymptotic description of the behavifuthwbdugh-
out[—1, 1]. From this we may first deduce far= €? and then for alk € C\{0},
that

T, (%(u + u’l)) = %(u” +u™).

Solving the equation = %(u + u~1) leads to the familiar Joukowski or aerofoil
map

u = (p(Z) =z + V Z2 - 1, Z € C\[_l’ 1]7 (5)
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that maps the exterior df-1, 1] conformally onto the exterior of the unit ball.
Since|¢(z)| > 1, we obtain

@)"
SR

1
T,(z) = E(w(z)” +o@@)™") 1+0(1)), n— oo,

uniformly in closed subsets @f\[—1, 1]. This exponential growth off the interval
of orthogonality is fairly typical. Where the Chebyshev polynomials are atypical is
the fact that the asymptotic formula (4) holds uniformly on the whole interval of
orthogonality. In most cases, there is a different asymptotic behaviour ihside
close to its endpoints. Around the latter, the description of the asymptotic involves
Bessel functions or Airy functions.

In summary, there are often three regions to distinguish when dealing with
[—1, 1], afinite interval:

(I) Asymptotics in the exterio€\[—1, 1] of the interval of orthogonality;
(I Asymptotics in suitable subintervals, for example compact subintervals, of
(-1, 1);
(1) Asymptotics close to the endpointsl of /.

In describing the strength of an asymptotic, one tends to focus on the exterior
C\[-1, 1], and also on the leading coefficignt It is a remarkable feature that in
many cases knowledge of the behaviouy,pllone is enough to derive asymptotics
for p,(z) for z € C\[-1, 1]. Since p, behaves abo like y,z" and maximum
modulus principles may be applied 8 (z)/¢(z)" in C\[—1, 1], this is not all
that surprising. The following table outlines the four main asymptoticg, Gind
pn, n — 00, Off the interval of orthogonality.

Name Yn pn(2), z ¢ [-1,1]
(1) nth root yin o @Y = 0(2)
(1) ratio Ay = y;'/;l — %; B, — 0 p;;:_(lz()z) — ¢(2)

() Szegb/power /2" — g (D) /o(@)" — g(2)

n(n+1) .
(IV) strong Sze§ (H’}:l J/j)/(Z ot cgnﬁl) — 2

Herec;, 0 < j < 2, are positive constants, agds an explicitly given function. It
is fairly clear that

vy = @y = 1y = (@

and hardly surprising that none of the converse relations holds in general. The
relationship betweenth root and ratio asymptotics is similar to that between the
nth root test and ratio test for convergence of power series. Let us expand a little
on ()—(1V).
In terms of asymptotics o = [—1, 1], thenth root asymptotic is associated
with
limsup|p, ()| =1, x e [-1,1]\6,

n—oo
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whereg has linear Lebesgue measure 0 (and in fact logarithmic capacity 0).
One of the most attractive features mth root asymptotics is their link to
distribution of zeros op,. Let us write

DPn(X) = Va ]_[(x — Xjn),
j=1
where the zerogx;,};_; all lie in [—1, 1]. Then (I) above is equivalent to the zeros
displaying arc sine distributioy — 1 < a < b < 1,

} /” dr
o T1—12

It was Faber who in 1922 [29], first establisheth root asymptotics, under
fairly severe conditions om. A major advance was made by Bsland Turan,
in the course of investigating convergence of Lagrange interpolation in the late
1930’s [27, 28]. They assumed that= [—1, 1] andw > 0 a.e. on—1, 1]. This
was the beginning of intensive efforts to characteritteroot asymptotics in terms
of the weightw, involving authors such as A. Ambroladze, P. &dG. Freud,

P. Korovkin, H. Stahl, V. Totik, J. Ullman, H. Widom and M. Wyneken, culminating

in the recent monograph of Stahl and Totik [110], see also [2]. This monograph
deals with the far more general case of orthogonal polynomials corresponding to a
measure with compact support in the complex plane. It also presents applications
to rational and Padé approximation.

Ratio asymptotics are historically probably the latest arrivals of (I)—(IV). A
most penetrating study of these was presented in a memoir of P. Nevai [84]. There
the equivalence of the asymptotic fpy,1(z)/p.(z) and that for the recurrence
coefficients, namely

1
lim —#j : 1< j <nandxj, € [a, b]
n

n—oo

lim A, = }; lim B, =0 (6)
n— 00 2 n— 00
was established. It is less obvious than the corresponding link between asymptot-
ics for y, and p, in (I). One of the main achievements in ratio asymptotics has
been Rakhmanov’s theorem, which establishes (6) under merely tbe-Hiaran
criterion, namely thatv > 0 a.e. or{—1, 1] [102, 103].

The main focus of Nevai's memoir was to place hypothesesAgh {B,,}, such
as (6), rather than on the weight This is a very important alternative starting
point for analysis of orthonormal polynomials and continues to attract a lot of atten-
tion, especially when more general hypotheses than (6) are placed on the recurrence
coefficients — for example when they are asymptotically periodic, or display some
other definite asymptotic pattern. The most recent monograph on the topic seems
to be Van Assche’s lecture notes of 1987 [119]. There is certainly a need for an
extensive survey article, or even monograph, to cover subsequent developments
due to Van Assche, Aptekarev, Geronimo, Golinsky, Lopez, Magnus, Mate, Nevai,
Totik, Peherstorfer and many others [6, 8, 34 —36, 38—-40, 42, 98, 100, 119, 120].
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The next step up is the Szegr power asymptotics (l11). Historically, simulta-
neously with Faber’s work, it was also the first general asymptotic: it appeared in
1920-21 in papers that did not even contain the phrase ‘orthogonal polynomials
in the title. If a vote was conducted as to the crowning achievement of orthogonal
polynomials in the 20th century, it would almost certainly be $zetheory (with
more than a two-thirds majority). It has had ramifications that stretch from analytic
function theory (Hardy spaces) to best approximation. tozero distribution. Let
w: [—1, 1] — R satisfy Sze@’s condition

ogw(x)
—14/1—x?

or, equivalently,

dx > —o0 (7)

/ logw(cosh) db > —oo0.
0

Let
f£(0) := w(cosh)|sinb|, 6 e [—m,7] (8)
and define the associat&zegfunction

€' +z
gt —z

1 o
D(f;z2) = exp(E/ log £ (1) dt), lz| < 1. 9)

Many would recognize this as anuter functionfrom the theory of Hardy spaces
(apart from 4 replacing 2). Szégroved that

1 1\1
lim p,(2)/¢(@)" = —D< ;—) , 10
lim p.(2)/¢ =2\ 0 (10)
uniformly for z in closed subsets @\[—1, 1] and, consequently, taking= oo,
1
lim y,/2" = ——=D(f; 0% 11
Jim y,/2' = —==D(f: 0 (11)

There is also a remarkable conversepijf(z)/¢(z)" is bounded independently

of n on some contour enclosing-1, 1] in its interior, then (7) must be true. In

fact a lot less is required than uniform boundedness on such a contour. In terms
of asymptotics on—1, 1], (10) or (11) are essentially equivalent to the mean
asymptotic

g
lim /
n—0oo 0

If instead of this asymptotic in the mean, one wants an asymptotic that holds
uniformly for x = cosé in a compact subinterval af—1, 1), one needs to as-
sume more than just (7): a weak smoothness condition, such as a Dini—Lipschitz

2

pa(cosd) f(6)Y2 — \/gcos(ne +argD(f;€%)| dd =0. (12)
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condition suffices [32, 112]. The treatment of asymptotics delais far more del-

icate and generally has been established under more severe hypotheses. For special
weights such as Jacobi weights, one may apply steepest descent to integral repre-
sentations. Another promising approach, involving hypotheses on the recurrence
coefficients, has been given by Aptekarev [3]. The Riemann—Hilbert techniques of
Deift et al. [21 - 26, 49] seem to offer a new approach for this question. Again, the
topic of pointwise asymptotics dr-1, 1] is a whole subject on its own and could

well do with a lengthy survey.

Sze@'’s theory has been extended by Widom [122] to weights with support on
several intervals; at least one conjecture that Widom left unsolved was recently re-
solved by Peherstorfer [97]. Other extensions have been to the arcs of a circle [41],
curves in the plane, .. While Sze@'’s original theory is presented at an accessible
level in several monographs, it is a pity that its ramifications — especially Widom’s
theory — has not received an ‘entry level' treatment.

Some 30 years after his seminal papers of the 1920's,68agiglished another
celebrated work. He showed that it is possible to strengthen (lll), giving (IV), the
first example of thestrong SzegTimit theorem He presented his results within the
framework of orthogonal polynomials on the unit circle, but they can be translated
to the form above [43, p. 91]. Szégssumed thaf of (8) has a derivative’” that
satisfies a Lipschitz condition of some positive order-ix|[ 7]. Subsequently this
hypothesis was weakened by especially Widom, who gave an alternative proof;
and by many others, including Tracy, Basor, Béttcher, Silbermann, Spitkovskii,
Golinskii, etc.

Strong Szeg Limit Theorems have applications in statistical physics, in Ising
models, wheref has some sort of singularity, such as a jump discontinuity. There
the Fisher—Hartwig conjectures were formulated, and as far | know, they have
still not been totally resolved. The little book of Grenander and 8zegnains
an excellent introduction; more modern developments are covered by Boéttcher and
Silbermann at a relatively introductory level in [14]. A deeper treatment is given in
their earlier monograph [13].

Of course there are many important asymptotics for weights on compact sets
that do not fit into the above classification. Amongst them are the comparative
asymptotics studied by Mate, Nevai, Totik, Lopez, Golinskii, Rakhmanov, Pe-
herstorfer [42, 62, 63, 75-77, 99, 105] and others; the asymptotics for varying
weights that have so many applications, including to orthogonal rational functions
[15, 63, 90, 91]; results on zero distribution due to Mhaskar, Saff [83] and others;
orthogonal polynomials associated with measures with discrete support [9, 53]; and
those associated witrseries; finer asymptotics for classical weights, orthogonal
polynomials for Sobolev inner products,. .

There are still interesting problems regarding asymptotic behaviour of orthog-
onal polynomials associated with weights satisfying $zegondition on the unit
circle: how do they behavimside the unit circle (not outside) as the degree ap-
proachesx? See [7].
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While the developments associated with weights on a finite interval in the last
three decades have been impressive, those associated with weights on infinite in-
tervals have been spectacular. Although there is nothing as complete d@sSzeg
theory (and probably there never will be), there has been the development of as-
ymptotics of all types, valid under very general conditions. A model is provided by
the exponential weights

wx) :=exp(—2x|*), xeR, a>0.
This led to the idea of writing very general weights in exponential form:
wx) = eXp(—ZQ(x)), x €l

wherel = (c,d) may be finite or infinite. Even more fundamental has been the
systematic use of potential theory, in a form designed to deal with the exponent or
external fieldQ.

One of the striking implications of the potential theory is that when working
with weighted polynomialsP exp(—Q) (P of degree< n), all the interesting
features occur on an interval that depends@and on the degree, but not on
the particularP. This had been used in the 1970’s by G. Freud and P. Nevai [87],
but potential theory enables one to find the exact interval of interest. Suppose for
example thatQ is convex, and thaf(x) and|Q’(x)] — oo asx — c¢,d. Then
one may define for > 0, theMhaskar-Rakhmanov—Saff numbers < a, by the
equations

_ 1 xQ'(x) .
e AV = s (13)
L Q'(x)

T o, V& —a @ —x)

It is of course not obvious that., exist or are unique, but this is the case. One may
also show that&_, — c¢; a, — d asr — oo.
One illustration of their importance is the Mhaskar—Saff identity [80 —82]

1P 2oy = 1P€ Cllimianans (14)

valid for all polynomialsP of degree< n. Moreovet,[a_,, a,] iS asymptotically
the smallest interval for this to hold, anle~¢ decays exponentially as we re-
cede froma_,, a,]. The connection with orthonormal polynomials becomes more
obvious when one considers the analogue:

1/2
(/ Pzw) = ||Pe_Q||L2(1) < C”Pe_Q”Lg[a_”,an]
I

. 1/2
ZC(/ P2w> ,
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whereC is independent of andn. Moreover, ife > 0 is fixed, the contribution of

the integral oved \[a_,(1+ ¢), a,(1 + ¢)] decays exponentially as— oo. This

has the consequence that most of the interesting features of weighted polynomials
Pe~2 occur in, or close tola_,, a,]. In particular, all the zeros of, (x) lie in

(@_p-1/2, Any1/2) [59].
Consider the simplest example

O(x) =Ix*, xeR
Here asQ is evena_, = —a, and (13) simplifies to

2 (ta.xQ'(a,x)

r=—

T Jo 1—x2 '

Solving gives

(7))
a = \r| — .
2 T

Another example is the non-even

x%,  x €(0,00);

Q) := { xI?,  x € (—00,0l.

