SAMPLING OF
CONTINUOUS-TIME SIGNALS

— C/D e
x.(?) x[n] =x(nT)

!

) =xaT). oo <n<oo G

In Eq. (4.1), T is the sampling period, and its reciprocal, f, = 1/T. is thessampling
frequency, in samples per second. We also express the sampling frequéncy as 2, = 27 /T
when we want to use frequencies in radians per second.

In a practical setting, the operation of sampling is implemented by an analog-to-
digital (A/D) converter. Such systems can be viewed as approximations to the ideal
C/D converter. . _ ’ ,

The sampling operation is generally not invertible; d.c.,.given the output x[n],
it is not possible in general to reconstruct Xc(t), the input to the sampler, since many
continuous-time signals can produce the same output sequence of samples. The inherent
ambiguity in sampling is a fundamental issue in signal, processing. Fortunately, it is
possible to remove the ambiguity by restricting the input signals that go into the sampler.

To derive the frequency-domain relation betweefi'the input and output of an ideal C/D
converter, let us first consider the conversion.of xc(t) to x,(r) through modulation of
the periodic impulse train '

o

s(t)= 3.8t~ nT), (42)

n=--oC

where 8(¢) is the unit impulse function, orDirac delta function. We modulate s(¢) with
xc(t), obtaining

Xy (P xoft)s (1)
= x.() zx: 8(t —nT).

n=-—-o¢

(4.3)
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_ xs(t) can be expressed as
B o]
()= Y x(nT)s(t —nT). (4.4)

n=-—-0oc



The Fourier transform of a periodic impulse
train is a periodic impulse train (Oppenheim and Willsky. 1997). Specifically,

5(jQ) = %’é i 5(2 — k). (4.5)

k::—oc

where Q, = 27/ T is the sampling frequency in radians/s. Since

X,(j9) = 5= Xe(j2) # S(if),

where % denotes the operation of continuous-variable convolution. it follows that -

) 1 & . '
XD =5 3 Xlj(Q-k)). | (4.6)
k=—oc
X.(j0) ()
1 _ 27
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~ Consequently, x.(r) can be recovered from xs(t) with an ideal
lowpass filter. This is depicted in Figure 4.4(a), which shows the impulse train modu-
lator followed by a linear time-invariant system with frequency response H, ().

Since
Xr(]Q) = H,(jQ)XS(jQ), (4~8)
it follows that if H, () is an ideal lowpass filter with gain 7 and cutoff frequency Q.
such that
QN < Qe < (25 — Q). : (4.9)

then
| X,(j2) = X(j). | (4.10)
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Nyquist Sampling Theorem: Let x:(r) be a bandlimited signal with

X(jQ)=0 for|Q > Qn.

~Then x.(t) is uniquely determined by its samples x[n] = X (nT)n=0,+1,42, ..., if

The frequency Q is commonly referred to as the N yquistfrequency,
29y that must be exceeded by the sampling frequency is called the

Since

and

it follows that

Consequently. |

or equivalently,

Qs = - > 2Qn.

x

X (j) = ) x(ad)e I8,

H=—

x[n] =xc(nT)

o &

X(ejm): Z x[n]e‘j‘”",

n=—x

X5(j2) = X(€)uwear = X(e/97).

X = 2 3 X(j(R - k9,

k=—-oc

L ady 2k
xen =7 3 x(i(3-5)).
k=—oc

(4.14b)

and the frequency
Nyaquist rate.

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4:20)
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Sampling and Reconstruction
of a Sinusoidal Signal '

If we sample the continuous-time signal x.(t) = cos(4000xt) with sampling period
T = 1/6000, we obtain x[n] = x.(nT) = cos(4000x Tn) = cos(wyn). where wy =
40007 T" = 2 /3. In this case, Qs = 27/ T = 120007, and the highest frequency of the
signal is ¢ = 40007 so the conditions of the Nyquist sampling theorem are satisfied
and there is no aliasing. The Fourier transform of x.(¢) is

