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The normal and pairing self-energies are the microscopic quantities which reflect

and characterize the underlying interaction in superconductors. The momentum and
frequency dependence of the self-energies, therefore, provides the experimental criteria

which can single out the long sought-after pairing interaction among many proposed

ideas. This line of research to pin down the pairing interaction for the cuprate supercon-
ductors has been carried out with some success by analyzing the momentum distribution

curves of laser angle-resolved photo-emission spectroscopy (ARPES) data. Some progress
and results are presented and compared with theoretical calculations based on leading

proposals. Comments are made on the proposed scenarios from the comparisons.
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1. Introduction

Impressive progresses have been made since the discovery of the cuprate high Tc
superconductors more than thirty years ago.1 They range from materials quality,

new and refined experimental tools to novel theoretical ideas and techniques. Despite

enormous new findings along with plethora of phases, some of key questions, like

the pairing mechanism of the high Tc superconductivity, have not been settled

down yet.2 This is not due to a lack of ideas. Rather it is because we do not

have clear and concrete criteria to differentiate among proposed ideas. We wish

to suggest such criteria in terms of the quasi-particle self-energy. We present and

review some progresses made along this line from the self-energy analysis of laser

ARPES intensity data of the bilayer Bi2Sr2CaCu2O8+δ (Bi2212) samples.3

There are four constraints any viable pairing theory for the cuprates must meet.

The first and obvious constraint, the d-wave pairing having been firmly established
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for the cuprates, is if a proposed theory gives rise to a superconducting (SC) gap

of d-wave symmetry. In terms of the self-energy, this corresponds to (1) θ de-

pendence of the pairing self-energy φ(θ, ω) having d-wave angle dependence like

φ(θ, ω) ∼ cos(2θ). The angle θ refers to the direction of the inplane wavevector k

with respect to the crystalline x-axis. The others are (2) ω dependence of φ(θ, ω),

ω being the energy of conduction electrons with respect to the chemical poten-

tial. (3) θ dependence of the normal self-energy Σ(θ, ω), and (4) ω dependence of

Σ(θ, ω). To wrap up, our proposal to pin down the underlying pairing interaction

for the cuprates is to check if a proposed theory produces the θ and ω of the normal

and pairing self-energies such that they match those extracted from experiments.

We provide such experimentally determined self-energies from laser ARPES from

Bi2212 samples here.

The self-energy analysis makes fittings to the momentum distribution curve

(MDC) using the superconducting Green’s function and extract the normal and

pairing self-energies as a function of the angle θ and frequency ω at several tem-

peratures above and below Tc.
4 All the results presented here were obtained by

analyzing laser-based ultra high resolution ARPES data for slightly underdoped

Bi2212 with Tc = 89 K (UD89) and overdoped with Tc = 82 K (OD82) samples.

Both are measured in highly stable vacuum condition with ∼ 1 meV energy and ∼
0.004 Å−1 momentum resolution.

This line of thoughts is nothing new actually.5,6 The celebrated McMillan-Rowell

approach which firmly established the phonon-mediated s-wave pairing for the con-

ventional superconductors is indeed to check the ω dependence of the SC gap ∆(ω).

See Eqs. (1)− (3) below for formal relations between the gap and self-energies. The

ω dependence of ∆(ω) of lead was determined by measuring the tunneling conduc-

tance dI/dV and was inverted to calculate the Eliashberg function α2F (ω). It was

compared with the phonon density of states measured from the inelastic neutron

scattering experiments. A very good agreement between the α2F (ω) obtained by

the Eliashberg inversion and the phonon density of states measured by the neutron

scattering firmly established the phonon mediated pairing of superconductivity.5

A main difficulty of applying the McMillan-Roewll analysis to the cuprates is the

d-waveness of the SC pairing.6 The normal self-energy has the full lattice symmetry

