TRANSFORM ANALYSIS OF
LINEAR TIME-INVARIANT
SYSTEMS

, LTI system can be completely characterized in the
time domain by its impulse response h{n], with the output y[n] due to a given input x[n]
specified through the convolution sum

oo
yln] = x[nl* h[n) = > x[klA[n - k). (5.1)
k=~00 7
transform, and we showed that Y(z), the z-transform of the output of an LTI system, is
related to X{(z), the z-transform of the input, and H(z), the z-transform of the system
impulse response, by

Y(2) = H(2) X(2), (52)

. H(z) is referred to as the system function.
Since the z-transform and a sequence form a unique pair, it follows thatany LTI system

is completely characterized by its system function, again assuming convergence.
THE FREQUENCY RESPONSE OF LTI SYSTEMS

The frequency response H(e/”) of an LTI system was defined ‘as the

complex gain (eigenvalue) that the system applie§ to the complex exponential input
(eigenfunction) e/“”. Furthermore,

Y(e/*) = H(el®) X(e/), (5.3)

where X(e/“) and Y (e/*) are the Fourier'transforms of the system input and output,
respectively. With the frequency response expressed in polar form, the magnitude and
. Phase of the Fourier transforms of the system input and output are related by

1Y (/) =i H(e)] . | X(e/®)), (5.42)
QY (@) = GH(e/) + <X (/). | (5.4b)

|H(e/®)|is referred to as thesnagnitude response or the gain of the system, and <H(e/*)
1is referred to as the phase respouse or phase shift of the system. For example, the

ideal lowpass filter was défined as the discrete-time linear time-invariant system whose
frequency response is

Hlp(ejw) — {1, lo] < w.,

0, @ <ol <, (55)
The corresponding impulse response was shown in " tobe
sin w.n A
h = - . 5.6
1pln] = — 00 <N <00 ( )

Analogously, the ideal highpass filter is defined as

th(ejw) = {(1)v lwl < g, ‘ (5-7)

we < |w| < 7,
and since Hp,(e/®) =1 — Hi(e’®), its impulse response is

sin w.n

hipln) = 8[n) — hp[n] = 8[n] — (5.8)

mn
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The ideal lowpass filters are noncausal, and their impulse responses extend from
—00 to +o0. Therefore, it is not possible to compute the output of either the ideal
lowpass or the ideal highpass filter either recursively or nonrecursively; i.e., the systems
are not computationally realizable.

Phase Distortion and Delay

To understand the effect of the phase of a linear system, let us first consider the ideal
delay system.

| Hia(e!®)| = 1, (5.11a)
<Ha(e’) = ~wng, || <x, (5.11b)
with periodicity 27 in w assumed. For now, we will assume that n, is an integer,
In many applications, delay distortion would be considered a rathér mild form
of phase distortion, since its effect is only to shift the sequence in time:

For example, an ideal lowpass
filter with linear phase would be defined as

0, we < |w| <.

) —jony /
Hip(e!®) = { e ol < o, (5.12)

Its impulse response is

igln] = sinw.(n ~ ny)

i ——— —00.< 1 < 00. (5.13)

With phase specified as a continuous function of w, th o |
defined as @, the group delay of a system is

(@) = gl H(e!*)] = ~ofargl (o)), (5.15)

The deviation of the group delay from a comstant indicates the degree of nonlinearity
of the phase. '
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SYSTEM FUNCT iONS FOR SYSTEMS CHARACTERIZED
BY LINEAR CONSTANT-COEFFICIENT DIFFERENCE
EQUATIONS

While ideal frequency-selective filters are useful €onceptually, they cannot be imple-

mented with finite computation. Therefore, it is of interest to consider a class of systems
that can be implemented as approximations to ideal frequency-selective filters.

N M
Z aryln — k] = Zbkx[n — k.
k=0 k=0
‘ Z az*Y(2) = Z bz ¥ X(z),

k=0
N
(Z akz”‘> Y(z) (Z brz™ ) X(z).
k=0 M
D bz
_Y(@) =
az*
k=0
M
o H(l —cxzY)
HE = (2) 5 (5.19)

H(l ~ di 7!

