DISCRETE-TIME SIGNALS
AND SYSTEMS

2.0 INTRODUCTION

The term signal is generally applied to something that conveys information. Signals
generally convey information about the state or behavior of a physical system, and

often, signals are synthesized for the purpose of communicating information between
humans or between humans and machines, '

either continuous or discrete. Continuous-time signals are defined along a continuum
of times and thus are represented by a continuous independent variable. Continuous-
time signals are often referred to as analog signals. Discrete-time signals are defined at
discrete times, and thus, the independent variable has discrete values; i.e., discrete-time
signals are represented as sequences of numbers. Signals such as speech or images may
have either a continuous- or a discrete-variable representation, and if certain conditions
hold, these representations are entirely equivalent. Besides the independent variables
being either continuous or discrete, the signal amplitude may be either contihuous or
“discrete. Digital signals are those for which both time and amplitude are discréte.

Discrete-time signals may arise by sampling a continuous-time signal, or they may
be generated directly by some discrete-time process. Whatever the origin of the discrete-
time signals, discrete-time signal-processing systems have many attractive features. They
can be realized with great flexibility with a variety of technologies, such as charge
transport devices, surface acoustic wave devices, general-purpose digital computers, or
high-speed microprocessors. Complete signal-processing systems can be implemented
using VLSI techniques. Discrete-time Systems can be used to simulate analog systems
or, more importantly, to realize signal transformations that cannot be implemented
with continuous-time hardware. Thus, discrete-time representations of signals are often
desirable when sophisticated and flexible signal processing is required.

2.1 DISCRETE-TIME SIGNALS: SEQUENCES

Discrete-time signals are represented mathematically as sequences of numbers. A se-
quence of numbers x, in which the nth number in the sequence is denoted x[n],! is
formally written as

x = {x[n]}, —00 < N < 00, 2.1
where n is an integer. In a practical setting, such sequences can often arise from periodic

sampling of an analog signal. In this case, the numeric value of the nth number in the
sequence is equal to the value of the analog signal, x,(z), at time nT; ie.,

x[n] = x;(nT), —0 <N < 00. 2.2)

- The quantity T is called the sampling period, and its reciprocal is the sampling fre-
quency.
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2.1.1 Basic Sequences and Sequence Operations

In the analysis of discrete-time signal-processing systems, sequences are manipulated
in several basic ways. The product and sum of two sequences x[n] and y[n] are defined
as the sample-by-sample product and sum, respectively. Multiplication of a sequence
x[n] by a number ¢ is defined as multiplication of each sample value by a. A sequence
y[n] is said to be a delayed or shifted version of a sequence x[n] if

Yl =xn-n) (2.3)
where ng is an integer.

The unit sample sequence (Figure 2.3a) is defined as the sequence

0, 0, A
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Aswe will see, the unit sainple sequence plays the same role for discrete-time signals and
systems that the unit impulse function (Dirac delta function) does for continuous-time
signals and systems,

More generally, any sequence can be expressed as

x[n] = i x[k]8[n — k]. (2.6)

k=—00

The unit step sequence (Figure 2.3b) is given by
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The unit step is related to the impulse by
n
uln] = " 8[K]; (2.8)
k=—00
or | ‘
Culn] =) _8n—4l. | (2.9b)
k=0

Conversely, the impulse sequence can be expressed as the first backward difference of
the unit step sequence, i.e.,

5[n] = u[n] — u[n — 1]. (2.10)

Exponential sequem':eé are extremely important in representing and analyzing lin-
ear time-invariant disctete-time systems. The general form of an exponential sequence
is

x[n] = Ac”. (2.11)

If Aand « are real nun_lbers, then the sequence isreal. If 0 < @ < 1 and A s positive,
then the sequence values are positive and decrease with increasing n, as in Figure 2.3(c).
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For -1 < & < 0, the sequence values alternate in sign, but again decrease in magnitude
with increasing 7. If jo| > 1, then the sequence grows in magnitude as n increases.

Sinusoidal sequences are also very important. A sinusoidal sequence has the gen-
eral form

x[n] = A cos(won + ¢), for all n, (2.13)
with A and d>' real constants, and is illustrated in Figure 2.3(d).

Sinusoidal
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Specifically, if @ = |aje/s and A = | AJe/, the
sequence A« can be expressed in any of the following ways:

x[n] = Aa" = |Aje/?|q|relwom
= | Al la"e/ @or+4) | .14)

= | 4| le|"cos(won + ¢) + J1A[lel" sin(won + ¢).