X (jQ) = m8(S2 - 40007) + 78(S2 + 40007).
XU 1,6

=16000m  —120007  -BO007 - 60007 - 40007 0 40007 60K SO 120000 166007 )
(a)

X(efy = X (jwl Ty

27 ®

(b}

From Egs. (4.18)-(4.20), we see that X (e/®) is simply a frequency-scaled version of

X, (j2) with the frequency scaling specified by w = Q7. This scaling can alternatively -

be thought of as a normalization of the frequency axis so that the frequency Q = € in
X;(j2) is normalized to w = 2x for X (e/*){ Thefact that there is a frequency scaling
or normalization in the transformation from Xi(;j2) to X (e/?)is directly associated
with the fact that there is a time normalization in the transformation from x, (1) to x[n].

] x
Xo(JQ) =i D VX(i(R - k)

h==nr

RECONSTRUCTION OF A BANDLIMITED SIGNAL

FROM ITS SAMPLES \
) If we are
given a sequence of samples, x[n], we can form an impulse train x,(t) in which successive
impulses are assigned an.area equal to successive sequence values, i.e.,

20

x() = > x[n]s(t —nT). (422)

N=--00
The nth sample is associated with the impulse at t = nT, where T is the sampling
period associated with the sequence x[n]. If this impulse train is the input to an ideal
-lowpass continuous-time filter with frequency response H,(j2) and impulse response
h, (1) hen the output of the filter will be

>
%)= " x[nlh,(t —nT). (4.23)
n=-—00
The corresponding impulse response, 4, (1),
is the inverse Fourier transform of H,(j$2), and for cutoff frequency 7/ T it is given by

sin(zt/T)

hn(t) = 7t)T

(4.24)

. where we have used the fact that scaling the independent variable of

an impulse also scales its area, i.e., 8(w/ T ) = Té(w).



o

L =Y x[n]smjf(’t(i ;';?}/TT] (4.25) o

From the frequency-domain argument of Section 4.2, we saw that if x[n] = x.(nT),
where X.(jQ) = 0 for || > =/T, then x,(¢) is equal to x.(z).

n=-—00
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As suggested by this figure, the ideal lowpass
filter interpolates between the impulses of x,(¢) to construct a continuous-time signal

X (1).
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It iswseful to formalize the preceding discussion by defining an ideal system for
reconstructing a bandlimited signal from a sequence of samples. We will call this system
the ideal discrete-to-continuous-time (D/C) converter.



The properties of the ideal D/C converter are most easily seen in the frequency

domain. To derive an input/output relation in this domain, consider the Fourier trans-
form :

. 43
X(jQ) = > x[n]H,(jQ)e %",

By factoring H,(j$2) out of the sﬁm. we can write
X, (jQ) = H.(jQ)X (/2T (4.28)

Equation (4.28) provides a frequency-domain description of the ideal D/G converter.
According to Eq. (4.28), X (¢/“) is frequency scaled (i.e., w is replaced by 7). The ideal
lowpass filter H,(j2) selects the base period of the resulting periodic Fourier transform
X (¢/%") and compensates for the 1/ T scaling inherent in sampling, Thus, ifithe sequence
x[n] has been obtained by sampling a bandlimited signal at the Nyquist rate or higher,
then the reconstructed signal x, (1) will be equal to the original bandlimited signal.
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DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS

|
' Discrete-fime

——— C/D > » p/C >

x (1) | xp] LMy | ¥, (1)
| 1 1 {
' T T [
L ]

If the discrete-time system in Figure is linear and time invariant, we then have
Y(ej‘”) = H(ef'“’)X(ef‘“), (4.33)

where H(e/*) is the frequency response of the system or, equivalently;.the Fourier
transform of the unit sample response, and X (e/“)and Y(e/®) are the Fouriertransforms
of the input and output, respectively. Combining

Y,(jQ) = H,(jQ)H(e/*T) X (/7). (4.34)
Y.(jQ) = H,(jQ)Y(e/*T)

_fTY (T, Q) <7/ T
10, otherwise.

