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1 Tensor Products

1.1 Axiomatic definition of the tensor product

In linear algebra we have many examples of products. For example,

• The scalar product: V × F → V

• The dot product: Rn × Rn → R

• The cross product: R3 × R3 → C

• Matrix products: Mm×k ×Mk×n → Mm×n

Note the three vector spaces involved aren’t necessarily the same. What these examples have
in common, is that in each case, the product is a bilinear map. The tensor product is just
another example of a product like this. If V1 and V2 are any two vector spaces over a field
F, the tensor product is a bilinear map:

V1 × V2 → V1 ⊗ V2 ,

where V1 ⊗ V2 is a vector space over F. The tricky part is that in order to define this map,
we first need to construct this vector space V1 ⊗ V2.

We give two definitions. The first is an axiomatic definition, in which we specify the
properties that V1 ⊗ V2 and the bilinear map must have. In some sense, this is all we need
to work with tensor products in a practical way. Later we’ll show that such a space actually
exists, by constructing it.

Definition 1.1. Let V1, V2 be vector spaces over a field F. A pair (Y, µ), where Y is a vector
space over F and µ : V1× V2 → Y is a bilinear map, is called the tensor product of V1 and
V2 if the following condition holds:

(*) Whenever β1 is a basis for V1 and β2 is a basis for V2, then

µ(β1 × β2) := {µ(x1, x2) | x1 ∈ β1, x2 ∈ β2}

is a basis for Y .

1



Notation: We write V1 ⊗ V2 for the vector space Y , and x1 ⊗ x2 for µ(x1, x2).

The condition (*) does not actually need to be checked for every possible pair of bases
β1, β2: it is enough to check it for any single pair of bases.

Theorem 1.2. Let Y be a vector space, and µ : V1 × V2 → Y a bilinear map. Suppose there
exists a bases γ1 for V1, γ2 for V2 such that µ(γ1 × γ2) is a basis for Y . Then condition (*)
holds (for any choice of basis).

Proof. Let β1, β2 be bases for V1 and V2 respectively. We first show that µ(β1 × β2) spans
Y . Let y ∈ Y . Since µ(γ1 × γ2) spans Y , we can write

y =
∑
j,k

ajkµ(z1j, z2k)

where z1j ∈ γ1, z2k ∈ γ2. But since β1 is a basis for V1 z1j =
∑

l bjlx1l, where x1l ∈ β1, and
similarly z2k =

∑
m ckmx2m, where x2m ∈ β2. Thus

y =
∑
j,k

ajkµ(
∑

l

bjlx1l ,
∑
m

ckmx2m)

=
∑

j,k,l,m

ajkbjlckmµ(x1l, x2j)

so y ∈ span(µ(β1 × β2)).
Now we need to show that µ(β1 × β2) is linearly independent. If V1 and V2 are both

finite dimesional, this follows from the fact that |µ(β1 × β2)| = |µ(γ1 × γ2)| and both span
Y . For infinite dimensions, a more sophisticated change of basis type of argument is needed.
Suppose ∑

l,m

dlmµ(x1l, x2m) = 0 ,

where x1l ∈ β1, x2m ∈ β2. Then by change of basis, x1l =
∑

j eljz1j, where z1j ∈ γ1, and
x2m =

∑
k fmkz2k, where z2k ∈ γ2. Note that the elj form an inverse “matrix” to the bjl

above, in that
∑

j eljbjl′ = δll′ , and similarly
∑

k fmkckm′ = δmm′ . Thus we have

0 =
∑
l,m

dlmµ(x1l, x2m) = 0

=
∑
l,m

dlmµ(
∑

j

eljz1j,
∑

k

fmkz2k)

=
∑
j,k

∑
l,m

dlmeljfmkµ(z1j, z2k)



Since µ(γ1 × γ2) is linearly independent,
∑

l,m dlmeljfmk = 0 for all j, k. But now

dl′m′ =
∑
l,m

dlmδll′δmm′

=
∑
l,m

dlm

(∑
j

bjl′elj

)(∑
k

ckm′fmk

)

=
∑
j,k

bjl′ckm′

(∑
l,m

dlmeljfmk

)
= 0

for all l′, m′.

The tensor product can also be defined for more than two vector spaces.

Definition 1.3. Let V1, V2, . . . Vk be vector spaces over a field F. A pair (Y, µ), where Y is
a vector space over F and µ : V1 × V2 × · · · × Vk → Y is a k-linear map, is called the tensor
product of V1, V2, . . . , Vk if the following condition holds:

(*) Whenever βi is a basis for Vi, i = 1, . . . , k,

{µ(x1, x2, . . . , xk) | xi ∈ βi}

is a basis for Y .

We write V1⊗V2⊗· · ·⊗Vk for the vector space Y , and x1⊗x2⊗· · ·⊗xk for µ(x1, x2, . . . , xk).

1.2 Examples: working with the tensor product

Let V, W be vector spaces over a field F. There are two ways to work with the tensor product.
One way is to think of the space V ⊗W abstractly, and to use the axioms to manipulate the
objects. In this context, the elements of V ⊗W just look like expressions of the form∑

i

aivi ⊗ wi ,

where ai ∈ F, vi ∈ V , wi ∈ W .

Example 1.4. Show that

(1, 1)⊗ (1, 4) + (1,−2)⊗ (−1, 2) = 6(1, 0)⊗ (0, 1) + 3(0, 1)⊗ (1, 0)

in R2 ⊗ R2.
Solution: Let x = (1, 0), y = (0, 1). We rewrite the left hand side in terms of x and y, and
use bilinearity to expand.

(1, 1)⊗ (1, 4) + (1,−2)⊗ (−1, 2) = (x + y)⊗ (x + 4y) + (x− 2y)⊗ (−x + 2y)

= (x⊗ x + 4x⊗ y + y ⊗ x + 4y ⊗ y)

+ (−x⊗ x + 2x⊗ y − 2y ⊗ x− 4y ⊗ y)

= 6x⊗ y + 3y ⊗ x

= 6(1, 0)⊗ (0, 1) + 3(0, 1)⊗ (1, 0)



The other way is to actually identify the space V1 ⊗ V2 and the map V1 × V2 → V1 ⊗ V2

with some familiar object. There are many examples in which it is possible to make such
an identification naturally. Note, when doing this, it is crucial that we not only specify the
vector space we are identifying as V1 ⊗ V2, but also the product (bilinear map) that we are
using to make the identification.

Example 1.5. Let V = Fn
row, and W = Fm

col. Then V ⊗ W = Mm×n(F), with the product
defined to be v ⊗ w = wv, the matrix product of a column and a row vector.

To see this, we need to check condition (*). Let {e1, . . . , em} be the standard basis for
W , and {f1, . . . , fn} be the standard basis for V . Then {fj ⊗ ei} is the standard basis for
Mm×n(F). So condition (*) checks out.

Note we can also say that W⊗V = Mm×n(F), with the product defined to be w⊗v = wv.
From this, it looks like W ⊗ V and V ⊗ W are the same space. Actually there is a subtle
but important difference: to define the product, we had to switch the two factors. The
relationship between V ⊗W and W ⊗ V is very closely analogous to that of the Cartesian
products A× B and B × A, where A and B are sets. There’s an obvious bijection between
them and from a practical point of view, they carry the same information. But if we started
conflating the two, and writing (b, a) and (a, b) interchangeably it would cause a lot of
problems. Similarly V ⊗W and W ⊗ V are naturally isomorphic to each other, so in that
sense they are the same, but we would never write v ⊗ w when we mean w ⊗ v.

Example 1.6. Let V = F[x], vector space of polynomials in one variable. Then V ⊗
V = F[x1, x2] is the space of polynomials in two variables, the product is defined to be
f(x)⊗ g(x) = f(x1)g(x2).