The sequence oscillates with an exponentially growing envelope if || > 1 or with an
exponentially decaying envelope if |o| < 1. (As a simple example, consider the case
wo =71 ) i

When || = 1, the sequence is referred to as a complex exponential sequence and
has the form

x[n] = |Ale’ ™) = | A] cos(won + ¢) + jIA| sinfwpn + ¢); - (2.15)
that is, the real and imaginary parts of e/" vary sinusoidally with n.

An important difference between continuous-time
and discrete-time complex sinusoids is seen when we consider a frequency (w¢ + 27).
In this case,

x[n] = Aej(wo+27r)n

:AejwonejZ”"ﬁAej“’O".

(2.16)

More generally, we can easily see that complex exponential sequences with frequencies
" (w0 +27r), where.r is an integer, are indistinguishable from one another.

For now, we simply conclude that, when

discussing complex exponential signals of the form xfn] = Ae/*o or real sinusoidal

 signals of the form x[n] = A cos(won + ¢), we need only consider frequencies in an
interval of length 27, such as —7 < wg <7 or0 < wg < 2.






In the discrete-time case, a periodic sequence is
a sequence for which

x[n]=x[n+N],  foralln, (2.18)

where the period N is necessarily an integer. If this condition for periodicity is tested
for the discrete-time sinusoid, then

A cos(won + @) = A cos(won + woN + ¢), (2.19)
which requires that
' woN =2nk, ’ (2.20)

where kis an integer.

The integer restriction on n causes some sinusoidal signals not to bé periodic
at all, For example, there is no integer N such that the signal x3[n] = cos(n) satisfies
the condition x3[n + N] = x3[n] for all n. These and other properties of discrete-time
sinusoids that run counter to their continuous-time counterparts are caused by the .
limitation of the time index n to integers for discrete-time signals and systems.

When we combine the condition of Eq. (2.20) with our previous observation that
wo and (wg + 27r) are indistinguishable frequencies, it becomes clear that there are
N distinguishable frequencies for which the corresponding sequences are periodic with
period N. One set of frequencies is wx = 27k/N, k= 0,1, ..., N — 1. These properties
of complex exponential and sinusoidal sequences are basic to both the theory and the
design of computational algorithms for discrete-time Fourier analysis. .
For the discrete-

time sinusoidal signal x[n] = A cos(cuon + ¢), as w( increases from wg = 0 toward

* wo = m, x[n] oscillates more and more rapidly. However, as ¢ increases from wq = 7

10 wg = 2m, the oscillations become slower. As a consequence, for sinusoidal ‘

- and complex exponential signals, values of wqin the vicinity of wg = 2k for any integer

value of k are typically referred to as low frequencies (relatively slow oscillations), while

values of wg in 'the vicinity of wg = (7 +2n k) for any integer value of k are typically
referred to as high frequencies (relatively rapid oscillations).

2.2 DISCRETE-TIME SYSTEMS

- A discrete-time system is defined mathematically as a transformation or operator that
maps an input sequence with values x[n] into an output sequence with values y[n]. This
can be denoted as

yln] = Tix[n]} (2.22)

—> T[] |—>

x[n] yin]

The ideal delay systein-ié &éﬁﬂed by the equation
yln] = x[n — n4], —00 < 1 < 00, (2.23)

where ng is a fixed 1 positive integer called the delay of the system
The general movmg—average system is defined by the equauon o

1 .
Y[]___M1+M2+1 Z xn -4

1
- e — 24
=i - 1{x[n + M1]+x[n+ My -1+ +x[n] (2.24)
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2.2.1 Memoryless Systems

A system is referred to as memoryless if the output y

(1] at every value of n, depends
only on the input x[n] at the same value of n.

ylnl = (x[n])?,  foreach value of .
2.2.2 Linear Systems

The class of linear systems is defined by the principle of superposition, If y1[n] and y;[n]

are the responses of a system when x; [n] and x,[n] are the respective inputs, then the
system is linear if and only if . '

Ttalnl + x[nl} = T(x[n]} + Tienl} = yi[n] + y2[n) (2.262)
and '

| T{ax[n]} = aT{x[n}} = ay[n], » (2.26b)
where a is an arbitrary constant.

__ 'This equation can be generalized to the superposition
of many inputs. Specifically, if -

x[n] =" axn], (2.28a)
S . ,
then the output of a linear system will be A
yinl =3 apln], § (2.28b)
k .

where y;[n] is the system response to the input x)c[n].

