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ABSTRACT: Lanthanides (Ln) usually occur in the +3, or 
more recently the +2, oxidation states. The only example of 
an isolated molecular Ln+4 so far remains Ce4+. Here we 
show that the +4 oxidation state is also accessible in a 
molecular compound of terbium as demonstrated by 
oxidation of the tetrakis(siloxide)terbium(III) ate complex, 
[KTb(OSi(OtBu)3)4], 1-Tb, with the tris(4-
bromophenyl)amminium oxidant, [N(C6H4Br)3][SbCl6], to 
afford the Tb4+ complex  [Tb(OSi(OtBu)3)4], 2-Tb. The solid 
state structures of 1-Tb and 2-Tb were determined by X-ray 
crystallography and the presence of Tb4+ was unambiguously 
confirmed by EPR and magnetometry. 2-Tb displays a 
similar voltammogram to the Ce4+ analogue but with redox 
events that are about 1 V more positive.

The chemistry of lanthanides (Ln) has been limited mostly to 
the + 3 oxidation state. Only recently it has been shown that 
the oxidation state + 2 is accessible for all lanthanides by 
using bulky supporting ligands and appropriate reaction 
conditions.1 In contrast, molecular complexes of lanthanides 
in the oxidation state + 4 remain limited to the special case 
of the 4f0 cerium ion.2 The high oxidizing power of Ce4+ (the 
Ce4+/Ce3+ redox potential ranges from 1.87 to −0.86 vs NHE 
depending on the solvent and supporting ligand)3 has led to 
the rapid application of its compounds in various fields 
ranging from organic syntheses to materials science.4  Ce4+ 
chemistry is well developed, but in order to avoid 
redistribution products, the rational synthesis of Ce4+ 
complexes requires a careful choice of oxidizing agent and 
solvent and careful consideration of cation effects and ligand 
exchange dynamics.3, 5 
The terbium ion should have the next most accessible +4 
oxidation state according to the calculated redox potential of 
3.3 V vs NHE,6 but Tb+4 so far has only been observed in 
concentrated aqueous carbonate solutions7 and in a few 
inorganic solids such as metal oxides or fluorides.6a, 8 
Further, Tb4+ in TbO2 has been recently identified as a 
potential candidate for solar thermochemical reactions.9 
While a molecular complex of the 5f analogue Bk4+ has been 
recently reported,10 attempts to produce Tb4+ in molecular 
compounds were so far not successful,11 resulting in ligand 
rather than metal oxidation, leaving the question of the 
possibility of isolating complexes of Ln+4  other than Ce4+ 
open.2a 

Our group12 and others13 have reported the ability of 
tris(tertbutoxy)siloxide to stabilize lanthanide ions in various 
oxidation states. In particular, both the Ce3+ and the Ce4+  

homoleptic tetrakis(tertbutoxy)siloxide complexes 
[KCe(OSi(OtBu)3)4], 1-Ce, and [Ce(OSi(OtBu)3)4], 2-Ce, were 
prepared and crystallographically characterized.12b Here we 
show that the tris(tertbutoxy)siloxide ligand allows the 
synthesis and characterization of the first example of a 
molecular complex of Tb4+. The 4f 7 terbium complex 
[Tb(OSi(OtBu)3)4], 2-Tb, was prepared by oxidation of the 
Tb3+ analogue, [KTb(OSi(OtBu)3)4], 1-Tb, using 
[N(C6H4Br)3][SbCl6] as the oxidizing agent. We have also 
prepared the isoelectronic 4f 7 Gd3+ complex, 
[KGd(OSi(OtBu)3)4], 1-Gd, for comparison.
The potassium tetrakis(siloxide) Ln3+ complexes, 
[KLn(OSi(OtBu)3)4] (Ln = Gd, Tb), 1-Ln, were prepared from 
the reaction of KOSi(OtBu)3 with the anhydrous lanthanide 
triiodides GdI3 and TbI3 in 81% and 86% yield for Gd and Tb, 
respectively, Scheme 1.

Scheme 1.  Synthesis of [KLn(OSi(OtBu)3)4] (Ln = Gd, 
Tb), 1-Ln.

The NMR spectrum of 1-Tb (Figure S1) at 298 K shows only 
one broad resonance at −26 ppm in toluene-d8, indicating 
fluxional behavior of the siloxide ligands that is slowed down 
at low temperature.  Several signals are observed at 193 K, 
and they coalesce at 223 K into two signals (Figure S2).  At 
263 K, the four siloxide ligands are equivalent on the NMR 
time scale (Figure S3).  Crystals of 1-Tb characterizable by 
X-ray diffraction were grown upon storage of a concentrated 
toluene solution at −40 °C overnight, Figure 1.  Complex 1-
Tb is isostructural with the previously reported 
[KYb(OSi(OtBu)3)4] complex12a and presents a 4-coordinate 
Tb3+ ion with one 1-OSi(OtBu)3 ligand and three µ-2:O,O-
OSi(OtBu)3 ligands which bridge the Tb3+ and K+ cations.  In 
contrast, in the previously reported [KCe(OSi(OtBu)3)4] 
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complex,12b the Ce3+ ion is 5-coordinate with one 2:O,O-
OSi(OtBu)3 ligand and three µ-2:O,O-OSi(OtBu)3 ligands 
that bridge the Ce3+ and K+. The difference in structure is 
attributed to the larger ionic radius of Ce3+ compared to Tb3+ 
and Yb3+ (6-coordinate Shannon radii:  Ce3+, 1.01 Å; Tb3+, 
0.923 Å; Yb3+, 0.868 Å).14