rR) = B e 3 x g ). e

k=—oc

If X.(j2) = 0 for |$2| > m/T. then the ideal lowpass reconstruction filter H.(jQ)
cancels the factor 1/ T and selects only the term in Eq. (4.35) for k = 0; i.e.,
v o | HE®TYX (7)., 19 <x/T.
- Thus, if X.(j) is bandlimited and'the sampling rate is above the Nyquist rate, the
output is related to the input throfighan equation of the form

V(i) = Her(j Q) X (j Q). (4.37)
where
. iery, T.
He () = {g(e ) ;g: ; ZT ' (4.38)

Thatis, the overall continuous-time system is equivalent toa linear time-invariant system
whose effective frequeneyresponse is given by Eq. (4.38).

Impulse Invariance

Continuous-time Discrete-time
—>1 LTIsystem 1  C/D »{ LTI system » D/C f—t—
Y=y (1)

|
l
0 1 BROHGY | v : xn] | kil He?y | v
|
I

(a)

Hy(JQ) = H ()
(b)



With H.(j2) bandlimited, Eq. (4.38) specifies how to choose Hi
H(e/®) so that He(jQ) = H(j ). Specifically,

H(e!*) = H(jo/ T), lw| < m, (4.49)
with the further requirement that 7 be chosen such that
H.(jQ)=0. |2] > 7/ T. (4.50)

Under the constraints of Eqs. (4.49) and (4.50), there is also a straightforward and useful
relationship between the continuous-time impulse response 4.(¢) and the discretetime
impulse response A[n]. In particular, as we shall verify shortly,

h[n] = Th(nT): (451)

i.e., the impulse response of the discrete-time system is a scaled, sampled version. of
h.(t). When h[n] and h.(r) are related through Eq. (4.51), the discrete-time system is
said to be an impulse-invariant version of the continuous-time system. :

A Discrete-Time Lowpass Filter Obtained By
Impulse Invariance

Suppose that we wish to obtain an ideal lowpass discrete-time filier with cutoff fre-
quency w, < 7. We can do this by sampling a continuous-time ideal lowpass filter with
cutoff frequency Q. = w./T < 7/ T defined by

. 1, 19 < Q..

The impulse response of this continuous-time $ystem is

in(Q.t
h(_([)_—_— .Sill(___)
!

so we define the impulse response of the discrete-time system to be

Aln) = Th,(nTY=T

sin(2.nT) . sin(w.n)
anT an

where w. = Q.T. We have dlready shown that this sequence corresponds to the
discrete-time Fourier transform

; 1. o < w,.
JooNy
(™) = {(). we < |lw] < 7.

which is identical to /:(jw/ 7). as predicted by Eq. (4.56).

CHANGING THE SAMPLING RATE USING
DISCRETE-TIME PROCESSING

—_— M
x[n) xqla] = x[nM]

Sampling Sampling
period T period T'=MT



Sampling Rate Reduction by an Integer Factor

The sampling rate of a sequence can be reduced by “sampling” it, i.e.. by defining a new
sequence
xq4ln] = x[nM] = x,(nMT). (4.71)

sampling with period 7" = MT. Furthermore, if X.(jQ) = 0 for || > Qu, then x4[n]

is an exact representation of x.(¢) if 7/ T = 7 /(MT) > Qu. That is, the sampling rate

can be reduced by a factor of M without aliasing if the original sampling rate was at least
M times the Nyquist rate or if the bandwidth of the sequence is first reduced by a factor
of M by discrete-time filtering. In general, the operation of reducing the sampling rate
(including any prefiltering) will be called downsampling. First recall that the

discrete-time Fourier transform of x[n] = x.(nT) is
. 1 & w 2k
oy =— %" (227N 472

Similarly, the discrete-time Fourier transform of x4[n] = x[nM]& x.(nT’) with T" =
MTis '

. R fw  2mr
Xq(e”) = F,;m X, (] (‘7‘1‘, - —T—'—)) : ' (4.73)
Now, since T' = MT, we can write Eq. (4.73) as -
: 1 > ® 2mr :
19y = | == ==—=11. 4.74
xate) = 5 3 X (i (Snet5ir)) (4.74)

