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FILTER DESIGN TECHNIQUES ~ °

Filters are a particularly important class of linear time-invariant systems. Strictly speak-
ing, the term frequency-selective filter suggests a system that passes certain frequency
components and totally rejects all others, but in a broader context any system that
modifies certain frequencies relative to others is also called a filter.
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-~ if a linear time-
invariant discrete-time system is used as in Figure 7.1, and if the input is bandlimited
and the sampling frequency is high enough to avoid aliasing, then the overall system
behaves as a linear time-invariant continuous-time system with frequency response

. QT , Q T,
Hen(j$2) = {(I)q “ PN (7.12)

In such cases, it is straightforward to convert from specifications on the effective
continuous-time filter to specifications on the discrete-fime filfer through the relation
w = QT. Thatis, H(e’*) is specified over one period by. the equation

H(e/®) = Hy (1;) , lw] < . (7.1b)
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Qp = 27(2000),

Qs = 27(3000),

Stopband

ideal passband pain in decibels =20log,(1) =0dB"
maximum passband gain in decibels = 20 log;(1.01) = 0.086 dB
maximum stopband gain in decibels = 20log,,(0.001) = —60 dB

Filter Design by Impulse Invariance

In'the impulse invariance design procedure for transforming continuous-time fil- -
ters into discrete-time filters, the impulse response of the discrete-time filter is chosen
proportional to equally spaced samples of the impulse response of the continuous-time
filter; i.e., '

hin] = Tiho(nTy), (7.4)
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If the continuous-time filter is bandlimited, so that ,
H.(jR) =0, IR > n/Ty, ‘ (7.6)
then
H(e/®) = H, ( j—‘i) , lw| <m; @7
1y

However, if the continuous-time filter approaches zero at high frequencies, the
aliasing may be negligibly small, and a useful discrete-time filter can result from the
sampling of the impulse response of a continuous-time filter. :

In the impulse invariance design procedure, the discrete-time filter specifications
are first transformed to continuous-time filter specifications through the use of Eq. (7.7).
Assuming that the aliasing involved in the transformation from H.(j@) to H(el?) will
be negligible, we obtain the specifications on H.(j2) by applying the relation

Q=w/Ty (7.8)
While the impulse invariance transformation from confinuous time to discrete

time is defined in terms of time-domain sampling, it is easy to carry out as a transforma-
tion on the system function.
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H.(s) = . .
=3 (7.9)
The corresponding impulse response is '
N
Ae®™ 1> 0,
he(t) = :L; k _> (7.10)
_ 0, t <.
The impulse response of the discrete-time filter obtained by sampling Tih (1) is
, N
hln] = TihenTq) = )~ Ty A Tuln]
k=1 »
N (7.11)
= Z Ta Ar(e™ ™Y ufn].
k=1
The system function of the diserete-time filter is therefore given by
N
T A
If the

continuous-time filter is stable, corresponding to the real part of 5, being less than zero,
then the magnitude of e’ will be less than unity, so that the corresponding pole in the
discrete-time filter is inside the unit circle.

Impulse Invariance with a Butterworth Fiiter

Let us consider the design of a lowpass discrete-time filter by applying impulse invari-
ance to an appropriate Butterworth continuous-time filter.? The specifications for the
discrete-time filter are

0.89125 < [H(e/) <1,  0<|w] <027, (7.13a)
|H(e/*)| < 0.17783, 0.37 < |w| < 7. " (7.13b)

Since the parameter 7, cancels in the impulse invariance procedure, we can choose
« e -

o



form

Specifically, the magnitude-squared function of a Butterworth filter is of the

. 1
[He(j Q)1

14 (Q/ QPN
so that the filter design process consists of determining the parameters N and Q, to
meet the desired specifications.

(7.16)
Because of the preceding considerations, we want to design a continuous-time
Butterworth filter with magnitude function |H-(jS2)) for which

0.89125 < |H.(jQ)| <1,

0<|Q <02r, (7.44a)
|H (jQ)| < 0.17783, 037 <|Q] < . (7:14b)
Since the magnitude response of an analog Butterworth filter is a monotonié function
of frequency, Egs. (7.14a) and (7.14b) will be satisfied if
' |H(j0.27)| > 0.89125 (7.15a)
“and
|H(j0.37)| <0.17783. - (7.15b)
2N . 4 i 2 :
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(7.17b)
The solution of these two equations is N = 5.8858 and . = 0.70474. The pa-

rameter N, however, must be an integer. Therefore, so that the specifications are met or
exceeded, we must round N up to the nearest integer, N = 6.