but the pairing self-energy has the d-wave symmetry. One must resolve the momen-

tum as well as the frequency dependence in the analysis. The ARPES can provide

such experimental data. The details of the analysis for d-wave pairing was published

before.3,4

2. Extracted self-energies

One of main results of the self-energy analysis is presented in Fig. 1. In Fig. 1(A),

we show the real (Σ1) and imaginary (Σ2) parts of the extracted normal self-energy

as a function of the frequency ω along the cut of θ = 20◦ from Bi2212 OD82 sample

at five temperatures above and below Tc. The normal self-energy at T = 90 K
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(above Tc) is in accord with the established results. The imaginary part exhibits

the anticipated marginal Fermi liquid behavior; being linear in ω for T < |ω| < ωc.
7

The real part is also in agreement with previous results. It approximately satisfies

the Kramers-Kronig relation from the imaginary part and makes the zero crossing

around ≈ −0.13 eV. In SC state, Σ(θ, ω) exhibits two energy scales around ω ≈ −50

meV and −10 meV. One around −50 meV was expected but the other was not. A

peak energy in the self-energy is given by ωp ≈ ωb + ∆, ωb is the peak energy

of the mediating boson. For electronically mediated pairing the boson fluctuation

peak is around 2∆ in the SC state. Therefore a peak around ωp ≈ 3∆ was expected

and indeed appeared around 50 meV. This energy accidentally overlaps with the

broad peak energy position as observed in the dispersion kink by ARPES in the

normal as well as SC states.8 The low energy peak around 10 meV < ∆, on the

other hand, was unexpected. It was understood as being induced by the forward

scattering impurities located in between CuO2 planes.9 The low energy dispersion

kinks reported previously from ARPES experiments were explained in terms of this

forward scattering impurity peak.10

In Fig. 1(B) the real and imaginary parts of the pairing self-energy are presented

for three cuts of θ = 20, 25, 30◦ from OD89 sample deep in the SC state at T =

16 K. This being the first determination of the pairing self-energy, perhaps some

arguments for its reliability may be necessary. What are plotted is the scaled pairing

self-energy φ(θ, ω)/ cos(2θ). For a simple d-wave BCS case, they will collapse onto

a single curve. The fact that the three curves collapse reasonably well onto a single

curve means that the extracted pairing self-energy is in accord with the d-wave

pairing. The pairing self-energy also exhibits two energy scales as the normal self-

energy from OD82; one around 3∆ ≈ 60 meV and another impurity peak ≈ 10

meV. ∆ from UD89 is slightly larger than OD82 because of higher Tc. The off plane

impurity features may be analyzed to obtain the impurity parameters. The fact that

the impurity scattering parameters from the normal and pairing self-energies agree

well with each other gives another support that the pairing self-energy is extracted

properly. See Table 1 below. One technical comment is that it is important to

take the particle-hole asymmetricity into consideration to successfully extract the

impurity feature in the self-energies, that is, include the dispersion shift X function

in the SC Green’s function. See equation (2) below.

3. Forward scattering impurity and Green’s function

The ARPES intensity is given by the spectral function which is the imaginary part

of the retarded Green’s function. The Green’s function is given by

G(k, ω) =
W (k, ω) + Y (k, ω)

W 2 − Y 2 − φ2
, (1)

where

W (k, ω) = ω − Σ̃(k, ω) = ωZ(k, ω), Y (k, ω) = ξ(k) +X(k, ω), (2)
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Fig. 1. The extracted self-energies from Bi2212 OD82 and UD89 samples. (A) The normal self-

energy along θ = 20◦ cut at five different temperatures above and below Tc from OD82 sample.

The SC induced features emerge at two energy positions around ≈ −50 and −10 meV. (B) The
scaled pairing self-energy φ(θ, ω)/ cos(2θ) as a function of ω along θ = 20, 25, and 30 degree

cuts from UD89 sample. The scaling exhibits the consistency with the d-wave pairing. There also

emerge two SC induced energy scales.

