
  MIT Press and Leonardo are collaborating with JSTOR to digitize, preserve and extend access to Leonardo.

http://www.jstor.org

Leonardo

Interlace Patterns in Islamic and Moorish Art 
Author(s): Branko Grünbaum and G. C. Shephard 
Source:   Leonardo, Vol. 25, No. 3/4, Visual Mathematics: Special Double Issue (1992), pp. 331-339
Published by:  MIT Press
Stable URL:  http://www.jstor.org/stable/1575859
Accessed: 24-01-2016 15:35 UTC

 REFERENCES
Linked references are available on JSTOR for this article: 

 http://www.jstor.org/stable/1575859?seq=1&cid=pdf-reference#references_tab_contents

You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 204.235.148.92 on Sun, 24 Jan 2016 15:35:28 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/publisher/mitpress
http://www.jstor.org/stable/1575859
http://www.jstor.org/stable/1575859?seq=1&cid=pdf-reference#references_tab_contents
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


TESSELLATIONS 

Interlace Patterns in 

Islamic and Moorish Art 

Branko Griinbaum and 
G. C. Shephard 

I nterlace patterns occur frequently in the or- 
naments of various cultures, especially in Islamic and Moor- 
ish art. By interlace pattern we mean a periodic pattern that 
appears to consist of interwoven strands (see Figs 1 and 2). 
(The exact meaning of the term 'periodic pattern' will be 
explained later.) The largest published collection of inter- 
lace patterns is that ofJ. Bourgoin [1]; more precisely, the 
majority of Bourgoin's diagrams can be interpreted as rep- 
resenting such patterns, and it appears that they were, in 
fact, created with interlace patterns as originals. Other ex- 
amples can be found in works by d'Avennes, El Said and 
Parman, Wade, and Humbert [2-5]. A number of authors 
have relied on the Bourgoin drawings in their research; for 
example, they have been used by Makovicky and Makovicky 
in their analysis of the frequencies with which various classes 
of symmetry groups are represented in Islamic patterns [6]. 

This article has three main goals. First, we will observe 
that most of the interlace patterns shown by Bourgoin 
consist either of identical (congruent) strands or of two 
shapes of strands. This is unexpected because in many cases 
the strand patterns are very complicated-some of them are 
so intricately interwoven that a repeat is unlikely to have 
been visible in any actual ornament. 

The complications of an interlace pattern can be meas- 
ured in several ways-for example, by the number of differ- 
ent shapes of strands or by the number of crossings in a 
repeat. Our second aim is to relate these measures to the 
symmetry properties of the pattern. The results that we 
obtain lead to our third goal: a plausible explanation of 
the frequent appearance of interlace patterns consisting 

of strands of a single shape or 
of just two different shapes in 
Islamic art. 

BACKGROUND 
EXPLANATIONS 

ABSTRACT 

Repetitive interlace patterns 
are one of the hallmarks of Islamic 
and Moorish art. Through the study 
of various collections of such 
patterns, it is easy to verify that, 
despite the considerable complex- .. . . . ... 

Two of Bourgoin's diagrams ity of the designs, most of the 

appear in Figs la and 2a. It can interlaces are formed by strands of 
a small number of shapes-often be observed in each of these 

bego servd 
in 

eacr of tnese just a single shape stretching 
diagrams that pairs of lines ap- over many repeats of the design. 
pear to cross at various points, This observation is described and 
but in no case do three or more documented by the authors, who 
lines pass through the same present a simple explanation for 

this phenomenon. 
point. In the following discus- 
sion we shall restrict our atten- 
tion to those drawings for 
which this condition holds-as it does in nearly 85% of 
Bourgoin's diagrams. By interpreting the lines as strands of 
small but positive width, we can obtain an interlace pattern 
by assigning an ordering of the strands at each crossing 
point-in other words by specifying which strand is upper- 
most or 'passes over' the other strand. (In the type of inter- 
lace pattern known as a 'fabric', multiple crossings are 
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Fig. 1. (a, left) An often-used Islamic ornamental pattern, taken from Bourgoin [18]. It is the design from which the two interlace pat- 
terns shown in (b, center) and (c, right) can be obtained. The strands in these interlace patterns are unbounded, and all are congruent. 
The two interlace patterns differ only in the way the strands cross; at corresponding crossings, the strand that is on top in one pattern is 
on bottom in the other. In each of the two interlace patterns, all strands play equivalent roles under symmetries of the interlace pattern. 
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Fig. 2. (a, left) Another frequent Islamic ornamental pattern, from Bou 
(b, right) One of the two interlace patterns that can be obtained from tl 
Here the strands are bounded (that is, they are closed loops); all strand 
under symmetries of the interlace pattern. 

sometimes admitted [7], but we shall not consider this 
possibility here.) 

