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- 15

- 10

- 5

0

- 15

- 10

- 5

0

- 15

- 10

- 5

0

We report a universal density-based basis-set incom-

pleteness correction that can be applied to any wave

function method. �e present correction, which ap-

propriately vanishes in the complete basis set (CBS)

limit, relies on short-range correlation density func-

tionals (with multi-determinant reference) from range-

separated density-functional theory (RS-DFT) to esti-

mate the basis-set incompleteness error. Contrary to

conventional RS-DFT schemes which require an ad hoc
range-separation parameter µ, the key ingredient here

is a range-separation function µ(r) that automatically

adapts to the spatial non-homogeneity of the basis-set

incompleteness error. As illustrative examples, we show how this density-based correction allows us to obtain CCSD(T)

atomization and correlation energies near the CBS limit for the G2 set of molecules with compact Gaussian basis sets.

Contemporary quantum chemistry has developed in two

directions — wave function theory (WFT)
1

and density-

functional theory (DFT).
2

Although both spring from the same

Schrödinger equation, each of these philosophies has its own

pros and cons.
WFT is a�ractive as it exists a well-de�ned path for system-

atic improvement as well as powerful tools, such as perturba-

tion theory, to guide the development of new WFT ansätze.

�e coupled cluster (CC) family of methods is a typical ex-

ample of the WFT philosophy and is well regarded as the

gold standard of quantum chemistry for weakly correlated

systems. By increasing the excitation degree of the CC expan-

sion, one can systematically converge, for a given basis set, to

the exact, full con�guration interaction (FCI) limit, although

the computational cost associated with such improvement

is usually high. One of the most fundamental drawbacks

of conventional WFT methods is the slow convergence of

energies and properties with respect to the size of the one-

electron basis set. �is undesirable feature was put into light

by Kutzelnigg more than thirty years ago.
3

To palliate this,

following Hylleraas’ footsteps,
4

Kutzelnigg proposed to in-

troduce explicitly the interelectronic distance r12 = |r1 − r2|
to properly describe the electronic wave function around the

coalescence of two electrons.
3,5,6

�e resulting F12 methods

yield a prominent improvement of the energy convergence,

and achieve chemical accuracy for small organic molecules

with relatively small Gaussian basis sets.
7–10

For example, at

the CCSD(T) level, one can obtain quintuple-ζ quality correla-

tion energies with a triple-ζ basis,
11

although computational

overheads are introduced by the large auxiliary basis used to

resolve three- and four-electron integrals.
12

To reduce further
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the computational cost and/or ease the transferability of the

F12 correction, approximated and/or universal schemes have

recently emerged.
13–18

Present-day DFT calculations are almost exclusively done

within the so-called Kohn-Sham (KS) formalism, which cor-

responds to an exact dressed one-electron theory.
19

�e at-

tractiveness of DFT originates from its very favorable accu-

racy/cost ratio as it o�en provides reasonably accurate en-

ergies and properties at a relatively low computational cost.

�anks to this, KS-DFT
19,20

has become the workhorse of

electronic structure calculations for atoms, molecules and

solids.
21

Although there is no clear way on how to systemati-

cally improve density-functional approximations,
22

climbing

Perdew’s ladder of DFT is potentially the most satisfactory

way forward.
23,24

In the context of the present work, one of

the interesting feature of density-based methods is their much

faster convergence with respect to the size of the basis set.
25

Progress toward unifying WFT and DFT are on-going. In

particular, range-separated DFT (RS-DFT) (see Ref. 26 and

references therein) rigorously combines these two approaches

via a decomposition of the electron-electron (e-e) interaction

into a non-divergent long-range part and a (complementary)

short-range part treated with WFT and DFT, respectively.

As the WFT method is relieved from describing the short-

range part of the correlation hole around the e-e coalescence

points, the convergence with respect to the one-electron basis

set is greatly improved.
25

�erefore, a number of approxi-

mate RS-DFT schemes have been developed within single-

reference
27–32

or multi-reference
33–38

WFT approaches. Very

recently, a major step forward has been taken by some of the

present authors thanks to the development of a density-based

basis-set correction for WFT methods.
39

�e present work pro-

poses an extension of this new methodological development

alongside the �rst numerical tests on molecular systems.