Figure 1.  Molecular structure of [KTb(OSi(OtBu)3)4], 1-Tb, 
with thermal ellipsoids drawn at the 50% probability level.  
Hydrogen atoms, methyl groups on the siloxide ligands, and 
a second molecule of 1-Tb present in the unit cell have been 
omitted for clarity.

Treatment of 1-Tb with AgI in either THF or CH2Cl2 gave no 
reaction.  However, treatment of 1-Tb with a stronger 
oxidizing agent, namely, the tris(4-bromophenyl)amminium 
hexachloroantimonate salt, ([N(C6H4Br)3][SbCl6]),15 resulted 
in an immediate color change and gave an intense orange 
colored solution.  Removal of THF and recrystallization from 
hexane yielded bright orange single crystals of 2-Tb, which 
were characterized by X-ray crystallography, Figure 2.  The 
UV-visible spectrum generated from crystals of 2-Tb 
dissolved in toluene shows a broad absorption at λmax = 371 
nm with a molar extinction coefficient ε of 4200 M−1∙cm−1 

(Figure S4). A similar feature (λmax = 365 nm) was reported 
for electrochemically generated solutions of Tb4+ in 5.5M of 
K2CO3. Complex 2-Tb is stable in toluene for several days, 
but in THF, the orange solution immediately begins to 
decolorize and within hours is completely colorless.  We 
found that the synthesis of 2-Tb is improved in MeCN, likely 
due to the higher stability of MeCN towards oxidation and to 
the lower solubility of 2-Tb which allows it to precipitate from 
the reaction mixture and avoid side reactions.  The optimized 
synthesis of 2-Tb is shown in Scheme 2.

Scheme 2.  Synthesis of [Tb(OSi(OtBu)3)4], 2-Tb.

The complex 2-Tb is isomorphous with the previously 
reported 2-Ce.12b Both Ln4+ ions are 5-coordinate and bound 
by three 1-OSi(OtBu)3 and one 2:O,O-OSi(OtBu)3 ligands 
despite a 0.11 Å  difference in their Ln4+ ionic radii (6-
coordinate Shannon radii:  Ce4+, 0.87 Å; Tb4+, 0.76 Å) and 
the ability of 2-Ce to bind an additional ligand.11c The 0.09 Å 
difference in (Ln–O)avg bond distances between 1-Tb and 2-
Tb is less than the 0.15 Å difference in the 6-coordinate ionic 
radii, but if one considers the decrease in ionic radius from 
Tb3+ to Tb4+ (0.163 Å), and the increase in Shannon14 radii 
between coordination numbers n and n+1 (0.06 Å), the 0.09 
Å difference is close to the 0.103 Å difference expected as a 
result of these influences.  The metrical parameters of the 2-
Ln complexes are given in Table 1 together with those of their 
Ln3+ analogues 1-Ln.

Figure 2.  Molecular structure of [Tb(OSi(OtBu)3)4], 2-Tb, 
with thermal ellipsoids drawn at the 50% probability level.  
Hydrogen atoms and methyl groups on the siloxide ligands 
have been omitted for clarity.

Table 1.  Selected bond lengths (Å) and angles (°) of 
[KLn(OSi(OtBu)3)4], 1-Ln, and [Tb(OSi(OtBu)3)4], 2-Ln 
(Ln = Ce,12b Tb) .

1-Tb 2-Tb 1-Ce12b 2-Ce12b

Ln–O 
range

2.103(3)-
2.152(2)

2.023(3)-
2.093(3)

2.221(3)-
2.297(3)

2.084(2)-
2.160(2)

(Ln–
O)avg

2.13(2) 2.04(3) 2.26(3) 2.11(3)

Ln–OtBu 
range

- 2.474(3) 2.721(3)-
2.764(3)

2.581

X-band electron paramagnetic resonance (EPR) spectra 
were measured at 20 K and 298 K on 1 mM solutions 
prepared by dissolving crystals of 1-Tb, 1-Gd and 2-Tb in 
toluene (Figures S5-S9 in the Supporting Information).  The 
1-Tb spectrum does not show intense features as expected 
for the non-Kramers Tb3+ (4f 8)  ion.16 In contrast, the 20 K 
spectrum produced from 2-Tb (Figure 3) shows strong 
features at g= 8.9, g= 7.7 and g = 5.0 that are consistent with 
spectra reported for fluoride phosphate glasses and silicates 
containing Tb4+.17-18 Complex EPR spectra with highly 
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anisotropic g-values have been previously observed in 
complexes of 4f7 ions and have been interpreted in term of a  
large zero field splitting (ZFS).18-19 Similar strong features 
were observed in the EPR spectrum of the isoelectronic 1-
Gd complex. The differences in the spectra of the Gd3+ and 