In the overwhelming majority of interlace patterns occur- 
ring in actual ornaments, the strands weave alternately 
under and over each other [8]. Therefore we shall also 
restrict our attention to interlace patterns with this property. 
It follows that the specification for which strand is upper- 
most at just one crossing point determines the ordering of 
the two strands at all others. Thus a diagram such as Fig. la 
represents two interlace patterns according to the choice at 
one crossing point, as shown in Figs lb and Ic. A simple 
argument shows that, for the kinds of patterns under con- 
sideration, once the ordering at one crossing point has been 
chosen, the ordering at every other crossing point can be 
assigned in a consistent manner, that is, so that every strand 
weaves alternately over and under each of the strands it 
meets. One consequence is that Bourgoin's diagrams, 
though not directly showing interlace patterns, determine 
them uniquely, apart from the possibility of interchanging 
all the under- and over-crossings. Any such diagram will be 
called a design for the interlace pattern. Note that all the 
properties of an interlace pattern can be deduced from its 

design; from now on we shall be con- 
cerned almost exclusively with investi- 

y gating the designs rather than with the 

> > interlace patterns themselves. Since the 
strands in interlace patterns do not have 

, ends, they must be either unbounded 
(as in Fig. 1) or closed loops (as in Fig. 
2), or a mixture of both. 

Now imagine the design for an inter- 
lace pattern as being unbounded, that 
is, extending arbitrarily far in every di- 

00 /^J ̀  ^/C^^ rection. By a symmetry of a design we 
\ mean any rigid motion that maps the 

design onto itself. Every rigid motion, 
irgoin [19]. other than the identity, is of one of four 
he design in (a). kinds: a translation, rotation, reflection 
Ls are equivalent or glide-reflection. Each of the patterns, 

and therefore each of the designs that we 
are considering, is periodic. This means 

that the design possesses at least two independent (nonpar- 
allel) translations as symmetries. It also means that a part of 
the design in the shape of a parallelogram is repeated over 
and over again, these parallelogram-shaped patches fitting 
together edge to edge so as to cover the whole plane. For 
the designs shown in Fig. 3, the parallelograms are indicated 
by heavy lines. If such a parallelogram is chosen to be as 
small as possible, it is referred to as a translational repeating 
unit for the design under consideration [9]. 

The set of all symmetries of a periodic design, with the 
usual method of composition, forms what is known as a crys- 
tallographic or wallpaper group; these are of 17 kinds [ 10,11 ]. 
It is easily verified that many of the designs of interlace 
patterns illustrated in Bourgoin's book have wallpaper 
groups of one of two types, usually designated by their 
crystallographic symbols p4m and p6m. In Fig. 3a,b we illus- 
trate these two kinds of symmetry groups. It is clearly impos- 
sible to indicate all the symmetries in these figures, but we 
show all the lines of reflection (mirrors) that, as can be seen 
in Fig. 3, cut the plane into congruent triangles. The repre- 
sentation is adequate since every symmetry in either group 
can be expressed as a product (composition) of a finite 

Fig. 3. Two designs of interlace patterns, redrawn after Bourgoin [20]. In each we show by dashed lines mirrors for reflections in the sym- 
metry group of the design. The symmetry group of the design in (a, left) is p4m and of that in (b, right) is p6m. A translational repeating 
unit (parallelogram) for each symmetry group is indicated in heavy lines. 