To check condition (*), note that β = {1, x, x2, x3, . . .} is a basis for V , and that

β ⊗ β = {xi ⊗ xj | i, j = 0, 1, 2, 3, . . . }
= {xi

1x
j
2 | i, j = 0, 1, 2, 3, . . . }

is a basis for F[x1, x2].
Note this is not a commutative product, because in general

f(x)⊗ g(x) = f(x1)g(x2) 6= g(x1)f(x2) = g(x)⊗ f(x) .

Example 1.7. Let V, W be finite dimensional vector spaces over F. Let V ∗ = L(V, F) be the
dual space of V . Then V ∗ ⊗W = L(V, W ), with multiplication defined as f ⊗ w ∈ L(V, W )
is the linear transformation (f ⊗ w)(v) = f(v) · w, for f ∈ V ∗, w ∈ W .

This is just the abstract version of Example 1.5. If V = Fn
col and W = Fm

col, then
V ∗ = Fn

row. Using Example 1.5, V ⊗W is identified with Mm×n(F), which is in turn identified
with L(V, W ).

Exercise: Prove that condition (*) holds.

Note: If V and W are both infinite dimensional then V ∗ ⊗W is a subspace of L(V, W )
but not equal to it. Specifically, V ∗⊗W = {T ∈ L(V, W ) | dim R(T ) < ∞} is the set of finite
rank linear transformations in L(V, W ). This follows from the fact that f ⊗ w has rank 1,
for any f ∈ V ∗, w ∈ W , and a linear combination of such transformations must have finite
rank.



Example 1.8. Let V be the space of velocity vectors in Newtonian 3-space. Let T be
the vector space time measurements. Then V ⊗ T is the space of displacement vectors in
Newtonian 3-space. This is because velocity times time equals displacement.

The point of this example is that physical quantities have units associated with them.
Velocity is not a vector in R3. It’s an element of a totally different 3 dimensional vector space
over R. To perform calculations, we identify it with R3 by choosing coordinate directions
such as up forward and right and units such as m/s, but these are artificial constructions.
Displacement again lives in a different vector space, and the tensor product allows us to
relate elements in these different physical spaces.

Example 1.9. Consider Qn and R as vector spaces over Q. Then Qn ⊗ R = Rn as vector
spaces over Q, where the multiplication is just scalar multiplication on Rn.

Proof the condition (*) holds. Let β = e1, . . . , en be the standard basis for Qn, and let γ
be a basis for R over Q. First we show that β⊗ γ is spans Rn. Let (a1, . . . an) ∈ Rn. We can
write ai =

∑
bijxj, where xj ∈ γ. Thus (a1, . . . , an) =

∑
i,j bijei ⊗ xj. Next we show that

β ⊗ γ is linearly independent. Suppose
∑

i,j cijei ⊗ xj = 0. Since∑
i,j

cijei ⊗ xj = (
∑

j

c1jxj, . . . ,
∑

j

cnjxk) ,

we have
∑

j cijxj = 0 for all i. Since {xj} are linearly independent, cij = 0, as required.

1.3 Constructive definition of the tensor product

To give a construction of the tensor product, we need the notion of a free vector space.

Definition 1.10. Let A be a set, and F a field. The free vector space over F generated by
A is the vector space Free(A) consisting of all formal finite linear combinations of elements
of A.

Thus, A is always a basis of Free(A).

Example 1.11. Let A = {♠,♥,♣,♦}, and F = R. Then the Free(A) is the four-dimensional
vector space consisting of all elements a♠ + b♥ + c♣ + d♦, where a, b, c, d ∈ R. Addition
and scalar multiplication are defined in the obvious way:

(a♠+ b♥+ c♣+ d♦) + (a′♠+ b′♥+ c′♣+ d′♦)

= (a + a′)♠+ (b + b′)♥+ (c + c′)♣+ (d + d′)♦

k(a♠+ b♥+ c♣+ d♦) = (ka)♠+ (kb)♥+ (kc)♣+ (kd)♦)

When the elements of the set A are numbers or vectors, the notation gets tricky, because
there is a danger of confusing the operations of addition and scalar multiplication and the
zero-element in the vector space Free(A), and the operations of addition and multiplication
and the zero element in A (which are irrelevant in the definition of Free(A)). To help keep
these straight in situations where there is a danger of confusion, we’ll write �, and � when
we mean the operations of addition and scalar multiplication in Free(A). We’ll denote the
zero vector of Free(A) by 0Free(A).



Example 1.12. Let N = {0, 1, 2, 3, 4, . . . }, and F = R. Then Free(N) is the infinite dimen-
sional vector space whose elements are of the form

(a0 � 0) � (a1 � 1) � · · ·� (am � m) ,

for some m ∈ N.
Note that the element 0 here is not the zero vector in Free(N). It’s called 0 because it

happens to be the zero element in N, but this is completely irrelevant in the construction of
the free vector space.

If we wanted we could write this a little differently by putting xi in place of i ∈ N. In
this new notation, the elements of Free(N) would look like

a0x
0 + a1x

1 + . . . amxm ,

for some m ∈ N, in other words elements of the vector space of polynomials in a single
variable.

Definition 1.13. Let V and W be vector spaces over a field F. Let

P := Free(V ×W ) ,

the free vector space over F generated by the set V × W . Let R ⊂ P be the subspace
spanned by all vectors of the form

(u + kv, w + lx) � ((−1) � (u, w)) � ((−k) � (v, w)) � ((−l) � (u, x)) � ((−kl) � (v, x))

with k, l ∈ F, u, v ∈ V , and w, x ∈ W .
Let πP/R : P → P/R be the quotient map. Let µ : V × W → P/R be the map

µ(v, w) = πP/R
(
(v, w)

)
.

The pair (P/R , µ) is the tensor product of V and W . We write V ⊗W for P/R, and
v ⊗ w for µ(v, w).

We need to show that our two definitions agree, i.e.. that tensor product as defined in
Definition 1.13 satisfies the conditions of Definition 1.1. In particular, we need to show that
µ is bilinear, and that the pair (P/R , µ) satisfies condition (*).

We can show the bilinearity immediately. Essentially bilinearity is built into the defini-
tion. If the P is the space of all linear combinations of symbols (v, w), then R is the space
of all those symbols that can be simplified to the zero vector using bilinearity. Thus P/R is
the set of all expressions, where two expressions are equal one can be simplified to the other
using bilinearity.

Proposition 1.14. The map µ in Definition 1.13 is bilinear.

Proof. Let k, l ∈ F, u, v ∈ V , and w, x ∈ W . We must show that

µ(u + kv, w + lx) = µ(u, w) + kµ(v, w) + lµ(u, x) + klµ(v, x) .



We know that πP/R(z) = 0 for all z ∈ R. In particular, we have

0 = πP/R
(
(u + kv, w + lx)

� ((−1) � (u, w)) � ((−k) � (v, w)) � ((−l) � (u, x)) � ((−kl) � (v, x))
)

= πP/R
(
(u + kv, w + lx)

)
− πP/R

(
(u, w)

)
− kπP/R

(
(v, w)

)
− lπP/R

(
(u, x)

)
− klπP/R

(
(v, x)

)
= µ(u + kv, w + lx)− µ(u, w)− kµ(v, w)− lµ(u, x)− klµ(v, x) ,

and the result follows.

To prove that condition (*) holds we need some technology.

Lemma 1.15. Suppose V and W are vector spaces over a field F and T : V → W is a
linear transformation. Let S be a subspace of V . Then there exists a linear transformation
T : V/S → W such that T (x+S) = T (x) for all x ∈ V if and only if T (s) = 0 for all s ∈ S.

Moreover, if T exists it is unique, and very linear transformation V/S → W arises in
this way from a unique T .