The system defined by the input—output equation

n

yinl = > k] - (2.29)

k=—00

is called the accumulator system, since the output at time 7 is just the sum of the present
and all previous input samples. The accumulator system is a linear system.,

Consider the system defined by
wn] = logy, (Ix[n])). (2.36)
This system is not linear.

2.2.3 Time-Invariant Systems

Then the system is
said to be time invariant if, for all ng, the input sequence with values x;[n] = x[n — ng]
produces the output sequence with values y;[n] = y[n — ng).

Consider the accumulator from Example 2.6. We define x;|n| = x[n -‘"no J-
143

vl = )" xulk (2.38)
k=—00 ;
= i x[k ~ ng]. (2.39)
k=—00

Substituting the change of variables k1 = k — ng into the summation gives
n—np

ylrl= D" xfka] = yin - nol. (2.40)

ky=—00

Thus, the accumulator is a time-invariant system.



'The system defined by the relation
yin] = x[Mn), —00 < n < 00, (2.41)
with M a positive integer, is called a compressor.

Comparing these two outputs, we see that y[n — ng] is not equal to y4 [n] for all M and
no, and therefore, the system is not time invariant.

2.2.4 Causality

A systemis causal if, for every choice of ny, the output sequence value at the indexn = n,
depends only on the input sequence values for =< no. This implies that if %, (1] = x,[n]
for n < ng, then y1[n] = y,{n] for n < ny. That is, the system is nonanticipative.

Consider the forward difference system defined by the relationship

Yl = x[n+1] = ] (244)

This system is not causal, since the current value of the output depends on a future
value of the input.

The backward difference system, defined as
yIn] = x[n] - x[n - 1), (2.45)

has an output that depends only on the present and past values of the input, Because
there is no way for the output at a specific time y[no] to incorporate values of the input
for n > ng, the system is causal.

© 2.2.5 Stability

A system is stable in the bounded-input, bounded-output (BIBO) sense if and only if
every bounded input sequence produces a bounded output sequence. The input x{n] is
bounded if there exists a fixed positive finite value B such that

Ix[n]l < Byi<oo, = foralln, , (2.46)

The accumulator, as defined in Example 2.6 by Eq. (2.29), is also not stable. For
example, consider the case when x[n] = u[n], which is clearly bounded by B, = 1. For
this input, the output of the accumulator is

n

yil= 3" uin (2.48)
k=~00
0, n<0,
h {(n +1), n>0. (2.49)
There is no finite choice for By such that (n + 1) < B, < o for all n; thus, the system -

is unstable.

2.3 LINEAR TIME-INVARIANT SYSTEMS

y[n] = T{ > x[kls[n — k]} . ‘ (2.50)
k=~—00
From the principle of superposition in Eq. (2.27), we can write .
Y= 37 xHT6— Ky = 3 skl (2.51)
k=—c0 k=—00

According to Eq. (2.51), the system response to any input can be expressed in terms of
the responses of the system to the sequences 8[n — k].



'The property of time invariance implies that if A[n] is the response to §[n], then
the response to 8[n — £] is h[n — k]. With this additional constraint, Eq. (2.51) becomes
yirl= ¥} x[klA[n — &]. (2.52)

=—00

Asa consequence of Eq. (2.52),alinear time-invariant system (which we will sometimes
abbreviate as LTT) is completely characterized by its impulse response 4[] in the sense
that, given A[n], it is possible to use Eq. (2.52) to compute the output y[x] due to any
input x[n].

Equation (2.52) is commonly called the convolution sum. If y[n] is a sequence
whose values are related to the values of two sequences h[n] and x[n] as in Eg. (2.52),
we say that y[n] is the convolution of x [] with h[n] and represent this by the notation

y[n] = x[n] x h[n]. |  (2.53)

Example 2.12 Computation of the Convolution Sum
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From Example 2.3, it should be clear that, in general, the sequence h[n — k],
—00 < k < 00, is obtained by

| L. reflecting A[k] about the origin to obtain h[—k];
2. shifting the origin of the reflected sequence to k = n.