Suppose for example thgt> « > 1. Then [16, 17] for some constants ¢, > 0

Rl

20-1 1
a_, = —c1re?-1;  a, =core.

The asymptotics associated with exponential weights are inherently more com-
plicated than those fof—1, 1]. In their description, it is useful to map-1, 1]
linearly ontola_,, a,]: lets, := 3(a, —a_,) and

x = Ly(s):=6+Ds +a,, sel[-11]
1 L+ a
= s=Lx) = —[x — M] x € [a_y, ayl.
S 2

One then may regard

w(x) = exp(—20(x)) = exp(—20(L(s))).

as a sequence of weights in the variable [—1, 1]. Moreover, all the zeros of the

transformed polynomigp, (L, (z)) lie in, or very close to[—1, 1]. Effectively this

is a normalizing transformation — and normalization plays such an important role

in so many different types of asymptotic behaviour. In the case of non-@yéme

linear map was first extensively used by Buyarov and Rakhmanov [16 —18].
Following is a partial list of asymptotics as— oo:
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Name Vn pn(Ln(2)), z ¢ [-1,1]
(1) nth root yims, s co Pa(Ln @)Y — 1 exp(U (v: 2))
() ratio 7;';133 -3 %l -0 p"+(1£i?7<)z))) — g
P / . -1
() Szegblpower 7y (33)"/2D(£:0) = ¢ W@ p(f; 5) = b

1
J+35

4 .
(IV) strong Sze§ ~ cjn° ‘1’_[]-[]/]'(87/) D(fj: 0)] —¢5
j=

Here the constants;, 0 < j < 4 and the functionsf,, g, #, U may be given
an explicit representation under suitable hypotheses .oRor example[U is an
exponential of a potential,

1
UQzx) = exp(/ log|z — t|v(2) dt), (15)
-1

wherev is a non-negative density function of total mass2>> 0 and

1
/ v=1
-1

The functionf,, appearing in the power asymptotic is
f10) := w(L,(cosh))|sinb|, 6 €[—m,7].

Historically, remarkably precise results were obtained for the Hermite weight
exp(—x?) by Plancherel-Rotach starting in the 1920’s with many other later contri-
butions. Weights such as expx?"), m = 1, 2, 3, ... received a detailed and very
precise treatment in the early 1980’s [12, 46, 47, 78, 85, 109]. Moreover, starting
from hypotheses on the recurrence coefficigdts}, {B,}, Nevai and Dehesa [89]
had obtained one form of zero distribution in the 1970’s, while J. Ullman had
started to use potential theory on the problem [116, 117].

However, the first very general asymptotics were obtained independently by
E. A. Rakhmanov [104] and H. N. Mhaskar and E. B. Saff [80—82] in the early
1980's. E. A. Rakhmanov considered weightswhere

1
lim <Iog —>/|x|°‘ =c>0.

x| =00 w(x)

(Mhaskar and Saff treated the underlying exponential weight-eXpx|*) directly

for all « > 0.) Here the weight is asymptotically equivalent to the even weight
exp(—2|x|*), apart from a scaling an, and consequently the linear transformation
L, above simplifies substantially, to

L,(z) = a,z = cn/*z.

Moreover, the density functiom which in this case is called the Uliman or Nevai—
Uliman density, admits the simple representation
toz—l
v(x) = =

1
o

———F—d, xe(-112).
n/x P ( )
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Rakhmanov also established logarithmic asymptotics such as

lim Iog|pn(Z)|/nl_1/a = c|Ilmz],

n—o0

and even log-log asymptotics

jim 291091P. @1 _ ;1
o

n—00 logn
The latter was established fore C\R when the weightv satisfies

1
loglog - 5

lim
Jx|—>00 |Og [x]

=oa > 1

This last condition is reminiscent of the formula defining the order of an entire
function. Indeed, there are points of contact between the theory of entire functions
and weights on the real line, not least in handling rates of growth and decay at

The papers [80—-82, 104] led to a rapid series of developments. htltheot
line, extensions to very general exponential weights have been given by Buyarov,
Gonchar, Mhaskar, Rakhmanov, Saff, Totik and others. See [79, 108]. Despite the
great generality of the results, one would guess that a complete treatment is a long
way off. After all, even for weights with compact support, advances are still being
made. In many cases, one has to replace the asymptotig, far(l) above by

Pu(La(@)"" = caexp(Uwii 2)) = 0. n— o0,

wherec, > 0,n > 1, and the density function, varies withn. In the case of
convexQ,

v, (x) = x e[—1,1].

Spv/1—x2 /1 Q'(Ly(s)) — Q'(Ly(x)) ds
nm? 1 s —X 1_s2

As is the case with weights with compact support, there is a close relationship
betweemth root asymptotics and zero distribution. Indeed the papers of Mhaskar
and Saff and Rakhmanov, as well as the earlier work of Dehesa and Nevai and
Ulimann concentrated on zero distribution. The scaling invohing) is really a
normalization, and leads to the most natural formulation of distribution of zeros.
However, other scalings have been used, and these do lead to interesting and sig-
nificant results, most notably fap decaying very slowly, in which case the usual
scaling does not yield much information [50, 118, 121].

Not long after the firstth root asymptotics, ratio asymptotics were established
by the author and Mhaskar and Saff [70, 71], thereby resolving the Freud conjec-
tures for the weightsv(x) = exp(—2|x|*), @« > 0. The latter asserted that the
recurrence coefficientsA,, } satisfy

nleoo A, /nY* = ¢, > 0,
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or in terms of the Mhaskar—-Rakhmanov—Saff numbers associated with this weight,

lim A,/ L
n/n = -
n—00 2

Of course, because the weight is evé), = 0 anda_, = —a,. (The conjec-

ture had earlier been established by Alphonse Magnus [73} foipositive even
integer and subsequently refined to an asymptotic expansion by Mate, Nevai and
Zaslavsky [78].) Beautiful and important asymptotics involving hypotheses on the
recurrence coefficients for weights with non-compact support have been estab-
lished by Van Assche, Geronimus, Kuijlaars, and others [36, 50, 55]. Some of the
latter are closer in spirit to Szégrather than ratio, asymptotics.

Somewhat surprisingly the techniques used to prove the ratio asymptotics turned
out to be sufficient for the stronger Segsymptotics [72]. The methods involved
the classical Bernstein—Szegdentities, which will be discussed in the next sec-
tion, and weighted polynomial approximations. E. A. Rakhmanov announced as-
ymptotics of this type in [65], but the proofs appeared later [106] — and contained
fundamentally new ideas.

The most general conditions to date for establishing 8zexymptotics have
been given by Totik in his seminal lecture notes [113], which gave a new approach
to constructing weighted polynomial approximations. These ideas have been used
by the author and A. L. Levin in discussing exponential weights on a general (not
necessarily infinite interval) [61].

In terms of asymptotics fop, (x) for x € I, there is a mean asymptotic involv-
ing values ofp, (x) for x € [a_,, a,] that is similar to (12). Asymptotics that hold
uniformly on suitable proper subintervals bfvere established for general classes
of weights by E. A. Rakhmanov [106] and the author [66] in the late 1980’s. Recent
work in this direction, for fairly general even and non-even exponential weights on
a finite or infinite intervall , are announced in [60] and will appear in [61].

In terms of sharper asymptotics, that imply strong $z&git theorems, there
are the exciting new results of the group of Deift, Kriecherbauer, McLaughth,
that use Riemann—Hilbert techniques [21— 26, 49]. These will be briefly discussed
in Section 4. These methods are fundamentally new and different, and promise
to revolutionise much of the asymptotic theory of orthogonal polynomials. The
asymptotic (IV) in the table above follows from recent results of Kriecherbauer and
McLaughlin fory, for the weights exp-2|x|*), « > 0 [49]. For the case of a
positive even integer, it is implied by the asymptotic expansions of Mate, Nevai and
Zaslavsky forA, [78]. What is interesting though, is that in both cases, the results
come out of a finer asymptotic for, or A, rather than out of an approach involving
Toeplitz determinants, and so is quite different from the techniques used on the
unit circle or[—1, 1]. Other powerful techniques that provide sharper asymptotics
for the recurrence coefficients have been explored by Wong and his coworkers
[11, 101] and by Chen, Ismail and Van Assche [20].

Not only do the Riemann—Hilbert methods imply strong Srkit theorems,
but they also yield asymptotics for the orthonormal polynomials in all parts of
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the plane. In particular they yield asymptotics near the endpoinis gf a,], the
first methods to do this in some degree of generality. A recent lecture notes of
P. Deift [21] provides a clear introduction to the Riemann—Hilbert method.

2. ldentities

Amongst the many tools that have been used in asymptotics of orthogonal poly-
nomials, possibly the most important in the last twenty years has been potential
theory. A detailed discussion of its application is available elsewhere [56, 79, 108,
110]. So in this section, we shall focus on another key ingredient of asymptotics:
identities for special weights that are useful for general classes of weights.

The philosophy is very simple: suppose that we know for a special waight,
say, an explicit expression for itgh orthonormal polynomial, which we denote by
¢, (x). Suppose also that for a given weight we wish to compute the behaviour
of p,(x) = p,(w, x) asn — oo. Then if we can ensure that ~ v, that isw is
close tov, then one expects that,(x) ~ ¢,(x). Of course, to justify this involves
a lot of technical detail. One of the oldest and still most useful ways to proceed
rigorously, is to use Korous’ identity. It is based on the reproducing kernel

n—1

Ky, x,1) 1= q;(x)gq; ).

j=0

Let y,(v) and y,(w) denote respectively the leading coefficientsgpfx) and
p.(x). Then since the next left-hand side has degtee— 1,

Yn(w)
Y (V)

_ / Ko (v, x, 1) pa(£)0(1) o
1

~ va(w)

Pn(x) )

n(x) = /, Ko (v, x, r)[pn(m - qn(m}v(r) di

= /Kn(v,x,t)pn(t)[v(t) - ﬂw(t)} dr,
1

w(x)

by orthogonality. We next need the Christoffel-Darboux formula

Kn(v, X, l) _ Vn—l(U) qn (x)qn—l(f) - qn_l(x)qn (t) ‘
yn(v) X —t
Let us also define

_ ) o

R(t,x) := 7;’3;”(’) )

We see that

Yn (W)
Yn(V)

Pn(x) — qn(x)
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= 11 / Gn-1(0) pa (D R(2, x) (1) i —
Yu(v) !

—gp-1(x) /I gn () pu (O R(t, x)0(1) dt}. (16)

Now if w ~ v, thenR(z, x) is small in some sense. If, moreover, we have for the
special weighv, bounds ony, (x) and(y,_1(v))/v.(v), we may then use Cauchy—
Schwarz on the integrals in (16) and orthonormalitypfvith respect tav to show
that the left-hand side of (16) is small. As sketched here, this requires global esti-
mates for /w, which are not always available. More sophisticated ‘local’ versions
of this argument are often applied [76, 77, 99, 105].

How do we choose the special weights, for which an identity is available? In
this section, we shall discuss three classes of identities that have yielded impressive
results for exponential weights:

(I) Bernstein—Szef
(I) Fokas—Its—Kitaev (Riemann—Hilbert);
(11 Rakhmanov’s projection identity.

The next section contains a detailed treatment of BernsteinéSdegtities,
especially as this is the technique most used by this author. In Section 2.2, we
present an application to universality limit relations, in a very special case. In
Section 2.3, we establish the Fokas—Its—Kitaev identity and briefly discuss its spec-
tacular application to the weights exp|x|*), « > 0. Finally, in Section 2.4, we
discuss an identity of Rakhmanov. An attempt at comparing the applications of
these three identities is given in Section 2.5.

