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1 LINEAR OPTIMIZATION

1 Linear Optimization

Let A ∈ R
m×n, b ∈ R

m and c ∈ R
n be given. Then, we have the LP

problem

(LP1) Maximize cT x

Ax ≤ b,

(x ∈ Rn).

All vectors are column vectors.

u, v ∈ R
m, u ≤ v means ui ≤ vi,∀i ∈ {1, 2, . . . ,m}.
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1 LINEAR OPTIMIZATION

Theorem 1.1 (Fundamental Theorem of LP) For every LP, exactly one of

the following is true:

• LP has no solution (LP is infeasible)

• LP is unbounded

( ∀M ∈ R, ∃x ∈ R
n such that Ax ≤ b and cT x > M )

• LP has optimal solution(s)

( ∃x̄ ∈ R
n such that Ax̄ ≤ b and ∀x ∈ R

n satisfying Ax ≤ b,

cT x̄ ≥ cT x).
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1 LINEAR OPTIMIZATION

Note:

Ax ≤ b

iff

Ax + s = b, s ≥ 0, for some s ∈ Rm

iff

Au − Av + s = b, u ≥ 0, v ≥ 0, s ≥ 0, for some u, v ∈ Rn, s ∈ Rm.

The last system has the form

Ãx̃ = b, x̃ ≥ 0.
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1 LINEAR OPTIMIZATION

Lemma 1.1 (Farkas’ Lemma) Let A ∈ R
m×n, b ∈ R

m be given. Then

exactly one of the following systems has a solution:

(I) Ax = b, x ≥ 0;

(II) AT y ≥ 0, bT y < 0.
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1 LINEAR OPTIMIZATION

(Farkas’ Lemma) Let A ∈ Rm×n, b ∈ Rm be given. Then exactly one of

the following systems has a solution:

(I) Ax = b, x ≥ 0;

(II) AT y ≥ 0, bT y < 0.

Recall the Fundamental Theorem of Linear Algebra:

Theorem 1.2 Let A ∈ Rm×n, b ∈ Rm be given. Then exactly one of the

following systems has a solution:

(I) Ax = b;

(II) AT y = 0, bT y < 0.

Farkas’ Lemma is a powerful generalization of the Fundamental Theorem

of Linear Algebra.
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1 LINEAR OPTIMIZATION

(LP1) Maximize cT x

Ax ≤ b,

(x ∈ Rn).

Suppose (LP1) has an optimal solution. Let z∗ denote the optimal

objective value. If we have x̄ ∈ R
n such that Ax̄ ≤ b then cT x̄ ≤ z∗.

If we do not know z∗, how do we prove

cT x̄ ≥ z∗ − 10−8 or even cT x̄ ≥ z∗ − 108?
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1 LINEAR OPTIMIZATION

Therefore, we define the dual of (LP1):

(LD1) Minimize bT u

AT u = c,

u ≥ 0.
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1 LINEAR OPTIMIZATION

Let us use another form for our linear optimization problem:

Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn be given. Then, we have the LP

problem

(LP ) Max cT x

Ax = b,

x ≥ 0.
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1 LINEAR OPTIMIZATION

The dual of (LP ) is defined (or directly derived from the definition of the

dual above) as

(LD) Min bT y

AT y ≥ c.
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1 LINEAR OPTIMIZATION

Theorem 1.3 Let A, b, c be given as above, defining (LP ) and (LD).

Then

(a) (Weak Duality Relation) For every x̄ feasible in (LP ), for every ȳ

feasible in (LD), cT x̄ ≤ bT ȳ; moreover, if in addition, cT x̄ = bT ȳ

then x̄ optimal in (LP ) and ȳ is optimal in (LD);

(b) (Duality Theorem, type I) if (LP ) has an optimal solution, then so

does (LD) and their optimal objective values coincide;

(c) (Duality Theorem, type II) if (LP ) and (LD) both have feasible

solutions, then they both have optimal solutions and their optimal

objective values are the same.
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1 LINEAR OPTIMIZATION

Lemma 1.2 Suppose (LP ) has a feasible solution. Then the (LP ) has a

feasible solution x̄ ∈ R
n such that

|{j : x̄j 6= 0}| ≤ m.
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1 LINEAR OPTIMIZATION

Proof: Let x ∈ Rn be a feasible solution of (LP ). Repeat the following:

• B := {j : xj > 0}, N := {1, 2, . . . , n}\B.

