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1 Introduction

A major success of low temperature physics was achieved with the intro-
duction by Landau of the notion of quasiparticles. According to his hypoth-
esis, the properties of many body interacting systems at low temperatures
are determined by the spectrum of some low energy, long living excitations
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(quasiparticles). Another milestone of many body theory is the Mean Field
Approximation (MFA), which permitted achieving considerable progress in
the theory of phase transitions. Phenomena which cannot be described by
the quasiparticle method or by MFA are usually called fluctuations. The
BCS theory of superconductivity is a bright example of the use of both the
quasiparticle description and MFA. The success of the BCS theory for tra-
ditional superconductors was determined by the fact that fluctuations give
small corrections with respect to the MFA results.

During the first half of the century after the discovery of superconduc-
tivity the problem of fluctuation smearing of the superconducting transition
was not even considered. In bulk samples of traditional superconductors the
critical temperature Tc sharply divides the superconducting and the normal
phases. It is worth mentioning that such behavior of the physical character-
istics of superconductors is in perfect agreement both with the Ginzburg-
Landau (GL) phenomenological theory (1950) [1] and the BCS microscopic
theory of superconductivity (1957)[2].

The characteristics of high temperature and organic superconductors, low
dimensional and amorphous superconducting systems studied today, strongly
differ from those of the traditional superconductors discussed in textbooks.
The transitions turn out to be much more smeared out. The appearance of
superconducting fluctuations above critical temperature leads to precursor
effects of the superconducting phase occurring while the system is still in
the normal phase, sometimes far from Tc. The conductivity, the heat capac-
ity, the diamagnetic susceptibility, the sound attenuation, etc. may increase
considerably in the vicinity of the transition temperature.

The first numerical estimation of the fluctuation contribution to the heat
capacity of a superconductor in the vicinity of Tc was done by Ginzburg in
1960 [3]. In that paper he showed that superconducting fluctuations increase
the heat capacity even above Tc. In this way fluctuations change the temper-
ature dependence of the specific heat in the vicinity of critical temperature,
where, in accordance with the phenomenological GL theory of second order
phase transitions, a jump should take place. The range of temperatures where
the fluctuation correction to the heat capacity of a bulk clean conventional
superconductor is relevant was estimated by Ginzburg 1 to be

Gi =
δT

Tc
∼
(
Tc

EF

)4

∼ 10−12 ÷ 10−14, (1)

where EF is the Fermi energy. The correction occurs in a temperature range
δT many orders of magnitude smaller than that accessible in real experiments.

1 The expression for the width of the strong fluctuation region in terms of the
Landau phenomenological theory of phase transitions was obtained by Levanyuk
[4]. So in the modern theory of phase transitions the relative temperature width
of fluctuation region is called the Ginzburg-Levanyuk parameter Gi(D), where D
is the effective space dimensionality.
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In the 1950s and 60s the formulation of the microscopic theory of su-
perconductivity, the theory of type-II superconductors and the search for
high-Tc superconductivity attracted the attention of researchers to dirty sys-
tems, superconducting films and filaments. In 1968, in the papers of L. G.
Aslamazov and A. I. Larkin [5], K.Maki [6] and a little later in the paper of
R.S.Thompson [7] the fundaments of the microscopic theory of fluctuations
in the normal phase of a superconductor in the vicinity of the critical tem-
perature were formulated. This microscopic approach confirmed Ginzburg’s
evaluation [3] for the width of the fluctuation region in a bulk clean supercon-
ductor. Moreover, was found that the fluctuation effects increase drastically
in thin dirty superconducting films and whiskers. In the cited papers was
demonstrated that fluctuations affect not only the thermodynamical proper-
ties of superconductor but its dynamics too. Simultaneously the fluctuation
smearing of the resistive transition in bismuth amorphous films was experi-
mentally found by Glover [8], and it was perfectly fitted by the microscopic
theory.

In the BCS theory [2] only the Cooper pairs forming a Bose-condensate
are considered. Fluctuation theory deals with the Cooper pairs out of the
condensate. In some phenomena these fluctuation Cooper pairs behave simi-
larly to quasiparticles but with one important difference. While for the well
defined quasiparticle the energy has to be much larger than its inverse life
time, for the fluctuation Cooper pairs the ”binding energy“ E0 turns out to
be of the same order. The Cooper pair life time τGL is determined by its
decay into two free electrons. Evidently at the transition temperature the
Cooper pairs start to condense and τGL = ∞. So it is natural to suppose
from dimensional analysis that τGL ∼ ~/kB(T − Tc). The microscopic theory
confirms this hypothesis and gives the exact coefficient:

τGL =
π~

8kB(T − Tc)
. (2)

Another important difference of the fluctuation Cooper pairs from quasi-
particles lies in their large size ξ(T ). This size is determined by the distance
on which the electrons forming the fluctuation Cooper pair move away during
the pair life-time τGL. In the case of an impure superconductor the electron
motion is diffusive with the diffusion coefficient D ∼ v2

F τ (τ is the electron
scattering time2), and ξd(T ) =

√DτGL ∼ vF
√
ττGL. In the case of a clean

superconductor, where kBTτ ≫ ~, impurity scattering does not affect any
more the electron correlations. In this case the time of electron ballistic mo-
tion turns out to be less than the electron-impurity scattering time τ and is
determined by the uncertainty principle: τbal ∼ ~/kBT. Then this time has

2 Strictly speaking τ in the most part of future results should be understood as
the electron transport scattering time τtr. Nevertheless, as it is well known, in
the case of isotropic scattering these values coincide, so for sake of simplicity we
will use hereafter the symbol τ.
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to be used in this case for determination of the effective size instead of τ :
ξc(T ) ∼ vF

√
~τGL/kBT . In both cases the coherence length grows with the

approach to the critical temperature as (T − Tc)
−1/2, and we will write it

down in the unique way (ξ = ξc,d):

ξ(T ) =
ξ√
ǫ
, ǫ =

T − Tc

Tc
.. (3)

The microscopic theory in the case of an isotropic Fermi surface gives for ξ
the precise expression:

ξ2(D) = −v
2
F τ

2

D

{
ψ(

1

2
+

~

4πkBTτ
) − ψ(

1

2
) − ~

4πkBTτ
ψ

′

(
1

2
)

}
, (4)

where ψ(x) is the digamma function and D = 3, 2, 1 is the space dimension-
ality. In the clean (c) and dirty (d) limits:

ξc = 0.133
~vF

kBTc

√
3

D
= 0.74ξ0

√
3

D
, (5)

ξd = 0.36

√
~vF l

kBTc

3

D
= 0.85

√
ξ0l

√
3

D
. (6)

Here l = vF τ is the electron mean free path and ξ0 = ~vF /π∆(0) is the
conventional BCS definition of the coherence length of a clean superconductor
at zero temperature. One can see that (5) and (6) coincide with the above
estimations 3.

Finally it is necessary to recognize that fluctuation Cooper pairs can be
really treated as classical objects, but these objects instead of Boltzmann
particles appear as classical fields in the sense of Rayleigh-Jeans. This means
that in the general Bose-Einstein distribution function only small energies
E(p) are involved and the exponent can be expanded:

n(p) =
1

exp(E(p)
kBT ) − 1

=
kBT

E(p)
. (7)

3 Let us stress some small numerical difference between our Exp. (4) and the usual
definition of the coherence length. We are dealing near the critical temperature,
so the definition (4) is natural and permits us to avoid many numerical coeffi-
cients in further calculations. The cited coherence length ξ0 = ~vF /π∆(0) =
0.18~vF /kBTc , as is evident, was introduced for zero temperature and an
isotropic 3D superconductor.

It is convenient to determine the coherence length also from the formula for
the upper critical field: Hc2(T ) = A(T )Φ0/2πξ2(T ). A(Tc) = 1, while its value at
T = 0 depends on the impurities concentration. For the dirty case the appropriate
value was found by K.Maki [9] Ad(0) = 0.69, for the clean case by L.Gor’kov [10]
A2D

c (0) = 0.59, A3D
c (0) = 0.72.
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This is why the more appropriate tool to study fluctuation phenomena is not
the Boltzmann transport equation but the GL equation for classical fields.
Nevertheless at the qualitative level the treatment of fluctuation Cooper pairs

as particles with the density n(D) =
∫

n(p) dDp
(2π~)D often turns out to be useful

4.
Below will be demonstrated both in the framework of the phenomeno-

logical Ginzburg-Landau theory and the microscopic BCS theory that in the
vicinity of the transition

E(p) = αkB(T − Tc) +
p2

2m∗ =
1

2m∗
[
~

2/ξ2 (T ) + p2
]
. (8)

Far from transition temperature the dependence n(p) turns out to be more
sophisticated than (7), nevertheless one can always write it in the form

n(p) =
m∗kBT

~2
ξ2 (T ) f

(
ξ(T )p

~

)
. (9)

In classical field theory the notions of the particle distribution function
n(p) (proportional to E−1(p) in our case) and Cooper pair mass m∗ are
poorly determined. At the same time the characteristic value of the Copper
pair center of mass momentum can be defined and it turns out to be of
the order of p0 ∼ ~/ξ(T ). So for the combination m∗E(p0) one can write
m∗E(p0) ∼ p2

0 ∼ ~
2/ξ2(T ). In fact the particles density enters into many

physical values in the combination n/m∗. As the consequence of the above
observation it can be expressed in terms of the coherence length:

n(D)

m∗ =
kBT

m∗E(p0)
(
p0

~
)D ∼ kBT

~2
ξ2−D(T ), (10)

pD
0 here estimates the result of momentum integration.

For example we can evaluate the fluctuation Cooper pairs contribution to
conductivity by using the Drude formula

σ =
ne2τ

m∗ ⇒ kBT

~2
dD−3ξ2−D(T )(2e)2τGL(ǫ) ∼ ǫD/2−2. (11)

4 This particle density is defined in the (D)-dimensional space. This means that it
determines the normal volume density of pairs in 3D case, the density per square
unit in 2D case and the number of pairs per unit length in 1D. The real three
dimensional density n can be defined too: n = dD−3n(D), where d is the thickness
of the film or wire.
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Analogously a qualitative understanding of the increase in the diamagnetic
susceptibility above the critical temperature may be obtained from the well-
known Langevin expression for the atomic susceptibility5:

χ = −e
2

c2
n

m∗
〈
R2
〉
⇒ −4e2

c2
kBT

~2
dD−3ξ4−D(T ) ∼ −ǫD/2−2. (12)

Besides these examples of the direct influence of fluctuations on supercon-
ducting properties, indirect manifestations by means of quantum interference
in the pairing process and of renormalization of the density of one-electron
states in the normal phase of superconductor take place. These effects, be-
ing much more sophisticated, have a purely quantum nature, and in contrast
to the direct Cooper pair contributions require microscopic consideration.
This is why, in developing phenomenological methods through the first five
Sections of this review, we will deal with the direct fluctuation pair contri-
butions only. The sixth Section is devoted to the microscopic justification of
the time dependent Ginzburg-Landau equation. The description of the micro-
scopic theory of fluctuations, including indirect fluctuation effects, discussion
of their manifestations in various physical properties of superconductors will
be given in the Sections 7-8.

The first seven Sections are written in detail, so they can serve as a
textbook. On the contrary, in the last (eighth) Section a wide panorama
of fluctuation effects in different physical properties of superconductors is
presented. Thus this Section has more of a handbook character, and the
intermediate calculations often are omitted.

Finally we would like to mention that the number of articles devoted to
superconducting fluctuations published in the last 33 years is of the order of
ten thousands, so our bibliography list does not pretend nor at the complete-
ness nor at the establishment of the rigorous priorities.

2 Ginzburg-Landau formalism. Thermodynamics

2.1 Fluctuation contribution to heat capacity

GL functional. The complete description of the thermodynamic proper-
ties of a system can be done through the exact calculation of the partition
function6:

Z = Tr

{
exp

(
−Ĥ
T

)}
. (13)

5 This formula is valid for the dimensionalities D = 2, 3, when fluctuation Cooper
pair has the possibility to ”rotate” in the applied magnetic field and the average
square of the rotation radius is < R2 >∼ ξ2(T ). ”Size” effects, important for low
dimensional samples, will be discussed later on.

6 Hereafter ~ = kB = c = 1.
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As discussed in the Introduction, in the vicinity of the superconducting
transition, side by side with the fermionic electron states, fluctuation Cooper
pairs of a bosonic nature appear in the system. As already mentioned, they
can be described by means of classical bosonic fields Ψ(r) which can be treated
as ”Cooper pair wave functions“. So the calculation of the trace in (13) can be
separated into a summation over the ”fast“ electron degrees of freedom and
a further functional integration carried out over all possible configurations of
the ”slow” Cooper pairs wave functions:

Z =

∫
DΨ(r)Z[Ψ(r)], (14)

where

Z[Ψ(r)] = exp

(
− F [Ψ(r)]

T

)
(15)

is the system partition function in a fixed bosonic field Ψ(r), already summed
over the electronic degrees of freedom. Here it is assumed that the classical
field dependent part of the Hamiltonian can be chosen in the spirit of the GL
approach7:

F [Ψ(r)] = FN +

∫
dV

{
a|Ψ(r)|2 +

b

2
|Ψ(r)|4 +

1

4m
|∇Ψ(r)|2

}
.. (16)

Let us discuss the coefficients of this functional. In accordance with the
Landau hypothesis, the coefficient a goes to zero at the transition point and
depends linearly on T − Tc. Then a = αTcǫ; all the coefficients α,b and m
are supposed to be positive and temperature independent. Concerning the
magnitude of the coefficients it is necessary to make the following comment.
One of these coefficients can always be chosen arbitrary: this option is re-
lated to the arbitrariness of the Cooper pair wave function normalization.
Nevertheless the product of two of them is fixed by dimensional analysis:
ma ∼ ξ−2(T ). Another combination of the coefficients, independent of the
wave function normalization and temperature, is α2/b. One can see that it
has the dimensionality of the density of states. Since these coefficients were
obtained by a summation over the electronic degrees of freedom, the only
reasonable candidate for this value is the one electron density of states ν.
The microscopic theory gives the precise coefficients for the above relations:

4mαTc = ξ−2; α2/b =
8π2

7ζ(3)
ν, (17)

where ζ(x) is the Riemann zeta function, ζ(3) = 1.202. One can notice that
the arbitrariness in the normalization of the order parameter amplitude leads

7 For simplicity the magnetic field is assumed to be zero.
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to the unambiguity in the choice of the Cooper mass introduced in (16) as
2m. Indeed, this value enters in (17) in the product with α so one of these
parameters has to be fixed. In the case of a clean D-dimensional supercon-
ductor it is natural to suppose that the Copper pair mass is equal to two free
electron masses what results in

α(D) =
2Dπ2

7ζ(3)

Tc

EF
. (18)

As the first step in the Landau theory of phase transitions Ψ is supposed
to be independent of position. This assumption in the limit of sufficiently
large volume V of the system permits a calculation of the functional integral
in (14) by the method of steepest descent. Its saddle point determines the
equilibrium value of the order parameter

|Ψ̃ |2 =

{
−αT cǫ/b, ǫ < 0
0, ǫ > 0

. (19)

Choosing α in accordance with (18) one finds that this value coincides with
the superfluid density ns of the microscopic theory [2].

The fluctuation part of the free energy related to the transition is deter-
mined by the minimum of the functional (16):

F = (F [Ψ ])min = F [Ψ̃ ] =

{
FN − α2T 2

c ǫ2

2b V, ǫ < 0
FN , ǫ > 0

. (20)

From the second derivative of (20) one can find an expression for the jump
of the specific heat capacity at the phase transition point:

∆C = CS − CN =
Tc

V

(
∂SS

∂T

)
− Tc

V

(
∂SN

∂T

)
= (21)

= − 1

V Tc

(
∂2F

∂ǫ2

)
=
α2

b
Tc =

8π2

7ζ(3)
νTc.

Let us mention that the jump of the heat capacity was obtained because
of the system volume was taken to infinity first, and after this the reduced
temperature ǫ was set equal to zero.

Zero dimensionality: the exact solution. In a system of finite volume
fluctuations smear out the jump in heat capacity. For a small superconducting
sample with the characteristic size d ≪ ξ(T ) the space independent mode
Ψ0 = Ψ

√
V defines the main contribution to the free energy:
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ε/εcr

δC=f(ε)

-1 1

Fig. 1. Temperature dependence of the heat capacity of superconducting grains in
the region of the critical temperature

Z(0) =

∫
d2Ψ0F [Ψ0] = π

∫
d|Ψ0|2 exp

(
− ( a|Ψ0|2 + b

2V |Ψ0|4)
T

)
=

=

√
π3V T

2b
exp(x2)(1 − erf(x))|

x=a
√

V
2bT

. (22)

By evaluating the second derivative of this exact result [11] one can find the
temperature dependence of the superconducting granular heat capacity (see
Fig. 1). It is evident that the smearing of the jump takes place in the region
of temperatures in the vicinity of transition where x ∼ 1, i.e.

ǫcr = Gi(0) =

√
7ζ(3)

2π

1√
νTcV

≈ 13, 3

(
Tc0

EF

)√
ξ30
V
,

where we have supposed that the granule is clean; Tc0 and ξ0 are the critical
temperature and the zero temperature coherence length (see the footnote 3
in Introduction) of the appropriate bulk material. From this formula one can
see that even for granule with the size d ∼ ξ0 the smearing of the transition
still is very narrow.

Far above the critical region, where Gi(0) ≪ ǫ ≪ 1, one can use the
asymptotic expression for the erf(x) function and find

F(0) = −T lnZ(0) = −T ln
π

αǫ
. (23)
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Calculation of the second derivative gives an expression for the fluctuation
part of the heat capacity in this region:

δC(0) = 1/ǫ2. (24)

The experimental study of the heat capacity of small Sn particles in the
vicinity of transition was done in [12]

Arbitrary dimensionality: case T ≥ Tc. It is possible to estimate the
fluctuation contribution to the heat capacity for a specimen of an arbitrary
effective dimensionality on the basis of the following observation. The volume
of the specimen may be divided into regions of size ξ(T ), which are weakly
correlated with each other. Then the whole free energy can be estimated as
the free energy of one such zero-dimensional specimen (23), multiplied by
their number N(D) = V ξ−D(T ) :

F(D) = −TV ξ−D(T ) ln
π

αǫ
. (25)

This formula gives the correct temperature dependence for the free energy
for even dimensionalities. A more accurate treatment removes the ln ǫ depen-
dence from it in the case of the odd dimensions.

Let us begin with the calculation of the fluctuation contribution to the
heat capacity in the normal phase of a superconductor. We restrict ourselves
to the region of temperatures beyond the immediate vicinity of transition,
where this correction is still small. In this region one can omit the fourth
order term in Ψ(r) with respect to the quadratic one and write down the GL
functional, expanding the order parameter in a Fourier series:

F [Ψk] = FN +
∑

k

[a+
k2

4m
]|Ψk|2 = αTc

∑

k

(
ǫ+ ξ2k2

)
|Ψk|2. (26)

Here Ψk = 1√
V

∫
Ψ(r)e−ikrdV and the summation is carried out over the

vectors of the reciprocal space. Now we see that the free energy functional
appears as a sum of energies of the independent modes k. The functional
integral for the partition function (15) can be separated to a product of
Gaussian type integrals over these modes:

Z =
∏

k

∫
d2Ψk exp

{
−α(ǫ+

k2

4mαTc
)|Ψk|2

}
. (27)

Carrying out these integrals, one gets the fluctuation contribution to the free
energy:

F (ǫ > 0) = −T lnZ = −T
∑

k

ln
π

α(ǫ+ k2

4mαTc
)
. (28)
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The appropriate correction to the specific heat capacity of a superconductor
at temperatures above the critical temperature may thus be calculated. We
are interested in the most singular term in ǫ−1, so the differentiation over the
temperature can be again replaced by that over ǫ :

δC+ = − 1

V T c

(
∂2F

∂ǫ2

)
=

1

V

∑

k

1

(ǫ+ k2

4mαTc
)2
. (29)

The result of the summation over k strongly depends on the linear sizes
of the sample, i.e. on its effective dimensionality. As it is clear from (29),
the scale with which one has to compare these sizes is determined by the
value (4mαTcǫ)

− 1
2 which, as was already mentioned above, coincides with

the effective size of Cooper pair ξ(T ). Thus, if all dimensions of the sample
considerably exceed ξ(T ), one can integrate over (2π)−3LxLyLzdkxdkydkz

instead of summing over nx, ny, nz. In the case of arbitrary dimensionality
the fluctuation correction to the heat capacity turns out to be

δC+ =
VD

V

∫
1

(ǫ+ k2

4mαTc
)2

dDk

(2π)D
= ϑD

VD

V

(4mαTc)
D
2

ǫ2−
D
2

, (30)

where VD = V, S, L, 1 forD = 3, 2, 1, 0. For the coefficients ϑD it is convenient
to write an expression valid for an arbitrary dimensionality D, including
fractional ones. For a space of fractional dimensionality we just mention that
the momentum integration in spherical coordinates is carried out according
to the rule:

∫
dDk/ (2π)D =µD

∫
kD−1dk, where

µD =
D

2DπD/2Γ (D/2 + 1)
(31)

and Γ (x) is a gamma-function. The coefficient in (30) can be expressed in
terms of the gamma-function too:

ϑD =
Γ (2 −D/2)

2DπD/2
(32)

yielding ϑ1 = 1/4, ϑ2 = 1/4π and ϑ3 = 1/8π.
In the case of small particles with characteristic sizes d . ξ(ǫ) the ap-

propriate fluctuation contribution to the free energy and the specific heat
capacity coincides with the asymptotics of the exact results (23) and (24).
From the formula given above it is easy to see that the role of fluctuations in-
creases when the effective dimensionality of the sample or the electron mean
free path decrease.
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Arbitrary dimensionality: case T < Tc. The general expressions (14)
and (16) allow one to find the fluctuation contribution to heat capacity below
Tc. For this purpose let us restrict ourselves to the region of temperatures
not very close to Tc from below, where fluctuations are sufficiently weak. In
this case the order parameter can be written as the sum of the equilibrium
Ψ̃ (see (19)) and fluctuation ψ(r) parts:

Ψ(r) = Ψ̃ + ψ(r). (33)

Keeping in (16) the terms up to the second order in ψ(r) and up to the fourth

order in Ψ̃ , one can find

Z[Ψ̃ ] = exp(−aΨ̃
2 + b/2Ψ̃4

T
)
∏

k

∫
dReψkdImψk × (34)

× exp

{
− 1

T
[(3bΨ̃2 + a+

k2

4m
)Re2ψk + (bΨ̃2 + a+

k2

4m
)Im2ψk]

}
.

Carrying out the integral over the real and imaginary parts of the order
parameter one can find an expression for the fluctuation part of the free
energy:

F = −T
2

∑

k

{
ln

πTc

3bΨ̃2+a+ k2

4m

+ ln
πTc

bΨ̃2 + a+ k2

4m

}
. (35)

Let us discuss this result. It is valid both above and below Tc. The two terms
in it correspond to the contributions of the modulus and phase fluctuations
of the order parameter. Above Tc Ψ̃ ≡ 0 and these contributions are equal:
phase and modulus fluctuations in the absence of Ψ̃ represent just two equiv-
alent degrees of freedom of the scalar complex order parameter. Below Tc, the
symmetry of the system decreases (see (19)). The order parameter modulus
fluctuations remain of the same diffusive type as above Tc, while the char-
acter of the phase fluctuations, in accordance with the Goldstone theorem,
changes dramatically.

Substitution of (19) to (35) results in the disappearance of the temper-
ature dependence of the phase fluctuation contribution and, calculating the
second derivative, one sees that only the fluctuations of the order parame-
ter modulus contribute to the heat capacity. As a result the heat capacity,
calculated below Tc, turns out to be proportional to that found above:

δC− = 2
D
2 −2δC+.

Hence, in the framework of the theory proposed we found that the heat
capacity of the superconductor tends to infinity at the transition temperature.
Strictly speaking, the restrictions of the above approach do not permit us to
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discuss seriously this divergence at the critical point itself. The calculations in
principle are valid only in that region of temperatures where the fluctuation
correction is small. We will discuss in the next Section the quantitative criteria
for the applicability of this perturbation theory.

2.2 Ginzburg-Levanyuk criterion

The fluctuation corrections to the heat capacity obtained above allow us to
answer quantitatively the question: where are the limits of applicability of
the GL theory?

This theory is valid not too near to the transition temperature, where
the fluctuation correction is still small in comparison with the heat capacity
jump. Let us define as the Ginzburg-Levanyuk number Gi(D) [4,3] the value
of the reduced temperature at which the fluctuation correction (30) equals
the value of ∆C (21)8:

Gi(D) =
1

α

[
VD

V
ϑDb(4m)

D
2 T

D
2 −1

c

] 2
4−D

. (36)

Substituting into this formula the microscopic values of the GL theory pa-
rameters (17) one can find

Gi(D) =

[
7ζ(3)ϑD

8π2

(
VD

V

)
1

νDTcξD

] 2
4−D

. (37)

Since νDTc ∼ νDvF /ξc ∼ pD−1
F ξ−1

c ∼ a
1−Dξ−1

c one can convert this formula
to the form

Gi(D) ∼
[
7ζ(3)ϑD

8π2

(
VD

V

)
ξca

D−1

ξD

] 2
4−D

,

where a is the interatomic distance. It is worth mentioning that in bulk
conventional superconductors, due to the large value of the coherence length
(ξc ∼ 10−6 ÷ 10−4cm), which drastically exceeds the interatomic distance
(a ∼ 10−8cm), the fluctuation correction to the heat capacity is extremely
small. However, the fluctuation effect increases for small effective sample di-
mensionality and small electron mean free path. For instance, the fluctuation
heat capacity of a superconducting granular system is readily accessible for
experimental study.

8 One can see that some arbitrariness occurs in this definition. For instance the Gi
number could be defined as the reduced temperature at which the AL correction
to conductivity is equal to the normal value of conductivity (as it was done
in [13,14]). Such definition results in the change of the numerical factor in Gi
number:

Gi(2,σ) = 1.44Gi(2,h.c.) .
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Using the microscopic expression for the coherence length (4), the Ginzburg-
Levanyuk number (37) can be evaluated for different cases of clean (c) and
dirty (d) superconductors of various dimensionalities and geometries (film,
wire, whisker and granule are supposed to have 3D electronic spectrum):

Gi(3) Gi(2) Gi(1) Gi(0)

80
(

Tc

EF

)4

, (c)

1.6
(pF l)3

(
Tc

EF

)
, (d)

(
Tc

EF

)
, (c)

0.27
pF l , (d)
1.3

p2
F ld

, (d) film

0.5, (c)

1.3
(
p2

FS
)−2/3

(Tcτ)
−1/3 , (d) wire

2.3
(
p2

FS
)−2/3

, (c) whisker

√
7ζ(3)

2π
1√

νTcV
≈

13.3Tc0

EF

√
ξ3
0

V

Table 1.

One can see that for the three dimensional clean case the result coincides
with the original Ginzburg evaluation and demonstrates the negligibility of
the superconducting fluctuation effects in clean bulk materials.

2.3 Scaling and renormalization group

In the above study of the fluctuation contribution to heat capacity we have
restricted ourselves to the temperature range out of the direct vicinity of the
critical temperature: |ǫ| & Gi(D). As we have seen the fluctuations in this
region turn out to be weak and neglecting their interaction was justified. In
this Section we will discuss the fluctuations in the immediate vicinity of the
critical temperature ( |ǫ| . Gi(D)) where this interaction turns out to be of
great importance.

