6

Distributed Computing
On Board Voyager and Galileo

172 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Voyager and Galileo are two outer planetary spacecraft that carry ex-
tensive computing capability. In spectacular encounters with Jupiter
and Saturn, Voyagers 1 and 2 returned science data and imaging that
far exceeded results of previous p’!anetary flybys. Uranus was the suc-
cessful 1986 objective of Voyager 2, nearly 10 years after launch
Galileo is designed for a Jupiter orbiter and probe mission.” Both
types of spdteuaﬁ carry multiple computer systems, distributing
functions among several machines, rather than using one central com-
puter system as on the Viking Orbiter and Lander.

Distributed computing on large unmanned spacecraft developed
conceptually from several sources. In 1967, Marshall Space Flight
Center commissioned a study by General Electric Corporation’s Mis-
sile and Space Division in Philadelphia as part of preparation for a
huge "Voyager” Mars lander to be launched on a Saturn V booster in
the early 1970s. Marshall asked GE to compare the advantages of a
central computer configuration versus separate computers for different
subsystems. General Electric used a highly mathematical approach to
develop power, size, and weight comparisons of the different
proposals in light of reliability considerations. Computer physical
limits were set as high as 100 pounds and 300 watts due to the large
size of the booster. This would allow computers such as the IBM 4Pi
series, Autonetics D26J, and IBM’s Saturn Launch Vehicle Digital
Computer (LVDC) to be considered. Planners expected that the func-
tions that later showed up on advanced Mariners—such as ac-
celerometers, programmable sequencers with 512 words of memory,
and telemetry registers—mwould be part of the proposed computer’s
capabilities and responsxhlhtzes However, GE found that economies
gained by a central system were outweighed by reliability advantages
intrinsic to a distributed system!.

Another approach came from Edward Greenberg, a Jet Propulsion
Laboratory (JPL) engineer who programmed for the Mariner VI and
VII Central Computer and Sequencer and contributed to the Viking
Comunand Computer Subsystem (CCS) design. In December, 1972,
he proposed that the Viking computer be standardized as a multimis-
sion processor?, His intent was to reuse hardware and software
development tools such as assemblers and simulators. Since one
Viking computer could never handle all the functions needed on
Voyager, several computers, each with a limited domain of functions,
were needed.

Aside from the GE study and Greenberg’s proposal, JPL

*Originally set for launch in the early 1980s, the mission slipped to May of
1986, but the grounding of the Shuttle fleet and cancellation of the Shuttle Cen-
taur upper stage program in early 1986 led to an indefinite postponement and
probably a change of launch vehicle.

DISTRIBUTED COMPUTING ON BOARD YOYAGER AND GALILEO 173

developed an additional argument for distributed computing. Edward
H. Kopf, Jr., a JPL engineer specializing in attitude control, pointed
out that different sections of the Laboratory needed computers to per-
form their assignments on Voyager and Galileo. Each group wanted
its "own" computer, so that it would not be constantly competing for
resources with other groups®. Therefore, a distributed system would
help keep the peace.

The attractions of distributing computing, reliability, potential
reusability, and separation of tasks, proved true in the development of
the Voyager and Galileo spacecraft. Each has a functionally dis-
tributed set of computers. Voyager makes use of two of the Viking
machines and a third, custom-built, computer. Each concentrates on
processing different functions, such as attitude control, data format-
ting, and commanding. Galileo has dual processors for attitude con-
trol and six in a network for command and data handling. Both
spacecraft were designed for long-duration, autonomous flight, a goal
difficult to attain without the use of distribution.

Figure 6-1. The Voyager spacecraft with the radioisotope generators on the left |
boom and the scan platform on the right boom. (JPL photo P10727B)

VOYAGER—THE FLYING COMPUTER CENTER

After the cancellation of the Thermoelectric Outer Planet
Spacecraft (TOPS) project as such, JPL proposed, and NASA funded,
a project called Mariner—Jupiter-Saturn 1977, It was given the name

ORIGINAL PAGE I8
OF POOR QUALITY

174 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Vovager in the mid-1970s. Although TOPS’ original mission was to
conduct the Grand Tour of the four gas giant planets, Voyager was
limited to flybys of the innermost two, Jupiter and Saturn. However,
favorable gravity assists and hardware longevity made it possible to
plan for a Uranus flyby by the Voyager 2 spacecraft and, potentially, a
Neptune encounter. After visiting Jupiter and Saturn, Voyager 1 is to
travel out of the plane of the planetary orbits and leave the solar sys-
tem.

Vovager employs three dual-redundant computer systems per
spacecraft. The fust, the CCS, is nearly identical to that flown on
Viking, performing sequencing and spacecraft health functions along
with new ones necessitated by the addition of the other computers.
Telemetry data formatting and transmission handled by the Flight
Data System are done on Voyager with the help of a custom-built
computer. Attitude control and articulation of the scan platform are
accomplished with the third computer system. One concept from the
STAR computer proposed for the TOPS, applicable to Voyager, is
dormancy. JPL’s pro iect staff believed that equipment would last
fonger if unpowered®. Although both CCSs are always powered,
rarely are both Flight Data Systems running, and both attitude control
computers are never turned on at the same time. Full bit-for-bit redun-
dancy is not maintained in the dual memones. For example,

"expended” algorithms, such as the deployment sequence executed
shortly after separation from the booster, need not be maintained.
Both memories are accessed by the smgle active processor in each
system. The Flight Data System keeps a copy of its instructions in
both memories, but intermediate data and variables can be stored in
either memory. This seemingly casual attitude toward memory
duplication tightens up considerably near encounter periods, which is
one time that both CCS processors are in tandem mode.

Since there are three computer systems on Voyager, JPL had to
establish another layer of organizational control over its flight
hardware and software development. Whereas Viking was assigned a
single Cognizant Software Engineer, Voyager had three, managed by
a Spacecraft Software Engineer. H. Kent Frewing of JPL assumed this
position in early 1974 and sent out a series of organizing memos
during the first halt of that year * Frewing's February 20, 1974 note
set out his duties and a project time line through the summer 1977
launch dates®, Manpower estimates for software development ranged
from one programmer in 1974 and 1977, with a peak of four full-time
programmers in late 1975. The small group allowed most work to be

*"He was replaced in early 1976 by Christopher P. Jones, who designed the
integrated fault protection algorithms used on the mission, but Frewing hud the
groundwork for management of the software.

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 1758

done informally, easing communication. To provide some structure,
Frewing established a Mariner-Jupiter-Saturn 1977 On-Board
Software Design Team consisting of himself, Donald R. Johnson, the
Flight Data System Cog Engineer, Stanley Lingon, the CCS Cog En-
gineer, and an Attitude and Articulation Control System
representative’. They helped ensure the same close control of
software development as on Viking, with good documentation and ef-
fective subroutine interfaces. The validation end of the software
development process was handled by the Capability Demonstration
Laboratory (CDL). Completed after the initial software was produced,
it was a collection of either breadboard or flight surplus computer and
science hardware, and its interfaces interconnected in the same way as
those on the actual spacecraft. Its function is identical to that of the
Shuttle Avionics Integration Laboratory (SAIL), in which both
software and hardware changes could be tested to see if they func-
tioned successfully®. Under this management umbrella, and with Cog
Engineers constantly elucidating requirements from the science side
and interpreting them to software engineers, each of the three com-
puter systems took shape.