�e present basis-set correction relies on the RS-DFT for-

malism to capture the missing part of the short-range cor-
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relation e�ects, a consequence of the incompleteness of the

one-electron basis set. Here, we only provide the main work-

ing equations. We refer the interested reader to Ref. 39 for a

more formal derivation.

Let us assume we have both the energy EBY and density nBZ
of a N-electron system described by two methods Y and Z
(potentially identical) in an incomplete basis set B. According

to Eq. (15) of Ref. 39, assuming that EBY and nBZ are reasonable

approximations of the FCI energy and density within B, the

exact ground state energy E may be approximated as

E ≈ EBY + ĒB [nBZ ], (1)

where

ĒB [n] = min
Ψ→n

〈Ψ|T̂ + Ŵ
ee
|Ψ〉 − min

ΨB→n
〈ΨB |T̂ + Ŵ

ee
|ΨB〉

(2)

is the basis-dependent complementary density functional, T̂ is

the kinetic operator and Ŵ
ee
= ∑i<j r−1

ij is the interelectronic

repulsion operator. In Eq. (2), ΨB and Ψ are two general N-

electron normalized wave functions belonging to the Hilbert

space spanned by B and the complete basis set (CBS), respec-

tively. Both wave functions yield the same target density n
(assumed to be representable in B). Importantly, in the CBS

limit (which we refer to as B → ∞), we have, for any density

n, limB→∞ ĒB [n] = 0. �is implies that

lim
B→∞

(
EBY + ĒB [nBZ ]

)
= EY ≈ E, (3)

where EY is the energy associated with the method Y in the

CBS limit. In the case where Y = FCI in Eq. (3), we have

a strict equality as E
FCI

= E. Provided that the functional

ĒB [n] is known exactly, the only sources of error at this stage

lie in the potential approximate nature of the methods Y and

Z, and the lack of self-consistency in the present scheme.

�e functional ĒB [n] is obviously not universal as it de-

pends on B. Moreover, as ĒB [n] aims at �xing the incom-

pleteness of B, its main role is to correct for the lack of cusp

(i.e. discontinuous derivative) in ΨB at the e-e coalescence

points, a universal condition of exact wave functions. Because

the e-e cusp originates from the divergence of the Coulomb

operator at r12 = 0, a cuspless wave function could equiv-

alently originate from a Hamiltonian with a non-divergent

two-electron interaction at coalescence. �erefore, as we

shall do later on, it feels natural to approximate ĒB [n] by a

short-range density functional which is complementary to a

non-divergent long-range interaction. Contrary to the con-

ventional RS-DFT scheme which requires a range-separation

parameter µ, here we use a range-separation function µB(r)
that automatically adapts to quantify the incompleteness of

B in R3
.

�e �rst step of the present basis-set correction consists

in obtaining an e�ective two-electron interaction WB(r1, r2)
“mimicking” the Coulomb operator in an incomplete basis B.

In a second step, we shall link WB(r1, r2) to µB(r). As a �nal

step, we employ short-range density functionals
40

with µB(r)
as range-separation function.

We de�ne the e�ective operator as
39

WB(r1, r2) =

{
f B(r1, r2)/nB2 (r1, r2), if nB2 (r1, r2) 6= 0,

∞, otherwise,

(4)

where

nB2 (r1, r2) = ∑
pqrs∈B

φp(r1)φq(r2)Γrs
pqφr(r1)φs(r2), (5)

and Γrs
pq = 2 〈ΨB |â†

r↓ â
†
s↑ âp↑ âq↓ |ΨB〉 are the opposite-spin

pair density associated with ΨB and its corresponding tensor,

respectively, φp(r) is a (real-valued) molecular orbital (MO),

f B(r1, r2) = ∑
pqrstu∈B

φp(r1)φq(r2)Vrs
pqΓtu

rs φt(r1)φu(r2),

(6)