We will start with the scaling hypothesis, i.e. with the belief that in the
immediate vicinity of the transition the only relevant length scale is ξ(T ). The
temperature dependencies of all other physical quantities can be expressed
through ξ(T ). This means, for instance, that the formula for the fluctuation
part of the free energy (25) with the logarithm omitted is still valid in the
region of critical fluctuations9

F(D) ∼ −ξ−D(ǫ), (38)

the coherence length is a power function of the reduced temperature: ξ(ǫ) ∼
ǫ−ν . The corresponding formula for the fluctuation heat capacity can be
rewritten as

δC ∼ − ∂2F

∂ǫ2
∼ ǫDν−2. (39)

As was demonstrated in the Introduction, the GL functional approach,
where the temperature dependence of ξ(T ) is determined only by the dif-
fusion of the electrons forming Cooper pair, ξ(ǫ) ∼ ǫ−1/2 and δC ∼ ǫ−1/2.

9 The logarithm in (25) is essential for the case D = 2. This case will be discussed
later.
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Fig. 2. Examples of diagrams for the fluctuation contribution to b.

These results are valid for the GL region ( |ǫ| & Gi) only, where the inter-
action between fluctuations can be neglected. In the immediate vicinity of
the transition (so-called critical region), where |ǫ| . Gi, the interaction of
fluctuations becomes essential. Here fluctuation Cooper pairs affect the co-
herence length themselves, changing the temperature dependencies of ξ(ǫ)
and δC(ǫ). In order to find the heat capacity temperature dependence in the
critical region one would have to calculate the functional integral with the
fourth order term, accounting for the fluctuation interaction, as was done
for 0D case. For the 3D case up to now it is only known how to calculate
a Gaussian type functional integral. This was done above when, for the GL
region, we omitted the fourth order term in the free energy functional (16).

The first evident step in order to include in consideration of the critical
region would be to develop a perturbation series in b 10. Any term in this
series has the form of a Gaussian integral and can be represented by a dia-

gram, where the solid lines correspond to the correlators
〈
Ψ(r)Ψ∗(r

′

)
〉
. The

”interactions ” b are represented by the points where four correlator lines
intersect (see Fig. 2).

This series can be written as

C ∼
∑

n=0

cn

(
Gi(D)

ǫ

) 4−D
2 n

.

For ǫ & Gi it is enough to keep only the first two terms to reproduce the per-
turbational result obtained above. For ǫ . Gi all terms have to be summed.
It turns out that the coefficients cn can be calculated for the space dimen-
sionality D → 4 only. In this case the complex diagrams from Fig. 2 (like the
diagram similar to an envelope) are small by the parameter ε = 4 −D and

10 Let us mention that this series is an asymptotic one, i.e. it does not converge
even for small b. One can easily see this for small negative b, when the integral
for the partition function evidently diverges. This is also confirmed by the exact
0D solution (22).



Fluctuation Phenomena in Superconductors 17

in order to calculate cn it is sufficient to sum the relatively simple ”parquet”
type diagrammatic series. Such a summation results in the substitution of the
”bare” vertex b by some effective interaction b̃ which diminishes and tends to
zero when the temperature approaches the transition point. Such a method
was originally worked out in quantum field theory [15,16,17]. For the problem
of a phase transition such a summation was first accomplished in [18].

Instead of a direct summation of the diagrams it is more convenient and
physically obvious to use the method of the renormalization group. In the case
of quantum field theory this method was known long ago [19,20]. For phase
transition theory it was proposed in [18,21] but the most simple and evident
formulation was presented by Wilson [22]. The idea of the renormalization
group method consists in separating the functional integration over ”fast”
(ψ|k|>Λ) and ”slow”(ψ|k|<Λ) fluctuation modes. If the cut off Λ is large enough
the fast mode contribution is small and the integration over them is Gaussian.
After the first integration over fast modes the functional obtained depends
on the slow ones only. They can, in their turn, be divided on slow (|k| < Λ1)
and fast (Λ1 < |k| < Λ), and the procedure can be repeated. Moving step by
step ahead in this way one can calculate the complete partition function.

As an example of the first step of renormalization, the partition function
calculation below Tc can be recalled. There we separated the order parameter
into the space-independent part Ψ̃ (”slow” mode) and the fluctuation part
ψ(r) (”fast” mode) which was believed to be small in magnitude. Being in
the GL region it was enough to average over the fast variables just once,
while in the critical region the renormalization procedure requires subsequent
approximations.

The cornerstone of the method consists in the fact that in the critical
region at any subsequent step the free energy functional has the same form.
For D close to 4 this form coincides with the initial free energy GL functional
but with the coefficients aΛ and bΛ depending on Λ. We will perform these
calculations by the method of mathematical induction. Let us suppose that
after the (n− 1)−st step the free energy functional has the form:

F [Ψ̃Λn−1 ] = FN,Λn−1 +

∫
dV
{
aΛn−1 |Ψ̃Λn−1 |2+ (40)

+
bΛn−1

2
|Ψ̃Λn−1 |4 +

1

4m
|∇Ψ̃Λn−1 |2

}
.

Writing Ψ̃Λn−1 in the form Ψ̃Λn−1 = Ψ̃Λn +ψΛn and choosing Λn close enough
to Λn−1 it is possible to make ψΛn so small, that one can restrict the func-
tional to the quadratic terms in ψΛn only and perform the Gaussian inte-
gration in complete analogy with (34). The important property of the spaces
with dimensionalities close to 4 is the possibility to choose Λn ≪ Λn−1 and

still to have ψΛn ≪ Ψ̃Λn . In this case Ψ̃Λncan be taken as coordinate inde-
pendent, and one can use the result directly following from (34):
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F [Ψ̃Λn ] = FN,Λn−1 +

∫
dV

{
aΛn |Ψ̃Λn |2 +

bΛn

2
|Ψ̃Λn |4 +

1

4m
|∇Ψ̃Λn |2

}

−T
2

∑

Λn<|k|<Λn−1

{
ln

πTc

(3bΛn |Ψ̃Λn |2 + aΛn + k2

4m )
+

ln
πTc

bΛn |Ψ̃Λn |2 + aΛn + k2

4m

}
. (41)

Expanding the last term in (41) in a series in Ψ̃Λn one can get for F [Ψ̃Λn ] the
same expression (40) with the substitution of Λn−1 → Λn. From (41) follows
that

Fn,Λn = Fn,Λn−1 − T
∑

Λn<|k|<Λn−1

ln
πTc

(aΛn + k2

4m)
,

aΛn = aΛn−1 + 2T
∑

Λn<|k|<Λn−1

bΛn

(aΛn + k2

4m )
(42)

bΛn = bΛn−1 − 5T
∑

Λn<|k|<Λn−1

b2Λn

(aΛn + k2

4m )2
.

Passing to a continuous variable Λn → Λ one can rewrite these recursion
equations as the set of differential equations:

∂F (Λ)

∂Λ
= −TµDΛ

D−1 ln
πTc

(a(Λ) + Λ2

4m )
, (43)





∂a(Λ)
∂Λ = −2TµD

b(Λ)ΛD−1

(a(Λ)+ Λ2

4m )

∂b(Λ)
∂Λ = 5TµD

b2(Λ)ΛD−1

(a(Λ)+ Λ2

4m )2

. (44)

These renormalization group equations are evidently valid for small enough
Λ only, where the transition from discrete to continuous variables is justified.
This means at least

Λ2/4m≪ Tc0Gi(D). (45)

in order to move away from the first approximation.
Let us recall that in the framework of the Landau theory of phase tran-

sitions the coefficient a(Tc0) = 0 at the transition point and this can be
considered as the MFA definition of the critical temperature Tc0. The same
statement for the function a = a(Λ) in the framework of the renormalization



Fluctuation Phenomena in Superconductors 19

group method can be written as the a(Tc0, Λ ∼ ξ−1) = 0. With the decrease
of Λ the effect of critical fluctuations more and more is taken into account and
the renormalized value of the critical temperature decreases, being defined by
the equation: a(Tc(Λ), Λ) = 0. Finally, after the application of the complete
renormalization procedure, one can define the real critical temperature Tc,
shifted down with respect to Tc0 due to the effect of fluctuations, from the
equation:

a(Tc, Λ = 0) = 0. (46)

It is easy to find this shift in the first approximation. Indeed, let us integrate
the first equation of (44) over Λ in limits [0, ξ−1]. The main contribution to

the integral will be determined by the region where a(Λ) ≪ Λ2

4m . Being far
from the critical point one can assume that the coefficient b = const and then

a(ξ−1) = αδTc =

∫ a(ξ−1)

a(0)

da = −8mTµDb

∫ 1/ξ

0

ΛD−3dΛ.

For the 3D case this gives the shift of the critical temperature δTc due to
fluctuations 11

δT
(3)
c

Tc
∼ −2mb

παξ
= − b

2πTcα2

1

ξ3
= − 7ζ(3)

16π3νTcξ3
= − 8

π

√
Gi(3). (48)

Let us come back to study of properties of the system of equations (44).
One can find its partial solution at T = Tc in the form:

a(Tc, Λ) =
4 −D

4m[5 + (4 −D)]
Λ2 (49)

b(Tc, Λ) =
5

16m2TµD

4 −D

[5 + (4 −D)]2
Λ4−D.

These power solutions are correct in the domain of validity of the system (44)
itself, i.e. for small enough Λ defined by the condition (45). Nevertheless, in
a space of dimensionality close to 4 (D = 4 − ε, ε ≪ 1) it is possible to
extend their validity up to the GL region and to observe their crossover to

11 In the same way we can analyze the shift of the critical temperature in 2D case
too and obtain:

δT
(2)
c

Tc

= −2Gi(2) ln
1

4Gi(2)
. (47)

As we will show below both 3D and 2D results for δTc coinside with those
obtained by the analysis of the effect of fluctuations on superconducting density
in the perturbation approach.
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the GL results: a(Tc) = 0; b(Tc) = b0 = const. Indeed, in this case, due to
proportionality of a(Λ) to ε→ 0, one can omit it in the denominators of the
system (44) and to write down the solution for b(Λ) in the form

b−1(Tc, Λ) = b−1
0 +

80m2

(4 −D)
TµD(ΛD−4 − ξ4−D). (50)

We have chosen the constant of integration as b−1
0 − 80m2

(4−D)TµDξ
4−D in order

to match the renormalization group and GL solutions at the value of Λ =
Λmax ∼ ξ−1.

Now let us pass to study of the function a(T,Λ) for the same interesting
case of space dimensionality D → 4 for temperatures slightly different ( but
still close enough) from Tc, where one can write

a(T,Λ) = a(Tc, Λ) + α(Tc, Λ)Tcǫ.

The first term on the right hand side is determined by Eq.(49). In order to
determine α(Tc, Λ) let us expand the first equation in (44) in terms of ǫ

∂α(Tc, Λ)

∂Λ
= 2TµD

b(Tc, Λ)ΛD−1

(
a(Tc, Λ) + Λ2

4m

)2α(Tc, Λ). (51)

For

Λ2/4m & α(Tc, Λ)Tcǫ (52)

we can again use the solution (50) for b(Tc, Λ) and omit a(Tc, Λ) in the
denominator of (51). The constant of integration, appearing in the process
of solution of (51), is chosen in accordance with the condition that for Λ =
Λmax ∼ ξ−1 we match α(Tc, Λ) = α(Tc0, ξ

−1) = α0 with the GL theory:

α(Tc, Λ) = α0

[
1 +

80m2b0
(4 −D)

TµD(ΛD−4 − ξ4−D)

]−2/5

. (53)

The condition (52) can be written as Λ & ξ−1(T ), where ξ(T ) is the
generalized coherence length, determined by the equation:

ξ−2(T ) = 4mα
(
Tc, ξ

−1(T )
)
Tcǫ.

Such a definition is valid at any temperature. For example, far enough from
the critical point, in the GL region, α

(
Tc, ξ

−1(T )
)

= α0 and one reproduces
the result (3). Vice versa, in the critical region the main contribution on the
right hand side of the Eq. (53) results from the second term containing ΛD−4

so, putting ξ−1(T ) = Λ, one can rewrite the self-consistent equation for ξ(T )
and get

ξ(T ) = (4m)(1−D)/2 4 −D

20b0TµD

√
Tcα0

ǫ−ν , (54)
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where 2ν = [1 − (4 −D)/5]−1. As was already mentioned, strictly speaking
this result was carried out for ε = 4 −D ≪ 1, so it is confident up to the
first in ε expansion only: ν = 1/2 + ε/10. Nevertheless extending it to ε = 1
(D = 3) one can obtain ν3 = 3/5.

Let us pass to the calculation of the critical exponent of the heat capacity
in the immediate vicinity of the transition. For this purpose one can calculate
the second derivative of equation (43) with respect to ǫ:

∂C(Λ)

∂Λ
= T 2µD

ΛD−1α2(Λ)

(α(Λ)T cǫ+
Λ2

4m)2
(55)

The heat capacity renormalized by fluctuations has the value C(Λ = 0) which
is the result of integration over all fluctuation degrees of freedom. Carrying
out the integration of (55) over all Λ . ξ−1 one can divide the domain of
integration on the right hand side in two: Λ . ξ−1(T ) and ξ−1(T ) . Λ .

ξ−1. In the calculation of the integral over the region ξ > Λ & ξ−1(T ) the

inequality α(Λ)T cǫ≪ Λ2

4m holds, and the function α(Λ) can be omitted in the
denominator. In the numerator of (55) one can use for α(Λ) the solution (53).
In the region Λ . ξ−1(T ) one has to use the partial solution (49) for α(Λ)
and can find that the contribution of this domain has the same singularity
as that from the region Λ & ξ−1(T ), but with a coefficient proportional to
(4 −D)2 = ε2, hence negligible in our approximation. The result is:

C(Λ = 0) = α2
0[(4mT )2µD]

1
5

[
4

5

(4 −D)

b0

]4/5
5

4 −D
ξ

4−D
5 (T ). (56)

Substituting the expression for ξ(T ) one can finally find

C = 212/5α2
0[5µD

m2T 2

b40(4 −D)
]
1
5 ǫ−α, (57)

confirming the validity of the scaling hypothesis and the relation (39). The
critical exponent in (57) is

α =
(4 −D)

10[1 − (4 −D)/5]
≈ ε/10.

One can see that generally speaking the critical exponents ν and α appear
in the form of series in powers of ε. More cumbersome calculations permit
finding the next approximations for them in ε = 4 − D. Nevertheless it is
worth mentioning that even the first approximation, giving ν3 = 3/5 and
α3 = 1/10 for ε = 1, is already weakly affected by the following steps of the
expansion in powers of ε [23].

One can notice that the exercise performed in this Section has more aca-
demic than practical character. Indeed, the results obtained turn out appli-
cable to the analysis of the critical region of a 3D superconductor only if
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Gi is so small that the theoretical predictions are hardly experimentally ob-
servable. Nevertheless we demonstrated the RG method which helps to see
the complete picture of the fluctuations manifestation in the vicinity of the
critical temperature.

2.4 Fluctuation diamagnetism

Qualitative preliminaries. In this Section we discuss the effect of fluctua-
tions on the magnetization and the susceptibility of a superconductor above
the transition temperature. Being the precursor effect for the Meissner dia-
magnetism, the fluctuation induced magnetic susceptibility has to be a small
correction with respect to the diamagnetism of a superconductor but it can
be comparable to or even exceed the value of the normal metal diamagnetic
or paramagnetic susceptibility and can be easily measured experimentally.
As was already mentioned in the Introduction the temperature dependence
of the fluctuation induced diamagnetic susceptibility can be qualitatively an-
alyzed on the basis of the Langevin formula, but some precautions in the case
of low dimensional samples have to be made.

As regards the 3D case we would like just to mention here that Exp.(12),
presented in terms of ξ(T ), has a wider region of applicability than the GL
one. Namely, the scaling arguments are valid for diamagnetic susceptibility
too and one can write the general relation

χ(3) ∼ −e2Tξ(T ) ∼ −χP ǫ
−1/2

{
1, ǫ & Gi(

ǫ
Gi

)1/2−ν
, ǫ . Gi

, (58)

which is valid in the region of critical fluctuations in the immediate vicin-
ity of the transition temperature too. Here, in order to define the scale of
fluctuation effects, we have introduced the Pauli paramagnetic susceptibility
χP = e2vF /4π

2. Moreover, the Langevin formula permits us to extend the
estimation of the fluctuation diamagnetic effect to the other side beyond the
GL region: to high temperatures T ≫ Tc. The coherence length far from the
transition becomes a slow function of temperature. In a clean superconductor,
far from Tc, ξ(T ) ∼ vF /T, so one can write

χ(3c)(T ≫ Tc) ∼ −e2Tξ(T ) ∼ −χP (59)

and see that the fluctuation diamagnetism turns out to be of the order of the
Pauli paramagnetism even far from the transition. More precise microscopic
calculations of χ(3)(T ≫ Tc) lead to the appearance of ln2(T/Tc) in the
denominator of (59).

In the 2D case Exp.(12) is applicable for the estimation of χ(2) in the case
when the magnetic field is applied perpendicular to the plane, permitting 2D
rotations of fluctuation Cooper pairs in it:

χ(2c)(T ) ∼ e2
n

m
< R2 >∼ e2Tξ2(T ) ∼ −χP

EF

T − Tc
. (60)
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This result is valid for a wide range of temperatures and can exceed the Pauli
paramagnetism by factor EF

T even far from the critical point (we consider the
clean case here).

For a thin film (d ≪ ξ(T )) perpendicular to the magnetic field the fluc-
tuation Cooper pairs behave like effective 2D rotators, and the formula (12)
still can be used, though one has to take into account that the susceptibility
in this case is calculated per unit square of the film. So for the realistic case
(from the experimental point of view) of the dirty film, one has just use in
(60) the expression (6) for the coherence length:

χ(2d) ∼
e2T

d
ξ2(T ) ∼ −χP

(
l

d

)
Tc

T − Tc
. (61)

Let us discuss now the important case of a layered superconductor (for
example, a high temperature superconductor). It is usually supposed that
the electrons move freely in conducting planes separated by a distance s.
Their motion in the perpendicular direction has a tunneling character, with
effective energy J . The related velocity and coherence length can be estimated
as vz = ∂E(p)/∂p⊥ ∼ J/p⊥ ∼ sJ and ξz,(c) ∼ sJ/T for clean case. In dirty
case the anisotropy can be taken into account in the spirit of formula (6)
yielding ξz,(d) ∼

√
D⊥/T ∼ sJ

√
τ/T .

We start from the case of a weak magnetic field applied perpendicular
to layers. The effective area of a rotating fluctuation pair is ξx(ǫ)ξy(ǫ). The
density of Cooper pairs in the conducting layers (10) has to be modified for
the anisotropic case. Its isotropic 3D value is proportional to 1/ξ(ǫ), that
now has to be read as ∼ 1/

√
ξx(ǫ)ξy(ǫ). The anisotropy of the electron

motion leads to a concentration of fluctuation Cooper pairs in the conduct-
ing layers and hence, to an effective increase of the Cooper pairs density of√
ξx(ǫ)ξy(ǫ)/ξz(ǫ) times its isotropic value. This increase is saturated when

ξz(ǫ) reaches the interlayer distance s, so finally the anisotropy factor appears
in the form

√
ξx(ǫ)ξy(ǫ)/max{s, ξz(ǫ)} and the square root in its numerator

is removed in the Langevin formula (12), rewritten for this case

χ(layer,⊥)(ǫ,H → 0) ∼ −e2T ξx(ǫ)ξy(ǫ)

max{s, ξz(ǫ)}
. (62)

The existence of a crossover between the 2D and 3D temperature regimes
in this formula is evident: as the temperature tends to Tc the diamagnetic
susceptibility temperature dependence changes from 1/ǫ to 1/

√
ǫ . This hap-

pens when the reduced temperature reaches its crossover value ǫcr = r
(ξz(ǫcr) ∼ s). The anisotropy parameter

r =
4ξ2z(0)

s2
=

J 2

T

{ π τ
4 , T τ ≪ 1

7ζ(3)
8π2T , T τ ≫ 1

(63)

plays an important role in the theory of layered superconductors 12.
12 We use here a definition of r following from microscopic theory (see Section 6).
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It is interesting to note that this intrinsic crossover, related to the spec-
trum anisotropy, has an opposite character to the geometric crossover which
happens in thick enough films when ξ(T ) reaches d . In the latter case the
characteristic 3D 1/

√
ǫ − dependence taking place far enough from Tc (where

ξ(T ) ≪ d), is changed to the 2D 1/ǫ law (see (61)) in the immediate vicin-
ity of transition ( where ξ(T ) ≫ d) [24]. It is worth mentioning that in a
strongly anisotropic layered superconductor the fluctuation-induced suscep-
tibility may considerably exceed the normal metal dia- and paramagnetic
effects even relatively far from Tc [25,26].

Let us consider a magnetic field applied along the layers. First it is nec-
essary to mention that the fluctuation diamagnetic effect disappears in the
limit J ∼ ξz → 0. Indeed, for the formation of a circulating current it is
necessary to tunnel twice, so

χ(layer,‖) ∼ −e2T ξ2z
max{s, ξz(T )} ∼ −χP (

sJ

vF
)

J/T√
ǫmax{√ǫ, J/T } .

In the general case of an anisotropic superconductor, choosing the z axis
along the direction of magnetic field H , the following extrapolation of the
results obtained may be written

χ ∼ −e2T ξ2x(ǫ)ξ2y(ǫ)

max{a, ξx(ǫ)}max{b, ξy(ǫ)}max{s, ξz(ǫ)}
. (64)

This general formula is useful for the analysis of the fluctuation diamagnetism
of anisotropic superconductors or samples of some specific shape: granular,
quasi-1D, quasi-2D, and 3D. It is also applicable to the case of a thin film
(d≪ ξz(ǫ)) placed perpendicular to the magnetic field: it is enough to replace
ξz(ǫ) by d in (64). Nevertheless the formula (64) cannot be applied to the
cases of thin films in parallel fields, wires and granules. In those cases the
Langevin formula (12) can still be used with the replacement of

〈
R2
〉
→ d2 :

χ(D) ∼ −χP

(
T

vF

)
ξ2−DdD−1 ∼ ǫD/2−1.

The magnetic field dependence of the fluctuation part of free energy in
these cases is reduced only to account for the quadratic shift of the critical
temperature versus magnetic field.

For 3D systems or in the case of a film in a perpendicular magnetic field
the critical temperature depends on H linearly, while the magnetic field de-
pendent part of the free energy for H ≪ H∗

c2(−ǫ) (the line H∗
c2(−ǫ) is mirror-

symmetric to the Hc2(ǫ) with respect to y-axis passing through T = Tc) is
proportional to H2. This is why the magnetic susceptibility is determined by
Eq.(64) for weak enough magnetic fields H ≪ Φ0/[ξx(ǫ)ξy(ǫ)] = Hc2(ǫ) ≪
Hc2(0) only. In the vicinity of Tc these fields are small enough.
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Zero-dimensional diamagnetic susceptibility. For quantitative analysis
of the fluctuation diamagnetism we start by writing down the GL functional
for the free energy (see Exp.(16)) in the presence of the magnetic field

F [Ψ(r)] = Fn +

∫
dV

{
a|Ψ(r)|2 +

b

2
|Ψ(r)|4 +

1

4m
| (−i∇−2eA)Ψ(r)|2+

+
B2

8π
− H ·B

4π

}
. (65)

where A is vector potential. As long as fluctuation effects are comparatively
small, the average magnetic field in the metal B may be assumed to be equal
to the external field H. Thus we omit the last two terms in (65) (see later
on).

The fluctuation contribution to the diamagnetic susceptibility in the sim-
plest case of a ”zero-dimensional” superconductor (spherical superconducting
granule of diameter d≪ ξ(ǫ)) was considered by V.Shmidt [11]. In this case
the order parameter does not depend on the space variables and the free
energy can be calculated exactly for all temperatures including the critical
region in the same way as was done for the case of the heat capacity in the
absence of a magnetic field. Formally the effect of a magnetic field in this
case is reduced to the renormalization of the coefficient a, or, in other words,
to the suppression of the critical temperature. This is why one can use the
same formula (22) for the partition function with the critical temperature Tc

shifted by magnetic field as13:

Tc(H) = Tc(0)(1 − 4π2ξ2

Φ2
0

< A2 >). (66)

Here Φ0 = π
e is the magnetic flux quantum and < ..... > means the averaging

over the sample volume.
Such a trivial dependence of the properties of 0D samples on magnetic

field immediately allows one to understand its effect on the heat capacity
of a granular sample. Indeed, with the growth of the field the temperature
dependence of the heat capacity presented in Fig. 1 just moves in the direction
of lower temperatures.

In the GL region Gi(0) . ǫ one can write the asymptotic expression (23)
for the free energy:

F(0)(ǫ,H) = −T ln
π

α(ǫ+ 4π2ξ2

Φ2
0

< A2 >)
.

In the case of a spherical particle the relation < A2 >= 1
10H

2d2 can be used
in full analogy with the calculation of the moment of inertia of a solid sphere.

13 Let us stress the difference between the H2 shift of the critical temperature for
a zero-dimensional granule and the linear shift in the case of bulk material.
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In this way an expression for the 0D fluctuation magnetization valid for all
fields H ≪ Hc2(0) can be found:

M(0)(ǫ,H) = −∂F(0)(ǫ,H)

∂H
= −T

2π2ξ2

5Φ2
0
d2

(ǫ+ π2ξ2

5Φ2
0
H2d2)

H. (67)

One can see that the fluctuation magnetization turns out to be negative
and linear up to some crossover field, which can be called the temperature
dependent upper critical field of the granule Hc2(0)(ǫ) ∼ Φ0

dξ(ǫ) = ξ
dHc2(0)

√
ǫ

at which it reaches a minimum. At higher fields Hc2(0)(ǫ) . H ≪ Hc2(0) the
fluctuation magnetization of the 0D granule decreases as 1/H. In the weak
field region H ≪ Hc2(0)(ǫ) the diamagnetic susceptibility is:

χ(0)(ǫ,H) = −12πTξ20
5Φ2

0d

1

ǫ
≈ −2 · 102χP

(
ξ

d

)
1

ǫ

which coincides with our previous estimate in its temperature dependence
but the numerical factor found is very large. Let us underline that the tem-
perature dependence of the 0D fluctuation diamagnetic susceptibility turns
out to be less singular than the 0D heat capacity correction: ǫ−1 instead of
ǫ−2.

The expression for the fluctuation part of free energy (28) is also applicable
to the cases of a wire or a film placed in a parallel field: as was already
mentioned above all its dependence on magnetic field is manifested by the
shift of the critical temperature (66). In the case of the wire in a parallel
field one has to choose the gauge of the vector-potential A =1

2H× r yielding〈
A2
〉
(wire,‖) = H2d2

32 (the calculation of this average is analogous to that of

the moment of inertia of a solid sphere). For a wire in a perpendicular field, or
a film in a parallel field, the gauge has to be chosen in the form A =(0, Hx, 0)
(to avoid the appearance of currents perpendicular to surface). One can find〈
A2
〉
(wire,⊥)

= H2d2

16 for a wire and
〈
A2
〉
(film,‖) = H2d2

12 for a film.

Calculating the second derivative of Eq.(28) with the appropriate mag-
netic field dependencies of the critical temperature one can find the following
expressions for the diamagnetic susceptibility:

χ(D)(ǫ) = −2π
ξT

vF
χP





1√
ǫ
, wire in parallel field

2√
ǫ
, wire in perpendicular field

d
3ξ ln 1

ǫ , film in parallel field

. (68)

GL treatment of fluctuation magnetization. Let us analyze quantita-
tively, on the basis of the GL functional, the temperature and field depen-
dencies of the fluctuation magnetization. We will carry on the discussion for
a layered superconductor. As was already mentioned this system has a great
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practical importance because of its direct applicability to high temperature
superconductors, where the fluctuation effects are very noticeable. Moreover,
the general results obtained will allow us to analyze 3D and 2D situations
as limiting cases. The effects of a magnetic field are more pronounced for
perpendicular orientation, so let us consider first this case.

