DESIGN OF FIR FILTERS BY WINDOWING

The simplest method of FIR filter design is called the window method. This method
generally begins with an ideal desired ﬁequenc_:y response that can be represented as

Hd(eib) = i ha[nle=/on, (7.40)

n=—00

where hg[n] is the corresponding impulse response sequence, which can be expressed

in terms of H(e/®) as
| 1

7[ .
hgln) = — Hi(e'®)e/*"dew. (7.41)
2n J_,

‘The simplest way to obtain a causal FIR filter from haln] is to define a new system
with impulse response A[n] given by’

0, otherwise.

h[n] = {h“["]’ O=n=M, | (7.42)

More generally, we can represent A[n] as the product of the desired impulse response
and a finite-duration “window” w[n]; i.e.,

hln] = ha[n]w[n], (7.43)
where, for simple truncation as in Eq. (7.42), the window is'the rectangular window
1, 0Osn<M, '
= T 7.44
, w[r'z] {0, otherwise, (7.44)

It follows from the modulation, or windowing, theorem (Section 2.9.7) that

4 . y
H(e/®) = % Hy(e"YW(e/“qg, (7.45)

-N

Ifwln] = 1foralln (i.c., if we do noftruncate at all), W(e/*) is a periodic impulse

train with period 27, and therefore, H(ei®) = Hy(ei®).

Consequently, the choice of window is governed by the desire to have wln]
as short as possible in duration, so.as to minimize computation in the implementation
of the filter, while having W(e/«) approximate an impulse.

1 — e~ jo(M+1) — oM sin[w(M + 1)/2]
1—eje sin{w/2)

M

W(e'®) = Zefj“’" = (7.46)
n=0

-As M increases, the width of the “main lobe” decreases. The main lobe is usually
defined as the region between the first zero-crossings on either side of the origin. For
the rectangular window;the width of the main lobe is A,,, = 47 /(M + 1). However,
for the rectangular window, the side lobes are large, and in fact, as M increases, the

peak amplitudes of the main lobe and the side lobes grow in a manner such that the -

area under each lobe is a constant while the width of each lobe decreases with M.
Consequently, as W(e/(“=9) “slides by” a discontinuity of Hs(e/®) with increasing w,
-the integral of W(e/“~9)) H,(e/%) will oscillate as each side lobe of W(e/“~9)) moves
past the discontinuity.

In the theory of Fourier series, it is well known that this nonuniform convergence,
the Gibbs phenomenon, can be moderated through the use of a less abrupt truncation
of the Fourier series. By tapering the window smoothly to zero at each end, the height
of the side lobes can be diminished:; however, this is achieved at the expense of a wider
main lobe and thus a wider transition at the discontinuity.
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Rectangular

1, 0<n<M ’ '
== ’ - - ’ 7.47a
winl { 0, otherwise ( )

Bartlet (triangular)
2n/M, 0=<n=< M2,

wnl=<¢2-2n/M, M/2<n=<M, (7.47b)
0, otherwise
Hanning ,
0.5—0.5cos(2nn/M), 0<n< M,
wln] = ( ] (7.47¢)
0, otherwise
Hamming
0.54 —0.46cos(2rn/M), 0<n< M,
wln] = ¢ ¢ : (7.47d)
0, otherwise -
Blackman . V
0.42 — 0.5cos(2wrn/M) + 0.08cos(4nn/M), 0 <n < M,
wln] = , (7.47¢)
- 10, otherwise
~ Peak Transition
Peak Approximation  Equivalent Width
Side-Lobe  Approximate °  Error, Kaiser of Equivalent
Type of Amplitude Width of 20log;, 8 Window, Kaiser
Window (Relative) Main Lobe | (dB) B Window
Rectangular -13 4z/(M+1) -21 0 181n/M
Bartlett =25 8x/M =25 1.33 237n/M
Hanning =31 8n/M —44 3.86 50ln/M
Hamming —41 8n/M —53 4.86 6.27x/M
Blackman -57 12n/M - =74 7.04 9.197/M

Incorporation of 'Generallzed Linear Phase

- In designing many types/of FIR filters, it is desirable to obtain causal systems with a -

generalized linear phasé response.