• Find a linear dependence among the columns {Aj : j ∈ B}. If none,

then STOP.

• Otherwise, we have d ∈ Rn such that Ad = 0, dN = 0, dB 6= 0.

• Choose the sign of d such that dB has a negative component.

• Let α := max{α > 0 : x + αd ≥ 0}.

• Set x := x + αd.

Note that in the above algorithm, the number of arithmetic operations is

O(n2.(the number of positive components of original x)).
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1 LINEAR OPTIMIZATION

Theorem 1.4 (Helly’s Theorem for halfspaces and polyhedra) A system of

n ≥ (m + 1) linear inequalities in m variables has a solution iff every

subsystem of (m + 1) of the linear inequalities has a solution.
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1 LINEAR OPTIMIZATION

Proof: Let us represent the given system as

(I) AT y ≥ c,

where A ∈ R
m×n and c ∈ R

n are given such that n ≥ (m + 1). If the

system (I) has a solution, every subsystem of it must have a solution.

Suppose (I) has no solution. Consider the pair of primal-dual LP

problems:

(P )

maximize cT x

subject to Ax = 0

x ≥ 0

and (D)
minimize 0T y

subject to AT y ≥ c.

Note that (P ) is always feasible (consider x := 0). Therefore, by the

duality theorem and the fundamental theorem of LP, (D) is infeasible iff

(P ) is unbounded.
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1 LINEAR OPTIMIZATION

Since, (I) has no solution, we conclude that there exists x̂ ∈ F , where

F :=
{

x ∈ R
n : Ax = 0, cT x = 1, x ≥ 0

}

.

By the last lemma, there exists x̄ ∈ F such that

|{j : x̄j 6= 0}| ≤ (m + 1).

Let J := {j : x̄j > 0}. Then we have that the system

AJxJ = 0, cT
J xJ = 1, xJ ≥ 0

has a solution. Therefore, (by the easy part of Farkas’ Lemma), the

alternative system

AT
J y + ηcJ ≥ 0, η < 0

has no solution.
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1 LINEAR OPTIMIZATION

F ⊆ Rm is a polyhedron if F = {x ∈ Rm : Ax ≤ b} for some

A ∈ Rn×m, b ∈ Rn for some n.

Corollary 1.1 Let P1, P2, . . . , Pr be polyhedra in R
m, r ≥ (m + 1).

Then,
r

⋂

i=1

Pi 6= ∅

iff

⋂

i∈J

Pi 6= ∅, for all J ⊆ {1, 2, . . . , r} such that |J | = m + 1.
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1 LINEAR OPTIMIZATION

The last lemma which we used in proving Helly’s Theorem has close ties

to Carathéodory’s Theorem.

Line segment joining u and v in Rn:

{λu + (1 − λ)v : λ ∈ [0, 1]} .

Convex sets: F ⊆ Rn is convex if for every pair of points u, v ∈ F , the

line segment joining u and v lies entirely in F .

Fact: Intersection of an arbitrary collection of convex sets is convex.
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1 LINEAR OPTIMIZATION

Fact: Intersection of an arbitrary collection of convex sets is convex.

Externally: Convex Hulls:

Let F ⊆ R
n. The intersection of all convex sets containing F is called the

convex hull of F and is denoted by conv(F ).
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1 LINEAR OPTIMIZATION

Internally: Convex combinations of x(1), x(2), . . . , x(k):

k
∑

i=1

λix
(i),

for some λ ∈ R
k
+ such that

∑k
i=1 λi = 1.

Extreme points of convex sets: Let F ⊆ R
n be a convex set. x ∈ F is

called an extreme point of F if 6 ∃u, v ∈ F \ {x} such that

x = 1
2u + 1

2v.
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1 LINEAR OPTIMIZATION

Theorem 1.5 (Carathéodory’s Theorem) Let S ⊆ Rn and x ∈ conv(S).

Then to express x as a convex combination of points of S, (n + 1) points

of S suffice.
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1 LINEAR OPTIMIZATION

Simplex Method is a family of algorithms based on the above concepts,

structures and ideas that solves Linear Optimization problems. It starts

from an extreme point of the polyhedron, going from one extreme point to

an adjacent one keeps improving the objective function value. It can be

proven to run in finite time and it is very efficient in practice; however,

Open Problem: Does any variant of Simplex Method run in polynomial time

in max{m,n}?
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1 LINEAR OPTIMIZATION

Open Problem: Does any variant of Simplex Method run in polynomial time

in max{m,n}?