The generalization of the GL functional for a layered superconductor
(Lawrence-Doniach (LD) functional [27]) in a perpendicular magnetic field
can be written as

FLD [Ψ ] =
∑

l

∫
d2r

(
a |Ψl|2 +

b

2
|Ψl|4 +

1

4m

∣∣(∇‖ − 2ieA‖
)
|Ψl

∣∣2

+J |Ψl+1 − Ψl|2
)
, (69)

where Ψl is the order parameter of the l−th superconducting layer and the
phenomenological constant J is proportional to the Josephson coupling be-
tween adjacent planes. The gauge with Az = 0 is chosen in (69). In the
immediate vicinity of Tc the LD functional is reduced to the GL one with
the effective mass M = (4J s2)−1 along c-direction, where s is the inter-layer
spacing. One can relate the value of J to the coherence length along the
c-direction: J = 2αTcξ

2
z/s

2. Since we are dealing with the GL region the
fourth order term in (69) can be omitted.

As it is well known the Landau representation is the most appropriate for
problems related with the motion of a charged particle in a uniform magnetic
field. The fluctuation Cooper pair wave function φnkz (r) can be written as
the product of a plane wave propagating along the magnetic field direction
and a Landau state wave function. Let us expand the order parameter Ψl(r)
on the basis of these eigenfunctions:

Ψl(r) =
∑

n,kz

Ψn,kzφnkz (r) exp(ikzl), (70)

where n is the quantum number related with the degenerate Landau state
and kz is the momentum component along the direction of the magnetic field.
Substituting this expansion into (69) one can find the LD free energy as a
functional of the Ψn,kz coefficients:

FLD [Ψn,kz ] =
∑

n,kz

{
αTcǫ+

H

2mΦ0

(
n+

1

2

)
+J (1 − cos(kzs))

}
|Ψn,kz |2.(71)

In complete analogy with the case of an isotropic spectrum the functional
integral over the order parameter configurations Ψn,kz in the partition func-
tion can be reduced to a product of ordinary Gaussian integrals, and the
fluctuation part of the free energy in a magnetic field takes the form:

F (ǫ,H) = −2πSH

Φ0
T
∑

n,kz

ln
πT

αTcǫ+ H
2mΦ0

(
n+ 1

2

)
+ J (1 − cos(kzs))

.(72)
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Here the summation over the degenerate states of each Landau level was
performed (S is the sample cross-section) and results in appearance of the
number of particle states (2πHS/Φ0) with the definite quantum numbers n
and kz. The summation over n has to be performed through all occupied
states, i.e. the upper limit of the sum is N ∼ 2mΦ0EF /H.

In the limit of weak fields one can carry out the summation over the
Landau states by means of the Euler-Maclaurin’s transformation

N∑

n=0

f(n) =

∫ N+1/2

−1/2

f(n) − 1

24

[
f

′

(N + 1/2)− f
′

(−1/2)
]

and obtain

F (ǫ,H) = F (ǫ, 0)+
πSTH2

24mΦ2
0

∫ π/s

−π/s

N sdkz

2π

{
1

αTcǫ+J (1 − cos(kzs))

}
.(73)

Here N is the total number of layers. After the momentum integration one
gets:

F (ǫ,H) = F (ǫ, 0) +
πV H2

24mαsΦ2
0

1√
ǫ(ǫ+ r)

with the anisotropy parameter defined as14

r =
2J
αT

=
4ξ2z(0)

s2
. (74)

The magnetic susceptibility in a weak field turns out [28,29] to be

χ(layer,⊥) = −e
2T

3πs

ξ2xy√
ǫ(ǫ+ r)

. (75)

These results confirm the qualitative estimation (62) additionally providing
the exact value of the numerical coefficient and the temperature dependence
in the crossover region. In the limit r ≫ ǫ Exp.(75) transforms into the
diamagnetic susceptibility of the 3D anisotropic superconductor [30].

14 Let us stress the difference between J and J in the two definitions (63) and
(74) of the anisotropy parameter r. The first one was introduced as the electron
tunneling matrix element, while the second one enters in the LD functional as
the characteristic Josephson energy for the order parameter. Later on, in the
framework of the microscopic theory, it will be demostrated that, in accordance
with our qualitative definition, r ∼ J 2, while J turns out to be proportional to J 2

too. In the dirty case it depends on the relaxation time of the electron scattering
on impurities: J ∼ αJ 2 max{τ, 1/T}. Hence both definitions (63), appearing
in the qualitative consideration, and (74), following from the LD model, are
consistent.
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For a film of thickness d the integral over kz in Exp.(73) has to be replaced
by a summation over the discrete kz and when ξz(T ) ≫ d only the term with
kz = 0 has to be taken into account:

χ(film,⊥) = −e
2T

3πd

ξ2xy

ǫ
. (76)

Note that these formulas predict a nontrivial increase of diamagnetic suscep-
tibility for clean metals [29]. The usual statement that fluctuations are most
important in dirty superconductors with a short electronic mean free path
does not hold in the particular case of susceptibility because here ξ turns out
to be in the numerator of the fluctuation correction.

Now we will demonstrate that, besides the crossovers in its tempera-
ture dependence, the fluctuation induced magnetization is a nonlinear func-
tion of magnetic field too, and these nonlinearities, different for various
dimensionalities, take place at relatively low fields. This, strong in com-
parison with the expected scale of Hc2(0), manifestation of the nonlinear
regime in fluctuation magnetization and hence, field dependent fluctuation
susceptibility, was the subject of the intensive debates in early seventies
[30,31,32,33,34,35,36,37,38,39] (see also the old but excellent review of W.J.
Skocpol and M. Tinkham [40]) and after the discovery of HTS [41,42,43,44]
( see also very recent detailed essay of T.Mishonov and E.Penev [45] with
references there). We will mainly follow here the paper of Buzdin et al. [46],
dealing with the fluctuation magnetization of a layered superconductor, which
permits observing in a unique way all variety of the crossover phenomena in
temperature and magnetic field.

Let us go back to the general expression (72) and evaluate it without
taking the magnetic field to small. The difficulty in dealing with it consists
in the divergence of the sum over Landau levels n. This divergence can be
regularized (see [45,47]), but let us observe that in order to calculate the
magnetization we must know the magnetic field dependent part of the free
energy only. So a very convenient method to bypass the divergence problem
[48] is to calculate the difference F (H)−F (0), turning the sum over Landau
states in F (ǫ, 0) into an integral and then, in its turn, turning this integral
into a sum of integrals over the unit length intervals x ∈ [n− 1/2, n+ 1/2].
Then

F (ǫ, 0) = − lim
H→0

2πV H

Φ0
T

∫ π/s

−π/s

dkz

2π

∞∑

n=0

∫ 1/2

−1/2

dx×

× ln
πT

αTcǫ+ H
2mΦ0

(
x+ n+ 1

2

)
+J (1 − cos(kzs))

.
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and by introducing the dimensionless variable 15

h =
H

Hc2(0)
, Hc2(0) = 2mαTc/e = Φ0/2πξ

2
xy, (77)

one can write

F (ǫ,H) − F (ǫ, 0) = (78)

= − TV

2πsξ2xy

h

∫ π

−π

dz
∑

n=0

∫ 1/2

−1/2

dx ln
(2n+ 1 + 2x)h+ r/2(1 − cos z) + ǫ

(2n+ 1)h+ r/2(1 − cos z) + ǫ
.

Performing the integrations over z and x in (78) and differentiating with
respect to h we finally obtain a very convenient general expression for the
fluctuation magnetization in a layered superconductor:

M(ǫ,H) =
T

Φ0s

∞∑

n=0

{
n ln

ϕ(Rn + 1)

ϕ(Rn)
+

ln
ϕ(Rn + 1)

ϕ(Rn + 1/2)
− n+ 1/2√

(Rn + 1/2)2 − ρ2

}
(79)

with ϕ(x) = x+
√
x2 − ρ2, Rn = n+ ǫ/2h+ρ and ρ = r/2h. The sum in (79)

converges as 1/n2 and it provides a volume magnetization expression that
can be compared with experiment.

Let us comment on the different crossovers in the M(ǫ,H) field depen-
dence analyzing the general formula (79). Let us fix the temperature ǫ≪ r. In
this case the c-axis coherence length exceeds the interlayer distance (ξz ≫ s
) and in the absence of a magnetic field the fluctuation Cooper pairs motion
has a 3D character. Supposing the magnetic field to be not too high (h≪ r)
we may perform an expansion in (79) in1/ρ and obtain

M(3)(ǫ ≪ r, h≪ r) =
T
√

2h1/2

Φ0ξz
×

∑

n

{
(n+ 1)

(
n+ 1 +

ǫ

2h

)1/2

−

−n
(
n+

ǫ

2h

)1/2

− 3

2

(n+ 1 + 2ǫ
3h )√

n+ 1
2 + ǫ

2h



 . (80)

For weak fields (h ≪ ǫ) the magnetization grows linearly with magnetic
field, justifying our preliminary qualitative results. Nevertheless, this linear

15 Let us remind that the exact definition of Hc2(0) contains the numerical coeffi-
cient A(0) (see footnote 3).
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growth is changed to the nonlinear 3D high field regime M ∼
√
H already

in the region of a relatively small fields Hc2(ǫ) . H (ǫ . h). The further
increase of magnetic field leads to the next crossover in the magnetization field
dependence at h ∼ r . However the Exp.(80) was obtained in the assumption
h ≪ r as an expansion over 1/ρ, and it does not work any more. Handling
with the Hurvitz zeta-function the summation in (79) for 3D case can be
carried out for an arbitrary field [34]:

M(3)(ǫ ≪ r, h) = 3
T

Φ0s

(
2

r

)1/2 √
h× (81)

[
ζ

(
−1

2
,
1

2
+

ǫ

2h

)
− ζ

(
1

2
,
1

2
+

ǫ

2h

)
ǫ

6h

]
.

One can see from this formula that for large fields the magnetization saturates
at the value M∞ [49]:

M(h≫ r) →M∞ = − ln 2

2

T

Φ0s
= −0.346

T

Φ0s
, (82)

that is a typical for 2D superconductors. Therefore at h ∼ r we have a
3D → 2D crossover in M(H) behavior in spite of the fact that all sizes
of fluctuation Cooper pair exceed considerably the lattice parameters. The
effective ”bidimensionalization” of the fluctuations is related to the effect of
a strong magnetic field which ”freezes out” the rotations along its direction.
Let us stress that this crossover occurs in the region of already strongly non-
linear dependence of M(H) and therefore for a rather strong magnetic field
from the experimental point of view in HTS.

Fixing the temperature ǫ≫ r in the formula (79) one can find the general
formula for 2D fluctuation regime [45]:

M(2)(ǫ ≫ r, h) =
T

Φ0s

{
lnΓ

(
1

2
+

ǫ

2h

)
− 1

2
ln (2π)

− ǫ

2h

[
ψ

(
1

2
+

ǫ

2h

)
− 1

]}
, (83)

where Γ (x) is the Euler gamma-function and ψ (x) = d lnΓ (x)/dx is already
cited in Introduction digamma-function. Using (83) one can directly pass
from the linear regime in a weak magnetic field corresponding to (60) to the
saturation of magnetization (82) in strong fields.

Near the line of the upper critical field (hc2(ǫ) = −ǫ) the contribution of
the term with n = 0 in the sum (79) becomes most important and for the
magnetization the expression

−M(h) ∼ h√
(h− hc2)(h− hc2 + r)
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Fig. 3. Schematic representation of the different regimes for fluctuation magneti-
zation in the (H,T) diagram. The line H∗

c2(T ) is mirror-symmetric to the Hc2(T )
line with respect to a y-axis passing through T = Tc. This line defines the crossover
between linear and non-linear behavior of the fluctuation magnetization above Tc.

can be obtained. It contains the already familiar for us ”0D” regime (r ≪
h − hc2 ≪ 1), where the magnetization decreases as −M(h) ∼ 1

h−hc2
(com-

pare with (67)), while for h − hc2 << r the regime becomes ”1D” and the
magnetization decreases slower, as −M(h) ∼ 1√

h−hc2
.

Such an analogy is observed in the next orders in Gi too. In the Ref. [50]
the analogy was demonstrated for the example of the first eleven terms for
the 2D case and nine for the 3D case. Summation of the series of high order
fluctuation contributions to the heat capacity by the Pade-Borel method re-
sulted in its temperature dependence similar to the 0D and 1D cases without
magnetic field. Nevertheless a considerable difference has not be forgotten:
in the 0D and 1D cases no phase transition takes place while in the 2D and
3D cases in a magnetic field a phase transition of first order to the Abrikosov
vortex lattice state occurs.

In conclusion, the fluctuation magnetization of a layered superconductor
in the vicinity of the transition temperature turns out to be a complicated
function of temperature and magnetic field, and it evidently cannot be fac-
torized on these variables. The fit of the experimental data is very sensitive
to the anisotropy parameter r and allows determination of the latter with
a rather high precision [51,52] . In Fig. 4 the successful application of the
described approach to fit the experimental data on YBa2Cu3O7 is shown
[53].

3 Ginzburg-Landau theory of fluctuations in transport

phenomena

The appearance of fluctuating Cooper pairs above Tc leads to the opening
of a ”new channel” for charge transfer. In the Introduction the fluctuation
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Fig. 4. Fluctuation magnetization of a YBaCO123 normalized on
√

H as the
function of temperature in accordance with the described theory shows the crossing
of the isofield curves at T = Tc(0) = 92.3K. The best fit obtained for anisotropy
parameter r=0.09. In the inset the magnetization curves as the function of magnetic
field are reported.

Cooper pairs were treated as carriers with charge 2e while their lifetime τGL

was chosen to play the role of the scattering time in the Drude formula.
Such a qualitative consideration results in the Aslamazov-Larkin (AL) pair
contribution to conductivity (11) (so-called paraconductivity16).

Below we will present the generalization of the phenomenological GL func-
tional approach to transport phenomena. Dealing with the fluctuation order
parameter, it is possible to describe correctly the paraconductivity type fluc-
tuation contributions to the normal resistance and magnetoconductivity, Hall
effect, thermoelectric power and thermal conductivity at the edge of tran-
sition. Unfortunately the indirect fluctuation contributions are beyond the
possibilities of the description by Time-Dependent GL approach and they
will be calculated in the framework of the microscopic theory (see Sections
6-8).

3.1 Time dependent GL equation

In previous Sections we have demonstrated how the GL functional formalism
allows one to account for fluctuation corrections to thermodynamical quan-
tities. Let us discuss the effect of fluctuations on the transport properties of
a superconductor above the critical temperature.

In order to find the value of paraconductivity, some time-dependent gen-
eralization of the GL equations is required. Indeed, the conductivity char-
acterizes the response of the system to the applied electric field. It can be
defined as E = −∂A/∂t but, in contrast to the previous Section, A has to

16 This term may have different origins. First of all, evidently, paraconductivity is
analogous to paramagnetism and means excess conductivity. Another possible
origin is an incorrect onomatopoeic translation from the Russian “paroprovodi-
most’ ” that means pair conductivity
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be regarded as being time dependent. The general non-stationary BCS equa-
tions are very complicated, even in the limit of slow time and space variations
of the field and the order parameter. For our purposes it will be sufficient,
following [66,67,68,69,70,71,72], to write a model equation in the vicinity of
Tc, which in general correctly reflects the qualitative aspects of the order
parameter dynamics and in some cases is exact.

Let us keep in mind the GL functional formalism introduced above. If a
deviation from equilibrium is assumed, then it is no more possible to derive
the GL equations starting from the condition that the variational derivative
of the free energy is zero. At the same time, in the absence of equilibrium
Ψ begins to depend on time. For small deviations from the equilibrium it
is natural to assume that in the process of order parameter relaxation its
time derivative ∂Ψ/∂t is proportional to the variational derivative of the free
energy δF/δΨ∗, which is equal to zero at the equilibrium. But this is not
all: side by side with the normal relaxation of the order parameter the effect
of thermodynamical fluctuations on it has to be taken into account. This
can be done by the introduction the Langevin forces ζ(r, t) in the right-hand
side of equation describing the order parameter dynamics. Finally, gauge
invariance requires that ∂Ψ/∂t should be included in the equation in the
combination ∂Ψ/∂t + 2ieϕΨ, where ϕ is the scalar potential of the electric
field. By concluding all these speculations one can write the model time-
dependent GL equation (TDGL) in the form

− γGL

(
∂

∂t
+ 2ieϕ

)
Ψ =

δF
δΨ∗ + ζ(r, t). (84)

with the GL functional F determined by (16),(65),(69). The dimensionless
coefficient γGL in the left-hand-side of the equation can be related to pair
life-time τGL (2): γGL = αTcǫτGL = πα/8 by the substitution in (84) of the
first term of (16) only17.

Neglecting the fourth order term in the GL functional, equation (84) can
be rewritten in operator form as

[L̂−1 − 2ieγGLϕ(r, t)]Ψ(r, t) = ζ(r, t) (85)

with the TDGL operator L̂ and Hamiltonian Ĥ defined as

L̂ =

[
γGL

∂

∂t
+ Ĥ

]−1

, Ĥ = αTc

[
ǫ− ξ̂2(∇̂ − 2ieA)2

]
. (86)

17 It will be shown below that taking into account the electron-hole asymmetry
leads to the appearance of an imaginary part of γGL proportional to the deriva-
tive ∂ ln(ρv2τ )/∂E|EF ∼ O(1/EF ). This is important for such phenomena as
fluctuation Hall effect or fluctuation thermopower and, having in mind writing
the most general formula, we will suppose γGL = πα/8+iImγGL, where necessary.
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We have introduced here the formal operator of the coherence length ξ̂ to
have the possibility to deal with an arbitrary type of spectrum. For example,
in the most interesting case for our applications to layered superconductors,
the action of this operator is defined by the Exp.(69).

In the absence of an electric field one can write the formal solution of
equation (85) as

Ψ (0)(r, t) = L̂ζ(r, t). (87)

The Langevin forces introduced above must satisfy the fluctuation-dissipation

theorem, which means that the correlator < Ψ
(0)∗
p (t′)Ψ (0)

p (t) > at coinciding
moments of time has to be the same as < |Ψp|2 >, obtained by averaging
over fluctuations in thermal equilibrium. This requirement is fulfilled if the
Langevin forces ζ(r, t) and ζ∗(r, t) are correlated by the Gaussian white-noise
law

< ζ∗(r, t)ζ(r
′

, t
′

) >= 2TReγGLδ(r − r
′

)δ(t− t
′

). (88)

To show it let us restrict ourselves for sake of simplicity to the case of A = 0
and calculate the correlator

< Ψ∗(r, t)Ψ(r′, t) >=< ζ∗(r, t)
̂̃
L∗L̂ζ(r

′

, t) >= (89)

= 2TReγGL

∫
dp

(2π)D
eip(r−r

′
)

∫ ∞

−∞

dΩ

2π
L∗(p, Ω)L(p, Ω).

L(p, Ω) can be found by making the Fourier transform in (86):

L(p, Ω) = (−iγGLΩ + εp)−1, (90)

resulting in

〈Ψ∗(r, t)Ψ(r′, t)〉p = 2TReγGL

∫ ∞

−∞

dΩ

2π

1

γ2
GLΩ

2 + ε2p
=
〈
|Ψp|2

〉
, (91)

where

εp = αTc(ǫ+ ξ̂2p2). (92)

is the Cooper pair energy spectrum.

3.2 Paraconductivity

Let us try to clear up the reason why the simple Drude formula works so
well for complex phenomenon like paraconductivity. For this purpose let us
try to derive the Boltzmann master equation for the fluctuation Cooper pair
distribution function

np(t) =

∫
〈Ψ(r, t)Ψ∗(r′, t)〉 exp(−ip(r − r

′
))d(r − r′). (93)
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Let us recall that in the state of thermal equilibrium n
(0)
p =< |Ψp|2 >= T/εp.

In order to determine the electric field dependence of np let us write its
time derivative using (84)

∂np(t)

∂t
=

∫
d(r − r′)e−ip(r−r′)

[
<
∂Ψ(r, t)

∂t
Ψ∗(r′, t) > + < Ψ(r′, t)

∂Ψ∗(r, t)

∂t
>

]
=

=

∫
d(r − r′)e−ip(r−r′)

[
2
e

i
[ϕ(r) − ϕ(r′)] < Ψ(r, t)Ψ∗(r′, t) > + (94)

+
2

γGL
Re

〈
Ψ(r, t)

δF
δΨ

(r′, t)

〉
+

2

γGL
Re 〈ζ(r, t)Ψ∗(r′, t)〉

]
,

where F is determined by (65). Expressing the scalar potential by the electric

field E one can transform the first term of the last integral into −2eE
∂np

∂p
.

The term with the variational derivative can be evaluated by means of (26)
and expressed in the form − 2

γGL
εpnp. More cumbersome is the evaluation of

the last term, containing the Langevin force. To the first approximation it is
possible to use here the order parameter Ψ (0)(r, t) (see (87)) unperturbed by

the electric field as the convolution L̂ζ(r, t). In this way, using (88) and (89)
we calculate the last average in (94)

2

γGL

∫
d(r − r′)e−ip(r−r′)Re

〈
ζ∗(r, t)L̂ζ(r, t)

〉
=

4T

∫
dp

(2π)D
eip(r−r

′
)Re

∫ ∞

−∞

dΩ

2π
L(p, Ω) =

2T

γGL
=

2

γGL
εpn

(0)
p

and obtain the transport equation

∂np

∂t
+ 2eE

∂np

∂p
= − 2

γGL
εp

(
np − n(0)

p

)
= − 2

τp

(
np − n(0)

p

)
. (95)

In the absence of a magnetic field εp was determined by (92) and the mo-
mentum dependent lifetime, corresponding to the Ginzburg-Landau one, can
be introduced:

τp = γGL/εp =
τGL(ǫ)

1 + ξ2(ǫ)p2
.

Let us stress the appearance of the coefficient 2 on the right hand side of the
equation (95). This means that the real Cooper pair lifetime, characterizing
its density decay, is τp/2 .

The effect of a weak electric field on the fluctuation Cooper pair distribu-
tion function in the linear approximation is determined by

n(1)
p = −eEγGL

εp

∂n
(0)
p

∂p
=

eTγGL

ε3p
E · ∂εp

∂p
. (96)
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Substituting this formula into the expression for the electric current side by
side with the Cooper pair velocity vp = ∂εp/∂p one can find

jα =
∑

p

(2evαnp)=σαβEβ , (97)

where the paraconductivity tensor components are:

σαβ
(D) =

π

4
e2αT

∑

p

vα
pvβ

p

ε3p
. (98)

In the case of isotropic spectrum

σαβ
(D) =

π

4
e2αT

∑

p

vα
pvβ

p

ε3p
=





e2

32ξ

1√
ǫ

3D case,

e2

16d

1

ǫ
2D film, thickness :d≪ ξ,

πe2ξ

16S

1

ǫ3/2
1D wire, cross − section :S ≪ ξ2.

(99)

One can compare this result with that carried out in the Introduction
from qualitative consideration, based on the Drude formula. Those simple
speculations reflect correctly the physics of the phenomenon but were carried
out with the assumption of the momentum independence of the relaxation
time τp, taken as τ0 = π

8(T−Tc)
. As we have just seen, in reality τp decreases

rapidly with increase of the momentum, the excess ”2” appeared in (95)
because of the wave nature of fluctuation Cooper pairs; accounting for this
circumstance results in the precise coefficients of (99), different from (11).

An especially simple form the paraconductivity results in the 2D case,
where, calculated per unit square, it depends on the reduced temperature
only:

σ�(T ) =
e2

16~

T

T − Tc
. (100)

The coefficient in this formula turns out to be a universal constant and is given
by the value ~/e2 = 4.1kΩ. For electronic spectra of other dimensionalities
this universality is lost, and the paraconductivity comes to depend on the
electron mean free path.

Let us compare σ�(T ) with the normal electron Drude part σn = nee
2τ/m

by writing the total conductivity

σ =
e2

~
(
pF l

2π~
+

1

16ǫ
). (101)

One sees that at ǫcr = 0.4/(pF l) ∼ Gi(2c) the fluctuation correction reaches
the value of the normal conductivity. Let us recall that the same order of
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magnitude for the 2D Ginzburg-Levanyuk number was obtained above from
the heat capacity study. We will discuss the region of applicability of (101)
below in Section 8.6.

It is worth mentioning that the results derived here for paraconductivity
are valid with the assumption of weak fluctuations: for the temperature range
ǫ . Gi(D) they are not anymore applicable. Nevertheless, one can see that for
not very dirty films, with p2

F ld≫ 1, a wide region of temperatures Gi(2d) ≪
ǫ≪ 1 exists where the temperature dependence of conductivity is determined
by fluctuations and in this region the localization effects are negligible.

The transport equation (95) was originally derived many years ago by
L.G.Aslamazov and A.I.Larkin [73]. Recently T.Mishonov et al. [74] rederived
Eq.(95) and solved it for np in the case of an arbitrary electric field.

3.3 General expression for paraconductivity

Unfortunately the applicability of the master equation derived is restricted
to weak magnetic fields (H ≪ Hc2(ǫ)). For stronger fields Hc2(ǫ) . H ≪
Hc2(0) the simple evaluation of averages in (94) turns out to be incorrect,
the density matrix has to be introduced and the master equation loses its
attractive simplicity. At the same time, as we already know, namely these
fields, quantizing the fluctuation Cooper pair motion, present special interest.
This is why in order to include in the scheme the magnetic field and frequency
dependencies of the paraconductivity, we return to the analysis of the general
TDGL equation (84) without the objective to reduce it to a Boltzmann type
transport equation.

Let us solve it in the case when the applied electric field can be consid-
ered as a perturbation. The method will much resemble an exercise from a
course of quantum mechanics. To carry out the necessary generality side by
side with a formal simplicity of expressions we will introduce some kind of
subscript {i} which includes the complete set of quantum numbers and time.
By a repeated subscript a summation over a discrete and integration over
continuous variables (time in particular) will be supposed.

We will look for the response of the order parameter to a weak electric
field applied in the form

Ψkz (r,t) = Ψ
(0)
{i} + Ψ

(1)
{i} , (102)

where Ψ
(0)
{i} is determined by (87). Substituting this expression into (85) and

restricting our consideration to linear terms in the electric field we can write

(L̂−1){ik}Ψ
(1)
{k} = 2ieγGLϕ{il}Ψ

(0)
{l}

with the solution in the form

Ψ
(1)
{i} = 2ieγGLL̂{ik}ϕ{kl}L̂{lm}ζ{m}. (103)
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Let us substitute the order parameter (102) in the quantum mechanical ex-
pression for current

j = 2eRe
[
Ψ

(0)∗
{i} v̂{ik}Ψ

(1)
{k} + Ψ

(1)∗
{i} v̂{ik}Ψ

(0)
{k}

]
, (104)

where v̂{ik} is the velocity operator which can be expressed by means of the
commutator of r with Hamiltonian (86):

v̂{ik} = i{Ĥ, r}{ik}. (105)

The second term of (104) can be written by means of a transposed velocity
operator (which is Hermitian) as the complex conjugated value of the first
one:

Ψ
(1)∗
{i} v̂{ik}Ψ

(0)
{k} = (Ψ

(0)∗
{k}

˜̂v{ik}Ψ
(1)
{i})

∗, (106)

which results in

j = 2Re{Ψ (0)∗
{i} (2ev̂{ik})Ψ

(1)
{k}} = (107)

= −8e2Im{γGLL̂
∗
{ki}v̂{il}L̂{lm}ϕ{mn}L̂{np}ζ

∗
{k}ζ{p}}.