Proof. Suppose that T exists. Then for all s ∈ S we have T (s) = T (s + S) = T (0V/S) = 0.
Now suppose that T (s) = 0 for all s ∈ S. We must show that T (x + S) = T (x) makes T

well defined. In other words, we must show that if v, v′ ∈ V are such that v + S = v′ + S,
then T (v + S) = T (v) = T (v′) = T (v′ + S). Now, if v + S = v′ + S, then v − v′ ∈ S. Thus
T (v)− T (v′) = T (v − v′) = 0 and so T (v) = T (v′) as required.

The final remarks are clear, since the statement T (x + S) = T (x) uniquely determines
either of T , T from the other.

Theorem 1.16 (Universal property of tensor products). Let V, W, M be vector spaces over
a field F. Let V ⊗W = P/R be the tensor product, as defined in Definition 1.13. For any
bilinear map φ : V × W → M , there is a unique linear transformation φ : V ⊗ W → M ,
such that φ(v ⊗ w) = φ(v, w) for all v, w ∈ V . Moreover, every linear transformation in
L(V ⊗W, M) arises in this way.

Proof. Since V ×W is a basis for P , we can extend any map φ : V ×W → M to a linear map
φ : P → M . By a similar argument to Proposition 1.14, one can see that φ is bilinear if and
only if φ(s) = 0 for all s ∈ R. Thus by Lemma 1.15, there exists a linear map φ : P/R→ M
if and only if φ is bilinear, and every such linear transformation arises from a bilinear map
in this way.

More generally, every linear map V1 ⊗ V2 ⊗ · · · ⊗ Vk → M corresponds to a k-linear map
V1 × V2 × · · · × Vk → M .

Theorem 1.17. Condition (*) holds for the tensor product as defined in Definition 1.13.

Proof. Let β = be a basis for V , and γ a basis for W . We must show that µ(β × γ) is a
basis for P/R. First we show it is spanning. Let z ∈ P/R. Then we can write

z = a1πP/R
(
(u1, x1)

)
+ · · ·+ amπP/R

(
(um, xm)

)
= a1µ(u1, x1) + · · ·+ amµ(um, xm)



with a1, . . . am ∈ F, u1, . . . um ∈ V , and x1, . . . xm ∈ W . But now ui =
∑

j bijvj with vj ∈ β
and xi =

∑
k cijwk with wk ∈ γ. Hence

z = a1µ(u1, x1) + · · ·+ amµ(um, xm)

=
m∑

i=1

aiµ(
∑

j

bijvj ,
∑

k

bikwk)

=
m∑

i=1

∑
j,k

aibijcikµ(vj, wk) .

Next we show linear independence. Suppose that∑
i,j

dijµ(vi, wj) = 0

with vi ∈ β, wj ∈ γ. Let fk ∈ V ∗ be the linear functional for which fk(vk) = 1, and fk(v) = 0,
for v ∈ β \ {vk}. Define Fk : V × W → W to be Fk(v, w) = fk(v)w. Then Fk is bilinear,
so by Theorem 1.16 there is a induced linear transformation Fk : V ⊗ W → W such that
Fk(µ(u, k)) = fk(u)x. Applying Fk to the equation

∑
i,j dijµ(vi, wj) = 0, we have

0 = Fk

(∑
i,j

dijµ(vi, wj)

)
=
∑
i,j

dijfk(vi)wj

=
∑

j

dkjwj ,

for all k. But {wj} are linearly independent, so dkj = 0.

Exercise: Let V ⊗ W be the tensor product as defined in Definition 1.13. Let (Y, µ) be a
pair satisfying the definition of the tensor product of V and W as in Definition 1.1. Prove
that there is a natural isomorphism ϕ : V ⊗ W → Y such that ϕ(v ⊗ w) = µ(v, w) for all
v ∈ V , w ∈ W . (In other words, show that the tensor product is essentially unique.)

1.4 The trace and composition of linear transformations

Let V be a finite dimensional vector space over a field F. Recall from Example 1.7 that
V ∗ ⊗ V is identified with the space L(V ) of linear operators on V .

Proposition 1.18. There is a natural linear transformation tr : V ∗ ⊗ V → F, such that
tr(f ⊗ v) = f(v) for all f ∈ V ∗, v ∈ V .

Proof. The map (f, v) 7→ f(v) is bilinear, so the result follows by Theorem 1.16.

The map tr is called the trace on V . We can also define the trace from V ⊗ V ∗ → F,
using either the fact that V = V ∗∗, or by switching the factors in the definition (both give
the same answer).



Example 1.19. Let V = Fn
col. Let {e1, . . . en} be the standard basis for V , and let

{f1, . . . , fn} be the dual basis (standard basis for row vectors).
From Example 1.5, we can identify V ∗ ⊗ V with Mn×n. A matrix A ∈ Mn×n can be

written as

A =
∑
i,j

Aijejfi

=
∑
i,j

Aijfi ⊗ ej .

Therefore

tr(A) =
∑
i,j

Aijtr(fi ⊗ ej)

=
∑
i,j

Aijfi(ej)

=
∑
i,j

Aijδij

= A11 + A22 + · · ·+ Ann .

Now, let V1, V2, . . . , Vk be finite dimensional vector spaces over F, and consider the tensor
product space V1 ⊗ V2 ⊗ · · · ⊗ Vk. Suppose that Vi = V ∗

j for some i, j. Using the trace, we
can define a linear transformation

trij : V1 ⊗ · · · ⊗ Vk → V1 ⊗ · · · ⊗ Vi−1 ⊗ Vi+1 ⊗ · · · ⊗ Vj−1 ⊗ Vj+1 · · · ⊗ Vk

satisfying

trij(v1 ⊗ · · · ⊗ vk) = tr(vi ⊗ vj)(v1 ⊗ · · · ⊗ vi−1 ⊗ vi+1 ⊗ · · · ⊗ vj−1 ⊗ vj+1 · · · ⊗ vk) .

This transformation is sometimes called contraction. The most basic example of this is
something familiar in disguise.

Example 1.20. Let V1, V2, V3 be finite dimensional vector spaces. From Example 1.7 we
have V ∗

1 ⊗ V2 = L(V1, V2), V ∗
2 ⊗ V3 = L(V2, V3) and V ∗

1 ⊗ V3 = L(V1, V3). The map

tr23 : V ∗
1 ⊗ V2 ⊗ V ∗

2 ⊗ V3 → V ∗
1 ⊗ V3

can therefore be identified with a map from

tr23 : L(V1, V2)⊗ L(V2, V3) → L(V1, V3) .

By theorem 1.16, this arises from a bilinear map

L(V1, V2)× L(V2, V3) → L(V1, V3) .

This map is nothing other than the composition of linear transformations: (T, U) 7→ U ◦ T .



Proof. Since composition is bilinear, and the space of all linear transformations is spanned
by rank 1 linear transformations, it is enough to prove this in the case where T ∈ L(V1, V2),
and U ∈ L(V2, V3) have rank 1. If T ∈ L(V1, V2) has rank 1, then T (x) = f(x)v, where v ∈ V2,
f ∈ V ∗

1 . As in Example 1.7 we identify this with f ⊗ v ∈ V ∗
1 ⊗ V2. Similarly U(y) = g(y)w

where w ∈ V3, g ∈ V ∗
2 , and U is identified with g ⊗ w ∈ V ∗

2 ⊗ V3. Then

U ◦ T (x) = f(x)g(v)w = tr(v ⊗ g)f(x)w

so U ◦ T is identified with

tr(v ⊗ g)(f ⊗ w) = tr23(f ⊗ v ⊗ g ⊗ w) ,

as required.

