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Abstract. Renormalization plays an important role in the theoretically
and mathematically careful analysis of models in condensed-matter physics.
I review selected results about correlated-fermion systems, ranging from
mathematical theorems to applications in models relevant for materials sci-
ence, such as the prediction of equilibrium phases of systems with competing
ordering tendencies, and quantum criticality.

1. Introduction

The renormalization of quantum field theories will always be linked to Wolfhart
Zimmermann, who made seminal, famous contributions that remain relevant
to this day, both in the application to particle physics and in mathematics. Al-
though Zimmermann developed and applied renormalization techniques mainly
focused on relativistic quantum field theory, the techniques he introduced ap-
ply in great generality, and they continue to inspire works in quantum field
theory, as well as analysis and probability, e.g. recently in rough path theory
and stochastic partial differential equations [41].

Renormalization also plays an important role in any careful treatment of mod-
els of condensed-matter physics, which can be cast in the form of models of
nonrelativistic quantum field theory (QFT). These models are less symmetric
than those of particle physics, and therefore renormalizing them is in general
more complicated. Both ultraviolet and infrared renormalization is necessary
in any given model, but the main focus has been on the infrared because most
of the physically interesting effects are tied to it. In the condensed-matter set-
ting, the models under consideration are defined independently of renormaliza-
tion. The latter plays the role of a technique to solve certain small-denominator
problems, which appear naturally, and which are analogous to secular terms in
classical mechanics. They show up as divergences in a straightforward pertur-
bative treatment. The counterterms introduced to renormalize the expansion
turn out to be finite. They also have a physical interpretation. Thus, as in
relativistic QFT, renormalization is not some ‘perverse recipe to get finite num-
bers’, but it is a well-defined and natural procedure to treat a given problem
mathematically correctly, by posing meaningful physical conditions.

The approach to renormalization taken here is based on the renormalization
group (RG) of Kadanoff, Wilson, and Wegner, i.e. the successive integration
over degrees of freedom, and the study of a flow of effective interactions derived
from it. The connection between Wilsonian RG and field-theoretical renormal-
ization à la Zimmermann has been elucidated, and brought in a form where a
strict and rigorous discussion of renormalization conditions as in BPHZ renor-
malization is possible. The method is, however, not tied to perturbation theory
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– in fact it is one of the most powerful non-perturbative methods available at
present. On the mathematical side, it has been used by people working in
constructive field theory, i.e. the mathematically rigorous construction of the
correlation functions of models that are given by a Lagrangian or Hamiltonian.
Famous results achieved by this method are the construction of infrared φ4 the-
ory in four dimensions, and of the Gross-Neveu model, done by Gawȩdzki and
Kupiainen [36, 37] and, independently, by Feldman, Magnen, Rivasseau, and
Sénéor [22, 23]. Ba laban proved stability of four-dimensional Yang-Mills the-
ory [3] and analyzed the low-temperature behaviour of nonlinear sigma models
in three dimensions [4]. Brydges and Kennedy showed how to derive tree and
forest formulas from Wilsonian RG equations [14]. This was further developed
by Abdesselam and Rivasseau [1]. On the one hand, this plays a role in draw-
ing the connection to BPHZ renormalization, and on the other, it has become
the basis of many current nonperturbative studies.

Going beyond the formal perturbation expansion involves a number of things:
control of the combinatorial growth in expansion techniques, and tracking the
flow of coupling functions. There are Landau-pole-like phenomena also in
condensed matter. There, they are known to generate symmetry breaking.
This has been shown for mean-field models of superconductivity [65]. For the
standard (non-mean-field) models of many-body theory introduced in the next
section, a mathematical proof of continuous symmetry-breaking remains open:
the infrared-bound method of Fröhlich, Simon and Spencer [27], which has so
far been the basis of all rigorous proofs of continuous symmetry breaking, is
not applicable here because these models are not reflection-positive. (Only in
very particular cases, e.g. hard-core bosons on a half-filled lattice, reflection
positivity holds in the quantum many-body systems, due to a mapping to a spin
system.) The program to show symmetry breaking for quantum many-body
models using mathematically rigorous RG methods is, however, well-advanced
in the case of Bose-Einstein condensation, see [5, 6, 7, 8] and [19].

Last but not least, the technique developed here can be applied directly to the
study of models relevant for experiments. While realistic models based on the
details of stochiometry, crystalline structure, and orbital configurations, have
been coming into reach only very recently, prototypical models have been stud-
ied using the RG method, and important phenomena have been understood
this way, among them the effects of competing interactions for phase diagrams
of layered materials, self-energy effects, and also transport properties.

In this short review I will discuss equilibrium aspects of models of interacting
fermions, which are often also called correlated-fermion models. The focus will
be on models with a Fermi surface that is really an extended object, i.e. it does
not reduce to a collection of isolated points. The case of an extended Fermi
surface is the harder case for renormalization, and it is the generic physical
situation. I will quote theorems in an informal style, giving the reference to
the full statements, which often require a much more detailed formulation.

2. Condensed-Matter Models as Quantum Field Theories

Quantum many-particle systems have a natural formulation in terms of second
quantization. Although interesting mathematical work has also been done
using Brownian motion techniques [39, 2], an important advantage of second
quantization is that Bose and Fermi statistics, i.e. the bosonic symmetrization
and fermionic antisymmetrization, are built into the formulation from the very
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start. To apply techniques of statistical mechanics, it has become standard in
condensed-matter theory to rewrite the grand canonical traces over Fock space
F in terms of functional integrals.

2.1. Functional integrals for quantum many-body systems. We first
review the functional integral representation of the grand canonical ensemble
of quantum many-particle systems, in an informal way, postponing a more
careful mathematical discussion to the next subsection. The partition function
of a quantum many-body system governed by a Hamiltonian H at inverse
temperature β = 1

kBT
(where kB is Boltzmann’s constant and T ≥ 0 is the

temperature) and chemical potential µ (which couples to the number operator
N) is then rewritten as an integral,

(1) Z = trF e−β(H−µN) =

∫
D φ̄Dφ e−S(φ̄,φ) ,

over fields φ(τ, x) and φ̄(τ, x), which are complex variables in the case of
bosonic particles, and Grassmann variables in the case of fermions. The fields
depend on an additional variable τ , the Euclidian time. (In our notation,
the variable x ∈ X contains both the spatial coordinate and spin (or other
internal) indices. Given a Hamiltonian H = H(a∗, a ) in second-quantized
representation, the exponent in the integral is the corresponding Euclidian
action

(2) S(φ̄, φ) =

∫ β

0

dτ (φ̄(τ), ( ∂
∂τ

+ µ)φ(τ))X −
∫ β

0

dτ H(φ̄(τ), φ(τ))

with

(3) (φ(τ), ψ(τ))X =

∫

X

φ(τ, x)ψ(τ, x)dx ,

where
∫

X
dx denotes summation over discrete indices and integration over

continuous ones. The occurrence of a derivative with respect to τ in the action
is a direct consequence of the canonical (anti)commutation relations of the
bosonic (fermionic) creation and annihilation operators.

A prototypical example is a gas of quantum particles interacting by a stable
pair potential v(x− y),

(4) H(φ̄, φ) =
1

2
(φ̄, E φ)X + λ(φ̄φ, v φ̄φ)X .

Here λ is a coupling constant. The kinetic operator E in the quadratic part of
the Hamiltonian can be −∆ or a suitable discretization thereof, or a hopping
term for a lattice system, or come from a periodic Schrödinger operator. The
interaction does not have to be quartic (corresponding to two-body interac-
tions); three- and higher-body interactions can be included as well.

Bosonic fields are periodic, and fermionic fields are antiperiodic, under τ →
τ + β. Thus, at positive temperature T , the variable k0 dual to τ is discrete
because of the (anti-)periodic boundary conditions for the fields. In terms of
the Matsubara frequencies ωn = nπT for n ∈ Z, k0 ∈ MB = {ωn : n even} for
bosons, and k0 ∈MF = {ωn : n odd} for fermions.

Finally, the integration measure in (1) is

(5) D φ̄Dφ =
∏

τ∈[0,β)
x∈X

dφ̄(τ, x)dφ(τ, x) .



4 MANFRED SALMHOFER

Normalized expectation values of suitable linear operators A on F have the
representation

(6) 〈A〉 =
1

Z
trF

(
A e−β(H−µN)

)
=

1

Z

∫
D φ̄Dφ e−S(φ̄,φ) A(φ̄, φ) .

2.2. Mathematical treatment of functional integrals. Both sides of (1)
require regulators in order to make sense mathematically. To make the trace
on the left hand side well-defined, X must have a finite volume |X |, and
a short-distance regularization in x (usually called ultraviolet regularization)
is required, e.g. by making X a lattice or restricting to a class of smooth
functions. Introducing a finite volume is standard in statistical mechanics,
since free energies and related quantities are extensive. The thermodynamic
limit |X | → ∞ of expectation values and intensive quantities is expected to
exist, and a nontrivial part of the proofs is to show that this is the case. It is
the correct idealization to describe bulk systems and their phase transitions.
It will also be taken below.

The spatial ultraviolet (UV) regularization is often left in place (this will also
be done here), since condensed-matter models often have a natural formulation
on a lattice, be it by definition or due to restriction to a finite number of Bloch
bands, which makes sense since crystals only exist up to a certain tempera-
ture, hence energy scale. Thus, for most applied questions of condensed-matter
physics, the UV regulator can be kept. Removing it remains a fundamental
issue, in order to treat true continuum systems. The renormalization problem
entailed by it was solved in two spatial dimensions in [9], but remains open
in three dimensions in the quantum field theoretical framework. The corre-
sponding problem for the ground-state energy is the famous stability of matter
problem, which was solved by Dyson and Lenard, and Lieb and Thirring (see
[54]).

The right hand side of (1) looks even more problematic, as it involves the
formal product measure (5), which does not really define a measure if τ is
a continuous variable, even if X is just a finite set. This integral is really
defined as a limit of a finite-dimensional integral corresponding to a discrete
time variable τ with spacing, say, 1

N
. It is derived by using a Trotter formula

for the exponential on the left hand side of (1).