2.1. BERNSTEIN-SZEGO IDENTITIES

A Bernstein—Szefyweight has the form

wx) =+v1-x2/S(x), xe(-11),

where S is a polynomial that is positive op—1, 1], except possibly for simple
zeros att1. The identities associated with them have been very widely applied in
deriving asymptotics for more general weights. They have analogues on arcs of the
unit circle and have been extended, for example, by N. I. Achieser [1] and later by
F. Peherstorfer to weights supported on finitely many disjoint intervals [93 —95].
There are generalisations, due to P. Nevai [86], where the polynsigakplaced
by an expression involving a Hilbert transform. It is surprising that many of these
extensions have been done so recently!

In this section, we state and prove some of the identities associated with clas-
sical Bernstein—Szégweights or{—1, 1], in several different formulations. Since
many of these are stated and proved in most of the standard texts, the reader may
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well ask why? The reason is that some of the formulations are different; moreover,
some, such as that for the Christoffel functions, are either inaccessible, or ‘hidden
away'’ in the classical texts. The explicit formulae for these special weights also
illustrate asymptotics that hold more generally. We emphasise that our treatment is
not complete because of our concentration on the classical form — but that is the
one most used in asymptotics.

We begin by recalling the representation of a positive trigonometric polynomial:
let s(0) be a trigonometric polynomial of degréehat is positive iN—m, =]. We
may write

s©) = |hE@")%, 6 el-m, 7], (17)

where#h is an algebraic polynomial of degrée with 2(0) > 0, and with all its
zeros in{z : |z| > 1}. The proof is elementary [112, p. 4]: we may write

s(0) = e ™M H(@E"),
where H(z) is an algebraic polynomial of degreé.20ne may choose for an
appropriater,
h(z) . =c l_[ (z —a).
a: H(@)=0 and|a|<1

Now suppose thaf is an algebraic polynomial of degréepositive in[—1, 1]
except possibly for simple zeros #tl. ThenS(cosé) is a trigonometric polyno-
mial of degreef involving only cosine terms. I§(x) has a zero ai-1, we may
factor out a termt1 — x, and then apply (17) to deduce that

S(cosd) = [hE@*)°, 6 e[, 7], (18)

where# is an algebraic polynomial of degréewith 4(0) > 0, and with all zeros
in {z : |z] > 1}, except possibly for simple zeros #fl corresponding to zeros of
S at+1. (For the factor - x = 1 — cosd, we may write, withy = €°,

-1
1—cosd = Z(z —1)2)

We also note that sinc&(cosd) involves only cosine terms, the coefficients/of
are real.
THEOREM 2.1. Let S be a polynomial of degreé, positive in[—1, 1], except
possibly for simple zeros &tl, and let

1—x2

S(x) 7
Represens in the form(18). Then forn > ¢/2, x = cosf andz = €°,

Pa(x) = \/g(sine)‘1 Im{z""*h(2)}; (20)

w(x) = x e (=1,1). (29)
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2
Vo = \/;h(O)Z”. (21)

Proof. Let us denote the right-hand side of (20) pgc). We first note that as
has real coefficients, say

12
h(z) =Y h;z/,
j=0

then at least ifi > ¢,

2 sinm 41— )8 2 &
= p(cosh) =,/ — hjy—————— = | — h;U,_;(cosd),
p(x) = p(cosp) ,/ng, — ,/ng, j(cosh)

whereU; denotes the Chebyshev polynomial of the second kind of degrse
that

sin(k + 1)6

sing
As U, has leading coefficient’2we see thap is a polynomial of degree with
leading coefficient given by (21). /2 < n < ¢, then we may express those terms
in the sum withn — j < O as 0 forn — j = —1 and as—h;U;_,_»(coss), for

n — j < —2. Then we see that is still of degreen.
We now establish the orthogonality relations. Write

Ui(cost) =

1 1 T )
/ pUw = 5/ p(cosf)U,(cosh)w(cosh)|sing| do.
-1

Here we have used evenness of the latter integrafid@ontinue this as

1 m(/n i1h@ sin(k + 1)0  sirf e d@)

— - -
- sing sing S(cosH)

21
1 b4 _ Zk+l _ kafl 1
= —1Im "z : d9)
V2 </_n 2 2 |h(z)|?
1 -1 2k+2 __ 1
C Lm(Rf ety
2 2 Ji=1 h(z)

In the second last step, we used (18)k IK n — 1, the integrand is analytic in
the closed unit ball (the possible zeroshadit +1 are matched by those o2 —

1), so Cauchy’s integral theorem shows the integral is Op3® an orthogonal
polynomial. Ifk = n, the integrand has a simple pole at 0, and the residue calculus
gives

LU _\/Ei
/1” =N 200
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Finally we may write
"

U, = —p + polynomial of degree< n — 1,
Vn

whence
1
5 Vo |m 1
w=—|———=1,
/_1” 2"[2 7(0)
by (21). So,p = p,. a

The one drawback of the above formula is the need to first find the polynémial
in the representation (18) 6fcosd). By expressing: in terms of a Sze@function,
we obtain a more explicit representation for. Recall that, corresponding o,
we may define a weighf (6) on[—m, 7] (or equivalently on the unit circle),

f(©) ;= w(cosh)|sing|, 0O e [—m, m] (22)
and the corresponding Szefunction
1 [ € +z
D(f;z2) = — I ,
(f:2) exp( reg IO
The latter is uniquely determined by the following three properties [112, Ch. 10]:

dt), lz| < 1. (23)

() D(f; z) is analytic and non-zero in| < 1;
(I D(f;0) > 0;
(1) The radial limits
im D(f:ré”) =: D(f:€")
exist for almost alb € [—x, 7] and
ID(f; €)= f0) aedel-n, 7l (24)

(For those with somé/,, background, of course radial limits may be replaced
by non-tangential ones.) Whehis positive and continuous gr-r, ], there
is the stronger boundary behaviour

lim max ||D(f; ré®)|* - f6)| = 0. (25)

r—>1—0€[—m,m]

Moreover, the identity (24) holds for &l € [—x, 7 ].

In the rest of this section, we assume thats as in Theorem 2.1, and thgt
is given by (22). Unless otherwise specified, we also assumextkatcosd <
(=1, 1), thaté € (0, 7) andz = €°.

THEOREM 2.2. Forn > £/2, x = cosd andz = €?,

1
W(X) = —["D(f; 2D+ z7"D(f; )7t 26
Pn(x) «/E[Z (fiz D +27"D(f;07Y (26)

= \/g Rez"D(f:zH7]. (27)
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Moreover,

71

Vn = \/Z

Proof. We first claim that

D(f; 0% (28)

D(S(cos-); z) = h(2). (29)
Let
g(z) := D(8(cos-); z)/ h(z).

Theng(0) > 0, g and 1/g are analytic in the unit ball, and if we assume tKas
positive on all of —1, 1], (18) above shows that as— 1—, we have uniformly for
0 € [—7T, 7T],

o) = |D(S(cos-);ref9)|2_) S(cosd)
SUEN =" hen 2 h(EHE ~

Sinceg and g~ are analytic in the unit ball, the maximum-modulus principle
yields in a straightforward manner thatz) = ¢(0) and then alsg@(0) = 1, so
g(x) = 1. In the case wherd has simple zeros at1, this argument may be
modified using, for example, the identity

1-—72 2
2

1—x2:sin29:‘

This identity and the uniqueness of the Szégnction also implies that

. 1-22
D(sir? -;z) = >l <1 (30)
and, hence, also
. 1-— ZZ . . i0
D(sirt -;z) = 5 =iz sing, z=¢"’. (31)

Then for|z| = 1, obvious multiplicativity properties ab(-; z) give

sin? - .Z) D(sir? -;z)  —izsing

D(f;2) = D(S(cos-) T D(S(cos-)iz) | hG)

so that from Theorem 2.1,
2 h 2 —i
pa(x) = {/=1Im z"*lﬁ B e T
T siné b1 D(f:z2)

= @ Re[D(fi2) ).
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Next, the evenness gf implies that

D(f;2) = D(f;2) = D(f;27H).
Then (27) and (26) follow. Finally, as (31) shows that

1D(S(cos);0) _1
2 Do 20O

we obtain (28) from (21). O

h(0) = D(S(cos-); 0) =

One immediate consequence is a formulafpix):

COROLLARY 2.3. Forn > £/2, x = cost andz = €°,

pn(0)V1— xz\/g

—aIm{zZ D(f: Y i D12
=nIm{z"D(f;z7) }—l—lm{z D2 (32)
Proof. Note that ifx = cost andz = €7, then
% iz
dr 1—x2
Differentiating (27) gives
/ _ 2 d n R N | dz
pp(x) = \/;Re{dz[z D(f;z7h ]dx}
2 1 d
— — Im _ nD , '71 -1
\/;/1_—)@ {Zdz[z (£i27) ]}
and then (32) follows. a

The last identity is useful in deriving explicit representations for Christoffel
functions. Recall that theth Christoffel function for the weighi is

1 p2
n o Pw
degP)<n—-1 P2(x)

A(w, x) = (33)

It is well known and easy to prove that

n—1

Ap(w, x) = 1/Zp]2(x).

j=0
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An extensive, and still relevant, survey of the use of Christoffel functions in or-
thogonal polynomials and weighted approximation was given by Nevai [87]. From
the Christoffel-Darboux formula

n—1
Kn (x’ y) = Z pk(x)pk (X) — ynyfl pn(x)pnfl(y)z — inl(x)pn (y) ’ (34)
k=0 "

and I'Hospital’s rule, it is easily seen that
Vn—1

n

AW, x) = K, (x, x) = [P} () Pu—1(x) — pj_1(x) pu(x)]. (35)

We can now prove an identity for 1(w, x). It has been proved in [112, p. 320] in

one form in the course of a proof of equiconvergence of orthonormal expansions. It
was stated with some misprints as an exercise on asymptotics in Freud [32, p. 269],
and was used in [66].

THEOREM 2.4. Forn > £/2+ 1, x =cosh andz = €?,

ma, Hw, x)wx)v/1 — x2
1 zD'(f; 2) 1 om_1 D(f32)
=n-Z+R | L
"ot e{ D(f:2) }+2 T2 m{z D(f:iz D

> } (36)

Proof. Let us set
F(z) :=D(f; 2),
and recall that sincg is even ing,
FR)=FQF), z=¢€".
Then (35), (26) and (32) and the fact thigt_1)/y, = % imply that
Airt(w, x)v/1 — x2
=2i { [\/gp;(xw 1- xz] [V2r pu-a()] -

_ [ \/g p;l(x)\/l——xz] [ﬂpn(x)]}

anlF/(Z) B Zn+lF/(Z)):|
F(2)? F(2)?

= [n(z"F(Z)—l —z"F(@) ) + (
% [Zn—lF(Z)—l + Z_n+lF(Z)_1:|_
- [(n ~ DT F@ T =R @ T+

anZF/(Z) an+2F/ (Z) . . . .
+( FEE | P2 )]X[Z FO™+2"FOT)
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By collecting coefficients of like terms, we continue this as

= F(z)fZZanl 4 F(Z)le(z)fl(zn o 1){Z . Zfl} _ F(Z)72Z72n+l +
F'@@) F'(2)

A €O R N CO NP 2
T rer T ) T Eeere T
= F(2)"*F@(2n — 1)2i sing +
2 M2 R @) 2) + 2 Im(%(l - zz)). (37)

Using the evenness ¢f, we see that

FQF® =|F@)| = f(6) = w(cost)|sing] = w(x)y/1— x2
so multiplying (37) byw(x)/(4i) gives (36). a

We also record an identity for the reproducing kerkigl(x, y):

THEOREM 2.5. Letx = cosf, z = €Y andy = cos¢; w = €¢. Then for
n>{¢/24+1,

@ Pr(X)pu-1(y) = pn—1(x) pn(y)
1 -1\_,—n -1,,-n
=;R6[D(f;z 2D w) e (w — 2)+
+ D(f;w H w'(w = 2)}]. (38)

n—1

(b) Ki(r,y) = D pe)pe(y)

k=0

= —ilm[D(f‘Z)_lz%_”{

D(f;w™H " wr
sin(%2)
L D w)lw%"”

sin(%2)

+

(39)

Proof.(a) Let F(z) := D(f; z) as before. By (26),

(270)[ P (%) Pr-1(¥) = Pu-1(xX) pu ()]
— [ZnF(Z_l)_l+Z_nF(Z)_1][wn_1F(U)_l)_l+U)_n+1F(U))_l] -
— [T FEH T+ F@Q T [w Fw ) T+ w T F(w)
_ F(Z_l) 1F(w ) {Zn n-1 _ n—lwn}+
+F@) YF(w) Yz w T — zf'”l M+
+F(z)_lF(w_1) {Z nop 1_ _—n+l n}+
+F(EH T F ) w T - .” w™"}
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= 2Re[F () 'F(w) M (zw) ™{w — z}} +
+2ReF(2) ' F(w ™) tw) " fw ™ - z}}
= 2 Re{F(z)flzf” [F(w)fl{w —Zw "+ Fw H Hw - z}w”]}.