, -.. - -. - -- - - - - - - 

-.... .. -.-gJ-._ 
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Fig. 4. Designs of interlace patterns, redrawn after Bourgoin [21]. The heavily drawn lines emphasize various strands. The thickened 
parts show a fundamental region for each of the strands, with respect to the induced group. In the case of unbounded strands, the 
portion between the heavy dots is a transitional repeating unit. 

number of reflections. For this reason, the groups p4m and 
p6m are said to be generated by reflections. Moreover, each such 
triangle is a fundamental region for the group, which simply 
means that, once the part of the design in one triangle is 
known, then the whole design can be constructed by simply 
copying this into each of the other triangles in an appropri- 
ate manner, as in a kaleidoscope. This is clearly shown in 
both parts of Fig. 3, where it will also be seen that a transla- 
tional repeating unit can be built up from the triangles, 
eight in the case of p4m and 12 in the case of p6m. 

It is possible to construct fundamental regions for each 
of the other 15 kinds of crystallographic groups (although 
not all of them can be chosen to be triangles), but the details 
are more complicated, and as the groups p4m and p6m are 
by far the most common (about 75% of Bourgoin's designs 
have these symmetry groups) we shall restrict attention to 
them here. The reader is invited to investigate the other 
cases by suitable modifications of the steps explained below. 

We shall also be concerned with the symmetries of a 
design that map a strand S (or, more precisely, the repre- 
sentation of S in the design) onto itself. These form what is 
known as the induced group of the strand S. If a strand is 
bounded, then its induced group must either be a cyclicgroup 
cn of order n, or a dihedral group dn of order 2 n, where n = 1, 
2, 3, 4 or 6. If a strand is unbounded, then its induced group 
must be one of seven kinds (known as strip or frieze groups) 
[12]. The distinction between the induced group of a strand 
and its symmetry group is illustrated in Fig. 4b. The 'rosette' 
by itself has symmetry group d8, but its induced group is d2. 
Of the two heavily drawn congruent octagonal strands in the 
upper part of Fig. 4b, one has induced group d2, and the 
other c2. Concerning strands, in each case there are direct 
analogues of the terms 'translational repeating unit' and 
'fundamental region'. A fundamental region of the strand is 
the smallest part of a strand that can be used to build up the 
whole strand by application of operations in the induced 
group. In Fig. 4 the fundamental regions of a number of 
strands are indicated by thickened lines. A translational 
repeating unit of a strand is the smallest part of a strand that 
can be used to build up the whole strand using only transla- 

tions in the induced group. In Fig. 4, limits of translational 
repeating units are indicated by large dots. For a bounded 
strand, the translational repeating unit is the strand itself. 

Systematically tracing the strands in the design of an 
interlace pattern and examining their shapes is often not 
easy. In many cases Bourgoin's figures do not show a suffi- 
ciently large 'patch' of the design for a complete bounded 
strand, or a translational repeating unit of an unbounded 
strand, to be shown. It is of course possible to make copies 
of each of Bourgoin's diagrams and carefully paste several 
of them together to obtain a sufficiently large patch of the 
design. If this is done, then we can see the complicated 
shapes in which a strand can occur (see Fig. 5), and also the 
large number of crossings involved-as many as 138 for the 
looped strands (Fig. 5a) and 120 for each translational 
repeating unit of an unbounded strand (Fig. 5b). These 
numbers also give a measure of the intricacy of the patterns. 

In addition to the symmetry groups of the designs, an- 
other method of classification is by the number of shapes in 
which the strands occur, as well as the induced group of each 
shape. We shall say that two strands are of the same shape if 
there exists a symmetry of the design which maps one onto 
the other. If the strands are of n different shapes then we 
call it an n -strand pattern. (In cases such as the octagonal 
strands in Fig. 4b, or Bourgoin's Figs 134 and 135, two 
strands may be congruent, but if there is no symmetry of the 
design that maps one onto the other, then we consider them 
as being of different shapes.) It is a surprise to observe that, 
in spite of the complicated structure of many of the designs, 
in most of them the number of different shapes of strands 
is very small. Out of the 169 diagrams shown in Bourgoin 
that can be interpreted as designs of interlace patterns, 44 
are 1-strand patterns, 61 are 2-strand patterns, and only 40 
are n -strand patterns with n > 3. 