It is nontrivial to prove that the time continuum limit N →∞ of the integral
with a discretized version of the action (2) exists (and written in a form that
can be used for further analysis). For bosons, this was done recently in a series
of papers [5, 6, 7], using a decimation-type renormalization group argument,
as well as analysis of oscillatory integrals: the

∫
φ̄∂τφ term has no positivity

properties — it is not even real. For fermions, the situation is simpler – a proof
avoiding a multiscale analysis was given in [58]. The time continuum limit has
also been shown to exist (in a form useful for the analysis of the thermodynamic
limit) for a class of Bose-Fermi systems [56]. Typical Hamiltonians, such as (4),
are polynomials in the field operators, and the action S is then a polynomial
in the fields. We define the operator Q by writing the quadratic part of the
action S in the form (φ̄, Qφ), where the bilinear form now also includes time
integrals: (f, g) =

∫
dτ(f(τ), g(τ))X . For the choice (4),

(7) Q(τ, x, τ ′, x′) = δ(τ, τ ′)
(
δ(x, x′) (µ+ ∂

∂τ ′
)− Ex,x′

)
,

where the deltas denote the appropriate choice of Kronecker or Dirac delta
functions, depending on the index, and we define the interaction V to be the
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remaining part of the action S:

(8) S = (φ̄, Qφ) + V (φ̄, φ) .

We assume that C = Q−1 exists. It is then useful to rearrange the integral for
the partition function in terms of a normalized Gaussian measure

(9) dµC(φ̄, φ) = Z−1
0 e−(φ̄,Qφ)X D φ̄Dφ

where Z0 is a normalization factor, formally given by det(πQ) for bosons, and
detQ−1 for fermions. Z0 does not depend on the interaction, and it cancels out
in normalized expectation values. To obtain expectation values of products of
fields, it is convenient to introduce source terms, hence study the generating
functional of the correlation functions (moments)

Z(η̄, η) =

∫
D φ̄Dφ e−S(φ̄,φ) e(η̄,φ)X−(η,φ̄)X

= Z0

∫
dµC(φ̄, φ) e−V (φ̄,φ) e(η̄,φ)X−(η,φ̄)X

(10)

In order to take the thermodynamic limit, one studies the connected correlation
functions (cumulants), which are generated by

(11) W (η̄, η) = − logZ(η̄, η) .

2.3. The Hubbard model. In statistical mechanics, a prototypical model
is the Ising model. Because it is so easy to define, but nevertheless exhibits
phase transitions and other statistical mechanical phenomena in a simple, but
nontrivial way, the Ising model is often called the drosophila of statistical me-
chanics. In a similar vein, I would like to call the Hubbard model the glossina
morsitans1 of correlated fermion models. The Hubbard model was introduced
by several researchers in solid state physics and quantum chemistry in the
1950s, as a model of correlated fermions. The simplicity of its Hamiltonian
stands in some contrast to the many opinions that have since been voiced
about its possible equilibrium phases. Indeed, the reduction to a minimal set
of ingredients in this model helps to bring out most clearly the major diffi-
culties of many-fermion theory, and it is still only incompletely understood. I
think this makes the above nickname all the more fitting.2

Consider a weighted graph Λ, viewed as a collection of points x and edge
weights tx,x′ between points of the lattice, satisfying tx′,x = tx,x′ . In second-
quantized formulation, the kinetic term of the Hubbard model is the Hamil-
tonian

(12) H0 =
∑

x,x′∈Λ

∑

σ=±

tx,x′a
∗
x,σax′,σ .

Since the interpretation of each summand is that a fermion hops from site x′ to
x, the tx,x′ are called hopping amplitudes. The index σ = ± is spin index for
spin-1

2
fermions. We focus here on spin-independent hopping amplitudes, but

the spin-dependent case is of great interest as well, in particular in connection
to topological phases. The hopping amplitudes may be complex, e.g. if the
system is in an external magnetic field.

1Glossinidae, a.k.a. Tse Tse flies, were first described by the German scientist Christian
Rudolph Wilhelm Wiedemann (1770-1840)

2Citation from Wikipedia: Most tsetse flies are physically very tough. Houseflies are
easily killed with a fly-swatter but it takes a great deal of effort to crush a tsetse fly.
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The interaction of the original Hubbard model is quartic, as in (4), here given
by

(13) V = U
∑

x∈Λ

a∗x,+ax,+a
∗
x,−ax,− = 1

2
U
∑

x∈Λ

n2
x − 1

2
U N

where nx = a∗x,+ax,+ + a∗x,−ax,− is the local fermion density operator, and
N =

∑
x nx. If interpreted as a substantially simplified version of a screened

Coulomb repulsion between electrons in local orbital states, it is natural to
assume that U > 0, i.e. the energy increases by U if two fermions occupy the
same site.

In condensed-matter applications, the vertex set Λ of the graph is a regular
lattice in d-dimensional space, where d ≤ 3, and the simplest variant of the
model has nonvanishing hopping amplitudes only between nearest neighbours
on that lattice.

It is obvious that the interaction can be generalized to include more than just
an on-site repulsion, and this gives rise to additional effects, but here I restrict
to the model on the two-dimensional square lattice with an on-site repulsion
and consider hopping amplitudes t between nearest neighbours and t′ between
next-to-nearest neighbours. For an infinite lattice, momentum space is then
given by the Brillouin zone B = R2/2πZ2 ∼= [−π, π)2 with periodic boundary
conditions, and the dispersion function for the single band given by H0 is

(14) ε(k) = −2t(cos k1 + cos k2)− 4t′ cos k1 cos k2

A collection of level sets of this function are shown for t′ = 0 and t′ 6= 0 in
Figure 1. Depending on the density, every level line can be the Fermi surface
of the model with U = 0. For t′ = 0, there is a particle-hole symmetry,
which corresponds to the antisymmetry of ε(k) under k 7→ k + (π, π), and
at half-filling (µ = 0), the Fermi curve is the square D with corners (±π, 0
and 90,±π) (drawn dashed-dotted in the picture). This is an example of a
perfectly nested Fermi surface, since its translate by (π, π) is on top of D:
D + (π, π) = D. Moreover, the saddle points of the dispersion function, (π, 0)
and (0, π), are on D. For t′ 6= 0, particle-hole symmetry is absent, and there
is no perfect nesting. There is approximate nesting in that the curvature of
the Fermi surface vanishes on the Brillouin zone diagonal at a certain value
of µ. (This enhances incommensurate antiferromagnetic correlations.) Taking
t′ 6= 0 disentangles the Van Hove filling, where the zeroes of the gradient of e
lie on the Fermi surface, from the filling at which the perfect nesting occurs.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 1. The level lines (Fermi curves) of the two-dimensional
band relation (14). Left: t′ = 0. Right: t′/t < 0. .
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If the hopping amplitudes are more general, but remain of finite range, k 7→
ε(k) is analytic in k. The theory developed in [28, 29, 30, 31] applies to the
Hubbard model at small U , with hopping amplitudes tx−x′ that depend only
on x − x′ and have sufficient decay as |x − x′| → ∞. They do not need to
have finite range. In fact, the class of finite-range hopping Hamiltonians is
too small to formulate and solve the renormalization problem mathematically.
This means that, even if one starts with finite-range or even nearest-neighbour
hopping in an interaction-free model, the interacting system will in general
have a fermion dispersion that is not described by hopping amplitudes of any
finite range. Similarly, it will become clear below that the effective low-energy-
interaction, defined by the renormalization group flow, will not remain an on-
site interaction. One can view phase transition points as those points where
the effective interaction becomes long-range.

Materials described by the Hubbard model. The Hubbard model on the two-
dimensional square lattice has received much attention since the late 1980s,
because it was proposed as an effective one-band model for the cuprates mate-
rials with a layered structure that exhibit high-temperature superconductivity.
They are called cuprates because the layers are composed of copper and oxy-
gen atoms. The materials are three-dimensional, but the hopping amplitudes
perpendicular to the planes is much smaller than that within the copper-oxide
planes, so that modelling at not too low scales can focus on a two-dimensional
system. The clean compounds are insulating antiferromagnets. The fermionic
density can be changed by doping the material. At the density where the
critical temperature Tc for superconductivity is highest, a “non-Fermi-liquid”
phase has been observed at temperatures above Tc in the cuprates. The notion
of a Fermi liquid will be explained in Section 4, and it will also be discussed
there how one can define deviations from Fermi liquid behaviour in a precise
way.

While it is likely that the Hubbard model can serve as an idealization of the
cuprates, in the sense that it qualitatively exhibits the basic phenomenology
of these materials, as described very cursorily above, it certainly is not a re-
alistic model for a quantitative description of particular compounds: even the
description of the hopping processes within the copper-oxide planes involves
several orbitals, and gives rise to three- and more-band models. Moreover, the
doping process also introduces impurities, which should be modelled by ran-
dom terms in the Hamiltonian. One should therefore only look for the most
robust features of the Hubbard model when bringing it into connection with
cuprate physics.

The Fermi surface of the cuprates, as determined from ARPES data, suggests
that the Hubbard model may be a good description. The interaction of the
fermions is expected to be relatively large—another challenge to all current
theoretical efforts.

The Hubbard model on a two-dimensional hexagonal lattice is the simplest
model for single-layer graphene. The pure case (no dopants or other impurities)
is the half-filled lattice, where the density is one fermion per lattice site. In
this case, the zero level set of the fermionic dispersion function is not a curve,
but a set of two points, and the dispersion function close to these points is,
to a very good approximation, given by a Dirac operator. (The Dirac index
comes about because the hexagonal lattice has two atoms per unit cell, so
that the system is described by two bands). In this case, the electron density
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of states vanishes at the Dirac points, so that a small Hubbard interaction
is irrelevant [40]. The on-site interaction of realistic models for graphene is
not small, however, and moreover, the fermions are not expected to screen
the electromagnetic interaction well, so that a long-range interaction is more
appropriate for the description.