Then (38) follows.
(b) We use the Christoffel-Darboux formula (34) and (28) to deduce that

_ 1 pu() a1 (y) = Pu(¥) pu(x)
=3 = .

K,(x,y)

Here
xX—y= —23in(9 ;q&) sin(e Z¢>

and
w—z = —(wz)Y?2i Sin(e ; d));
wl—z7 = —(w Y% sin<0%¢>.

These last four identities and (a) give

2K, (x,y)

= — Im{F(z)lz%”[

F(w)_lw%_” F(w_l)_lw"_%i“
sin(%$2) sin(:2)

We next rewrite some of the above formulae in terms of the argumdng 6f z).
If we write

D(f;z) =|D(f; 2)| exp(i argD(f; 2)),
then
T it 0
argD(f; ré?%) = %/ Iogf(t)lm(%) dr
. i nlo 9 rsin@ —t)
C2n ), 9/ 1+r2—2rco96 — 1)

Asr — 1—,

rsini@ —t) sin@ — 1) 1 ot<9 — t),

=_C
l+r2—2rCOS(0—t)_>2(1—COS(9—1‘)) 2 2

S0 one expects that afyy f; r&?) approaches

iPV/n log f (¢) cot<u) dr =:T'(f;0). (40)
A o 2
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Here because of the non-integrable singularity of @t ¢)/2) atr = 6, the
integral must be taken in@auchy principal valuesense:

4 O —t
PV/ log f(¢) cot(T) dr

. 0 —t
= lim / log 1 () cot<—) dr.
e=0+ J iz w]\[0—e,0+e] 2

It is a well known fact in the theory of singular integrals, that the above limits (as
r — 1- ande — 0+) exist a.e. assuming just Igg € Li[—x, 7]. For our f
of (22), which is differentiable if—1, 1), the limit exists everywhere i1, 1).
I'(f; -) is often called theonjugate functiomf % log f and sometimes, itdilbert
transform on the circl¢33, 44, 48, 111, 123].

Recalling (24), we see that

D(f:€%) = @2 exp(il'(f:9)). (41)

and differentiating formally with respect togives
e’D'(f;€) L f1O)
D(f;€?) 2 f(6)

This formula is meaningful when'(f; 0) exists. Forf given by (22) and e
[—m, 71\{0}, we shall effectively prove its existence in Lemma 2.7(b) below.

In some applications it is useful to express the formulaepforp’, andx ! in
terms ofT":

+T'(f;0). (42)

THEOREM 2.6. Forn > £/2+ 1, x = cos? andz = €°,

@ pawE)Y(1— xz)l/“\/g
= coqnd +I'(f;0)). (43)

(b) p;(x)w(x)l/z(l_x2)3/4\/§
= (n+T'(f;6)) sin(nd + T'(f;0)) +

4 11O cos(nf + T'(f:6)). (44)

2 f(6)
(© 7rt(w, x)wx)yv1— x2

1
=n— S +T(f10)+

1 .
+ﬁ sin((2n — 16 + 2T (£ 0)). (45)
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Proof. This follows from (27), (32), (36), (41), (42) and the fact that the even-
ness off (-) and the oddness of cot imply thBt f; -) is odd — see (40). O

We shall present one final set of formulae, couched in language that is appro-
priate in the context of exponential weights. fgoe L1[—1, 1], define its Hilbert
transform

1
Hlgl(x) = PV/ %dz, aexe(-11). (46)
N S

Ifalsog’(-)v/1— -2 € Ly[—1, 1], we define for a.ex € (-1, 1),
1, PV (tgmV/1-12
Ligl) = S H[¢(WI- Fw =" [ £ =0 @)
T T Jq t—x
Using the identity (see, for example, [108, p. 225])

pv (t 1 d
m Jat—xJ1-r2

we may write for a.ex € (-1, 1),

0, xe (=11, (48)

. PV 1 g’(t)(l _ t2) . g/(x)(l . X2) dr
Helo = Ea /—1 t—x JI2 (49)
Since
J1—12 _ (1—x?) - . ) .
r—x _M(t—x) \/1_2‘2 \/1—t2’
we see from (47) that
1 /
Liglx) = 7v/1—x20[g](x) — = / g0 _ 4
T J_q 1_ l2
1t g0
B v hk 50
T J_1/1—1¢2 ! ( )
where
. J1—x2 1 g () dr
O'[g](x) - 7T2 PV 71[—_)5 m (51)

Of course, this will be meaningful only if all the integrals in (50) and (51) converge
in a suitable sense.
If we write our weightw of (19) in the form

w(x) = exp(—20(x)) (52)



230 D. S. LUBINSKY

so that
1 : 1
Ox) = —Zlog(l—x )+ ElogS(x), (53)
and if we takeg := Q, then the expressioa[g] = o[Q] is one of the most

commonly used formulae for the density function of the equilibrium distribution
for Q, provided the interval of support @ is [—1, 1]. For further orientation on
this, see [79] or [108]. Moreover, one frequently then has

1 0w 1/1 1Q'(1)

= =0 = dr = 54

ﬂ/-l«/l—tzt "4 —1\/1—t2t " (®4)
so that

L[Q](x) =nv1—x?0[Q](x) —n. (55)

Unfortunately for theQ of (53), the integrals in (50) and (51) diverge, due to a
non-integrable singularity at1. In contrast,L[Q](x) is well defined forx €
(—1, 1). Nevertheless, (55) provides insight into the relationship betwee
and quantities more commonly used in potential theory.

Before stating our final formulae fqr, and; ! in terms of L[ Q], we need to
establish the relationship betweErandL:

LEMMA 2.7. Letw, f be given by(19) and (22) respectively and writex =
cosf, 0 € (0, ). Letl" and L be defined by40) and (47) respectively.

o 7 1—x2 fllogS(s) —logS(x) ds
1
(b) T'(f:0) = >t L[Q](x). (57)
N LLIQI()
© TUiH=5-t+ / S, (58)
where
_ )% S #G
- { 5, S(1) = 0. (59)

Proof. (a) Recall that
f(6) = sirt6/S(cosh),
so that

I'(f;0) =T (sir? -;0) — (S(cos-); ). (60)
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But by (31), forz = €,
D(sirf -:z) = —izsind

= ['(sir? -; 0) = argD(sir? -; &%) =0 — % (61)
Next, we make the substitutions= cosf; s = cost in the integral in the right-

hand side of (56), namely in

V1—x2 [t — |
H) = X / 0gS(s) —logS(x) ds ‘ 62)
27T -1 S — X /1 — S2
Using (48), we obtain
Hx) = SmQPV/ log S(cost) @
4 _r COSt — cosh
(The substitution in the principal value integral is easily justified.) Since
sing sin(%") cos %) + cos %) sin(4Y)
cost — cos 2sin(%1) sin(%4t) ’
we see that
H(x) = rv log S(cost) [cot(w) + cot(tﬂ dr
87 J_, 2 2
PV [T 0 —t
= T / i} log S(cost) cot(—2 )dt
= I'(S(cos-);0). (63)
Together (60)—(63) give (56).
(b) Now from (56) and (62),
I'(f:0) = 1+ H'(x)sing
B 1_i/1 logS(s) —logS(x) ds n
N 27 J_1 §—x J1—s2
+l—x2 1& log S(s) — log S(x) ds
2r ) pdx s—x V1— 52
_ 1 x [YlogS(s) —logS(x) ds .
B 2w J 4 §—x V11— 52
1—x2 [tlogS(s) —logS(x) — (s —x)
= f 0 = (64)
2t ), (s —x) V1—s2

The interchange of series and derivative is justified by the uniform convergence
in x in the last integral, provided is restricted to a closed subinterval @f1, 1)
(recall that logs is infinitely differentiable in(—1, 1)). Using the identity
1—x2 1—4°
= +s5+x

S —X S —X
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in the second integral in (64), and using also (48) gives

PV [(YlogS(s) —logS(x) y

I'(f;0) = 1+ —
(f:6) = 14+ 5= | —
{ 1—s? } ds
X1—x + +s5+x
s —Xx — 52
pv ! d[+/1—s2
=1-— I —1 — ds.
2 /l[ogS(s) OgS(x)]ds{ §s—x } ’
Integrating by parts gives
P L §'(s) V1 —s2
M) =14 22 [ 59 > ds. (65)

27 J_1 S(s) s—x

This may be justified by first integrating by parts overl + ¢, x — ¢) and(x +
g,1 — ¢) and then lettingg — 0-+. The limits exist agS'(s)/S(s))v/1 — s2 is
differentiable in(—1, 1) and isO(1/+/1 — s2) ass — +1. Using again (48) gives

I'(f:0)

1 (S/HE)A =5 —(S/H(x)A—xH) s
:”Z/_l — = (66)
Finally, since
0(x) = 1 logw(x) = }Iog S(x) — 1 log(1 — x?),
2 2 4
we see from (49) that
1 (1 Qe)A-5)—-0xA—x* ds
Lo = + [ L —
1 (1 (S/H)A—sH = (/)AL —xH) ds
- Z/—l s —x 1—s2 *
1 1 ds
T /_1 N
= T'(f: 0) —1+%,

by (66). So we have (57).
(c) Integrating (57) fop from 0 to somep € (0, 7) gives

¢
N6 -0 =2 +/ LIQ(cosh) db.
0
Now asx — 1—, or equivalently a® — 0+, we see from (56) that if (1) # O,

T
I'(f;0) — 5
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Then (58) follows if we change to 6. If S has a simple zero at 1, then we write
f(0) :=1/8:1(cosb),

whereS1(1) # 0. Asiin (a),
I'(f;0) = I'(L;60) —T'(Sy(cos-); ) = —I'(S1(cos-; 0))

B V1—x2 /1 log S1(s) —log S1(x)  ds
2n 1 s —x J1I—s2’

justasin (a). Since log (x) is differentiable ak = 1, we may show as above that
I'(S1(cos-); 0) — 0as®d — 0+, and then (58) follows as before. O

We may now reformulate Theorem 2.6 in termd gD ]:

THEOREM 2.8. Letw be given by(19)and Q be given by(53). Lett be given by
(59). Forn > £/2+ 1, x = cost andz = €°,

@ pPu@w@M (1 —x*HY* \/g

1 LLIQI®)
:COS<<7I+§>9—T+/; mdl) (67)
(b) P;(X)w(x)l/z(l—x2)3/4\/§
_(n+d - 1 L LIQ10)
= (n + > + L[Q](x)) SIFI((n + 5)9 -7 _,_/X T dt) n
1£©) 1 LLIQI()
{250 w

© 7At(w, v)wx)y1—x2

1
=n+ L[Q](x) + = sin<2n9 -2t + 2/ LIo1®) dt). (69)

1
21 —x X Vl—lz

Proof. This follows directly from Theorem 2.6 and Lemma 2.7(b), (c). O

2.2. BERNSTEIN-SZEGO IN UNIVERSALITY LIMITS

We have stressed that the main applications of the Bernsteiné-$degtity has
been to asymptotics of orthogonal polynomials. Its cousin on the circle underlies
the Sze@/power asymptotics for orthogonal polynomials both on the unit circle
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and[—1, 1], and the identity orf—1, 1] underlies one of the main approaches
for proving asymptotics for orthogonal polynomials associated with exponential
weights on the real line [61, 72, 113].

In this section, we shall illustrate a different application, to universality limit
relations. In the theory of random matrices, the distribution of eigenvalues of ma-
trices in small intervals reduces to a technical limit relation involving orthogonal
polynomials. For a weighi, with nth reproducing kernel,

n—1
Kn(x, ) =Y pe(x) pe(y),
k=0
one form of the universality limit relation is
. s Slnn(s 1)
lim K* , K , 70
s ”<”+ Ky w " )/ ==
wheres,t e R,u € I and
Ky (x, ) = K (x, pw) 2wy, (71)

Various forms and analogues of this have been explored in [21, 26, 92], etc. The
most impressive rigorous approach has been given in [26].