Voyager CCS: Parameters and Problems

NASA reeled from massive budget cuts during the 1970s. A
changed political climate ended the Apollo era of near “carte
blanche.” Hampered by expensive Shuttle contracts as well as other
factors, NASA management reduced its plans for unmanned explora-
tion of the solar system. As Voyager developed under the new con-
ditions, cost savings became a key ingredient in all engineering
evaluations. JPL thus conducted a "CCS/CCS Memory Subsystem
Design Inheritance Review” on January 17, 1974%. Held a year after
Greenberg’s proposal for standardizing the Viking computer, the
Review resulted in the adoption of the Viking CCS as the Voyager
CCS. The eventual hardware functional requirements document reads
like a copy of the Viking document!®, 1/O interfaces with the new
Flight Data System and Attitude Articulation and Control System
computers are the major differences. Software such as the command
decoder, certain fault processing routines, and others are fundamen-
tally identical to Viking!!. Here again, differences are related to the
new computers. All command changes and memory loads for the
other computers are routed through the CCS'2. This required the ad-
dition of the routine MEMLOAD!3. Another routine, AACSIN, was
added to evaluate power codes sent from the Attitude Control com-
puter as a "heartbeat” to inform the CCS of its health!4, The fre-
quency of the heartbeat, roughly 30 times per minute, caused concern

176 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

that the CCS would be worn out processing it. Mission Operations es-
timated that the CCS would have to be active 3% to 4% of the time,
whereas the Viking Orbiter computer had trouble if it was more than
0.2% activeld. As it turns out, this worry was unwarranted.

Part of the reason why the more complex Vovager spacecraft
could be controlled by a computer with the same size memory as
Viking is the ability to change software loads. In-tlight reprogram-
ming, begun when the programmable sequencers flew on Mariners,
and brought to a state of high quality on Mariner X, was a nearly
routine task by the time of Voyager’s launch in 1977, Both the CCS
and Flight Data System computer have been reprogrammed exten-
sively. No less than /8 loads were uplinked to Voyager | during its
Jupiter encounter. During long-duration cruise, such as between
Saturn and Uranus, new loads are spaced to every 3 months!0, As
pioneered on Mariner X, a disaster backup sequence was stored in the
Voyager 2 CCS memory for the Uranus encounter, and later for the
Neptune encounter, Required because of the loss of redundancy after
the primary radio receiver developed an internal short, the backup se-
quence will execute mimmum experiment sequences and transmit data
to earth; it occupies 20% of the 4K memory!7, CCS programmers are
studying ways to use some bit positions in a failed Flight Data System
memory to compensate for the shortened memory in their system. A
readout register in the Flight Data System has a failed bit, giving the
impression that the entire memory has a one stored in that position in
each ;»gerd‘ Remaining "good" areas may be assigned to the use of the
CCS*e,

Vavager Attitude Articulation and Contrel System Computer

JPL has been committed to three-axis stabilized spacecraft since
it began designing probes 1n 1959, Attitude control systems maintain
the proper pointing. The tasks assigned to the systems later expanded
to include the actual operation of scanning platforms for imaging and
other remote sensing instrument pointing. On the early Mariner mis-
sions the control systems consisted of analog circuits made up of
hard-wired logic. By Mariner V111, digital circuits replaced the analog
electronics, and those were used on Mariner X as well as the Viking
Orbiter!?, Viking’s Lander used the Honeywell central computer to
run its independent attitude control system?, A landing craft engaged
in a powered descent needed far finer pointing than a spacecraft in
free flight, and the bandwidth of a hard-wired system was insufficient
to provide such control?!.

Future probes, however, might need computer-controlled attitude
electronics due to complex mission requirements or unusual

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEG 177

spacecraft configurations. NASA's Office of Aeronautics and Space
Technology funded a study of extended life attitude control systems as
the TOPS project wound down in 1972, The result was a combination
analog and digital programmable attitude control system. Dubbed
"HYPACE.," for Hybrid Programmable Attitude Control Electronics, it
was @ byte-serial processor with substantial power?Z, Using the same
4K, 18-bit-wide plated-wire memory from the Viking Orbiter com-
puter, HYPACE added wransistor-transistor logic (TTL) medium-scale
mtegrated circuits to create a relatively fast (28-microsecond cycle)
processor with index registers for addressing. Byte—serial architecture
was possible because the TTL chips were designed for 4-bit parallel
operation, so the 18-bit words could be moved around in five cycles
instead of the 18 a serial machine would need, increasing overall
speed. Index registering meant that the same block of code could be
used for all three axes, reducing memory requirements. It appeared
that the attitude control systems of future spacecraft would almost cer-
tainly benefit from such a computer,

Voyager was the first to do so, due to new requirements. One dif-
terence between Voyager and Mariner and Viking is that the latter
two were fairly rigid in construction. Voyager’s radioisotope ther-
moelectric generators, however, were mounted on a boom to keep
radiation leakage away from scientific instruments. In addition, the
magnetometer was boom mounted to avoid interference from
spacecralt magnetic fields caused by motors, actuators, power buses,
and electronics. Finally, the scan platform was also on a boom to give
a better field of view. The extended booms made Voyager much less
rigid in flight, with thruster firings and Maneuvers «causing the booms
to ﬂex complicating the attitude control problem?3. Adéztmndiiy the
Titan I booster used for Voyager required a "kick stage” to success-
fully inject Voyager into the transfer orbit to Jupiter. Since the kick
stage was kept simple, the spacecraft itself was required to do attitude
control during firing, which entailed much narrower margins of con-
trol than the three-axis pointing in cruise?%,

JPL’s Guidance and Control Section wanted to use a version of
HYPACE as the computer for the Voyager. However, there was con-
siderable pressure to build on the past and use existing equipment®,
Greenberg proposed using the same Viking computer in all systems
on the Voyager spacecraft that needed one26. A study showed that the
attitude control system could use the CCS computer, but the Flight
Data System could not due to high I/O requirements2?, Wayne Kohl,
the Viking computer Cog Engineer, thought that the Voyagu project
could save $300,000 by using “the ‘vikmg machine for the attitude con-
trol function®®, His division chief, John Scull, supported that idea,

possibly because of budget pressure from NASAZ, Raymond
L. Heacock, as Spacecraft Systems Manager in the Voyager Project
Office, and others from that organization were the key personnel in-

175 COMPUTERS IN SPACEFLIGHT: THE MASA EXPERIENCE

volved in making the final decision, influenced by the economy and
feasibility of the idea®®, Money could be saved in two ways by using
the existing system: avoidance of new development costs and retrain-
ing of personnel.

Guidance and Control grudgingly accepted the CCS computer on
the condition it be speeded up. Requirements for active control during
the kick stage burn meant that real-time control programs would have
to be written to operate within a 20-millisecond cycle, roughly three
times faster than the command computer!, An executive for the at-
titude control computer differed in nature from those for either the
command computer or the Flight Data System computer. Basically,
the attitude control computer needed to run subprograms at different
rates, requiring several cycles, as in Apollo, Skylab, and the Shuttle.
Guidance and Control asked for a 1-megahertz clock speed but wound
up getting about three quarters of that®Z, The attitude control en-
gineers also added the index registers that proved so useful during the
HYPACE experiment. Documentation for the system still refers to the
attitude control computer as HYPACE, even though its heart was the
command computer. General Electric, which built the command com-
puter, naturally built HYPACE, but the rest of the attitude control sys-
tem was constructed by Martin-Marietta Corporation in Denver.

Teoguer A. Almaguer was the hardware Cog Engineer for the at-
titude control computer, whereas H. Karl Bouvier led the software
development group. Bouvier actually worked on an analysis team
within the Guidance and Control Section, but the team members were
afraid to use the word "software” in their name because their tasks
might have been taken away and given to an existing software team in
another division?3. The programmers must have done an outstanding
job, considening the slow processor and limited memory. At launch,
only two words of free space remained in the 4K of plated wire3?,
Tight memory is now a problem because the scan platform actuators
on Voyager 2 are nearly worn out, and software has to compensate for
this during Uranus and Neptune encounter periods.