3. Wilsonian renormalization group equations

As mentioned, the generating functions defined above are formal, that is, they
require a regularization in order to be mathematically well-defined. Specific
regularizations for the class of models considered here, as well as their math-
ematical and physical motivation, will be discussed below. It turns out that
flow equations obtained by introducing and varying a regulator that depends
on a parameter Ω (for instance, an energy scale) are also useful in exhibiting
the combinatorial and analytical structure of the theory, and for doing bounds.
In this section, we briefly review the general setup of the flow, to prepare for
the applications that follow later.

3.1. Derivation of the RG equation. Let Ω be a parameter on which Q =
QΩ depends differentiably, and such that CΩ = Q−1

Ω exists. Then all generating
functionals will also depend on Ω:

(15) e−WΩ(η̄,η) =

∫
D φ̄Dφ e−(φ̄,QΩφ)−V (φ̄,φ) e(η̄,φ)−(η,φ̄)

We assume, furthermore, that the interaction V does not depend on Ω. Then

Ω∂Ω e−WΩ(η̄,η) =

∫
D φ̄Dφ e−(φ̄,QΩφ)−V (φ̄,φ) (φ̄, Q̇Ωφ) e(η̄,φ)−(η,φ̄)

=

∫
D φ̄Dφ e−(φ̄,QΩφ)−V (φ̄,φ)

(
δ
δη
, Q̇Ω

δ
δη̄

)
e(η̄,φ)−(η,φ̄)

=
(
δ
δη
, Q̇Ω

δ
δη̄

)
e−WΩ(η̄,η)

(16)

Here Q̇Ω = Ω∂ΩQΩ, the step from the first to the second line uses the standard
differentiation rules for exponentials, and the step from the second to the third
line uses that the differentiation with respect to the source terms can be taken
out of the integral. Denoting the Laplacian in field space corresponding to
some Operator A by

(17) ∆A =

(
δ

δη
, A

δ

δη̄

)

this gives

ẆΩ(η̄, η) = −eWΩ(η̄,η)∆Q̇Ω
e−WΩ(η̄,η)

= ∆Q̇Ω
WΩ(η̄, η)−

(
δWΩ

δη
, Q̇Ω

δWΩ

δη̄

)
.

(18)

Equations (16) and (18) can be understood in simple terms by an analogy with
heat flow: the integration (more precisely, the convolution) with a Gaussian
measure generates the solution of a generalized heat equation — in the case of
real fields and positive operators — and the equation (16) for the density e−W

therefore takes the form of a heat equation. The equation for the exponent W
then becomes a nonlinear heat equation.

3.2. Schemes. A variety of schemes, that is, different forms of the renormal-
ization group equation, have been used.
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3.2.1. Polchinski’s flow equation. This is the variant of equation (18) obtained
by setting η̄ = C∗ψ̄, η = Cψ. More precisely, the generating functional for the
amputated connected Green functions,

(19) GΩ(ψ̄, ψ) = −(ψ̄, C−1
Ω ψ) +WΩ(ψ̄ C−1

Ω , C−1
Ω ψ)− logZ0(QΩ),

satisfies

(20) ĠΩ = −∆ĊΩ
GΩ +

(
δGΩ

δη
, ĊΩ

δGΩ

δη̄

)

This is the equation Polchinski first used to prove perturbative renormaliz-
ability of scalar field theory in a very elegant way [59]. This has since been
developed into a versatile and powerful method of proving perturbative renor-
malizability of quantum field theories, by C. Kopper and coworkers (for a
review and references see, e.g. [50]).

3.2.2. The Wick-ordered flow equation. The generating functional for the Wick-
ordered correlation functions is

(21) HΩ(ψ̄, ψ) = e∆DΩGΩ

where DΩ = C − CΩ is the Wick ordering covariance. The resulting flow
equation [62, 61] is a quadratic differential equation, which can be written in
the form [63]

(22) ḢΩ(Ψ) = −
[
e

∆
(1,2)
DΩ ∆

(1,2)

ḊΩ
HΩ(Ψ1) HΩ(Ψ2)

]
Ψ1=Ψ2=Ψ

.

The graphical depiction of the right hand side is shown in Figure 2.

Figure 2. The graph corresponding to the right hand side of
the Wick ordered flow equation (22). (Figure taken from [61].)

If Ω plays the role of an infrared cutoff, the Wick ordering covariance DΩ is
the covariance of the low-energy fields that have not been integrated over at
flow scale Ω. Only quantities at scale Ω or below enter (22).

Wick ordering is particularly convenient for inductive proofs of renormalizabil-
ity, since it simplifies the inductive scheme [61]. Because the Wick ordering
covariance is supported at scales below Ω, the Wick ordered equation also
brings out the improvements to power counting that arise in systems with a
non-nested Fermi surface in an especially transparent way [62].
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3.2.3. The flow equation for the irreducible vertex functions. The generating
functional for the one-particle irreducible (1PI) vertex functions is obtained in
the standard way by a Legendre transformation

(23) ΓΩ(φ̄, φ) = WΩ(H̄,H)− (H̄, φ)− (φ̄, H)

where H̄ and H are the functions of (φ̄, φ) obtained by solving the equations

(24) φ =
δWΩ

δη̄
, φ̄ =

δWΩ

δη

for η̄ and η. As in the case without the parameter Ω, it has to be checked
whether this inversion is indeed possible. For bosonic fields, this requires strict
convexity of WΩ. For fermionic fields, it requires only the nondegeneracy of
the quadratic part, due to the nilpotency of the Grassmann variables. The
functions H̄ and H also depend on Ω. By (24) and the standard relation

(25)
δ2Γ

δφ̄δφ
=

(
δ2W

δη̄δη

)−1

for the Hessians of W and Γ, the flow equation (18) implies the flow equation
for the 1PI functions [70, 64]

(26) Γ̇Ω = (φ̄, Q̇Ωφ)− Tr

(
Q̇Ω

(
δ2Γ

δφ̄δφ

)−1
)

3.3. Expansion in the fields. The expansion of the various functionals in
the fields gives the corresponding Green functions: W generates the connected
Green functions, G the connected, amputated (by the free covariance) ones, H
the connected, amputated, and Wick ordered, ones, and Γ generates the one-
particle irreducible (1PI) vertex functions. These expansions are all similar,
and only the one for the 1PI functions is given here. For an even theory, where
Green functions of an odd number of fields vanish, it reads

(27) ΓΩ(Ψ) =
∑

m≥0

Γ
(m)
Ω (Ψ)

where Γ
(m)
Ω (Ψ) is of degree 2m in the fields Ψ. In a translation-invariant

situation, where the fields ψ(K) = ψα(k) can be labelled by K = (k, α),
where k combines momentum k and frequency k0 and α is an internal index,
e.g. spin,

(28) Γ
(m)
Ω (Ψ) =

∫
dK1...dK2m δ(

∑
ki) ψ̄(K1)...ψ(K2m) γΩ

m(K1, ..., K2m) .

The delta function enforces overall momentum and frequency conservation,
and γΩ

m is the irreducible m-point function at scale Ω. Inserting this into
(26) and comparing coefficients in the fields results in an infinite hierarchy of
equations. The first equation in the hierarchy is for γΩ

1 , which, by (25), is the
inverse of the full one-particle Green function (propagator) GΩ. By (26), it is
of the form

(29) γΩ
1 = Q̇Ω − ΣΩ

where the scale-dependent self-energy ΣΩ is the solution of

(30) Σ̇Ω = tr
(
SΩ γ

Ω
2

)
,
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with an appropriate initial condition for ΣΩ0 , where Ω0 is the scale at which
the flow is started (the choice of this scale depends on the regulator used).
Here SΩ is the single-scale propagator

(31) SΩ = −GΩ Q̇Ω GΩ ,

and γΩ
2 is the vertex function of the two-particle interaction. The full propa-

gator then takes the form

(32) GΩ = (QΩ − ΣΩ)−1 = CΩ (1− ΣΩCΩ)−1

The right hand side of the flow equation for γΩ
2 contains the six-point function

γΩ
3 , etc. If every γΩ

m is represented by a vertex with 2m legs, these equations
can be depicted as in Figure 3.

Figure 3. Graphical representation of the first three equations
in the RG hierarchy for the one-particle irreducible vertex func-
tions.

where the first equation represents (30), and each heavy internal line denotes
a factor GΩ, the thin internal line a factor SΩ.

3.4. Truncations. Setting γΩ
m = 0 for m bigger than some m0 allows to solve

the equations recursively in terms of ΣΩ and VΩ (in principle). Already the
truncation γΩ

3 = 0 (or slight modifications thereof) gives a nontrivial system
of integro-differential equations for the four–point vertex functionVΩ(k1, k2, k3)
and the selfenergy ΣΩ(k) [64, 55]. Truncations of hierarchies are ubiquitous in
many-body theory, e.g. the quantum Boltzmann equation of quantum kinetic
theory is a truncation of the quantum BBGKY hierarchy. The present trunca-
tion is on a higher level because it keeps the connected two-particle correlation
function γΩ

2 , so the two-particle correlation does not factorize.

3.5. RG equation for the many-fermion system. For a many-fermion
system of spin-1

2
fermions, such as the Hubbard model, and under the assump-

tion that U(1)× SU(2)–invariance is unbroken,

(33) γΩ
1 (K,K ′) = δα,α′ (ik0 − E(k)− ΣΩ(k)χΩ(k))

(Here χΩ is the regulator function used to define the flow, specified in our appli-
cations below.) Similarly, U(1)×SU(2)–symmetry implies that γΩ

2 (K1, . . . , K4)
is determined by the vertex vΩ(k1, k2, k3) that describes the interaction of par-
ticles with spin conservation (for details and a derivation, see [64]). They
satisfy the flow equation

Σ̇Ω(p) =
1

2

∫
dl SΩ(l)

(
vΩ(p, l, p)− 2vΩ(p, l, l)

)
,

v̇Ω(p1, ..., p4) = (Tpp + Tph,cr + Tph,d)(p1, ..., p4),
(34)
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where

Tpp(p1, ..., p4) = −1

2

∫
dl LΩ(l, p1 + p2 − l) vΩ(p1, p2, l) vΩ(p1 + p2 − l, l, p3),

Tph,cr(p1, ..., p4) = −1

2

∫
dl LΩ(l, p1 − p3 + l) vΩ(p1, l, p3) vΩ(p1 − p3 + l, p2, l),

Tph,d(p1, ..., p4) =
1

2

∫
dl LΩ(l, p2 − p3 + l)

(
2vΩ(p1, p2 − p3 + l, l) vΩ(l, p2, p3)

− vΩ(p1, p2 − p3 + l, l) vΩ(l, p2, p2 − p3 + l)

− vΩ(p1, p2 − p3 + l, p4) vΩ(l, p2, p3)
)
.