and Vrs
pq = 〈pq|rs〉 are the usual two-electron Coulomb in-

tegrals. With such a de�nition, WB(r1, r2) satis�es (see Ap-

pendix A of Ref. 39)∫∫ nB2 (r1, r2)

r12
dr1dr2 =

∫∫
WB(r1, r2)nB2 (r1, r2)dr1dr2,

(7)

which intuitively motivates WB(r1, r2) as a potential candi-

date for an e�ective interaction. Note that the divergence

condition of WB(r1, r2) in Eq. (4) ensures that one-electron

systems are free of correction as the present approach must

only correct the basis-set incompleteness error originating

from the e-e cusp. As already discussed in Ref. 39, WB(r1, r2)
is symmetric, a priori non translational, nor rotational in-

variant if B does not have such symmetries. �anks to its

de�nition one can show that (see Appendix B of Ref. 39)

lim
B→∞

WB(r1, r2) = r−1
12 , (8)

for any (r1, r2) such that nB2 (r1, r2) 6= 0.

A key quantity is the value of the e�ective interaction at co-

alescence of opposite-spin electrons, WB(r, r), which is nec-

essarily �nite for an incomplete basis set as long as the on-top

pair density nB2 (r, r) is non vanishing. Because WB(r1, r2) is

a non-divergent two-electron interaction, it can be naturally

linked to RS-DFT which employs a non-divergent long-range

interaction operator. Although this choice is not unique, we

choose here the range-separation function

µB(r) =
√

π

2
WB(r, r), (9)

such that the long-range interaction of RS-DFT, wlr,µ(r12) =
erf(µr12)/r12, coincides with the e�ective interaction at coa-

lescence, i.e. wlr,µB(r)(0) = WB(r, r) at any r.

Once µB(r) is de�ned, it can be used within RS-DFT func-

tionals to approximate ĒB [n]. As in Ref. 39, we consider

here a speci�c class of short-range correlation functionals

known as correlation energy with multi-determinantal refer-

ence (ECMD) whose general de�nition reads
40

Ēsr

c,md
[n, µ] = min

Ψ→n
〈Ψ|T̂ + Ŵ

ee
|Ψ〉 − 〈Ψµ |T̂ + Ŵ

ee
|Ψµ 〉 ,

(10)
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where Ψµ
is de�ned by the constrained minimization

Ψµ = arg min
Ψ→n

〈Ψ|T̂ + Ŵlr,µ
ee |Ψ〉 , (11)

with Ŵlr,µ
ee = ∑i<j wlr,µ (rij). �e ECMD functionals admit,

for any n, the following two limiting forms

lim
µ→∞

Ēsr

c,md
[n, µ] = 0, lim

µ→0
Ēsr

c,md
[n, µ] = Ec[n], (12)

where Ec[n] is the usual universal correlation density func-

tional de�ned in KS-DFT. �e choice of ECMD in the present

scheme is motivated by the analogy between the de�nition of

ĒB [n] [Eq. (2)] and the ECMD functional [Eq. (10)]. Indeed,

the two functionals coincide if ΨB = Ψµ
. �erefore, we ap-

proximate ĒB [n] by ECMD functionals evaluated with the

range-separation function µB(r).
�e local-density approximation (LDA) of the ECMD com-

plementary functional is de�ned as

ĒB
LDA

[n, µB ] =
∫

n(r)ε̄sr,LDA

c,md

(
n(r), ζ(r), µB(r)

)
dr, (13)

where ζ = (n↑ − n↓)/n is the spin polarization and

ε̄sr,LDA

c,md
(n, ζ, µ) is the ECMD short-range correlation energy

per electron of the uniform electron gas (UEG)
41

parameter-

ized in Ref. 42. �e short-range LDA correlation functional

relies on the transferability of the physics of the UEG which

is certainly valid for large µ but is known to over correlate

for small µ. In order to correct such a defect, inspired by the

recent functional proposed by some of the authors
38

, we pro-

pose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD

functional

ĒB
PBE

[n, µB ] =
∫

n(r)ε̄sr,PBE

c,md

(
n(r), s(r), ζ(r), µB(r)

)
dr,

(14)

where s = |∇n|/n4/3
is the reduced density gradient.