In this section, we illustrate the limit (70) in the very simple case of Bernstein—
Sze@ weights. In addition t&K¥, we use

KE(x,y) = Ky ) [w@) @ = 22)Y2) 2 [w) @ - y2)Y2] (72)
We also need the modulus of continuity of a function restricted to an intgeryal:
if this interval is contained in the domain of definition of a real valued funcgion
then we define foe > 0,
Wia.p)(8; €) 1= Sup{|g(s) — g(t)| tls —t] < eands, t € [a, b]}.
We can now prove:
THEOREM 2.9. Letw be given by(19)andn > ¢/2+ 1. Letu € (—-1,1) and
write u = cosyr, whereyr € (0, ). Lets, t € R and assume that
s =1
K (u,u)
Let[a, b] C (O, ) and assume that it containg, ¥ + s/(K*(u,u)) and ¥ +
t/(K¥*(u,u)). Then

#
‘K (COS(W + K ) 9@ T K, u)))

sin(r (s — 1))
27 sm(zk#(u u))

< o5 o)+ (54— L (74)
S @] T 4 27 ) min{sina, sinb}’

1/2

e [0, ). (73)
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Proof. Let us write

0 =y +

7 ;X = CO0SO;
K (u,u)

t

¢ =Y+ Kf(u,u);

y := COS¢. (75)

By the Christoffel-Darboux formula, the fact th@at,_1) /v, = % and (43),
m(x — y)K*(x, y) = cosa cosp — ¢) — cosp cosa — 6),

where
a:=nb +TI'(f;0); B:=np+I(f; ).

Then we deduce that

(0—¢\ . [0+ .,
—2n$|n< 5 )sm( > )Kn(x,y)

1
= 5[cosia +  — ) + costa — p +¢)] -
—%[Cos(oz-i-ﬂ —0) +cosa— B —6)]
_sin<a+,3— 9-12—¢)Sin(9—¢) -

2
_sin<a—ﬁ+ ¢;9)sin<9;¢>.

sin(e — B + 42)
27 sin(%52)

Hence

K*(x,y) —

1
= 27| sin(52)]
1
< —— —
27 min{sina, sinb}
Next,

(76)

¢—0 1
a_ﬁ+T:(n_5)(9_¢>+r<f;9>—r<f;¢>.

Here by (45),
r K u,u) = ma w, wyww)v/1 — u?

1
=n—s+I(fiy)+.
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where
1 .
ni= i sin((2n — Dy + 20 (f; ¥)).
Thus, substituting fon — 1/2,
Ol—ﬁ+¢—;9 = 7K}(u,u)(O —¢) +T(f;0) —

—T(f;¢)— (T'(f39) +n)O — )
=a(—0)+O@—-QT'(f: &) -T'(fs¥)—n)
=:m7(s—1t)+e,

wheret is betweer® and¢ and we have used our choice (75P0fp. Then we see
that by our choice (73) of,

¢ —0

sin(a — B+ T) —sin(z(s — )| < ||
< 5(w[a,bl(r’(f; )5 8) + ;)
2V1—u?
and hence
sin@ — B+ %% sin(r(s — 1)
27 sin(%52) 27 i)
, 1
S o sin? (w[a,b](r (f: ) 8) + Z\/ﬁ)
< }<a)[a,b](r/(f; )5 8) + #>
2 2V1—u?
by the inequality sid/2 > §/x. This, (76), and the fact that < [a, b] yield the
result. O

Note that the estimate in (74) holds without a division&i(u, u). We can now
transform that estimate into:

THEOREM 2.10. Letw be given by(19). LetJ be a closed subinterval ¢f-1, 1)
and X C R be bounded. Then uniformly fare J, ando, t € X, we have as
n— oo,

K'\u+ g Ju+ ! /K*(u,u)
" K (u,u) K (u,u) "

_sin(r(e — 1)) o(i), a7

n(o—1) n
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Proof. We first show that the right-hand side of (74) may be bounded indepen-
dently ofn. Now by (57) and (47),

I'(f;0) = L[Q](cosh) + % = %H[Q’(-)\/l— -2](0039) + %

Here, Q is given by (53). Sincg) is infinitely differentiable in(—1, 1), Privalov’s
Theorem (see, for example, [44, p. 94]) shows &lf; -) satisfies a Lipschitz
condition of ordek in each compact subinterval 6f1, 1) and forany O< o < 1.
Then it follows that

oan (T (f5 );8) <C8% 80,
whereC depends offia, b] C (0, ). Next, it follows from (69) that provided is
restricted to a compact subinterval @fl, 1),

rrKf(x, x) =n+ 0O(),
so fors, ¢ in a compact set, we see thdapf (73) satisfies, uniformly im, s, ¢,

()

Thus we obtain uniformly for = cosyr € J, s, t in a compact set

# N t
‘Kn (cos<1// + KPGr, u)), cos<1// + K, u)>)—

sin(zr (s — 1)) <c (78)

T A s A
21 Sln( ZK%(;,u))

Next, foro, T € KX, u € J and large enough, we may write for some = s(o),
0031//+L:c031/f+ o siny :cos<1//+ ° )
K*(u, u) K#*(u, u) K#*(u,u)
wheres also varies in a compact subset Rf This follows by a Taylor series

expansion to second order, and since sin is bounded below by a positive constant
in each compact subinterval @, 7). Similarly, for some = ¢ (1),

T T siny t
cosy + ————— = Ccosy + = cos<1p + )

K (u, ) Kiu,u) Koy, uy
Then
c—1 Coqvf + m) - Coql/f + Kff(tu,u))
s—t (s —0)/K;(u, u)
| £\ KiGww
= —SIn
(1’[/ + K#(u, u)) K#(u, u)

_ (_ siny + 0(%))$
ol
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uniformly foro, t € X, u € J and with the convention that the left-hand side is
taken as—1 if o = . Since the functionn — sinv/v, with value 1 atv = 0, is
continuously differentiable in—, ), we deduce that uniformly ia, r € X,

sin(z(o — 7)) _ sin(z(s —1)) N O(l)

7o —1)  w(s—1t) n

and also uniformly inr, € K, u € J,

. s — 1t s —1 1
S'”(ZK,?(M, u))/ <2Kif<u, u)) - 1+O<5)

so we may reformulate (78) as

# o T " B sin( (o — 1)) g
‘K”(u—i_K;f(u»”)’u—i_K,T(u,u)>/K"(u’u) m(o —1) S n

uniformly inu, o, t. Finally,

o A\ 2\1/4 1
(1_[”+K:;(u,u>D = +O(5)’

uniformly in u, o, 7, with a similar relation wherr replaceso, and then (77)
follows. O

Obviously the very narrow class of weights treated in Theorem 2.10 limits its
interest. However, via Korous’ method — as outlined in the beginning of this section
— one may extend Theorem 2.9 to more general weights, that admit suitable poly-
nomial approximation. This would still be for weights on a fixed interval. The real
question, which seems well worth exploring, is whether a Korous type approach
can yield universality limits for varying weights and hence for exponential weights
on the real line. Would this, for example, compete with the strength of results in
[26, Lemma 6.1]?

2.3. THE FOKAS-ITS—KITAEV (RIEMANN—HILBERT) IDENTITY

While the Bernstein—Szégdentity is based ultimately on Cauchy’s integral theo-
rem and integral formula, the Fokas—Its—Kitaev identity is based on the Sokhotskii—
Plemelj formulas. These may be viewed as the boundary behaviour form of Cauchy’s
integral formula: an excellent introduction appears in Henrici's ode to complex
analysis [44]. Suppose for example, that we have a measurable fuAct®r> R

such that

< |h(@)|
/OO &< (79)
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Then one may define its Cauchy transform

1 [* h(
Clhl(z) := —/ Ldt, z € C\R.
2mi J_ ot —
(Sometimes, this is called the Stieltjes transform, or Hilbert transform) This
is of course analytic ifC\R. Let us define the boundary values from the upper and
lower half planes,

Clhl4(x) = Iin&r(?[h](x +iy);
y~>
Clhl_(x) := lim C[hl(x —iy),
y—0+
whenever the limits exist. (For those familiar with boundary behaviour of analytic

functions, of course the radial limits may be replaced by non-tangential ones.) The
Sokhotskii—-Plemelj formulas assert that whenever the limits exist,

Clhly(x) — Clhl-(x) = h(x); (80)
1 ()

Clhli(x) + Clh]_(x) = —_PV/ dr.
i o I — X

Here, as earlier? V denotes Cauchy principal value. In particular (79) ensures that
the limits and hence (80) hold a.e. Moreovet; gatisfies a Lipschitz condition of
some positive order in an interval, then (80) holds in the interior of that interval.

Riemann—Hilbert problems involve replacing a difference of boundary values
by their ratio: for example, one looks for a functiGhanalytic inC\R satisfying

G (x)=h(x)G_(x), xeR,

for a given functioni, and subject to some normalization condition Gn An
applicable connection between Riemann—Hilbert problems and orthogonal poly-
nomials was first drawn in the early 1990’s [30, 31] by Fokas, Its and Kitaev for
a weightw on I = R. The formulation involves Z 2 complex valued matrix
functionsY (-): we write Y (z) € C2*2.

THEOREM 2.11. Letw: R — [0, c0) have all moment#Rx«"w(x)dx, j =
0,1,2,... finite and assume that for each > 0, w(s)s’/ satisfies a Lipschitz
condition of some positive order throughd®t Letrn > 1. Consider the following
Riemann-Hilbert problem:

() Y: C\R — C?*?is analytic;

(N Y (x) = Y_(x) ( o1 ) , xeR (81)

2" 0 10 1
(D) Y (z) <o z”) = <0 1) +O<E)’ lz| = oo. (82)
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The problem has a unigue solution

_ [ P2/ ¥ Clp,w] (2) /vu
Y(2) = ( —27iYp—1Pn-1(2) —27iY,u—1C[pr-1w](2) ) : (83)

Proof. We follow [26, 49]: first we establish

UniquenessFirstly, by taking determinants in (81), we see that
detY,(x) =detY_(x), x eR.

The fact thatw satisfies a Lipschitz condition of positive orderinensures that
each of the entries in the matricEs, Y_ does the same, at least in finite intervals
— by Privalov’s theorem on singular integrals. In particularietire continuous
there. (Alternatively, the Lipschitz condition implies uniform convergence in com-
pact intervals to the boundary values and hence also continuity.) S6. get
continuous orR, while detY (z) is analytic inC\IR and hence deX (z) is actually

an entire function. The order relation (82) forces

detY(z) > 1, |z] > o0,

and so by Liouville’s Theorent (z) = 1inC.
If Z is another solution of (I)—(111), we let

R@):=Z@Y (@)™,

which is analytic inC\R. Using (81) onY andZ, we see that fox € R,

-1
Ri(x) = [Z(x) ((1) ’f(x) )] [Y(x) (é ’f(x) )] — R_(x).

So as aboveRr is entire. Finally, (82) shows that

1
mm=(éf)+oGa) 2] = oo,

and again Liouville’s Theorem shows that each of the entrigsiefconstant. Thus
R is the identity matrix, and we have established uniqueness.

ExistenceWe now show that” of (83) solves (I)—(llI). Firstly, (1) is immediate. To
verify (I1), we must satisfy four equations, two of which reduce to

pj+(x) =p;j-(x), xeR,
namely continuity ofp;, j = n — 1, n. The other two are
Clpaw]ls(X)/Va = pp— ()W) /¥y + Clpaw]—(X)/Vn;

_Z”iyn—lc[l?n—lw]+(x)
= _Zniyn—lpn—l,—(x)w(x) - zniyn—lc[pn—lw]—(x)-
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These follow immediately from the Sokhotskii—-Plemelj formula (80). The veri-
fication of (lll) also reduces to four order relations. Two are immediate because
(@) /v, = 7" + --- and because,_1(z) has degrea — 1. The non-trivial ones
are

" 1

Z"Clpawl(@)/yn =0 Z); lz| = oo, (84)

. ; 1

—27iY,—17"Clpp—1w](z) = 1+ O(;): lz| — oo. (85)

These are more complex, because the integral defining the Cauchy transform ex-

tends over the whole real line, andan be close to, or even on, the real line. So
we take some care over them. Let us establish (85). We write

s —z Z"(S—Z)_ — Zk+l
and use orthogonality to deduce that

—27iy,_12" Clpr_1wl(z)
— —)/n1/ M ds + an/ (pn,lu))(s)s"_l ds.

o0 § =2z

Because of orthonormality, the second term on the right-hand side equals

)/n—1/ (Pu—1w)(s)s" 1 ds :/ (pa_aw)?(s)ds = 1.