DISTRIBUTED COMPUTING ON BOARD YOYAGER AND GALILEO 179

Box 6-1: Yovager HYPACE Operation

HYPACE had four execution rates. Scan platform stepper motors
and thruster actuators were among the routines executed during the 10-
millisecond cycle. Attitude control laws and thruster logic executed in
the 20-millisecond cycle. Scanning control and mm execution were
placed in the 60-millisecond group, and the command interpreter and
heartbeat were 240-millisecond routines?®. In operation, the standard 10-
millisecond time internupt would cause all 10-millisecond routines to ex-
ecute. If it was tume for one of the 20-, 60-, or 240-millisecond routines
to run, it would be scheduled, Sometimes if the computer got too busy,
the 240-millisecond cycle slipped to up to 350 milliseconds, but routines
n that cycle were less critical than a routine to shut off an engine on
time.

One thing needed on Voyager that did not exist when only single
computers flew on unmanned spacecraft was an interface between the
machines. The command computer could directly request data from ei-
ther of its partners. A primary function of the command computer was to
check periodically on the health of the other computers. Programmers in
the Guidance and Control Section originally mtended o send s

"heartbeat” to the command computer each second®®, This was later
raised to once about every 2 seconds, partly because c:f the command
computer overload problem mentioned above. To carry the heartbeat, six
direct input hines, similar to the 3-bit synchronization bus on the Shuttle,
ran from the HYPACE to the command computer. A "power code” was
the content of the 6 bits Otransmitted on those lines. For example, power
code 37 was the simple heartbeat. Others related to passing information
such as pointing commands. Power code 66, called "the Omen,” told the
command wmpuwr to save disaster parameters, because a failure was
imminent?’. Every eight 240-millisecond cycles the heartbeat was sent.
Between times, the attitude control computer conducted its self tests, If it
failed, the heartbeat generator was bypassed. After about 10 seconds
passed with no heartbeats, the command computer would issue a switch-
over command to the backup processor.

A switch-over to the backup attitude control computer took pidce
on Voyager 2 16 seconds after separation from the solid rocket stage?®,
Separation was so rough that the spacecraft was sent off anitude. Simul-
taneously, the booms were being deployed by the comumand computer. A
thruster configuration initialization involving the plumbing for the
thrusters delayed their acting to correct the attitude error,

180 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 6-1 (Continued)

Since this was one of the mission-critical times that the command
computer was running in dual mode, the attitude control computer got
two commands to initialize the plumbing. Executing the second com-
mand pushed back the attitude control recovery even farther. Soon the
computer exhausted its options and voluntarily stopped the heartbeat.
When the backup came on-line it had no record of the gyro readings. Not
knowing how bad things were was a blessing, as it executed a simple
orientation and stopped the spacecraft rol13?, Here is an instance where
maintaining bit-for-bit identical memories would have been disastrous,
as the backup computer would also have tied itself in knots.

Developing Voyager’s Flight Data System Computer

Flight Data Systems handle the collection, formatting, and storage
of science and engineering data on spacecraft. If the data are to be
transmitted directly, a high rate of input and output is needed so that
nothing is lost. If data transmission is deferred because a spacecraft is
occulted from the tracking station, then the Flight Data System sends
the data to a magnetic tape recorder known as the Data Storage Sys-
tem (DSS). As JPL progressed through Ranger to Surveyor to Mariner
and to Viking, the rates of the data-handling requirements went
steadily upward. This was because of increased instrumentation,
greater sophistication in the spacecraft engineering systems, imaging
equipment with better resolution (thus needing higher bit rates), and
improved communications equipment permitting faster transmission
of data. These changes led away from hard-wired Flight Data Sys-
tems. One big step was the use of a digital memory on Viking to store
different sequences of data handling. It was much like the
microprogram in a central processor and for a similar purpose: to save
hardware®, From there it was a short step to a full-fledged computer.

TOPS feasibility studies refer to a Measurement Processor Sub-
system, the first time a separate computer was considered for flight
data*!, Although the command computer had been suggested as a pos-
sible Flight Data System machine, JPL engineers soon realized that
even though the processing part of the job was well within the power
of the computer, the 1/O rates precluded its use.

JPL. commissioned the development of a new computer from
scratch and assigned Jack L. Wooddell to the job. Wooddell prepared
an unusual document to tell the story of his work on the computer: a
paper for a graduate computer science course taught by Dr. Melvin
Breuer at the University of Southern California. Written around 1974,
the paper includes what appears to be the flight version of the

-

PISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 181

design*?. In it Wooddell lists the tasks he performed during the design
period. He began by preparing a list of functions that the proposed
Flight Data System was required to provide. These included sending
control signals to sequence the science instruments, the ability to
handle a wide variety of data rates and formats from the various in-
struments, potential for redesigning the mission in flight (as is now
being done), monitoring engineering telemetry, and keeping to the
reliability standard that no single failure result in loss of data from
more than one scientific instrument or one-half the engineering
sensors®?,

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 6-2. The Flight Data System hardware in its package. (JPL photo
360-751AC)

After determining requirements, Wooddell examined possible
hardware and software tradeoffs. In an insightful memorandum, John
Morecroft explained the concept of "soft iﬁigic“ as a complement to
the "hard logic” in the Flight Data System™*. Writing in 1975, when
the actual fhight software began to be prepared, Morecroft pointed out
that the program for the computer was actually a soft representation of
hard-wired circuits. Conceptually, the memo stands as an explanation
of the essential meaning of firmware in general. During the second
phase of his work, Wooddell determined which functions could be
handled by hardware and which should be left to the flexibility of

182 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

software, With those decisions made, a preliminary instruction set and
logic design could be prepared.

Uniquely, Wooddell began working with a programmer in 1973,
as soon as the instructions were ready™®. Richard J. Rice of JPL began
by developing software for a breadboard version of the data computer.
The breadboard originally used the ubiquitous 4K memory of plated
wire with 18-bit words and 150 of the same low-power TTL ICs used
in other JPL machines*®. Instruction execution times for this version
ranged from 12 to 24 microseconds. Rice’s prototype flight program,
developed on the basis of what was then known about Voyager in-
strumentation and previous experience, showed that the processor
speed should be doubled?7,

Two significant hardware changes solved this problem. One
hardware modification added direct memory access circuits and
provided for using them on each instruction cycle. Direct memory ac-
cess capability meant that some data could be sent directly to the
memory without having to go through the central processor. In other
computers, direct memory access is permitted as a sort of interrupt
and is often referred to as "cycle stealing” because it takes time away
from instruction execution. In the data computer, it would have been
foolhardy to do direct memory access in that way because the data
rate was so high that the instructions might never get a chance to be
executed quickly enough for time-crtical sequencing. Wooddell
solved this by adding a direct memory access cycle to those instruc-
tions that did not already have cycles in which the memory was
accessed*®. By adding that cycle all the instructions took the same
time to execute regardless of direct memory access, making it easier
to predict program run times and to guarantee the memory access
rate?. Rice, who suggested the change, later said that his program-
ming job would have been impossible without it39,

The second hardware modification to Voyager's data computer
led to a first in spaceflight computing: volatile memory. After the first
round of prototype programs, an intermediate hardware design
evolved using CMOS ICs”!. This type of circuit is very low powered,
fast, and can tolerate a wide range of voltages, making it excellent for
space use. Early in the 1970s, CMOS was still relatively new, so it
was with some risk that JPL chose the circuits. To go along with the
new CMOS processor, the dara computer group fought for CMOS
memories as well. Trying to drive a slow plated-wire memory with
fast CMOS circuits would have negated the attempt to speed up the
computer. However, CMOS memories are volatile, in that if power is
cut off, the data stored in them disappear. The designers of previous
manned and unmanned spacecraft avoided volatile memories, fearing
that power transients would destroy the memories at critical mission
times. Voyager management had to be convinced that the risk was ac-
ceptable,

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 183

James T. Kinsey, a JPL manager, was instrumental in getting the
semiconductor memory accepted because a method of providing
backup power was devised2. Voyager’s primary electricity is alter-
nating current. The radioisotope generators produce direct current,
which is converted. By running a separate power line from the direct
current bus fed by the generators to the CMOS memories, the only
way power would be lost is if a major catastrophe destroyed the
generators, If that happened there would not be any need for a data
computer anyway. Enough voltage is supplied to retain the infor-
mation in memory and in the registers in the processor that contain the
state vector’3, Success with the CMOS memory led to the adoption of
all CMOS circuits in both computer systems on the Galileo spacecraft.
Along with the new chips, the memory changed with an expansion to
8K. Two "external” address bits were added to flag whether the top or
bottom half of the memory is being accessed™®. One bit is used w©
select the memory half used for data access; the other, for the half
used for instruction access.