2.4 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

Some general properties of the class of linear time-invariant systems can be found

by considering properties of the convolution operation. For example, the convolution
operation is commutative: -

x[n] #h[n) = hn] % x[n]. (2.61)

The
convolution operation also distributes over addition; i.e.,

" x[n) * (aln] + aln]) = x[n] « by [n] + x[n] % o],

This followsina straightfbrward_way from Eq. (2.52) and is a direct result of the linearit};
and commutativity of convolution. '

In a cascade connection of systems, the output of the first system is the input to

the second, the output of the second is the input to the third, etc. The output of the last
system is the overall output.

x[n] huln) glad y[n]

i 115[11] »| By 1] F—

x[n] y[n]
e RRUG N AR e
x[n} y[n]

In a parallel connection, the systems have the same input, and their outputs are
summed to produce an overall output. It follows from the distributive property of convo-
lution that the connection of twolinear time-invariant systems in parallel is equivalent to

a single system whose impulse response is the sum of the individual impulse responses;
ie., .

hln] = hy[n] + hy[n). (2.64)
> hy[n]
| —
x[n] )’["]}
>1 hy[n]’
(@)

—»1 hy[n] + B, [n] —b-
J ylnl

(®)



_ : Linear time-invariant systems are stable if
and only if the impulse response is absolutely summable, i.e., if

o0
S= " [h[K]} < co. (2.65)
k=-00 ‘
This can be shown as follows. From Eq. (2.62),
. o0 ) [oe]
ylnli = | > Alklxln~ K| < " (B[] Ix[n - ). (2.66)
/ k=—oo k=-—00
I x[n] is bounded, so that
|x[n]l S Bxy
then substituting B; for |x[n — k]| can only strengthen the inequality. Hence,
ylnll < B: D [H[K]l. N (2.67)

The class of causal systems was defined in Section 2.2.4 as those systems for which

the output y[no] depends only on the input samples x[n], forn < ng. It follows from

Eq. (2.52) or Eq. (2.62) that this definition implies the condition ,
- hln]=0, n<o0, - L (2.70)
for causality of linear time-invariant systems. (See Problem 2.62.) For this reason, it is

sometimes convenient to refer to a sequence that is zero for n < 0 as a causal sequence,

meaning that it could be the impulse response of a causal system.

Ideal Delay (Example 2.3) ,
hln] =é[n—n4],  n, apositive ﬁxed‘integ'er. (2.71)
Moving Average (Example 2.4) '

1 &
hn] = ————= 8[n — k]

=M1»+M2+1k=—M1 »
A ' (2.72)
L -My<n<M, -
0, otherwise.

Accumulator (Example2.6)

hin] = Z B[k

=;—oo )
: 1, n>0, : ’
={0, ot | - em
= u[n].
Forward Difference (Example 2.10) _ .
y ~ h[n]=d[n+1] - 8[n). : - 279

Backward Difference (Example 2.10)
' h[n] = 8[n] — 8[n —1]. ' ‘ (2.75)

10



The impulse response of the accumulator is infinite in duration. This is an example
of the class of systems referred to as infinite-duration impulse response (ITR) systems.
An example of an IIR system that is stable is a system whose impulse response is
h[n] = a"u[n] with |a| < 1. In this case, .

e ¢]
S=>"lal". (2.76)
" n=0
If Ja} < 1, the formula for the sum of the terms of an infinite geometric series gives
1 : :
= - . a7
1Tl < 00 2.77)

If, on the other hand, |a| > 1, the sumn is infinite and the system is unstable.

Since the output of the delay system is y[n] = xfn—ng];
~and since the delay system has impulse response h[n] = 8[n — n,], it follows that

x[n] * 8[n — ng] = é[n — ng] * x[n] = x[n — ngl. (2.78)
Forward —sample
x[n] dif(;?r‘::arfce > Onzcsl'r:;lpl _yﬁj ‘
(@) \ v
 h[n] = (8 + 1] = 8[n]) % 8[n — 1]
-One-sample .| F d
M |__delay diference [~ = 8[n— 1] % ([n +1] - 6[n])
(b) o . = 3["] —-.6[11 - 1]
Backward
x[n] dizftfcer:riize —-;E:]
©
- h[n] = u[n] % (8[n] = 8{n—1])
= u[n] — u[n — 1]
Backward-
~—ye{ Accumulator | diaf(f:erv:,e?xrce - = 4[n].
x[n} system | y1n] system x[n]

In general, if
‘a linear time-invariant system has impulse response A[n], then its inverse system, if it
exists, has impulse response /;[n] defined by the relation

h[n] * hi[n] = h;[n] % k[n] = S[n]. - (2.81) ‘

- Inverse systems are useful in many situations in which it is necessary to compensate
for the effects of a linear system.