Here LΩ(p1, p2) = ∂
∂Ω

(
GΩ(p1)GΩ(p2)

)
.

Graphically, the terms on the right hand side of these equations can be repre-
sented by the diagrams shown in Figure 4.

Figure 4. The level-2 truncation of the 1PI hierarchy, for an
SU(2)-spin and U(1)-charge invariant ansatz for the effective
action. Spin is conserved along the heavy particle lines. Left:
(a) the particle-particle contribution (b) the crossed particle-
hole contribution (c) the particle-hole contributions. Right: the
contributions to the fermionic self-energy. (Figure taken from
[64].)

Because of their structure, these equations are also called “one-loop” RG equa-
tions. It should be noted, however, that this is slightly deceptive — the form
of L used here already involves particular two-loop contributions, which are
essential for fulfilling Ward identities from the global symmetries, and which
would not be captured in other truncations that also exhibit one loop in the
graphical depiction. The equations can of course be solved iteratively in the
interaction, thus generating a useful resummation of perturbation theory (cor-
responding to a simple truncation of the Brydges-Kennedy [14] formula). In
lowest order, this really gives the bare one-loop diagrams of the theory. Be-
cause of the factor (-2) coming from the fermionic minus sign and the spin
sum in the RPA-type graph in (c), all diagrams in (c) cancel out for the bare
Hubbard interaction. This is a special feature of the on-site interaction; it no
longer holds if the interaction includes even next-to-nearest neighbour terms.

3.6. Relation to self-consistency equations. An essential feature of the
flow equations is that the vertex functions on the right hand side are not the
bare ones. That is, one really has to solve an integrodifferential equation in
order to obtain a solution. Restrictions obtained by retaining only one of
the terms on the right hand side can be shown to converge to the solution
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of standard self-consistency equations [65]. For instance, retaining only the
particle-particle diagram (a) gives the result of the “ladder resummation” that
indicates the instability of a normal Fermi liquid towards formation of Cooper
pairs and a superconducting state, and retaining only the first diagram in (c)
gives a standard random phase approximation (RPA).

The full equations go significantly beyond Hartree-Fock, RPA, and quenched
ladder approximations, and have become a workhorse in the analysis of correlated-
fermion models: it has been shown over the last two decades that if all terms
are kept in this system of equations, it is possible to predict the possible phases
of models for the cuprate and pnictide high-temperature superconductors, as
well as a large number of other interesting materials. Some aspects of this will
be discussed below; for a more detailed review, see [55].

3.7. Flow parameters and regulators. Above, Ω was introduced simply as
a parameter on which Q = QΩ, and hence the covariance of the free fields,
CΩ = Q−1

Ω , depends. To be useful in analysis, the modification of Q intro-
duced by Ω must have a regulating effect as well. The Wilsonian RG flow
rearranges the functional integral such that degrees of freedom with correla-
tions on short range are integrated first, and successively longer-range corre-
lations are reached in the course of the flow. Operationally, this means that
the covariance C, which in most applications has a slow decay, is modified by
Ω to one with a fast decay, whose decay length depends on Ω. We take the
convention that the flow goes from an initial scale Ω0 down to Ω = 0, and the
decay length increases as Ω decreases. This is the case if Ω is chosen as an
energy scale, or as an inverse length. At the initial scale Ω0, the covariance
should either vanish, or at least the functional integral with covariance CΩ0

should be doable by a controlled approximation (e.g. a convergent expansion).
As Ω → 0, CΩ should converge to C, so that in the end, the full integral for
the generating functionals has been performed.

In the following, the setup of the flow and the most useful regulator functions
are described, for the example of a many-fermion system with Fermi surface.

A standard example of a regulator function χΩ is a cutoff function in momen-
tum space that vanishes in a vicinity of the Fermi surface. For Ω0 ≥ Ω ≥ 0,
we choose QΩ(k) = Q(k) χΩ(k)−1 so that

(35) CΩ(k) = Q(k)−1 χΩ(k) ,

the full propagator (32) becomes

(36) GΩ(k) = χΩ(k) (Q(k)− χΩ(k)ΣΩ(k))−1

and the single-scale propagator (31) becomes

(37) SΩ(k) = −(Q(k)− χΩ(k)ΣΩ(k))−1 χ̇Ω(k) (Q(k)− χΩ(k)ΣΩ(k))−1

While having a well-defined QΩ requires that χΩ(k) is nonvanishing (except at
isolated points) because its inverse appears, the flow equations contain only
the propagators, hence only χΩ(k), so one can take a limit to obtain a strict
cutoff function that vanishes on open sets.

The Fermi surface cutoff is obtained by taking

(38) χΩ(k) = h>

(
e(k)

Ω

)

where x 7→ h>(x) is a C∞ function that vanishes for |x| ≤ 1 and equals 1 for
|x| ≥ 2.
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Thus χΩ vanishes not only on the Fermi surface S, where e(k) = ε(k)−µ = 0,
but in the open neighbourhood of S where |e(k)| < Ω. Moreover, ĊΩ and
SΩ are supported on the thin shell in momentum space where h′>(e(k)/Ω) is
nonzero. The shell is depicted in Figure 5, for the case of the Hubbard model
with t′ = 0 (the heavy line is the Fermi surface; the gray areas are the support
of h′>(e(k)/Ω).

Figure 5. The ‘momentum shell’, i.e. the support of the scale
derivative of the function (38), in the Hubbard model with t′ = 0

An even more stringent cutoff

(39) χΩ(k) = h>

(
e(k)2+k2

0

Ω2

)
,

which also restricts the Matsubara frequencies away from a small interval
around zero, has been used frequently in mathematical studies.

The Fermi surface cutoff is useful and has been used in many works. For
instance, it provides direct insight into the role of geometry for possible sin-
gular behaviour of contributions to the effective two-particle interaction: sin-
gularities of the latter can occur only at those momenta p where there is no
transversal intersection of the Fermi surface and its translate by p (see Figure
6). For a detailed review of these effects, see [60].

Figure 6. The intersection of a thin momentum shell around
the Fermi surface with its translates, for the Hubbard model
with t′ = 0. The translating momentum p connects the two
centers, indicated by points. Left: for p not close to zero and
not close to 2S, the intersection is transversal, so it has much
smaller volume in momentum space than the momentum shell
itself. Middle: for p in a neighbourhood of 2S, the intersection
is tangential, but the nonvanishing curvature still leads to a re-
striction. Right: for p ≈ 0, the translates overlap and there is
no volume improvement. (Figure taken from [61].)
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When analyzing intersections, it is very important to keep in mind that, for
the lattice models considered here, momentum space is periodic, and that
this significantly changes the analysis of intersections, so that there can be
additional relevant terms in the flow, the so-called Umklapp terms. Indeed,
they are absent only at small fermion densities, and close to half-filling, they
are essential for most properties of the flow in the two-dimensional Hubbard
model [42, 45, 71].

A strict Fermi surface cutoff also has disadvantages; for instance, it suppresses
small-momentum-transfer excitations artificially. For this reason, alternative
regulators have been introduced. One of them is the temperature-flow RG
[43, 44], where the temperature T is taken as the flow parameter. In this
case, the general setup introduced above remains unchanged, but no function
χΩ needs to be introduced – one simply takes a derivative with respect to
the temperature after rescaling the fields such that the interaction term is
independent of temperature. Another is the “Ω-scheme” introduced in [47],
where

(40) χΩ(ω) =
k2

0

k2
0 + Ω2

This soft regulator, which depends only on the frequency variable k0, is con-
venient for analyzing ferromagnetism and other small-momentum excitations.
Moreover, because it does not depend on the spatial momentum k, flows with
a dynamically adjusting Fermi surface can be defined straightforwardly.

4. Renormalization of the Fermi surface and Fermi liquid
theory

Renormalization of perturbation expansions plays an important role in the
mathematical theory of Fermi systems. Although it had been known for a
long time to experts that renormalization is necessary, it was for a long time
swept under the rug, mainly because it does not play a role in second order
calculations and resummations based on them. A mathematically rigorous
theory of renormalization began with the work of Feldman and Trubowitz
[32] and Benfatto and Gallavotti [10] at the beginning of the 1990s. A first
analysis of the superconducting state was given soon after in [33]. In these
works, renormalization of the Fermi surface consisted in a renormalization
of the chemical potential µ because the models were taken as rotationally
symmetric. In a crystal, this is a useful approximation at small densities, i.e.
when the chemical potential is just above a band minimum, because there
the band function can be approximated by a constant times k2. However, in
general, rotational symmetry is broken to a discrete subgroup in a crystal, so it
is important to understand the more general case of systems with nonspherical
Fermi surfaces, where renormalization with acounterterm requires it to be a
function of the momentum variable k. The dependence on k cannot simply
be parametrized by a finite set of parameters, because one needs a function of
momentum to describe the deformation of a level set.

The full perturbative renormalization of convex, curved Fermi surfaces was
done in [28, 29, 30, 31]; it will be reviewed briefly below. This also allowed to
remove some long-standing ‘paradoxes’ [49] about the limit of zero tempera-
ture in many-body perturbation theory [21]. These problems were due to an
incorrect renormalization procedure that neglected the momentum dependence
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of the quadratic term in the fields, and they disappear once renormalization is
done correctly [21].