= L2 [1 S ol 2]

i=0 k=—oc

The term inside the square brackets‘inEq. (4.76) is recognized from Eq. (4.72) as

X( f(w——eri)/M) . i v (i w—2mi 2k @77)
¢ T \I\TmMr T T ) '
Thus, we can express Eq. (4.76) as
= .
Xd(e/m) — _M z X(ej(w/M—Zm/M))_ ' | (478)

i:O

, If we compare Egs. (4.73) and
(4.78), we see that.Xs(e/) can be thought of as being composed of either an infinite set
of copies of X, (/). frequency scaled through w = 7" and shifted by integer multiples
of 27/ T*(Eq. (4.73)). or M copies of the periodic Fourier transform X (e/), frequency
scaled by M and shifted by integer multiples of 27 (Eq. (4.78)). Either interpretation
makes it clear that X,(e/®) is periodic with period 2x (as are all discrete-time Fouricr
transforms) and that aliasing can be avoided by ensuring that X (e/*) is bandlimited.
ie., :

X(?) =0, owy<]|ol <. (4.79)
and 27 /M > 2wy,

14
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In this example, 27/ T = 4Qy: i.e., the original sampling rate is exactly twice the
minimum rate to avoid aliasing. Thus, when the original sampled sequence is down-
sampled by a factor of M = 2, no aliasing results.



Lowpass filter
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From the preceding discussion, we see that a general system for downsampling by

a factor of M is the one shown in Figure

. Such a system is called a decimator, and

downsampling by lowpass filtering followed by compression has been termed decimation

(Crochiere and Rabiner, 1983).
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Lowpeass filter
————!  Gain=1 —> M p——
x{n] Cutoff=7/M | ¥[n] Xqln] = x[nM]
Samplin Sampling Samp!ing
perigd 75 period 7 period T"=MT

From the preceding discussion, we see that a geﬁeral system for downsgmpling by
a factor of M is the one shown in Figure . Such a system 1s called a deczmazjor, apd
downsampling by ldwpass filtering followed by compression has been termed decimation

(Crochiere and Rabiner, 1983).

Increasing the Sampling Rate by an Integer Factor

: Lowpass filter
N ‘L Gain=1L |-t
x[n] - x.[n] | Cutoff = w/L | L]
Sampling Sampling Sampling
period T period T'= T/L period T' = 7/L
Figure shows a system for obtaining x; [r] fromx[»] using only discrete-time pro-

cessing. The 'system on the left is called a sampling rate expander (see Crochiere and
Rabiner, 1983) or simply an expander. Its output is

_Sxln/L), n=0%L, +21., ...
xeln] = {O, otherwise, (4.84)
or equivalently,
0 X .
xe[n] =0 >0 x[kls[n — kL]. v (4.85)
k=—=cc

The Fourier tpansform of x, [n] can be expressed as

X,(el¥) = Z ( i x[k)s[n — kL]) e iwn

Voo e (4.86)
= 3 xlkle itk = x(eiot),
k:—oo

Thus, the Fourier transform of the output of the expander is a frequency-scaled -
version of the Fourier transform of the input; i.e.. w is replaced by wL so that w is now
normalized by

w=QT" | (4.87)

ASin the case of the D/C converter. it is possible to obtain aninterpolation formula
for xi[n] in terms of x[n]. First note that the impulse response of the lowpass filter
is
| sin(rn/L)
hiln) = ———=7
| 1i[n] an/L (4.88)
- Using Eq. (4.85), we obtain

iixwfmhm-wLyu.

m(n—kL)/L (4.89) ..




X&)

Q

X (eh) = X (el

Hi(eh)
L
j 1 | |
-2 —Tr o ki T 27 w=0T
L L

We see that X (¢/*) can be obtained from X, (/") by correcting the arhplﬂ
tude scale from 1/ Tto.1 /7" and by removing all the frequency-scaled images of X.(jR2)
except at integer multiples of 27, ’

In general. the required gain would be L. since L(/T)=[1/(T/L)] = 1/T', and the
cutoff frequency would be 7/ L. ‘

That system is therefore called an interpolator, since it fills in the missing

samples, and the operation of upsampling is therefore considered to be synonymous

with interpolation.