14




2.5 LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

An important subclass of linear time-invariant systems consists of those systems for

which the input x[x] and the output y[n] satisfy an Nth-order linear constant-coefficient
difference equation of the form _ '

N M
Zaky[n — k] = Z bmx[n — m]. (2.82)
k=0 m=0

An example of the class of linear constant-coefficient difference equations is the ac-
cumulator system defined by

n

yinl= 3" #4. (2:83)

k=—00

By éeparating the term x[n] from the sum, we can rewrite Eq. (2.83) as

‘n—l

y[n] = x[n] + Z x[k]. (2.85)
k=~00
il =xnl+yn-1], (2.86)

from which the desired form of the difference equaﬁon can be obtained by grouping
all the input and output terms on separate sides of the equation:

yln] = yln ~ 11 = x[n]. | 87
o C? T
. \ B
One-sample
delay
yln-1]

Consider the moﬁng—aVerage system of Example 2.4, with M; = 0 so that the system
is causal. In this case,

Mz )
1 v
= —— n-— k ’ ¢ . (2'89)
=G g"[ L,
which is a special case of Eq. (2.82), with N =0,ap = 1, M = M3, and by = 1/(M;+1)
for0 < k< M,. .
Attenuator
—] 1 ' Acc;msl;;l:litor‘
x[n] M,+1) Y yln]

(My+1)
> sample
delay

12



Alternatively, if the auxiliary conditions are a set of auxiliary values of y[n], the
other values of y[n] can be generated by rewriting Eq. (2.82) as a recurrence formula,
i.e., in the form

N a L :
yin] = - Z —yln—Kkl+)» —x[n-k. (2.97)
k=1 0 k= 40 '

If the input x[n], together with a set of auxiliary values, say, -1, y[-2],..., y[-N ],is
specified, then y[0] can be determined from Eq. (2.97). With y[0], y[-1], .., Y[-N+1]
available, y[1] can then be calculated, and so on. When this procedure is used, y[n] is

said to be computed recursively; i.e., the output computation involves not onlythe input
sequence, but also previous values of the output sequence,

To summarize, for a system for which the mput and output satisfy a linear constant-
coefficient difference equation:

e The output for a given input is not uniquely specified. Auxiliary information or
conditions are required. '

o If the auxiliary information is in the form of N sequential values of the output,
later values can be obtained by rearranging the difference equation as a recursive
relation running forward in n, and prior values can be obtained by rearranging
the difference equation as a recursive relation running backward in n.

o Linearity, time invariance, and causality of the system will depend on the auxiliary

conditions. If an additional condition is that the system is initially at rest, then the
system will be linear, time invariant, and causal. ‘

(5), O=n<M,
ap

hln] = (2.107)

0, otherwise.
The impulse response is obviously finite in duration.

2.6 FREQUENCY-DOMAIN REPRESENTATION OF
| DISCRETE-TIME SIGNALS AND SYSTEMS

To demonstrate the eigenfunction property of complex exponentials fo.r discrete-time
systems, consider an input sequence x[n] = ¢/“" for —00 < n < 00, i€, a complex
exponential of radian frequency w. From Eq. (2.62), tl}e corresponding output of a
linear time-invariant system with impulse response A[n] is

yln] = f: h[k]e/*t=5)

k=0 (2.108)
= efon ( > h[k]e-f‘vk).
' k=—c0 _
If we define o
H(e/®) = Z h[kle ik, (2.109)
k=-00 - )

Eq. (2.108) becomes : v
' y[n] = H(e/*)eion, (2.110)

13



N The eigenvalue
H(e’®) is called the frequency response of the system. In general, H(e/®) is complex
and can be expressed in terms of its real and imaginary parts as

H(e/®) = Hy(e/*) + jHy(e/*) (2.111)
or in terms of magnitude and phase as

H(e/®) = | H(el) |/ <HE), (2.112)

f'\S a.simple example of how we can find the frequency response of a linear time-
Invariant system, consider the ideal delay system defined by

y[nl = x[n—ny), ' (2.113)

y[n] —_ ej‘w(n—nd) = g~ jond gjon

H(e.’w) — e-jw"d. ) . (2-114)

The magnitude and phase are
[HEe®) =1, - ' - (2116a)
<H(el?) = —wny. ‘ (2.116b)

Since it is simple to express a sinusoid as a linear combination of complex exponentials,
let us consider a sinusoidal input

x[n] = Acos(won + ¢) = ?e"”e"""" + —2-e"’¢e"“’°". (2.119)
Thus, the total response is
y[n] = .‘;[H(efm)eweiwo" + H(e~/o0)e /bgmivon], (2.121)

It h[n] is real, it can be shown (see Problem 2.71) that H(e~/¢®) = H"(e/*°). Conse-
quently,

yln] = AlH(e/®)| cos(won + ¢ +6),  (2122)

where 6 = < H(e/%) is the phase of the system function at frequeﬂcy @o.