Because the self-energy Σ(k0,k) contains all essential information about the
properties of single-particle-like excitations (usually called quasiparticles) in
interacting fermion systems, its analysis is also essential for understanding the
notion of a Fermi liquid, which has been discussed extensively in the con-
text of high-temperature superconductivity. Landau’s concept of a Fermi liq-
uid is often described in textbooks in terms of systems at temperature zero,
namely as a persistence of a discontinuity in the fermionic thermal occupa-
tion number at the Fermi surface, but it has been known since the work of
Kohn and Luttinger that the standard many-fermion models exhibit symme-
try breaking via a superconducting state at low temperatures. Consequently,
the textbook definition does not really apply to any system where the band
function e is inversion-symmetric (e(−k) = e(k)). A definition of Fermi liquid
(FL)behaviour at positive temperatures, i.e. above the critical temperatures
for symmetry breaking, was introduced in [62], and it was shown there that a
system is an FL in the sense of this definition, if the fermionic self-energy is
sufficiently regular as a function of k0 and k. The results of [28, 29, 30, 31]
and [62] imply this regularity to any finite order in perturbation theory for a
large class of many-fermion systems.

In this definition, it is essential that the system is not considered merely at a
fixed temperature, but in an interval of (low) temperatures, and for the model
to behave like an FL, it needs to exhibit a certain behaviour as a function
of temperature: some functions must be uniformly bounded as a function of
temperature (not all of them can be, since the region where FL behaviour
holds is itself temperature-dependent).

The classification of Fermi systems according to the properties of the fermionic
self-energy also allows to specify deviations from FL behaviour in a more pre-
cise sense than just marking ‘non-FL-states’ by the ‘absence’ of FL behaviour.
It turns out that in general, the self-energy is not a differentiable function of
k0 near to k0 = 0. A dependence of Σ(k0,k) ∼ |k0|α with α < 1 for k0 → 0
and k on the Fermi surface has been found in several cases. The most fa-
mous example for this is the one-dimensional fermion system, which exhibits
Luttinger liquid (LL) behaviour: there, the exponent α is a function of the
coupling constant g that determines the interaction strength. For sufficiently
small g > 0 (the sign meaning a repulsive interaction), α is analytic in g [12].
Singular self-energies have also been postulated and studied in two dimensions,
in systems with long-range interactions, e.g. fermions coupled to gauge fields.

In the following, I review renormalization theory for Fermi systems, both in
the case with a regular and with a singular Fermi surface.

4.1. Small denominators. From the point of view of analysis, the renormal-
ization problem can be viewed, at least in weakly interacting systems, as a
small-denominator problem. If the quadratic part of the Hamiltonian E has
spectrum εα, then the covariance has an eigenfunction expansion in which

C(k0, α) =
1

ik0 − εα + µ

appears. When T gets small, the denominator can get small, depending on µ.

Because the fermionic Matsubara frequency k0 is an odd multiple of πT , it
never exactly vanishes at T > 0. Therefore positive temperature poses a natural
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infrared cutoff in fermion systems. It is only in the limit T → 0 that infrared
divergences arise in Feynman graph expansions. In a translation-invariant
situation, εα = ε(k) with momentum k. When in addition, the limit of an
infinite system is taken, momentum k becomes continuous and C(k0,k) has a
singularity for

(41) k0 = 0 and k ∈ S = {k ∈ B : e(k) = ε(k)− µ = 0} .

The nature of the singularity depends on µ. Generically, the µ-level set of ε
will be empty (if µ is in a band gap), or it will be a set of codimension 1,
that is, a surface for d = 3 and a curve for d = 2. For simplicity, and in
accordance with standard convention, I will refer to them as “Fermi surfaces”
in all dimensions d ≥ 2.

This singularity causes infinities in every order r ≥ 3 of the straightforward
perturbation expansion. When the temperature T is positive, these divergences
get regularized, but since temperature is a physical parameter, it is important
to ask what properties are uniform in temperature, or how things depend on
temperature. The unrenormalized expansion yields spurious nonuniformities
in temperature just as a naive perturbation expansion in mechanics can lead
to secular terms. In the many-body models, the correct renormalization allows
to construct an expansion that is free of such spurious singularities.

4.2. Regular Fermi Surfaces. Let the dispersion relation k 7→ e(k) = ε(k)−
µ of the infinite system be a C2 function. The Fermi surface S is regular if
∇e 6= 0 on S, so that S is a (d− 1)-dimensional submanifold of B.

In this case, renormalization can be done with a momentum-dependent coun-
terterm for the quadratic part of the action,

(42)

∫
ddkφ̄(0,k)F (k)φ(0,k) .

Inspection of low-order perturbation theory shows that F (k) is a function of
k that is not just proportional to ε(k). Therefore, in a first step, sufficient
regularity of F needs to be proven.

The physical meaning of F is that it fixes the Fermi surface. In other words,
the bare model is changed by a counterterm that is a function of k and of the
function e = ε−µ and the interaction function, to fix the Fermi surface to S in
every order of the expansion. In [28], this order-by-order construction of the
counterterm function is given in all dimensions d ≥ 2, and it is proven there
that for a class of systems with the properties

• the Fermi surface S satisfies a weak “no-nesting” condition: there can
be only tangencies up to a fixed finite order in the intersection of the
Fermi surface with its translates by nonzero momenta
• the interaction v satisfies a summability condition (i.e. it is short-range,

but not necessarily finite-range)

that to all orders, the counterterm function is finite and C1 in k, at zero
temperature. The results of [28] also imply a similar behaviour for the self-
energy as a function of k0 and k, so there is no anomalous exponent α < 1 that
would imply a deviation from FL behaviour. The precise statement is given in
Theorem 1.2 of [28].

The counterterm function F contains the information about the deformation
of the Fermi surface under the influence of the interaction, but only in an
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implicit way: the statement is that if the original dispersion function is taken
as

(43) E(k) = e(k) + F (e, v,k)

where F is determined order by order, then the expansion is finite to all orders.
To renormalize the model, one needs to show that for given E and v, one can
find e such that Equation (43) holds. This is an implicit equation for a function,
not just one variable. It is shown in [28], that F is also Fréchet differentiable
in e, and that the map e 7→ e+F is locally injective, so that uniqueness of the
solution holds, if a solution exists. The implications and the meaning of the
conditions imposed are discussed in detail in the introductory sections of [28].

In [29, 30, 31], the existence of a solution e of (43) is proven for the class of
many-fermion models where the condition on the Fermi surface is strengthened
to require that the Fermi surface has positive curvature everywhere. This class
includes, e.g. the Hubbard model away from half-filling. The bulk of the proof
consists in showing that the second derivative of the dispersion relation and
the curvature of the Fermi surface stay bounded in this case (Theorems 1.1
and 1.2 of [30]), and that a solution of (43) can be constructed by an iterative
procedure (Theorem 1.1 of [31]). The proofs apply in all dimensions d ≥ 2,
but there are subtle differences between the cases d = 2 and d ≥ 3. The
two-dimensional case is the most singular one, and it is known from explicit
calculations in special cases [34] that the properties proven for F do not hold
for the self-energy Σ — while F , which depends only on k, is C2 in k, Σ, which
also depends on k0, is not C2 in k0.

The inversion theorem that guarantees that a solution e of (43) exists now
also allows for a physical interpretation of the counterterm function. Insert-
ing the solution of the implicit equation, the counterterm function gives the
deformation of the Fermi surface under the influence of the interaction. It is
independent of the projection operators used to implement renormalization,
and of the renormalization scheme used.

Based on the perturbative analysis, and on a sectorization method for the
Fermi surface [24], two-dimensional fermionic models were constructed by a
combination of renormalization group and convergent single-scale perturbation
expansions, in several works. In a series of ten papers, Feldman, Knörrer, and
Trubowitz, constructed a two-dimensional Fermi liquid at zero temperature
[20]. The class of systems considered there is not symmetric under spatial
reflection k→ −k. One can prove that this asymmetry removes the instability
towards Cooper pairing. The regularity analysis of the Fermi surface for this
case is included in [28, 29, 30, 31]. It is harder than in the symmetric case
because the antipode (the point a(k) where the normal vector to S is opposite
to the normal at k) is no longer equal to −k, and because the treatment of
certain third-order tangencies is nontrivial (the rightmost case in the picture).

Another way to avoid the Cooper instability is to stay above the critical tem-
perature for superconductivity, i.e. impose a condition |λ| log β < const., where
λ is the strength of the interaction [62]. The Fermi liquid condition of [62] was
proven for a two-dimensional continuum system by Disertori and Rivasseau
[15, 16], and for the two-dimensional Hubbard model sufficiently far from half-
filling by Pedra [57] and Benfatto, Giuliani, and Mastropietro [11]. For the
three-dimensional case, only partial results exist.
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Figure 7. Whether or not the Cooper interaction can become
marginally relevant in the renormalization group flow is decided
by the intersection of the Fermi surface S with translates of its
reflection, −S, because the constitutents of a Cooper pair have
momenta k and −k, both of which must be close to the Fermi
surface to contribute to the flow at arbitrarily low scales. The
figure shows the intersections for a band function e for which
e(−k) 6= e(k), and different translation momenta p. From left
to right: at generic momenta, the intersection is transversal; ‘at
2kF ’, the intersection is tangential but curvature suppresses the
intersection volume; at p = 0, the absence of reflection symme-
try again leads to a suppression (in contrast to Figure 6); there
are always translation momenta p for which third-order tangen-
cies must happen; these contributions remain suppressed if there
are at most order n tangencies for some fixed n. (Figure taken
from [29].)

4.3. Singular Fermi Surfaces. The results discussed in the previous section
can be summarized qualitatively as follows: in two-dimensional Fermi systems
with weak, short-range interactions, the self-energy is a regular function if the
Fermi surface of the noninteracting Hamiltonian

• is weakly non-nested,3 in particular it does not contain any segments
that are straight lines
• is nonsingular, i.e. it does not contain any points k with ∇ε(k) = 0

What happens when one of these conditions is violated? The case of long-
range interactions is at the moment open mathematically. In the following, I
will keep the condition that the interaction has short range, and present some
results about singular Fermi surfaces, which contain points where ∇ε(k) = 0,
so that they are no longer submanifolds of B.