ξ(k) is the quasi-particle bare dispersion, X(k, ω) is the dispersion shift, and

Σ(k, ω) = Σ̃(k, ω) +X(k, ω) (3)

is the normal self-energy.11,4 The gap function ∆ is given by

∆(k, ω) = φ(k, ω)/Z(k, ω). (4)

The impurity scattering may be described as follows. The self-energy consists of

two terms due to the coupling to a boson spectrum and to impurities.

Σ(k, ω) = Σeff (k, ω) + Σimp(k, ω), (5)

φ(k, ω) = φeff (k, ω) + φimp(k, ω). (6)

The subscript eff represents the self-energy induced by boson spectrum. The im-

purity term can be written as

Σimp(k, ω) = nimp
∑
k′

|Vimp(k,k′)|2
W (k, ω) + Y (k, ω)

W 2(k, ω)− Y 2(k, ω)− φ2(k, ω)
, (7)

where the nimp and Vimp are the impurity concentration and impurity potential,

respectively. φimp may also be written similarly.

φimp(k, ω) = −nimp
∑
k′

|Vimp(k,k′)|2
φ(k, ω)

W 2(k, ω)− Y 2(k, ω)− φ2(k, ω)
, (8)

A reasonable model for impurity potential was suggested before,9

Vimp(k,k
′) =

2πκV0
[(k− k′)2 + κ2]3/2

, (9)



December 6, 2017 1:31 WSPC/INSTRUCTION FILE ws-ijmpb˙Choi˙v3

How to pin down the pairing interaction for high Tc superconductivity in cuprates 5

where κ is the range of the impurity potential that controls the angle dependence

of the impurity self-energy. The normal and pairing self-energies including this im-

purity potential scattering may be written as

Σ(k, ω) = Σimp(k, ω) + iΓ,

φ(k, ω) = φimp(k, ω) + φ0[cos(kxa)− cos(kya)]/2, (10)

where the frequency dependence of Γ and φ0 was neglected because the relevant

frequency range is limited for impurity scattering. The impurity scattering param-

eters were determined by matching the extracted self-energies. Eq. (10) was solved

self-consistently together with Eqs. (7) and (8). The determined parameters are

presented in Table 1. The low energy structure can be eliminated by model impu-

rity self-energy as shown in Fig. 2. The determined parameters are quite similar for

normal and pairing impurity self-energies as alluded above.

Table 1. Parameters of the impurity scattering po-
tential from fitting the imaginary part of the extracted

normal and pairing self-energies.

Parameter Σ2 φ2

25deg 20deg 25deg 20deg

κ(1/a) 0.3 0.3 0.3 0.3
nimpV

2
0 (t2aκ3) 0.03 0.03 0.035 0.03

Γ0 (meV) 3.5 3.5 5 3
φ0 (meV) 18 18 20 18

4. Intrinsic pairing and normal self-energies

The impurity feature may serve as a flag which signals a successful extraction of

self-energy. This feature, however, being from the extrinsic impurity scatterings,

must be eliminated to give the intrinsic self-energy. This procedure was explained

in the previous section. The obtained intrinsic self-energies and the gap function

from Bi2212 UD89 are shown in Fig. 3. The experimental error bars in the ARPES

intensity data do not allow us to go beyond ∼ −0.15 eV to reliably extract the

pairing self-energy. They exhibit a single energy scale around ωp ≈ 3∆ ≈ 60 meV.

∆ ≈ 20 meV agrees with the ∆ from the off-plane impurity scattering parameters

as listed in Table 1.

In some cases it is easier to compare the Eliashberg functions rather than the

self-energies. The self-energy can be obtained without a specific theory. The only

relation one needs is that the ARPES intensity is given by the spectral function.