Let us average now (107) over the Langevin forces moving the operator L̂∗
{ki}

from the beginning to the end of the trace and using (88). One finds

j = −16Te2Re(γGL)Im{γGLv̂{il}L̂{lm}ϕ{mn}L̂{np}L̂
∗
{pi}}. (108)

Now we choose the representation where the L̂{lm} operator is diagonal (it
is evidently given by the eigenfunctions of the Hamiltonian (86) ):

L{m}(Ω) =
1

ε{m} − iΩγGL
, (109)

where ε{m} are the appropriate energy eigenvalues. Then we assume that
the electric field is coordinate independent but is a monochromatic periodic
function of time:

ϕ(r,t) = −Eβrβ exp(−iωt). (110)

In doing the Fourier transform in (108) one has to remember that the time
dependence of the matrix elements ϕ{mn} results in a shift of the frequency
variable of integration Ω → Ω − ω in both L-operators placed after ϕ{mn}
or, what is the same, to a shift of the argument of the previous L̂{lm} for ω :

jαω = 16Te2Re(γGL) × (111)

×
∫
dΩ

2π
ℜ{γGLv̂α

{il}L̂{l}(Ω + ω)[−irβ
{li} ]̂L{i}(Ω)L̂∗

{i}(Ω)}Eβ ,



40 Anatoly Larkin and Andrei Varlamov

where ℜf(ω) ≡ [f(ω) + f∗(−ω)]/2.
Let us express the matrix element r{li} by means of v̂{li} using the com-

mutation relation (105). One can see that in the representation chosen

r̂β
{li} = i

v̂β
{li}

ε{i} − ε{l}
(112)

and, carrying out the frequency integration in (111), finally write for the
fluctuation conductivity tensor (jαω = σαβ(ω)Eβ) :

σαβ(ǫ,H, ω) = 8e2TRe(γGL)

∞∑

{i,l}=0

(113)

ℜ
[
γGL

v̂α
{il}v̂

β
{li}

ε{i}(γGLε{i} + γ∗GLε{l} − i|γGL|2ω)(ε{l} − ε{i})

]
.

This is the most general expression which describes the d.c., galvanomagnetic
and high frequency paraconductivity contribution. In the case when we are
interested in diagonal effects only, where it is enough to accept γGL as real
(γGL = ReγGL = πα/8) omitting its small imaginary part, the last expression
can be simplified by means of symmetrization of the summation variables):

σαα(ǫ,H, ω) =
π

2
αe2T

∞∑

{i,l}=0

ℜ
[

v̂α
{il}v̂

α
{li}

ε{i}ε{l}(ε{i} + ε{l} − iγGLω)

]
. (114)

Let us demonstrate the calculation of the d.c. paraconductivity in the
simplest case of a metal with an isotropic spectrum. In this case we choose a
plane wave representation. By using εp defined by (92) one has

v̂{pp
′} = vpδpp

′ , vp =
∂εp
∂p

= 2αTcξ
2p. (115)

We do not need to keep the imaginary part of γGL, which is necessary to
calculate particle-hole asymmetric effects only. Then the fluctuation conduc-
tivity calculated from (114) coincides exactly with (98).

3.4 Fluctuation conductivity of layered superconductor

Let us return to the discussion of our general formula (114) for the fluctuation
conductivity tensor. A magnetic field directed along the c-axis still permits
separation of variables even in the case of a layered superconductor. The
Hamiltonian in this case can be written as in (71), (86):

Ĥ = αTc

(
ǫ− ξ2xy(∇xy − 2ieAxy)

2 − r

2
(1 − cos(kzs)

)
. (116)
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It it is convenient to work in the Landau representation, where the summation
over {i} is reduced to one over the ladder of the Landau levels i = 0, 1, 2..
(each is degenerate with a density 2eH per unit square) and integration over
the c-axis momentum in the limits of the Brillouine zone. The eigenvalues of
the Hamiltonian (116) can be written in the form

εn = αTc[ǫ+
r

2
(1 − cos(kzs)) + h(2n+ 1)] = εkz + αTch(2n+ 1), (117)

where h = eH
2mαTc

was already defined by Eq. (77). For the velocity operators
one can write

v̂x,y =
1

2m
(−i∇−2ieA)

x,y
; v̂z = −αrs

2
Tc sin(kzs). (118)

In-plane conductivity. Let us start from the calculation of the in-plane
components. The calculation of the velocity operator matrix elements requires
some special consideration. First of all let us stress that the required matrix
elements have to be calculated for the eigenstates of a quantum oscillator
whose motion is equivalent to the motion of a charged particle in a magnetic
field. The commutation relation for the oscillator’s velocity components is
well known (see [75]):

[v̂x, v̂y] = i
eH

2m2
=
iαTc

m
h. (119)

In order to calculate the necessary matrix elements let us present the velocity
operator components in the form of boson-type creation and annihilation
operators â+, â with commutation relation [â, â+] = 1 :

v̂x,y =

√
αTch

2m

(
â+ + â
iâ+ − iâ

)

One can check that the correct commutation relation (119) is fulfilled. Taking
into account that

< l|â|n >=< n|â+|l >=
√
nδn,l+1

it is seen that the only non-zero matrix elements of the velocity operator are

< l|v̂x,y|n >=

√
αTch

2m

( √
lδl,n+1 +

√
nδn,l+1

i
√
lδl,n+1 − i

√
nδn,l+1

)
.

Using these relations the necessary product of matrix elements can be calcu-
lated:

< l|v̂x|n >< n|v̂x|l >=
αTch

2m
(lδl,n+1 + nδn,l+1). (120)
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Its substitution into (114) and accounting of the degeneracy of the Landau
levels 2eH = 4mαTch gives for the diagonal component of the in-plane con-
ductivity tensor

σxx(ǫ,H, ω) =
πα2T 2

c e
2

4m
h

∞∑

{n}=0

∑

{l}=0

ℜ[
(lδl,n+1 + nδn,l+1)

εlεn(εl + εn − iγGLω)
] (121)

= πe2 (αTc)
3
h2

∫ π
s

−π
s

dkz

2π

∞∑

n=0

ℜ[
n+ 1

εn+1εn(εn+1 + εn − iγGLω)
].

Expanding the denominator into simple fractions we reduce the problem to
the calculation of the c-axis momentum integral, which can be carried out in
the general case by use of the identity:

∫ 2π

0

dx

2π

1

cosx− z
= − 1√

z2 − 1
(122)

valid for any complex parameter z 6= 1 with the proper choice of the square
root branch. Using it we write the general expression for the in-plane com-
ponent of the fluctuation conductivity tensor

σxx(ε, h, ω) =
e2h

16s

∞∑

n=0

(n+ 1)

{
1

h− iω̃

1√
[ǫ+ h(2n+ 1)][r + ǫ+ h(2n+ 1)]

+

1

h+ iω̃

1√
[ǫ+ h(2n+ 3)][r + ǫ+ h(2n+ 3)]

− (123)

2h

h2 + ω̃2

1√
[ǫ+ h(2n+ 2) − iω̃][r + ǫ+ h(2n+ 2) − iω̃]

}
.

where ω̃ = πω
16Tc

.

Out-of plane conductivity. The situation with the out-of plane component
of paraconductivity turns out to be even simpler because of the diagonal
structure of the v̂z

{in} = −αrs
2 Tc sin(kzs) × δin × δ(kz − kz′ ). Taking into

account that the Landau state degeneracy 2eH = hξ−2
xy we write

σzz(ǫ,H, ω) =
1

2
παe2T

∞∑

{i,l}=0

ℜ
[

v̂α
{il}v̂

α
{li}

ε{i}ε{l}(ε{i} + ε{l} − iαTcω̃)

]
=

=
πe2 (αTc)

3

16

(
sr

ξxy

)2

h

∞∑

n=0

∫ π
s

−π
s

dkz

2π
ℜ[

sin2(kzs)

ε2n(kz)[εn(kz) − iαTcω̃]
].
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The following transformations are similar to the calculation of the in-plane
component: we expand the integrand into simple fractions and perform the
kz−integration by means of the identity (122). The final expression can be
written as

σzz(ǫ,H, ω) =
πe2

32s

(
sr

ξxy

)2

h

∞∑

n=0

(
− ∂

∂λ

)
× (124)

ℜ
(

1

λ+ iω̃

){
1√

(ǫ+ h(2n+ 1) + λ)(ǫ+ h(2n+ 1) + λ+ r)
−

1√
(ǫ+ h(2n+ 1) − iω̃)(ǫ+ h(2n+ 1) − iω̃ + r)

}
|λ=0 .

Analysis of the general expressions. In principle the expressions derived
above give an exact solution for the a.c.(ω ≪ T ) paraconductivity tensor of a
layered superconductor in a perpendicular magnetic field H ≪ Hc2 (h ≪ 1)
in the vicinity of the critical temperature (ǫ ≪ 1). The interplay of the
parameters r, ǫ, ω h entering into (123)-(124), as we have seen in the example
of fluctuation magnetization, yields a variety of crossover phenomena.

1. The simplest and most important results which can be derived are the
components of the d.c. paraconductivity (ω = 0) of layered superconductor
in the absence of magnetic field. Keeping ω = 0 and setting h → 0 one can
change the summations over Landau levels into integration and find

σxx(ε, h→ 0, ω = 0) =
e2

16s

1√
[ǫ(r + ǫ)]

,

σzz(ǫ, h→ 0, ω = 0) =
e2s

32ξ2xy

(
ǫ+ r/2

[ǫ(ǫ+ r)]1/2
− 1

)
.

2. The Aslamazov-Larkin contribution to the magnetoconductivity can be
studied by putting ω = 0 and keeping magnetic field as arbitrary. We will not
go into details and just report the results (following [154] with some revision
of the coefficient in 3D case)

h≪ ǫ
ǫ≪ h≪ r

(3D)
max{ǫ, r} ≪ h

(2D)

σxx σxx(ǫ, h = 0) − e2

28s
[8ǫ(ǫ+r)+3r2]

[ǫ(ǫ+r)]5/2 h2 e2

4s
1√
2hr

e2

8s
1
h

σzz σzz(ǫ, h = 0) − e2s
28ξ2

xy

r2(ǫ+r/2)
[ǫ(ǫ+r)]5/2h

2 3.24e2s
ξ2

xy

√
r
h

7ζ(3)e2s
29ξ2

xy

r2

h2

Table 2.
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Here it is worth making an important comment. The proportionality of the
fluctuation magnetoconductivity to h2 is valid when using the parametriza-
tion ǫ = (T − Tc0)/Tc0 only. As it well known, a weak field shifts the criti-
cal temperature linearly, which often makes it attractive to analyze the ex-
perimental data by choosing as the reduced temperature parameter ǫh =
(T − Tc(H))/Tc(H). In this parametrization one can get a term in the mag-
netoconductivity linear in h , which previously was cancelled out by the
magnetic field renormalization of the critical temperature. So it is important
to recognize that the effect of a weak magnetic field on the fluctuation con-
ductivity cannot be reduced to a simple replacement of Tc0 by Tc(H) in the
appropriate formula without the field. Vice versa, this effect is exactly com-
pensated by the change in the functional dependence of the paraconductivity
in magnetic field, and finally it contains the negative quadratic contribution
only.

3. Letting the magnetic field go to zero and considering nonzero frequency
of the electromagnetic field one can find general expressions for the compo-
nents of the a.c paraconductivity tensor. They are cumbersome enough and
in the complete form can be found, for instance, in [76]. We recall here the
simplified asymptotics for the Reσ in the 2D regime only:

Reσxx
(2D)(r ≪ ǫ, ω̃) = (125)

=
e2

16s

1

ǫ

[
2ǫ

ω̃
arctan

ω̃

ǫ
−
( ǫ
ω̃

)2

ln

[
1 +

(
ω̃

ǫ

)2
]]

Reσzz
(2D)(r ≪ ǫ, ω̃) =

e2

28s

(
sr

ξxy

)2(
1

ω̃

)2

ln[1+

(
ω̃

ǫ

)2

]. (126)

The general formulas (123)-(124) allow one to study the different crossovers
in the a.c. conductivity of layered superconductor in the presence of magnetic
field of various intensity. We leave this exercise for the reader having some
practical interest in the problem.

3.5 Magnetic field angular dependence of paraconductivity

We have seen above that in the case of a geometry with a magnetic field
directed along the c-axis many sophisticated fluctuation features of layered
superconductors can be studied in the most general form. Nevertheless even
the attempt to explore the d.c. conductivity in a longitudinal magnetic field
(directed in ab plane) [77] or, moreover, with the field directed at some arbi-
trary angle θ with the c-axis leads to the appearance of the a vector potential
component in the argument of cos(kzs) and the problem requires a nontrivial
calculation of the matrix elements over the Mathieu functions.

We already learned that at temperatures very near to the critical one (ǫ≪
r) the 3D fluctuation regime takes place. Here the size of the Cooper pairs



Fluctuation Phenomena in Superconductors 45

along the c-axis is so large that the peculiarities of the layered structure do
not play any more role. This means that only small values of kz are important
in the kz-integrations, where the cos(kzs) in (71) can be expanded and the LD
functional is reduced to its traditional GL form with an anisotropic effective
mass tensor:

F [Ψ ] =

∫
d3r

{
a|Ψ |2 +

B

2
|Ψ |4 +

3∑

µ=1

1

4mµ

∣∣∣∣
(

1

i

d

dxµ
− 2eAµ

)
Ψ

∣∣∣∣
2

+

+
B2

8π
− H · B

4π

}
. (127)

We will demonstrate below that in this case a scaling approach provides a
direct access to the most general results by rescaling the anisotropic problem
to the corresponding isotropic one on the initial level of the GL approach
[78].

Let us suppose that the external field H is chosen to lie in the y − z
plane and makes angle θ with the z− axis. For sake of simplicity and because
the oxide superconductors are within high accuracy uniaxial materials, we
choose mx = my = m∗, while m−1

z = 2αs2r (compare with (69)). The
effective anisotropy parameter γ2

a = m∗/mz = 2αs2rm∗ < 1 is introduced. In
(127) the anisotropy enters only in the gauge-invariant gradient term, so the
simple rescaling of the coordinate axes: x = x̃, y = ỹ, z = γaz̃ together with
the scaling of the vector potential: A = (Ãx, Ãy, Ãz/γa) will render this term

isotropic. The magnetic field evidently is rescaled to B = (B̃x/γa, B̃y/γa, B̃z)
and the last three terms in (127), describing the magnetic-field energy, are
transformed to

δF [Ψ ] =
γa

8π

∫
d3r̃

[
1

4m

3∑

µ=1

∣∣∣∣
(

~

i

d

dx̃µ
− 2e

c
Ãµ

)
Ψ

∣∣∣∣
2

+ (
B̃2

xy

γa
+ B̃2

z)−

−2(
B̃xy ·Hxy

γa
+ B̃zHz)

]
.

In short, we have removed the anisotropy from the gradient term but rein-
troduced it into the magnetic energy term. In general it is not possible to
make both terms isotropic in the Gibbs energy simultaneously. However, de-
pending on the physical question addressed, we can neglect fluctuations in
the magnetic field, as was mostly done above.

Let us demonstrate how the method works for the example of the d.c.
fluctuation conductivity tensor which was calculated above for a magnetic
field directed along the c-axis. We restrict our consideration to the 3D region
(ǫ ≪ r). One can write the scaling relations between the electric field and
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current components before and after the scaling transformation by means of
a conductivity tensor and the anisotropy parameter:

jx,y = j̃x,y jz ∼ evz ∼ γaj̃z (128)

Ex,y = Ẽx,y Ez ∼ ∂ϕ

∂z
∼ 1

γa
Ẽz .

Now let us rewrite the relations between the current and electric field vectors
before and after the scale transformation

jα = σαβEβ

j̃α = σ̃αβẼβ .

Comparing them with (128) and introducing the operator of the direct scaling
transformation Tαβ

Tαβ =




1 0 0
0 1 0
0 0 γa


 ,

one can write jα = Tαµj̃µ, Eα = (T−1)αµẼµ and express the conductivity
tensor as

σαβ = Tαµσ̃µρTρβ .

Now let us work in the already isotropic coordinate frame. We suppose
that initially the magnetic field was directed along the c-axis and now we
rotate it in the X-Z plane by the angle θ̃ with respect to the initial direction.
The conductivity tensor will be transformed by the usual matrix law:

σ̃αβ(θ̃) = RT
αµσ̃µρ(0)Rρβ = RT

αµ(T−1)µςσςη(0)(T−1)ηδRδβ

and

σαβ(θ̃) = Tαγ σ̃γδ(θ̃)Tδβ = TαγR
T
γµ(T−1)µςσςη(0)(T−1)ηδRδκTκβ,

where

Rαβ =




cos θ̃ 0 − sin θ̃
0 1 0

sin θ̃ 0 cos θ̃


 .

Finally the fluctuation conductivity tensor σαβ(θ) in the initial tetragonal
system with the magnetic field directed at the angle θ with respect to the
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c-axis can be expressed by means of the effective transformation operator
Mαβ :

σαβ(θ) = MT
ας(θ̃)σςη(0, H̃)Mηβ(θ̃),

with

Mαβ(θ̃) = (T−1)αδRδκTκβ =




cos θ̃ 0 − 1
γ sin θ̃

0 1 0

γa sin θ̃ 0 cos θ̃


 .

The angle θ̃ can be expressed via the renormalized magnitude of the magnetic
field H̃ =

√
H2

c + γ2
aH

2
x :

cos θ̃ =
H̃z

H̃
=

cos θ√
cos2 θ + γ2

a sin2 θ
; sin θ̃ =

γa sin θ√
cos2 θ + γ2

a sin2 θ
.

In the case of the paraconductivity of a layered superconductor with the
magnetic field applied at an arbitrary angle θ the answer can be written in
the general form by means of the three diagonal components of conductivity
σii(0, H̃) in the perpendicular field H̃ :

σαβ(θ) =
1

cos2 θ + γ2
a sin2 θ

×

×




σxx cos θ+
+γ4

aσzz sin2 θ
0

σ2
zzγa sin2 θ cos θ−

−σxx sin θ
0 σyy(cos2 θ + γ2

a sin2 θ) 0
σ2

zzγa sin θ cos θ 0 σzz cos2 θ




In the simplest case of a longitudinal field θ = 900 :

σαβ(900, H) =



γ2

aσzz(0, γaH) 0 −γ−2
a σzz(0, γaH)

0 σyy(0, γaH) 0
0 0 0


 . (129)

4 Fluctuations near superconductor-insulator

transition

4.1 Quantum phase transition

It is usually supposed that the temperature of the superconducting transi-
tion does not depend on the concentration of non-magnetic impurities (An-
derson’s theorem [79,80]). Nevertheless when the degree of disorder is very
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high Anderson localization takes place, and it would be difficult to expect
that under conditions of strong electron localization superconductivity can
exist, even if there is inter-electron attraction. This means that at T = 0 the
phase transition takes place with a change of the disorder strength or carrier
concentration. Such a transition is called a quantum phase transition since
at zero temperature the classical fluctuations are absent. Indeed, one can see
from (7) that in the limit T → 0 the thermal fluctuation Cooper pairs vanish.

In the metallic phase of a disordered system the conductivity is mostly de-
termined by the weakly decaying fermionic excitations, their dynamics yield-
ing the familiar Drude formula (the method which accounts for the fermionic
excitations will be referred to as the Fermi approach later on). Inside the
critical region the charge transfer due to fluctuation Cooper pairs turns out
to be more important. In some approximation, the pairs may be considered
as Bose particles. Therefore the approach dealing with the fluctuation pairs
will be called below the Bose approach.

Let us suppose that at temperature T = 0 the superconducting state
occurs in a weakly disordered system. In principle two scenarios of the devel-
opment of the situation are possible with an increase of the disorder strength:
the system at some critical disorder strength can go from the superconduct-
ing state to the metallic state or to the insulating state. The first scenario
is natural and takes place in the following cases: if the effective constant of
the inter-electron interaction changes its sign with the growth of the disor-
der; if the effective concentration of magnetic impurities increases together
with the disorder growth; if the pairing symmetry of superconducting state
is nontrivial it can be destroyed even by the weak disorder level. We will
study here the second scenario where the superconductor becomes an insu-
lator with disorder increase. This means that at some disorder degree range,
higher than the localization edge when the normal phase does not exist any
more at finite temperatures, superconductivity can still survive. From the
first glance this statement seems strange: what does superconductivity mean
if the electrons are already localized? And if it really can take place beyond
the metallic phase, at what value of disorder strength and in which way does
the superconductivity finally disappears?

One has to have in mind that localization is a quantum phenomenon in its
nature and with the approach to the localization edge the coherence length
of localization ℓ grows. From the insulator side of the transition vicinity
this means the existence of large scale regions where delocalized electrons
exist. If the energy level spacing in such regions does not exceed the value
of superconducting gap Cooper pairs still can be formed by the delocalized
electrons of this region.

The problem can be reformulated in other, already familiar, way: how does
the critical temperature of the superconducting transition decrease with the
increase of the disorder strength? In the previous Sections we have already
tried to solve it by discussing the critical temperature fluctuation shift. We
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have seen that the fluctuation shift of the critical temperature is proportional
to
√
Gi(3) for a 3D superconductor and to Gi(2) ln{1/Gi(2)} for 2D. This

means that the critical temperature is not changed noticeably as long as the
Ginzburg-Levanyuk number remains small. So one can expect the complete
suppression of superconductivity when Gi ∼ 1 only. For further consideration
it is convenient to separate the 3D and 2D cases because the physical pictures
of the superconductor-insulator transition for them are quite different.

4.2 3D superconductors

As one can see from Table 1 in the 3D case the Ginzburg-Levanyuk number

remains small at pF l ∼ 1 : Gi(3d) ≈
(

Tc

EF

)
≪ 1. Nevertheless, approaching

the edge of localization, the width of the fluctuation region increases [81]. In
the framework of the self-consistent theory of localization [82] such growth
of the width of the fluctuation region was found in paper [83].

Instead of the cited self-consistent theory let us make some more general
assumptions concerning the character of the metal-insulator (M-I) transition
in the absence of superconductivity [13]. We suppose that in the case of very
strong disorder and not very strong Coulomb interaction the M-I transition
is of second order. The role of ”temperature” for this transition is played
by the ”disorder strength” which is characterized by the dimensionless value
g = pF l.

2π With its decrease the conductivity of the metallic phase decreases
and at some critical value gc tends to zero as

σ = e2pF (g − gc)
κ . (130)

This is the critical point of the Anderson (M-I) transition. We assume that
the thermodynamic density of states remains constant at the transition point.

The electron motion in metallic phase far enough from the M-I transition
has a diffusion character and the conductivity can be related to the diffusion
coefficient D = pF l/3m by the Einstein relation: σ = νe2D. One can say that
diffusion like ”excitations” with the spectrum ω(q) = iDq2 propagate in the
system. At the point of the M-I transition normal diffusion terminates and
conductivity, together with D, turns zero. In accordance with scaling ideas,
the diffusion coefficient can be assumed here to be a power function of q:
D(q) ∼ qz−2, with the dynamical critical exponent z > 2. The anomalous
diffusion excitation spectrum in this case would take the form ω ∼ qz.

In the insulating phase (g < gc) some local, anomalous diffusion, confined
to regions of the scale ℓ, is still possible. It cannot provide charge transfer
through out all the system, so D(q = 0) = 0, but for small distances (q & ℓ−1)
anomalous diffusion takes place. Analogously, in the metallic phase (g > gc)
the diffusion coefficient in the vicinity of the transition has an anomalous
dependence on q for q & ℓ−1 and weakly depends on it for q . ℓ−1. So one
can conclude that the diffusion coefficient for q & ℓ−1 from both sides of the
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transition has the same q-dependence as for all q in the transition point. It
can be written in the form

D(q) =
g

3m

[
ϕ(qℓ)

pF ℓ

]z−2

, ϕ(x) =




x, x≫ 1
1, x≪ 1, g > gc

0, x≪ 1, g < gc

, (131)

where the dimensionless localization length ℓ, characterizing the spatial scale
near the transition, grows with the approach to the transition point like

ℓ(g) =
1

pF
(g − gc)

− κ

z−2 . (132)

The critical exponent in this formula is found from the Einstein relation in
the vicinity of the M-I transition.

At finite temperatures, instead of the critical point gc,a crossover from
metallic to insulating behavior of σ(g) takes place. The width of the crossover
region is g̃−gc,where g̃ is determined from the relation Dℓ−2(g̃) ∼ EF [pF ℓ(g̃)]

−z ∼
T (we have used the second asymptotic of (131)). In this region the diffusion
coefficient is

D(T ) ∼ T ℓ2 ∼ T

p2
F

(
EF

T

) 2
z

(133)

and it depends weakly on the g − gc. Beyond this region the picture of the
transition remains the same as at T = 0.

Let us consider now what happens to superconductivity in the vicinity of
the localization transition. In the mean field approximation (BCS) the ther-
modynamic properties of a superconductor do not depend on the character
of the diffusion of excitations. This should be contrasted with the fluctua-
tion theory, where such a dependence clearly exists. We will show that the
type of superconducting transition depends on the dynamical exponent z. If
z > 3, the transition to superconductivity occurs on the metallic side of the
localization transition (we will refer to such a transition as S-N transition).
If z < 3, the transition to superconductivity occurs from the insulating state
directly (S-I transition).

Let us study how the superconducting fluctuations affect the transition
under discussion. In spirit of the GL approach fluctuation phenomena in
the vicinity of the transition can be described in the framework of the GL
functional (26). The coherence length in the metallic region, far enough
from the Anderson transition, was reported in Introduction to be equal
ξ2 = ξcl = 0.42D/T . In the vicinity of the M-I transition we still believe
in the diffusive character of the electron motion resulting in the pair forma-
tion. The only difference from the previous consideration is the anomalous
character of the quasiparticle diffusion. So in order to describe the supercon-
ducting fluctuations simultaneously near superconducting (in temperature)
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and Anderson (in g) transitions let us use the GL functional (26) with the
k-dependent diffusion coefficient (131).

The value of Gi can be estimated from the expression for the fluctuation
contribution to heat capacity (30) taken at ǫ ∼ Gi, where the fluctuation
correction reaches the value of the heat capacity jump:

1 ∼ T

ν

∫
d3q

(TGi+ D(q)q2)2
, (134)

with T ≃ Tc. Let us approach the M-I transition from the metallic side. If
we are far enough from transition, Gi is small and the integral in (134) is
determined by the region of small momenta D(q)q2 . TGi :

Gi ∼ T

ν2D3(q = 0)
. (135)

Two scenarios are possible: Gi becomes of the order of 1 in the metallic
phase, or it remains small up to the crossover region, where finally reaches
its saturation value. In the first case we can use the second asymptotic of
(131) for D(q) and find:

Gi ∼ Tc

EF
(pF ℓ)

3z−6. (136)

One can see that Gi becomes of the order of 1 at pF ℓM ∼ (EF /T )
1

3z−6 .

Comparing this value with pF ℓ(g̃) ∼ (EF /T )
1/z

at the limit of the crossover
region we see that for z > 3 the first scenario is realized. Concluding the first
scenario discussion we see that the superconducting critical temperature goes
to zero at ℓ = ℓM , still in the metallic phase, so at T = 0 a superconductor-
normal phase (S-N) type quantum phase transition takes place.

The second scenario takes place for z < 3 when Gi remains small even at
the edge of crossover region, reaching there the value

Gi ∼
(
Tc

EF

) 2(3−z)
z

≪ 1. (137)

In the crossover region the diffusion coefficient, and hence Gi, almost do
not vary. This is why the temperature of superconducting transition remains
almost frozen with further increase of disorder driving the system through the
Anderson transition. The abrupt growth of Gi and decrease of Tc take place
when the system finally goes from the crossover to the insulating region. In
the insulator phase the diffusion coefficient D(q . l−1) = 0 and from (134)
one can find for Gi :

Gi ∼
√
EF

Tc

1

(pF ℓ)3/2
(138)
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Comparing this result with the Table 1 it is easy to see that it coincides
with the Ginzburg-Levanyuk number for a zero-dimensional granule of size
ℓ ≪ ξ(T ). Hence we see that in the second scenario the Ginzburg number

reaches 1 and, respectively, Tc → 0 at pF ℓI ∼
(

EF

Tc

)1/3

, which is far enough

from the M-I transition point. This is why in this case one can speak about
the realization at T = 0 of a superconductor-insulator (S-I) type quantum
phase transition. The scale ℓI determines the size of the ”conducting” do-
mains in the insulating phase, where the level spacing reaches the order of
the superconducting gap. It is evident that in the domain of scale ℓ . ℓI
superconductivity cannot be realized.