ε̄sr,PBE

c,md
(n, s, ζ, µ) interpolates between the usual PBE correla-

tion functional,
43 εPBE

c
(n, s, ζ), at µ = 0 and the exact large-µ

behavior,
26,42,44

yielding

ε̄sr,PBE

c,md
(n, s, ζ, µ) =

εPBE

c
(n, s, ζ)

1 + β(n, s, ζ)µ3 , (15a)

β(n, s, ζ) =
3

2
√

π(1−
√

2)
εPBE

c
(n, s, ζ)

nUEG

2 (n, ζ)
. (15b)

�e di�erence between the ECMD functional de�ned in Ref. 38

and the present expression (15a)-(15b) is that we approximate

here the on-top pair density by its UEG version, i.e. nB2 (r, r) ≈
nUEG

2 (n(r), ζ(r)), where nUEG

2 (n, ζ) ≈ n2(1 − ζ2)g0(n)
with the parametrization of the UEG on-top pair-distribution

function g0(n) given in Eq. (46) of Ref. 45. �is represents

a major computational saving without loss of accuracy for

weakly correlated systems as we eschew the computation of

nB2 (r, r).
Depending on the functional choice, the complemen-

tary functional ĒB [nBZ ] is approximated by ĒB
LDA

[nBZ , µB ] or

ĒB
PBE

[nBZ , µB ] where µB(r) is given by Eq. (9).

As most WFT calculations are performed within the frozen-

core (FC) approximation, it is important to de�ne an e�ective

interaction within a subset of MOs. We then naturally split

the basis set as B = C ⋃A (where C and A are the sets of

core and active MOs, respectively) and de�ne the FC version

of the e�ective interaction as

W̃B(r1, r2) =

{
f̃ B(r1, r2)/ñB2 (r1, r2), if ñB2 (r1, r2) 6= 0,
∞, otherwise,

(16)

with

f̃ B(r1, r2) = ∑
pq∈B

∑
rstu∈A

φp(r1)φq(r2)Vrs
pqΓtu

rs φt(r1)φu(r2),

(17a)

ñB2 (r1, r2) = ∑
pqrs∈A

φp(r1)φq(r2)Γrs
pqφr(r1)φs(r2), (17b)

and the corresponding FC range-separation function µ̃B(r) =
(
√

π/2)W̃B(r, r). It is noteworthy that, within the present

de�nition, W̃B(r1, r2) still tends to the regular Coulomb in-

teraction as B → ∞.

De�ning ñBZ as the FC (i.e. valence-only) one-electron den-

sity obtained with a method Z in B, the FC contribution

of the complementary functional is then approximated by

ĒB
LDA

[ñBZ , µ̃B ] or ĒB
PBE

[ñBZ , µ̃B ].
�e most computationally intensive task of the present

approach is the evaluation of WB(r, r) at each quadrature

grid point. In the general case (i.e. ΨB is a multi-determinant

expansion), we compute this embarrassingly parallel step in

O(N
grid

N4
B) computational cost with a memory requirement

ofO(N
grid

N2
B), where NB is the number of basis functions in

B. �e computational cost can be reduced to O(N
grid

N2N2
B)

with no memory footprint when ΨB is a single Slater determi-

nant. As shown in Ref. 39, this choice for ΨB already provides,

for weakly correlated systems, a quantitative representation

of the incompleteness of B. Hence, we will stick to this choice

throughout the present study. In our current implementation,

the computational bo�leneck is the four-index transformation

to get the two-electron integrals in the MO basis which ap-

pear in Eqs. (5) and (6). Nevertheless, this step usually has to

be performed for most correlated WFT calculations. Modern

integral decomposition techniques (such as density ��ing
46

)

or atomic-orbital-based algorithms could be employed to sig-

ni�cantly speed up this step.