Eventually, the cycle of prototyping and interaction between Rice
and Wooddell stopped as a final design was accepted. Wooddell wrote
that the extensive use of breadboards instead of paper designs op-
timized the process>>. His method, although not strictly "software
first” was certainly software sensitive. Martin-Marietta’s experiences
with a software first philosophy as described in the previous chapter
indicate that Wooddell had a clearer idea of his objective than did
Martin. The job done on the Flight Data Systems computer is a good
model of fine engineering practice in developing a total system.

Voyager Flight Data System Software

The original software development for the data computer has es-
sentially been a two-man show since 1975, beginning when Edgar
M. Blizzard joined Richard Rice to develop the flight version of the
code. Others have been involved in testing and management, but these
two JPL enginecers have been the key programmers for the entire mis-
ston to date. They sit in the same area as the "Laboratory Test Set,”" an
Interdata computer and peripherals that contain the software simulator
of the data computer and the assembler and flight load generator.
Across from them is the CDL, the loose conglomeration of hardware
that represents the real spacecraft. From start to validation to release,
their tools were within sight, and certainly hearing, since the room is
filled with the constant hum of spinning disks, occasional clattering
printers, and the undefinable sound of computers crunching numbers.

Rice characterized the unique nature of the data computer
software this way: "We didn’t worry about top-down or structured;

184 COMPUTERS INSPACEFLIGHT: THE NASA EXPERIENCE

Box 6-2: Voyager Flight Data System Computer Architecture

Voyager’s data computer is different from most small general-
purpose computers in several ways. Its special registers are kept in
memory, pemitting a large number (128) of them. Wooddell also wrote
more powerful shift and rotate instructions because of data-handling re-
quirements. Despite its 1/O rate, the arithmetic rate 1s quite slow, mostly
due to byte-serial operation. This means 4-bit bytes are operated on in
sequence. Since the word size of the machine is 16 bits, it takes six
eycles to do an add, including housekeeping cycles??. If all the arith-
metic, logic and shifting were not done in the general registers, the
machine would have been even slower. Reflecting its role, in addition to
the usual ADD, SUB, AND, OR, and XOR instructions found on most
computers, the data computer has many incrementing, decrementing. and
branching instructions among the 36 defined for the flight version of the

machine>7.

Overall, the Flight Data System requires 14 watts of power and
weighs 16.3 kilograms®, Its computer needs just one third of a watt and
10 volts, less than the power required for a temperature sensor®?! At first
the estimated throughput required was 20,000 16-bit words per second®”.
By flight time, the instruction execution rate was 80,000 per second, with
data rates of 115,000 bits per second, much higher than previous Flight
Data Systems®!, The dual processor/dual memory architecture of the
command computer and attitude control computer is repeated in the data
computer. There was no provision for automatic switch-over in case of
failure. A command trom the ground routed by the conumand computer
is necessary for reconfiguration®. Note that the attitude control com-
puter can be switched by the command computer without ground inter-
vention because it is much more critical to retain orientation.

we just defined functions"®?. One important function is the software’s
provision of basic timing for the entire spacecraft, not just itself. It is
also required to provide the capability to read out the memories of all
three computers, under orders of the command c0:nputer64. Don
Johnson, the Cog Engineer, determined other requirements and inter-
faces with the scientific instruments. Rice called him "Mr. FDS,"
claiming that Johnson often knew more about the scientific instru-
ments than the scie;)}ists themselves: "If someone forgot something,
Johnson knew it"®7. Raymond L. Heacock, Voyager Project
Manager, said that Johnson was largely responsible for the overall
success of the system, including the design®. Rice said that Johnson’s
ebullient style and competence worked well in the informal mode in
which the data computer requirements were set, which was a fully
iterative process. New software needs continued to be discovered
during the mission, which is one reason why a programmable machine

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 185

was chosen. For example, at one point Rice and Blizzard were asked
to create software to determine where the limbs of satellites were so
that imaging could be started®’. Development of some programs was
deferred until after launch, such as the Saturn encounter program,
when better data on the telecommunications rates and specific science
requirements would be available8.

Allowing for constant change mandated certain controls over the
data computer’s memory. A limit of 90% capacity was set in 1976 by
Frewing, the Software Cog Engineer®, Though later abandoned, the
constraint indicated the software management’s early concern about
memory overruns. Also, since the machine can directly address the
lower 4K of memory, prc;gmms were to be kept there, with the upper
portion for transient data’V, Later, the flight configuration of the com-
puter evolved to one processor accessing both memories. Therefore, a
copy of the programs is kept in the lower portion of each memory, but
both upper portions are usable by the single processor as a scratch
pad’!. If dual mode is required, the memories are separated. Ex-
perience has produced increased confidence in the memories. At first,
complete loads had to be sent when an update was done; recently,
pieces of software have been allowed to be inserted in the programs.
Full redundancy between the memories is not now automatically
maintained”?,

Box 6-3: Flight Data System Computer Executive

Like the command computer, the data computer has a simple execu-
tive, Thne is divided into twenty-four 2.5-millisecond intervals, called "P
periods.” Each 24 P periods represent one inaging system scan line.
Eight hundred of those lines is a frame. At the beginning of each P
petiod, the software automatically returns to memory location 0000,
where it executes a routine that determines what functions to perform
during that P periad” . Care 15 taken that the software completes all
pending processes in the 2. 5-millisecond period, a job made easier by the
standardization of execution times once the direct memory access cycle
was added.

Vovager’s Future

Voyager software development continued into the late 1980s.
Kohl, Wooddell, Greenberg, Deese, Johnson, Kopf, and others closely
connected with the hardware of Voyager’s computers were then on
other projects, but Rice and Blizzard and their counterparts on the
command computer and attitude control computer were still program-

186 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

ming, preparing Voyager 2 for Uranus and Voyager 1 to discover the
boundary of the solar wind. An increasing problem as the spacecraft
recede from the earth is the reduction in the data transmission rate,
The closer a spacecraft is to earth, the higher the bandwidth possible.
Computer loads that once took minutes now take hours because error
checking by retransmitting to earth is slowed. In the summer of 1984,
a Flight Data System software load took 4 hours, and the situation
cannot improve’*. Voyager Project officials decided to use the Flight
Data System in dual processor mode for the first time for the Uranus
encounter to provide image data compression. Thus, the information
content remained high even though the ransmission rate was grossly
reduced’?,

Voyager's computer system did not carry on to the next JPL
project. Galileo combined the CCS and the Flight Data System into a
single Command and Data System. This is logical from JPL’s
standpoint because both systems are the responsibility of the same In-
formation Systems Division. Attitude control is provided by a separate
computer. Whereas Voyager was a functionally distributed system
with dual redundancy, Galileo’s Command and Data System contains
computers that do true distributed processing and use a new concept
of redundancy. That system may be a model for the future, as it can
impact designs aimed at complex spacecraft with extensive data
processing needs, such as the Space Station and Mariner Mark 11, both
due in the 1990s.