In the vicinity of a quantum phase transition one can expect the ap-
pearance of non monotonic dependencies of the resistance on temperature
and magnetic field. Indeed, starting from the zero resistance superconduct-
ing phase and increasing temperature from T = 0, the system passes through
the localization region, where the resistance is high, to high temperatures
where some hopping charge transfer will decrease the resistance again. The
analogous speculations are applicable to the magnetic field effect: first the
magnetic field ”kills” superconductivity and increases the resistance, then it
destroys localization and decreases it.

The phase diagram in the (T, g) plane has the form sketched in Fig. 5.
For gI = gc − (Tc/EF )3(z−2)/κ , an S-I transition takes place at T = 0. In-
creasing the temperature from T = 0 in the region 0 . g . gI we remain in
the insulating phase with exponential dependence of resistance on tempera-
ture. For gI . g . g̃− at low temperatures 0 ≤ T < Tc(g) the system stays
in the superconducting state which goes to the insulating phase at higher
temperatures. In the vicinity of the Anderson transition (g̃− . g . g̃+) the
superconducting state goes with growth of the temperature to some crossover
metal-insulator state which is characterized by a power decrease of the resis-
tivity with the increase of temperature. Finally at gc . g the superconducting
phase becomes of the BCS type and at T = Tc it goes to a metallic phase.

The phase diagram in the magnetic field – disorder plane is similar to
that in the (T, g) plane with the only difference that at T = 0 there is no
crossover region, instead a phase transition takes place.

4.3 2D superconductors

Preliminaries. As was demonstrated in Section 4, according to the con-
ventional theory of paraconductivity, the sheet conductivity in the vicinity
of the superconducting transition is given by a sum of the electron residual
conductivity ge2 (Fermi part) and the conductivity of the Cooper pair fluc-
tuations (Bose part) (see (101)). This expression is valid in the Ginzburg
Landau region when the second term is a small correction to the first one.
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Fig. 5. Phase diagram in the temperature – disorder plane for a three-dimensional
superconductor.

The width of the critical region can be determined from the requirement of
equality of both contributions in (101)18:

ǫcr =
1

16g
= 1.3Gi(2d). (139)

In accordance with general scaling ideas one can believe that inside the fluc-
tuation region the conductivity should obey the form:

σ(T ) = ge2f

(
ǫ

Gi(2d)

)
. (140)

18 It is worth mentioning that this definition of the Ginzburg Levanyuk number
(G̃i(2d) = π

8pF l
) agrees with that defined from the heat capacity fluctuations

(Gi(2d) = 0.3
pF l

).
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Concerning the scaling function f(x), we know its asymptotes in the mean
field region (x≫ 1) and just above the BKT transition [56,57]:

f(x) =

{
1 + x−1, x≫ 1

exp
[
−b(x− xBKT)−1/2)

]
, x→ xBKT = −4

. (141)

The BKT transition temperature TBKT
c is determined by

ns2(Tc) =
4mTc

π
. (142)

and one can find its value by comparing the superfluid density ns from (142)
with that found in the BCS scheme:

TBKT
c = Tc0(1 − 4Gi). (143)

Here we assumed that the Ginzburg parameter is small, so that the BKT
transition temperature does not deviate much from the mean-field BCS tran-
sition temperature Tc0.

Boson mechanism of the Tc suppression. The classical and quantum
fluctuations reduce ns and therefore, suppress TBKT

c . At some g = gc ∼ 1, the
superfluid density ns, and simultaneously TBKT

c , go to zero. In the vicinity
of this critical concentration of impurities TBKT

c ≪ Tc0. Thus a wide new
window of intermediate temperatures TBKT

c ≪ T ≪ Tc0 opens up. In this
window, according the dynamical quantum scaling conjecture [84], one finds

σ = e2ϕ

(
T

TBKT
c

)
. (144)

At T − TBKT
c ≪ TBKT

c the Berezinski-Kosterlitz-Thouless law (140)-(141)
should hold, so ϕ(x) = f(x) and is exponentially small. In the intermediate
region TBKT

c ≪ T ≪ TBCS
c the duality hypothesis gives ϕ(x) = π/2. Let us

derive this relation.
We will start from the assumption that in the region TBKT

c ≪ T ≪ Tc0 the
conductivity is a universal function of temperature which does not depend on
the pair interaction type. Being in the framework of the classical approach,
let us suppose that in a weak electric field pairs move with the velocity
v = F/η, where F = 2eE is the force acting on the pairs. The current
density j = 2env =σE, (here n is the pair density), so one can relate the
conductivity with the effective viscosity η: σ=4e2n/η.

Let us recall that we are dealing with a quantum fluid, so another, su-
perconducting, view on the problem of its motion near the quantum phase
transition exists. One can say that with the increase of Gi the role of quan-
tum fluctuations grows too and fluctuation vortices carrying the magnetic
flux quantum Φ0 = π/e are generated. With electric current flow in the sys-
tem the Lorentz (Magnus) force acts on a vortex: F = jΦ0. The electric field
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is equal to the rate of magnetic flux transfer, i.e. to the density of the vor-
tex current: E =Φ0nvvv=Φ0nvF/ηv, where nv is the density and ηv is the
viscosity of the vortex liquid. As a result E =Φ2

0nvj/ηv = j/σ. So one can
conclude that for vortices the velocity is proportional to the voltage, and the
force is proportional to the current. For Cooper pairs (bosons) the situation
is exactly the opposite.

The duality hypothesis consists in the assumption that at the critical
point the pair and the vortex liquid density flows are equal: nvvv= nv. Com-
paring these quantities, expressed in terms of the conductivity from the above
relations, one can find a universal value for the conductivity at the critical
point

σ =
2e

Φ0
=

2e2

π
. (145)

One can restrict oneself to a less strong duality hypothesis, supposing the
product nη = CT δ with a universal δ exponent both for the pair and the
vortex liquids, while the constant C for them is different. In this case, based
on duality, is possible to demonstrate that δ = 0 and the conductivity is
temperature independent up to Tc0 but its value is not universal any more
and can vary from one sample to another.

To conclude, let us emphasize that in the framework of the boson scenario
of superconductivity suppression, the BCS critical temperature is changed in-
significantly, while the “real” superconducting transition temperature TBKT

c →
0.

Fermion mechanism of Tc suppression. Apart from the above fluc-
tuation (boson) mechanism of the suppression of the critical temperature in
the 2D case, there exists another, fermionic mechanism. The suppressed elec-
tron diffusion results in a poor dynamical screening of the Coulomb repulsion
which, in turn, leads to the renormalization of the inter-electron interaction
in the Cooper channel. and hence to the dependence of the critical temper-
ature on the value of the high-temperature sheet resistivity of the film. As
long as the correction to the non-renormalized BCS transition temperature
Tc0 is still small, one finds [85,86,87]:

Tc = Tc0

(
1 − 1

12π2g
ln3 1

Tc0τ

)
. (146)

At small enough Tc0 this mechanism of critical temperature suppression turns
out to be the principal one. The suppression of Tc down to zero in this case
may happen in principle even at g ≫ 1. A renormalization group analysis
gives [88] the corresponding critical value of conductance

gc =

(
1

2π
ln

1

Tc0τ

)2

. (147)
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Here we should recall that the typical experimental [89] values of gc are in
the region gc ∼ 1−2, and do not differ dramatically from the predictions of the
boson duality assumption gc = 2

π . If one attempts to explain the suppression
of Tc within the fermion mechanism, one should assume that ln 1

Tc0τ > 5.
Then, according to Eq. (147), gc > 2/π and the boson mechanism is not
important. On the contrary, if ln 1

Tc0τ < 4, then Eq. (146) gives a small
correction for Tc even for gc = 2/π and the fermion mechanism becomes
unimportant. The smallness of the critical temperature Tc compared to the
Fermi energy is the cornerstone of the BCS theory of superconductivity and it
is apparently satisfied even in high-Tc materials. Nevertheless it is necessary
to use the theoretically large logarithmic parameter with care, if one needs
ln 1

Tc0τ to be as large as 4.

5 Microscopic derivation of the Time-Dependent

Ginzburg-Landau equation

5.1 Preliminaries

We have seen above how the phenomenological approach based on the GL
functional allows one to describe fluctuation Cooper pairs (Bose particles)
near the superconducting transition and to account for their contribution to
different thermodynamical and transport characteristics of the system. Now
we pass to the discussion of the microscopic description of fluctuation phe-
nomena in superconductors. The development of the microscopic approach is
necessary for the following reasons:

1. This description permits microscopic determination of the values of the
phenomenological parameters of the GL theory.

2. This method is more powerful than the phenomenological GL approach
and permits treatment of fluctuation effects quantitatively even far from the
transition point and for magnetic fields strong as Hc2, taking into account
the contributions of dynamical and short wavelength fluctuations.

3. The electron energy relaxation times in metals are relatively large (τε ≫
~/T ) which causes the electron low frequency dynamics to be sensitive to
the nearness to the superconducting transition. This is why the temperature
dependence of fluctuation corrections can be determined generally speaking
not only by the Cooper pair motion but also by changes in the single-electron
properties.

4. There are some fluctuation phenomena in which the direct Cooper pair
contribution is considerably suppressed or even absent altogether. Among
them we can mention the nuclear magnetic relaxation rate, tunnel conduc-
tivity, c-axis transport in strongly anisotropic layered metals, thermoelectric
power and heat conductivity where the fluctuation pairing manifests itself by
means of the indirect influence on the properties of the single-particle states
of electron system.
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Formally in the above consideration averaging over the superconducting
order parameter has been accomplished by means of a functional integration
over all its possible bosonic field configurations. In this description we have
dealt with the fluctuation Cooper pair related effects only and the method of
the functional integration turned out to be simple and effective for their de-
scription. In the following Sections we will develop the diagrammatic method
of Matsubara temperature Green functions which is more adequate for the
description of the properties of a Fermi system of interacting electrons.

5.2 The Cooper channel of electron-electron interaction

Let us start the microscopic description of fluctuation phenomena in a su-
perconductor from the electron Hamiltonian. We will choose it in the simple
BCS form19:

H =
∑

p,σ

E(p)ψ̃+
p,σψ̃p,σ +g

∑

p,p′,q,σ,σ′

ψ̃+
p+q,σψ̃

+
−p,−σψ̃−p′,−σ′ ψ̃p′+q,σ′ .(148)

The momentum conservation law side by side with singlet pairing are already
taken into account in the interaction term. Here E(p) is the quasiparticle
spectrum of the normal metal; g is the negative constant of electron-electron
attraction which is supposed to be momentum independent and different
from zero in a narrow domain of momentum space in the vicinity of the
Fermi surface where

pF − ωD

vF
< |p|, |p′| < pF +

ωD

vF
.

ψ̃+
p,σ and ψ̃p,σ are the creation and annihilation field operators in the Heisen-

berg representation, so the first term is just the kinetic energy of the non-
interacting Fermi gas. The interaction term is chosen in the traditional form
characteristic for the electron-phonon mechanism of superconductivity20.

For the description of the properties of an interacting electron system with
the Hamiltonian (148) we will use the formalism of the Matsubara tempera-

19 We suppose that reader is familiar with the BCS formulation of the theory of
superconductivity (see for example, [92]).

20 Fluctuations in the framework of more realistic Eliashberg [90] model of super-
conductivity were studied by B.Narozhny [91]. He demonstrated that the strong
coupling does not change drastically the results of the weak coupling approxima-
tion. The critical exponents turn out to be exactly the same as in the framework
of the GL theory, which provides an adequate description of paraconductivity in
strong coupling superconductors. The robustness of the critical exponents and
their dependence in GL region on the space dimensionallity only was stressed
in [83] in relation to the discussion of the paraconductivity at the edge of the
superconductor-insulator transition.
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ture diagrammatic technique. The state of a non-interacting quasiparticle is
described by its Green function

G(p, εn) =
1

iεn − ξ(p)
, (149)

where εn = (2n + 1)πT is a fermion Matsubara frequency and ξ(p) =
E(p)−EF is the quasiparticle energy measured from the Fermi level.

As it is well known the effective electron-electron attraction leads to a
reconstruction of the ground state of the electron system which formally
manifests itself by the appearance at the critical temperature of a pole in the
two particle Green function

L(p, p′, q) =< Tτ [ψ̃p+q,σψ̃−p,−σψ̃
+
p′+q,σ′ ψ̃

+
−p′,−σ′ ] >,

where Tτ is the time ordering operator and 4D vector notations are used [92].
As it well known the two particle Green function can be expressed in terms
of the vertex part [92]. In the case under consideration it is the vertex part of
the electron-electron interaction in the Cooper channel L(q, Ωk), which will
be called below the fluctuation propagator. The Dyson equation for L(q, Ωk),
accounting for the e-e attraction in the ladder approximation, is represented
graphically in Fig.6 . It can be written down analytically as

L−1(q, Ωk) = g−1 −Π(q, Ωk), (150)

where the polarization operator Π(q, Ωk) is defined as a loop of two single-
particle Green functions:

Π(q, Ωk) = T
∑

εn

∫
d3p

(2π)3
G(p + q, εn+k)G(−p, ε−n). (151)

Let us emphasize, that the two quantities introduced above, L (p, p′, q)
and L(q), are closely connected with each other. The former being integrated
over momenta p and p′ becomes an average of the product of two order
parameters:

∫
dpdp′L (p, p′, q) =

1

g2

〈
∆q∆

∗
q

〉
, (152)

where ∆q is the superconducting gap proportional to the condensate wave
function Ψ . Thus, this quantity represents the coefficient in the linear term
in the GL equation. In terms of the polarization operator introduced above
it can be written as

∫
dpdp′L (p, p′, q) ∝ Π

1 − gΠ
.
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Fig. 6. The Dyson equation for the fluctuation propagator (wavy line) in the lad-
der approximation. Solid lines represent one-electron Green functions, bold points
correspond to the model electron-electron interaction.

Comparing this equation with Eq.(150) for the fluctuation propagator we see
that the corresponding expressions are very similar. After analytical contin-
uation to the real frequencies the fluctuation propagator L(q, iΩ) coincides
with the quantity defined by Eq.(152) (up to a constant).

One can calculate the propagator (150) using the one-electron Green func-
tions of the normal metal (149). For sake of convenience of future calculations
let us define the correlator of two one-electron Green functions

P(q, ε1, ε2) =

∫
d3p

(2π)
3G(p + q, ε1)G(−p, ε2) = (153)

= 2πνΘ(−ε1ε2)
〈

1

|ε1 − ε2| + i∆ξ(q,p)|
ǫ(p)=EF

〉

F.S.

,

where Θ(−ε1ε2) is Heavyside step function, ν is the one-electron density of

states, <>F.S.=
∫ dΩp

4π means the averaging over the Fermi surface,

∆ξ(q,p)|
ǫ(p)=EF

= [ξ(q + p) − ξ(−p)]|ǫ(p)=EF
≈ (vpq)ξ(p)=0. (154)

The last approximation is valid not too far from the Fermi surface, i.e. when
(vpq)ξ(p)=0 ≪ EF .

It is impossible to carry out the angular averaging in (153) for a general
anisotropic spectrum. Nevertheless in the following calculations of fluctuation
effects in the vicinity of critical temperature only small momenta vpq ≪
T will be involved in the integrations, so we can restrict our consideration
here to this region, where one can expand the integrand in powers of vpq.
Indeed, the presence of Θ(−ε1ε2) leaves the difference of the two fermionic
frequencies in (153) to be of the order of the temperature which permits
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this expansion. The first term in vpq will evidently be averaged out, so with
quadratic accuracy one can find:

P(q, ε1, ε2) = 2πν
Θ(−ε1ε2)
|ε1 − ε2|

(
1 − 2

〈(vpq)2〉F.S.

|ε1 − ε2|2
)
. (155)

Now one can calculate the polarization operator

Π(q, Ωk) = T
∑

εn

P(q, εn+k, ε−n) = (156)

= ν



∑

n≥0

1

n+ 1/2 + |Ωk|
4πT

− 2
〈(vpq)2〉F.S.

(4πT )2

∞∑

n=0

1
(
n+ 1/2 + |Ωk|

4πT

)3


 .

The calculation of the sums in (156) can be carried out in terms of the
logarithmic derivatives of the Γ -function ψ(n)(x). It worth mentioning that
the first sum is well known in the BCS theory, one can recognize in it the
so-called ”Cooper logarithm”; its logarithmic divergence at the upper limit
(ψ(x≫ 1) ≈ lnx) is cut off by the Debye energy (Nmax = ωD

2πT ) and one gets:

1

ν
Π(q, Ωk) = ψ

(
1

2
+

|Ωk|
4πT

+
ωD

2πT

)
− ψ

(
1

2
+

|Ωk|
4πT

)
− (157)

−〈(vpq)2〉F.S.

(4πT )2
ψ

′′

(
1

2
+

|Ωk|
4πT

)
.

The critical temperature in the BCS theory is determined as the temperature
Tc at which the pole of L(0, 0, Tc) occurs

L−1(q =0, Ωk = 0, Tc) = g−1 −Π(0, 0, Tc) = 0,

Tc =
2γE

π
ωD exp

(
− 1

νg

)
, (158)

where γE = 1.78 is the Euler constant. Introducing the reduced temperature
ǫ = ln( T

Tc
) one can write the propagator as

L−1(q, Ωk) = −ν
[
ǫ+ ψ(

1

2
+

|Ωk|
4πT

) − ψ(
1

2
) − 〈(vpq)2〉F.S.

(4πT )2
ψ

′′

(
1

2
+

|Ωk|
4πT

)]
.(159)

We found (159) for bosonic imaginary Matsubara frequencies iΩk = 2πiTk.
These frequencies are necessary for the calculation of fluctuation contribu-
tions to any thermodynamical characteristics of the system.

In the vicinity of the transition point one can restrict oneself in sum-
mations of the expressions with L(q, Ωk) over Matsubara frequencies to the
so-called static approximation, taking into account the term with Ωk = 0
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only, which turns out to be the most singular term in ǫ ≪ 1 . This ap-
proximation physically means that the product of Heisenberg field operators
ψ̃p,σψ̃−p,−σ appears here like a classical field Ψ, which in the phenomenolog-
ical approach describes the Cooper pair wave function and in the vicinity of
critical temperature is proportional to the fluctuation order parameter. Hav-
ing in mind namely this GL region of temperatures we restricted ourselves
above by the assumption of small momenta vpq ≪ T . In these conditions
the static propagator reduces to

L(q, 0) = −1

ν

1

ǫ+ ξ2q2
. (160)

With an accuracy of a numerical factor and the total sign this correlator
coincides with the expression for

〈
|Ψq|2

〉
. By this expression we also have

finally obtained the microscopic value of the coherence length ξ for a clean
superconductor with an isotropic D-dimensional Fermi surface which was
often mentioned previously (compare with (5))

ξ2(D) =
7ζ(3)v2

F

16Dπ2T 2
.. (161)

In order to describe the fluctuation contributions to transport phenomena
one has to start from the analytical continuation of the propagator (159)
from the discrete set of Ωk ≥ 0 to the whole upper half-plane of imaginary
frequencies. The analytical properties of ψ(n)(x)−functions (which have poles
at x = 0,−1,−2...) permit one to obtain the retarded propagator LR(q,−iΩ)
by simple substitution iΩk → Ω . For small Ω ≪ T the ψ−functions can be
expanded in −iΩ/4πT and the propagator acquires the simple pole form :

LR(q, Ω) = −1

ν

1

− iπ
8T Ω + ǫ+ ξ2q2

=
8T

πν

1

iΩ −
(
τ−1
GL + 8T

π ξ
2q2
) . (162)

This expression provides us with the microscopic value of the GL relaxation
time τGL = π

8(T−Tc)
, widely used above in the phenomenological theory.

Moreover, comparison of the microscopically derived (162) with the phe-
nomenological expressions (86), (90) and (109) shows that αTc = ν and
γGL = πν/8Tc.

In evaluating L(q, Ωk) we neglected the effect of fluctuations on the one-
electron Green functions. This is correct when fluctuations are small, i.e. not
too near to the transition temperature. The exact criterion of this approxi-
mation will be discussed in the following.

5.3 Superconductor with impurities

Account for impurities. In order to study fluctuations in real systems
like superconducting alloys or high temperature superconductors one has to
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Fig. 7. The equation for the vertex part λ(q, ω1, ω2) in the ladder approximation.
Solid lines correspond to bare one-electron Green functions and dashed lines to the
impurity random potential correlators.

perform an impurity average in the graphical equation for the fluctuation
propagator (see Fig. 6). This procedure can be done in the framework of the
Abrikosov-Gorkov approach [92], which we shortly recall below.

Let us start from the equation for the electron Green function in the
potential of impurities U(r):

(
E − U(r) − Ĥ

)
GE(r, r′) = δ(r − r′) (163)

If we solve this equation using the perturbation theory for the impurity poten-
tial and average the solution, then the average product of two Green func-
tions, can be presented as series, each term of which is associated with a
graph drawn according the rules of diagrammatic technique (see Fig. 7). In
this technique solid lines correspond to bare Green functions and dashed lines
to random potential correlators. We assume that the impurity system random
potential U(r) is distributed according to the Gauss δ−correlated law. Then
all the correlators can be represented as the products of pair correlators

〈U(r)〉 = 0, 〈U(r)U(r′)〉 =
〈
U2
〉
δ(r − r′), (164)

where the angle brackets denote averaging over the impurity configuration.
Equation 164 corresponds to the Born approximation for the electron interac-

tion with short range impurities, and
〈
U2
〉

= Cimp

(∫
V (r)dr

)2
where Cimp

is the impurity concentration and V (r) is the potential of the single impurity.
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In conductors (far enough from the metal-insulator transition) the mean
free path is much greater than the electron wavelength l ≫ λ = 2π/pF (which
in practice means the mean free path up to tens of interatomic distances).
As is well known [92] for the electron spectra with dimensionality D > 1
the angular integration in momentum space reduces considerably the con-
tribution of the diagrams with intersecting impurity lines what permits to
omit them to the leading approximation in (pF l)

−1
. In this approximation

the one-electron Green function keeps the same form as the bare one (149)
with the only substitution

εn ⇒ ε̃n = εn +
1

2τ
sign(εn), (165)

where 1/τ = 2πν
〈
U2
〉

is the frequency of elastic collisions.
Another effect of the coherent scattering on the same impurity by both

electrons forming a Cooper pair is the renormalization of the vertex part
λ(q, ε1, ε2) in the particle-particle channel. Let us demonstrate the details
of its calculation. The renormalized vertex λ(q, ε1, ε2) is determined by a
graphical equation of the ladder type (see Fig. 7 ). Here after the averaging
over the impurity configurations the value

〈
U2
〉

= 1
2πντ is associated with

the dashed line. In the momentum representation this, generally speaking,
integral equation is reduced to the algebraic one

λ−1(q, ε1, ε2) = 1 − 1

2πντ
P(q, ε̃1, ε̃2), (166)

where P(q, ε̃1, ε̃2) was defined above by (153).
Now one has to perform a formal averaging of the general expression (153)

over the Fermi surface (〈 ...〉F.S.). Restricting consideration to small momenta

∆ξ(q,p)||p|=pF
≪ |ε̃1 − ε̃2|. (167)

the calculation of λ(q, ω1, ω2) for the practically important case of an ar-
bitrary spectrum can be done analogously to (155). Indeed, expanding the
denominator of (153) one can find

λ(q, ω1, ω2) =
|ε̃1 − ε̃2|

|ε1 − ε2| + 〈(∆ξ(q,p)||p|=pF
)2〉F.S.

τ |ω̃1−ω̃2|2 Θ(−ε1ε2)
. (168)

It is easy to see that assumed restriction on momenta is not too severe and is
almost always satisfied in calculations of fluctuation effects at temperatures
near Tc. In this region of temperatures the effective propagator momenta
are determined by |q|eff ∼ [ξGL(T )]−1 = ξ−1

√
ǫ ≪ ξ−1, while the Green

function q-dependence becomes important for much larger momenta q ∼
min{ξ−1, l−1}, which is equivalent to the limit of the condition (167).



64 Anatoly Larkin and Andrei Varlamov

The average in (168) can be calculated for some particular types of spec-
tra. For example in the cases of 2D and 3D isotropic spectra it is expressed
in terms of the diffusion coefficient D(D) :

〈(∆ξ(q,p)||p|=pF
)2〉F.S.(D) = τ−1D(D)q

2 =
v2

F q
2

D
. (169)

Another important example is already familiar case of quasi-two-dimensional
electron motion in a layered metal:

ξ(p) = E(p‖) + J cos(pzs) − EF , (170)

where E(p‖) = p2
‖/(2m), p ≡ (p‖, pz), p‖ ≡ (px, py), J is the effective

nearest-neighbor interlayer hopping energy for quasiparticles. We note that
J characterizes the width of the band in the c-axis direction taken in the
strong-coupling approximation and can be identified with the effective energy
of electron tunneling between planes (see (63) and footnote 14). The Fermi
surface, defined by the condition ξ(p) = 0, is a corrugated cylinder (see Fig.
8). In this case the average (169) is written in a more sophisticated form:

〈(∆ξ(q,p)||p|=pF
)2〉F.S. =

1

2
(v2

F q2 + 4J2 sin2(qzs/2)) = τ−1D̂q2, (171)

where we have introduced the definition of the generalized diffusion operator
D̂ in order to deal with an arbitrary anisotropic spectrum.

Propagator. In Section 4, in the process of the microscopic derivation of
the TDGL equation, the fluctuation propagator was introduced. This object
is of first importance for the microscopic fluctuation theory and it has to
be generalized for the case of an impure metal with an anisotropic electron
spectrum. This is easy to do using the averaging procedure presented in
the previous Section. Formally it is enough to use in equation (150) the
polarization operator Π(q, Ωk) averaged over impurity positions, which can
be expressed in terms of P(q, ε̃n+k, ε̃−n) introduced above:

Π(q, Ωk) = T
∑

ωn

λ(q, εn+k, ε−n)P(q, ω̃n+k, ω̃−n) = (172)

= T
∑

ωn

1

[P(q, ε̃n+k, ε̃−n)]
−1 − 1

2πντ

.

For relatively small q (∆ξ(q,p)||E(p)|=EF
≪ |ε̃n+k − ε̃−n| ∼ max{T, τ−1})

and Ω ≪ T one can find an expression for the fluctuation propagator, which
can be useful in studies of fluctuation effects near Tc (ǫ ≪ 1) for the dirty
and intermediate but not very clean case (Tτ ≪ 1/

√
ǫ). Expanding (168) in
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Fig. 8. The Fermi surface in the form of a corrugated cylinder

powers of
(
∆ξ(q,p)||E(p)|=EF

/|2ε̃n +Ωk|
)2

it is possible write LR(q,Ω) in a
form almost completely coinciding with Exp.(162):

LR(q, Ω) = −1

ν

1

ǫ− iπΩ
8T + ξ2(Tτ)q2

. (173)

Let us stress that the phenomenological coefficient γGL turns out to be equal
to the same value πν

8T as in clean case, and hence does not depend on the
impurity concentration. The only difference in comparison with the clean
case is in appearance of a dependence of the natural effective coherence length
on the elastic relaxation time. In the isotropic D-dimensional case it can be
written as

ξ2(D)(Tτ) = (4mαT )
−1

= η(D) = (174)

−τ
2v2

F

D

[
ψ(

1

2
+

1

4πTτ
) − ψ(

1

2
) − 1

4πTτ
ψ

′

(
1

2
)

]

(we introduced here the parameter η(D) frequently used in the microscopic
theory)21.

