
Problem set 2: Szabo and Ostlund:  Chapter II (up to page 89, sections 2.1 - 2.3); 
Lecture notes. 
 
We will put electronic structure theory into perspective and define the general problem 

that has to be solved. We discuss antisymmetry of the wave function in some detail and 

introduce a basis of Slater determinants, which are the antisymmetrized equivalent of the 

pure Hartree products of one-electron orbitals. This allows us to formulate the linear 

variation problem in the space of all determinants that can be formed from a finite set of 

spin-orbitals. The solution to the secular problem, or more conveniently the 

diagonalization of the Hamiltonian matrix, defines the full configuration interaction or 

Full CI solution. It gives the best possible result, given the initial set of 1-electron basis 

functions. In practice this solution is only feasible for rather small basis sets, but it 

defines the theoretical framework of quantum chemistry.  

We will develop the rules to evaluate the Hamiltonian matrix elements over the Slater 

determinants, making use of the antisymmetrization operator. 

 

Exercises: 

 

1. Szabo and Ostlund: 2.1, 2.2, 2.4, 2.5, 2.7 

 

2. S&O: 2.9, 2.12, 2.13, 2.14 

 

3. S&O: 2.17, 2.18, 2.21 

 

4. Using the terminology of Szabo and Ostlund,  paragraph 2.3.7, evaluate the 

expectation values of the Hamiltonian for the following determinants: 

.  First draw an occupation 

diagram as is done in S&O, and from this write down the energy expression. See also 

exercise 2.23 in S&O.  

 

 

1 2 1 2 1 1 1 1 2 1 2 3 1 2 3 1 1 2 3, , , , , ,ψψ ψψ ψψ ψψψ ψψ ψ ψψ ψ ψψψ ψ



5. The N-particle antisymmetrization operator can be given in the following form

, where the sum runs over all N! permutations of  N coordinates, and  

is the parity of the permutation that indicates if it consists of an even or odd number of 

transpositions or interchanges. Show that . Further information: the 

antisymmetrizer is sometimes normalized differently as . In this case 

applying the antisymmetrization operator twice yields the same result, which one might 

expect. It then acts as a projection operator on the antisymmetric subspace. 

 

6. Every permutation can be written as a product of transpositions . Show 

that every transposition is Hermitian, and is its own inverse. Use these properties to show 

that the permutation operator is unitary: , and that it has the same parity as . 

Next use these results to show that the antisymmetrization operator is Hermitian. 

 

 

!

1

ˆ ˆ( ) i

N
p

i
i

A P
=

= −∑ ip

ˆ ˆ ˆ!AA N A=
!

1

1ˆ ˆ' ( )
!

i

N
p

i
i

A P
N =

= −∑

1 2
ˆ ˆ ˆ ˆ....i kP TT T=

† 1
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