GALILEO—TRUE DISTRIBUTED COMPUTING IN SPACE

Project Galileo began at JPL in the late 1970s with the objective
of developing an orbiter and probe for further exploration of Jupiter,
Galileo will proceed toward Jupiter, launching a probe 5 months be-
fore arrival. Plans are for the probe to enter the Jovian atmosphere at
a relatively low angle, using an aeroshell braking system for entry fol-
lowed by a parachute system for final braking and descent. Due to the
nature of the entry, an antenna large enough to send data directly to
earth cannot be carried on the probe. Instead, it has to relay the data to
the orbiter, which will fly a parallel path thousands of kilometers
above. At the end of the probe mission, expected to last 60 to 75
minutes until the probe is crushed by atmospheric pressure, the orbiter
will execute an insertion burn. For the next 2 years, the orbiter will fly
by the four Galilean satellites (hence, the mission name), using gravity
assists to change its path after each encounter.

Great demands will be placed on Galileo’s on-board computer
systems, because of both the nature of the mission and the design of
the spacecraft itself. First, Galileo is a one-shot mission. Inter-
planetary probes have been mostly launched in pairs for the obvious

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 187

ORIGINAL PAGE 18
QOF POOR QUALITY

Figure 6-3. The Unified Data System: precursor to Galileo’s Command and Data
Subsystem. (JPL photo 360-630)

reason that a full backup then exists. Such dual launches are generally
cost effective, as a second spacecraft can be obtained for 15% of the
price of the first one”®, Budget constraints forced NASA to buy just
one Galileo, so there was tremendous pressure to construct a highly
reliable spacecraft. Additional pressure has been on the project be-
cause of changes in the launch date and booster rocket. Originally
scheduled for a 1982 launch, delays in the Shuttle program and other
factors caused rescheduling to 1984, then 1985 and, finally, 1986,
when the grounding of the Shuttle tleet forced an indefinite postpone-
ment. At first, the Air Force's Inertial Upper Stage rocket was chosen
for the booster. Later, the new "wide body" Centaur got the job. Cen-
taur upper stages have flown on Atlas and Titan Il boosters since the
1960s. The new "fat Centaur” would carry 50% more fuel than the
garlier version. Other changes were made to adapt it to the Shuttle
cargo bay. One JPL engineer said that it is "like Abe Lincoln’s axe.
The head broke and they replaced it and the handle broke and they put
on a new one, but it’s still Abe Lincoln’s axe"77. However, NASA
canceled the Shuttle version of the new Centaur in the spring of 1986
due to safety considerations, leaving Galileo without a nde to Jupiter.

188 COMPUTERS INSPACEFLIGHT: THE NASA EXPERIENCE

By early 1987, NASA decided to go back to using the Inertial Upper
Stage, but it has significantly lower lifting capability than the Centaur,
As a result, the flight path has to be changed to include a Venus flyby
and two Earth flybys to gain velocity by gravity assistance. Unfor-
tunately, the total flight time to Jupiter will nearly wriple to about
Seven years,

Spacecraft design also caused problems for the computer desig-
ners. All previous JPL probes have been three-axis inertial to gain ad-
vantages such as easing communication and providing a stable scan
platform for imaging. Galileo has a fixed attitude area, called the
“despun section,” and also a "spun section” that rotates three times a
minute. Fields and particles experimenters required a spin to help
them differentiate local fields from external fields. Aside from the ob-
vious mcrease in the order of magnitude of the attitude control
problem on a dual-spin spacecraft, communication between the two
parts is hampered by the need to transmit serially across a rotary trans-
former. Four hundred milliseconds are required to send a message be-
tween the spun and despun sections’®, To overcome this time penalty
and provide more real-fime control, a fully distributed system of com-
puters is mandated.

Figure 6. A model of the Galileo spacecraft with the probe visible at the bot-
tom center. (JPL photo 230-222A)

ORIGINAL PAGE 15
OF POOR QUALITY,

o

DISTRIBUTED COMPUTYING ON BOARD VOYAGER AND GALILEO 189

Finally, computer system complexity is further increased by the
number of science experiments on board and the fact that they are
largely computer controlled as well. Eight of the nine instruments
have microprocessors for control and data handling”, These have to
communicate with the Command and Data System, itself containing
six microprocessors. Attitude and Articulation Control has dual com-
puters, and the probe also contains a dual microprocessor system. In
all, Galileo contains 19 microprocessors with about 320K of semicon-
ductor random access memory and 41K of read-only memory®?, No
unmanned spacecraft launched to date can approach Galileo in the
power and size of its on-board computer network.

JPL took great care in the selection of the computer systems for
Galileo. Procurement of the systems for the Command and Data han-
dling equipment and the attitude control equipment proceeded
separately but in a somewhat coordinated fashion. In the case of the
Command system, a 1977 study examined using the existing Voyager
computers, the National Standard Spacecraft Computer (NSSC-1),
and some form of a microprocessor distributed system like the Unified
Data System (UDS), then a research program at JPL aimed at complex
long-duration space missions®!. Although a lot of pressure was ex-
erted on Galileo’s builders to choose either the existing equipment or
the NSSC-1, cost factors favored the UDS as the basis for the Com-
mand and Data Subsystem®2. Similarly, the attitude control group was
pressured to use the NSSC-1, but the desire for floating point and
greater power defeated that idea. Since the star tracker is in the spun
section and thus moving, complex coordinate transformations must be
calculated, and the NSSC-1 was not up to it33,

With new computers needed for both major controlling subsys-
tems, JPL carefully explored memory requirements and software
development prospects. Prototype programs were written in HAL/S
and FORTRAN for the command computer and the attitude control
computer34, Ideas for the content of the programs came from Voyager
experience and the executive written for the NSSC-1. The project of-
fice originally specified that HAL would be used for programming all
flight software. When irreducible inefficiencies appeared in the com-
piler bought for the command and data computers, HAL was aban-
doned for that system and replaced with "structured macros"33, HAL
was retained for the other computer system. Although most
microprocessors in the scientific experiments are coded in assembler,
one is programmed in FORTH, so high-level languages finally ap-
peared on unmanned spacecraft. The project office set a limit of 75%
memory usage at launch (later raised to 85% for the attitude control
computer only) and 85% load at Jupiter insertion. Officials hoped to
avoid the tight memory problems associated with earlier missions and
even asked the Shuttle software office for advice in setting these

limits80,

190 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

JPL considered software crucial to the success of the overall
Galileo mission. As of 1985, Neil Ausman of JPL was in charge of all
software, both flight and ground support, and he reported directly to
project manager John Casani. Patricia Molko, also of the project of-
fice, wrote a standards document for software development. At one
point, Howard W. Tindall, first introduced in the chapter on the
Apollo computer systems, was brought in to serve as a consultant. He
found that in some ways JPL was "going through the same problems
that we did when we developed our original large programs"$7,
However, in some respects Galileo is more complex than Apollo be-
cause of the number of intercommunicating computer systems. Thus,
size is not the only factor contributing to the difficulty of writing the
software.

The Galileo probe mission is handled by NASA Ames Research
Center, and the entry probe was assembled by Hughes Corporation.
Even though it contains a dual microprocessor system, its function is
primarily confined to sequencing, and its architecture is similar to sys-
tems already described on Mariner, Viking, and Voyager.

Galileo's Command and Data Subsystem Origins: The UDS

STAR was JPL’s foray into ultrareliable computer research in the
1960s; the UDS was its 1970s counterpart. David Rennels, who had
been instrumental in the STAR program, led in developing the system.
Assisting him on the hardware side was Borge Riis-Vestergaard, a
visiting scientist, and Vance C. Tyree, Frederick Lesh and Paul Lecoq
did the software. One reason the UDS project started was the desire to
develop a new architecture for flight computers that would reduce life
cycle costs®®, Another impetus came from 1973 studies of distributed
systems done in support of Voyager and by the Air Force39. Distribu-
tion of functions among several computers on Voyager has been
shown to be a natural result of requirements. The Air Force study
found that avionics tasks are better handled by partitioning and using
dedicated computers for specific functions. Since microprocessors be-
came commercially available at about that time, they were recom-
mended for use in such distributed systems.

