COMPUTATION OF THE
DISCRETE FOURIER
TRANSFORM |

Consequently, computation of the N-point DFT
corresponds to the computation of N samples of the Fourier transform at N equally
- Spaced frequencies wy = 27k/N, ie., at N points on the unit circle in the z-plane, In
| this chapter, we discuss several methods for computing values of the DFT. Thé major

focus of the chapteris a particularly efficient class of algorithms for the digitalcomputa-
tion of the N-point DF T. Collectively, these efficient algorithms are called fast Fourier
transform (FFT) algorithms. ‘

the DFT of a finite-length sequenéé of length & is
N-1 ~

X[ =3"xnW,  k=0,1,...,N—1, - (9.0)
n=0

where Wy = e~/(2%/N)_The inverse discrete Fourier transforfiis piven by

e | .
*nl =5 XKW, n=0,1 L N-1. 9:2)
k=0 .

To compute all N values thérefdré"fequireé a total 6f VZ complex multiblicéiions

and N(N — 1) complex additions.

Most approaches to improving the efficieney.of the computation of the DFT ex-
ploit the symmetry and periodicity properties of W specifically,

L W,f,[N = Wikn = (Wkny (complex conjugate symmetry);
2, Wkr = W,'f,("fN) = W,f,k+N)" (periodicity in n and k).

FFT algorithms are based on'the fundamental principle of decomposing the com-
putation of the discrete Fourierdransform of a sequence of length N into successively
smaller discrete Fourier transforms. The manner in which this principle is implemented
leads to a variety of differentalgorithms, all with comparable improvements in computa-
tional speed. - :

DECIMATION-IN-TIME FFT ALGORITHMS

In computing the DET, dramatic efficiency results from decomposing the computation
into successively smaller DFT computations. In this process, we exploit both the sym-
metry and the periodicity of the complex exponential WE" = e=/@7/N)kn_Algorithms in
which the decomposition is based on decomposing the sequence x[n] into successively
-smaller subsequences are called decimation-in-time algorithms.

With X[k] given by
N-1 :
XK= "x[n]Wr,  k=0,1,..., N—1, (9.10)
n=0 . ‘ .
and separating x[n] into its even- and odd-numbered points, we obtain
XK= > x[n]wik+ > Wik, (9.11)

n even n odd
or, with the substitution of variables 7 = 2r for n evenandn = 2r + 1 for n odd,
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If N/2is even,

(N/2)-1 (N/2)-1
XK= 3 x2rWh*+ S x[or + 1]w@ Dk

=0 r=0

' (9.12)

(Nj2)-1 (N/2)-1

= Y x2rl(Why*t + wk > x[er + 1) (W,
r=0 ) r=0 }
Wy = e 2@IN) — o=i2n/(ND) (9.13)
{N/2)-1 (N/2)-1 ’
XK=y x[2rTWE, + wk Z x[2r + W, : {10
r=0 r=0 . .

= Glk]+ W{H[K], k=01,...,N—1.

Although the index kranges over N values, k= 0,1, ..., N —1, each of the sums must be |

computed only for k between 0 and (N/2) — 1, since G [k] and H[k]are each periodic in
k with period N/2.

G[0] |
x[0] o—>— ——— > X0}
\ /yg
G[1]
x[2] o—— N . > > : X1}
= —point wl
x[4lo—f  DFT x12]
. N/ 2
| W”
x[6] o> _ S e
XX X 0
x{1] o-—— k > 4){[4]

3] o >0 X[5
R AN .
DFT AN
x[5] o—»—o e %X[ﬂ
(7] o | ——%x11]

H[3] [ Wy .
Eq. (9.14) requires the computation of two (N/2)-point DFTs, which in turn requires
2(N/2)? complex multiplications and approximately 2(N/2)? complex additions if we
do the (N/2)-point DFTs by the direct method. Then the two (N/2)-point DFTs must
be combined, requiring./V complex multiplications, corresponding to multiplying the
second sum by W¥, and. complex additions, corresponding to adding the product
obtained to the first sum. Consequently, the computation of Eq. (9.14) for all values
of k requires at most N'+ 2(N/2)? or N + N%/2 complex multiplications and complex
additions. It i§ easy. to verify that for N > 2, the total N + N2/2 will be less than N2.
(N/2)--1 (N/4)-1 (N/4)-1

&

<2
=

.

GI="0 slriwif, = > gRaWi+ Y glze+ 1wl (915)
) r=0 £=0 =0
or A
(N/4)~1 , (N/4)~1 ;
Glkl= Y gl2aWi,+ Wk, 3 gl2e+ 11w, (9.16)
=0 £=0 o

Similarly, H[k] would be represented as

, (N/4)-1 (NA-1
Hlk= Y hROWHE+WE, S h2e+ 11w, (9.17)
£=0 =0
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Because of the shape of the flow graph, this elementary computation
is called a butterfly. Since ‘

Wyt = e J@RININE _ pmin Qg (9.18)
the factor Wy;t"/? can be written as |
WitN? = whlwr — _wr | (9.19)

. When the (N/2)-point trans-
forms are decomposed into (N/4)-point transforms, the factor of (N/2)? is replaced by
N/2 + 2(N/4)?, so the overall computation then requires N 4+ N + 4(N/4)? complex
multiplications and additions. If N =/2%;.this.can be done at most v = log, N times,
so that after carrying out this decomposition as many times as possible, the number of
complex multiplications and additions is.equal to Nv = Nlog, N.