2 The polynomial algebra

The universal property for tensor products says that every bilinear map V × W → M
is essentially the same as a linear map V ⊗ W → M . If that linear map is something
reasonably natural and surjective, we may be able to view M as a quotient space of V ⊗W .
Most interesting products in algebra can be somehow regarded as quotient spaces tensor
products. One of the most familiar is the polynomial algebra.

Let V be a finite dimensional vector space over a field F.) Let

T0(V ) = F , T1(V ) = V , and Tk(V ) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
k

= V ⊗k .

Let Ck be the subspace of Tk(V ) spanned by all vectors of the form

(x1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xj ⊗ · · · ⊗ xk)− (x1 ⊗ · · · ⊗ xj ⊗ · · · ⊗ xi ⊗ · · · ⊗ xk) ,

with x1, . . . xk ∈ V , and i, j ∈ {1, . . . , k}.
The tensor product is not commutative, but when we quotient by the space Ck, we impose

the commutativity relation and obtain a commutative product.

Definition 2.1. The kth symmetric power of V is the quotient space Symk(V ) = Tk(V )/Ck.
We write x1 · x2 · · ·xk (or x1x2 · · ·xk) for πTk(V )/Ck(x1 ⊗ x2 ⊗ · · · ⊗ xk).

Note the following facts.

1. The map V k → Symk(V ), defined by (x1, x2, . . . , xk) 7→ x1 · x2 · · ·xk is k-linear.

2. x1 · · ·xi · · ·xj · · ·xk = x1 · · ·xj · · ·xi · · ·xk for all i, j ∈ {1, . . . , k} and all x1, . . . xk ∈ V .
(In other words “ · ” is commutative.)

3. If {v1, v2, . . . , vn} is a basis for V , than any element of Symk(V ) can be written as a
polynomial of degree k in v1, v2, . . . , vn.



4. There is a bilinear map Symk(V )× Syml(V ) → Symk+l(V ) such that

(x1 · x2 · · ·xk, y1 · y2 · · · yl) 7→ x1 · x2 · · ·xk · y1 · y2 · · · yl .

When expressed in terms of a basis, this map is just polynomial multiplication.

In other words, Symk(V ) can be thought of as the space of polynomials of degree k in the
elements of V , and the operation “ · ” is just ordinary commutative polynomial multiplication.
When the elements are expressed in terms of a basis, these look exactly like polynomials.

Example 2.2. Consider the product (1, 1, 1) · (−1, 1, 1) · (0, 1,−1) ∈ Sym3(R3) Let x =
(1, 0, 0), y = (0, 1, 0), z = (0, 0, 1). When we expand this product in terms of x, y, z we
obtain:

(1, 1, 1) · (−1, 1, 1) · (0, 1,−1) = (x + y + z)(−x + y + z)(y − z)

= x2y − x2z + y3 + y2z − yz2 − z3 .

If we want to consider polynomials of mixed degrees, we can look at the direct sum of all
the symmetric products of V :

Sym•(V ) := Sym0(V )⊕ Sym1(V )⊕ Sym2(V )⊕ Sym3(V )⊕ · · ·

The multiplication Symk(V )× Syml(V ) → Symk+l(V ) makes Sym•(V ) a commutative ring.

3 The exterior algebra

3.1 Definition and examples

The exterior algebra is constructed similarly to the polynomial algebra. Its properties are
analogous to those of the polynomial algebra, but the multiplication that arises is not com-
mutative. As before V will be a vector space over a field F.

Let Ak be the subspace of Tk(V ) spanned by all vectors of the form

x1 ⊗ x2 ⊗ · · · ⊗ xk

with x1, . . . xk ∈ V where xi = xj for some i 6= j.

Definition 3.1. The kth exterior power of V is the quotient space
∧k(V ) = Tk(V )/Ak.

We write x1 ∧ x2 ∧ · · · ∧ xk πTk(V )/Ak(x1 ⊗ x2 ⊗ · · · ⊗ xk).

Example 3.2. If V is any vector space, then A0 = {0} and A1 = {0}. Therefore
∧0(V ) =

T0(V ) = F, and
∧1(V ) = T1(V ) = V .

We have the following properties:

1. The map V k →
∧k(V ), defined by (x1, x2, . . . , xk) 7→ x1 ∧ x2 ∧ · · · ∧ xk is k-linear.

2. For all x1, . . . xk ∈ V , x1 ∧ x2 ∧ . . . xk = 0 if xi = xj for some i 6= j.



3. For all x1, . . . xk ∈ V and all i 6= j, we have

x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xk = −x1 ∧ · · · ∧ xj ∧ · · · ∧ xi ∧ · · · ∧ xk .

Proof.

0 = x1 ∧ · · · ∧ (xi + xj) ∧ · · · ∧ (xi + xj) ∧ · · · ∧ xk

= x1 ∧ · · · ∧ xi ∧ · · · ∧ xi ∧ · · · ∧ xk + x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xk

+ x1 ∧ · · · ∧ xj ∧ · · · ∧ xi ∧ · · · ∧ xk + x1 ∧ · · · ∧ xj ∧ · · · ∧ xj ∧ · · · ∧ xk

= x1 ∧ · · · ∧ xi ∧ · · · ∧ xj ∧ · · · ∧ xk + x1 ∧ · · · ∧ xj ∧ · · · ∧ xj ∧ · · · ∧ xk

We can use these properties to simplify expressions.

Example 3.3. Let V = R2, x = (1, 0), y = (0, 1). Then

(a, b) ∧ (c, d) = (ax + by) ∧ (cx + dy)

= ac(x ∧ x) + ad(x ∧ y) + bc(y ∧ x) + bd(y ∧ y)

= 0 + ad(x ∧ y) + bc(y ∧ x) + 0

= ad(x ∧ y)− bc(y ∧ x)

= (ad− bc)(x ∧ y)

Note that the coefficient of x ∧ y is det ( a b
c d ).

On the other hand, if we do a similar calculation with three terms,

(a, b) ∧ (c, d) ∧ (e, f) = (ax + by) ∧ (cx + dy) ∧ (ex + fy)

= ace(x ∧ x ∧ x) + ade(x ∧ y ∧ x) + bce(y ∧ x ∧ x) + bde(y ∧ y ∧ x)

+ acf(x ∧ x ∧ y) + adf(x ∧ y ∧ y) + bcf(y ∧ x ∧ y) + bdf(y ∧ y ∧ y)

= 0

we get exactly zero. It looks the the dimensions of dim
∧k(R2) are given by the table below.

k 0 1 2 3 4 5 · · ·
dim

∧k(R2) 1 2 1 0 0 0 · · ·
basis of

∧k(R2) {1} {x, y} {x ∧ y} ∅ ∅ ∅ · · ·

However, at this point we haven’t completely proved this. We still need to show that x ∧ y
is not the zero vector in

∧2(R2).

As with the symmetric products, there is a multiplication map between the exterior
products. This allows us to think of “∧′′ as a multiplication operator. This product is not
commutative.

Proposition 3.4. There is a natural bilinear map
∧k(V )×

∧l(V ) →
∧k+l(V ) such that

(v1 ∧ v2 ∧ · · · ∧ vk, w1 ∧ w2 ∧ · · · ∧ wl) 7→ v1 ∧ v2 ∧ · · · ∧ vk ∧ w1 ∧ w2 ∧ · · · ∧ wl



Proof. Bilinearity means linearity in each component, with the other held fixed. Therefore
it is enough to check that there is a linear map satisfying

v1 ∧ v2 ∧ · · · ∧ vk 7→ v1 ∧ v2 ∧ · · · ∧ vk ∧ w1 ∧ w2 ∧ · · · ∧ wl

for fixed w1, . . . , wl ∈ V . First note that the map

φ(v1, v2, . . . , vk) = v1 ∧ v2 ∧ · · · ∧ vk ∧ w1 ∧ w2 ∧ · · · ∧ wl

is k-linear, so by Theorem 1.16, there is an induced linear map φ : Tk(V ) →
∧k+l(V ), such

that
φ(v1 ⊗ v2 ⊗ · · · ⊗ vk) = v1 ∧ v2 ∧ · · · ∧ vk ∧ w1 ∧ w2 ∧ · · · ∧ wl

Note that for all s ∈ A we have φ(s) = 0. Since
∧k(V ) = Tk(V )/A, by Lemma 1.15, there

is an induced linear map from
∧k(V ) to

∧k+l(V ), as required.