Below we shall explain how (in the two cases under 
consideration, namely where the symmetry group of the 
design is p4mor p6m ) it is possible to determine the number 
of different shapes of strands, their groups and the number 
of crossings by looking at the triangular fundamental region 
for the symmetry group of the design. Similar considera- 
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Fig. 5. Designs of 
1-strand interlace 
patterns, redrawn 
after Bourgoin 
[22]; one strand in 
each is empha- 
sized by heavy 
line. The looped 
strand in (a, left) 
crosses other 
strands 138 times, 
and each transla- 
tional repeating 
unit in (b, right) 
(the portion of the 
strand between the 
heavy dots) 
crosses other 
strands 120 times. 
The large number 
of crossings indi- 
cates the complex- 
ity of these 
interlace patterns. 

tions apply to the other 15 symmetry groups, but we shall 
not discuss these here. The reader is again invited to inves- 

tigate them independently. 

THE GROUPS p4m AND p6m 
AND THEIR CAYLEY DIAGRAMS 

Before we explain the procedures involved, it is necessary to 
recall some of the properties of the groups p4m and p6m. In 

Fig. 6a we show the arrangement of mirrors in the 

group p4m (compare to Fig. 3a); a fundamental 

region is shaded [13]. The mirrors forming the 
sides of this fundamental region are labelled a, b, 
c, and we shall use these same letters, with no 

danger of confusion, for reflections in the corre- 

sponding mirrors. As each reflection is of period 
2 we have 

is equal to the identity! We shall now show that manipula- 
tions of this kind can be performed very easily using a Cayley 
diagram for the group. For the group p4m, part of the Cayley 
diagram is shown in Fig. 6b. It appears as a tiling of the plane 
by squares and regular octagons; however, it is the edges that 

chiefly interest us. These have been labelled a, b and c, and 

a2= 2 = c2 = e 

where e is the group identity. The product ab 
rotation about the vertex C through angle 7 
the product bc is a rotation about A through ar 

7r/4, and the product ca is a rotation abou 

through angle i7/2. We deduce that: 

(ab)4= (bc)4 = (ac)2= e. 

It is well known that (1) and (2) form a c4 

plete set of relations for the group p4m in 
sense that every algebraic relation between 
elements a, b and c can be deduced from tt 
six. Although this is theoretically true, it is 

always easy to perform the necessary algeb 
manipulations, as we can show by an example. 
wonder how long it would take the readei 

deduce, using relations (1) and (2) only, that 

(c a b a b c b c b a b a)4 

(1) 
a 

Pis a Fig. 6. Diagrams illustrating [in 
x/4, (a) and (c)] the concepts of fun- 

igle damental region (shaded) and 

t B translational repeating unit 
(heavily drawn parallelogram), 
and [in (b) and (d)] the concept 
of Cayley diagram; parts (a) 

(2) and (b) concern the group p4m, 
parts (c) and (d) the group p6m. 

C 

(3) 
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it will be observed that one edge of each type is incident with 
each vertex. Moreover, if we go round the sides of one of 
the squares we get acac = (ac) 2, which, by (2), is the identity 
e. As we go round each of the two kinds of octagons we get, 
in a similar manner, abababab = (ab ) and bcbcbcbc= (bc)4, 
both of which are equal to the identity. Thus the algebraic 
identities (2) are represented in the Cayley diagram by 
circuits (closed paths). In fact, every circuit in the Cayley 
diagram represents a product of reflections a, b, c, which is 
equal to the identity, that is, it can be reduced to the identity 
using relations (1) and (2). 

Now consider the vertices in the Cayley diagram. If we 
choose one vertex to represent the identity e, then each 
vertex represents a distinct element of the group. Various 
paths leading from the vertex e to a given vertex x, say, 
correspond to different products of reflections that are 
equal to the element x. Thus the Cayley diagram represents 
the group in a remarkably simple and convenient way, and 
we shall make extensive use of this representation in the 
following discussion. 

In Figs 6c and 6d we show, in a similar manner, the 
arrangement of mirrors and the Cayley diagram for the 
group p6m. Here the relations are 

a2 = b2 = c2 = (ab)6 = (bc)3 = (ac)2 = e, (4) 

and the Cayley diagram is a tiling using squares, regular 

a 

hexagons and regular 12-gons. Exact analogues of the equa- 
tions stated above hold here also, and we shall make use of 
these later. 

THE USES OF SYMMETRIES 

The procedure for determining the types of strands, and 
other data, from the designs will be illustrated by means of 
four examples. These will clarify the meaning of the various 
assertions, for which formal proofs would be inappropriate 
in this framework. We chose them to show various combina- 
tions of symmetry groups and induced groups. 