Rennels” UDS project explored the difficulties in tying multiple
computers together in a flexible manner. He defined an architecture
using two levels of computers. Individual computers and associated
memories at one level were called "high-level modules (HLM)."
These computers controlled system-wide functions such as the data
buses and fault detection. Other computers were located at specific
subsystems and were called "terminal modules.” They controlled one
functional area such as engineering instruments or attitude and ar-
ticulation. Each module had its own processor and memory. Com-

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEQ 191

ORICINAT .
OF POOR QUALITY,

Figure 6-5. Galileo and its booster being deployed from an orbiting shuttle.
(P25722AC)

munication between modules was accomplished on a bus that carried
data from one memory to another. By vsing direct memory access for
all intercommunication, processor resources other than for transfer
commands were unaffected. HLMs did not have I/O capability other
than to the terminal modules via the bus. All input and output to
spacecraft systems and the ground was handled by the terminal
modules.

Some influence from the STAR project can be noted in that Ren-
nels kept critical functions highly redundant and simple. Reconfigura-
tion after failures reflected STAR concepts??. In order to avoid a
potential single-point source of failure, there was no central bus con-
troller in the UDS. Each of the HLMs controlled a separate bus, but

192 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

only one bus was needed to support all processors because any HLM
could transfer data between any two memories®!. The breadboard
built for the UDS project had three HLMs and three terminal modules,
so it had three buses as well?2, Failure of a HLM caused its functions
to be accepted by the remaining ones. Reliability is obtained by such
reallocation of functions to resources, making this a highly fault-
tolerant system.

One advantage of distributed systems is that interfaces can be
simpler than in a system using a central computer. Each local com-
puter is responsible for its own tming and control. Only on and off
commands and data transfers need be made between machines?3.
System-wide synchronization is accomplished by providing all
processors with a real-time interrupt signal. By using a cyclic nter-
rupt, the complexity attendant with priority interrupt systems is
avoided®®. Every 2.5 milliseconds, a signal is sent to all components,
Basically, every processor has to be finished with its current processes
before the next interrupt occurs®®, Data transfers and scheduling of
tasks can be timed using the periodic interrupt.

Key advantages of the UDS concept are that expanded require-
ments can be handled by adding terminal modules, software can be
highly specialized and distributed, and fault tolerance is very high.
Availability of flight-capable microprocessors in the mid-1970s made
it possible for JPL to seriously consider the UDS as a competitor with
NSSC-1 and the old Voyager equipment. Its flexibility and potential
as a permanent architecture for space tlight helped its case.

NASA chose RCA’s 1802 microprocessor for the Galileo im-
plementation of the UDS. A CMOS-type device, it was "nobody’s
favorite choice”9 but at the time (c. 1977) was considered to be the
only microprocessor suitable for spaceflight. Recall the use of CMOS
components in the processors and memory in the Voyager Flight Data
System. Similar advantages accrue with the use of CMOS
microprocessors: low power requirements (30 milliwatts) and
tolerance of a wide range of voltages”’. However, some dis-
advantages had to be dealt with. CMOS chips are especially suscep-
tible to damage from electrostatic discharges”8. RCA 1802s are slow,
with a 5-microsecond cycle time and an average of two cycles per in-
struction. In contrast, the discrete component Voyager CCS had a
1.37-microsecond cycle, making it faster for functions that did not re-
quire multiple cycles??, Speed has been a major constraint to the
software development!®, Carryover of the direct memory access
cycle to Galileo from the Voyager Flight Data System alleviates this
problem somewhat!®!, In general, making the six MICTOProcessors
"come together” has been much more difficult than originally
expected“??‘. Software is the most important component in achieving
the success of the CCS.

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEQ 193

PACE IS
QUALITY,

Figure 6-6. Circuit boards for the Galileo Command and Data Subsystem. (JPL
photo 360-1756)

Box 6-4: Evolution of the Command and Data Subsystem

Galileo’s Command and Data Subsystem adapted UDS technology
fairly directly. In 1978 designs, the Subsystem was shown as consisting
of three HLMzg and four low-level modules (LLMs), which were the
realization of the terminal modules. Three buses were also present, each
controlled by a HLM. Functionally there was one HLM dedicated to
stored sequence control, one for real-time control, and the third as a
spare. LLMs in that configuration handled sequencing, telemetry, status
polling, and other subfunctions. Eventually one high-level processor
was eliminated, but three buses remain, though one of them is used for
test equipment only and will ot function in flight!%?, Software architec-
ture is now much different than the UDS.

194 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 6-4 (Continned;

One major difference from the UDS concept is the way the proces-
sors in the Subsystem are separated into redundant strings. Whereas
reconfiguration after a failure was done by combining any of the remain-
ing processors into a new control string in the UDS, on Galileo two basi-
cally identical strings are configured from the start, one backing up the
other much like the backup processors on Viking and Voyager. Each
HIM has 32K of memory and a bus controller associated with it. A LLM
with a processor and 16K of memory for engineering control i1s con-
nected to the string, along with a data bulk memory (DBUM) of 8K and
a bulk memory (BUM) of 16K. These components are in the spun sec-
tion of the spacecraft. Another LLM with 16K of memory is in the
despun section, connected to the probe and the launch vehicle, among
other functions!® This configuration of one HLM and two LLMs, a
BUM and a DBUM is repeated in string B. Therefore, the total system
consists of six microprocessors with 176K of semiconductor memory.
About (2K of HLM memory is write protected and used for
programs'9, BUMs are used for auxiliary storage and buffering in that
all new sets of commands are directly inserted into them from the ground
and then redistributed by the software in the HLMs. Data memories
serve as buffers for incoming science instrument data, again with direct
memory access!¥® Commands and data are transferred on the buses
using packets with three-word headers. Headers contain the code num-
bers of the source and recipient, the starting address in memory of the
message, and fillers for timing. More than one address can be specified
for a message, but usually there is only one recipient!’, Data ransfer is
coordinated by the real-time interrupt. Odd-numbered real-time intervals
are used for input; even numbered intervals for output.

As in previous missions, several operating modes are available for
the Command and Data Subsystem, During cruise and other noncritical
mission phases, one string is up and running and the other is in a quiet
state. Otherwise both can be commanding in one of several ways. Dual
string mode means that the strings are executing code concurrently and
both send commands. Parallel mode is used for time-critical operations
needing closer synchronization. Tandem mode is used during maneuvers.
If a failure is detected in one string, the other halts the activity1Y8,

Developing the Command and Data Subsystem Software

Development of the software for this Subsystem consumed more
time and labor than any previous unmanned spacecraft. Dr. John
Zipse, the Cog Engineer for the Subsystem software, had an average

o

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 195
ORIGINAL PACE IS
OF POOR QUALITY

Figure 6-7. Memory modules for the Galileo Command and Data Subsystem.
(JPL photo 360-1704)

of 12 full-time software developers working under him at peak
periods!®?. They shared five terminals hooked to an IBM System
370/158 computer on which the assembler and functional commands
resided. Originally, HAL/S was specified as the programming lan-
guage for the Subsystem!10, A prototype compiler for the RCA 1802s
was not successful, and HAL was dropped in favor of "structured
macros"!H, Called "functional commands” in the software documen-
tation, they have names such as IF, ELSE, DO, ASSIGN, and others
very similar to the statements of a high-level programming
language! 12, These functional commands make up the "Virtual
Machine Language” in which most of the software was written. Each
command causes the execution of a prepared block of 1802 assembly
code, much like a subroutine call. Project documents recognize three
layers of language associated with the Subsystem: Level A is the
hardware external to the 1802s that may provide input and receive
output, Level B is the 1802 assembler, and Level C is the Virtual
Machine Language!13,