Tb4+ complexes may be ascribed in part to differences in the 
1-Ln and 2-Ln structures and the increased ZFS resulting 
from the more charged Tb4+ ion.18 
Magnetic susceptibility measurements as a function of 
temperature were performed on crushed crystalline samples 
of the 4f 8 1-Tb and the 4f 7 complexes, 2-Tb and 1-Gd, 
Figure 4.  The χMT = 7.78 and 7.77 emu∙K/mol measured at 
294 K for 1-Gd and 2-Tb, respectively, are in agreement with 
the χMT = 7.88 emu∙K/mol predicted for a 4f 7 complex by a 
first approximation using LS coupling for 4f 7 ion (L = 0, S = 
7/2),6a and both are significantly lower than the 11.2 
emu∙K/mol observed for 4f 8 Tb3+ in 1-Tb (predicted 11.8 
emu∙K/mol, L = 3, S = 5/2). For the isotropic Gd3+ ion in 1-
Gd, the χMT data are linear over the temperature range from 
300 to 15 K.

Figure 3.  X-band EPR spectrum (υ = 9.397323 GHz, P = 
0.6335 mW, modulation amplitude = 0.5 mT, T = 20 K) of 2-
Tb, recorded as a 1 mM solution in toluene.

At temperatures below 15 K, a sharp decrease of the 
magnetic moment is observed probably due to zero field 
splitting effects. The χMT versus T data measured for the 2-
Tb overlap with those measured for 1-Gd in the temperature 
range 300 to 15 K as anticipated for an isoelectronic 4f 7 ion. 

Figure 4.  Plot of χMT versus temperature data for ground 
crystalline samples of 1-Gd (black), 1-Tb (blue), and 2-Tb 
(red) collected under an applied magnetic field of 1 T.

Cyclic voltammetry measurements were performed on the 
homoleptic tetrakis(siloxide) 2-Ce and 2-Tb complexes as 2 
mM solutions in THF with 0.1 M [NBu4][B(C6F5)4] as the 
supporting electrolyte, Figure 5, Table 2. Cyclic voltammetry 
experiments previously reported in slightly different 
conditions (1 mM analyte, [nPr4N][B{Ar(3,5-CF3)}4] used as 
electrolyte) for 1-Ce and 2-Ce demonstrated irreversibility 
and wide peak separations for the Ce4+/Ce3+ redox couple 
which were attributed to ligand reorganization involving the 
switch between the 1 and  2 siloxide coordination modes.13a 
The current–potential curves of 2-Tb are also characterized 
by  irreversible redox events with wide peak separations 
between events at the cathodic and anodic electrodes (ΔE =  
1.55 V, 2-Tb). The Epc = −0.70 V vs Fc reduction potential 
measured for 2-Tb is 1.02 V more positive than that observed 
for 2-Ce in the same conditions.  Similarly, the Epa = 0.85 V 
vs Fc oxidation event for 2-Tb is 1.04 V more positive than 
the −0.19 V vs Fc event measured for 2-Ce, and is very close 
to the oxidation threshold for the THF solvent (see Figure 
S11 for the scan at 50 mV/s, where the Epc redox event is 
better resolved).  These data are consistent with the more 
positive potentials expected for Tb4+ compared to Ce4+ and 
suggest that ligand reorganization from the 2 binding mode 
in 2-Ln to 1 binding in 1-Ln is also occurring for the terbium 
system. The oxidation occurs at a potential significantly less 
positive compared to the calculated value for the Tb4+/Tb3+  

redox couple (3.3 V vs NHE),6  suggesting a stabilizing effect 
of the Tb4+ oxidation state by the OSi(OtBu)3 ligand. The 
measured value in Table 2, however, is consistent with the 
applied potential that was reported to generate Tb4+ ions in 
concentrated carbonate solutions (1.3 V vs NHE).7

Figure 5.  Cyclic voltammograms of 2 mM solutions of 2-Ce 
(green) and 2-Tb (red) measured in 0.1 M [NBu4][B(C6F5)4] 
in THF versus Fc with a glassy carbon working electrode.  
The measurements were done at room temperature and 
scanned at 250 mV/s.

Table 2.  Electrochemical data in V vs Fc [V vs NHE] 
of the 2-Ce and 2-Tb complexes (Figure 2).

2-Ce 2-Tb
Epc −1.72 [−0.92] −0.70 [0.10]

Epa −0.19 [0.61] 0.85 [1.65]
ΔEpc/Epa 1.53 1.55
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In conclusion, the utilization of the electron-rich 
tetrakis(tertbutoxy)siloxide ligand environment along with the 
tris(bromophenyl) amminium hexachloroantimonate oxidant 
has allowed the expansion of rare earth oxidation chemistry 
to a molecular complex of terbium(IV). The isolation of a 
molecular Tb+4 suggests that it may be possible to extend the 
+4 oxidation state to molecular complexes of the other 
lanthanide ions. In view of the broad range of applications of 
Ce+4, this finding should lead to further development of the 
redox chemistry of the lanthanides and to unusual oxidative 
chemistry. 
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