For example, if N = 210 1024,

then N? = 220 = 1,048,576, and N log, N = 10,240, a reduction of more than two
orders of magnitude! -

DECIMATION-IN-FREQUENCY FFT ALGORITHMS

The decimation-in-time FET algorithms are all based on structuring the DFT compu-
tation by forming smaller and smaller subsequences of the input sequence x[r]. Alter-
natively, we can consider dividing the output sequence X[k] into smaller and smaller
subsequences in the same manner. FFT algorithms based on this procedure are com-
monly called decimation-in-frequency algorithms. ‘

Since
N-1 | ,
X[ =>"x[n]Wik,  k=0,1,...,N-1, (9.23)
n=0 '

the even-numbered frequency samples are

N-1 ’
X@rl=3 sAnWi®,  r=01,..,(N2)-1, (924)

n=0




which can be expressed as

(N)-1 N-1 L ' '
X[2rl= 3" x[nwi+ Y Wi, (9.25)
' n=0 n=N/2

With a substitution of variables in.the second summation

(N/2)-1 (N/2)-1

n=0

X[2r1= 3 x[nWE + Y xln+ (N2 W] (9.26)
. n=0 n=0
WZ'["+(N/2)] W2rn WrN — WI%Im’ - : (9.27)
(N/2)-1 o N
Xer]= > ]+ x[n - (NDW r=0,1,..,(N/2)21. (9.28)

We can now consider obtaining the odd-numbered freqﬁency points, given by

. N-1

X[2r+1] = Zx[n]W"(z’“) r=0,1,L4(N2)-1. (929
n=0
(V)1 w4
X2r+11= 3 w4 37 dwiery, (9.30)
n=0 n=N/2 .
N-1 - (N/2)-1 _ ,
Z x[n]W;;(Zr-{-l) = Z x[n+( N/z)]wgr+(N/2)](zr+1)
n=N/2 n=0
N, N1 | |
W( /2)(2’+1) Z n+(N/2)]Wn(2r+l)
n=0
(N/2)-1 -
= =00 xln+ (N2WRerD, (9.31)
n=0 [

where we have used the fact that W% = 1 and WM = 1,

(W/2)-1 |
X(2r+1]1="Y" (x[n] - x[n+ (N2)h WD, 9.32)

n=0

or, since Wi= Wy,
(N/2)-1
X[2r +1] Z (x[n] — x[n+ (1\7/2)])“’"l N2>
2 (933)
r=0.1,....(N/2) 1.
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same for the decimation

x[0] i 7&] > ——o X[0] x[0]
gll] '
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Thus, the total number ot computations is the

-in-frequency and the decimation-in-tifne algorithmes.




Algorithms for More General Values of N

Although the special case of N a power of 2 leads to algorithms that have a simple
structure, this is not the only restriction on N that can lead to areduction in computation
inthe DFT. Indeed, in many cases it is desirable to evaluate the DFT efficiently for other
values of N, and the same principles that were applied in the power of 2 decimation-in-
time and decimation-in-frequency algorithms can be employed when N is a composite
integer, i.e., the product of two or more integer factors. For example, if N = RO, it
is possible to express an N-point DFT as either the sum of R O-point DFTs or s the
sum of ) R-point DFTs and thereby obtain reductions in the number of computations.
If N has many factors, the process can be repeated for each of the factors, Algorithms
_ for general composite N involve more complicated indexing than the power of 2 case.

The Chirp Transform Algorithm

Another algorithm based on expressing the DFT as a convolution is referred to as
the chirp transform algorithm (CTA).

To derive the CTA, we let x[n] denote an N-point sequencé and X (e/*) its Fourier
transform. We consider the evaluation of M samples of X(e/“)that are equally spaced
in angle on the unit circle

wk=w0+kAw, k=0,1,...,Mf?1, (9.36)

where the starting frequency wo and the frequency incremeht Aw can be chosen ar-
bitrarily. ’ - .
N-1

X(@*) = xnlei*", “k=01,...,M-1, (9.37)
n=0 !
or, with W defined as
W = e_iAw 2 (938)
— L
X(e/9) = Z x[n]e~Iwonypynk (9.39)
n=0

To expréss X(e/*)asa conyolution, we use the identity

nk=3n* + K~ (k—n)?] (9.40)
N-1 A : ,
X(ej“”‘) - Z x[n]e—ja)on Wn2/2Wk2/2Wi(k—n) /2. (941)
n=0 ‘
Letting |
gln] = x[n]e'—iwonwnzﬂ, (9.42)

we can then write

n=0

N-1
X(eio) = Wh2 (Z gln] W-(k—n)Z/z) . k=0,1,..., M—1. (9.43)
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N-1 1
X(elony = wr'r2 (Z g[k]w-<"-’<>2/2) y  n=0,1,...,M-1. (9.44)
k=0

The sequence W~""/2 can be thought of as a complex exponential sequence
with linearly increasing frequency nAw. In radar systems, such signals are called chirp

w-n 21 ' X .
x[n] gln] X (efomy

e Jegnyyn¥2 W2

Since g[n] is of ﬁhitezduration, only a finite portion of the éequence W=*/2 is used in
- obtaining g[n] x W-"/2 gyer the intervaln = 0, 1, .. M1y Specifically, that portion
fromn=~(N—1)ton=M—l.Letusdeﬁne ‘

hln] = {W'”Z/Z» ~(N-1) <n <M=,

0, otherwise. (9.45)
g« W = elnl xhn], n=o01, M, ~(9.46)
h(n]
x[n] - gln] yln] iy
.,e:l'wonWHZIZ : WRZ/Z . X(e]wn:) = y[n], n= Ov 1» ey M- 1.
Evaluation of frequengy samples using the procedure - has

a number of potential advantages. In general, we do not require N = M as in the FFT

algorithms, and neither Nonor M need be composite numbers. In fact, they may be

prime numbers if desired. Fuarthermore, the parameter wy is arbitrary. This increased

flexibility over the FFT does not preclude efficient computation, since the convolution
can beimplemented efficiently using an FFT algorithm