To conclude this section, we point out that, thanks to the

de�nitions (4) and (9) as well as the properties (8) and (12),

independently of the DFT functional, the present basis-set

correction i) can be applied to any WFT method that provides

an energy and a density, ii) does not correct one-electron

systems, and iii) vanishes in the CBS limit, hence guaranteeing

an unaltered CBS limit for a given WFT method.

We begin our investigation of the performance of the basis-

set correction by computing the atomization energies of C2,

N2, O2 and F2 obtained with Dunning’s cc-pVXZ basis (X =
D, T, Q and 5). N2, O2 and F2 are weakly correlated systems

and belong to the G2 set
47

(see below), whereas C2 already



4

●

●

●
●

■

■
■ ■◆ ◆ ◆ ◆

▲

▲

▲
▲

▼

▼

▼ ▼

○
○

○ ○

●

■

◆

▲

▼

○
-15

-10

-5

0

●

●

●
●

■

■
■ ■

◆

◆
◆ ◆

▲

▲

▲
▲

▼

▼

▼ ▼

○

○
○ ○

●

■

◆

▲

▼

○-15

-10

-5

0

●

●

●
●

■

■
■ ■◆ ◆ ◆ ◆

▲

▲

▲
▲

▼

▼
▼ ▼

○ ○ ○ ○

●

■

◆

▲

▼

○
-25

-20

-15

-10

-5

0

●

●

●
●

■

■
■ ■

◆

◆
◆ ◆

▲

▲

▲
▲

▼

▼
▼

▼

○

○
○ ○

●

■

◆

▲

▼

○-12

-10

-8

-6

-4

-2

0

FIG. 1. Deviation (in kcal/mol) from CBS atomization energies of C2 (top le�), O2 (top right), N2 (bo�om le�) and F2 (bo�om right) obtained

with various methods and basis sets. �e green region corresponds to chemical accuracy (i.e. error below 1 kcal/mol). See supporting

information for raw data.

TABLE I. Statistical analysis (in kcal/mol) of the G2 atomization

energies depicted in Fig. 2. Mean absolute deviation (MAD), root-

mean-square deviation (RMSD), and maximum deviation (MAX)

with respect to the CCSD(T)/CBS reference atomization energies.

CA corresponds to the number of cases (out of 55) obtained with

chemical accuracy. See supporting information for raw data.

Method MAD RMSD MAX CA

CCSD(T)/cc-pVDZ 14.29 16.21 36.95 2
CCSD(T)/cc-pVTZ 6.06 6.84 14.25 2
CCSD(T)/cc-pVQZ 2.50 2.86 6.75 9
CCSD(T)/cc-pV5Z 1.28 1.46 3.46 21

CCSD(T)+LDA/cc-pVDZ 3.24 3.67 8.13 7
CCSD(T)+LDA/cc-pVTZ 1.19 1.49 4.67 27
CCSD(T)+LDA/cc-pVQZ 0.33 0.44 1.32 53

CCSD(T)+PBE/cc-pVDZ 1.96 2.59 7.33 19
CCSD(T)+PBE/cc-pVTZ 0.85 1.11 2.64 36
CCSD(T)+PBE/cc-pVQZ 0.31 0.42 1.16 53