Since H(e/®) is periodic with period 27, and since the frequencies @ and

- w4+ 2 are indistinguishable, it follows that we need only specify H(e/®) over an inter-
val of length 27, €.g.,0 < @ < 27 or —n < w < . The inherent periodicity defines
the frequency response everywhere outside the chosen interval. For simplicity and for
consistency with the continuous-time case, it is generally convenient to specify H(e/®)
over the interval —n < @ < . With respect to this interval, the “low frequencies” are
frequencies close to zero, while the “high frequencies” are frequencies close to 4. Re-
calling that frequencies differing by an integer multiple of 25 are indistinguishable, we
might generalize the preceding statement as follows: The “low frequencies” are those

that are close to an even multiple of 7, while the “high frequencies” are those that are
~ close to an odd multiple of 7.

M



Ideal Frequency-Selective Filters

Hy (el
? ) th(ejm)
1 .
D 1 [
| I 1 l
1T -w, W, T w - —W, 0 W, T @
Hy(e™®) :
1 pr(e}w)
[ 1
1 | _
e ~@p W, 0 W, wp, T L L
—ar ~w)y -w, 0 w, w, T o
The impulse reSponSe of the mo?ing;ével:agé ‘syste'm‘of Exarriple 24is
- -Mi<n<M
h[n]= M1‘+M2+1, 1=%=52,.
[ - otherwise.
Therefore, the frequency response is
. ", _
. 1 .
H(e?)= -—0© — —jen, 1
) = s 2 ¢ (2127)
n=—M; .
H(e/?) = . = : e .
M;+M; +1 1=¢-Jo 1+ My+1 sin(w/2)
|H(e/®)]
. /
] A I !
-2m ~7 = 2 " 27 ®
) 5 5
LH(e/?)
A o . - |
ANEENIEVEAN NN
-27\ \ -™N Y \ ™~ > 277\ o
. L

The magnitude and phase of H(e/®) are plotted in Figure 2.19for M; = Oand M, =4,
Note that H(e/®) is periodic, as is required of the frequency response of a discrete-
time system. Note also that | H(e/)| falls off at “high frequencies” and <« H(e/?),i.e.,
the phase of H(e/®), varies linearly with c,



2.7 REPRESENTATION OF SEQUENCES BY FOURIER TRANSFORMS

Many sequences can be represented by a Fourier integral of the form

x[n] = -Zln/ X(e/*Yei“ndy, (2.133)
where :
Xy = Y" x[nje~ion, (2.134)

n=—00

Equations (2.133) and (2.134) together form a Fourier representation for the sequence.
Equation (2.133), the inverse Fourier transform, is a synthesis formula.

Equation (2.134), the Fourier transform,” is an expression for computing
X (e’*) from the sequence x[n), i.e., for analyzing the sequence x[n] to determine how
much of each frequency component is required to synthesize x[n] using Eq. (2.133).

3Sometimes we will refer to Eq. (2.134) more explicitly as the discrete-time Fourier transform, or
DTFT, particularly when it is important to distinguish it from the continuous-time Fourier transform.

In general, the Fourier transform is a complex-valued function of . As with the
frequency response, we may either express X (e/*) in réctangular form as

X(e/*) = Xp(e!®) + j X1 (e/®) (2.1352)

or in polar form as

X(ejw) = [X(ejw)leiq X(el"’)_ (2.135b)

The phase <X (e/*) is not uniquely specified by Eq. (2.135b), since any integer
multiple of 2 may be added to < X(e/#)at any value of w without affecting the result of
the complex exponentiation. When we specifically want to refer to the principal value,
i.e., <X(e’*) restricted to the range of values between —n and 4+, we will denote this
as ARG[X(e/“)]. If we want to refer to a phase function that is

a continuous function
- of wfor 0 < @ < m, we will use the notation arg[ X (e/)]. '

By comparing Egs. (2.109) and (2.134), we can see that the frequency response ot
a linear time-invariant system is simply the Fourier transform of the impulse response

and that, therefore, the impulse response can be obtained from the frequency response
by applying the inverse Fourier transform integral; i.e.,

h[n} = % H(e')el*Mdo, (2.136)

-

Thus, if x[n] is absolutely summable, then X (e/®) exists. Furthermore, in this case, the
series can be shown to converge uniformly to a continuous function of w.

