Home Project Ne3 - Solution

Due on July 3, 2009

Exercise 1
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Exercise 2

. Convolving two symmetric sequences yields another symmetric sequence. A symmetric sequence con-
volved with an antisymmetric sequence gives an antisymmetric sequence. If you convolve two antisym-
metric sequences, you will get a symmetric sequence,

A ha[n] # ha[n] # ha[ni] = (hy [n] * hy[n]) # hy[n]

hi[n] * ha[n] is symmetric about n = 3, (-1<n<)
(R [n] * ha[n]) + ha[n] is antisymmetric about n = 3, (=3<n<9)

Thus, system A has generalized linear phase
B: (hi[n] * hs[n]) + hyjn]

hy[n] * ha[n] is symmetric about n = 3, as we noted above. Adding hs[n] to this sequence will destroy
all symmtery, so this does not have generalized linear phase,



Exercise 3
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(c) Use Direct Form II:




Exercise 4

1. H(z) =1 —rz 12345

2. Yes, because all zeros and poles are inside the unit circle.

3. Due to the fact that the system is minimum phase, its inverse system
(H(z))™! is a stable and causal system. Thus, the original signal will be
recovered by convolving r(n) with the response of the inverse system.

4. r=10.5.