Or even in

max {m,n, |log (max {|Aij | , |bi| , |cj |})|}?
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1 LINEAR OPTIMIZATION

A related open problem involves the graphs constructed from polyhedra.

For each extreme point of your polyhedron, make a node in your graph G.

Two nodes in G will be connected by an edge if the corresponding extreme

points define an edge of the polyhedron.
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1 LINEAR OPTIMIZATION

A related open problem involves the graphs constructed from polyhedra.

For each extreme point of your polyhedron, make a node in your graph G.

Two nodes in G will be connected by an edge if the corresponding extreme

points define an edge of the polyhedron.

Open Problem: Is the length of the longest shortest path between any pair

of nodes in G bounded by a polynomial function of max{m,n}?
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1 LINEAR OPTIMIZATION

(LP ) Max cT x

Ax = b,

x ≥ 0.

x ≥ 0 or x ∈ Rn
+ (x must lie in the nonnegative orthant—a convex cone).
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1 LINEAR OPTIMIZATION

K ⊆ Rn is a convex cone if ∀x, v ∈ K and α ∈ R++, we have

αx ∈ K and (x + v) ∈ K .

Replace R
n
+ by an arbitrary convex cone, to get a more general convex

optimization problem.
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2 SEMIDEFINITE OPTIMIZATION

2 Semidefinite Optimization

Let Sn denote the space of n-by-n symmetric matrices with entries in R.

Definition 2.1 Let X ∈ Sn.

X is positive semidefinite if

hT Xh ≥ 0, ∀h ∈ R
n.

X is positive definite if

hT Xh > 0, ∀h ∈ R
n \ {0}.
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2 SEMIDEFINITE OPTIMIZATION

For A,B ∈ S
n, we use the trace inner-product:

〈A,B〉 := Tr(AT B),

we write

A � B

to mean (A − B) is positive semidefinite;

A ≻ B

to mean (A − B) is positive definite.
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2 SEMIDEFINITE OPTIMIZATION

Note that for X ∈ S
n all eigenvalues λj(X) are real. Also,

X � 0 ⇐⇒ λ(X) ≥ 0

and

X ≻ 0 ⇐⇒ λ(X) > 0.
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2 SEMIDEFINITE OPTIMIZATION

Given C,A1, A2, . . . , Am ∈ S
n, b ∈ R

m we have

(P ) inf 〈C,X〉

〈Ai,X〉 = bi, ∀i ∈ {1, 2, . . . ,m}

X � 0,

(D) sup bT y
m

∑

i=1

yiAi � C.
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2 SEMIDEFINITE OPTIMIZATION

We can solve such semidefinite optimization problems

efficiently

both in terms of

• computational complexity theory and

• practical computation.

However, in terms of both computational complexity theory and practical

computation the situtation in SDP is much worse than that of LP. (That is,

there are very many deep, open problems.)
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2 SEMIDEFINITE OPTIMIZATION

Open Problem: Which convex optimization problems can be expressed as

Semidefinite Optimization problems?
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2 SEMIDEFINITE OPTIMIZATION

Open Problem: Which convex optimization problems can be expressed as

Semidefinite Optimization problems?

Convex sets expressed by multivariate polynomial inequality systems

where each polynomial has only real zeros?
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3 SEPARATION THEOREMS

3 Separation Theorems

Techniques for proving the Strong Duality Theorem for SDP?

Some elementary topology and real analysis ... and then ... the separation

theorem:

G ⊆ R
n is closed if

G = cl(G) :=

{

lim
k→+∞

x(k) : for some
{

x(k)
}

⊆ G

}

.

G ⊂ R
n is bounded if

G ⊆ {x ∈ R
n : ‖x‖2 ≤ R} ,

for some R > 0.

G ⊂ R
n is compact if G is closed and bounded.
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3 SEPARATION THEOREMS

Theorem 3.1 (Weierstrass) Let G ⊂ Rn be a nonempty compact set and

f : G → R be a continuous function on G. Then f attains its minimum

and maximum values on G.
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3 SEPARATION THEOREMS

Theorem 3.2 (Separating Hyperplane Theorem) Let G ⊂ R
n be a

nonempty, closed convex set. Suppose 0 /∈ G. Then there exist

a ∈ Rn\{0} and α ∈ R++ such that

G ⊆
{

x ∈ R
n : aT x ≥ α

}

.