But, to obtain the Eliashberg function from the extracted self-energy one needs a

theory relating them. It is the Eliashberg equation which relates the normal self-

energy with the normal Eliashberg function α2Fn(θ, ω), and the pairing self-energy

with the pairing Eliashberg function α2Fp(θ, ω). The calculated Eliashberg functions
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Fig. 2. The imaginary part of normal and pairing self-energies along θ = 20 and 25 degree cuts.

Black lines are extracted self-energies from UD89 sample data. Red lines are calculated self-energy
induced by forward scattering impurities. Blue lines are intrinsic self-energy after subtracting the

impurity self-energy from the extracted one. The fitted impurity scattering parameters are list in

the Table 1.

from the intrinsic self-energies were presented before.3 But there are some issues

about validity of the Eliashberg equation for the cuprtes. So it will be best if one

can complete the check using the self-energies without involving the Eliashberg

functions.

5. Comparison of leading proposals against experimental

self-energies

We now try to check some proposed ideas against above extracted results. Let us

consider here three leading ideas among many proposals.2,12 (a) Antiferromagnetic

(AF) spin fluctuation theory,13 (2) resonating valence bond (RVB) theory,14 and

(3) loop current fluctuation theory.15 What must be done is to calculate the normal

and pairing self-energies as a function of θ and ω based on each proposal both above

and below Tc and compare them with the extracted results in Fig. 3.
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Fig. 3. The intrinsic normal and scaled pairing self-energies and gap function along θ = 20 deg

from UD89 sample after the impurity subtraction shown in Fig. 2. Only single SC induced energy

scale shows up around ≈ 3∆.

5.1. AF spin fluctuation theory

The AF spin fluctuation theory was checked previously along this line. The angle

dependence of the extracted α2Fn(θ, ω) was compared with the phenomenological

AF spin spectrum. The normal state α2Fn(θ, ω) obtained by inverting normal self-

energy from UD89 sample exhibits almost momentum isotropic behavior except for

the angle dependent cutoff energy.16 This is at odds with the AF spin spectrum. The

AF spin fluctuations must have strong enough momentum anisotropy to induce high

Tc d-wave pairing. Because the spin fluctuation theory has a single scala vertex to

couple to electrons, the similar momentum anisotropy must appear in both normal

and pairing channels for a generic AF spectrum. The difference comes from the

projection of the momentum structure of the AF spin fluctuations onto the s-wave

channel for α2Fn(θ, ω) and onto the d-wave channel for α2Fp(θ, ω).16

This check was also done in SC state in terms of the self-energies. The experi-

mental spin spectra reported by inelastic neutron scattering from optimally doped

La2−xSrxCuO4 samples17 were adopted. The full momentum and frequency depen-

dent spectrum was used in the Eliashberg equation with the realistic tight-binding

electron dispersion to calculate the normal and pairing self-energies. The calculated

θ and ω dependence of the self-energies, as might be expected from the normal state

results, was again at odds with the extracted self-energies.18
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Fig. 4. A comparison of the intrinsic self-energies with the cluster-DMFT calculations of the
two-dimensional Hubbard model.19[reproduced under permission] The case of U = 5.0t is shown

here. The thick green curves are the extracted intrinsic self-energies, and different lines of DMFT

calculations represent different methods to obtain the self-energies. The left pannel compares the
imaginary part pairing self-energy and the right panel the normal self-energy. Notice the different

peak weights around ≈ 0.2t ≈ 60 meV.

Also, the cluster dynamical mean-field theory (DMFT) calculations were per-

formed to solve the two-dimensional Hubbard model to obtain the normal and pair-

ing self-energies.19 This should be free from a criticism of the Eliashberg equation

to describe the cuprates. For appropriate range of U/t, the results may be relevant

for AF fluctuation theory, and for a large value, should be relevant for RVB the-

ory description. But, U values larger than the bandwidth are not computationally

accessible at present, and the number of sites in the cluster is not enough to re-

solve momentum dependence of the self-energies. Yet, a conspicuous feature of the

DMFT calculations is a strong peak around ω ≈ 0.2t ≈ 60 meV. The extracted

self-energy only exhibits a smaller jump at the same energy. Also DMFT results

for the pairing self-energy shows a suppression around ≈ 0.5t while that does not

appear in the extracted one. Compare the imaginary parts of the self-energy in

Fig. 4. The frequency dependence of the normal and pairing self-energies from the

Hubbard model DMFT calculations do not agree with the extracted counter-parts.