With Q. = 0.7032 and with N =6, the 12.poles of the magnitude-squared function
Hc(s)Hc(—5) = 1/[1 + (s/jQ2)?*"'] are uniformly distributed in angle on a circle of
_ ‘radius 2, = 0.7032.
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Therefore,

Hc(s) =

0.12093
(52 + 0.3640s + 0.4945)(s2 + 0.9945s + 0.4945)(s? + 1.3585s + 0.4945)
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Amplitude

0 027 04r 0.6m 0.8 , £
Radian frequency (w)
0.2871 — 0446671 ~2.1428 + 1.14557-1

H =
(2) 1-1.2971z71 +0.6949z-2 " 1 = 1.0691z-1 4+ 0.369972

1.8557 — 0.6303z~!
1~099727-1 +0.2570z-2"

+

Bilinear Transformation

The technique discussed in this subsection avoids the problem of aliasing by using ‘

the bilinear transformation, an algebraic transformation between the variables s and b4
that maps the entire jQ-axis in the s-plane to one revolution of the unit circle in the

z-plane.

_ With H,(s) denoting the continuous-time System function and H(z) the discrete-
time system function, the bilinear transformation eorresponds to replacing s by

oo 2 (=7l »
T o\l ¥z ) ~(7‘20)
that is,
2 /1—-z71\7 . '
H@ =Hm = (=2 )|, :
(<L) <1+z‘1)] | (721)

To develop the properties of the algebraic transformation specified in Eq. (7.20),

we solve for z to obtain

_ 1+ (T/2)s (7.22)

T 1—(Ty/2)s’

and,’substituting §'= o + jQinto Eq. (7.22), we obtain

X 2 - .
_1+oTu/2+ jQTy/2 (7.23)

1-0Tu/2~ jQT,/2°

'If o < 0, then, from Eq. (7.23), it follows that |z] < 1 for any value of Q. Similarly, if
o > 0, then |z| > 1 for all . That is, if a pole of H.(s) is in the left-half s-plane, its
image in the z-plane will be inside the unit circle. Therefore, causal stable continuous-
time filters map into causal stable discrete-time filters,
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-plane
$m P

Image of
s = jQ (unit circle)

Image of
left half-plane

'Next, to show that the j Q-akis of ihe s-plane maps dhtd the unit circle, we substi-
tute s = jQ into Eq. (7.22), obtaining

_1+jery2
T 1-jQT2

From Eq. (7.24), it is clear that Izl = 1 for all values of s on the JQ-axis. That is, the
J2-axis maps onto the unit circle, so Eq. (7.24) takes the form

o _ 1+ QT2

(7.24)

=1z jann (7.25)
2 [1=ei® .
= 7.26
T (1 m e‘l‘”) (726)
or, equivalently, ‘
2 [2e9R(jsinw/2)] 2 :
= Q= — . =t 2). 7.27
s=ot = [ 207192 (cos w/2) J 7, on(e/2) (727)
Equating real and imaginary parfs on both sides of Eq. (7.27) leads to the relations
o =(0and ,
2 ,
Q2 = — tan(w/2), (7.28)
7
or A
o = 2arctan(Q7;/2). (7.29)-
o

w=2 arétan (%)
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' ‘Bilinéar Transformation
of a Butterworth Filter

Consider the discrete-time filter §
the impulse invariance techni

pecifications of Example 7.2, in which we illustrated
quefor the design of a discrete-tim

e filter. The specifica-
tions on the discrete-time filtér are ' '
0.89125 <JH(e*)l <1, 0<w<02r, (7.30a)
|H(e/™)) < 0.17783, 037 <w <. (7.30b)

' 2 0.2
089125 = |H.(jQ)| <1, 0<Q< = tan (-———) R (7.31a)

d 2
-2 037
et )] < 0.17783, 2 tan (T) <Q<oo.  (131b)
For convenience, we choose T} =1.
| and | |He(j2tan(0.17))] > 0.89125
|H.(j2tan(0.157))| < 0.17783. - (7.32b)

The form of the magnitude-squared function for the Butterworth filter is

1
|H(jQ)I* = T+ (Q/99 " (7.33)



Solving for N and . with the equality sign in Egs. (7.32a) and (7.32b), we obtain

2N 2
2tan(0.17) (1 A '
1+ (_.__Q ) - (m) (7.34a)
and
2tan(0.157)\*¥ /1 \?
( 1+ (_r ) =\o1s ) (7.34b)

and solving for N in Egs. (7.34a) and (7.34b) gives

L (GO VACORD]R

"~ 2log[tan(0.157)/ tan(0.17)] : (7.35)
= 5.305.

Since N must be an integer, we choose N = 6. Substituting N = 6 into
"Eq. (7.34b), we obtain 2, = 0.766. For this value of 2., the passband specifications
are exceeded and the stopband specifications are met exactly. This is reasonable for
the bilinear transformation, since we do not have to be concerned with aliasing. That
is, with proper prewarping, we can be certain that the resulting discrete-time filter will
meet the specifications exactly at the desired stopband edge.

0.20238
(s? +0.3996s + 0.5871)(s? + 1.08365 F05871)(s? + 1.48025 + 0.5871)"

(7.36)

The system function for the discrete-time filteris then obtained by applying the bilinear
transformation to H,(s) with T; =4. The result is

H(s) =

0:0007378(1 + z71)¢

H =
@) (1 - 1.2686z T +0.70512-2)(1 — 1.01062-1 + 0.35837-2)

(7.37)
5 .
(140.9044z1 +0.2155z-2)°
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