Van Hove Singularities. Van Hove (1953) was the first to point out that gener-
ically, there must always be values of µ where S contains zeroes of ∇e. That is
because k 7→ ε(k) can be regarded as a Morse function. For a lattice system,
momentum space is a torus, and it follows that the map k 7→ ε(k) always has
saddle points ks, where ∇ε(ks) = 0 and a rotation R diagonalizes the Hessian
at ks, e.g. in two dimensions

(44) ε(ks +Rp) = EVH − ε1p
2
1 + ε2p

2
2 +O(|p|3)

with εi ≥ 0. Generically, εi > 0, as the requirement that one of them vanishes
introduces an additional condition. For the dispersion function (14) of the
Hubbard model, one of these Van Hove points is at ks = (π, 0), with EVH = 4t′

and

(45)
ε1

ε2

=
1− 2θ

1 + 2θ

3this is defined precisely in [25, 26]; essentially, at any point p of the Fermi curve, the
Fermi curve deviates from the tangent line at p as a fixed minimal power of the distance
from p
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where t′ is chosen such that 0 < θ = − t′

t
< 1. By symmetry, there is another

Van Hove point at (0, π). Geometrically, the Fermi curve has double points at
the saddles of the dispersion, as shown in Figure 8, where translational copies
of B and S are shown to exhibit the structure better.

Figure 8. The Fermi curve for (14) at van Hove filling.

Density-of-states effects. The density of states ρ(E) =
∫

ddk
(2π)d

δ(E − ε(k)) has

a Van Hove singularity (VHS) at E = EVH. This singularity is strongest in
two dimensions, where

(46) ρ(E) ∼ log
W

|E − EVH|
.

(here W is the bandwidth). In higher dimensions, ρ remains a bounded func-
tion, but divergences shows up in the derivatives of ρ. The VHS have effects
on the solutions of self-consistency equations. For instance, ρ enters the BCS
equation for superconductivity (SC)

(47) ∆ = g ∆

∫
dE

ρ(E)

2
√

(E − µ)2 + ∆2
tanh

β
√

(E − µ)2 + ∆2

2
.

In the absence of a VHS, that is, if ρ is regular for E ≈ µ, the zero-temperature
gap is proportional to e−ρ(µ)/g. If there is a VHS, i.e. µ = EV H , then it becomes
of order e−K/

√
g. VHS also enhance tendencies towards ferromagnetism (FM) in

d = 2. While ferromagnetism is absent in weakly coupled systems with regular
Fermi surfaces, the presence of a VHS implies strong ferromagnetic correlations
already at arbitrarily weak coupling, with a zero-temperature magnetization

∼ e−K̃/J , where J is the coupling strength of the ferromagnetic interaction. A
comparison of these scaling behaviours suggests that if J ∼ U and g ∼ U2,
then ferromagnetic and superconducting correlations can compete. This is
indeed the case, as discussed below. However, simple simple gap equations or
resummations are not sufficient to describe this competition.

The Van Hove scenario of high-Tc superconductivity. Information about the
Fermi surface of cuprate materials has been obtained from angle-resolved pho-
toemission spectroscopy (ARPES). The results indicate that the Fermi surface
is close to Van Hove points. They also hint at a suppression of the quasipar-
ticle weight close to these points. In terms of the self-energy this would mean
that the derivative of the self-energy gets large close to these points. It is a
natural question whether this is caused by the nearby Van Hove singularities.
Moreover, a striking result is that one of the two parameters εi of (44) is almost
zero. Although such a nongenericity could be produced by adjusting hopping
parameters on a particular lattice structure, this requires fine-tuning of the



RENORMALIZATION IN CONDENSED MATTER 21

model parameters. In other words, its presence in a model of noninteracting
fermions is not natural. There remains the possibility, however, that interac-
tion effects lead to an extension of the Van Hove singularities in the sense that
the gradient of ε is further suppressed by interaction effects. In an important
early paper [17], Dzyaloshinskii studied the possibility of an extended Van
Hove singularity with flat bands, marginal- and non-Fermi-liquid behaviour.
In [35], arguments for a pinning of the Fermi surface at the Van Hove points
based on a simplified RG flow (the two-patch approximation, see below) were
presented. The same approximation was used in [48] to study the robustness
of extended Van Hove singularities.

4.4. Rigorous RG study of the self-energy at Van Hove points. The
cuprate phenomenology, and the more general question in what cases FL theory
fails even at weak coupling, motivate a more detailed study of the fermionic
self-energy. In [26], we proved the following theorem.

Theorem. Consider a two-dimensional Fermi system with a weak interac-
tion. Assume that the Fermi curve of the system at zero interaction contains
finitely many Van Hove points, and is non-nested (in a weak sense as above).
Then

(1) the renormalized perturbation expansion (where the Fermi surface is
fixed by a counterterm) is finite to all orders, i.e. all correlation func-
tions exist as formal power series in the coupling.

(2) to every order in this expansion, the self-energy Σ(k0,k) is C1 in k,
uniformly in k0 and k,

(3) the k0-derivative of Σ is singular at k0 = 0 at the Van Hove point
ks in the zero-temperature limit, and the quasiparticle weight Z(k) =
(1 + i∂k0Σ(0,k))−1 vanishes at ks.

Under mild assumptions on the optical matrix elements, ARPES measurements
can be shown to probe the self-energy directly. Specifically, a symmetrization
of the ARPES amplitude is proportional to the absolute value of the gradient
of the occupation number density in k-space. The vanishing of Z(k) at ks
implies that this gradient vanishes at the Van Hove point, which suppresses
the intensity of the ARPES signal, which then looks like a “disappearance” of
the Fermi surface in the vicinity of the Van Hove points. Figure 9 shows this
effect of the Z term in second order[26]; on the right hand side, experimental
data from [51] are shown. For a detailed discussion of the relation of ARPES,
cuprate band functions, and self-energies, see [52].

The different regularity properties of the self-energy as a function of k0 and k,
as stated in the above theorem, can be understood by looking at the two-loop
selfenergy

(48) Σ2(q0,q) =

∫

k,p

1

ik0 − e(k)

1

ip0 − e(p)

1

i(q0 + p0 − k0)− e(q + p− k)
,

and studying its regularity properties by the same methods used to prove reg-
ularity in [29]. The main point there is that the Fermi surface is not pointlike,
but an extended object, and this leads to additional smoothing, as follows. One
would like to avoid differentiating the denominators, because every derivative
increases the power of the denominator, hence potentially creates singularities:
the L2 norm of the propagators diverges as log β for β → ∞, and integrals
of higher derivatives diverge like powers of β. The idea used in [29] to prove
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Figure 9. Left: norm of the gradient of the fermionic occu-
pation number, color-plotted over the first Brillouin zone of the
square lattice, for the tight-binding band function (14). Mid-
dle: the similar plot, but including the singular behaviour of the
self-energy in the interacting model. (Both images taken from
[26].) Right: ARPES curve of the underdoped Bi-2212 cuprate.
(Image taken from Figure 1 in [51], and cropped to show the
same momentum region.)

regularity of the counterterm function to second order is to perform a change
of variables to remove the q-dependence of the third propagator. The vari-
ables one can use to do this are the angular variables that parametrize the
Fermi surface, which exist when the Fermi surface is not pointlike. Substitut-
ing E = e(q + p−k), all dependence on q then gets moved to the Jacobian of
the change of variables. It turns out that this Jacobian has singularities, which
are classified in [29], and it is shown there for regular, convex Fermi surfaces
that the counterterm function is C2. (It was noted there that the regularity
holds only for the tangential derivatives, not for radial ones.)

In the analysis of Fermi surfaces with Van Hove points, the Jacobian is singular
when q, p, and k are Van Hove points, so that q + p− k is also a Van Hove
point. The non-nesting condition assures boundedness of the first derivative if
q+p−k is away from the Van Hove points. If p and k are such that q+p−k
is close to a Van Hove point, then we proceed by taking the derivative of the
propagator, to get

∂

∂q

1

i(q0 + p0 − k0)− e(q + p− k)
=

∇e(q + p− k)

(i(q0 + p0 − k0)− e(q + p− k))2

and

∂

∂q0

1

i(q0 + p0 − k0)− e(q + p− k)
=

−i

(i(q0 + p0 − k0)− e(q + p− k))2
.

The numerator ∇e then provides a cancellation at the Van Hove point, and
this makes it plausible that the function Σ2 is more regular in k than in k0. In
summary, the vanishing of ∇e at the Van Hove points cancels a singularity in
the q-derivative, but not in the q0-derivative, and one can show that there is
no other cancellation in the q0-derivative.

The full proof of regularity [30, 31] and of the above Theorem [26] obviously
requires more than just this argument, since the statement is not about second
order contributions, but all orders of renormalized perturbation theory, and the
combinations of loop momenta are much more general than just q + p − k.
The proof avoids changes of variables and Jacobians in large graphs. Instead
one uses the RG multiscale decomposition, the graph classification of [28, 30],
as well as length-of-overlap estimates, which generalize the overlapping loop
estimates of [28], and in which the no-nesting hypothesis enters crucially, to
obtain ‘volume improved’ power counting bounds which are strong enough to
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accommodate for the loss in power counting entailed by one derivative with
respect to q.

This Theorem is proven for the situation where the Fermi surface is kept fixed
by a counterterm. We have not proved an inversion theorem that generalizes
the one for regular Fermi surfaces [31] to the case of Fermi surfaces with Van
Hove points.

This regularity analysis also sheds light on a question one may have regarding
the counterterm procedure. Could one pose a frequency-dependent countert-
erm to cancel this singularity? I know of no way of justifying counterterms
for the frequency derivative, in contrast to the situation with momentum-
dependent counterterms, hence no mathematically clear way of removing the
singularity in the k0-derivative. It is also not clear what this procedure would
mean conceptually, since a model with a counterterm that depends more than
linearly on k0 does not correspond to a Hamiltonian of a many-body quantum
system.