21 Let us recall that its square determines the product of the GL parameter α and
the Cooper pair mass entering in the GL functional. In clean case we supposed
the letter equal to two free electron masses and defined α in accordance with
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The generalization of (173) for the case of a layered electronic spectrum
is evident:

LR(q,Ω) = −1

ν

1

ǫ− iπΩ
8T + η(2)q

2
‖ + r sin2(qzs/2)

. (175)

One has to remember that the Exp. (173) was derived in the assumption
of small momenta ∆ξ(q,p)||E(p)|=EF

≪ |ε̃n+k − ε̃−n| ∼ max{T, τ−1}, so
the range of its applicability is restricted to the GL region of temperatures
ǫ = ln( T

Tc
) ≪ 1, where the integrands of diagrammatic expressions have

singularities at small momenta of the Cooper pair center of mass.
Finally let us express the Ginzburg-Levanyuk parameter for the important

2D case in terms of the microscopic parameter η(2). In accordance with (37)
and the definition (174):

Gi(2) (Tτ) =
7ζ(3)

16π2

1

mTcη(2) (Tτ)
. (176)

One can see that this general definition in the limiting cases of a clean and
dirty metal results in the same values Gi(2c) and Gi(2d) as was reported in
Table 1.

5.4 Microscopic theory of fluctuation conductivity of layered
superconductor

Qualitative discussion of different fluctuation contributions In Sec-
tion 4 the direct fluctuation effect on conductivity, related with the charge
transfer by means of fluctuation Cooper pairs, was discussed in details. Never-
theless, below in this Section we return to its discussion and will demonstrate
its calculation by means of the microscopic theory. This will be done in pur-
pose to prepare the basis for studies of the Aslamazov-Larkin contribution in
the variety of physical values like magnetoconductivity near the upper crit-
ical field, conductivity far from transition point, fluctuation conductivity in
ultra-clean limit, Hall conductivity etc.

Microscopic approach permits also to calculate the cited above indirect
fluctuation effects like so called DOS and MT contributions. We will start
now from their qualitative discussion.

The important consequence of the presence of fluctuating Cooper pairs
above Tc is the decrease of the one-electron density of states at the Fermi level.
Indeed, if some electrons are involved in pairing they can not simultaneously

(18). As we just have seen in the case of the impure superconductor ξ depends
on impurity concentration and this dependence, in principle, can be attributed
both to α or m. For our further purposes it is convenient to leave α in the same
form (18) as in the case of a clean superconductor. The Cooper pair mass in this
case becomes dependent on the electron mean free pass what physically can be
attributed to the diffusion motion of the electrons forming the pair.
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participate in charge transfer and heat capacity as single-particle excitations.
Nevertheless, the total number of the electronic states can not be changed
by the Cooper interaction, and only a redistribution of the levels along the
energy axis is possible [93,94]. In this sense one can speak about the opening
of a fluctuation pseudo-gap at the Fermi level. The decrease of the one-
electron density of states at the Fermi level leads to a reduction of the normal
state conductivity. This, indirect, fluctuation correction to the conductivity
is called the density of states (DOS) contribution and it appears side by
side with the paraconductivity (or Aslamazov-Larkin contribution). It has the
opposite (negative) sign and turns out to be much less singular in (T −Tc)

−1

in comparison with the AL contribution, so that in the vicinity of Tc it
was usually omitted. However, in many cases [29,95,96,97,98,99], when for
some special reasons the main, most singular, corrections are suppressed, the
DOS correction becomes of major importance. Such a situation takes place
in many cases of actual interest (quasiparticle current in tunnel structures,
c-axis transport in strongly anisotropic high temperature superconductors,
NMR relaxation rate, thermoelectric power).

The correction to the normal state conductivity above the transition tem-
perature related with the fluctuation DOS renormalization for the dirty su-
perconductor can be evaluated qualitatively. Indeed, the fact that some elec-
trons (∆Ne per unit volume) participate in fluctuation Cooper pairing means
that the effective number of carriers taking part in one-electron charge trans-
fer diminishes leading to a decrease of conductivity (we deal here with the
longitudinal component):

δσDOS
xx = −∆Nee

2τ

m
= −2nse

2τ

m
, (177)

where ns is the superfluid density coinciding with the Cooper pairs concen-
tration. The latter can be identified with the average value of the square of
the order parameter modulus already calculated as the correlator

〈Ψ∗(0)Ψ(r)〉 (T > Tc0) =
∑

k

〈
|Ψk|2

〉
exp (ikr) =

1

4παξ2
K0

(
r

ξ(ǫ)

)
,(178)

with r ∼ ξ. For the 2D case, which is of the most interest to us, one finds:

ns =
1

4παξ2
1

s
K0(

√
ǫ) =

7ζ (3)

π4v2
F

EF

sτ
ln

1

ǫ
, (179)

where we have used the explicit expression (18) for α and ξ. As we will see the
corresponding expression for the fluctuation DOS correction to conductivity
(177) coincides with the accuracy of 2 with the microscopic expression (191)
which will be carried out below.

The third, purely quantum, fluctuation contribution is generated by the
coherent scattering of the electrons forming a Cooper pair on the same elastic
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impurities. This is the so called anomalous Maki-Thompson (MT) contribu-
tion [6,7] which can be treated as the result of Andreev scattering of the
electron by fluctuation Cooper pairs. This contribution often turns out to be
important in conductivity and other transport phenomena. Its temperature
singularity near Tc is similar to that of the paraconductivity, although being
extremely sensitive to electron phase-breaking processes and to the type of
orbital symmetry of pairing it can be suppressed. Let us evaluate it.

The physical origin of the Maki-Thompson correction consists in the fact
that the Cooper interaction of electrons with the almost opposite momenta
changes the mean free path (diffusion coefficient) of electrons. As we have
already seen in the previous Section the amplitude of this interaction increases
drastically when T → Tc :

geff =
g

1 − g ln ωD

2πT

=
1

ln T
Tc

≈ T

T − Tc
=

1

ǫ
.

What is the reason of this growth? One can say that the electrons scatter
one at another in resonant way with the virtual Cooper pairs formation. Or
it is possible to imagine that the electrons undergo the Andreev scattering at
fluctuation Cooper pairs binding in the Cooper pair themselves. The proba-
bility of such induced pair irradiation (let us remind that Cooper pairs are
Bose particles) is proportional to their number in the final state, i.e. n(p) (7).
For small momenta n(p) ∼ 1/ǫ.

One can ask why such interaction does not manifest itself considerably
far from the transition point? The matter of fact that so intensively interacts
just small number of electrons with the total momentum q . ξ−1(T ). In
accordance with the Heisenberg principle the minimal distance between such
electrons is of the order of ∼ ξ(T ). From the other hand such electrons in
purpose to interact have to approximate one another up to the distance of
the Fermi length λF ∼ 1/pF . The probability of such event may be estimated
in the spirit of the self-intersection trajectories contribution evaluation in the
weak localization theory [100,102].

In the process of diffusion motion the distance between two electrons
increases with the time growth in accordance with the Einstein law: R(t) ∼
(Dt)

1/2
. Hence the scattering probability

W ∼
∫ tmax

tmin

λD−1
F

RD(t)
vF dt.

The lower limit of the integral can be estimated from the condition R(tmin)
∼ ξ(T ) (only such electrons interact in the resonant way). The upper limit
is determined by the phase breaking time τϕ since for larger time intervals
the phase coherence, necessary for the pair formation, is broken. In result
the relative correction to conductivity due to such processes is equal to the
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product of the scattering probability on the effective interaction constant:
δσMT /σ = W geff . In the 2D case

δσMT ∼ e2

8ǫ
ln

Dτϕ
ξ2(T )

.

This result will be confirmed below in the frameworks of the microscopic
consideration.

Generalities Let us pass to the microscopic calculation of the fluctuation
conductivity of the layered superconductor. We begin by discussing the quasi-
particle normal state energy spectrum. While models with several conducting
layers per unit cell and with either intralayer or interlayer pairing have been
considered [103], it has been shown [104] that all of these models give rise to
a Josephson pair potential that is periodic in kz , the wave-vector component
parallel to the c-axis, with period s, the c-axis repeat distance. While such
models differ in their superconducting densities of states, they all give rise
to qualitatively similar fluctuation propagators, which differ only in the pre-
cise definitions of the parameters and in the precise form of the Josephson
coupling potential. Ignoring the rather unimportant differences between such
models in the Gaussian fluctuation regime above Tc(H), we therefore con-
sider the simplest model of a layered superconductor, in which there is one
layer per unit cell, with intralayer singlet s-wave pairing. These assumptions
lead to the simple spectrum (170) and hence to a Fermi surface having the
form of a corrugated cylinder (see Fig.8).

Some remarks regarding the normal-state quasiparticle momentum relax-
ation time are necessary. In the ”old” layered superconductors the materials
were generally assumed to be in the dirty limit (like TaS2(pyridine)1/2). In
the high-Tc cuprates, however, both single crystals and epitaxial thin films
are nominally in the ”intermediate” regime, with l/ξxy ≈ 2 − 5. In addition,
the situation in the cuprates is complicated by the presence of phonons for
T ≃ Tc ≃ 100K, the nearly localized magnetic moments on the Cu2+ sites,
and by other unspecified inelastic processes. In this Section we assume simple
elastic intralayer scattering and restrict our consideration to the local limit
in the fluctuation Cooper pair motion. This means that we consider the case
of not too clean superconductors, keeping the impurity concentration ni and
reduced temperature such that the resulting mean-free path satisfies the re-
quirement l < ξxy(T ) =

ξxy√
ε

and the impurity vertex can be taken in the local

form (168) with 〈(∆ξ(q,p)|)2〉F.S. determined by (171). The phase-breaking
time τϕ is supposed to be much larger than τ .

The most general relation between the current density j(r,t) and vector-
potential A(r

′
, t′) is given through the so-called electromagnetic response

operator Qαβ(r, r′, t, t′) [92]:

j(r,t) =

∫
Qαβ(r, r′, t, t′)A(r

′
, t′) dr′ dt,
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Assuming space and time homogeneity, one can take the Fourier transform
of this relation and compare it with the definition of the conductivity tensor
jα = σαβEβ . This permits us to express the conductivity tensor in terms of
the retarded electromagnetic response operator

σαβ(ω) = − 1

iω
[Qαβ ]R(ω) . (180)

The electromagnetic response operator Qαβ(ων), defined on Matsubara
frequencies ων = (2ν + 1)πT, can be presented as the correlator of two ex-
act one-electron Green functions [92] averaged over impurities and accounting
for interactions, in our case the particle-particle interactions in the Cooper
channel. The appropriate diagrams corresponding to the first order of per-
turbation theory in the fluctuation amplitude are shown in Fig. (9).

With each electromagnetic field component Aα we associate the external

vertex evα(p) = e∂ξ(p)
∂pα

. For the longitudinal conductivity tensor elements

(parallel to the layers, for which α = x, y), the resulting vertex is simply
epα/m. For the c-axis conductivity, the vertex is given by

evz(p) = e
∂ξ(p)

∂pz
= −eJs sin(pzs). (181)

Each solid line in the diagrams represents a one-electron Green function
averaged over impurities (149), a wavy line represents a fluctuation propa-
gator L(q, Ωk) (173), three-leg vertices were defined by the Exp.(168). The
four-leg impurity vertex, appearing in diagrams 3-4, 9-10 of the Fig. 9, is
called the Cooperon in the weak localization theory (see, for example,[105])
It is easy to see that it differs from the above three-leg vertex only by the
additional factor (2πντ)

−1
. We do not renormalize the current vertices: it is

well known (see [92]) that this renormalization only leads to the substitution
of the scattering time τ by the transport one τtr. We integrate over the inter-
nal Cooper pair momentum q and electron momentum p and sum over the
internal fermionic and bosonic Matsubara frequencies, with momentum and
energy conservation at each internal vertex (fluctuation propagator endpoint)
in the analytical expressions for the diagrams presented in Fig. (9).

After these necessary introductory remarks and definitions we pass to the
microscopic calculation of the different fluctuation contributions.

Aslamazov-Larkin contribution We first examine the AL paraconduc-
tivity (diagram 1 of Fig.(9)). Actually this contribution was already studied
in the Section 4 in the framework of the TDGL equation but, in order to
demonstrate how the method works, we will carry out here the appropriate
calculations in the microscopic approach, as was originally done by Aslama-
zov and Larkin [5].
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Fig. 9. Feynman diagrams for the leading-order contributions to the fluctuation
conductivity. Wavy lines are fluctuation propagators, thin solid lines with arrows
are impurity-averaged normal-state Green’s functions, shaded semicircles are vertex
corrections arising from impurities, dashed lines with central crosses are additional
impurity renormalisations and shaded rectangles are impurity ladders. Diagram 1
represents the Aslamazov-Larkin term; diagrams 2–4 represent the Maki-Thompson
type contributions; diagrams 5–10 arise from corrections to the normal state density
of states.
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The AL contribution to the electromagnetic response operator tensor has
the form:

QAL
αβ (ων) = 2e2T

∑

Ωk

∫
d3q

(2π)3
Bα(q, Ωk, ων)L(q, Ωk) × (182)

×Bβ(q, Ωk, ων)L(q, Ωk + ων),

where the three Green function block is given by

Bα(q, Ωk, ων) = T
∑

εn

λ(q, εn+ν , Ωk − εn)λ(q, εn, Ωk − εn) × (183)

×
∫

d3p

(2π)3
vα(p)G(p, εn+ν)G(p, εn)G(q − p, Ωk − εn).

Expanding G(q − p, Ωk − εn) over q one find that the angular integration
over the Fermi surface kills the first term and leaves nonzero the second
term of the expansion only. Then the ξ−integration is performed by means
of the Cauchy theorem. The further summation over the fermionic frequency
is cumbersome, so we will show it for the example of the simplest case of
a dirty superconductor with Tτ ≪ 1. In this case the main sources of the
εn−dependence in (183) are the λ-vertices and that originating from the
Green functions can be neglected by the parameter Tτ ≪ 1 (indeed, one can
see that εn ∼ T are important in vertices, while in Green functions εn & τ−1

only). The remaining summation in (183) is performed in the same way as
was done in (173) and results in:

Bα(q, Ωk, ων) = ν
η(2)

v2
F

〈vαqβvβ〉FS × (184)

× 8T

πων

[
ψ(

1

2
+

|Ωk| + ων + D̂q2

4πT
) − ψ(

1

2
+

|Ωk| + D̂q2

4πT
) +

+ ψ(
1

2
+

|Ωk+ν | + ων + D̂q2

4πT
) − ψ(

1

2
+

||Ωk+ν | + D̂q2

4πT
)

]
.

Now let us return to the general expression for QAL
αβ (ων) and transform

the Ωk− summation into a contour integral, using the identity [106]

T
∑

Ωk

f(Ωk) =
1

4πi

∮

C

dz coth
z

2T
f(−iz),

where z = iΩk is a variable in the plane of complex frequency and the contour
C encloses all bosonic Matsubara frequencies over which the summation is
carried out. In our case the contour C can be chosen as a circle with radius
tending to infinity (see Fig. 10):
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C1

C2

C3

RR

RA

AA

Fig. 10. The contour of integration in the plane of complex frequencies.

QAL
αβ (ων) =

e2

2πi

∫
d3q

(2π)3

∮

C

dz coth
z

2T
Bα(q,−iz + ων ,−iz)× (185)

×L(q,−iz)Bβ(q,−iz + ων ,−iz)L(q,−iz + ων).

One can see that the integrand function in (185) has breaks of analyticity
at the lines Imz = 0 and Imz = −iων. Indeed, the fluctuation propaga-
tor L(q, Ωk) and Green function blocks Bα(q, Ωk, ων) were defined on the
bosonic Matsubara frequencies only, while now we have to use them as func-
tions of the continuous variable z. As it is well known from the properties
of Green functions in the complex plane z , two analytical functions, related
with L(q, Ωk), can be introduced. The first one, LR(q,−iz) (retarded), is
analytic in the upper half-plane (Imz > 0), while the second one, LA(q,−iz)
(advanced), has no singularities in the lower half-plane (Imz < 0). As we
have seen above the same lines separate the domains of the analyticity of the
Green function blocks, so the functions BRR, BRA, BAA analytic in each do-
main can be introduced (with the appropriate choices of the |Ωk+ν | and |Ωk|
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signs in the arguments of the ψ− functions, see (184)). This means that by
cutting the z-plane along the lines Imz = 0 and Imz = −iων we can reduce
the calculation of the contour integral in (185) to the sum of three integrals
along the contours C1, C2, C3 which enclose domains of well defined analyt-
icity of the integrand function. The integral along the large circle evidently
vanishes and the contour integral is reduced to four integrals along the cuts
of the plane in Fig.10:

I(q, ων) =

∮

C1+C2+C3

dz coth
z

2T
Bα(q,−iz)L(q,−iz)Bβ(q,−iz)L(q,−iz + ων) =

=

∫ ∞

−∞
dz coth

z

2T
LR(q,−iz + ων)

[
BRR

α BRR
β LR(q,−iz)−

−BRA
α BRA

β LA(q,−iz)
]
+

∫ ∞−iων

−∞−iων

dz coth
z

2T
LA(q,−iz) ×

[
BRA

α BRA
β LR(q,−iz + ων) −BAA

α BAA
β LA(q,−iz + ων)

]
..

Now one can shift the variable in the last integral to z = z′ − iων, take into
account that iων is the period of coth z

2T and get an expression analytic in
iων → ω.

In the vicinity of Tc, due to the pole structure of the fluctuation prop-
agators in (182), the leading contribution to the electromagnetic response

operator Q
AL(R)
αβ arises from them rather than from the frequency depen-

dence of the vertices Bα, so we can neglect the Ωk- and ων-dependencies of
the Green functions blocks and use the expression for Bα(q, 0, 0) valid for
small qab only:

Bα(q) = −2ν
η(2)

v2
F

{
v2

F qα, α = x, y
sJ2 sin qzs, α = z

. (186)

Detailed calculations demonstrate that this result can be generalized to an
arbitrary impurity concentration just by using the expression (174) for η(2).
Finally:

Q
AL(R)
αβ (ω) =

2e2

π

∫
d3q

(2π)3
Bα(q)Bβ(q)

∫ ∞

−∞
dz coth

( z

2T

) [
LR(q,−iz − iω)

+LA(q,−iz + iω)
]
ImLR(q,−iz).

Being interested here in the d.c. conductivity one can expand the inte-
grand function in ω. It is possible to show that the zeroth order term is
cancelled by the same type contributions from all other diagrams (this can-
cellation confirms the absence of anomalous diamagnetism above the critical
temperature). The remaining integral can be integrated by parts and then
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carried out taking into account that the contribution most singular in ǫ comes
from the region z ∼ ǫ≪ T :

σAL
xx =

e2

2πT

∫
d3q

(2π)3
B2

x,z(q, 0, 0)

∫ ∞

−∞

dz

sinh2 z
2T

[
ImLR(q,−iz)

]2
=

=
π2e2η2

(2)

s

∫
d2q

(2π)2
q2

[
(η(2)q2 + ǫ)(η(2)q2 + ǫ+ r)

]
3/2

=
e2

16s

1

[ǫ(ǫ+ r)]1/2
→ e2

16s

{
1/

√
ǫr, ǫ≪ r

1/ǫ, ǫ≫ r
. (187)

where the Lawrence-Doniach anisotropy parameter r [27] was already defined
by (63).

In the same way one can evaluate the AL contribution to the transverse
fluctuation conductivity [107,95,108]:

σAL
zz =

πe2sr2

32

∫
d2q

(2π)2
1[

(η(2)q2 + ǫ)(η(2)q2 + ǫ+ r)
]

3/2
= (188)

=
e2s

32η(2)

(
ǫ+ r/2

[ǫ(ǫ+ r)]1/2
− 1

)
→ e2s

64η(2)

{ √
r/ǫ, for ǫ≪ r

(r/2ǫ)
2
, for ǫ≫ r

.

Note, that contrary to the case of in-plane conductivity, the critical exponent
for σzz above the Lawrence-Doniach crossover temperature TLD (for which
ǫ(TLD) = r) is 2 instead of 1, so the crossover occurs from the 0D to 3D
regimes. This is related with the tunneling (so from the band structure point
of view effectively zero dimensional) character of electron motion along the
c-axis.

Contributions from fluctuations of the density of states In original
paper of Aslamazov and Larkin [5] the most singular AL contribution to
conductivity, heat capacity and other properties of a superconductor above
the critical temperature was considered. The diagrams of the type 5-6 were
pictured and correctly evaluated as less singular in ǫ. Nevertheless the spe-
cific form of the AL contribution to the transverse conductivity of a layered
superconductor, which may be considerably suppressed for small interlayer
transparency, suggested to re-examine the contributions from diagrams 5-10
of Fig.9 which are indeed less divergent in ǫ, but turn out to be of lower or-
der in the transmittance and of the opposite sign with respect to the AL one
[95,96]. These, so-called DOS, diagrams describe the changes in the normal
Drude-type conductivity due to fluctuation renormalization of the normal
quasiparticles density of states above the transition temperature (see Section
8.5). In the dirty limit, the calculation of contributions to the longitudinal
fluctuation conductivity σxx from such diagrams was discussed in [109,99].
Contrary to the case of the AL contribution, the in-plane and out-of-plane
components of the DOS contribution differ only in the square of the ratio of
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effective Fermi velocities in the parallel and perpendicular directions. This
allows us to calculate both components simultaneously. The contribution to
the fluctuation conductivity due to diagram 5 is

Q5
αβ(ων) = 2e2T

∑

Ωk

∫
d3q

(2π)3
L(q, Ωk)T

∑

εn

λ2(q, εn, Ωk − εn) ×
∫

d3p

(2π)3
vα(p)vβ(p)G2(p, εn)G(q − p, Ωk − εn)G(p, εn+ν),

and diagram 6 gives an identical contribution. Evaluation of the integrations
over the in-plane momenta p and the summation over the internal frequencies
εn are straightforward. Treatment of the other internal frequencies Ωk is less
obvious, but in order to obtain the leading singular behavior in the vicinity
of transition it suffices to set Ωk = 0 [99]. After integration over qz, we have
[95,97]:

σ5+6
αβ = −πe

2

2s
Aαβκ1η(2)

∫

|q|≤ξ−1

d2q

(2π)2
1[

(ǫ+ η(2)q2)(ǫ+ r + η(2)q2)
]

1/2

≈ −e
2κ1

8s
Aαβ ln

(
2

ǫ1/2 + (ǫ+ r)1/2

)
, (189)

where Axx = Ayy = 1, Azz = (sJ/vF )2, Aα6=β = 0 and

κ1 =
2(vF τ)

2

π2η(2)

[
ψ

′

(
1

2
+

1

4πTτ

)
− 3

4πTτ
ψ

′′

(
1

2

)]
.

In order to cut off the ultra-violet divergence in q we have introduced here a

cut off parameter qmax = ξ−1 = η
−1/2
(2) in complete agreement with Section 3.

Let us stress that in the framework of the phenomenological GL theory we
attributed this cut off to the breakdown of the GL approach at momenta as
large as q ∼ ξ−1. The microscopic approach developed here permits to see
how this cut off appears: the divergent shortwave-length contribution arising
from GL-like fluctuation propagators is automatically restricted by the q-
dependencies of the impurity vertices and Green functions, which appear at
the scale q ∼ l−1.

In a similar manner, the equal contributions from diagrams 7 and 8 sum
to

σ7+8
αβ = −πe

2

2s
Aαβκ2η(2)

∫

|q|≤qmax

d2q

(2π)2
1[

(ǫ+ η(2)q2)(ǫ+r + η(2)q2)
]

1/2

≈ −e
2κ2

8s
Aαβ ln

(
2

ǫ1/2 + (ǫ+r)1/2

)
, (190)

κ2 =
(vF τ)

2

2π3Tτ
ψ

′′

(
1

2

)
.
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Comparing (189) and (190), we see that in the clean limit, the main contri-
butions from the DOS fluctuations arise from diagrams 5 and 6. In the dirty
limit, diagrams 7 and 8 are also important, having -1/3 the value of diagrams
5 and 6, for both σxx and σzz . Diagrams 9 and 10 are not singular in ǫ << 1
at all and can be neglected. The total DOS contribution to the in-plane and
c-axis conductivity is therefore

σDOS
αβ = − e

2

2s
κ(Tτ)Aαβ ln

(
2

ǫ1/2 + (ǫ+ r)1/2

)
, (191)

where

κ(Tτ) = κ1 + κ2 =
−ψ′ ( 1

2 + 1
4πτT

)
+ 1

2πτT ψ
′′ ( 1

2

)

π2
[
ψ
(

1
2 + 1

4πτT

)
− ψ

(
1
2

)
− 1

4πτT ψ
′
(

1
2

)]

→
{

56ζ(3)/π4 ≈ 0.691, T τ ≪ 1

8π2 (Tτ)
2
/ [7ζ(3)] ≈ 9.384 (Tτ)

2
, 1 ≪ Tτ ≪ 1/

√
ǫ

(192)

is a function of τT only. As it will be shown below at the upper limit
Tτ ∼ 1/

√
ǫ the DOS contribution reaches the value of the other fluctuation

contributions and in the limit of Tτ → ∞ exactly eliminates the Maki-
Thompson one.

Maki-Thompson contribution We now consider another quantum cor-
rection to fluctuation conductivity which is called the Maki-Thompson (MT)
contribution (diagram 2 of Fig. 9). It was firstly discussed by Maki [6] in
a paper which appeared almost simultaneously with the paper of Aslama-
zov and Larkin [5]. Both these articles gave rise to the microscopic theory
of fluctuations in superconductor. Maki found that, in spite of the seeming
weaker singularity of diagram 2 with respect to the AL one (it contains one
propagator only, while the AL one contains two of them) it can contribute
to conductivity comparably or even stronger than AL one.

Since the moment of its discovery the MT contribution became the sub-
ject of intense controversy. In its original paper Maki found that in 3D case
this fluctuation correction is four times larger than the AL one. In 2D case
the result was striking: the MT contribution simply diverged. This paradox
was, at least at the level of recipe, resolved by Thompson [7]: he proposed
to cut off the infra-red divergence in the Cooper pair center of mass mo-
mentum integration by the introduction of the finite length ls of inelastic
scatterings of electrons on paramagnetic impurities. In the further papers of
Patton [110], Keller and Korenman [111] it was cleared up that the presence
of paramagnetic impurities or other external phase-breaking sources is not
necessary: the fluctuation Cooper pairing of two electrons results in a change
of the quasiparticle phase itself and the corresponding phase-breaking time
τϕ appears as a natural cut off parameter of the MT divergence in the strictly
2D case. The minimal quasi-two-dimensionality of the electron spectrum, as
we will show below, automatically results in a cut off of the MT divergence.
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Although the MT contribution to the in-plane conductivity is expected to
be important in the case of low pair-breaking, experiments on high-temperature
superconductors have shown that the excess in-plane conductivity can usually
be explained in terms of the fluctuation paraconductivity alone. Two possible
explanations can be found for this fact. The first one is that the pair-breaking
in these materials is not weak. The second is related with the d−wave symme-
try of pairing which kills the anomalous Maki-Thompson process [112,113].
We will consider below the case of s-pairing, where the Maki-Thompson pro-
cess is well pronounced.

The appearance of the anomalously large MT contribution is nontrivial
and worth being discussed. We consider the scattering lifetime τ and the pair-
breaking lifetime τϕ to be arbitrary, but satisfying τϕ > τ . In accordance with
diagram 2 of Fig.(9) the analytical expression for the MT contribution to the
electromagnetic response tensor can be written as

QMT
αβ (ων) = 2e2T

∑

Ωk

∫
d3q

(2π)3
L(q, Ωk)Iαβ(q, Ωk, ων), (193)

where

Iαβ(q, Ωk, ων) = T
∑

εn

λ(q, εn+ν , Ωk−n−ν)λ(q, εn, Ωk−n) × (194)

×
∫

d3p

(2π)3
vα(p)vβ(q − p)G(p, εn+ν)G(p, εn)G(q − p, Ωk−n−ν)G(q − p, Ωk−n) .