This discrepancy gets enhanced as U is increased.

5.2. RVB theory

How does the RVB theory compare against the experimental self-energy? As men-

tioned above, the DMFT calculation can not yet access the parameter regime

thought to be relevant to RVB physics. It is amusing that despite so enormous
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research in the RVB camp, the frequency dependent self-energies from RVB theory

are not available yet to be checked against the extracted self-energies from experi-

ments.

An extension of the ARPES data in terms of the frequency range and resolution

will help settle down the question about the pairing glue.20,21 The pairing self-energy

can be written using the Kramers-Kronig relation,

φ1(θ, ω = 0) =
2

π

∫ ∞
0

dω′
φ2(θ, ω′)

ω′
+ φNR. (11)

Here, φNR is frequency independent (non-retarded) part of pairing self-energy. This

corresponds to the instantaneous pairing which does not involve the pairing glue.21

A small value of the ratio φNR/φ1(θ, ω = 0) compared with 1 means that the pairing

glue is a very much valid concept, while the ratio ≈ 1 implies there is no need for

pairing glue. Currently φ1(θ, ω = 0) can be determined accurately but the integral

of φ2(θ, ω)/ω over ω has some uncertainty because φ2(θ, ω) can only be extracted

upto ω ≈ 0.15 eV. With improvement of the frequency range by about a factor of

2 for the ARPES data, which is expected to go beyond the cutoff energy, we can

determine the ratio with more accuracy. This will shed light on the question about

validity of pairing glue for cuprates.

5.3. Loop current theory

Now comes Varma’s loop current theory.15 Here again, the θ and ω dependent self-

energies from loop current fluctuation theory are not available yet to be checked.

This is less surprising because the loop current description needs three band Hub-

bard model which is computationally much more expensive. Nevertheless, one can

try comparison between Eliashberg functions.

Recall the dilemma of the AF spin fluctuation theory exposed above: the normal

Eliashberg function α2Fn(θ, ω) must be momentum anisotropic in AF theory to

be consistent with the high Tc, in contradiction to the experimentally determined

α2Fn(θ, ω). Or, put differently, “the central paradox”: The same fluctuations which

is strong enough in the pairing channel must lead to a nearly angle-independent

scattering in the normal channel.3 How can this be brought about? The essence of

Varma idea is that the loop current fluctuations, interestingly, have the vector vertex

to couple to the electrons. This yields two distinct couplings 1 and cos(2θ) cos(2θ′)

along the normal and pairing channels, respectively. The consequence is that

α2Fn(θ, ω) = c α2Fp(θ, ω)/ cos(2θ), (12)

where c is a constant of order 1. With this statement our results over the available

frequency range seem to be consistent.3 It will of course be desirable if we can make

the comparison over wider frequency range which covers the angle dependent cutoff

energy.
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6. Summary and Outlooks

An important message of the this work is that the intrinsic normal and pairing

self-energies can indeed be obtained from experiments. Their angle and frequency

dependence provides the most stringent check for the underlying pairing interaction

for the cuprate high Tc superonductors. We have presented and reviewed some of

the self-energies extracted from the ultra high resolution laser ARPES intensity

data from Bi2212 samples. One of remaining issues in this direction is to extend

the reliable energy range in measured ARPES data. The next generation ARPES

setup like the angle resolved time-of-flight (ARToF) detector combined with 11 eV

laser seems promising in this direction.
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