The all-order statements of [25, 26] might be proven non-perturbatively with
the same technique and more careful bounds, but only nonuniformly in β be-
cause, in general, the effective interaction increases under the RG flow, indicat-
ing the onset of symmetry-breaking. In the next section, I discuss a situation
where in leading order, the effective interaction does not grow, due to a par-
ticular cancellation, and where the renormalized expansion may be controlled
down to zero temperature.

5. Competing order parameters and a quantum critical point

The cuprate materials exhibit a number of different phases as a function of
temperature and hole density. The antiferromagnetic and superconducting
phases have been identified unambiguously, the nature of others remains to
be clarified. The multitude of phases can be understood as a consequence
of a competition of different ordering tendencies. Given the simplicity of the
Hubbard model Hamiltonian, one may wonder how this model would explain
all this, but RG analyses have shown that the phases arise in a natural way in
the flow of scale-dependent effective interactions in this model. The advantage
of the RG in this respect is that it does not require particular assumptions
about ordering (as typically put in by an ansatz in mean-field studies), but
that it allows for an unbiased analysis of the relative strength of competing
interaction terms. The initial studies [42, 45, 71] have been corroborated and
extended in many further works; for a review, see [55].

5.1. The composite-field expansion. The above-mentioned studies were
done using Fermi surface patching, i.e. a discretization of the dependence of
all vertex and correlation functions as functions on the Fermi surface. An
essential ingredient in a refined analysis of RG flows based on equation (34) is
a general representation for the effective interaction introduced in [47]:

vΩ(p1, p2, p3) = 2U +
(
vΩ
pp + vΩ

ph,cr + vΩ
ph,d

)
(p1, p2, p3)

with v̇Ω
pp = Tpp, v̇Ω

ph,cr = Tph,cr, v̇Ω
ph,d = Tph,d.

These functions correspond to the following interaction types:

• vΩ
SC = vΩ

pp to Cooper pair interactions

• vΩ
M = vΩ

ph,cr to spin interactions
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• vΩ
K = 2vΩ

ph,d − T34v
Ω
ph,cr to charge density interactions

(here T34v(p1, p2, p3) = v(p1, p2, p1 + p2 − p3) is a permutation operator

that exchanges variables 3 and 4.)

The idea in [47] is that the singularity in each of these functions develops
as a function of a particular linear combination of momenta, namely those
where the Fermi surfaces overlap maximally, so that a singularity can occur.
Consequently, these functions have the expansions

vΩ
SC(p1, p2, p3) = −

∑

m,n

fm(
p1 + p2

2
− p1) DΩ

mn(p1 + p2) fn(
p1 + p2

2
− p3)

vΩ
M(p1, p2, p3) =

∑

m,n

fm(p1 −
p1 − p3

2
) MΩ

mn(p1 − p3) fn(p2 +
p1 − p3

2
)

vΩ
K(p1, p2, p3) = −

∑

m,n

fm(p1 +
p2 − p3

2
) KΩ

mn(p2 − p3) fn(p2 −
p2 − p3

2
)

Here (fm)m∈N is an orthonormal system on momentum space. The singularity
builds up in the functions Dmn, Mmn and Kmn, which couple the fermionic
bilinears in the same way that an exchange boson couples to the corresponding
fermionic bilinears, by a Yukawa-type term. As long as the vertex function
of the boson-fermion coupling does not develop a singularity itself, it can in
principle always be represented by an expansion in an orthonormal system. We
chose an orthonormal system supported on momentum space rather than on
the Fermi surface, because expansions in ‘Fermi surface harmonics’ are tailored
to the Cooper interaction term, and do not simplify the analysis of the other
(particle-hole-type) terms.

It is instructive to write the decomposition explicitly in terms of the fermionic
bilinears, as follows. V = VB + VK + VM + VC , where VB is the bare Hubbard
interaction, and

VK(ψ, ψ) = −1
4

∫
d3`

(2π)3

∞∑

m,n=1

Km,n(`)S(0)
m (`)S(0)

n (−`),

VM(ψ, ψ) = −1
4

∫
d3`

(2π)3

∞∑

m,n=1

Mm,n(`)
3∑

j=1

S(j)
n (`)S(j)

m (−`),

VC(ψ, ψ) = +

∫
d3`

(2π)3

∞∑

m,n=1

Dm,n(`)
3∑

j=0

C̄(j)
m (`)C(j)

n (`) .

(49)

The fermionic bilinears are

S(j)
m (`) =

∫
d3q

(2π)3 fm(q) ψ
T

q σ
(j)ψq+` ,

C̄(j)
m (`) =

i

2

∫
d3q

(2π)3 fm(q) ψ
T

q σ
(j)ψ`−q ,

C(j)
m (`) =

i

2

∫
d3q

(2π)3 fm(q) ψTq σ
(j)ψ`−q ,

(50)

where ψ(p) = (ψ+(p), ψ−(p))T , similarly for ψ(p), σ(j) are the Pauli matrices
(σ(0) = 1) and fm are scale independent form factors, in particular

f1(q) = 1 ,

f2(q) = cos(qx)− cos(qy) .
(51)
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In the case m = 1 we drop the subscript from the bilinear, writing S(0) for

S
(0)
1 . This decomposition is represented graphically in Figure 10.

SC

k1 k4

k2 k3

+ 1
2 + 1

2
mm

1

1
K M

1

11

1
M+= 2U +

2∑

m=1

Figure 10. Graphical representation of the form (49) of the
scale-dependent effective fermionic interaction for the Hubbard
model. Solid lines correspond to fermion fields; the dashed and
wavy lines correspond to the interaction functions D11, D22, M11

and K11. As the graphs suggest, these correspond to the ex-
change of bosons, which can be made explicit by a Hubbard-
Stratonovich transformation in the functional integral.

We have kept the initial interaction separate in our decomposition so that the
exchange propagators are zero at the beginning of the flow.

The interpretation of this ansatz for the effective interaction is that composite
fields given by fermionic bilinears, namely density, Cooper pair, and spin fields,
are coupled by functions Dmn, Mmn and Kmn. The effective action also con-
tains the kinetic term of the low-energy fermionic degrees of freedom, which
includes the self-energy from the integration down to scale Ω. The main idea
of this decoupling is that singularities in v that develop during the RG flow
show up in the functions Dm,n, Mm,n and Km,n, which are formally similar to
boson exchange propagators, while the form factors of the fermionic bilinears
are regular functions, hence square-integrable, so that the expansion in m and
n applies. Strictly speaking, boson propagators need to have positivity prop-
erties to preserve stability, but as long as the fermionic RG is used, this is, in
fact, not necessary. Indeed, the results obtained for the functions Dmn, Mmn

and Kmn, provide a test whether the effective action can really be bosonized.
That singularities arise only as functions of the combinations p1 − p3, p2 − p3,
and p1 + p2 can be strictly proven for small coupling functions,[60, 62], but
in later stages of the flow it is an assumption. When entering the symmetry-
broken phase, where some of Dmn, Mmn and Kmn, develop singularities, the
form factors themselves may become singular and this channel decomposition
is no longer accurate, and must be refined [18]. We shall, however, use (49)
only in the symmetric phase, that is, we will stop the flow before any singulari-
ties arise; there, our approximations are justified, and our parametrization has
the advantage of allowing to switch to a description in terms of bosonic order
parameter fields by a straightforward Hubbard-Stratonovich transformation
(provided the above-mentioned positivity holds).

In general, all functions may depend both on the spatial momenta and on
the Matsubara frequencies. We have made the approximation that the form
factors are independent of the frequencies (see (51)). In Ref. [47], we verified
that this approximation, and keeping K1,1, M1,1, D1,1 and D2,2, suffices for
an accurate representation of the flow in the two-dimensional square-lattice
Hubbard model. Thus we drop all other pairs (m,n) from the sums in (49).
All these exchange propagators except K1,1 remain positive during the flow.
The static part of K1,1 is positive, but it develops a pronounced negative mini-
mum at nonzero frequency. The full density-density interaction also receives a
contribution from M1,1 because a local interaction −1

4
M(0)

∫
S(`)S(−`)d` can
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always be decomposed into a magnetic interaction −1
4
M(0)

∫
S(3)(`)S(3)(−`)d`

and a density-density interaction −1
2
M(0)

∫
S(0)(`)S(0)(−`)d`.

We have also shown that keeping the frequency-dependence of the functions
K, M and D requires also keeping the frequency-dependence of the fermionic
self-energy, and taking into account their interplay in the RG flow [46].

5.2. The case for ‘deconfined’ quantum criticality in the two-dimen-
sional Hubbard model. In many examples, quantum critical points (QCP)
are shielded by some ordered phase, in the sense that quantum critical scaling
does not continue all the way to zero scale, but it gets cut off due to some sym-
metry breaking at a very small scale. It is therefore an interesting question
whether transitions exist where no such shielding occurs. The notion of decon-
fined quantum criticality was introduced in [68]. The example chosen there is
the transition from a Néel state to a valence-bond state in a two-dimensional
spin-1

2
antiferromagnet with the Hamiltonian H = J

∑
Sx ·Sx′ , where the sum

runs over nearest-neighbour pairs and J > 0. It is argued that a fractionaliza-
tion of the order parameters occurs, so that the transition is via a quantum
critical point that has no simple description by a Ginzburg-Landau-Wilson
(GLW) model, and that a local gauge symmetry emerges at the transition.

This is made explicit by writing the spin at each point as S
(i)
x = z†xσ

(i)zx with
a complex spinor zx. The decomposition introduces a redundancy because the

S
(i)
x are invariant under the local U(1) transformation zx 7→ eiθxzx, θx ∈ R.

At the transition, the z fields can deconfine due to Skyrmion excitations of
the Néel order parameter field, the order parameter fractionalizes and a gauge
theory emerges.