We must show that

/ Y W)@ o(;), 2] = oo (86)

[e'e) §—Z

and then (85) follows. (It € R, the integral must be taken in a Cauchy principal
value sense.) We split the integral into three pieces. Firstly,

/ (Pn_aw)($)s" |
—_—_— S
{s:|s—z\>‘—g—‘} §—2

Secondly,

/ (Pn-1w)(5)s" |
el O \}
{s:1<Is—2I< ) s —2

2 [ "
g T |Pn—1w|(5)|5| ds.
1zl J oo

2 o0
<2 / | Pa_aw|(5)]s]"+ ds.
1z] /oo
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Write z = x + iy. To deal with the remaining range, namdly: |s — z| < 1}, we
note that it is non-empty only whem| < 1. We write

/ (pn-1w)(s)s" d
—— O A
{s:ls—z|<1} §—Z

TV (paiaw) ()5 = (pa_qw) (0)x" ds N
x—a/1—y2 § —Z N

x44/1-y2 ds

T (5= 2)s

+(Pp_1w) (x)x"
= 1+ I,

Firstly, for largez, and equivalently for large (recall|y| < 1),

I < — T (paeaw) (5)s" T = (paoaw) ()" ds
Tzl e p—
<2 I (Paaw) ()" — (pa—gw) ()2 d
E P, 5.

Our hypothesis thab (s)s/, j > 0, satisfies a Lipschitz condition uniformly on the
real line implies that this last integral is bounded independently bifext, because
of symmetry of the interval of integration about

| (Pn_1w) () x" Y|

|Ir| =
|z]

x+ﬂ 1 1 d
- = S
x—a/1-y2 ( )

x44/1-y2

§—2Z s
n+1| ide
x—a/1-y2 (S_x)2+y2
- |og<x7+ ” 1_y2)
x —+/1— 2

|(Pa-aw) (0)x"H2 — (pp_qw) (0)0" ] o

|(Pr—1w) (x)x
|z]

<
|z]x]
/‘X’ du tlo x| +1
X
o UP+1 g x| —1
C
g_a
|z]

where( is independent of. We have again used the fact that for eachy (s)s*
satisfies a Lipschitz condition uniformly on the real line, and we can assume that
the Lipschitz constant is 1. So we have (86) and hence (85). The proof of (84) is
similar, but easier. O
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Who would have guessed that the above identities could be so useful in estab-
lishing asymptotic properties of orthogonal polynomials? A one variable problem
has been converted into ax22 matrix problem involving singular integrals and
boundary values! Compare this with the Bernstein—6zfegmula, whose util-
ity is almost immediate, especially when one recalls how much is known about
polynomial approximation.

But in the hands of the group around P. Deift, to whom Riemann—Hilbert prob-
lems are bread and butter, the identities above (and some extensions of them)
have yielded remarkably precise results. The above problem is transformed by
a succession of maps/substitutions, some of which boil down to the mapping of
the Mhaskar—-Rakhmanov—-Saff interyal ,, a,,] onto[—1, 1], and to use of po-
tential theory. Then, the real line is deformed into a suitable contour, and a two-
dimensional version of steepest descent is applied. The details are of course non-
trivial. Historically, the first use of this circle of ideas was by Bleher and Its [10],
though their method differs substantially from that of the group around Deift.

As an illustration of the power of the method, we quote a small part of the
impressive recent results of Kriecherbauer and McLaughlin [49]:

THEOREM 2.12. Leta > Oand
w(x) = exp(—2|x|"‘), x € R.

Let
e[ VT TG T
ay = ay(@) =n""| -—2—| |, n>1
2 T4
Then
a, n+%e_n/a 5 14 oa—4 n En (87)
_ —_ JE— —_—
Yn\ 2 i 2dan " n T
where
&n = O((Iogn)_z), n— oo. (88)
Consequently, for some, ¢, independent of,
" a it
1_[|:)/] (é) e’f/“v 27T] = clncz(l + 0(1)), n — oQ. (89)

j=1

What is so impressive is the precision in the asymptotic in (87), leading to the
strong Szeg limit (89) for all« > 0. Fora a positive even integer, the asymptotic
expansion for the recurrence coefficients given by Mate, Nevai and Zaslavsky [78]
implied both (87) and (89). We emphasise that more detailed information regarding
&, Is given in [49]. That, together with the asymptotics jgrthat are established
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in all parts of the plane — most notably nelat,,, illustrate the impressive power of
the Riemann—Hilbert technique.

Undoubtedly investigations in the next few years will reveal the full potential of
this exciting new method.

2.4. RAKHMANOV'S PROJECTION IDENTITY

Rakhmanov's projection identity first appeared in his 1992 paper [106], as part of
his proof of asymptotics for orthonormal polynomials for the weightsexp|®),
a > 1, onthe real line. There the identity was applied on a growing sequence of in-
tervals, namely the Mhaskar—Rakhmanov—Saff interjals., a,.] for appropriate
choices ofr.

Here we shall present the identity for a weighton [—1, 1] and for a fixed
n. We are forced to use some potential theory but have attempted to keep it to a
minimum. Those readers requiring further orientation can refer to [79] or [108].
We write

w(x) =exp(—20(x)), xe€ (=11 (90)
and assume that there is a finite, absolutely continuous measure
dv(x) =v'(x)dx on[-1, 1] (91)
of total mass:, that is
1
/ dv =n, (92)
-1

satisfying the equilibrium condition

1
/ log|x — ¢t tdv(t) + Q(x) =, x € (—1,1). (93)
-1

Herea is a (real) constant. A positive measure shtisfying this last relation is
called the equilibrium measure of total mas$or the external fieldQ. It exists
and is unique, if, for exampleQ is convex on(—1, 1) and satisfies some other
conditions that guarantee that Has mass. (The argument that follows does not
seem to require thatds positive though!) Let us set

du(x) :==dv(x) + }

dx
zm, X € (—1, 1) (94)

so that

1
/ duzn+ts (95)
L 2
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Also let
1
Cp = ﬁ expla); (96)
1 T
bu(x) =1 / dutr) — 7 (97)

A(x) = [271\/ 1-— xzw(x)]_l/z; (98)

R,(x) : = 2A(x) cos¢,(x)
1
= \/g[\/ 1-— xzw(x)]fl/2 COS<7T/ du(t) — %) (99)

We note thatR,(x) is the expression expected to describe the behaviopy, @f)
asn — oo.

(1= x4 (@) p, (x)

1
— 112 cos(n/ du(r) — £> + o(1).
i N 4

Compare (67) and (55). Of course here we are fixiragnd adjustinge so that the
equilibrium measurewdfor w has total mass and is supported op-1, 1].
Define an inner product and norm with respect to the weighy

1
(fg) = / faw: (100)

1 1/2
I£l = (f, HY? = (/1 f2w> :

Finally, let as usualK, (x, r) denote the:th reproducing kernel fow, as at (34).
We can now state:

THEOREM 2.13. Letw = exp(—2Q) be a weight orf—1, 1] and assume that
there is a measuredv satisfying(91)—(93)and, moreover, that in each compact
subinterval of(—1, 1), v'(x) satisfies a Lipschitz condition of positive order. As-
sume the notatiof94) and (96)—(99) Let

E,:= inf |R,— PJ. 101
= ot IR P (101)

Then thenf is attained by(c,/y,) p, and only this polynomial, so that

Ry — — Pl (102)

n

=
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Moreover,
1
C—"pn(X)=/ Kyi1(x, )R, (H)w(r) dt, (103)
n -1
and
2
E2—1- (V—) en (104)
cl’L
where
1 [t dx
= — coq2¢, . 105
i 7 [ o) @05)

What is remarkable is that the expression that we expect to describe the as-
ymptotic behaviour ofp,, asn — oo, namely R,(x), appears in an extremal
problem which is uniquely solved by, (suitably normalized). This really helps to
motivate the asymptotic form. Furthermore, it seems immediately obvious that it
should be useful in studying asymptotics. It was used by E. A. Rakhmanov to good
effect in [106] in providing a compact proof of asymptotics for the orthonormal
polynomials for exponential weights. There, though, this was not the only new
identity: to estimate,,, E,, and hence to show that /¢, — 1—, other strikingly
original ideas and identities were developed and used.

We shall need three lemmas as a prelude to the proof of Theorem 2.13. The first
involves the Cauchy transform ofid Recall that

1 Ldu()
d = — -1,1].
Cldul(z) 271'i/1t—z’ z € C\[-1,1]
The Sokhotskii—Plemelj formulas (80) may be recast in the form
PV (Ydu@) 1,
Cldule(x) = —/ o +ou(x), xe(=11). (106)
2ni J_4t—x 2

Our hypothesis of the Lipschitz condition enis enough to guarantee that this
last relation holds pointwise, and that all functions involved also satisfy a Lipschitz
condition. We shall apply this to the complex potential associated wittbefine

1
V') :=/ l0g |z — 1]~ dv(0):
-1

1
V(2) ::/ log |z — ¢| " du(r).
-1

Notice that we use a superscript to distinguish the potelitidbr dv from that for
due. Note too that by definition oft,

Vi = V) + 1/1Iog| g
x) = x)+ = X —t| T —
2)1 71—t

= V'(x) +%I092, xe[-1,1]. (107)
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The last step involves an elementary identity of potential theory — see, for example,
[72, p. 30]. Define the complex potential ford

1
U(z) = / log(z — ) tdu(r), zeC\[-1, 1] (108)
-1
and define the conjugate function farby

UGR)=:V(2)+iV*(z), zeC\[-11]. (109)

Both V* and U are multivalued ir@\[—l, 1], but we consider the singlevalued
branch ofV* in C\(—o0, 1] normalized by

V*2) =0, zell 00). (110)

Our first lemma deals with the boundary valdés of U from the upper and lower
half planes:

LEMMA 2.14. The complex potentidl has a continuous extension[tel, 1]. In
addition forx € (-1, 1),

1
Urs(x) =V(x)F in/ du. (111)

Proof. Now for z € C\[—1, 1],

1
U'(z) :/ d“(tz) = 27i C[du](z).
-1

Then the Sokhotskii—Plemelj formulas (106) give
VI(x) =ImUL(x) = 2r ReCldul+(x) = £/ (x), x € (=1,1). (112)
Both the functionsV} are continuous ifi—1, 1) and the assertion concerning the

continuous extension df follows. Next, by our choice of brancheg; (1) = O,
soforx € (—1, 1),

Us(x) = Vi(x)—l—iO—l—i/ Vi (1) dr
1
= V(x):l:in/ du,
1
by (112) and the absolute continuity of avith respect to Lebesgue measura:

Now define

W(z) i=c,(z> = D) Vexp(-U(2)), zeC\[-11], (113)
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where the branch a&? — 1)~/ is chosen so that
@-D V>0, ze(l 00).

Sinceu has total mass + % we see that (with a multivalued log),

U(z):—(n—i—%) logz +0(1), |z] — o0
SO
W(2)/7z" = ¢, |z| = o0. (114)

ThusW(z) has a single valued analytic continuationg[—1, 1] with pole atoc.
We need a technical lemma:

LEMMA 2.15. Forx e (-1, 1),

(i) Wix) = A(x) exp(£ig,(x)); (115)
() ReW.(r)= R, (116)
(i) |We(x)| 2 = 2rw(x)v1—x2, (117)

Proof. From (107) and then (93),
V(x)=V'(x)+3log2=—-0(x) +a+ ilog2
Also
(@ =D), (x0) = A= xD)VexpFin/4),
so from (113) and then (111) and (96),
We(x) = ¢,(1—x*) Y exp(Fin/4) exp(—Us(x))

1
= d%(l—xz)_l/“exp(Q(x)) exp(:ti [n/ du — %D
= A(x) exp(Zig, (x)).