M



Changing the Sampling Rate by

Interpolator

a Noninteger Factor

Decimator

} !
! !
Lowpass filter | | | Lowpass filter
—L ‘L »{ Gain=1L L :‘; Gain =1 —> ‘M_th._,
x[n] | t[n] | Cutoff=miL | | xlnl | | Cutoff = w/M | %[n] %)
| | |
! ; ! A
Sampling T
period: . T T T ™
L L L L
Lowpass filter
x[n] - 1 . [,,J: g‘iltr:);.—lj i[n]; M p— 7S
’ N min(miL, wiMy| d
Sampling
period: o T T ™
L L L

If we wish to change the sampling period to 7" = (3/2) 1,
we must first interpolate by a factor L = 2 and then decimate by a factor of M = 3.
Since this implies a net decrease in sampling rate, and the original signal was sampled
at the Nyquist rate, we must incorporate additional lowpass filtering in order to avoid
aliasing. If we were interested only in interpolating by a factor of 2. we
could choose the lowpass filter to have a cutoff frequency of w. = 7/2 and a gain
of L = 2. However, since the output of the filter will be decimated by M = 3, we

must use a cutoff frequency of w. = /3, but the gain of the filter should still be
2 as in Figure ’

X Q)
1
Ly Dy 0
X(()j‘”)
- 1
. 7 .
/I\/\/l\
2 -1 ™ 2 w =07
X"(ejw)
1 (L=2)
‘ T
\/I\A/\/J\/I\/
47 21 " T 2T 47 2 w=QT/].
- — -==  -= - = — =27
L L L L L L
H (el
(I( ) (M: 3)
L
] | ] |
-2 - k. w=T T 27 w =0T/
M M



Xi(ef®y = H (e/) X, (e™)

S . w = OTMIL

2 -
Note that the shaded regions show the aliasing that-would

have occurred if the cutoff frequency of the interpolation lowpass filter had beenz/2
instead of /3.

Prefiltering to Avoid Aliasing

In processing analog signals using discrete-time systems..it 18 generally .desirabbltlz to

minimize the sampling rate. This is because the amount of arithmeticprocessing required

to implement the system is proportional to the number of samples. to be. processpd.

If the input is not bandlimited or if the Nyquist frequeney ofithe Input is too high,
- prefiltering may be necessary.

Anti- Discrete-

> aliasing > C/D > time »  D/C
x(n | filter | x@) x{n] | system |yin] y:(1)

HaaG0) ! f
’ In this context, the lowpass

filter that precedes the C/D converteris called an antianasing filter. Ideally, the frequency
response of the antialiasing filter would bé

. L)< Q. <n/T, '
Ha(j) = {o, ;Q: - Q. (4.108)

,__....___..._...._____.__...___.__.___

i

I {

. Sharp )

Simple ' il
=——>! antialiasing > C/D ;* am]f?lltl::mg > M ;
(1 1 X (7 . L

X(( ) filter n( ) T \’[IIJ " Cutoff = /M [l \’,/[Il]

i |

, With Q denoting the highest frequency
component to eventually be retained after the antialiasing filtering is completed, we
first apply‘a very simple antialiasing filter that has a gradual cutoff with significant
attenuation‘at MQy. Next, implement the C/D conversion at a sampling rate much
higher than 2Q,. €.8., at 2MQy. After that, sampling rate reduction by a factor of M
that includes sharp antialiasing filtering is implemented in the discrete-time domain.
Subsequent discrete-time processing can then be -done at the low sampling rate to
minimize computation.



Analog-to-Digital {A/D) Conversion

An ideal C/D converter converts a continuous-time signal into a discrete-time signal,
where each sample is known with infinite precision. As an approximation to this for
digital signal processing, the system of Figure converts a continuous-time (analog)
signal into a digital signal, i.e., a sequence of finite-precision or quantized samples.