Specifically, note that all the windows have the property that
wn] = wlM—n], 0<n<M,
— 10, otherwise;

i.e., they are symmetric about the point M/2. As a result, their Fourier transforms are
of the form

(7.48)

. W) = W(eT)e M, , (7.49)
where W,(e/?) is a real, even function of w. '

if hafM — n] = hyln] H(e/®) = A(el)eToM2, (7.50)

where A.(e/*) is real and is an even function of w.

if ha[M ~n] = ~haln]  H(e/*) = j A, (e/®)e~oMP, | (751
where A,(e/?) is real and is an odd function of w.
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Linear-Phase Lowpass Fliter

The desired frequency response is defined as

o e oML | < w,
Higlel®) = {O, fol < (7.56)

where the generalized linear phase factor has been incorporated into the definition of
the ideal lowpass filter. The corresponding ideal impulse response is
_ sinfwc(n — M/2)]

1 e —jw jw
hipln] = 5 / e joM2pjong, — Y7 (7.57)

for —oo < n < co. Itis easily shown that hjp[ M — n] = hyip[n], so if we use a symmetric
window in the equation

(7.58)

Wieie~9)

7/ \ ! N\ A
NS w N T %

Clearly, the windows with the smaller side lobes yield bet-

ter approximations of the ideal response at a discontinuity . Also, the third column,
which shows the width of the main lobe, suggests that narrower transition re gions can
be achieved by.increasing M. Thus, through the choice of the shape and duration of
the window, we canicontrol the properties of the resulting FIR filter.

The Kaiser Window Filter Design Method

The trade-off between the main-lobe width and side-lobe area can be quantified by

seekifig the window function that is maximally concentrated around @ = 0 in the )

frequency domain.
The Kaiser window is defined as

Ll — [(n — @)/e])1?]
wln] = 1o(B) ’
, otherwise,

O<n<M, (7.59)

where & = M/2, and Iy(-) represents the zeroth-order modified Bessel function of the
first kind.
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Given that § is fixed, the passband cutoff frequency w), of the lowpass filter
is defined to be the highest frequency such that |H(e/#)| > 1 — 5. The stopband cutoff

frequency wy is defined to be the lowest frequency such that |H(e/*)| < 4. Therefore,
the transition region has width -

Aw = ws — wp (760)
Defining o I
A=-20log,5, | (7.61)
Kaiser determined empirically that the value of 8 needed to achieve a specified,vaiue
of Ais given by
0.1102(A - 8.7), A> 50,
B = { 0.5842(A—21)%¢ 10.07886(A4~21), 21 < A< 50, (7.62)
0.0, . A<2L Furthermore,
Kaiser found that to achieve prescribed values of A and Aw, M must satisfy
- A—-8
= 4-s 7.63)
2.285Aw (7.63)

Equation (7.63) predicts M to within +2 over a wide range of values of Aw and A. Thus,
with these formulas, the Kaiser window design method requires almost no iteration or
trial and error.

Kaiser Window Design of a Lowpass Filter

For this example, we use the same specifications as in Examples 7.4,
7.5,and 7.6, i.e., wp = 04x,w; = 0.6x, 8= 0.01yand 8, = 0.001. Since filters
designed by the window method inherently have 8, = &,, we must set § = 0.001.

The cutoff frequency of the underlying ideal.lowpass filter must be found. Due

to the symmetry of the approximation at the discontinuity of H,(e/?), we would
set ;

Wp + ws
We =

= 0.57.

To determine the parameters of the Kaiser window, we first compute
Aw = Wy — wp = 0.271', A= —20 log103= 60.

- We substitute thése two qQuantities into Eqgs. (7.62) and (7.63) to obtain the
required values'of 8 and M. For this example the formulas predict

B=5653, M=37.