Example 1. 
Consider the design of Fig. 7a with group p4m. The funda- 
mental region of this design is shown in Fig. 7b. There is a 
path P Q R S... that we may think of as the track of a billiard 
ball on a triangular table with cushions a, b and c, as shown. 
Starting from P on cushion c, the ball goes to Q where it 
'bounces' on cushion a, then via R to S where it bounces on 
cushion b. The ball then bounces on a at T, passes through 
R, bounces at Uon b, at Von c, and then arrives at W. Here 
it bounces back on b and retraces the track going via V U R 
T S R Qback to P. We notice that every part of the design in 
the fundamental region has been covered by this one track, 

b 

T 

a 

Q 

C d 
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Fig. 7. Illustration of the analysis of an inter- 
lace pattern, as discussed in Example 1. 
(a) A design of the interlace pattern, 
redrawn from Bourgoin [23]. (b) A funda- 
mental region for the design in (a), with a 
track for the design. (c) The element of the 
symmetry group that corresponds to the word 
representing the track in (b) is the portion be- 
tween adjacent solid dots on the heavily drawn 
loop in the Cayley diagram of the group. The 
loop consists of four repetitions of that element 
(d) A strand in the design that corresponds to 
the track in (b) and the loop in (c) is heavily 
drawn; a translational repeating unit of the de- 
sign is indicated by the dotted square. 
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Fig. 8. Illustration of the 
analysis of another 1-strand 
interlace pattern, as dis- 
cussed in Example 2. The 
four parts correspond to the 
parts of Fig. 7. (a) A design, 
redrawn from Bourgoin [24]. 
(b) A fundamental region, 
and a track for the design. 
(c) The element correspond- 
ing to the track in (b), in the 
Cayley diagram of the sym- 
metry group. (d) A strand in 
the design, and a transla- 
tional repeating unit. 

d /A> 

C 

and so we deduce that this is a 1-strand pattern. More 

generally, we arrive at Proposition 1. 

Proposition 1. 
If the number of tracks in a fundamental region of a design 
D is n, then D represents an n -strand pattern. 

Examples with n > 1 will be given later (Examples 3 and 
4). (Of course, one may complain that a billiard ball does 
not behave in such a bizarre fashion, with crooked paths 
across the 'billiard table', and with bounces occurring with 
no regard to the laws of dynamics! One should regard this 
wording as merely a convenient fiction, remembering the 
Mikado in the Gilbert and Sullivan musical of that name, 
who set up games of billiards "on a cloth untrue with a 
twisted cue, and elliptical billiard balls" [14].) 

The track described above can be represented by 

PQRSTR UVWVURTSR Q, (5) 

repeated indefinitely each time the billiard ball goes round 
it or bounces on the cushions like this: 

cababcbcbaba. (6) 

Clearly the 'word' (6) represents an element of the group 
p4m, and properties of the strand can be determined from 
this. To do so, we represent this element on a Cayley diagram 
of the group (see Fig. 7c). We start at one of the marked 

vertices, and then go along the edges specified in (6), which 
will bring us to the next marked vertex. Thus the path in the 
Cayley diagram between two marked vertices corresponds 
to the word (6). We repeat this operation and find that after 
three repetitions we arrive back at the vertex from which we 
started. The complete path thus obtained is called the 
extended path corresponding to the word. We deduce that 
element (6) is of finite period (four in this case); in the 
general case we shall denote the period of the word corre- 
sponding to a strand S by p(S). This illustrates our next 
proposition. 

Proposition 2. 
If the group element corresponding to a strand is of finite 
period, then the corresponding strand is finite, that is, a 
loop. We can say more. 

Proposition 3. 
The strand has the same induced symmetry group as the 
extended path in the Cayley diagram corresponding to the 
associated word. 

In our example, Fig. 7c shows that the looped strand has, 
as induced group, the dihedral group d4 of order 8, as can 
be verified by Fig. 7d. 