Recognizing the complexity of the software, JPL instituted ever

196 COMPUTERS INSPACEFLIGHT: THE NASA EXPERIENCE

ORIGINAL PAGE I8
OF FOOR QUALITY

imcaomocss&é?%
LLooRouT iMeL: |
| RELEASE i
—3
i t
. FAULTCLASS || BACKGROURD
wiaL IFITATION AND. | | STARTUP ANG
ERITICALACTION | | ROLLBACK
S — r..m.i_._.m e)
FQReHROGND | | BACKGROURD 7 mMEmMoRY 5T
prmseer | {203 36C3 # ¢
j P EGED b EERPSIVIEGRE : : J
i vt ¢ 7
P o iy i {
pnonEcn] Al 4 tr
e F
REALTRENECNT L Feiaih 7
e 7 staviatt /
/R ,f% /a/ SROCRAME /
/ e 4
e] ey oy o 4 74 / /
2 LWL 3 JEu—— 5k SO
y /g e/ ass 2:§~ HERERA //
seud $05 TRSLL }é BN I pas il i fap §
1eet Erien £onIno: l%l v bl v ™ /
A 2 Vi 1
/] z
CODPERATIRG & ity
VIR (U EL MALHINE" ¥
FROGHAMS
i
M xI L THIE L
Foncriowas £ 1T 1 g ’“"’i { Tirmi! 1 o i
COMMaND jaon] Loz iwee) 62 Preadlpent] [TR L 0 G LENORL boas ,rc«,ocig 8 |
INTERPRETESS | & i1 i H i Vo e L] Lt s
! T 3)
I R ! s
HEAUTWERESL | WPLINK extenose |3 LAUET e
STARTLE PHOCESY ACTIONS | anavss g stArTUr

Figure 6-8. The software architecture of the Galileo Command and Data Subsys-
tem High Level Modules. (From JPL, 625-340-006000)

more stringent development requirements. Preparation for the
development process began with a "Galileo Software Thinking
Group” which met in 1977-197814, Programmers were ordered to
keep software modules smaller than 150 assembly language state-
ments and were reminded that simplicity was the highest priority! 15,

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 197

Box 6-5: Command and Data Subsystem Software Architecture

Galileo’s Command and Data software is considered a "hierarchical
software architecture” and is divided into two sets of processes, with fur-
ther divisions within them. Foreground processes are executed at each
real-time interrupt, or every 1/15th second. They are a self test, a clock,
and bus control. Background processes begin each 2/3 second, and are
much more complex. Functions done in the background have been
divided into six "virtual machines,” a term of many meanings. In this
case, three virtual machines are considered "privileged™: the administra-
tion machine, the contingency action program machine, and the fault
processing machine. These three machines consist of software that is al-
ways resident in the Galileo computers and is kept in the 12K of write-
protected memory!'16, They are called privileged because the non-
privileged machines can be canceled if they do not complete processing
before the end of the 2/3-second cycle, whereas the privileged machines
can never be canceled. Nonprivileged machines include an immediate
action program machine, a delayed action program machine, and a stored
sequence program machine. So the nonprivileged machines are reserved
for commands and sequence control, whereas the privileged machines
are for executive and fault detection and correction. Nonprivileged
software is to be updated about once a week in flight!!7. Originally, the
immediate action programs were considered privileged, but with the ad-
dition of a contingency machine they were moved to nonprivileged
status 8, Software developers imagine that a "wall" exists between the
privileged and nonprivileged machines. They consider that the non-
privileged software is more error prone because it is constantly changing,
whereas the privileged software should have had a thorough exercise
over several years in testing before the flight,

Execution of the virual machine software s related 1o the 2/3-
second interrupt. In each cycle the software goes through each virtual
machine pending program stack and executes what i3 waiting. Many
programs can be running in each virtual machine in each cycle, up to 10
in the administration and fault protection machines, for example. As
mentioned above, the privileged machines always get to clear their pend-
ing programs, whereas the nonprivileged machines do what they can un-
til the time is up.

Software described so far is resident in the HLMs. LLMs have spe-
cialized software for their particular functions, such as monitoring en-
gineering instrumentation and talking to the launch vehicle. Data from
those tasks needed by the virtual machines are passed on the buses
during the 1/15-second interrupt.

198 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Design of the software was done in a JPL-developed Software
Design and Development Language that used statements similar to
those in high-level languages!!®. Even with excellent documentation
and tools, such as a hardware-based simulator for software
validation!?0, it takes (according to Zipse) a new programmer three
months to be effective. Until Galileo has flown, no final evaluation
can be made of the virtual machine architecture. Yet, future spacecraft
requiring expandability and a high degree of flexibility could probably
gain from using such an architecture as a complement to the UDS type
hardware structure.

Galileo Attitude and Articulation Control Computer System

In terms of tasks, the Attitude and Articulation Control System
has less to do than the Command and Data Subsystem, but it must per-
form its jobs faster and with more critical tolerances. During the dis-
cussion of the Voyager computers, it became clear that the attitude
control system needed a fast-cycle, real-time software architecture
running on a high-speed computer. Galileo’s control requirements are
much greater than Voyager’s; the dual spin problem and more com-
plex imaging equipment indicated from the beginning a need for a
completely new computer system. The computer was to provide star-
based attitude determination and control an inertially referenced,
target-body-tracking scan platform!2l, Speed was the primary
criterion for the new processor!42,

Kenneth Holmes, in charge of looking for the Galileo control
computer!23, and the other engineers ran old Voyager attitude control
programs on several processors. One of those processors soon proved
itself superior: Irek’s 2900 series! 24, Irek, now a division of Litton In-
dustries, built a computer known as the ATAC, or Advanced Technol-
ogy Airborne Computer. Using 2900 series processors, each with 4-bit
words, ltek assembled a 16-bit, low-power, tlying minicomputer
roughly equal in power to a Digital Equipment Corporation
PDP-11/23. Navy aircraft use this computer, although its specific ap-
plications are classified!?3, ATAC’s basic cycle time is 250
nanoseconds, or more than five times faster than the Voyager
computer's cycle. However, the memory cannot cycle faster than 2
microseconds, so operations rates average 143,000 cycles per
second! 20, Floating-point capability is a plus, and since it handles
eight interrupts using microcode, there is no software overhead for
real-time operation!2’. Another good feature is that its 16 registers are
general purpose; none are dedicated as accumulators, program
counters, address registers, and so on. Therefore, multiprocessing is
made much easier. Further advantages to the computer are that special

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 199

Figure 6-9. The central processor and input/foutput circuits of the Galileo At-
titude and Articulation Control Subsystem. (JPL 230-1128bc)

instructions can be added by the user for specific applications. Four
instructions added by the Galileo project saved over 1,500 words of
code in the flight program!28,

The ATAC came with a considerable amount of software support.
Target compilers were available for FORTRAN, BASIC, and
HAL/S!29, Galileo project management wanted a higher order lan-
guage used in the coding, so HAL was adopted for the attitude control
system. Unlike the Command and Data Subsystermn, HAL was success-
fully adapted to the ATAC. Compilers developed by Intermetrics for
the ATAC are about 12% speed inefficient, but 36% memory mn-
efficient compared with assembler!30, Apparently this was within ac-
ceptable limits, and the flight applications code is written in HAL,
with the operating system in assembler. Edward H. Kopf, Jr. said,
“We love HAL/S; we could never do it without HAL/S," even though
he referred to it facetiously as "flight PL/L" Given the complexity of
the resultant software, he was probably right that a high-level lan-
guage was critical to success.