The impulse response of the filter is computed using Egs. (7.58) and (7.59). We
obtain ‘

sinwc(n—a) I[A(1 - [(n — @) ja)?]
Hnj={ n(n—a) Io(B)

0, otherwise,

, 0<n<M,

where @ = M/2 = 37/2 = 18.5. Since M = 37 is an odd integer, thé resulting
linear-phase system would be of type II.
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~ This generalized multiband filter includes lowpass, highpass, band-
pass, and bandstop filters as special cases. If such a magnitude function is multiplied by
a linear phase factor e=/«M/2_the corresponding ideal impulse response is

sinwy(n — M/2)
w(n— M/2)

N
henp[n] = Z(Gk = Giq1) (7.68)
k=1 :

wpere Nmb is the number of bands and Gy, +1 = 0. If hmy[n] is multiplied by a Kaiser
window, the type of approximations that we have observed at the single discontinuity of
the lowpass and highpass systems will occur at each of the discontinuities,

OPTIMUM APPROXIMATIONS OF FIR FILTERS

That is,

hd[n]’ OENE M, V 5 )
hin] = {0, otherwise, (7.72)

minimizes the expression

=5 J ) - o, o (3)
b 5 . ,

S e

. ‘However, as we have seen, this approximation criterion leads to
-adverse behavior at discontinuities of H;(e’®).

In designing a causal typel linear-phase FIR filter, it is convenient first to consider
the design of a zero-phase filter; i.e., one for which
he[n] = he[—n], (7.74)

and then to insert a delay sufficient to make it causal. o o
The corresponding frequency response is given by

L
A(e’®y =" he[n]e™im, O (275)
with'Li= M/2 an integer, or
L
 Ac(el®)y = hJ0] + > 2h.[n) cos(wn). (7.76)

Note théi Ae(ef @) ié a real, even, and periodic function of w. A causal system can be ob-
tained from h.[n] by delaying it by L = M/2 samples.
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The Parks-McClellan algorithm is based on reformulating the filter design prob-
- lem as a problem in polynomial approximation. Specifically, the terms cos(wn) in
Eq. (7.76) can be expressed as a sum of powers of cos w in the form

- cos(wn) = T,(cos w), (7.79)

Tn(x) is the nth-order Chebyshev polynomial, defined as Tj,(x) = cos(n cos x).

‘ } Conseqﬁehtly, Eq. (7.76) €an be rewritten as
an Lth-order polynomial in cos o, namely,

L
A(e®) =) a(cos ), » (7.80)
k=0 : :
where the a;’s are constants that are related to 4, [n], the values of the impulse response.
With the substitution x = cos w, we can express Eq. (7.80) as

Ae(ejw) = P(x)|;=cosan ‘ ‘ (7.81)
where P(x) is the Lth-order polynomial .
L .
P(x) = Zakxk. ’ ' (7.82)
k=0

To forralize the approximation problem in this case, let us define an approxi-
mation error funiction .
E(b)& W(o)[Ha(e™) — Ae)], (7.83)

~ where the weighting function W(w) incorporates the approximation error parameters
into the design process, In this design method, the error function E(w), the weighting
function W(w), and the desired frequency response Hy(e/*) are defined only over closed

subintervals of 0 < & <'7.

_ For example, suppose that we wish to obtain an approximation as in Figure 7.31,
where L, wp, and w; are fixed design parameters. For this case, ‘
. I, 020 =<w,
Hy(e/®) = (7.84)

0, wy<w<n.

The weighting function W(w) allows us to weight the approximation errors differently
in the different approximation intervals.

-1— O<w<w :
W(m):{ K - -7 (7.85)

where K = 8,/5;.
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The particular criterion used in this design procedure is the so-called minimax or
Chebyshev criterion, where

. E ) ’
pin . (max| Bw)

where F is the closed subset of 0 s'w <msuchthat0 <w < Wp OTw; < w < 7.