Definition 3.5. The collection of the spaces
∧k(V ), for k = 0, 1, 2, . . . , together with the

operation ∧ is called the exterior algebra on V .

More specifically, the space∧•(V ) :=
∧0(V )⊕

∧1(V )⊕
∧2(V )⊕

∧3(V )⊕ · · ·

is a ring, with multiplication defined by the wedge product. A vector space over F which
also has the structure of a ring is called an F-algebra.

Example 3.6. Let V = R3, x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1). We have

(a, b, c) ∧ (d, e, f) = (ax + by + cz) ∧ (dx + ey + fz)

= ae(x ∧ y) + bd(y ∧ x)af(x ∧ z) + cd(z ∧ x)bf(y ∧ z) + ce(z ∧ y)

= (ae− bd)(x ∧ y) + (af − cd)(x ∧ z) + (bf − ce)(y ∧ z) .

To compute (a, b, c) ∧ (d, e, f) ∧ (g, h, i) we just multiply this resulting expression by gx +
hy + iz.

(a, b, c) ∧ (d, e, f) ∧ (g, h, i)

= ((ae− bd)(x ∧ y) + (af − cd)(x ∧ z) + (bf − ce)(y ∧ z)) ∧ (gx + hy + iz)

= (ae− bd)i(x ∧ y ∧ z) + (af − cd)h(x ∧ z ∧ y) + (bf − ce)z(y ∧ z ∧ x)

= ((ae− bd)i− (af − cd)h + (bf − ce)z)(x ∧ y ∧ z)

Here we’ve used y ∧ z ∧ x = −x ∧ z ∧ y = x ∧ y ∧ z. Note that the coefficient is equal to

det

a b c
d e f
g h i


and moreover, the expression we obtained is exactly the cofactor expansion along the bottom
row.



Example 3.7. Let V = R4 with basis {x, y, z, w}. We have

(x ∧ y + z ∧ w) ∧ (x ∧ y + z ∧ w) = x ∧ y ∧ x ∧ y + x ∧ y ∧ z ∧ w

+ z ∧ w ∧ x ∧ y + z ∧ w ∧ z ∧ w

= x ∧ y ∧ z ∧ w − x ∧ w ∧ z ∧ y

= x ∧ y ∧ z ∧ w + x ∧ y ∧ z ∧ w

= 2x ∧ y ∧ z ∧ w

It may at first be surprising that the answer we obtained is not zero, but as we will soon see,
this product really is non-zero. What this proves is that x ∧ y + z ∧ w is not a pure wedge
product, i.e. x∧ y + z ∧w 6= u∧ v for any u, v ∈ R4. Indeed, (u∧ v)∧ (u∧ v) = 0 for all u, v.
However, expressions which are not pure wedge products can be multiplied with themselves
to give a non-zero vector.

Proposition 3.8. If α ∈
∧k(V ), ω ∈

∧l(V ), then α ∧ ω = (−1)klω ∧ α.

Thus although the wedge product is not commutative, it is reasonably close commutative.
A product with this property said to supercommutative.

Proof. If α = v1 ∧ v2 ∧ · · · ∧ vk, ω = w1 ∧ w2 ∧ · · · ∧ wl, then we can get from v1 ∧ v2 ∧ · · · ∧
vk ∧ w1 ∧ w2 ∧ · · · ∧ wl, to ±w1 ∧ w2 ∧ · · · ∧ wl ∧ v1 ∧ v2 ∧ · · · ∧ vk by swapping adacent v’s
and w’s. Each swap contributes a factor of −1, and it takes exactly kl swaps.

3.2 Linear independence

As we have already seen, the exterior algebra has many determinant-like properties. One of
the key properties of the determinant, is that the determinant of a square matrix is non-zero
if and only if its rows (or columns) are linearly independent. Our next goal is to prove the
following theorem, which says that the wedge product generalizes this idea.

Theorem 3.9. Let V be a vector space over a field F. A set of vectors {v1, v2, . . . , vk} is
linearly independent if and only if v1 ∧ v2 ∧ · · · ∧ vk 6= 0 ∈

∧k(V ).

The “if” direction is easy. Unfortunately, at the moment we don’t have any tools for
proving that two vectors in

∧k(V ) are not equal. One of the best ways to prove that a
vector is non-zero is to apply a linear transformation to it. If the result is non-zero, the
vector must be non-zero. This will be our strategy.

The following theorem is analogous to the universal property for tensor products.

Theorem 3.10. Let V, M be vectors spaces over F. For any k-linear, alternating function,
φ : V k → M , there exists a unique map φ :

∧k(V ) → M such that φ(v1 ∧ v2 ∧ · · · ∧ vk) =
φ(v1, v2, . . . , vk) for all v1, v2, . . . , vk ∈ V . Moreover every linear map

∧k(V ) → M arises in
this way.

Proof. Since φ is k-linear, by Theorem 1.16, there is an equivalent linear map φ̃ : Tk(V ) →
M . We must show that φ̃ descends to a map from

∧k(V ) = Tk(V )/Ak to M . By Lemma 1.15,

such a map descends if and only if φ̃(s) = 0 for all s ∈ Ak, and moreover every such linear
map arises in this way. But by the definition of Ak this is equivalent to the fact that φ is
alternating, as required.



We can use Theorem 3.10 to obtain linear functionals on
∧k(V ).

Theorem 3.11. Let f1, f2, . . . , fk ∈ V ∗, where V ∗ is the dual space to V . There is a well
defined linear functional Ff1,f2,...,fk

:
∧k(V ) → F, such that

Ff1,f2,...,fk
(v1 ∧ v2 ∧ · · · ∧ vk) = det


f1(v1) f1(v2) · · · f1(vk)
f2(v1) f2(v2) · · · f2(vk)

...
...

...
fk(v1) fk(v2) · · · fk(vk)

 .

Moreover, if f ′1, f
′
2, . . . , f

′
k ∈ V ∗, and f1 ∧ f2 ∧ · · · ∧ fk = f ′1 ∧ f ′2 ∧ · · · ∧ f ′k ∈

∧k(V ∗), then
Ff1,f2,...,fk

= Ff ′1,f ′2,...,f ′k
.

In light of this second part, we write f1∧ f2∧ · · ·∧ fk(v1∧ v2∧ · · ·∧ vk) for Ff1,f2,...,fk
(v1∧

v2 ∧ · · · ∧ vk).

Proof. The first statement follows from Theorem 3.10 and the fact that determinant is k-
linear alternating in the columns. The second statement is equivalent to saying that for
any given v1, v2, . . . vk, there is a well defined linear map from G :

∧k(V ∗) → F such that
G(f1 ∧ f2 ∧ · · · ∧ fk) = Ff1,f2,...,fk

(v1 ∧ v2 ∧ · · · ∧ vk). This follows from Theorem 3.10 and the
fact that the determinant is k-linear and alternating in the rows.