Using (5) we can discover the number of strands that the 
given strand S crosses. We count (i) bounces on the sides of 
the fundamental region except where the track turns back 
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Fig. 9. Illustration of the analysis of a 
2-strand interlace pattern, as dis- 

/ 

,5 

cussed in Example 3. The four parts < 
)^V><^^ correspond to the parts of Fig. 7. ' 

?t (a, left) A design, redrawn from 
',^ yr" ^^ \^^s'^^^~:^v^^$'^ Bourgoin [25]. (b, right) A fundamen- 

tal region, and a track of the design. 
A (c, center right) The element corre- 

<}^/\^A^A^ 'sponding to the track in (b), in the 
Cayley diagram of the symmetry 
group. (d, bottom right) A strand in 
the design, and a translational 

a a 
a 

repe atingucit. 

ba bb 
on itself and (ii) crossings within the fundamental region, 
as we go once round the track corresponding to the given _a a 
strand. In our example we see there are two bounces at each b 
of Q, S, T, U and V, and four crossings at R (since we go c c 
through R twice when traversing the track in each direc- b b 
tion), making a total of 14. Let us denote this total by c(S); C 
then we come to Proposition 4. a a 

a 
Proposition 4. c c 
A finite strand S crosses a total of c(S) x p(S) times. b b 

In our example, c(S) = 14 and p(S) = 4, so S has 56 cross- - 

ings, which can be easily verified from Fig. 7d. Later we shall a a * 

give the analogue of Proposition 4 for unbounded strands. C 
We can also deduce the number of crossings in a period 

parallelogram for the symmetry group of the design. 
-A 

Proposition 5. 
The number of crossings in a translational repeating unit of < 
a design with group p4m corresponding to a 1-strand pattern 
is 2c(S). If the group is p6m the number of crossings is 3c(S). 
If there is more than one strand, we replace c(S) in these 
formulae by the sum of the crossing numbers for each of the 
strands in the fundamental region. 

In the case of our example, this yields 2 x 14 crossings, as 
can be easily verified from the period parallelogram marked < 
in Fig. 7d. (Notice that crossings occurring on the common / 
boundary of two or more fundamental regions are shared, / 
and each region is assigned only the appropriate fraction of 
such crossings.) ) 

Example 2. < 

This is similar to Example 1 except that here the group is 
p6m (see Fig. 8a-d). The design has one track, namely 

,X>, 
PQRSTUSVQWQVSUTSRQ 

and so, by Proposition 1, this is the design of a 1-strand < 
pattern. Denote the strand by S. The corresponding group 
element is v... 

cbabacabab, 
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and, as can be seen from Fig. 8c, it is of period 3, so p(S) = 

3. By Proposition 2 the strand is a loop, and by Proposition 
3 its induced group is d3. A count of the number of crossings 
gives c(S) = 16, so by Proposition 4 the strand Scrosses other 
strands 16 x 3 = 48 times and, by Proposition 5, the number 
of crossings in a period parallelogram is 3 x 16 = 48. These 
numbers can be verified from Fig. 8d. 

Example 3. 
The design in Fig. 9a is a 2-strand design. This is clear from 
Proposition 1 and from the fact that the fundamental region 
shown in Fig. 9b contains two tracks. The first, correspond- 
ing to strand Si is 

P Q R STUVWQXYXQWVUTSRQ 

(of which Q S, T, Vand Ware crossings, and P, R, U, Xand 
Yare bounces) so that c(SI) = 18. The second, correspond- 
ing to S2, is 

P' VTQ'SWR' WSQ' TV 

of which P', Q' and R' are bounces and (S2) = 11. The 
word corresponding to strand S1 is 

Fig. 10. Illustration of the analy- 
sis of another 2-strand interlace 
pattern, as discussed in Example 

Q. 4. The four parts correspond to 

b the parts of Fig. 7. (a, far left) A 
design, redrawn from Bourgoin 
[26]. (b, left) A fundamental re- 

\ \ u gion, and a track for the design. 
(c, below left) The element cor- 

^^^-- -^^^T\ \sss^ responding to the track in (b), in 
a , the Cayley diagram of the sym- 

a metry group. (d, below right) A 
strand in the design, and a trans- 
lational repeating unit. 

s2 

-t st 

strand is a loop (Proposition 2) with induced group d4 

(Proposition 3) (see Fig. 9d). The other track introduces a 
new feature since it starts from P', which is a corner of the 
fundamental region. This clearly counts as a bounce against 
both a and c, and the question 'which does it bounce against 
first?'. As there is no answer to this question, we write the 
corresponding word 

(ac) bab (7) 

and then employ the artifice shown in the lower part of Fig. 
9c, namely, we make the path go diagonally through the acac 
square as shown; also we count this as a crossing in the 
calculation of C(S2). The path in the Cayley diagram does not 
close up, so we deduce from Proposition 2 that the strand is 
unbounded, and from Proposition 3 that the induced group 
of this strand is pma2. Notice that under the restrictions 
imposed at the beginning, it is only possible for a track to 
go through the intersection of two mirrors if those mirrors 
are perpendicular to one another. 