In the vicinity of Tc, it is possible to restrict consideration to the static
limit of the MT diagram, simply by setting Ωk = 0 in (193). Although dy-
namic effects can be important for the longitudinal fluctuation conductivity
well above TLD, the static approximation is correct very close to Tc, as shown
in [98,125]. The main q−dependence in (193) arises from the propagator and
vertices λ. This is why we can assume q = 0 in Green functions and to calcu-
late the electron momentum integral passing, as usual, to a ξ(p) integration:

Iαβ(q, 0, ων) = πν 〈vα(p)vβ(q − p)〉FS × (195)

×T
∑

εn

1(
|2εn+ν| + D̂q2

) 1(
|2εn| + D̂q2

) 1

|ε̃n+ν | + |ε̃n|
.

In evaluating the sum over the Matsubara frequencies εn in (195) it is useful
to split it into the two parts. In the first εn belongs to the domains ]−∞,−ων [
and [0,∞[, which finally give two equal contributions. This gives rise to the
regular part of the MT diagram. The second, anomalous, part of the MT
diagram arises from the summation over εn in the domain [−ων, 0[. In this
interval, the further analytic continuation over ων leads to the appearance of
an additional diffusive pole:
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Iαβ(q, 0, ων) = I
(reg)
αβ (q, ων) + I

(an)
αβ (q, ων) = ν 〈vα(p)vβ(q − p)〉FS

×


2πT

∞∑

n=0

1(
2εn+ν + D̂q2

) 1(
2εn + D̂q2

) 1

2εn + ων + τ−1
+

+
πT

ων + τ−1

−1∑

n=−ν

1(
2εn+ν + D̂q2

) 1(
−2εn + D̂q2

)


 .

The limits of summation in the first sum do not depend on ων , so it is an
analytic function of this argument and can be continued to the upper half-
plane of the complex frequency by the simple substitution ων → −iω. Then,
tending ω → 0, one can expand the sum over powers of ω and perform the
summation in terms of digamma-function:

I
(reg)
αβ (q, ων) = ν 〈vα(p)vβ(q − p)〉FS ×



const+

iω

2

∂

∂
(
D̂q2

)


 ∂

∂
(
D̂q2

) +
∂

∂ (τ−1)


 · (196)

1

τ−1 − D̂q2

[
ψ

(
1

2
+
ων + D̂q2

4πT

)
− ψ

(
1

2
+
D̂q2

4πT

)]}
.

The values of characteristic momenta q ≪ l−1 are determined by the do-
main of convergibility of the final integral of the propagator L(q, 0) in (193)

(analogously to (190) and one can neglect D̂q2 with respect to τ−1. In result

I
(reg)R
αβ (q, ω → 0) = ν 〈vα(p)vβ(q − p)〉FS × (197)

{
const+

iωτ2

4

[
ψ′
(

1

2
+

1

4πτT

)
− ψ′

(
1

2

)
− ψ′′ ( 1

2

)

4πTτ

]}
.

The appearance of the constant in Qαβ(ων) was already discussed in the case
of the AL contribution and, as was mentioned there, it is cancelled with the
similar contributions of the other diagrams [98] and we will not consider it
any more.

Now let us pass to the calculation of I
(an)
αβ (q, ων). Expanding the summing

function in simple fractions one can express the result of summation in terms
of digamma-functions

I
(an)
αβ (q, ων) =

1

4

ν 〈vα(p)vβ(q − p)〉FS

ων + τ−1

1

ων + D̂q2
× (198)
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[
ψ

(
1

2
+

2ων + D̂q2

4πT

)
− ψ

(
1

2
+
D̂q2

4πT

)]
.

Doing the analytical continuation iων → ω → 0 and taking into account that

in the further q-integration of I
(an)R
αβ (q, ω → 0), due to the singular at small

q propagator, the important range is D̂q2 ≪ T , one can find

I
(an)R
αβ (q, ω → 0) = − iπωτ

16T

ν 〈vα(p)vβ(q − p)〉FS

−iω + D̂q2
. (199)

Because of the considerable difference in the angular averaging of the different
tensor components we discuss the MT contribution to the in-plane and out
of plane conductivities separately.

Taking into account that 〈vx(p)vx(q − p)〉FS = −v2
F /2 one can find that

the calculation of the regular part of MT diagram to the in-plane conductivity
is completely similar to the corresponding DOS contribution and here we list
the final result [97] only:

σMT (reg)
xx = − e

2

2s
κ̃ ln

(
2

ǫ1/2 + (ǫ+ r)1/2

)
,

where

κ̃(Tτ) =
−ψ′ ( 1

2 + 1
4πτT

)
+ ψ

′ ( 1
2

)
+ 1

4πTτ ψ
′′ ( 1

2

)

π2
[
ψ
(

1
2 + 1

4πτT

)
− ψ

(
1
2

)
− 1

4πτT ψ
′
(

1
2

)]

→
{

28ζ(3)/π4 ≈ 0.346, for Tτ ≪ 1
π2/ [14ζ(3)] ≈ 0586, for 1 ≪ Tτ ≪ 1/

√
ǫ

(200)

is a function only of τT . We note that this regular MT term is negative, as
is the overall DOS contribution.

For the anomalous part of the in-plane MT contribution we have:

σMT (an)
xx = 8e2η(2)T

∫
d3q

(2π)3
1

[1/τϕ + D̂q2][ǫ+ η(2)q2 + r
2 (1 − cos qzs)]

=
e2

4s(ǫ− γϕ)
ln

(
ǫ1/2 + (ǫ+ r)1/2

γ
1/2
ϕ + (γϕ + r)1/2

)
, (201)

where, in accordance with [7], the infra-red divergence for the purely 2D case
(r = 0) is cut off at Dq2 ∼ 1/τϕ

22. The dimensionless parameter

γϕ =
2η

v2
F ττϕ

→ π

8Tτϕ

{
1, T τ ≪ 1

7ζ(3)/
(
2π3Tτ

)
, 1 ≪ Tτ ≪ 1/

√
ǫ

22 The detailed study of the phase-breaking time, its energy dependence and the
effect on the MT contribution was done in [115]
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is introduced for simplicity. If r 6= 0 the MT contribution turns out to be
finite even with τϕ= ∞. Comparison of the expressions (187) and (201) indi-
cates that in the weak pair-breaking limit, the MT diagram makes an impor-
tant contribution to the longitudinal fluctuation conductivity: it is four times
larger than the AL contribution in the 3D regime, and even logarithmically
exceeds it in the 2D regime above TLD. For finite pair-breaking, however, the
MT contribution is greatly reduced in magnitude.

We now consider the calculation of the MT contribution to the transverse
conductivity. The explicit expressions for vz(p) and vz(q−p) (see Exp. (181)),
result in 〈vx(p)vx(q − p)〉FS = 1

2J
2s2 cos qzs. We take the limit Jτ << 1 in

evaluating the remaining integrals, which may then be performed exactly.

The regular part of the MT contribution to the transverse conductivity is

σMT (reg)
zz = −e

2s2πrκ̃(Tτ)

4

∫
d3q

(2π)3
cos qzs

ǫ+ η(2)q2 + r
2 (1 − cos qzs)

= −e
2srκ̃(Tτ)

16η(2)

(
(ǫ+ r)1/2 − ǫ1/2

r1/2

)2

This term is smaller in magnitude than is the DOS one, and therefore makes
a relatively small contribution to the overall fluctuation conductivity. In the
3D regime below TLD, it is proportional to J2, and in the 2D regime above
TLD, it is proportional to J4.

For the anomalous part of the MT diagram one can find

σMT (an)
zz =

πe2J2s2τ

4

∫
d3q

(2π)3
cos qzs

[1/τϕ + D̂q2][ǫ+ η(2)q2 + r
2 (1 − cos qzs)]

=
πe2s

4(ǫ− γϕ)

∫
d2q

(2π)2

[
γϕ + η(2)q

2 + r/2[
(γϕ + η(2)q2)(γϕ + η(2)q2 + r)

]
1/2

−

− ǫ+ η(2)q
2 + r/2[

(ǫ+ η(2)q2)(ǫ+ η(2)q2 + r)
]

1/2

]

=
e2s

16η(2)

(
γϕ + r + ǫ

[ǫ(ǫ+ r)]1/2 + [γϕ(γϕ + r)]1/2
− 1

)
. (202)
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In examining the limiting cases of (202), it is useful to consider the cases of
weak (γϕ << r, ⇐⇒ J2ττϕ >> 1/2) and strong (γϕ >> r,⇐⇒ J2ττϕ <<
1/2) pair-breaking separately23. For weak pair-breaking, we have

σMT (an)
zz → e2s

16η(2)





√
r/γϕ, ǫ≪ γϕ ≪ r√
r/ǫ, γϕ ≪ ǫ≪ r

r/ (2ǫ) , γϕ ≪ r ≪ ǫ

.

In this case, there is the usual 3D to 2D dimensional crossover in the anoma-
lous MT contribution at TLD. There is an additional crossover at Tϕ(where
Tc < Tϕ < TLD), characterized by ǫ(Tϕ) = γϕ, below which the anomalous
MT term saturates. Below TLD, the MT contribution is proportional to J ,
but in the 2D regime above TLD, it is proportional to J2.

For strong pair-breaking

σMT (an)
zz → e2s

32η(2)

{
r/γϕ, ǫ≪ r ≪ γϕ

r2/ (4γϕǫ) , r ≪ min{γϕ, ǫ} .

In this case, the 3D regime (below TLD) is not singular, and the anomalous
MT contribution is proportional to J2, rather than J for weak pair-breaking.
In the 2D regime, it is proportional to J4 for strong pair-breaking, as op-
posed to J2 for weak pair-breaking. In addition, the overall magnitude of
the anomalous MT contribution with strong pair-breaking is greatly reduced
from that for weak pair-breaking.

Let us now compare the regular and anomalous MT contributions. Since
these contributions are opposite in sign, it is important to determine which
will dominate. For the in-plane resistivity, the situation is straightforward:
the anomalous part always dominates over the regular and the latter can be
neglected. The case of c−axis resistivity requires more discussion. Since we
expect τϕ ≥ τ , strong pair-breaking is likely in the dirty limit. When the
pair-breaking is weak, the anomalous term is always of lower order in J than
the regular term, so the regular term can be neglected. This is true for both
the clean and dirty limits. The most important regime for the regular MT
term is the dirty limit with strong pair-breaking. In this case, when τϕT ∼ 1,
the regular and anomalous terms are comparable in magnitude. In short, it
is usually a good approximation to neglect the regular term, except in the
dirty limit with relatively strong pair-breaking and only for the out-of-plane
conductivity.

Finally let us mention that the contributions from the two other diagrams
of the MT type (diagrams 3 and 4 of Fig. 9) in the vicinity of critical temper-
ature can be omitted: one can check that they have an additional square of
23

Physically the value J2τ . characterizes the effective interlayer tunneling rate
[97,114]. When 1/τφ << J2τ << 1/τ , the quasiparticles scatter many times
before tunneling to the neighboring layers, and the pairs live long enough for
them to tunnel coherently. When J2τ << 1/τφ, the pairs decay before both
paired quasiparticles tunnel.
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Fig. 11. The normalised excess conductivity for samples of YBCO-123 (triangles),
BSSCO-2212(squares) and BSSCO-2223 (circles) plotted against ǫ = ln T/Tc on a
ln-ln plot as described in [124]. The dotted and solid lines are the AL theory in 3D
and 2D respectively. The dashed line is the extended theory of [125]..

the Cooper pair center of mass momentum q in the integrand of q-integration
with respect to diagram 2 and hence turn out to be less singular in ǫ.

Discussion Although the in-plane and out-of plane components of the fluc-
tuation conductivity tensor of a layered superconductor contain the same
fluctuation contributions, their temperature behavior may be qualitatively
different. In fact, for σfl

xx, the negative contributions are considerably less than
the positive ones in the entire experimentally accessible temperature range
above the transition, and it is a positive monotonic function of the temper-
ature. Moreover, for HTS compounds, where the pair-breaking is strong and
the MT contribution is in the overdamped regime, it is almost always enough
to take into account only the paraconductivity to fit experimental data. Some
examples of the experimental findings for in-plane fluctuation conductivity
of HTS materials on can see in [116,117,118,119,120,121,122,123].

In Fig. 11 the fluctuation part of in-plane conductivity σfl
xx is plotted

as a function of ǫ = lnT/Tc on a double logarithmic scale for three HTS
samples (the solid line represents the 2D AL behavior (1/ǫ), the dotted line
represents the 3D one: 3.2/

√
ǫ) [124]. One can see that paraconductivity of the
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less anisotropic YBCO compound asymptotically tends to the 3D behavior
(1/ǫ1/2) for ǫ < 0.1, showing the LD crossover at ǫ ≈ 0.07; the curve for
more anisotropic 2223 phase of BSCCO starts to bend for ǫ < 0.03 while the
most anisotropic 2212 phase of BSCCO shows a 2D behavior in the whole
temperature range investigated. All three compounds show a universal 2D
temperature behavior above the LD crossover up to the limits of the GL
region. It is interesting that around ǫ ≈ 0.24 all the curves bend down
and follow the same asymptotic 1/ǫ3 behavior (dashed line). Finally at the
value ǫ ≈ 0.45 all the curves fall down indicating the end of the observable
fluctuation regime.

Reggiani et al. [125] extended the 2D AL theory to the high temperature
region by taking into account the short wavelength fluctuations. The following
universal formula for 2D paraconductivity of a clean 2D superconductor as a
function of the generalized reduced temperature ǫ = lnT/Tc was obtained24:

σfl
xx =

e2

16s
f(ǫ)

with f(ǫ) = ǫ−1, ǫ≪ 1 and f(ǫ) = ǫ−3, ǫ & 1.
In the case of the out-of-plane conductivity the situation is quite different.

Both positive contributions (AL and anomalous MT) are suppressed by the
interlayer transparency, leading to a competition between positive and nega-
tive terms. This can lead to a maximum in the c-axis fluctuation resistivity
which occurs in the 2D regime (in the case discussed Jτ << 1, rκ << 1 and
γϕκ > 1) :

ǫm/r ≈
1

(8rκ)1/2
− 1

8κ

[
κ̃− 1

2γϕ

]
.

This nontrivial effect of fluctuations on the transverse resistance of a layered
superconductor allows a successful fit to the data observed on optimally and
overdoped HTS samples (see, for instance, Fig.12) where the growth of the
resistance still can be treated as the correction.

The fluctuation mechanism of the growth of the transverse resistance can
be easily understood in a qualitative manner. Indeed to modify the in-plane
result (100) for the case of c-axis paraconductivity one has to take into ac-
count the hopping character of the electronic motion in this direction. If the
probability of one-electron interlayer hopping is P1, then the probability of
coherent hopping for two electrons during the fluctuation Cooper pair lifetime
τGL is the conditional probability of these two events: P2 = P1(P1τGL). The
transverse paraconductivity may thus be estimated as σAL

⊥ ∼ P2σ
AL
‖ ∼ P2

1
1
ǫ2 ,

in complete accordance with (188). We see that the temperature singularity
of σAL

⊥ turns out to be stronger than that in σAL
‖ , however for a strongly

24 In Section 7.2 we will demonstrate how such a dependence
(
1/ ln3(T/Tc)

)
ap-

pears by accounting for short wavelength fluctuations for the 2D fluctuation
susceptibility.
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Fig. 12. Fit of the temperature dependence of the transverse resistance of an
underdoped BSCCO c-axis oriented film with the results of the fluctuation theory
[126]. The inset shows the details of the fit in the temperature range between Tc

and 110K.

anisotropic layered superconductor σAL
⊥ is considerably suppressed by the

square of the small probability of inter-plane electron hopping which enters
in the pre-factor. It is this suppression which leads to the necessity of taking
into account the DOS contribution to the transverse conductivity. The latter
is less singular in temperature but, in contrast to the paraconductivity, man-
ifests itself in the first, not the second, order in the interlayer transparency
σDOS
⊥ ∼ −P1 ln 1

ε . The DOS fluctuation correction to the one-electron trans-
verse conductivity is negative and, being proportional to the first order of P1,
can completely change the traditional picture of fluctuations just rounding
the resistivity temperature dependence around transition. The shape of the
temperature dependence of the transverse resistance mainly is determined
by competition of the opposite sign contributions: the paraconductivity and
MT term, which are strongly temperature dependent but are suppressed by
the square of the barrier transparency and the DOS contribution which has
a weaker temperature dependence but depends only linearly on the barrier
transparency.

6 Manifestation of fluctuations in various properties

In this Section we will demonstrate the applications of the microscopic theory
of fluctuations. The limited volume does not permit us to deliver here the
systematic review of the modern theory and we restrict ourselves only by
presentation of the several representative recent studies. The details one can
find in the articles cited in subtitles.

It is necessary to underline that the comparison of the results of fluc-
tuation theory with the experimental findings on HTS materials has to be
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considered sooner in qualitative than quantitative context. Indeed, as is clear
now, the superconductivity in the most of HTS compounds has the non-
trivial symmetry. Moreover, as was discussed in the previous Section, these
compounds are rather clean than dirty. Both these complications can be taken
into account (see for example [112,97]) but this was not done in the majority
of the cited papers.

6.1 The effects of fluctuations on magnetoconductivity
[97,127,154,155]

The experimental investigations of the fluctuation magnetoconductivity are
of special interest first because this physical value weakly depends on the nor-
mal state properties of superconductor and second due to its special sensitiv-
ity to temperature and magnetic field. The role of AL contribution for both
the in-plane and out-of-plane magnetoconductivities was studied above in the
framework of the phenomenological approach. The microscopic calculations of
the other fluctuation corrections to the in-plane magnetoconductivity conduc-
tivity show that the MT contribution has the same positive sign and temper-
ature singularity as the AL one. In the case of weak pair-breaking it can even
considerably exceed the latter. The negative DOS contribution, like in the
case of the zero-field conductivity, turns out to be considerably less singular
and many authors (see e.g. Refs. [136,137,138,139,142,140,141,143,144,145],[146,147])
successfully explained the in-plane magnetoresistance data in HTS using the
AL and MT contributions only [148,149,150,151].

Turning to the out-of-plane magnetoconductivity of a layered supercon-
ductor one can find a quite different situation. Both the AL and MT contri-
butions turn out to be here of the second order in the interlayer transparency
and this circumstance makes the less singular DOS contribution, which re-
mains however of first order in transparency, to be competitive with the main
terms [127]. The large number of microscopic characteristics involved in this
competition, like the Fermi velocity, interlayer transparency, phase-breaking
and elastic relaxation times, gives rise to the possibility of occurrence of dif-
ferent scenarios for various compounds. The c-axis magnetoresistance of a set
of HTS materials shows a very characteristic behavior above Tc0. In contrast
to the ab-plane magnetoresistance which is positive at all temperatures, the
magnetoresistance along the c-axis has been found in many HTS compounds
(BSSCO [128,130,131,132], LSSCO [133], YBCO [134] and TlBCCO [135])
to have a negative sign not too close to Tc0 and turn positive at lower tem-
peratures. We will show how this behavior find its explanation within the
fluctuation theory [97].

We consider here the effect of a magnetic field parallel to the c-axis. In this
case both quasiparticles and Cooper pairs move along Landau orbits within
the layers. The c-axis dispersion remains unchanged from the zero-field form.
In the chosen geometry one can generalize the zero-field results reported in
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the previous Section to finite field strengths simply by the replacement of the
two-dimensional integration over q by a summation over the Landau levels

∫
d2q

(2π)2
→ H

Φ0

∑

n

=
h

2πη(2)

∑

n

(let us remind that η(2) = ξ2xy). So the general expressions for all fluctuation
corrections to the c-axis conductivity in a magnetic field can be simply written
in the form [97]:

σAL
zz =

e2sr2h

64ξ2xy

∞∑

n=0

1

{[ǫ+ h(2n+ 1)][r + ǫ+ h(2n+ 1)]}3/2
(203)

σDOS
zz = −e

2srκh

8ξ2xy

1/h∑

n=0

1

{[ǫ+ h(2n+ 1)][r + ǫ+ h(2n+ 1)]}1/2
(204)

σMT (reg)
zz = −e

2sκ̃h

4ξ2xy

∞∑

n=0

(
ǫ+ h(2n+ 1) + r/2

{[ǫ+ h(2n+ 1)][r + ǫ+ h(2n+ 1)]}1/2
− 1

)
(205)

σMT (an)
zz =

e2sh

8ξ2xy(ε− γϕ)

∞∑

n=0

(
γϕ + h(2n+ 1) + r/2

{[(γϕ + h(2n+ 1)][γϕ + h(2n+ 1) + r)]}1/2
−

− ǫ+ h(2n+ 1) + r/2

{[ǫ+ h(2n+ 1)][r + ǫ+ h(2n+ 1)]}1/2

)
. (206)

For the in-plane component of the fluctuation conductivity tensor the only
additional problem appears in the AL diagram, where the matrix elements
of the harmonic oscillator type, originating from the B‖ (q‖) blocks, have to
be calculated. How to do this was demonstrated in details in Section 4. The
other contributions are essentially analogous to their c-axis counterparts:

σAL
xx =

e2

4s

∞∑

n=0

(n+ 1)

(
1

{[ǫ+ h(2n+ 1)][r + ǫ+ h(2n+ 1)]}1/2
−

2

{[ǫ+ h(2n+ 2)][r + ǫ+ h(2n+ 2)]}1/2
+ (207)

1

{[ǫ+ h(2n+ 3)][r + ǫ+ h(2n+ 3)]}1/2

)
,

σDOS
xx +σMT (reg)

xx = −e
2h(κ+ κ̃)

2s

1/h∑

n=0

1

{[ǫ+ h(2n+ 1)][r + ǫ+ h(2n+ 1)]}1/2
, (208)
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and

σMT (an)
xx =

e2h

4s(ǫ− γϕ)

∞∑

n=0

(
1

{[(γϕ + h(2n+ 1)][γϕ + h(2n+ 1) + r)]}1/2
−

1

{[ǫ+ h(2n+ 1)][r + ǫ+ h(2n+ 1)]}1/2

)
. (209)

These results can in principle be already used for numerical evaluations and
fitting of the experimental data which was indeed successfully done in a series
of papers [134,152,135].

The detailed comparison of the cited results with the experimental data
[134,153], especially in strong fields, raised the problem of regularization of
the DOS contribution. If in the absence of the magnetic field its ultra-violet
divergence was successfully cut off at q ∼ ξ−1, in the case under consideration
the cut off parameter depends on the magnetic field and makes the fitting
procedure ambiguous. The solution of this problem was proposed in [154],
where the authors calculated the difference∆σDOS

zz = σDOS
zz (h, ǫ)−σDOS

zz (0, ǫ)
applying to formulas (204) and (208) the same trick which was already used in
Section 2 for the regularization of the free energy in magnetic field (Eq. (78)).
The corresponding asymptotics for all out-of-plane fluctuation contributions
are presented in the following table:

h≪ ǫ ǫ≪ h≪ r (3D) max{ǫ, r} ≪ h (2D)

∆σDOS
zz

e2sκ
3 25ξ2

xy

r(ǫ+r/2)
[ǫ(ǫ+r)]3/2h

2 0.428 e2sκ
16ξ2

xy
r
√

h
r

e2sκ
8ξ2

xy
r ln

√
h√

ǫ+
√

ǫ+r

∆σ
MT (reg)
zz

e2sκ̃
3 26ξ2

xy

r2

[ǫ(ǫ+r)]3/2h
2 0.428 e2sκ̃

8ξ2
xy
r
√

h
r −σMT (reg)

zz (0, ǫ) − π2e2sκ̃
28ξ2

xy

r2

h

−∆σAL
zz

e2s
28ξ2

xy

r2(ǫ+r/2)

[ǫ(ǫ+r)]5/2h
2 σAL

zz (0, ǫ) − 3.24e2s
ξ2

xy

√
r
h σAL

zz (0, ǫ) − 7ζ(3)e2s
29ξ2

xy

r2

h2

−∆σMT (an)
zz

min{ǫ, r} ≪ γϕ

e2s
3 27ξ2

xy

r2

[ǫ(ǫ+r)]2h
2 σ

MT (an)
zz (0, ǫ) − e2s

32ξ2
xy

√
r

γϕ
σ

MT (an)
zz (0, ǫ) − 3π2e2s

28ξ2
xy

max{r,γϕ}
h

−∆σMT (an)
zz

γϕ ≪ min{ǫ, r}
e2s

3 27ξ2
xy

√
r

ǫγ
3/2
ϕ

h2 σ
MT (an)
zz (0) − 3.24e2s

64ξ2
xy

√
r
h σ

MT (an)
zz (0, ǫ) − 3π2e2s

28ξ2
xy

(r+ǫ)
h

Table 3

The procedure described gives an excellent fitting up to very high fields
[155] which is shown in Fig . 13.

Let us start the analysis from the 2D case (r ≪ ǫ). One can see that
here the positive DOS contribution to magnetoconductivity turns out to be
dominant. It grows as H2 up to Hc2(ǫ) and then crosses to a slow logarithmic
asymptote. At H ∼ Hc2(0) the value of ∆σDOS

zz (h ∼ 1, ǫ) = −σDOS
zz (0, ǫ)

which means the total suppression of the fluctuation correction in such a
strong field. The regular part of the Maki-Thompson contribution does not
manifest itself in this case while the AL term can compete with the DOS one
in the immediate vicinity of Tc, where the small anisotropy factor r can be
compensated by the additional ǫ3 in the denominator. The anomalous MT
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Fig. 13. Magnetoconductivity versus temperature at 27 T for an underdoped Bi-
2212 single crystal. The solid line represents the theoretical calculation. The symbols
are the experimental magnetoconductivity ∆σzz(B q c q I)[155]

contribution can contribute in the case of small pairbreaking only, which is
opposite to what is expected in HTS.

In the 3D case (ǫ ≪ r) the behavior of the magnetoconductivity is more
complex. In weak and intermediate fields the main, negative, contribution
to the magnetoconductivity occurs from the AL and MT terms. At H ∼
Hc2(ǫ)(h ∼ ǫ) the paraconductivity is already considerably suppressed by the
magnetic field and the h2− dependence of the magnetoconductivity changes

through the
√

r
h tendency to the high field asymptote −σ(fl)

zz (0, ǫ). In this
intermediate region of fields (ǫ ≪ h ≪ r), side by side with the decrease (∼√

r
h ) of the main AL and MT contributions, the growth of the still relatively

small DOS term takes place. At the upper limit of this region (h ∼ r) its
positive contribution is of the same order as the AL one and at high fields
(r ≪ h≪ 1) the DOS contribution determines the slow logarithmic decay of
the fluctuation correction to the conductivity which is completely suppressed
only at H ∼ Hc2(0). The regular part of the Maki- Thompson contribution is
not of special importance in the 3D case. It remains comparable with the DOS
contribution in the dirty case at fields h . r, but decreases rapidly (∼ r

h ) at

strong fields ( h & r), in the only region where the robust∆σDOS
c (h, ǫ) ∼ ln h

r
shows up surviving up to h ∼ 1.

The temperature dependence of the different fluctuation contributions to
the magnetoconductivity calculated for an underdoped Bi-2212 single crystal
at the magnetic field 27 T is presented in Fig. 14.