Proof of Theorem 3.9. First, suppose that {v1, v2, . . . , vk} is linearly dependent. Then we
can write one of these vectors as a linear combination of the others; without loss of generality,
say vk = a1v1 + a2v2 + · · ·+ ak−1vk−1. Then

v1 ∧ v2 ∧ · · · ∧ vk = v1 ∧ v2 ∧ · · · ∧ vk−1 ∧ (a1v1 + a2v2 + · · ·+ ak−1vk−1)

= a1v1 ∧ v2 ∧ · · · ∧ vk−1 ∧ v1 + a2v1 ∧ v2 ∧ · · · ∧ vk−1 ∧ v2

+ · · · + ak−1v1 ∧ v2 ∧ · · · ∧ vk−1 ∧ vk−1

= 0

Now, suppose that {v1, v2, . . . , vk} is linearly independent. Since this set can be extended
to a basis, we can define linear functionals f1, . . . , fk ∈ V ∗ such that fi(vj) = δij. But then
by Theorem 3.11 we have

f1 ∧ f2 ∧ · · · ∧ fk(v1 ∧ v2 ∧ · · · ∧ vk) = det


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 = 1 ,

so v1 ∧ v2 ∧ · · · ∧ vk 6= 0.

Corollary 3.12. If dim V < k then dim
∧k(V ) = 0.

Proof. If dim V < k then any k vectors will be linearly dependent, so any k-fold wedge
product is zero.



Using similar ideas, we can compute the dimensions of
∧k(V ) when V is finite dimen-

sional, for all k < dim V .

Theorem 3.13. Let V be an n-dimensional vector space over a field F, and let β1 =
{e1, . . . en} be a basis for V . For each k ≤ n, let

βk = {ei1 ∧ ei2 ∧ · · · ∧ eik | 1 ≤ i1 < i2 < · · · < ik ≤ n} .

Then βk is a basis for
∧k(V ). In pariticular, dim

∧k(V ) =
(

n
k

)
.

Exercise: Prove Theorem 3.13.

3.3 Functoriality and the determinant

Let T : V → W be a linear transformation. For any non-negative integer k, we can define a
linear transformation T∗ :

∧k(V ) →
∧k(W ) satisfying

T∗(v1 ∧ v2 ∧ · · · ∧ vk) := T (v1) ∧ T (v2) ∧ · · · ∧ T (vk) ,

for all v1, v2, . . . , vk ∈ V . To see that T∗ exists, by Theorem 3.10 it is enough to check that
the map

(v1, v2, . . . , vk) 7→ T (v1) ∧ T (v2) ∧ · · · ∧ T (vk)

is bilinear and alternating, which is straightforward.

Proposition 3.14. Let V and W be vector spaces over a field F, and let T ∈ L(V, W ). For
any non-negative integer k, the following are true.

(i) If T is surjective then T∗ ∈ L(
∧k(V ),

∧k(W )) is surjective.

(ii) If T is injective then T∗ ∈ L(
∧k(V ),

∧k(W )) is injective.

(iii) If T is an isomorphism then T∗ ∈ L(
∧k(V ),

∧k(W )) is an isomorphism.

Proof. For (i) suppose T is surjective. It suffices to show that every vector w1∧w2∧ . . . wk ∈∧k(W ) is in the range of T∗, which is clear.
For (ii) suppose T is injective. Let γ be a basis for V , and extend {T (w) | w ∈ γ} to a

basis β for W . If

0 = T∗

( ∑
1≤i1<i2<···<ik≤n

ai1i2...ikwi1 ∧ wi2 ∧ · · · ∧ wik

)
=

∑
1≤i1<i2<···<ik≤n

ai1i2...ikT (wi1) ∧ T (wi2) ∧ · · · ∧ T (wik)

where {w1, w2, . . . , wn} is an ordered finite subset of γ then all ai1i2...ik must be equal to zero.
(Exercise: Prove this.) Thus T∗ is injective.

Finally (iii) follows from (i) and (ii).



One consequence of this is that if W is a subspace of V , then
∧k(W ) can be regarded as

a subspace of
∧k(V ). More formally, let i : W → V be the inclusion map. This is injective,

so i∗ :
∧k(W ) →

∧k(V ) is injective. Thus we can identify
∧k(W ) with R(i∗) ⊂

∧k(V ).

Proposition 3.15. Let V1, V2, V3 be vector spaces over F, and let T ∈ L(V1, V2), U ∈
L(V2, V3). For any non-negative integer k, we have:

(i) (UT )∗ = U∗T∗ ∈ L(
∧k(V1),

∧k(V3)).

(ii) If T is an isomorphism, then (T∗)
−1 = (T−1)∗.

Exercise: Prove Proposition 3.15.

Theorem 3.16. Let A ∈ Mn×n(F), and let V = Fn
col. Then for all ω ∈

∧n(V ), we have

(LA)∗(ω) = det(A)ω ,

where LA ∈ L(V ) is the linear transformation LA(x) = Ax.

Proof. Let {e1, e2, . . . , en} be the standard basis for V ; let {f1, f2, . . . , fn} be the dual basis.
Since dim

∧n(V ) = 1, it suffices to prove the result for ω = e1 ∧ e2 ∧ · · · ∧ en. We have

f1 ∧ f2 ∧ · · · ∧ fn((LA)∗(e1 ∧ e2 ∧ · · · ∧ en)) = f1 ∧ f2 ∧ · · · ∧ fn(Ae1 ∧ Ae2 ∧ · · · ∧ Aen)

= det


f1(Ae1) f1(Ae2) · · · f1(Aen)
f2(Ae1) f2(Ae2) · · · f2(Aen)

...
...

...
fn(Ae1) fn(Ae2) · · · fn(Aen)

 = det A

Since f1 ∧ f2 ∧ · · · ∧ fn(e1 ∧ e2 ∧ · · · ∧ en) = 1, the result follows.

Corollary 3.17. Let V be an n-dimensional vector space over F, and T ∈ L(V ). Then for
all ω ∈

∧n(V ), we have T∗(ω) = det(T )ω.

Proof. Let Φ : V → Fn
col be any isomorphism. Then by definition, det T = det(ΦTΦ−1).

Φ∗(T∗(ω))) = (ΦTΦ−1)∗(Φ∗(ω)) = (det T )(Φ∗(ω)) = Φ∗((det T )ω) .

Since Φ∗ is an isomorphism, the result follows.

3.4 Plücker relations

The exterior algebra is useful in studying finite dimensional subspaces of a vector space.

Theorem 3.18. Let V be an vector space over a field F. Let W1, W2 be k-dimensional
subspaces of V , with bases {x1, x2, . . . , xk} and {y1, y2, . . . , yk} respectively. Then

x1 ∧ x2 ∧ · · · ∧ xk = c y1 ∧ y2 ∧ · · · ∧ yk

for some non-zero scalar c ∈ F if and only if W1 = W2.



Exercise: Prove Theorem 3.18.

In other words, vectors in
∧k(V ) which are pure wedges represent k-dimensional sub-

spaces of V , up to a non-zero constant. It is therefore an important questiont to ask which
vectors in

∧k(V ) are pure wedges.
Our first criterion for determining when a vector ω ∈

∧k(V ) is a pure wedge product is
the following.

Theorem 3.19. Let V vector space over F, and let ω ∈
∧k(V ) be a non-zero vector. Let

Wω = {x ∈ V | x ∧ ω = 0}. Then dim Wω ≤ k, and dim Wω = k if and only if ω is a pure
wedge.

Before we can prove this, we need to develop some further results.

Lemma 3.20. Let V be a vector space over F. Let f ∈ V ∗. For each k, there is a map
χf :

∧k(V ) →
∧k−1(V ) such that for all v1, v2, . . . , vk ∈ V ,

χf (v1 ∧ v2 ∧ · · · ∧ vk) = f(v1)v2 ∧ v3 ∧ · · · ∧ vk − f(v2)v1 ∧ v3 ∧ · · · ∧ vk

+ · · · + (−1)k−1f(vk)v1 ∧ v2 ∧ · · · ∧ vk−1 .