Since c(SI) = 18, the strand Si crosses other strands 
18 x 4 = 72 times (see Fig. 9d). As a translational repeating 
unit of the extended path corresponding to the strand S2 in 
the Cayley diagram needs two applications of the word (7), 
we deduce that the number of crossings in a translational 
repeating unit of the strand S2 is 11 x 2 = 22 (see Fig. 9d). 

In all, the fundamental region contains c(Si) + c(S2) = 

18 + 11 = 29 crossings. As the group is p4m, the number of 
crossings in a translational repeating unit is 29 x 2 = 58 (see 
Fig. 9d). 

abcabacb 

and, looking at the Cayley diagram (Fig. 9c), we see that this 

Example 4. 
The design in Fig. lOa has two unbounded strands Si and 
S2, corresponding to the tracks P Q R S T U T S R Qand P' R 
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Q' T R' T Q' R in Fig. 10 Ob. The corresponding paths in the 

Cayley diagram are shown in Fig. 10c, from which it will be 
observed that the first has symmetry group pma2, and the 
second has the group pmll. In the second the track goes 
through the intersection of mirrors a and c, and we deal with 
this situation as in the previous example. Here c(SI) = 8 and 

c(S2) = 7, hence the two strands have 8 and 7 x 2 = 14 cross- 

ings in a translational repeating unit, respectively. The num- 
ber of crossings in a fundamental region is 8 + 7 = 15, so the 
number of crossings in a translational repeating unit of 
the design is 15 x 3 = 45, as can be verified by inspection of 

Fig. 10d. 

WHY SO FEW SHAPES OF STRANDS? 

An explanation of the empirical fact that many Islamic 
interlace patterns contain only one or two shapes of strands 
is now at hand. Since it is likely [15] that early artisans 

employed stencils in drawing these patterns, and since, for 

practical reasons, these stencils were probably made as small 
as possible for a given pattern, they may well have consisted 
of just one translational repeat unit. That unit itself was 

probably obtained by repeating a geometric construction 
that was carried out in a fundamental region, or by some 

equivalent procedure. If so, by our Proposition 1, the num- 
ber of strands in a pattern would be the same as the number 
of tracks used in the fundamental region-and it is easy to 
understand why this number was often chosen to be small. 
Once it was realised that visually interesting and attractive 

patterns can arise from a fundamental domain that is not 

very complicated, the traditional approach of training by 
means of apprenticeships would naturally tend to preserve 
both the patterns and their methods of generation. The 

possibility of producing different patterns by slight changes 
in the fundamental regions (and therefore the stencils) may 
also have had an influence on the choice of motifs. Thus, 
we feel, the mystery of how the very complicated interlaces 
were designed has a reasonably simple explanation. Crea- 
tion of such ornaments relies only on geometry and tech- 

nology that were readily available to medieval artists; the fact 

that 1-strand or 2-strand interlaces result is an accidental 

consequence, probably neither noticed by the designers nor 
relevant to them. 

The reader may find it interesting to experiment in 
various ways with the procedures described above. On the 
one hand, the designs shown in Figs 1-5 can be analysed as 
to their symmetry groups, fundamental domain and so on. 
It should be noted that the designs in Figs 4b and 5b have 

symmetry groups different from the two studied here, so 
that some independent work is necessary. On the other 

hand, creation of new designs-whether simple or compli- 
cated-can be easily done by the methods shown, or by easy 
variations of them. Moreover, the use of color greatly en- 
hances the possibilities for experimentation; see Color Plate A 

No. 1 [ 16] for a colored version of one of the two interlace 

patterns that arise from the design shown in Fig. 5a [17]. 
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