16



Let x[n] = a"u[n]. The Fourier transform of this sequence is 1¢

00 oo ]
X(ejw) = Zane—jum — Z(ae—jw)n
n=0 n=0
1 ey —f
= — iflae™’| <1 or |a]<1.
1—ge-Je

Clearly, the condition |a| < 1is the condition for the absolute summability of x[n};ie.,

Zlal" =7 _IM <00 ifjal<1. (2.140)

n=0

Let us determine the impulse response of the ideal lowpass filter discussed in Example
2.19. The frequency response is

Hip(e/*) = { 1, |ol<aw, . 2.144)

0, o <|w<m,

1 [e |
hip[n] = o / e/ dw

1 ) 1 . .
= 27jn [e7"] ciwc ~ 2njn (€77 — g=/ter) (2.145)
sin w.n _
= i -0 <N < 00,
Hy(e®), M=1 Hy e, M=3
TN\ N\

/ \\ L// \\,

-1 -~ 0 w, ro -7 NS o, 0 w, NS 7w
(a) (b) M sin
) : ) ; inw.n
HM(ef‘”), M=7 HM(EI'"), M=19. HM(eJ“’) = Z ”n‘-‘ e—]wn.
F AN A\ : Aaaale a s A n=—M

/v o v\ AR
I\/ \I\ . A F ..

~
. g 7 i oo
- Vow, 0 w. M Tw -7 Vg 0 P A

() (d)

However, hyp[n], as given in Eq. (2.145), is square summable, and
correspondingly, Hp(e/*) converges in the mean-square sense to Hip(e’®); i.e.,

T
_ limf | Hip(e’®) — Hu(e/*)|?dw = 0. -
M-—o0 —



Fourier Transform of a Constant

Consider the sequence x[n] = 1 for all n. This sequence is neither absolutely summable

nor square summable, and Eq. (2.134) does not converge in either the uniform or mean-

square sense for this case. However, it is possible and useful to define the Fourier
transform of the sequence x[n] to be the periodic impulse train?

X(e/®) = i 2m8(w + 277). | (2.147)

r=-—00

Another sequence that is neither absolutely summable nor square summable is

‘the unit step sequence u[n]. Although it is not completely straightforward to show, this

sequence can be represented by the following Fourier transform:

. 1 ad
) ¥ — .
U(e’?) T T r=§_°° né(w + 27r). (2.153)
SYMMETRY PROPERTIES OF THE FOURIER

TRANSFORM

A conjugate-symmetric sequence x,[n] is defined as a sequence for which x,[n] =
x;[—n], and a conjugate-antisymmetric sequence x,[n] is defined as a sequence for which

Xo[n] = —x3[—n], where * denotes complex conjugation. Any sequence x[n] can be -

expressed as a sum of a conjugate-symmetric and conjugate-antisymmetric sequence.
Specifically, '
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x[n] = x,[n] + x,[n], : (2.154a)
where :
Xe[n] = L(x[n] + x*[~n]) = x;[—n] ' (2.154b)
and 7 .
x,[n] = ,%(x[n] = x*=n]) = —x}[-n]. (2.154c)
Sequence Fourier Transform
x[n] X(el®)
1. x*[n] _ X*(e™/®) jon jo o
2. x*[-n] : X*(el®) X(e!?) = X(e )+ Xo(e] )
3. Re{x[n]} X.(e/*) (conjugate-symmetric part of X (e/®)) o N L
- 4, JTIm{x[n]} X,(e/®) (conjugate-antisymmietric part Xe(e’) = 3 [X (e )+ X (e )]
of X (ef®)) '
5. xe[n] (conjugate-symmetric part  Xg(e/?) = Re{X (e/?)} Xo(e!®) = %[X(elw) - X*(e"j“’)],
of x[n]) » :
6. x[n] (conjugate-antisymmetric  jXr(e/®) = jTm{X(e/?))
part of x[n]) ,
The following properties apply only when x[n] is real: Xe(ej“’) = X (e_j“’)
7. Any real x[n] X(el?) = X*(e~10) (Fourier transform is
v : | _ conjugate symmetric) Xo(e ,'w) - X: (e ,-w).
8. Any real x[n] Xr(e!®) = Xr(e=/%) (real part is even)
9. Any real x[n] Xi(e/®) = —X;(e~/*) (imaginary part is odd)
10. Any real x[n] _ |1 X (e/®)| = | X (e‘f“’)l (magnitude is even)
11. Any real x[n] q4X(el?y = —«X(e~/*) (phase is odd)
12. x.[n] (even part of x[n]) Xr(e'®) '
13. x,[n] (odd part of x[r]) i X1(el®)