Attitude Control Electronics Software Organization

Implementing HAL/S on the ATAC involved creating a special
operating system. Ted Kopf wrote GRACOS, or the Galileo Real-

URIGINAL pacy IS
OFE POOR QUALITY

200COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 6--10. Memory modules of the Galileo antitude control computers. (JPL
230-1121bc)

time Attitude Control Operating System, to accomplish that
implementation!?3, GRACOS begins the operation of the software by
scheduling a HAL/S module called STARTUP. Within STARTUP
are statements that set up the concurrent processes necessary to do the
attitunde control and articulation tasks (a version of STARTUP is
reproduced in the HAL/S appendix as an example of the language).
Up to 17 concurrent processes may be running under GRACOS, with
at least 10 up all the time!30. STARTUP is given as much time as
necessary to complete, and then the established processes begin at the
next 1/15-second real-time interrupt!37, Kopf wrote GRACOS to be
mission independent. He avoided constraining the timing of rate
groups and other things that would have been too specific!?®. Interest-
ingly, if the fault-handling routine has to come in, it restores the
registers of the failed HAL/S module where the fault occurred and
tries again, very similar to the "roll back and try again” scheme in
STARI39,

Sanford M. Krasner, the Software Cog Engineer for the Attitude
Control Electronics, reported directly to Brian T. Larman, the
Spacecraft Flight Software System Engineer. Early in the project, five
people were full time on the software development, several more than
on Voyageri40, The coding process was speeded up when HAL was
used as the software design iaﬂguagel‘“. To make development
easier, Voyager structure was adopted whenever possible!42,

ORIGINAL PAGE IS

OF POOR QUALITY

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 201

Box 6-6: Configuration of the Attitude Control Electronics

Galileo’s Attitude and Articulation Control Subsystem necessarily
has parts in both the spun and despun sections of the spacecraft. Most
components are in the spun section, including the two redundant proces-
sors and 64K of memory. Called the ACE, for Astitude Control
Electronics, its despun parner is the DEUCE, for Despun Section
Electronics, a long way 1o go for an acronym. Communication between
the ACE and DEUCE is across the rotary transformer. Since the trans-
former is not considered fully reliable, input or output to the DEUCE is
not complete until an ACKNOWLEDGE interrupt reaches the ACE!!,
CMOS-type memories similar to those used in the Voyager Flight Data
System are in the ACE. Sixty-six 1K chips are needed, two of which are
actually permanent read-only memory. Those two contain the Memory
Loss Recovery Routine written in ATAC assembler’2, A S-volt keep-
alive current directly from the generators 15 constantly fed to the
memories, but in the case of a destructive transient the Recovery Routine
can restart the software after it has been repaired or replaced.

Planning for the systern included careful memory sizing. Based on
actual Voyager programs and extrapolations from them to handle the
new requirements, a 1978 study thought 10K of mermory to be sufficient.
Using a policy of 100% margin and 75% limit at launch, 32K was even-
tually bought!?3. As noted above, a waiver to 85% full at launch was
given. Ground computers can reprogram the ACE in flight by sending
code to the off-line memory through the Command and Data Subsystem.
As with its own LLMs and as pioneered in the UDS, the command com-
puters can directly access the ACE memory. Commands can be placed in
the active memory where they are "discovered” by the ACE software!?4,

Ironically, the advanced nature of the new attitude control system
and its control computer made it more vulnerable to space conditions
than its predecessors. A potential disaster was averted when the
"single event upset” was discovered and dealt with before launch.

The Single Event Upset Problem

Space environments are much harsher to electronics than the sur-
face of the earth. Since circuitry essentially consists of hardware that
moves electrons, creates and destroys magnetic fields, and emits
waves of electromagnetic radiation, fields and particles of the types
loose in space can atfect the operation of electronic equipment. Ironi-
cally, the miniaturization of components has made electronics more
sensitive to interference. One possibility that concerns computer

202 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

designers is the effect of highly charged particle impacts on memory
cells. If a particle has sufficient energy to change the information
stored in a bit, it can affect the software in a potentially disastrous
way. Such a spurious change is called a single event upset (SEU). Suf-
ficient numbers of particles can cause so many bits to change states
that the software fails. Since primary and backup memories are
equally vulnerable, simple redundancy is not a solution. Error-
correcting codes that test for random bit flips exist but require storage
and processing time not always available on a spacecraft. Addition-
ally, bits in the processor can be affected during execution, so the
problem is not limited to memory.

Galileo’s processors and memories were chosen in 1977, Voyager
had not yet reached Jupiter, so hardware decisions were based on
1973~1974 Pioneer datal?®, Nothing was known about SEU vul-
nerability, so no space for error detection and correcting codes and no
provision for special shielding was made. Some incorrect imaging
commands sent by sequencers in the Pioneers were later tagged as
SEUs. Voyager's clocks were slowed by Jovian radiation so that the
computers were forced out of synchronization occasionally'¥. By
19801981, the nature of the SEU problem became apparent. Sulphur
ions from Jupiter’s voleanic moon, lo, were being whipped up to high
energy by the Jovian gravity. In 1982, Galileo Project Chief Engineer
B. Gentry Lee was assigned the job of determining how bad the SEU
problem could be and finding a solution. Lee arranged for cyclotron
tests at the University of California’s Berkeley campus in which com-
puter and other electronic parts were submitted to bombardment by
high-speed particles. Results indicated that the 2901 chips used in the
attitude control computers were highly SEU sensitive, with 20% 50%
of hits causing probable software failures!™*, RCA 1802s used in the
Command and Data Subsystem were actually much less sensitive, be-
ing of older, and thus less dense, technology.

Attitude control engineer Kopf commented, "It is not worth flying
the mission if you cannot get rid of the SEU problem.” Failures were
most likely at the most critical part of the probe mission when the or-
biter is very near Jupiter. In order to avoid possible further delays in
an already much postponed mission, Lee searched for solutions along
two tracks. One solution would use a radianon-hardened processor
built by Trecor called the RHEC-—-Rad Hardened Emulating
Computer—1750A. Even though it is an emulator capable of imitating
the 2901, a new retargeted HAL compiler would be needed. The cost
of this solution would be $20 million. Lee’s second solution was to
contract with Sandia National Laboratories to custom make radiation-
hardened 2901s. No software needed be changed, just new ICs were
necessary, and they cost $5 million. Due to cost considerations and
the inherent attraction of retaining the already created and largely
validated software, the Sandia solution was chosen!#®. As a footnote,

DISTRIBUTED COMPUTING ON BOARD VOYAGER ANDGALILEQ 203

it is interesting that if the Galileo had launched on time, a sufficient
understanding of the SEU problem would not yet have been available,
and a doomed spacecraft carrying an unknown time bomb would have
been traveling toward an unfriendly Jupiter waiting to hurl ion thun-
derbolts at it.

FUTURE UNMANNED SPACECRAFT COMPUTERS

Distribution of computers aboard spacecraft has now been done
several times. Both Voyager spacecraft inherited command com-
puters from the Viking project. Computers for specific functions such
as attitude control and data formatting were added in response to in-
creased requirements. The result was a functionally distributed system
of processors. Galileo’s project managers also adopted the concept of
functional distribution, assigning microprocessors to control attitude
and, in the lower-level modules of the Command and Data Subsystem,
to connect to engineering and other instruments, including the scien-
tific experiments. Additional innovations on the Galileo spacecraft
centered on the development of virtual machine software, which dis-
tributes functions over several processors.

Advancing microprocessor technology makes the continuation of
the concept of single function computers more attractive. At JPL,
plans are currently under way for the Mariner Mark I, which will be
the deep space version of the Multimission Modular Spacecraft
developed by Goddard Space Flight Center for earth orbital opera-
tions. Using the same concepts of a standard bus and modular equip-
ment, JPL hopes to reduce mission costs to $400 million each, about
half the price of Galileo!47. The staff is exploring the use of the C
programming language, a very powertul tool, for the new spacecraft.
Future missions seem certain to use multicomputers, with internal net-
works similar to Galileo’s. In the 15 years since the first primitive
programmable sequencers flew with 128 word memories, JPL
spacecraft have grown to carry 2,500 times more memory. Progessing
from simple counting to complex coordinate transformations in such a
short time is remarkable, and the application of computer power to
each spacecraft function will make for ever more remarkable gains.