In the following, I discuss the evidence for a QCP in the Hubbard model at Van
Hove filling. Within the approximations applied in our studies it appears to
be an example of a ‘deconfined’ transition, in that it remains unshielded. The
interesting point in view of the above discussion is that it comes directly from
a singular fermionic self-energy, and its dynamics is not driven by topological
excitations, but by the vanishing of the quasiparticle weight at the Van Hove
points. This also suppresses magnetic and superconducting correlations, and
hence gives a picture that differs from the one from [68] sketched above: the
magnetic and superconducting order parameter fields are the composite fields
given in (50). They can of course always be studied, but the suppression
of the order parameters at the QCP simply means that instead of getting
fractionalized, these composite fields never really develop any important size
and correlations at the transition point. (Moreover, although the composite
magnetic fields are invariant under the standard local U(1) number symmetry
transformation of the fermions, this is not a symmetry of the model because
the kinetic term of the fermion fields is not invariant.)

First evidence for the QCP in the Hubbard model was found in [43], as a
transition from d-wave superconductivity to ferromagnetism, when introduc-
ing the temperature-flow RG [44]. Because momentum-space cutoffs artificially
suppress ferromagnetism, this had not been found in earlier studies. In [43],
we used the standard level-2 RG equation (34) with a Fermi surface sectoriza-
tion (patching), the approximation by frequency-independent vertices, and we
neglected the self-energy.

In our more recent studies [38], we calculated the fully momentum- and frequency-
dependent vertex functions using (34). The results confirm the existence of a
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Figure 11. Renormalization group results indicating a quan-
tum critical point between a d-wave superconducting and a fer-
romagnetic phase in the two-dimensional Hubbard model. The
parameter on the horizontal axis is θ = −t′/t. Left: results
from the temperature-flow RG in static approximation (figure
taken from [43]). Right: results from the Ω-scheme RG with
full frequency dependence taken into account (figure taken from
[38]). The lowest curve on the right is where the frequency of
both the self-energy and the interaction are taken into account,
confirming the downturn of the scale where the interactions grow
in the flow.

QCP. We also calculated the small-frequency behaviour of the fermionic self-
energy numerically at the QCP. The result can be stated as follows.

Consider a curve of (t, t′, U)-Hubbard models parametrized by θ = − t′

t
, where

the chemical potential µ(θ) is chosen such that the Fermi curve contains a Van
Hove point, and U is fixed. Then there is a point θ0, approximately given
by 0.341, where vΩ stays small down to the smallest scales Ω reachable by
our numerical calculations. For θ close to, but smaller than θ0, the effective
interaction is dominated by the d-wave superconducting term D2,2. For θ > θ0,
the effective interaction is dominated by the ferromagnetic term M1,1 At θ0,
the fermionic self-energy has small-frequency behaviour

Σ(ω, (π, 0)) ∼ i sgn(ω)|ω|γ

with γ < 1 (γ ≈ 0.74). The momentum and frequency dependence of the
vertex functions is obtained as well, using the composite-field expansion intro-
duced above, and shows similar scaling exponents.

Although found by numerical studies, the occurrence of the QCP can be un-
derstood, at least qualitatively, by a simple analytical argument. The special
value θ0 is close to the place where two second-order contributions to the effec-
tive action cancel in second-order perturbation theory, namely the particle-hole
bubble at external momentum zero and the particle-hole bubble at external
momentum π̂ = (π, π). The significance of these two terms becomes most
explicit in the so-called two-patch approximation to the RG flow, where the
coupling function is evaluated only at those momenta where singularities occur
already in perturbation theory, namely 0 and π̂. For spin-1

2
fermions, there are

four couplings, corresponding to v evaluated at these points (see Figure 12).
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Figure 12. The couplings g1, . . . , g4 correspond to scattering
processes between the points (0, π) and (π, 0) in momentum
space. (Figure taken from [35].)

The RG equations then reduce to

ġ1 = −Ḃ(−)
π̂ (g2

1 + g2
2) + Ḃ

(+)
0 2g4(g2 − g1) + Ḃ

(+)
π̂ (g2

1 + g2
3)

ġ2 = −Ḃ(−)
π̂ 2g1g2 + Ḃ

(+)
0 2g2g4 + Ḃ

(+)
π̂ 2g2(g1 − g2)

ġ3 = −Ḃ(−)
0 2g3g4 + Ḃ

(+)
π̂ 2g3(2g1 − g2)

ġ4 = −Ḃ(−)
0 (g2

3 + g2
4) + Ḃ

(+)
0 (g2

2 − 2g2
1 + g2

4 + 2g1g2)

where

Ḃ
(±)
k = Ḃ

(±)
k (s) = ∓ ∂

∂s

∫

p

GΩs(p) GΩs((0,k)± p) ,

and we have parametrized Ωs = Ω0 e−s, so that Ω → 0 when s → ∞. The
interaction term of the Hubbard model is local in position space, so its Fourier
transform is independent of momentum vΩ0(k1, k2, k3) = U . It gives the initial
condition for the g’s.Thus, at s = 0, we have g1 = g2 = g3 = g4 = U .

The coefficient Ḃ
(−)
0 is positive, and it is proportional to s, hence gives the

leading term as s→∞. Integration over s gives

(52) B
(−)
0 ∼ s2 =

(
ln

Ωs

Ω0

)2

.

This behaviour corresponds to the (log β)2 singularity of the Cooper pair in-
teraction. The square of the logarithm arises instead of the simple logarithm
in the standard Cooper interaction because of the logarithmic divergence of
the density of states at Van Hove filling. All other coefficients are smaller,
but, again because of the Van Hove singularity, they remain of order 1 for
arbitrarily large s, thus integrating to s = ln Ωs

Ω0
, which corresponds to the

log β singularity of magnetic interactions at Van Hove filling (which is again a
consequence of the logarithmic divergence of the fermionic density of states).

Taking linear combinations of the equations for g3 and g4 gives

ġ3 − ġ4 = Ḃ
(−)
0 (g3 − g4)2 + Ḃ

(+)
π̂ 2g3(2g1 − g2)

− Ḃ
(+)
0 (g2

2 − 2g2
1 + g2

4 + 2g1g2)

ġ3 + ġ4 = −Ḃ(−)
0 (g3 + g4)2 + Ḃ

(+)
0 (g2

2 − 2g2
1 + g2

4 + 2g1g2)

+ Ḃ
(+)
π̂ 2g3(2g1 − g2)

Initially, g3−g4 = 0, and it stays zero if no terms except the one multiplied by

Ḃ
(−)
0 were present. Then, g3 → 0 and g4 → 0 as s → ∞, since Ḃ

(−)
0 > 0 and

∼ s. However, the additional terms influence the flow before the asymptotic

region, where Ḃ
(−)
0 dominates, is reached. For the Hubbard initial condition,

we have for small s

(53) ġ3 − ġ4 ≈ Ḃ
(−)
0 (g3 − g4)2 +

(
Ḃ

(+)
π̂ − Ḃ(+)

0

)
2U2
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The second term on the right hand side shifts the flow away from the line g3 =
g4. (A similar effect occurs in the equation for ġ3 + ġ4.) As a consequence, both
couplings can grow during the flow. Due to the quadratic nonlinearity on the
right hand side of the flow equation, this leads to a blowup at a finite s, which
signals an instability of the Fermi system. This has been analyzed in great
detail, and it has been shown that flows which take symmetry breaking into
account properly can be continued to zero scale and indeed lead to symmetry-
broken states [65, 55].

However, the two terms Ḃ
(+)
π̂ and Ḃ

(+)
0 depend on θ. They are equal close

to θ0, so that the additional term vanishes, and g3 and g4 remain small (see
the figure, where they are calculated both in the temperature-flow scheme of
[44] and in the Ω-scheme of [47]). The transition point θ0 for the full (not
just 2-patch) flow differs from these crossing points, but it is essentially at the

same location in both schemes. Note that for a strict momentum cutoff, Ḃ
(+)
0

vanishes, so the effect is artificially suppressed there.

Figure 13. The coefficient functions Ḃ
(+)
0 and Ḃ

(+)
π̂ appearing

in the RG equation, plotted as a function of θ = −t′/t. Dashed
lines: temperature-flow scheme, solid lines: Ω-scheme. At the
respective crossing points, the term driving the asymmetry be-
tween g3 and g4 cancels in the second-order diagram. In the
full flow, where contributions from the entire Fermi surface and
all subleading corrections are included, the transition shifts to
larger θ ≈ 0.341, and the dependence on the schemes becomes
weak (see Figure 11).

Thus, the Hubbard model indeed realizes the possibility of a cancellation in the
flow of the two-particle interaction. Consequently, the buildup of a singularity
in the frequency derivative of the self-energy remains as the leading term,
and it drives the quasiparticle weight to zero at the Van Hove points. The
anomalous exponent was calculated in [38]. The transition can be further
analyzed using the effective action obtained from the RG calculations. We
have checked the consistency of the anomalous exponents using an alternative
calculation with Schwinger-Dyson equations. Morover, it turns out that a
simple mean-field model that includes the singular fermionic self-energy can
account for the downturn of critical scales [69].
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6. Concluding Remarks

During the last 25 years, the renormalization group has been used to achieve
significant progress in understanding condensed-matter systems, in particular
many-fermion systems. Rigorous mathematical control of fermionic correlation
functions has been achieved using the RG together with convergent expansions.

The conditions under which a system exhibits Fermi liquid properties, and
under which it deviates from it, have in this way been clarified. For weakly
coupled systems, such deviations require long-range interactions or singular
Fermi surfaces.

The RG explains in a simple way how Luttinger-liquid properties arise in one
spatial dimension, and why Fermi liquids can be stable in two and more spatial
dimensions. It has also been instrumental in applications to models of layered
materials, where it explained the occurrence of d-wave superconductivity in
the repulsive Hubbard model, which is the prototypical model for the cuprate
high-temperature superconductors.

In the application part of this review, I have focused on a special, but interest-
ing feature, namely singular self-energies due to Van Hove singularities, which
drive quantum critical behaviour. While discussed specifically for Van Hove
filling here, the dynamical phenomena seen here appear naturally and lead to
an extension of the Van Hove region, as suggested already in [17], hence may
be important in a much more general setting.
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1273 (2008).

[6] T. Balaban, J.Feldman, H. Knörrer, E.Trubowitz, A Functional Integral Representation
for Many Boson Systems II: Correlation Functions, Annales Henri Poincaré 9, 1275-
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