: Sample
—] and — /1/Dt
X, () hold | x,(r) | SOnverter fB[i"]
T T

However, the conversion is not
instantaneous, and for this reason, a high-performance A/D system typically includes
a sample-and-hold. - The ideal sample-and-hold system'is the system
whose output is

o0

xo({) = Z X[);l]ho(t —-nT), (4]11)
where x[n] = Xa(nT) are the ideal samples of x
of the zero-order-hold system, i.e.,

_J1, 0<t<T,
ho() - {0, otherwise! (4.112)

«(t) and ho(ylk)iriﬂs'the impu]se response

If we note that Eq. (4.111) has the equivalent form

oc

xo(t) = ho(t)* Y x,(nTY8(— nT), B (4.113)

s N=—0C

we see that the ideal Sample-and—ho]d is equivalent to impulse train modulation followed
by linear filtering with the zero-order-hold system.

Xp(1)

pd

X (2) :—
! ! | | T 127 /

-3T ~2T A 0 T !

Analysis of Quantization Errors

‘The quantizer is a nonlinear system whose purpose is to transform the input sample
x[n] into one dfafinite set of prescribed values, We represent this operation as

£[n] = Q(x[n]) (4.114)
and réfer to %[x] as the quantized sample. Quantizers can be defined with either uniform-

ly or nenuniformly spaced quantization levels; however, when numerical calculations
are to be done on the samples, the quantization steps usually are uniform.

—»1 C/D > Quantizer —>1 Coder —-
x,(1) x{n] x[n] xg[n]

f

T




From Figure we see that the quantized sample %[r] will generally pe @if—
ferent from the true sample value x[n]. The difference between them is the quantization
error, defined as

e[n] = x[n] — x[n]. ' (4.117)

A simplified, but useful, model of the quantizer is depicted in Figure In this
model, the quantization error samples are thought of as an additive noise signal. The
model is exactly equivalent to the quantizer if we know e[n]

The statistical
representation of quantization errors is based on the following assumptions:

1. The error sequence e[n] is a sample sequence of a stationary random process.
2. The error sequence is uncorrelated with the sequence x[n].

3. The random variables of the error process are uncorrelated; i.c., the.error is a
white-noise process.

4. The probability distribution of the error process is uniform over the range of
quantization error. :

- DI/A Conversionv

D/A
i f[n] converter Xp(P)
(a)
Scale by Convert to Zero-order
—] >i > | E—
2aln] X, z[n] impulses hold xpa(D)
(b)
. } In terms of Fourier transforms, the
reconstruction is represented as
X (J= X (/%) H,(j9), | (4.127)

where X (e/®) is the discrete-time Fourie
X:(j2) is the Fourier trafisform of the re
reconstruction filter is

I transform of the sequence of samples and
constructed continuous-time signal. The ideal

iy [T 1Rl <7/T,
,AHr(]Q)*{O, Q| > /T, (4.128)

xpa(ty = 3" Xykalnlho(t — nT)
N=-oc

- o (4130)
= > x[nlho(t —nT),

N=-—oC
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To simplify our discussion, we define

7

x(t) = Y x[nlho(t —nT), (4.132)
e(t)= Y e[nlhy(t —nT). (4.133)

so that Eq. (4.131) can be written as
XDA([) = X()(f) -+ 60([). . _ (4134)

The signal component xy(t) is related to the input signal x,(t), since x[n] =, (nT).
The noise signal ep(¢) depends on the quantization-noise samples e[n] in.the same
way that xy(r) depends on the unquantized signal samples.

: 1 & , 27k
k=woc
" if we define a compensated reconstruction filter as
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In other words, the output would be
(1) =xu(t) +ear), . (4.142)

where e,(z) would be a bandlimited white-noise signal.

H(e’*"} is the frequency response of the discrete-time system. Similarly,
assuming that the quantization noise introduced by the A/D converter js white noise
with variance 67 = A?/12,it can be shown that the power spectrum of the output noise is

F.(jQ) = | H,(jQ) Ho(j ) H(e/T) o2, (4.145)

i.e., the input quantization noise is changed by the successive stages of discrete- and
continuous-time filtering,
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