Proof. The right hand side is k-linear and alternating in (v1, v2, . . . vk), so this follows by
Theorem 3.10.

More generally, we have the following important theorem.

Theorem 3.21. Let V be a vector space over F, and let k ≥ l be a positive integers. There
exists a bilinear map:

χ :
∧l(V ∗)×

∧k(V ) →
∧k−l(V )

such that

χ(f1 ∧ f2 ∧ · · · ∧ fl , v1 ∧ v2 ∧ · · · ∧ vk) = χfl
◦ χfl−1

◦ · · · ◦ χf1(v1 ∧ v2 ∧ · · · ∧ vk)

for all f1, f2, . . . , fl ∈ V ∗, v1, v2, . . . , vk ∈ V .

Proof. We need to show that for fixed v1, v2, . . . , vk ∈ V , the map

(f1, . . . , fl) 7→ χfl
◦ χfl−1

◦ · · · ◦ χf1(v1 ∧ v2 ∧ · · · ∧ vk)

is l-linear and alternating. The l-linearity is clear. To see that this map is alternating, we
need to check that the right hand side is 0 if fi = fj for some i 6= j. To prove this, first one
checks that χf ◦ χf = 0 for all f ∈ V ∗. This implies all that χf ◦ χg = −χg ◦ χf , so we can
swap adjacent pairs (picking up a factor of −1 with each swap) until fi and fj are next to
each other. But then we have

χfl
◦ χfl−1

◦ · · · ◦ χf1 = ±χfl
◦ · · · ◦ χfi

◦ χfj
◦ · · · ◦ χf1 = 0 ,

as required.



Exercise: If k = l, prove that

χ(f1 ∧ f2 ∧ · · · ∧ fk , v1 ∧ v2 ∧ · · · ∧ vk) = f1 ∧ f2 ∧ · · · ∧ fk(v1 ∧ v2 ∧ · · · ∧ vk) .

Lemma 3.22. Let V ′ be a subspace of V , and let x ∈ V \ V ′. There is a linear functional
f ∈ V ∗ such that χf (x ∧ θ) = θ for all θ ∈

∧j(V ′) ⊂
∧j(V ).

Proof. Let f ∈ V ∗ be a linear functional such that f(x) = 1, f(y) = 0 for all y ∈ V ′. Then
we have 0 = χf (x ∧ θ) = f(x)θ + 0 = θ.

Lemma 3.23. Let V , ω and Wω be as in Theorem 3.19, and let x ∈ Wω be a non-zero
vector. Then ω = x ∧ α for some α ∈

∧k−1(V ′), where V ′ is a codimension one subspace of
V that does not contain x.

Proof. Let V ′ be any codimension one subspace of V which does not contain x. Let f ∈ V ∗

be the linear functional of Lemma 3.22. We can write ω = x ∧ α + β, uniquely, where
α ∈

∧k−1(V ′), and β ∈
∧k(V ′). But 0 = χf (x ∧ ω) = χf (x ∧ β) = β, so ω = x ∧ α, as

required.

Proof of Theorem 3.19. Suppose ω = v1 ∧ v2 ∧ · · · ∧ vk. By Theorem 3.9, since ω 6= 0,
{v1, v2, . . . , vk} is linearly independent. Again by Theorem 3.9, Wω = span{v1, v2, . . . , vk},
hence dim Wω = k.

Now suppose that dim Wω = k. We proceed by induction. The result is trivial for k = 1.
Assume the result is true for all smaller values of k. Let x ∈ Wω be a non-zero vector. By
Lemma 3.23 we can write ω = x1 ∧ α, where α ∈

∧k−1(V ′), and V ′ is a codimension one
subspace of V that does not contain x. Let W ′ = Wω ∩ V ′. We claim that x′ ∧ α = 0 for all
x′ ∈ W ′. To see this let f ∈ V ∗ be the linear functional of Lemma 3.22. Then we have

0 = χf (x
′ ∧ ω) = χf (−x ∧ x′ ∧ α) = −x′ ∧ α .

Since V ′ has codimension one, dim W ′ = dim W − 1 = k − 1. Thus the inductive hypthesis,
α = v1 ∧ v2 ∧ · · · ∧ vk−1, so ω = x ∧ v1 ∧ v2 ∧ · · · ∧ vk−1.

Finally, if dim Wω > k we could apply this second argument with two different k-
dimensional subspaces W1, W2 ⊂ Wω. But then we would have ω ∈

∧k(W1)∩
∧k(W2), which

contradicts Theorem 3.18. Therefore we must have dim Wω ≤ k for all ω ∈
∧k(V ).

For some purposes, Theorem 3.19 is not the best answer to the problem of determining
which elements of

∧k(V ) are pure wedges. The following criterion has the advantage that
it can be used to give explicit necessary and sufficient equations that the coefficients of a
pure wedge product must satisfy (when everything is expanded in terms of a basis). These
equations are called the Plücker relations.

Theorem 3.24 (Plücker relations). Let V be a vector space over F, and let k be a positive
integer. A vector ω ∈

∧k(V ) is a pure wedge product if and only if, for all ξ ∈
∧k−1(V ∗) we

have
χ(ξ, ω) ∧ ω = 0 .

We need two lemmas.



Lemma 3.25. Let V be a vector space over F, and let k ≥ l be a positive integers. Let
W = span{v1, . . . , vk}, where v1, v2, . . . vk ∈ V , and let f1, f2, . . . fl ∈ V ∗. Then

χ(f1 ∧ f2 ∧ · · · ∧ fl , v1 ∧ v2 ∧ · · · ∧ vk) ∈
∧k−l(W ) .

Proof. For l = 1 the statement is immediate from the definition of χf . Using

χ(f1 ∧ f2 ∧ · · · ∧ fl , v1 ∧ v2 ∧ · · · ∧ vk) = χfl
◦ χfl−1

◦ · · · ◦ χf1(v1 ∧ v2 ∧ · · · ∧ vk) ,

the general case follows by induction.

Lemma 3.26. Let V be a vector space over F, and let ω ∈
∧k(V ) be a non-zero vector. Let

W̃ω = {χ(ξ, ω) | ξ ∈
∧k−1(V ∗)}. Then dim W̃ω ≥ k.

Proof. Let f1, f2, . . . fk ∈ V ∗ be linear functionals such that f1∧f2∧· · ·∧fk(ω) = 1. (Exercise:
Prove that these exist.) Let ξi = (−1)k−if1 ∧ · · · ∧ fi−1 ∧ fi+1 ∧ · · · ∧ fk . Then,

fj(χ(ξi, ω)) = (−1)k−ifj ◦ χfk
◦ · · · ◦ χfi+1

◦ χfk−i
◦ · · · ◦ χf1(ω)

= (−1)k−if1 ∧ · · · ∧ fi−1 ∧ fi+1 ∧ · · · ∧ fk ∧ fj(ω)

= δij .

In particular, the set {χ(ξ1, ω), χ(ξ2, ω), . . . , χ(ξk, ω)} is linearly independent.

Proof of Theorem 3.24. Suppose that ω = v1 ∧ v2 ∧ · · · ∧ vk is a pure wedge. Let W =
span{v1, . . . , vk}. Then ω ∈

∧k(W ). By Lemma 3.25, χ(ξ, ω) ∈
∧1(W ), so χ(ξ, ω) ∧ ω ∈∧k+1(W ). Since dim(W ) ≤ k, by Corollary 3.12 this implies χ(ξ, ω) ∧ ω = 0.