In fact, we may take the separating hyperplane to be a supporting

hyperplane of G.
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3 SEPARATION THEOREMS

Proof: Let x̄ ∈ G. Define

Ḡ := {x ∈ G : ‖x‖2 ≤ ‖x̄‖2} .

Let a ∈ Ḡ be the point in Ḡ with the minimum norm. (Such a point

a ∈ Rd exists, since Ḡ 6= ∅, Ḡ is compact, ‖x‖2
2 is continuous on Ḡ; in

fact a is unique since ‖x‖2
2 is strictly convex on Ḡ.) Define

α := aT a > 0.
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3 SEPARATION THEOREMS

For every x ∈ G, the line segment [a, x] lies completely in G. Thus, for

every x ∈ G and for every λ ∈ (0, 1],

[λx + (1 − λ)a] ∈ G ⇒ ‖λx + (1 − λ)a‖2
2 ≥ ‖a‖2

2 = α

⇒ ‖λ(x − a) + a‖2
2 ≥ α

⇒ λ2‖x − a‖2
2 + 2λaT (x − a) ≥ 0

⇒ aT (x − a) ≥ −
λ

2
‖x − a‖2

2.

Now, we take limits as λ → 0+ and conclude aT (x− a) ≥ 0. Therefore,

for every x ∈ G, we have aT x ≥ α.
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3 SEPARATION THEOREMS

Theorem 3.3 (Separating Hypersphere Theorem) Let G ⊂ R
n be a

nonempty, convex compact set and x̂ ∈ Rn \ G. Then there exists a

hypersphere which separates x̂ from G as follows:

G ⊆
{

x ∈ R
n : 〈x − x̄, x − x̄〉 ≤ R2

}

and 〈x̂ − x̄, x̂ − x̄〉 > R2.

40



3 SEPARATION THEOREMS

{αv : α ∈ R+} for v ∈ K \ {0} defines a ray inside K . Such a ray

R ⊆ K is called an extreme ray of K if for every pair of rays

R1, R2 ⊆ K , such that R1 + R2 ⊇ R implies either R1 = R or

R2 = R possibly both. The union of all extreme rays of K is denoted by

Ext(K). We also use ext(K) to denote the set of normalized extreme

rays of K (where each ray is represented by a single nonzero element of

K). For compact, convex sets, we use the notation ext(·) to denote the

set of extreme points of the compact, convex set.

A convex set is called pointed if it does not contain any lines.
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4 CARATHÉODORY’S THEOREM REVISITED FOR CONVEX CONES:

4 Carath éodory’s Theorem revisited for convex

cones:

Theorem 4.1 Let K ⊆ Rn be a pointed closed convex cone. Then for

every x̄ ∈ K , there exist u(1), u(2), . . . , u(n) ∈ ext(K) and λ ∈ R
n
+

such that

x̄ =

n
∑

j=1

λju
(j).

Example: Let K := S
n
+. Then even though dim(K) = n(n+1)

2 ,

n extreme rays of S
n
+ suffice (Schur/eigenvalue decomposition of x̄).
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4 CARATHÉODORY’S THEOREM REVISITED FOR CONVEX CONES:

Theorem 4.2 Let X ∈ Sn. Then there exists an orthonormal basis

q(1), q(2), . . . , q(n) for R
n such that

X =
n

∑

j=1

λjq
(j)

(

q(j)
)T

,

where λj are the eigenvalues of X .
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5 GENERALIZATIONS...

5 Generalizations...

How do we “compute” the convex hull?

44



5 GENERALIZATIONS...

First, let’s choose a simple but general enough algebraic representation:

Lemma 5.1 Every compact set F ⊂ Rn admits a representation as the

feasible region of a system of quadratic inequalities.

For this lemma, assuming F is closed is enough.
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5 GENERALIZATIONS...

Proof: F is closed. So, Rn \ F is open in Rn; thus, it can be written as

the union of (possibly uncountably many) open balls

⋃

x̄,R

{x ∈ R
n : ‖x − x̄‖2

2 < R2} = R
n \ F.

By taking the complement of both sides, we express F as the solution set

of a system of quadratic inequalities.

F =
⋂

x̄,R

{x ∈ R
n : ‖x − x̄‖2

2 ≥ R2}.
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5 GENERALIZATIONS...