Each of the factors (1 — c;z™!) in the numerator contributes a zero at z = ¢, and a pole
at z = 0. Similarly, each of the factors (1 — dxz~!) in the denominator contributes a zero

at z=0and a pole at z = d;.
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Suppose that the system function of a linear time-invariant system is
1+ 271
(t-327) (1+327)
14277 +272  Y()
1+iz1-3272 X(2)

H(x) = . (5.20)

H(z) =

Thus,
(1+3z1 -2 Y(@) = 1+ 227" + 772 X(2),
and the difference equation is

y[nl + %y[n -1]- %y[n = 2] =x[n] +2x[n — 1] + x[n~ 2].

Stability and Causality
For a given ratio of polynomials, each
possible choice for the region of convergence will lead to a different impulse response, -
but they will all correspond to the same difference equation. However, if we assume that
the system is causal, it follows that h[n] must be a right-sidéd sequence, and therefore,
the region of convergénce of H(z) must be outside the oufermost pole. Alternatively, if
we assume that the system is stable, then

> 1hin)l < oo | (5.23)

n=—00

Since Eq. (5.23) is identical to the condition that

i lh[n)z7" "< o0 ~ (5.24)

n=—co

for |z] = 1, the condition for stability is equivalent to the condition that the ROC of
H(z) include the unit circle.

In order for a linear time<invariant system whose input and output satisfy a
difference equation of the formf Eq. (5.16) to be both causal and stable, the ROC of
the corresponding system funétion must be outside the outermost pole and include the
unit circle. Clearly, this requires that all the poles of the system function be inside the
unit circle. ' ‘

Inverse Systems

For a given linear time-invariant system with system function H(z), the corresponding
inverse system is defined to be the system with system function H;(z) such that if it is
~cascaded with H(z), the overall effective system function is unity; i.e.,

G(2) = H(z)H;(2) = 1. (5.27)

Many systems do have inverses, and the class of systems with rational system
functions provides a very useful and interesting example. Specifically, consider

M
H(1 -z )
kel -

e (5.31)
H(l —dezh)
k=1

with zeros at z = ¢, and poles at z = d, in addition to possible zeros and/or poles at
Zz=0and z = ooc.



Then

N
H(l —dz™")
m@ = (R) 5 6®
(1 —az™)
kIZI1 x

i.e., the poles of H;(z) are the zeros of H(z) and vice versa.

Let H(z) be
1-05z"1
H@) = 55
with ROC |z| > 0.9. Then H;(z) is
1-09z"1
B = g5

Since H;(z) has only one pole, there are only two possibilities for its ROC, and
the only choice for the ROC of H;(z) thatoverlaps with |z] > 00is|z| > 0.5. Therefore,

the impulse response of the inverse system is
hi[n] = (0.5)"u[n) — 0.9(0.5)" ufn <1]:

In this case, the inverse system is both causal and stable.
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Then

N
-z

N

[]a dez™")

a =
Hi (Z) = b—z k;!l [
H(l -~ ckz'l)
k=1

i.e., the poles of H;(z) are the zeros of H(z) and vice versa.

; (5.32)

Let H(z) be
1--0.57"1
H&) = g5,
with ROC |z| > 0.9. Then H;(z) is
| 1--09z
B = g5

Since H;(z) has only one pole, there are only two possibilities for its ROC, and
, _the only choic¢ for the ROCof H;(z) that overlaps with|z| > 0.9is |z] > 0.5. Therefore,

the impulse response of the inverse system i3

hi[n] = (0.5)"u[n] - 0

In this case, the inverse system is both causa

A generalization

zerosatcy, k= 1,..., M, then its inverse system

the region of convergence,

Izl > max le

with H;(z). If we also require that the invers
convergence of H;(z) must includé theunit circ

‘m,?x fcrl <

i.e., all the zeros of H(z) must be inside the u

system is stable and causal and also has a stabli

9(0.5)" ufn=1]. .
I and stable.

is that if H(z) is a causal .system with
will be causal if and only if we associate
'kl

system be stable, then the region of
le. Therefore, it must be true that

—

3

it circle. Thus, a linear time-invariant
> and causal inverse if and only if both

the poles and the zeros of /(z) are inside the unit circle. Such systems are referred to

as minimum-phase systems,
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: Recall that any rational function of z~! with only first-order
poles can be expressed in the form

H S B S A 534
(2) = ZB'Z +Zi"_—7kz—“f’ : (5:34)
r=0 k=1

where the terms in the first summation would be obtained by long division of the denom-
inator into the numerator and would be present onlyif M > N.

