- 1. Let Z(B) denote the zeros of a Blaschke product B including multiplicity, and let S_i be singular inner functions corresponding to singular measures $\mu_i \in M(\mathbb{T})_+$. Show that B_1S_1 divides B_2S_2 if and only if $Z(B_1) \subset Z(B_2)$ and $\mu_1 \leq \mu_2$.
- 2. (a) Let $\omega(z) = \exp\left(\frac{z+1}{z-1}\right)$. Describe the sets $\{z : |\omega(z)| = r\}$. Hence show that for $a \in \mathbb{D}$, the zeros of $\omega_a(z) = \frac{\omega(z) a}{1 \bar{a}\omega(z)}$ approach 1 tangentially.
 - (b) Let T be the operator on $\mathcal{K} = H^2 \ominus \omega H^2$ given by $Tf = P_{\mathcal{K}} zf$ for $f \in \mathcal{K}$. Find all invariant subspaces of T.
 - (c) **Bonus.** Is ω_a a Blaschke product for all $a \in \mathbb{D} \setminus \{0\}$? I suspect this is true.
- 3. (a) If f(z) and 1/f(z) are both in $H^1(\mathbb{D})$, prove that f is outer.
 - (b) If $f \in H^1(\mathbb{D})$ and $\operatorname{Re} f(z) > 0$ on \mathbb{D} , prove that f is outer. **Hint:** $f + \varepsilon$ is outer. Split $\int \log |f + \varepsilon| dt$ over $E = \{t : |f(e^{it})| \ge 1/2\}$ and $\mathbb{T} \setminus E$.
 - (c) If $\omega(z)$ is a non-constant inner function, for which $a \in \mathbb{C}$ is $\omega(z) a$ outer?
- 4. If $f, g \in H^1$, f is outer and $h = g/f \in L^1$, show that $h \in H^1$. Hint: reduce to the case g outer and use the integral formula.
- 5. Suppose that $f(z) = \sum_{n\geq 0} a_n z^n$ belongs to $H^1(\mathbb{D})$. Prove that $\sum_{n=1}^{\infty} \frac{1}{n} |a_n| \leq \pi ||f||_1$. **Hint:** Factor f into two H^2 functions, replace their Taylor coefficients by their absolute values, so that the product F has positive coefficients and $||f||_1 = ||F||_1$. Compute $\int_0^{2\pi} (\pi - t) \operatorname{Im} F(re^{it}) dt$.
- 6. Let $\tau(z) = \lambda \frac{z-a}{1-\bar{a}z}$ for $a \in \mathbb{D}$ and $|\lambda| = 1$.
 - (a) Show that if B is a Blaschke product, so is $B \circ \tau$; and if S is a singular inner function, so is $S \circ \tau$.
 - (b) Hence deduce that if F is an outer function in H^p , then $F(\tau(z))$ is outer. **Hint:** By Assignment 1, 5(a), if $f \in H^p$, so is $f(\tau(z))$.
 - (c) Show that $\alpha_{\tau}(f) = f \circ \tau$ defines a continuous automorphism of $A(\mathbb{D})$.
 - (d) Let α be an automorphism of A(D).
 (i) Show that Ran α(f) = Ran f for f ∈ A(D).
 (ii) Show that τ = α(z) must be a conformal map of D onto itself.
 (iii) Show that α = α_τ.