Thus we have (i). Then (ii) follows from (99), and (iii) follows from the definition
(98) of A. O

Our final lemma is:

LEMMA 2.16. If g is a polynomial of degree with real coefficients and leading
coefficientk,

1
(¢, Ry) = / dRuw = k/cn. (118)
~1
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Proof. Now

u(z) = Re(%@)

is harmonic inC\[—1, 1] and by (114),
u(z) = k/cy,, |z| = oo,

so it is also harmonic afo. Let

. u(l(z +z’l)), 0<|z] <1,
g(2) '_{k/gn, .—0.

Theng is harmonic in the open unit ball. € (0, 7), then asx — €¢ from
inside the unit ball,

q
g(z) —> Re<W—i (cos@))

_ Re( (qu)(COS@)>
|W(cosh)|?
= m(gR,w)(cosh)|sind|,

by (116) and (117). The mean value property for harmonic functions gives

1 T .
Kfew = 8O = 5 / (@)

T
s

1 .
=5 (gR,w)(cosv)| sing| do

1
= / gR,w. O
-1
We turn to

The Proof of Theorem 2.18irst note that ifg is a polynomial of degrees n,
with real coefficients and leading coefficigntorthonormality gives

Y Yr k k
(pn_n’ Q) = (_117:1’ _Pn) = = (RnaQ)
Cn C}’l yn C}’l

by Lemma 2.16, so

(R,, —p 2, q) —0 (119)

n
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Then
v 2
IR, — gl = H( — P )+(pn—”—q)
Cn
v |I? v 2
- [eonzf oz
Cn Cn
It follows that
E? = min ||Rn—P||2
deg P)<n
Yn
Cn
v v |?
= ||Rn||2_2<pn_n,Rn)+‘pn_n
Cn Cn
Y Va |2
= ||Rn||2_2<pn_napn_n)+‘pn_n
C}’l C}’l C}’l
v, 2
= |IR,II> — (C—) : (120)

We have used (119). Next, using the identity
2(Rez)? = Re(z%) + [zI,  z €C,
and Lemma 2.15(ii), (iii), we see that
R,(x)? = 4(ReW.(x))?
— 2RWa(x)?) + 2| We()|®

— 242%(x) co8(26, (1) + ————
aw(x)vV1—x2

so that

1
TG =/ R2w
-1

1/1COS(2¢()) dx +1/1 dx
= — (X —

) V1—x2 7w J_141—x2
=e¢,+ 1

Putting this in (120) gives (104). Finally, (103) follows directly from (102), since
ffl K,i1(t, X)R,(t)w(t) dt is the (n + 1)st partial sum of the orthonormal expan-
sion of R, and so is the unique polynomial giving the minimumAR. Thus by
uniqueness, it equals, (v,/c,). a
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2.5. A COMPARISON?

In attempting to compare the three identities presented above, and their applicabil-
ity to asymptotics, | am forced to admit my own lack of expertise — my experience
has been primarily with Bernstein—SzZeglentities. Another criticism is that the
three identities presented in the previous three sections vary in their distance to the
actual asymptotic: | have not presented the full passage from identity to asymptotic.
Nevertheless at least personally | find it instructive to contrast them.

e The connection between the Bernstein—$zeelgntity, or Rakhmanov’s pro-
jection identity, and asymptotics is intuitively fairly obvious. The Fokas—
Kitaev—Its identity seems more distant.

e Historically Bernstein—Szégon[—1, 1] and its cousin on the circle underlie
Sze@ asymptotics on the circle and-1, 1] and also on the real line. It has
a proven record of giving Szégor power asymptotics in fairly general sit-
uations, as well as pointwise asymptotics for orthogonal polynomials on the
interval of orthogonality. Nevertheless, it does not provide good error terms.

e The Fokas—Its—Kitaev identity in the hands of Deift, Kriecherbauer, McLaugh-
lin and others has proved to be a very powerful tool, yielding very precise as-
ymptotics, with error terms, and even asymptotic expansions. Its applicability
at the moment requires some sort of analyticityQof

e The Rakhmanov projection identity applies to very general weights but so far
the estimation of the quantities that lead from the identity to the asymptotic
also require some sort of analyticity @f. It yields better error terms than
does Bernstein—Szédut at present does not yield the precision of the Deift—
Kriecherbauer—McLaughlin approach based on the Fokas—Its—Kitaev identity.

In summary, my own feelings (which must be taken with a pinch of salt!) is
that there is place for all three identities in the field of asymptotics of orthogonal
polynomials. At present it seems that the Fokas—Its—Kitaev identity will lead to
very precise asymptotics for restricted classes of weights, while | believe that
Rakhmanov’s projection identity and Bernstein—Szegll lead to asymptotics
for more general weights, but with weaker error estimates. It is too early to tell
if Rakhmanov's projection identity will push out Bernstein—Szégr general ex-
ponential weights — but then even the full potential of the Deift—Kriecherbauer—
McLaughlin approach is not clear.

As we head into a hew century and a new millenium, there is clearly plenty of
scope for research into asymptotics of orthogonal polynomials!

Acknowledgements

The author would like to especially thank Annie Cuyt, Brigitte Verdonk and Stefan
Becuwe for the kind invitation to ICRA99 and for the stimulating conference.
The author would also like to acknowledge useful discussions with B. Becker-



252

D. S. LUBINSKY

mann, A. Kuijlaars, A. L. Levin, H. Stahl, V. Totik and W. Van Assche, as well as
corrections from T. Kriecherbauer, G. L. Lopez and F. Peherstorfer.

References
1. Achieser, N. |.Theory of Approximatioftranslated by C. J. Hyman), Dover, New York, 1992.
2. Ambroladze, A.: On exceptional sets of asymptotic relations for general orthogonal polyno-
mials,J. Approx. Theorg2 (1995), 257-273.
3. Aptekarev, A. |.: Asymptotics of orthogonal polynomials in a neighbourhood of the endpoints
of the interval of orthogonalityRussian Acad. Sci. Math. Sborr¥k (1993), 35-50.
4. Aptekarev, A. |.: Asymptotic behaviour df, norms and entropy for general orthogonal
polynomials,Russian Acad. Sci. Math. SborriB5(1994), 3—30.
5. Aptekarev, A. I, Dehesa, J. S. and Yanez, R. J.: Spatial entropy of central potentials and strong
asymptotics of orthogonal polynomials,Math. Phys35 (1994), 4423-4428.
6. Aptekarev, A. I., Branquinho, A. and Marcellan, F.: Toda-type differential equations for the
recurrence coefficients of orthogonal polynomials and Freud transformation, to appear.
7. Barrios, D., Lopez, G. and Saff, E. B.: Asymptotics of orthogonal polynomials inside the unit
circle and Sze@-Padé approximants, manuscript.
8. Barrios, D., Lopez, G. and Torrano, E.: Polynomials generated by a three term recurrence
relation with asymptotically periodic complex coefficieri4ath. USSR SK.89(1995), 629—
659.
9. Beckermann, B.: On a conjecture of E. A. Rakhma@nnstr. Approx16 (2000), 427—448.
10. Bleher, P. and Its, A.: Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert
problem, and universality in the matrix modékhn. of Math.150(1999), 185-266.
11. Bo, R. and Wong, R.: A uniform asymptotic formula for orthogonal polynomials associated
with exp(—x%), J. Approx. Theor®8 (1999), 146—166.
12. Bonan, S. and Clark, D. S.: Estimates of the Hermite and the Freud Polynamigfgrox.
Theory63(1990), 210-224.
13. Bdttcher, A. and Silbermann, BAnalysis of Toeplitz Operator§pringer/Akademie Verlag,
Berlin, 1990.
14. Béttcher, A. and Silbermann, Bitroduction to Large Truncated Toeplitz Matricé&pringer,
Berlin, 1999.
15. Bultheel, A., Gonzalez-Vera, P., Hendriksen, E. and Njastad,O@&thogonal Rational
Functions Cambridge, 1999.
16. Buyarov, V. S.: Logarithmic asymptotics of polynomials orthogonal on the real Saiget
Math. Dokl.43 (1991), 743-746.
17. Buyarov, V. S.: Logarithmic asymptotics of polynomials orthogonal with asymmetric weights,
Math. Notes Acad. Sci. USSR (1992), 789-795.
18. Buyarov, V. S. and Rakhmanov, E. A.: Families of equilibrium measures in an external field
on the real axisMath. Sb190(1999), 791-802.
19. Chen, Y. and Ismail, M. E. H.: Hermitean matrix ensembles and orthogonal polyndtials,
Appl. Math.100(1998), 33-52.
20. Chen, Y., Ismail, M. E. H. and Van Assche, W.: Tau-function constructions of the recurrence
coefficients of orthogonal polynomial&gdv. in Appl. Math20 (1998), 141-168.
21. Deift, P.:Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
Courant Lecture Notes, 1999.
22. Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S. and Zhou, X.: Asymptotics for

polynomials orthogonal with respect to varying exponential weighigrnat. Math. Res.
Notices16 (1997), 759-782.



ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS 253

23.

24.

25.

26.

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

Deift, P., Kriecherbauer, T. and McLaughlin, K.: New results on the equilibrium measure
for logarithmic potentials in the presence of an external figldhpprox. Theong5 (1998),
388-475.

Deift, P., Kriecherbauer, T. and McLaughlin, K.: New results for the asymptotics of orthogonal
polynomials and related problems via the Lax—Levermore methmit, Sympos. Appl. Math.

54 (1998), 87-104.

Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S. and Zhou, X.: Strong asymptotics
of orthogonal polynomials with respect to exponential weig8mnm. Pure Appl. Matib2
(1999), 1491-1552.

Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S. and Zhou, X.: Uniform asymptot-
ics for polynomials orthogonal with respect to varying exponential weights and applications
to universality questions in random matrix thed®gmm. Pure Appl. Matf{to appear).

Erdds, P. and Turan, P.: On interpolationAlnn. of Math.39 (1938), 703—724.

Erdds, P. and Turan, P.: On interpolation Wnn. of Math41 (1940), 510-553.

Faber, G.Ueber nach Polynomen fortschreitende Rejh®itzungsber. Bayerischen Akad.
Wiss., 1922, pp.157-178.

Fokas, A. S., Its, A. R. and Kitaev, A. V.: Isomonodromic approach in the theory of two-
dimensional quantum gravityspekhi Mat. Nauk5 (1990), 135-136.

Fokas, A. S, Its, A. R. and Kitaev, A. V.: Discrete Painleve equations and their appearance in
guantum gravityComm. Math. Phy<.42(1991), 313-344.

Freud, G.Orthogonal PolynomialsAkademiai Kiado/Pergamon Press, Budapest, 1971.
Garnett, J. BBounded Analytic Functiongcademic Press, Orlando, 1981.

Geronimo, J. S., Smith, D. and Van Assche, W.: Strong asymptotics for orthogonal polyno-
mials with regularly and slowly varying recurrence coefficiedt#pprox. Theory2 (1993),
141-158.

Geronimo, J. S. and Van Assche, W.: Orthogonal polynomials with asymptotically periodic
recurrence coefficientd, Approx. Theoryt6 (1986), 251-283.

Geronimo, J. S. and Van Assche, W.: Relative asymptotics for orthogonal polynomials with
unbounded recurrence coefficienisApprox. Theorg2 (1990), 47-69.

Geronimus, Ya. LOrthogonal PolynomialsConsultants Bureau, New York, 1961.

Golinskii, L.: Schur functions, Schur parameters and orthogonal polynomials on the unit
circle, Z. Anal. Anwendungeh? (1993), 457—-469.

Golinskii, L.: Reflection coefficients for generalized Jacobi weight functidng\pprox.
Theory78(1994), 117-126.

Golinskii, L.: Uniform asymptotics for second kind ultraspherical polynomials on the unit
circle, Constr. Approx14(1998), 599-608.

Golinskii, L.: Akhiezer's orthogonal polynomials and Bernstein—$zagthod for a circular
arc,J. Approx. Theon®5 (1998), 229-263.

Golinskii, L., Nevai, P. and Van Assche, W.: Perturbation of orthogonal polynomials on an arc
of the unit circle J. Approx. Theorg3(1995), 392—-422.

Grenander, U. and S#A&gG.: Toeplitz Forms and Their Application€helsea, New York,
1984.

Henrici, P.Applied and Computational Complex Analyaisl. 3, Wiley, 1993.

Hernandez, M. B. and Lopez, G.: Ratio and relative asymptotics of polynomials orthogonal
on an arc of the unit circlel. Approx. Theorp2 (1998), 216—244.