contains a non-negligible amount of strong correlation.
48

In

a second time, we compute the atomization energies of the

entire G2 set
47

composed by 55 molecules with the cc-pVXZ

basis set family. �is molecular set has been intensively stud-

ied in the last 20 years (see, for example, Refs. 49–57) and

can be considered as a representative set of small organic

and inorganic molecules. As a method Y we employ either

CCSD(T) or exFCI. Here, exFCI stands for extrapolated FCI

energies computed with the CIPSI algorithm.
58–60

We refer

the interested reader to Refs. 61–65 for more details. In the

case of the CCSD(T) calculations, we have Z = ROHF as we

use the restricted open-shell HF (ROHF) one-electron density

to compute the complementary basis-set correction energy. In

the case of exFCI, the one-electron density is computed from

a very large CIPSI expansion containing several million deter-

minants. CCSD(T) energies are computed with Gaussian09

using standard threshold values,
66

while RS-DFT and exFCI

calculations are performed with qantum package.
67

For

the numerical quadratures, we employ the SG-2 grid.
68

Apart

from the carbon dimer where we have taken the experimen-

tal equilibrium bond length (1.2425 Å), all geometries have

been extracted from Ref. 69 and have been obtained at the

B3LYP/6-31G(2df,p) level of theory. Frozen-core calculations

are systematically performed and de�ned as such: a He core is

frozen from Li to Ne, while a Ne core is frozen from Na to Ar.

In the context of the basis-set correction, the set of active MOs,

A, involved in the de�nition of the e�ective interaction [see

Eq. (16)] refers to the non-frozen MOs. �e FC density-based

correction is used consistently with the FC approximation in

WFT methods. To estimate the CBS limit of each method, fol-

lowing Ref. 70, we perform a two-point X
−3

extrapolation of

the correlation energies using the quadruple- and quintuple-ζ
data that we add up to the HF energies obtained in the largest
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FIG. 2. Deviation (in kcal/mol) from the CCSD(T)/CBS atomization energy obtained with various methods with the cc-pVDZ (top), cc-pVTZ

(center) and cc-pVQZ (bo�om) basis sets. �e green region corresponds to chemical accuracy (i.e. error below 1 kcal/mol). See supporting

information for raw data.

(i.e. quintuple-ζ) basis.

As the exFCI atomization energies are converged with a

precision of about 0.1 kcal/mol, we can label these as near FCI.

Hence, they will be our references for C2, N2, O2 and F2. �e

results for these diatomic molecules are reported in Fig. 1. �e

corresponding numerical data can be found in the supporting

information. As one can see, the convergence of the exFCI

atomization energies is, as expected, slow with respect to the

basis set: chemical accuracy (error below 1 kcal/mol) is barely

reached for C2, O2 and F2 even with the cc-pV5Z basis set,

and the atomization energies are consistently underestimated.

A similar trend holds for CCSD(T). Regarding the e�ect of the

basis-set correction, several general observations can be made

for both exFCI and CCSD(T). First, in a given basis set, the

basis-set correction systematically improves the atomization

energies (both at the LDA and PBE levels). A small overesti-

mation can occur compared to the CBS value by a few tenths

of a kcal/mol (the largest deviation being 0.6 kcal/mol for N2

at the CCSD(T)+PBE/cc-pV5Z level). Nevertheless, the devia-

tion observed for the largest basis set is typically within the

CBS extrapolation error, which is highly satisfactory knowing

the marginal computational cost of the present correction.

In most cases, the basis-set corrected triple-ζ atomization

energies are on par with the uncorrected quintuple-ζ ones.

Importantly, the sensitivity with respect to the RS-DFT func-

tional is quite large for the double- and triple-ζ basis sets,

where clearly the PBE functional performs be�er. However,

from the quadruple-ζ basis, the LDA and PBE functionals

agree within a few tenths of a kcal/mol. Such weak sensitivity

to the density-functional approximation when reaching large

basis sets shows the robustness of the approach.

As a second set of numerical examples, we compute the

error (with respect to the CBS values) of the atomization en-

ergies from the G2 test set with Y = CCSD(T), Z = ROHF

and the cc-pVXZ basis sets. Here, all atomization energies

have been computed with the same near-CBS HF/cc-pV5Z

energies; only the correlation energy contribution varies from

one method to the other. Investigating the convergence of

correlation energies (or di�erence of such quantities) is com-

monly done to appreciate the performance of basis-set cor-

rections aiming at correcting two-electron e�ects.
11,18,71

�e

“plain” CCSD(T) atomization energies as well as the corrected

CCSD(T)+LDA and CCSD(T)+PBE values are depicted in Fig. 2.

�e raw data can be found in the supporting information.