Alternation Theorem: Let Fp denote the closed subset consisting of the disjoint union of
closed subsets of the real axis x. Then

r

P(x) = Z agxck

k=0
is an rth-order polynbmial.AAlso, Dp(x) denotes a given desired function of x that is
continuous on Fp; Wp(x) is a positive function, continuous on Fp,and ' '
Ep(x) = Wp(x)[Dp(x) -~ P(x)].
is the weighted error. The maximum error is defined as

HEY = max|Ep(x)].
xerp

A' necessary and sufficient condition that P(x) be the unique rth-order polynomial that
minimizes || E|j is that Ep(x) exhibit at least (r + 2) alternations; i.e., there must exjst at
least (r + 2) values x; in Fpsuchthatxyy < xp < ... < Xr+2 and such that Ep(x;) =
~Ep(xip1) =% || E|fori=1,2, ... y(r+1).

The Parks-McClellan Algprithm

The alternation theorem gives necessary and sufficient conditions on the error for op-
timality in the Chebyshev or minimax‘sense, Although the theorem does not state -
explicitly how to find the optimum filter; the conditions that are presented serve as the
basis for an efficient algorithm for finding,it.

From the alternation theorém, we know that the optimum filter A.(e/°)will satisfy
the set of equations

W(w)[Ha(e!) oA ()] = (~1)*+5, =1, 2,00 (L+2), (199
- where § is the optimum error..

i 1 2 L | 1 |
X X Ve X B - .
1 1 1 W(al)l ) ap v - Hd (efwl )
2 L _ jew
1 &2 % T W || H"’(f“’ ) . (7.100)
, _1. L42 8 Hd(ejwl.+2)
1 2 L ( )

where X; = cosw;. This set of equations serves as the basis for an iterative algorithm
for finding the optimum A,(e’*). The procedure begins by guessing a set of alternation
frequencies w; for i = 1,2,..., (L + 2). Note that wp and w; are fixed and

' are necessarily members of the set of alternation
frequencies. Specifically, if w, = wp, then wey; = wy.



Parks and McClellan (1972a, 1972b) found
that, for the given set of the extremal frequencies,

L2 )

v Zkad(erk)

_ k=l '

= ————_—-—Lif R , (7.101)

k=1 W(wi)
where

L+2 : .
H (xk—x. (7.102)
x;ék

and, as before, x; = cos w;.

Now, since A.(e’*) is known to be an Lth-order trigonom-
etric polynomial, we can interpolate a trigonometric polynomial through (L + 1) of the
(L +2) known values E(w;) (or equivalently, 4,(e/*)). Parks and McClellan used the
Lagrange interpolation formula to obtain

L+1

Z[dk/ (x —x)1C
Ac(e’®) = P(cosw) = L+] . (7.103a)
Z[dk/ (x —x1)]
k=1 .
where x = cos w, Jé,— =cosw;,
) (—1)k+15 ‘
- oy D
Ck Hd(e ) W(wk) s . (7.103b)
and
L+l 1 .
] dk == E m = bk(xk' - xL+2). o (7103C)
itk

: The polynomial of Eq. (7.103a) can be
used to evaluate A.(e/*) and also E (a)) on a dense set of frequencies in the passband and
stopband. If | E(w)| < é for all w in the passband and stopband, then the optimum ap-
proximation has been found. Otherwise we must find a new set of extremal frequencies.
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from samp

Initial guess of
(L +2) extremal frequencies

Changed

g

y

Calculate the optimum
8 on extremal set

T

Interpolate through (L + 1)
points to obtain A_(e/*)

'

Calculate error E(w)
and find local maxima
where IE(w)l 2§

More than
(L+2)
extrema?

e

Yes

Retain L + 2)
largest
extrema

k

After the algorithm has converged, the impulse response can be computed
les of the polynomial representation using the discrete Fourier transform.

Check whether the
extremal points changed

y Unchanged

L Best approximation ‘]
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