Jha, Shing-Wu: The second order linear differential equations satisfied by the orthogonal
polynomials associated witlh(x) = |x|? exq(—x2") (p > —1,m > O integer), Preprint,
1992.

Jha, Shing-Wu: Asymptotics for orthogonal polynomials associated with-ag#), m > 2,
integer, Preprint, 1993.

Koosis, P.The Logarithmic Integral,|ICambridge University Press, Cambridge, 1988.



254
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
50.

60.

61.
62.

63.
64.

65.

66.
67.

68.

69.
70.
71.
72.
73.

74.

D. S. LUBINSKY

Kriecherbauer, T. and McLaughlin, K. T.-R.: Strong asymptotics of polynomials orthogonal
with respect to Freud weightlternat. Math. Res. Notice(1999), 299-333.

Kuijlaars, A.: Contracted zero distributions of extremal polynomials associated with slowly
decreasing weights, Manuscript.

Kuijlaars, A.: On the finite gap ansatz in the continuum limit of the Toda lattice, Manuscript.
Kuijlaars, A.: Which eigenvalues are found by the Lanczos method?, Manuscript.

Kuijlaars, A. and Rakhmanov, E. A.: Zero distributions for discrete orthogonal polynomials,
J. Comp. Appl. Math99 (1998), 255-274.

Kuijlaars, A. and Van Assche, W.: Extremal problems on discrete RBeis, London Math.
Soc.76 (1999), 191-221.

Kuijlaars, A. and Van Assche, W.: The asymptotic zero distribution of orthogonal polynomials
with varying recurrence coefficient3, Approx. Theor®9 (1999), 167-197.

Landkof, N. S.Foundations of Modern Potential Theoftyanslated by A. P. Doohovskoy),
Springer, Berlin, 1972.

Levin, A. L. and Lubinsky, D. S.: Christoffel functions, orthogonal polynomials, and Nevai's
conjecture for Freud weight§onstr. Approx8 (1992), 463-535.

Levin, A. L. and Lubinsky, D. S.: Christoffel functions and orthogonal polynomials for
exponential weights op-1, 1], Mem. Amer. Math. S0835111(1994).

Levin, A. L. and Lubinsky, D. S.: Bounds for orthogonal polynomials for exponential weights,
J. Comp. Appl. Math99 (1998), 475—-490.

Levin, A. L. and Lubinsky, D. S.: Asymptotics associated with exponential weilgisnat.

Math. Res. Notice$2 (1999), 673—-683.

Levin, A. L. and Lubinsky, D. SOrthogonal Polynomials for Exponential Weights appear.
Lopez, G. L.: On the asymptotics of the ratio of orthogonal polynomials and convergence of
multipoint Padé approximant§jath. USSR SI&6 (1987), 207-219.

Lopez, G. L.: Asymptotics of polynomials orthogonal with respect to varying measures,
Constr. Approx5 (1989), 199-219.

Lopez, G. L.: Relative asymptotics for polynomials orthogonal on the realMzit. USSR
Sb.65(1990), 505-529.

Lopez, G. L. and Rakhmanov, E. A.: Rational approximations, orthogonal polynomials, and
equilibrium distributions, InLecture Notes in Mathl329, Springer, Berlin, 1988, pp. 125-
157.

Lubinsky, D. S.Strong Asymptotics for Extremal Errors Associated withdsrtlpe Weights
Pitman Research Notes 202, Longmans, Burnt Mill, Essex, 1989.

Lubinsky, D. S.: A survey of general orthogonal polynomials for weights on finite and infinite
intervals,Acta Appl. Math10 (1987), 237-296.

Lubinsky, D. S.: The approximate approach to orthogonal polynomials for weights on
(—00, 00), In: P. Nevai (ed.)Orthogonal Polynomials: Theory and PracticRATO ASI
Series C 294, Kluwer Acad. Publ., Dordrecht, 1990, pp. 293-310.

Lubinsky, D. S.: An update on orthogonal polynomials and weighted approximation on the
real line,Acta Appl. Math33(1993), 121-164.

Lubinsky, D. S., Mhaskar, H. N. and Saff, E. B.: Freud’s conjecture for exponential weights,
Bull. Amer. Math. Socl5 (1986), 217-221.

Lubinsky, D. S., Mhaskar, H. N. and Saff, E. B.: A proof of Freud’s conjecture for exponential
weights,Constr. Approx4 (1988), 65—-83.

Lubinsky, D. S. and Saff, E. BStrong Asymptotics for Extremal Polynomials Associated with
Weights on—o0, c0), Lecture Notes in Math. 1305, Springer, Berlin, 1988.

Magnus, A.: On Freud’s equations for exponential weight#\pprox. Theoryt6 (1986),
65-99.

Mate, A., Nevai, P. and Totik, V.: Asymptotics for the zeros of orthogonal polynomials
associated with infinite intervald, London Math. So@83(1986), 303—310.



ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS 255

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.
85.

86.
87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Mate, A., Nevai, P. and Totik, V.: Extensions of S@sgheory of orthogonal polynomials II,
Constr. Approx3 (1987), 51-72.

Mate, A., Nevai, P. and Totik, V.: Extensions of S&Zegheory of orthogonal polynomials I11,
Constr. Approx3 (1987), 73-96.

Mate, A., Nevai, P. and Totik, V.: Strong and weak convergence of orthogonal polynomials,
Amer. J. Math109(1987), 239-282.

Mate, A., Nevai, P. and Zaslavsky, T.: Asymptotic expansion of ratios of coefficients of
orthogonal polynomials with exponential weighf&ans. Amer. Math. So@287 (1985),
495-505.

Mhaskar, H. N.Introduction to the Theory of Weighted Polynomial Approximati®¥orld
Scientific, 1996.

Mhaskar, H. N. and Saff, E. B.: Extremal problems for polynomials with exponential weights,
Trans. Amer. Math. So@85(1984), 204-234.

Mhaskar, H. N. and Saff, E. B.: Where does the sup norm of a weighted polynomial live?,
Constr. Approx1 (1985), 71-91.

Mhaskar, H. N. and Saff, E. B.: Where does thg norm of a weighted polynomial live?,
Trans. Amer. Math. So803(1987), 109-124.

Mhaskar, H. N. and Saff, E. B.: On the distribution of zeros of polynomials orthogonal on the
unit circle,J. Approx. Theory3(1990), 30—38.

Nevai, P.: Orthogonal polynomialglem. Amer. Math. So213(1979).

Nevai, P.: Asymptotics for orthogonal polynomials associated witfrexp), SIAM J. Math.
Anal.15(1984), 1177-1187.

Nevai, P.: A new class of orthogonal polynomi&@sc. Amer. Math. So@1(1984), 409-415.
Nevai, P.: Geza Freud, orthogonal polynomials and Christoffel functions: A case study,
J. Approx. Theoryl8 (1986), 3—167.

Nevai, P. (ed.@rthogonal Polynomials and Special Functions: Theory and Prachizd O

ASI Series 294, Kluwer Acad. Publ., Dordrecht, 1990.

Nevai, P. and Dehesa, J. S.: On asymptotic average properties of zeros of orthogonal
polynomials,SIAM J. Math. Anall10 (1979), 1184-1192.

Pan, K.: On orthogonal polynomials with respect to varying measures on the unitTiacle,
Amer. Math. Soc346(1994), 331-340.

Pan, K.: Extensions of Sz&g theory of rational functions orthogonal on the unit cirde,
Comp. Appl. Math62 (1995), 321-331.

Pastur, L. A. and Scherbina, M.: Universality of the local eigenvalue statistics for a class of
unitarily invariant random matrix ensemblds Statist. Phys86 (1997), 109-147.

Peherstorfer, F.: On Bernstein—-Szemthogonal polynomials on several intervaAM J.

Math. Anal.21(1990), 461-482.

Peherstorfer, F.: Elliptic orthogonal and extremal polynomRitec. London Math. So&Z0
(1995), 605-624.

Peherstorfer, F.: A special class of polynomials orthogonal on the unit circle including the
associated polynomial§€onstr. Approx12 (1996), 161-185.

Peherstorfer, F.: Explicit generalized Zolotarev polynomials with complex coefficients,
Constr. Approx13(1997), 261-270.

Peherstorfer, F.: Minimal polynomials on several intervals with respect to the maximum norm
—asurvey, In: A. Martineet al. (eds),Proc. of the Workshop “Methods of Complex Analysis

in Approximation Theory;Publ. de la Universidad de Almeria, 1997, pp. 137-159.
Peherstorfer, F. and Steinbauer, R.: Orthogonal polynomials on arcs of the unit circle II:
Orthogonal polynomials with periodic reflection coefficientsApprox. Theory87 (1996),
60-102.

Peherstorfer, F. and Steinbauer, R.: Comparative asymptotics for perturbed orthogonal
polynomials,Trans. Amer. Math. So848(1996), 1459—-1486.



256

100.

101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

123.

D. S. LUBINSKY

Peherstorfer, F. and Steinbauer, R.: Asymptotic behaviour of orthogonal polynomials on the
unit circle with asymptotically periodic reflection coefficiends Approx. Theong8 (1997),
316-353.

Qiu, W.-Y. and Wong, R.: Uniform asymptotic formula for orthogonal polynomials with
exponential weight, Manuscript.

Rakhmanov, E. A.: On the asymptotics of the ratio of orthogonal polynorMaly. USSR
Sh.32(1977), 199-213.

Rakhmanov, E. A.: On the asymptotics of the ratio of orthogonal polynomidsth. USSR
Sh.46(1983), 105-117.

Rakhmanov, E. A.: On asymptotic properties of polynomials orthogonal on the reMattis,
USSR Sk7(1984), 155-193.

Rakhmanov, E. A.: On asymptotic properties of polynomials orthogonal on the circle with
weights not satisfying Szé& condition,Math. USSR SI&8(1987), 149-167.

Rakhmanov, E. A.: Strong asymptotics for orthogonal polynomials associated with exponen-
tial weights onR, In: A. A. Gonchar and E. B. Saff (ed€)ylethods of Approximation Theory

in Complex Analysis and Mathematical Physidauka, Moscow, 1992, pp. 71-97.

Rudin, W.Real and Complex AnalysisicGraw-Hill, 1986.

Saff, E. B. and Totik, VLogarithmic Potentials with External FieldSpringer, Berlin, 1997.
Sheen, R. C.: Plancherel-Rotach type asymptotics for orthogonal polynomials associated with
exp(—x6/6), J. Approx. Theorp0 (1987), 232-293.

Stahl, H. B. and Totik, V.General Orthogonal PolynomialsCambridge University Press,
Cambridge, 1992.

Stein, E. M.:Harmonic Analysis: Real Variable Methods, Orthogonality and Singular
Integrals Princeton University Press, Princeton, 1993.

Sze@, G.: Orthogonal PolynomialsAmer. Math. Soc. Colloquium Publications 23, Provi-
dence, 1975.

Totik, V.: Weighted Approximation with Varying Weightsecture Notes in Math. 1300,
Springer, Berlin, 1994.

Totik, V.: Weighted polynomial approximation for convex external figltmstr. Approx16
(2000), 261-281.

Totik, V.: Asymptotics for Christoffel functions for general measures on the real line,
Manuscript.

Ullman, J. L.: Orthogonal polynomials associated with an infinite inteMiahigan Math. J.
27(1980), 353-363.

Ullman, J. L.: Orthogonal polynomials associated with an infinite interval, In: E. W. Cheney
(ed.),Approximation Theory IlIAcademic Press, New York, 1980, pp. 889—-895.

Van Assche, W.: Weighted zero distribution for polynomials orthogonal on an infinite interval,
SIAM J. Math. Anal16 (1985), 1317-1334.

Van Assche, W.Asymptotics for Orthogonal Polynomialkecture Notes in Math. 1265,
Springer, Berlin, 1987.

Van Assche, W.: Asymptotic properties of orthogonal polynomials from their recurrence
formula 11, J. Approx. Theorp2 (1998), 322—338.

Van Assche, W.: Norm behaviour and zero distribution for orthogonal polynomials with
nonsymmetric weight€Constr. Approx5 (1989), 329-345.

Widom, H.: Extremal polynomials associated with a system of curves in the complex plane,
Adv. in Math.3 (1969), 127-232.

Zygmund, A.Trigonometric Serigsvols. | and Il, Cambridge University Press, Cambridge,
1959.