If the system is assumed
to be causal, then the ROC is outside all of the polss in Eq. (5.34), and it follows that
M~N N
hin)= 3" Bsln—r1+ > Avdfuln), (5.35) .
r=0 : k=

L
where the first summation is included only if M > N.

A First-Order IR Sy;tem
Considei' a causal s;'stem whose input and output satisfy the difference equation’

yln] — ay[n — 1] = x[n]. (5.36)

- The system function is (by inspection)

(5.37)

1
$m z-plane H(z) = 1-az 1

Unit circle

¥
a

Re

—

__For the second class, of s'ySteiﬁS;;H("z) 7ha§_n:)kpplp'sAégcept;atr;zTV:vO;_i_.e;,'M'N:_=’.‘ 0,

M
H@z) =) bzt (5.39)
k=0 ’

R N “The region of cénvergence is |z} > la|,
and the condition for stability'is [2| < 1. The inverse z-transform of H(z)is

h{n] = a"ufn]. (5.38)

]

(We assume, without loss of generality, that ap = 1.) In this case, H(z) is determined to
within a constant multiplier by its zeros. From Eq. (5.39), h[n]is seen by inspection to be

M
h[n]=zbka[n_k]={g:' 0<n=<mM, (5.40)

otherwise.
k=0 '

In this case, the impulse response is finite in length; i.e., it is zero outside a finite interval.
Consequently, these systems are called finite impuise response (FIR) systems. Note that

for FIR systems, the difference equation of Eq. (5.16) is identical to the convolution
sum, i.e.,

M
yinl =" bex[n-- &]. : (5.41)

k=0




FREQUENCY RESPONSE FOR R
FUNCTIONS

M
Z bke-jwk
H*) =20

k=0 -

H(e

ATIONAL SYSTEM

v e
(1 —cke""")
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= .
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H 11— dee™ /o
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M

.

H(l — k2 ®)(1 —lcLel®)

o bo\? iz

IH(e]a))I2= (a_z) kNl
[Ia-a
k=1

 The function 20log,q | H(e/*)| is referred o a5
expressed in decibels (dB). Sometimes this quantity

Gain in dB = 20logy, | H

20 ldgm |H(el®)is negative. This would be the Case,
frequency-selective filter. It is common practice to ds

Attenuation in'dB.= —20 log

N = ~Gain |

v - Another advantage to expressing the magnit
- which, after taking logarithms of both sides, becor

IOV — dfel?)

he log magnitude of H(e/*) and is |
is called the gain in dB; ie.,
(e/?)]. (5.51)

When |H(e/®)| "< 1, the quantity
for example, in the stopband of a
fine
o | H(e/™))

5.52

ndB. (5:52)
ide in decibels stems from Eq. (5.4a),
nes

20logig|Y ()] = 20log,q | H(e/*)| + 20 10g,0 1 X(e/%)). (5.53)

 The phase response for a rational system fi

. byl Mt
qQH(e!*) = « ,:—OJ + Z 1 - cpe
@l 3
The corresponding group delay for a rationa
N

grd[HE™)] = 3 L (arg(t — dye~re]) -
k=1

where arg[ ] represents the continuous phase.

inction has the form

N
1= Al - deie]. (5.54)
k=1 .
| system function is
M

d . :
——(arg[1 — cxe~/*)), (5.55)
; dw k
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When the angle of a complex number is com
subroutine on a calculator or with a computer syst
obtained. The principal value of the phase of H(e/®

-1 < ARG[H(e/®)

Any other angle that gives the correct complex
represented in terms of the principal value as

<H(e/*) = ARG[H(e/®)
where r(w) is a positive ‘or negative integer that
If the principal value is used to compute th

then ARG[H(e/“)] may be a discontinuous func
by taking the principal value will be jumps of 2.

Except at the discontinuities of ARG[H(e/?)] «
and -,

d o d
o tarelH(e™™)]) = =~ (A

Consequently, the group delay can be obtained ¥
ating, except at the discontinuities. Similarly,we
of the ambiguous phase < H(e/®) as

grd[H(e ) = L,

with the ihterpretation that impulses caused by «
are ignored.