A statistical analysis of these data is also provided in Ta-

ble I, where we report the mean absolute deviation (MAD),
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root-mean-square deviation (RMSD), and maximum deviation

(MAX) with respect to the CCSD(T)/CBS atomization energies.

Note that the MAD of our CCSD(T)/CBS atomization ener-

gies is only 0.37 kcal/mol compared to the values extracted

from Ref. 54 which corresponds to frozen-core non-relativistic

atomization energies obtained at the CCSD(T)(F12)/cc-pVQZ-

F12 level of theory corrected for higher-excitation contri-

butions (E
CCSDT(Q)/cc-pV(D+d)Z

− E
CCSD(T)/cc-pV(D+d)Z

). From

double-ζ to quintuple-ζ basis, the MAD associated with

the CCSD(T) atomization energies goes down slowly from

14.29 to 1.28 kcal/mol. For a commonly used basis like cc-

pVTZ, the MAD of CCSD(T) is still 6.06 kcal/mol. Apply-

ing the basis-set correction drastically reduces the basis-

set incompleteness error. Already at the CCSD(T)+LDA/cc-

pVDZ and CCSD(T)+PBE/cc-pVDZ levels, the MAD is re-

duced to 3.24 and 1.96 kcal/mol. With the triple-ζ basis, the

MAD of CCSD(T)+PBE/cc-pVTZ is already below 1 kcal/mol

with 36 cases (out of 55) where we achieve chemical accu-

racy. CCSD(T)+LDA/cc-pVQZ and CCSD(T)+PBE/cc-pVQZ

return MAD of 0.33 and 0.31 kcal/mol (respectively) while

CCSD(T)/cc-pVQZ still yields a fairly large MAD of 2.50

kcal/mol.

�erefore, similar to F12 methods,
11

we can safely claim that

the present basis-set correction provides signi�cant basis-set

reduction and recovers quintuple-ζ quality atomization and

correlation energies with triple-ζ basis sets for a much cheaper

computational cost. Encouraged by these promising results,

we are currently pursuing various avenues toward basis-set

reduction for strongly correlated systems and electronically

excited states.

SUPPORTING INFORMATION

See supporting information for raw data associated with

the atomization energies of the four diatomic molecules and

the G2 set.
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Giner, E.; Pradines, B.; Ferté, A.; Assaraf, R.; Savin, A.; Toulouse, J. Curing

basis-set convergence of wave-function theory using density-functional

theory: A systematically improvable approach. J. Chem. Phys. 2018, 149,

194301.

40
Toulouse, J.; Gori-Giorgi, P.; Savin, A. A short-range correlation energy

density functional with multi-determinantal reference. �eor. Chem. Acc.
2005, 114, 305.

41
Loos, P.-F.; Gill, P. M. W. �e uniform electron gas. WIREs Comput. Mol. Sci.
2016, 6, 410.

42
Paziani, S.; Moroni, S.; Gori-Giorgi, P.; Bachelet, G. B. Local-spin-density

functional for multideterminant density functional theory. Phys. Rev. B
2006, 73, 155111.

43
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation

Made Simple. Phys. Rev. Le�. 1996, 77, 3865.

44
Gori-Giorgi, P.; Savin, A. Properties of short-range and long-range correla-

tion energy density functionals from electron-electron coalescence. Phys.
Rev. A 2006, 73, 032506.

45
Gori-Giorgi, P.; Savin, A. Properties of short-range and long-range correla-

tion energy density functionals from electron-electron coalescence. Phys.
Rev. A 2006, 73, 032506.

46
Whi�en, J. L. Coulombic potential energy integrals and approximations. J.
Chem. Phys. 1973, 58, 4496.

47
Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. Gaussian2 theory

for molecular energies of �rst and secondrow compounds. J. Chem. Phys.
1991, 94, 7221.

48
Booth, G. H.; Cleland, D.; �om, A. J. W.; Alavi, A. Breaking the carbon

dimer: �e challenges of multiple bond dissociation with full con�gura-

tion interaction quantum Monte Carlo methods. J. Chem. Phys. 2011, 135,

084104.