Hlustration of Symmetry Properties - 19

x{n] = a™ufn]

5
: 1 . 4
joy .
X(e )—l—ae—fﬂ’ if |la| < 1. ,é )
Then, from the properties of complex numbers, it follows that E. 2
. 1 ;
Joy — -~ _ —jo 1
X(e™) 1—~age-je X7 0 1 : )
. 1-acosw ; e -2 0 H i
Xolef®) = = Xn(e—'® 2 2 5
&(e™) 1+4a? —-2acosw R( ) Radian frequency (w)
: —asinw ; A
joy = = —X;(e~7® 1.0
X (") 1+a?—2acosw Xi(e™) o~
o 1 : ) § 05+ AZ-=<
(e )| = =1X(e"7? g - N\
i 405 'S et ?
. — . - - LT
<X(e/®) = tan™! (_M) = —aX(e) £
l—acosw -10 L 1 ) .
I
. B Radian frequency (o)
2.9 FOURIER TRANSFORM THEOREMS
, - o
x[n] <= X(e/®).
Sequence Fourier Transform
x[] X(el%)
yir] Y(e/®) |
L axn] +by[n] aX(e/*) + b¥(el®) Linearity
2. x[n—n4] (nq aninteger) e fond X(eiw) Time SHIftiﬂg
3. efoon[n] b (LD Frequency Shifting
4. x[-n) A X(e /@) Time Reversal
X*(e/®) if x[n] real.
5. nxfn] jdﬁii(e"“’) Differentiation in Frequency
6. x[n] » y[n] X(e/*)Y(e/®) .
1 [ The Convolution Theorem
7. x[n]yln) 5= / X(e’®)Y(e/)ag
Pafseval's theorem:
00 4
2_ 1 AN : .
8 D bl = 5 [ (@)l de ' : Parsevals Theorem
. n=-—00
o0 1 3. 4
) Ml = Jjo jew
9 Z *nly'[n] = — [ . XYY (e/*)dw
. B=—00

The function | X (e/¢)|? is called the energy density spectrum.



Thus, convolution of sequences implies multiplication of the corresponding Fourier

transforms. Note that the time-shifting property is a special case of the convolution

property, since

and if h[n] = §[n — ny], then y[n] = x[n] * 6[n — ny] = x[n — n,). Therefore,

most Fourier transform theorems is evident when we comp

8[n — ny4] DL e jena

H(e/?)y = e~ iom

modulation theorems.

of sequences (the convolution sum) is equivale
periodic Fourier transforms, and multiplication of sequences is equi
convolution of corresponding Fourier transforms.
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(2.170)

and Y (e/®) = e7/om X (/)

The duality inherent in
are the convolution and
Specifically, discrete-time convolution
nt to multiplication of corresponding
valent to periodic

FOURIER TRANSFORM PAIRS
Sequence Fourier Transform
1. 8[n) 1
2, 8[n - ng) e—Jono
w -.
3.1 (~00<n<) , Z 2it8(w + 27k)

10.

11.

. a"ufn] (lal <1)

. ufn]
. (n+1)a"un] (laj <1)
rsinwp(n + ‘1)
—_— 1
S (<)
sin wen
nn
_J1. 0snzM
- x[n} = 0, otherwise
e!wD"
cos{won + ¢)

k=—o00
1
1 —age-Jo

0o
et ) Wt
k=—00

1
(1 _ ae—jw)2

: 1
1—2r coswpe™Jo + r2e~i2

0N — 11 lw! < We,
,X(elw) - {0, we <lw| <7

sinfw(M + 1)/2] - loMP2
sin(w/2) -

o
z 218(w — wo + 21k)

’ k=—00

oo
Z [7e8(w — wo + 27k) + e I¥8(w + wp + 27K)]

k=—00