Theorem 5.1 (Kojima, T. [2000]) There is an algorithm based on

Semidefinite Optimization which generates a sequence of convex compact

sets Gk satisfying

(a) for every k ≥ 0, conv(F ) ⊆ Gk+1 ⊆ Gk (monotonicity), in fact

Gk+1 = Gk iff Gk = conv(F );

(b)

k∗

⋂

k=1

Gk = ∅ for some finite number k∗ if F = ∅ (detecting

infeasibility in finitely many steps);

(c)

∞
⋂

k=1

Gk = conv(F ) (asymptotic convergence).
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5 GENERALIZATIONS...

Proof: (Proof of (c))
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5 GENERALIZATIONS...

F

G

Figure 1: Suppose Gk → G 6= conv(F ) (seeking a contradiction)
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5 GENERALIZATIONS...

u

F

G

Figure 2: Then, ∃u ∈ G \ conv(F )
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5 GENERALIZATIONS...

x̄
R

u

F

G

Figure 3: There exists a separating hypersphere for u, conv(F )
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5 GENERALIZATIONS...

x̄
R

R̄

u

F

G

Figure 4: Blow-up the hypersphere to just enclose G
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5 GENERALIZATIONS...

x̄
R

R̄

v

u

F

G

Figure 5: ∃v ∈ G \ conv(F ) lying on the blown-up hypersphere
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5 GENERALIZATIONS...

x̄
R

R̄

v

u

p(x) = 0F

G

Figure 6: ∃ original constraint p(x) ≥ 0 violated by v54



5 GENERALIZATIONS...
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5 GENERALIZATIONS...

Just a question... How can I convince you that

f(x) := 83 − 108x1 + 216x2 + x2
3x

2
1 − 2x3

3x1 − 32x1x
3
2

+24x2
1x

2
2 − 8x3

1x2 − 144x1x
2
2 + 72x2

1x2

−216x1x2 + x2
3 + 54x2

1 + 216x2
2 + 432x5

1x
2
2x4

−432x4
1x

3
2x4 + 144x3

1x
4
2x4 − 576x3

1x
3
2x

2
4

+256x2
1x

2
2x

4
4 + 864x4

1x
2
2x

2
4 + 768x3

1x
2
2x

3
4

−16x2
1x

5
2x4 − 12x3

1 + 96x3
2 + x4

1 + 16x4
2 + x4

3

+96x2
1x

4
2x

2
4 − 256x2

1x
3
2x

3
4 − 12x3

1x
5
2

+54x4
1x

4
2 − 108x5

1x
3
2 + 81x6

1x
2
2 + x2

1x
6
2

+2x2
3x1 − 2x3

3 ≥ 2, ∀x ∈ R
4?
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5 GENERALIZATIONS...

What if I claim ...

f(x) = (x1 − 2x2 − 3)4 + x2
3 (x3 − x1 − 1)2

+x2
1x

2
2 (3x1 − x2 + 4x4)

4 + 2

≥ 2, ∀x ∈ R
4?

That is, f(x) = Sum-of-Squares + 2, ∀x ∈ R
4.
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6 APPLICATIONS TO SYSTEMS OF POLYNOMIAL INEQUALITIES

6 Applications to Systems of Polynomial

Inequalities

Since any system of polynomial inequalities can be reformulated as a

system of quadratic inequalities, e.g., consider the system

x4
1x

2
2 + x3

2x3 + x5
1 − 1 ≥ 0,

2x3
1 − x4

2 ≥ 0
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6 APPLICATIONS TO SYSTEMS OF POLYNOMIAL INEQUALITIES

x4
1x

2
2 + x3

2x3 + x5
1 − 1 ≥ 0,

2x3
1 − x4

2 ≥ 0

which is equivalent to the quadratic system:

x5x6 + x6x7 + x1x5 − 1 ≥ 0,

2x1x4 − x2
6 ≥ 0,

x4 = x2
1,

x5 = x2
4,

x6 = x2
2,

x7 = x2x3,

...
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6 APPLICATIONS TO SYSTEMS OF POLYNOMIAL INEQUALITIES

Since any system of polynomial inequalities can be reformulated as a

system of quadratic inequalities, the above results can be translated to the

setting of polynomial optimization problems (POP):

min p0(x)

pi(x) ≥ 0, i ∈ {1, 2, . . . ,m},

where p0, p1, . . . , pm : R
n → R are polynomials.
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6 APPLICATIONS TO SYSTEMS OF POLYNOMIAL INEQUALITIES

A theorem of Putinar [1993]:

Theorem 6.1 Suppose

F := {x ∈ Rn : pi(x) ≥ 0, i ∈ {1, 2, . . . ,m}} is compact, the

polynomials pi have even degree, and their highest degree homogeneous

parts do not have common zeroes in Rn except 0. Then every polynomial

that is positive on F can be written as a nonnegative combination of

polynomials of the form

[h0(x)]2 +

m
∑

i=1

[hi(x)]2 pi(x).
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6 APPLICATIONS TO SYSTEMS OF POLYNOMIAL INEQUALITIES

Perhaps one of the most fundamental problems here is the K-moment

problem which is, given K ⊂ R
n to decide when a real valued function f

of set of monomials in n variables is a moment function
∫

K
xmdµ for

some nonnegative Borel measure µ on K . Schmüdgen [1991]

characterized the solutions to the K-moment problem (called K-moment

sequences) for all compact semi-algebraic sets K in terms of the positive

definiteness of matrices arising from the moment functions. Schmüdgen’s

proof utilizes Positivstellensatz in proving the above-mentioned algebraic

fact. The result also generalizes many other preexisting beautiful results

such as Handelman’s Theorem [1988]; some of these connections are old

and they generalize results some of which go all the way back to

Minkowski in late 1800’s.

62



6 APPLICATIONS TO SYSTEMS OF POLYNOMIAL INEQUALITIES

Positivstellensatz (Stengle [1974]):

F := {x ∈ Rn : pi(x) ≥ 0, i ∈ {1, 2, . . . ,m}} = ∅ iff that there

exists g ∈ cone (p1, p2, . . . , pm) such that g(x) = −1.

That is, iff there exist s0, sJ , . . . ∈ SoS(n, ∗) such that

g =
∑

J⊆{1,2,...,m}

sJ

∏

i∈J

pi = −1.
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6 APPLICATIONS TO SYSTEMS OF POLYNOMIAL INEQUALITIES

Positivstellensatz is a “common” generalization of Farkas’ Lemma

Lemma 6.1 (Farkas’ Lemma) Let A ∈ R
m×n, b ∈ R

m be given. Then

exactly one of the following systems has a solution:

(I) Ax = b, x ≥ 0;

(II) AT y ≥ 0, bT y < 0.

and Hilbert’s Nullstellensatz [1901] (characterizing when a system of

polynomial equations has no solution over C
n): Only for this slide, let pi

be polynomials in complex variables (x ∈ Cn). Then exactly one of the

following systems has a solution:

(I) pi(x) = 0,∀i ∈ {1, 2, . . . ,m};

(II) ∃ polynomials hi such that
∑m

i=1 hi(x)pi(x) = −1.
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6 APPLICATIONS TO SYSTEMS OF POLYNOMIAL INEQUALITIES

Positivstellensatz leads to SoS certificates using Convex or Semidefinite

Optimization!

Given x ∈ R
n and polynomial f : R

n → R of degree 2d, let

h(x) := [1, x1, x2, . . . , xn, x2
1, x1x2, x1x3, . . . , x

2
2, . . . , x

d
n]T ∈ R

N ,

where N :=
(

n+d
d

)

. We are interested in

F(f) :=
{

X ∈ S
N : [h(x)]T Xh(x) = f(x)

}

.

The following well-known fact connects SoS and semidefinite optimization.

Theorem 6.2 Let z̄ ∈ R. Then [f(x) − z̄] is SoS iff

{

X ∈ F(f) : X � z̄e1e
T
1

}

6= ∅.
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7 FINAL REMARKS

7 Final Remarks

• We took a tour in mathematical optimization focusing on some aspects

that are related to some of my research interests. The area is much,

much wider...
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• We took a tour in mathematical optimization focusing on some aspects

that are related to some of my research interests. The area is much,

much wider...

• I wanted to give you some idea of some of the techniques and

connections.
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7 FINAL REMARKS

• We took a tour in mathematical optimization focusing on some aspects

that are related to some of my research interests. The area is much,

much wider...

• I wanted to give you some idea of some of the techniques and

connections.

• Beautiful, interesting, useful with deep connections to other areas of

mathematics and in general mathematical sciences...
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7 FINAL REMARKS

• We took a tour in mathematical optimization focusing on some aspects

that are related to some of my research interests. The area is much,

much wider...

• I wanted to give you some idea of some of the techniques and

connections.

• Beautiful, interesting, useful with deep connections to other areas of

mathematics and in general mathematical sciences...

• Also, there are very many interesting open problems...
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