49
Feller, D.; Peterson, K. A.; Dixon, D. A. A survey of factors contributing

to accurate theoretical predictions of atomization energies and molecular

structures. J. Chem. Phys. 2008, 129, 204105.

50
Grossman, J. C. Benchmark quantum Monte Carlo calculations. J. Chem.
Phys. 2002, 117, 1434.

51
Feller, D.; Peterson, K. A. Re-examination of atomization energies for the

Gaussian-2 set of molecules. J. Chem. Phys. 1999, 110, 8384.

52
Nemec, N.; Towler, M. D.; Needs, R. J. Benchmark all-electron ab initio

quantum Monte Carlo calculations for small molecules. J. Chem. Phys.

2010, 132, 034111.

53
Feller, D.; Peterson, K. A.; Hill, J. G. On the e�ectiveness of CCSD(T) com-

plete basis set extrapolations for atomization energies. J. Chem. Phys. 2011,

135, 044102.

54
Haunschild, R.; Klopper, W. New accurate reference energies for the G2/97

test set. J. Chem. Phys. 2012, 136, 164102.

55
Petruzielo, F. R.; Toulouse, J.; Umrigar, C. J. Approaching chemical accuracy

with quantum Monte Carlo. J. Chem. Phys. 2012, 136, 124116.

56
Feller, D.; Peterson, K. A. An expanded calibration study of the explicitly

correlated CCSD(T)-F12b method using large basis set standard CCSD(T)

atomization energies. J. Chem. Phys. 2013, 139, 084110.

57
Kesharwani, M. K.; Sylvetsky, N.; Kohn, A.; Tew, D. P.; Martin, J. M. L. Do

CCSD and approximate CCSD-F12 variants converge to the same basis set

limits? �e case of atomization energies. J. Chem. Phys. 2018, 149, 154109.

58
Huron, B.; Malrieu, J.; Rancurel, P. Iterative perturbation calculations of

ground and excited state energies from multicon�gura- tional zeroth-order

wavefunctions. J. Chem. Phys. 1973, 58, 5745.

59
Giner, E.; Scemama, A.; Ca�arel, M. Using perturbatively selected con�g-

uration interaction in quantum Monte Carlo calculations. Can. J. Chem.
2013, 91, 879.

60
Giner, E.; Scemama, A.; Ca�arel, M. Fixed-node di�usion Monte Carlo po-

tential energy curve of the �uorine molecule F2 using selected con�guration

interaction trial wavefunctions. J. Chem. Phys. 2015, 142.

61
Holmes, A. A.; Umrigar, C. J.; Sharma, S. Excited states using semistochastic

heat-bath con�guration interaction. J. Chem. Phys. 2017, 147, 164111.

62
Scemama, A.; Garniron, Y.; Ca�arel, M.; Loos, P. F. Deterministic construc-

tion of nodal surfaces within quantum Monte Carlo: the case of FeS. J.
Chem. �eory Comput. 2018, 14, 1395.

63
Loos, P.-F.; Scemama, A.; Blondel, A.; Garniron, Y.; Ca�arel, M.;

Jacquemin, D. A Mountaineering Strategy to Excited States: Highly Accu-

rate Reference Energies and Benchmarks. J. Chem. �eory Comput. 2018,

14, 4360–4379.

64
Scemama, A.; Benali, A.; Jacquemin, D.; Ca�arel, M.; Loos, P.-F. Excitation

energies from di�usion Monte Carlo using selected con�guration interac-

tion nodes. J. Chem. Phys. 2018, 149, 034108.

65
Loos, P.-F.; Boggio-Pasqua, M.; Scemama, A.; Ca�arel, M.; Jacquemin, D.

Reference Energies for Double Excitations. J. Chem. �eory Comput. 2019,

15, 1939–1956.

66
Frisch, M. J. et al. Gaussian 09 Revision D.01. 2009; Gaussian Inc. Wallingford

CT.

67
Garniron, Y.; Gasperich, K.; Applencourt, T.; Benali, A.; Ferté, A.; Paquier, J.;
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