;:puted, with the use of an arctangent
=m subroutine, the principal value is
)is denoted as ARG[ H(e/*)], where

|<m. (5.57)

alue of the function H(e/®) can be

+ 2nr(w), | (5.58)

‘an be different at each value of w.

e phase response as a funetion of o,
tion. The discontinuities introduced
T radians.

orresponding to jumps between -+

RG[H(ei®)]}. (5.62)

"om the principal value by differenti-
can express the group delay in terms

(H(e™™)), (5.63)

liscontinuities of size 27 in < H(e/*)
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| Frequency Response of a Single Zero or Pole

The square of the magnitude of such a factor is

[1~relfe /®)? = (1~refe /)1 —re %e/*) = 141> —2r cos(w—8). (5.64)

The principal value phase for such a factor is

o iemjey _ rsin(w — 6)
ARG[1 —re’’e ]—arCtan[l—rcos(a)—Q) . (5.66)

Differentiating the right-hand side of Eq. (5.66) (except at discontinuities) gives the
group delay of the factor as

2 _ _ 2 _ —
re —rcos(w — 6) T r cos(w — 6) (5.67)
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A simple geometric construction is often very useful in approximate sketching of
frequency-response functions directly from the pole-zero plot.
gm * z-plage ,
11— reffeiv) el ~rell = Lvi,
el vl
e z—rel?
H() = (1~ rel*z1) = ¢ 2 \o <
' The corresponding phas‘e is -
(1 —relfem?) = q(e/® —rel?) — <(e/*) = a(v3) — <(v1) (5:70)

=¢3—¢1=¢3 — 0.
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Typically, a vector such as v3 from a zero to the unit circle is referred to as a zero vector, 5 g
and a vector from a pole to the unit circle is called a pole vector. Thus, the contribution
of asingle zero factor (1—re/? z~!) to the magnitude function at frequency eis the length
of the zero vector v; from the zero to the point z = e/* on the unit circle. The vector has
minimum length when w = 6. This accounts for the sharp dip in the magnitude function

atw = 6. Note that the pole vector v; from the pole at z = 0to z = e/¢
always has unit length. Thus, it does not have any effect on the magnitude response.
¥

z-plane

m
' 5}
U3 Uy
v
Y b\
| y )

~ z-plane

Unit circle

Re

The geometric construction for a zero on the unit circle at z = —1 is shown,
Indicated are vectors for two different frequencies, w = (7 — ¢) and w =
(m + &), where ¢ is small. Two observations can be made. First, the length of the vector
v3 approaches zero as w approaches the angle of the zero vector (¢ — 0). Therefore,
the multiplicative contribution to the frequency response is zero (—oo dB). Second, the
vector vs changes its angle discontinuously by  radians as w goes from (7 — &) to (7 +¢).



Radians

Ifr > 1, the log magnitude function
behaves similarly to the case r < 1; i.e., it dips more sharply as r — 1.

The phase function in Figure - shows a discontinuity of 27 radi-
ans at w = 0 for all values of r > 1. The source of this discontinuity can be seen from
Figure 5.14, which shows vectors forw = (7 — ¢) and w = (7 + ). Note that the pole
vector v, has an angle of w, which varies continuously from w = 0to w = 2. The angle
of the zero vector vs is labeled ¢ in the figure. If this angle is measured positively in the
counterclockwise direction, the figure shows that ¢, Jumps from zero to 27 radiafs as
w goes from (7 —¢) to (7 +¢). :

Sm o z-planew

Unit circle

If the factor represents a pole of H(z), then all the contributions -
will enter with opposite sign. Thus, the cofitribution of a pole z = re’® would be the
negative of the curves in Figures 5.8 and 5:bd. Instead of dipping toward zero (—oo dB),
the magnitude function would peak around@ = 9. The dependence on r would be the

same as for a zero; i.e., the closer  isto 1,.the more peaked will be the contribution to

the magnitude function. For stable and causal systems, there will, of course, be no poles
outside the unit circle; i.e., r will always be less than 1.

60

ST
[\]
Iy -

Radian frequency (w) Radian frequency (w)




LINEAR SYSTEMS WITH GENERALIZED
LINEAR PHASE

In designing filters and other signal-processing systems that pass some portion of the
frequency band undistorted, it is desirable to have approximately constant frequency-
response magnitude and zero phase in that band. For causal systems, zero phase is
not attainable, and consequently, some phase distortion must be allowed.