Suppose that for all ξ ∈
∧k−1(V ∗) we have χ(ξ, ω)∧ω = 0. Let W̃ω be as in Lemma 3.26,

and let Wω be as in Theorem 3.19. Then x ∧ ω = 0 for all x ∈ W̃ω. So W̃ω ⊂ Wω. By
Lemma 3.26 dim W̃ω ≥ k, whereas dim Wω ≤ k. Thus dim Wω = k, which by Theorem 3.19
implies that ω is a pure wedge product.

Example 3.27. Let V = R5, with basis {e1, e2, . . . , e5}. Let {f1, f2, . . . , f5} be the dual
basis. Consider a general vector ω ∈

∧2(V ).

ω =
∑

1≤i<j≤5

aijei ∧ ej .

In this case the Plücker relations are:

χ(fk, ω) ∧ ω = 0 , for k = 1, 2, 3, 4, 5 .

Expanding this out, we obtain

0 = χ(fk, ω) ∧ ω

= χ(fk,
∑

1≤i<j≤5

aijei ∧ ej) ∧
( ∑

1≤l<m≤5

almel ∧ em

)
= (

5∑
j=k+1

akjej −
k∑

i=1

aikei) ∧
( ∑

1≤l<m≤5

almel ∧ em

)
=

5∑
j=k+1

∑
l<m

{l,m}∩{k,j}=∅

akjalm ej ∧ el ∧ em −
k∑

i=1

∑
l<m

{l,m}∩{i,k}=∅

aikalm ei ∧ el ∧ em



It is possible to simplify this further, but at the expense of messier notation. However, from
here we can see quite explicitly what happens for any specific value of k. For example, if
k = 1 we get.

0 =
5∑

j=2

∑
l<m

{l,m}∩{1,j}=∅

a1jalm ej ∧ el ∧ em

=
∑
l<m

{l,m}∩{1,2}=∅

a12alm e2 ∧ el ∧ em +
∑
l<m

{l,m}∩{1,3}=∅

a13alm e3 ∧ el ∧ em

+
∑
l<m

{l,m}∩{1,4}=∅

a14alm e4 ∧ el ∧ em +
∑
l<m

{l,m}∩{1,5}=∅

a15alm e5 ∧ el ∧ em

= (a12a34 e2 ∧ e3 ∧ e4 + a12a35 e2 ∧ e3 ∧ e5 + a12a45 e2 ∧ e4 ∧ e5)

+ (a13a24 e3 ∧ e2 ∧ e4 + a13a25 e3 ∧ e2 ∧ e5 + a13a45 e3 ∧ e4 ∧ e5)

+ (a14a23 e4 ∧ e2 ∧ e3 + a14a25 e4 ∧ e2 ∧ e5 + a14a35 e4 ∧ e3 ∧ e5)

+ (a15a23 e5 ∧ e2 ∧ e3 + a15a24 e5 ∧ e2 ∧ e4 + a15a34 e5 ∧ e3 ∧ e4)

= (a12a34 − a13a24 + a14a23)e2 ∧ e3 ∧ e4

+ (a12a35 − a13a25 + a15a23)e2 ∧ e3 ∧ e5

+ (a12a45 − a14a25 + a15a24)e2 ∧ e4 ∧ e5

+ (a13a45 − a14a35 + a15a34)e3 ∧ e4 ∧ e5

Thus, we must have

a12a34 − a13a24 + a14a23 = 0

a12a35 − a13a25 + a15a23 = 0

a12a45 − a14a25 + a15a24 = 0

a13a45 − a14a35 + a15a34 = 0 .

Each other value of k produces four similar looking equations, but in fact there are only
5 equations in total, because each equation comes up four times in this process. The last
equation is (unsurprisingly):

a23a45 − a24a35 + a25a34 = 0 .

By Theorem 3.24, ω is a pure wedge if an only if its coefficients satisfy these five equations.

3.5 Inner products and volumes

Let F be either C or R, and Let V be an n-dimensional vector space over F, and let 〈·, ·〉 be
an inner product on V .

Recall that an inner product on a V satisfies three conditions:

1. For all x, y, z ∈ V , and c ∈ F, we have 〈x + cy, z〉 = 〈x, z〉+ c〈y, z〉.



2. For x, y ∈ V , 〈x, y〉 = 〈y, x〉.

3. For all non-zero vectors x ∈ V , 〈x, x〉 > 0.

If F is the field of real numbers, then the complex conjugation is trivial.

Theorem 3.28. There is an inner product 〈·, ·〉k on
∧k(V ) such that

〈x1 ∧ x2 ∧ · · · ∧ xk , y1 ∧ y2,∧ . . . yk〉k = det


〈x1, y1〉 〈x1, y2〉 · · · 〈x1, yk〉
〈x2, y1〉 〈x2, y2〉 · · · 〈x2, yk〉

...
...

...
〈xk, y1〉 〈xk, y2〉 · · · 〈xk, yk〉

 .

As usual, we define the norm of a vector ‖ω‖k =
√
〈ω, ω〉k.

Proof. The existence of such a form satisfying condition 1 follows from Theorem 3.10. Condi-
tion 2 follows from this holds for the inner product on V , and the fact that det A = det A. To
prove condition 3, it is enough to show that there is a basis for

∧k(V ) which is orthonormal.
Exercise: If {e1, . . . , en} is an orthonormal basis for V , then the basis for

∧k(V ) constructed
in Theorem 3.13 is orthonormal.

Recall that if v1, v2, . . . vn ∈ Rn are linearly independent vectors, there is a parallelopiped
determined by these vectors whose volume is | det A|, where v1, . . . , vn are the columns of A.
This works more generally on any vector space V with an orthonormal basis {e1, . . . , en}.
If vi = T (ei) for some linear transforomation T , then the volume of the parallelopiped
determined by v1, v2, . . . , vn is | det T |.

This inner product on
∧k(Rn) can be used to compute the volume of a parallelopiped in

Rn, when k < n.

Theorem 3.29. Let v1, . . . vk ∈ Rn be linearly independent vectors. Then the k-dimensional
volume of the parallelopiped determined by v1, v2, . . . , vk is ‖v1 ∧ v2 ∧ · · · ∧ vk‖k.

Proof. Let W = span{v1, . . . , vk}. Let {w1, w2, . . . , wk} be an orthonormal basis for W . Note
that the linear transformation from W → Rk which takes wi to the standard basis vectors
is volume preserving. Then vi = Twi for some linear transformation T ∈ L(W ). Then

v1 ∧ v2 ∧ · · · ∧ vk = T∗(w1 ∧ w2 ∧ · · · ∧ wk) = det(T )w1 ∧ w2 ∧ · · · ∧ wk .

Therefore, ‖v1∧ v2∧ · · · ∧ vk‖k = | det T |, which equals the volume of the parallelopiped.

We can also compute volumes of simplices.

Definition 3.30. A k-simplex in Rn is a k-dimensional polyhedron, with k + 1 vertices
v0, v1, . . . , vk ∈ Rn, where {v1 − v0, v2 − v0, . . . , vk − v0} is a linearly independent set.

For example, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a
tetrahedron.

Theorem 3.31. Let S be the k-simplex with vertices 0, v1, v2, . . . , vk. Let P be the paral-
lelopiped determined by v1, v2, . . . , vk. Then vol(S) = 1

k!
vol(P ).



Proof. Let W be the subspace spanned by {v1, . . . , vk}. Since dim W = k, any linear trans-
formation from W to Rk preserves the ratios of k-dimensional volumes. Thus it enough to
prove this for the case where the vertices are n = k, and vi = e1 + e2 + · · · + ei, where
{e1, . . . , ek} is the basis for Rk. In this case, the volume of the parallelopiped is 1, and the
volume of the simplex is∫ 1

x1=0

∫ x1

x2=0

∫ x2

x3=0

· · ·
∫ xk−1

xk=0

1 dxkdxk−1 . . . dx2dx1 ,

which one can easily show is equal to 1
k!

.