o For example, consider a more general
frequency response with linear phase, i.e., ‘ '
H(e'®) = |H(e!®)|e~ /2, lw| < 7. 4. (5.126)
The signal x[n}is filtered
by the zero-phase frequency response | H(e/)|, and the filtered output is then “time

shifted” by the (integer or noninteger) amount .. Suppose, for example, that H(e/@) is
the linear-phase ideal lowpass filter

oy _ e’ ol < w,,
Hye) = {577 Wiz oe (5:127)
The Corresponding impulse response is
sinw.(n — a)
= - (5128

o - e Specifically, a system is referred to
‘asageneralized linear-phase system if its frequency response can be expressedin the form

H(e'®) = A(el®)e~TaetiF, (5.135)
where o and B are constants and A(e/?) is a real (possibly bipolar) function of w. |

However, if we ignore any discontinuities thatzesult from the addition of constant phase
over all or part of the band |w| < 7, thensucha system can be characterized by constant -
group delay. That is, the class of systems such that

: d .
(w) = grd[H(e"®)] = ~ o arg[H(e™*)]) = a (5.136)

have linear phase of the more géneral form ' ’
arg[H(e’“)| =8 —wa, O<w<n, (5.137)

- where g and « are both real constants.

Type I FIR Linear-Phase Systems
A type I system is defined as a system that has a symmetric impulse response

hin] = h[M — n], 0 sn= M, (5.148)

with M an even integer. The delay M/2 is an integer. The frequency response is K

M
H(e’*) = hlnje™/*". (5.149)
=0 '



By applying the symmetry condition, Eq. (5.148), the sum in Eq. (5.149) can be rewritten
in the form :

M/2
H(e/®) = e~ ioM/I2 (Za[k] cos cok) , (5.150a)
=0
where : Pv’; 0) /L\/:-_ ‘_{9{_:/(
a[0} = h{M/2], (5.150b)
a[k] = 2h[(M/2) — k], k=1,2,..., M/2. (5.150¢)
i Center of |
' : e symmetry '
LI
o M M4
) .

If the impulse responSe is

1, O s'r‘z <4,
hln) = {0, otherwise, '
v S The fre-
quency response is —
4 .
joy —juwn 1- e—/wS
H(ej )—ZC_} = R
=0 (5.156)
= o2 SiD0w/2)
- sin(w/2)
* Type II FIR Linear-Phase Systems ‘ ..
A type II system has a symmetri¢impulse response , with M an odd
“integer. H(e/®) for this case can be expressed as
' (M+1)/2
H(ele)=e~ieM2 8 N " blk]cos [ (k—3)] ¢ (5.151a)
k=1
:0 e M :N +l/)
where ‘B ) L33 N+3
b= 2h{(M+1)2 K, k=12,....(M+1)/2.. (5.151b)
| _Centerof
(< symmetry
1 |
!
T
» L *———se
0 M M=5 n
2

- Ifthe length of the impulse response of the previous example is exteﬁdé’d' by one sam-
ple, we obtain the impulse response

» —jwss2 SIN(3
- H(e/*)=e"/ 5/2_“'_51'; (Eo;"z)). (5.157)
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Type III FIR Linear-Phase Systems
If the system has an antisymmetric impulse response

hln]=-hM-n], O=<n=<M, (5.152)

with M an even integer, then H(e/“) has the form

M/2 ,
H(e!®) = je /M2 [Zc[k] sin a)k] , ’ (5¢153a)
k=1
I WM
where P: PRy
clk] = 2h[(M/2) — K], k=1,2,..., M/2. (5.153b)
| o Center‘of |
1 IA/Symmetry
!
-— ] l M=2 , . >~
0 1 i T n
I
ot
If the impulse response is
h[n] = 8n] — 8[n £2], (5.158)
as in Figure 5.36(c), then
H(e/®?) = 1 —e™i2
Pone . (5.159)
= J[2 sin(w)]e™7*.
Type 1V FIR Linear-Phase Systems
If the impulse response is antisymmetric asin Eq. (5.152) and M is odd, then
(M+1)/2 :
H(el*) = jeo/“M° 1" N~ diK]sin (o (k- )] |, (5.154a)
k=1
, - T R
where F?: ZRL,., Zz%”)\\“'i@
dlk] =2h[(M + 1)/2 — k], k=12,...,(M+1)/2. (5.154b)
' Center of 7
1% L symmetry
{
-~ I ]lM =1_ . *——o—o—0
0! l i i i n
In this case (Figure 5.36(d)), the impuise response is
h[n] = 8[n} — 8[n — 1], (5.160)
for which the frequency response is
H(e®) =1—e™1® (5.161)

= j[2sin(w/2)]e~ 7/,
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