The formulas for the in-plane magnetoconductivity are presented in the
table:
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Fig. 14. Decomposition of the calculation of total theoretical magnetoconductivity
for an underdoped Bi-2212 single crystal at 27 T. The inset shows the regular and
anomalous parts of the MT contribution which are too small to be presented in
the same scale as the AL and DOS contributions [155].

h≪ ǫ ǫ≪ h≪ r; max{ǫ, r} ≪ h

∆σAL
xx − e2

28s
[8ǫ(ǫ+r)+3r2]

[ǫ(ǫ+r)]5/2 h2 −σAL
xx (0, ǫ) + e2

4s
1√
2hr

; −σAL
xx (0, ǫ) + e2

8s
1
h

∆σ
MT (an)
xx

(min{ǫ, r} ≪ γϕ)
− e2

3 25s
(ǫ+r/2)

[ǫ(ǫ+r)]3/2h
2 −σMT

xx (0, ǫ) + e2

8s
1

γϕ
ln

√
γϕ√

2h+ =
√

2h+r

∆σ
MT (an)
xx

(γϕ ≪ min{ǫ, r}) − e2

3 25s
1

ǫγ3/2r1/2h
2 −σMT

xx (0, ǫ) + 0.2e2

s
1√
hr

; −σMT
xx (0, ǫ) + 3π2e2

32s
1
h

∆(σDOS
xx +

σ
MT (reg)
xx )

e2(κ+κ̃)
3 27s

(ε+r/2)
[ε(ε+r)]3/2h

2 0.428 e2(κ+κ̃)
26s

√
h
r ; e2(κ+κ̃)

32s ln
√

h
(
√

ǫ+
√

ǫ+r)

Table 4

Analyzing it one can see that in almost all regions the negative AL and
MT contributions govern the behavior of in-plane magnetoconductivity. Nev-
ertheless, similar to the c-axis case, the high field behavior is again determined

by the positive logarithmic ∆(σDOS
xx + σ

MT (reg)
xx ) contribution, which is the

only one to survive in strong field. It is important to stress that the sup-
pression of the DOS contribution by a magnetic field takes place very slowly.
Such robustness with respect to the magnetic field is of the same physical
origin as the slow logarithmic dependence of the DOS-type corrections on
temperature.

Another important problem which appears in the fitting of the resistive
transition shape in relatively strong fields with the fluctuation theory is the
much larger broadening of the transition than predicted by the Abrikosov-
Gorkov theory [156]. Kim and Gray [96] explained the broadening of the
c-axis peak with increasing magnetic field in terms of Josephson coupling, de-
scribing a layered superconductor as a stack of Josephson junctions. In Refs.
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[157,71] the self-consistent Hartree approach was proposed for the extension
of fluctuation theory beyond the Gaussian approximation. It results in the
considerable shift of Tc(H) toward low temperatures with a corresponding
broadening of the transition. The renormalized reduced temperature ε̃h is
determined according to the self-consistent equation [71]:

εh = ε̃h − 1

4
Gi(2) h

1/h∑

n=0

1

[(ε̃h + hn)(ε̃h + h(n+ 1) + r)]1/2
(210)

The authors of [158], following the procedure proposed by Dorsey and Ullah
[71], modified the expressions (203)- (209) by account for (210). In result they
succeeded to fit quantitatively both in-plane resistivity transition and the
transverse resistivity peak for BSCCO films strongly broadened by applied
magnetic field.

6.2 Fluctuations far from Tc or in strong magnetic fields

As was mentioned above the role of fluctuations is especially pronounced in
the vicinity of the critical temperature. Nevertheless for some phenomena
they can be still considerable far from the transition too. In these cases the
GL theory is certainly unapplicable since the short-wave and dynamical fluc-
tuation contributions have to be taken into account. It can be done in the
microscopic approach which we will demonstrate in several examples.

Fluctuation magnetic susceptibility far from transition [29]. The
given above qualitative estimations (58)-(64) for the fluctuation diamagnetic
susceptibility, based on the Langevin formula, demonstrate that even at high
temperatures T ≫ Tc it turns to be of the order of χP for clean 3D supercon-
ductors and exceeds noticeably this value for 2D systems. In order to develop
the microscopic theory [159,29,161] let us start from the general expression
for free energy in the one-loop approximation:

F = T
∑

Ωk

Tr{ln[1 − gΠ(Ωk, r, r
′)]}, (211)

where g is the effective interaction constant related with the transition critical
temperature by (158). This approximation corresponds to the ladder one (see
(150)) for the fluctuation propagator. The polarization operator Π(Ωk, r, r

′)
is determined by expression (151) but in the case of an applied magnetic field
the homogeneity of the system is lost and Π(Ωk, r, r

′) depends not on the
space variable difference r− r′ but on each separately. ExpandingΠ(Ωk, r, r

′)
one can express the magnetic susceptibility of a layered superconductor in a
weak magnetic field perpendicular to the layers in terms of the derivatives
Πx = ∂

∂qx
Π(q) [29]:

χ = − ∂2F

∂H2
= −2

3
e2T

∑

Ωk

∫
d3q

(2π)3
L3Πx(ΠxΠyy −ΠyΠxy). (212)
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The final expressions for the fluctuation diamagnetic susceptibility in the
clean and dirty cases for wide range of temperatures can be written as:

χ
(3)
fl (T ) =

χP

3

{
0.05(ln−2(ωD/Tc)) − ln−2(T/Tc)), τ

−1 ≪ T ≪ ωD

2
√
Tτ ln−1(T/Tc), Tc ≪ T ≪ τ−1 (213)

χ
(2)
fl (T ) =

0.05

pF s
χP

(
EF

T

)
1

ln3(T/Tc)
(214)

Let us stress that these results are valid for the fluctuation diamagnetism
of a normal metal with g > 0 too, if by Tc one uses the formal value Tc ∼
EF exp( 1

νg ).

Fluctuation magnetoconductivity far from transition [162]. Let us
discuss the conductivity of the 2D electron system with impurities in a mag-
netic field at low temperatures. Even in the absence of the field the effects
of quantum interference of the non-interacting electrons in their scatterings
on elastic impurities already results in the appearance of a nontrivial tem-
perature dependence of the resistance. This result contradicts the statement
of the classical theory of metals requiring the saturation of the resistance at
its residual value at low temperatures. In a superconductor above the criti-
cal temperature this, so-called weak localization (WL), effect is amplified by
the Andreev reflection of electrons on the fluctuation Cooper pair leading
to appearance of the MT correction to the conductivity. The characteristic
feature of both the MT and WL corrections is their extreme sensitivity to
the dephasing time τϕ and to weak magnetic fields.

Beyond the GL region (T & Tc) the MT correction is determined by
the same diagram 2 of Fig. 9 but now the dynamic (Ωk 6= 0) and short-
wave-length (q ∼ ξ−1) fluctuation modes have to be taken into account. The
corresponding calculations were performed in [98,162] and the result can be
written in the form:

δσWL+MT =
e2

2π2
[α− β(T )]Y (ΩLτǫ) , (215)

where we introduced the effective Larmour frequency for the diffusion motion
ΩL = 4DeH with the diffusion coefficient D 25 and the function

Y (x) = lnx+ ψ(
1

2
+

1

x
) =

{
x2

24 , x≪ 1
lnx, x≫ 1

. (216)

The first term in this formula corresponds to the WL contribution (α = 1 if
the spin-orbit interaction of the electrons with the impurities is small while

25 Comparison of the expressions (77), (117) and (215) relates the Larmour fre-
quency with the dimensionless field: h = ΩL/2Tc introduced in section 2 and the
diffusion coefficient with the phenomenological GL constants D = 1/mα.
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in the opposite limiting case α = −1/2), the second describes the MT con-
tribution to magnetoconductivity. The function β[ln(T/Tc)] was introduced
in Ref.[162]. At T → Tc β(x) = 1/x and (215) reduces to the already studied
MT correction in the vicinity of critical temperature. For T ≫ Tc β(x) = 1/x2

and the MT contribution gives a logarithmically small correction to the WL
result. Its zero-field value, being proportional to ln−2(T/Tc), decreases with
the growth of the temperature faster than both the AL contribution (in the
dirty case δσAL ∼ 1/ ln(T/Tc)) and the especially slow DOS contribution
(δσDOS ∼ ln ln(1/Tcτ) − ln ln(T/Tc)) (see Ref. [98,99]).

It worth mentioning that for the region of temperatures T ≫ Tc, analo-
gous to Exp.(213)- (214), the result (215) can be applied both to supercon-
ducting and normal metals (g > 0), if in place of the critical temperature
the formal value Tc ∼ EF exp( 1

νg ) is undermined. The interplay of the local-

ization and fluctuation corrections was extensively studied (see, for example,
[163,164,165,166,167])

Fluctuations in magnetic fields near Hc2(0) [168]. As one can see from
(207)- (209), in the vicinity of the upper critical field Hc2(T ) the fluctuation

corrections diverge as ǫ−1
h for the 2D case and as ǫ

−1/2
h for the 3D case 26 (it is

enough to keep just the terms with n = 0 in these formulas). This behavior is
preserved in strong magnetic fields too, but the coefficients undergo changes.
A case of special interest is T ≪ Tc (which means H → Hc2(0)) which repre-
sents an example of a quantum phase transition [168]. Microscopic analysis
of the magnetoconductivity permits us to study the effect of fluctuations in
magnetic fields of the order of Hc2(0), where the GL functional approach is
inapplicable.

We restrict our consideration to the case of a dirty metal (Tτ ≪ 1). In
this limit |ω̃n+µ − ω̃−n| ≈ τ−1 and the Green function correlator (153) can
be written in the form

P(q, ε1, ε2) = 2πντ2θ(−ε1ε2)
(
τ−1 − |ε1 − ε2| − D̂q2

)
. (217)

Expressing Π(q, Ωk) in terms of P(q, ε1, ε2) by means of (172) and using the
definition of the critical temperature one can find an explicit formula for the
fluctuation propagator

L−1(q, Ωk) = g−1 −Π(q, Ωk) = (218)

= −ν
[
ln
T

Tc
+ ψ

(
1

2
+

|Ωk| + D̂q2

4πT

)
− ψ

(
1

2

)]
.

The prominent characteristic of this expression is that it is valid even rela-
tively far from the critical temperature (for temperatures T ≪ min{τ−1, ωD})
and for |q| ≪ l−1, |Ωk| ≪ ωD.
26 ǫh is the renormalized by the magnetic field reduced temperature ǫh = ǫ + h
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One can rewrite this expression in a magnetic field applied along the c-axis

in the Landau representation by simply replacing
(
D̂q2

)
‖
⇒ ΩL(n + 1/2)

[159] :

L−1
n (qz, Ωk) = −ν

[
ln
T

Tc
+ ψ

(
1

2
+

|Ωk|
4πT

+ (219)

+
ΩL(n+ 1/2) + 4τJ2 sin2 (qzs/2)

4πT

)
− ψ

(
1

2

)]
.

In the case of arbitrary temperatures and magnetic fields the expression
for the AL contribution to the conductivity takes the form:

σAL
xx (ων) = νe2T

∑

Ωk

∞∑

n,m=0

Bn,m(Ωk + ων , Ωk)Lm(Ωk) × (220)

×Bm,n(Ωk, Ωk + ων)Ln(Ωk + ων)

(we have restricted our consideration to the 2D case). The expression for
Bn,m(Ωk, ων) can be rewritten as

Bn,m(Ωk + ων , Ωk) = − 2πν√
eH

τ2D(2)T
∑

εi

[√
n+ 1δm,n+1 +

√
nδm,n−1

]
×

λn(εi + ων , Ωk − εi)λm(εi, Ωk − εi) (221)

with

λm(ε1, ε2) =
1

τ

Θ (−ε1ε2)
|ε1 − ε2| +ΩL(m+ 1/2)

. (222)

The critical field Hc2(T ) is determined by the equation L−1
0 (qz = 0, Ωk =

0) = 0. This is why in the vicinity ofHc2(T ) the singular contribution to (220)
originates only from the terms with L0(0, Ωk). The frequency dependencies
of the functions Bn,m(Ωk +ων , Ωk) and L1(Ωk) are weak although we cannot
omit them to get nonvanishing answer. It is enough to restrict ourselves to the
linear approximation in their frequency dependencies. If the temperature T ≪
Tc0 the sum over frequencies in (221) can be approximated by an integral.
Transforming the boson frequency Ωk summation to a contour integration
as was done above and making the analytic continuation in the external
frequency ων one can get an explicit expression for the d.c. paraconductivity.
In the same spirit the contributions of all other diagrams from the Fig. 9
which contribute to fluctuation conductivity in the case under discussion are
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calculated side by side with the AL one. The final answer can be presented
in the form:

δσtot =
2e2

3π2

{
− ln

πTc0

2γT
+

3γET

Tc0

(
Hc2(T )

H −Hc2(T )

)
+

+ψ

[
Tc0

2γET

(
H −Hc2(T )

Hc2(T )

)]
+ (223)

+ 4

(
Tc0

2γET

Hc2(T )

H −Hc2(T )
ψ′
[
Tc0

2γET

(
H −Hc2(T )

Hc2(T )

)]
− 1

)}
,

where γE is the Euler constant. Let us consider some limiting cases. If the
temperature is relatively high T/Tc0 ≫ (H −Hc2(T )) /Hc2(T ), we obtain
the following formula for the fluctuation conductivity:

δσ =
2γEe

2

π2

T

Tc0

(
Hc2(T )

H −Hc2(T )

)
. (224)

If H < Hc2(0), we can introduce Tc(H) and rewrite Eq.(224) in the usual
way

δσ =
3e2

2γEπ2

Tc0

T − Tc(H)
. (225)

If H > Hc2(0), in the low-temperature limit T/Tc0 ≪ (H −Hc2(T )) /Hc2(T )
we have

δσ = − 2e2

3π2
ln

Hc2(T )

H −Hc2(T )
. (226)

One can see, that even at zero temperature a logarithmic singularity remains
and the corresponding correction is negative. It results from all three fluctu-
ation contributions, although the DOS one exceeds the others by numerical
factor. Let us recall that in the case of the c-axis conductivity of a layered su-
perconductor, or in granular superconductors above Tc, the DOS contribution
exceeds the MT and AL ones parametrically [160].

6.3 The effect of fluctuations on the Hall conductivity[174]

Let us start with a discussion of the physical meaning of the Hall resistivity
ρxy. In the case of only one type of carriers it depends on their concentration
n and turns out to be independent of the electron diffusion coefficient: ρxy =
H/ (en) . The fluctuation processes of the MT and DOS types contribute to
the diffusion coefficient, so their expected contribution to the Hall resistivity
is zero. For the Hall conductivity in a weak field one can write

σxy = ρxyσ
2
xx = ρxyσ

(n)2
xx + 2ρxyσ

(n)
xx δσxx = σ(n)

xy

(
1 + 2

δσxx

σxx

)
(227)
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so, evidently, the relative fluctuation correction to Hall conductivity is twice
as large as the fluctuation correction to the diagonal component. This qual-
itative speculation is confirmed by the direct calculation of the MT type
diagram [169].

The AL process corresponds to an independent charge transfer which
cannot be reduced to a renormalization of the diffusion coefficient. It con-
tributes weakly to the Hall effect, and this contribution is related to the
Cooper pair particle-hole asymmetry. This effect was investigated in a set
of papers: [169,170,171,172,71,173,174]. Let us recall that the proper general
expression describing the paraconductivity contribution to the Hall conduc-
tivity in the general case of arbitrary magnetic fields and frequencies (in the
TDGL theory limits) was already carried out above in the phenomenological
approach (see Eq. (113)). The microscopic consideration of this value can be
done in the spirit of the calculation of σAL

xx (see (185)) and after the analytical
continuation results in

σAL
xy =

(
2hν(0)

π

)2 ∞∑

n=0

(n+ 1)

∫ π/s

−π/s

dkz

2π

∫ ∞

−∞
coth

z

2T
dz ×

×
[
ImLR

n (z)
∂

∂z
ReLR

n+1(z) − ImLR
n+1(z)

∂

∂z
ReLR

n (z)

]
. (228)

where dimensionless magnetic field h was introduced by (77). The phenomeno-
logical expression (113) can be obtained from this formula by carrying out
the frequency integration in the same way as was done in the calculation of
(185) (the essential region of integration is z ≪ T ).

One can see from (228) that if ImLR
n (−z) = −ImLR

n (z) and ReLR
n (−z) =

ReLR
n (z) the Hall conductivity is equal to zero, or, in terms of the phe-

nomenological parametrization, the reality of γGL results in a zero Hall ef-
fect. Physically it is possible to say that this zero is the direct consequence
of electron-hole symmetry. However, from the formula (151) one can see that
an energy dependence of the density of states or the electron interaction con-
stant g immediately results in the appearance of an imaginary part of γGL.
In the weak interaction approximation

ImγGL =
ν(0)

2

(
∂ lnTc

∂E

)

E=EF

. (229)

Usually this value is small in comparison with ReγGL by a ratio of the order
of Tc/EF . Taking into account the terms of the order of ImγGL in (228) and
using the explicit form of the fluctuation propagator for layered supercon-
ductor (175) one can find

σAL
xy = e2T

ImγGL

2ν(0)
h (230)
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×
∫ π/s

−π/s

dkz

2π

1
[
ǫ+ r sin2 (kzs/2))

]2F (
ǫ+ r sin2 (kzs/2))

2h
),

where

F (x) = 4x2

[
ψ(x) + xψ′(x) − 1 − ψ(

1

2
+ x)

]
.. (231)

For H → 0 the expression for the fluctuation Hall paraconductivity takes the
form

σAL
xy =

e2T

6s

(
ImγGL

ν(0)

)
h

ǫ+ r/2

[ǫ (ǫ+ r)]
3/2

=
e3Φ0T

6πs

(
ImγGL

ν(0)

)
ǫ+ r/2

[ǫ (ǫ+ r)]
3/2

h.(232)

One can see that in the 2D case the temperature dependence of the AL
fluctuation correction to the Hall conductivity

σAL
xy ≈ e3Φ0

12πs

(
Tc

EF

)
h

ǫ2

turns out to be more singular than the MT one.

6.4 Fluctuations in the ultra-clean case [175]

When dealing with the superconductor electrodynamics in the fluctuation
regime, it is necessary to remember that in the vicinity of the critical tem-
perature the role of the effective size of a fluctuation Cooper pair is played
by the GL coherence length ξGL(T ) = ξ0/

√
ǫ. So, as was already mentioning

above, the case of a pure enough superconductor with electron mean free
path ℓ≫ ξ0 has to be formally subdivided into the clean (ξ0 ≪ ℓ≪ ξGL(T ))
and ultra-clean (ξGL(T ) ≪ ℓ) limits. The nontrivial cancellation of the con-
tributions, previously divergent in Tτ (see, for example, (192)), will be shown
in this Section. This results in a reduction of the total fluctuation correction
in the ultra-clean case to the AL term only. We will base on [175] restricting
our consideration to the case of a 2D electron system.

In terms of the parameter Tτ, used in the theory of disordered alloys, three
different domains of the metal purity can be distinguished: Tτ ≪ 1 (dirty
case), 1 ≪ Tτ ≪ 1/

√
ǫ (clean case) and 1/

√
ǫ≪ Tτ (ultra-clean case of non-

local electrodynamics). The latter case was rarely discussed in the literature
[150,176,177] in spite of the fact that it becomes of primary importance for
metals of very modest purity, let us say, with Tτ ≈ 10. Really, in this case
the condition Tτ ≥ 1/

√
ǫ , which in terms of the reduced temperature is read

as 10−2 ≤ ǫ≪ 1, practically covers all the experimentally accessible range of
temperatures for the fluctuation conductivity measurements. As regards the
usually considered local clean case (1 ≪ Tτ ≪ 1/

√
ǫ) for the chosen value

Tτ ≈ 10, it would not have any range of applicability. Indeed, the equivalent
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condition for the allowed temperature interval is ǫ ≪ (Tτ)−2, and it almost
contradicts the 2D thermodynamical Ginzburg-Levanyuk criterion for the
mean field approximation applicability (Gi(2) = Tc

EF
≪ ǫ). Moreover, as we

will show below, for transport coefficients the higher order corrections become
comparable with the mean field results much before they are important for
thermodynamical quantities, namely at ǫ ∼√Gi(2) [178,179]. So in practice
one can speak about the dirty and the non-local ultra-clean limits only.

As we saw above the 2D AL contribution turns out to be completely inde-
pendent of the electron mean free path ℓ [5] . The anomalous Maki-Thompson
contribution, being induced by the pairing on the Brownian diffusive trajec-
tories [76], naturally depends on Tτ, but in an indirect way. It turns out to be
τ−independent up to Tτ ∼ 1/

√
ǫ, (see (201)) and diverges as Tτ ln(Tτ) for

Tτ ≫ 1/
√
ǫ [150,176]. The analogous problem takes place in the case of the

DOS contribution: its standard diagrammatic technique calculations lead to
a negative correction (192) [95] evidently strongly divergent when Tτ → ∞.
In the derivation of all these results the local form of the fluctuation prop-
agator and Cooperons were used. This is why the direct extension of their
validity for Tτ ≫ 1/

√
ǫ→ ∞ is incorrect.

One can notice [175] that at the upper limit of the clean case, when
Tτ ∼ 1/

√
ǫ, both the DOS and anomalous MT (201) contributions turn out

to be of the same order of magnitude but of opposite signs. So one can suspect
that in the case of a correct procedure of impurity averaging in the ultra-clean
case the large negative DOS contribution can be cancelled with the positive
anomalous MT one. In the case of a 2D electron spectrum the Cooperon can
be calculated exactly for the case of an arbitrary electron mean free path:

λ(q, ε1, ε2) =

(
1 − Θ(−ε1ε2)

τ
√

(ε̃1 − ε̃2)2 + v2
F q

2

)−1

. (233)

One can see that this expression can be reduced to (168) in the case of
vF q ≪ |ε̃1 − ε̃2|. Let us stress that this result was carried out without any
expansion over the Cooper pair center of mass momentum q and is valid in
the 2D case for an arbitrary ℓq.

The fluctuation propagator in the 2D case of an arbitrary mean free path
can be written as [175]

− [νL(q, Ωk)]−1 = ln
T

Tc
+

∞∑

n=0

{
1

n+ 1/2
(234)

− 1√(
n+ 1

2 + Ωk

4πT + 1
4πTτ

)2
+

v2
F q2

16π2T 2 − 1
4πTτ



 .

Near Tc ln T
Tc

≈ ǫ and in the local limit, when only small momenta ℓq ≪ 1
are involved in the final integrations, the Exp. (234) can be expanded in
vF q/max{T, τ−1} and reduces to the appropriate local expression.
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Let us demonstrate the specifics of the non-local calculations for the ex-
ample of the Maki-Thompson contribution. We restrict our consideration to
the vicinity of the critical temperature, where the static approximation is
valid. Using the non-local expressions for the Cooperon and the propagator
one can find after integration over electronic momentum:

Q(MT ) (ωυ) = −4πνv2
F e

2T 2
∑

εn

∫
d2q

(2π)2
L(q, 0) × (235)

×
[
M
(∼
ǫn,

∼
ǫn+ν ,q

)
+ M

(∼
ǫn+ν ,

∼
ǫn,q

)]
,

where

M (α, β,q) =
Rq(2α)Rq(α + β) −Θ(αβ)Rq(2α)Rq(2β)

(β − α)2
(
Rq(2α) − 1

τ

) (
Rq(2β) − 1

τ

)
Rq(α+ β)

and Rq(x) =
√
x2 + v2

F q2. The analogous consideration of the DOS diagrams
2 and 4 which are the leading ones in the clean case [95] results in similar
expressions.

One can see that, after analytical continuation over the external frequency
ων → −iω and the consequent tending ω → 0, each of the DOS or MT type
diagrams is written in the form of a Laurent series of the type C−2(Tτ)

2 +
C−1(Tτ)+C0+C1(Tτ)

−1+... and is divergent at Tτ → ∞ in accordance with
(192). Nevertheless the expansion in a Laurent series of the sum of these non-
local diagrams leads to the exact cancellation of all divergent contributions.
The leading order of the sum of the MT and DOS contributions in the limit
of Tτ ≫ 1 turns out to be proportional to (Tτ)−1 only and disappears in the
ultra-clean limit. So the correct accounting for non-local scattering processes
in the ultra-clean limit results in a total quantum correction negligible in
comparison with the AL contribution. Nevertheless, its formal independence
on impurities concentration (see (99)) was re-examined for ultra-clean case
too in [174] and there it was demonstrated that this statement is valid in a
rigorous sense only in the case of direct current and absence of a magnetic
field. Let us recall that the normal Drude conductivity in the ultra-clean case
takes the form

σ± (ω) = σxx ± iσxy =
e2nτ/m

1 − i(ω ∓ ωc)τ
, (236)

where ωc is the cyclotron frequency. When τ → ∞ the real part of the
conductivity vanishes. The analysis of the AL diagram in the ultra-clean
case demonstrates that each of the Green functions blocks B acquires the
same denominator. As a result the expression for the fluctuation conductivity
contains the same Drude like pole but of second order

σAL
± (ω) =

σ
AL(l)
xx ± iσ

AL(l)
xy

(1 − i(ω ∓ ωc)τ)2
(237)
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(σ
AL(l)
αβ is the component of the paraconductivity tensor calculated above in

the local limit (99-(232)). The origin of this pole can be recognized by means
of the following speculation. The electric field does not interact directly with
the fluctuation Cooper pairs, but it produces the effect by interaction with the
quasiparticles forming these pairs only. The characteristic time of the change
of a quasiparticle state is of the order of τ . Consequently the single-particle
Drude type conductivity in an a.c. field has a first order pole, while in the AL
paraconductivity it is of second order [174]. In spite of this difference one can
see that the AL conductivity, like the Drude one, vanishes at ω 6= 0, τ → ∞
because in the absence of impurities the interaction of the electrons does not
produce any effective force acting on the superconducting fluctuations, while
the d.c. paraconductivity conserves its usual τ−independent form. It is im-
possible to distinguish the motion of the electron liquid from the condensate
motion in current experiments without additional scattering.

The non-local form of the Cooperon and fluctuation propagator have to
be taken into account not only for the ultra-clean case but in every prob-
lem where relatively large bosonic momenta are involved: the consideration
of dynamical and short wavelength fluctuations beyond the vicinity of crit-
ical temperature, the effect of relatively strong magnetic fields on fluctua-
tions etc. Recently such an approach was developed in a number of studies
[176,175,180,181].

6.5 The effect of fluctuations on the one-electron density of
states and on tunneling measurements

Density of states [94]. The appearance of non-equilibrium Cooper pairing
above Tc leads to a redistribution of the one-electron states around the Fermi
level. A semi-phenomenological study of the fluctuation effects on the density
of states (DOS) of a dirty superconducting material was first carried out while
analyzing the tunneling experiments of granular Al in the fluctuation regime
just above Tc [182]. The second metallic electrode was in the superconducting
regime and its well developed gap gave a bias voltage around which a struc-
ture, associated with the superconducting fluctuations of Al, appeared. The
measured DOS energy dependence has a dip at the Fermi level 27, reaches
its normal value at some energy E0(T ), show a maximum at an energy value
equal to several times E0, finally decreases towards its normal value at higher
energies. The characteristic energy E0 was found to be of the order of the
inverse of the GL relaxation time τGL introduced above.

The presence of a depression at E = 0 and of a peak at E ∼ (1/ τGL)
in the DOS above Tc are precursor effects of the appearance of the super-
conducting gap in the quasiparticle spectrum at temperatures below Tc. The
microscopic calculation of the fluctuation contribution to the one-electron
DOS can be carried out within the diagrammatic technique [93,94].

27 Here we refer the energy E to the Fermi level, where we assume E = 0.
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+ . . .+=

Fig. 15. The one-electron Green function with the first order fluctuation correction.

Let us start from the discussion of a clean superconductor. As is well
known the one-electron DOS is determined by the imaginary part of the
retarded Green function integrated over momentum. This definition permits
us to express the appropriate fluctuation correction in terms of the fluctuation
propagator:

δν(c)(E, ǫ) = − 1

π
Im

∫
dDp

(2π)D
δGR(p, E) = − 1

π
ImRR(E) (238)

where RR(E) is the retarded analytical continuation of the expression corre-
sponding to the diagram of Fig. 15:

R(εn) = T
∑

Ωk

∫
dDq

(2π)D
L(q, Ωk)

∫
dDp

(2π)D
G2(p, εn)G(q − p, Ωk−εn).(239)

The result of the integration of the last expression depends strongly of
the electron spectrum dimensionality: for the two important cases of isotropic
3D and 2D electron spectra one finds [94]

δν
(c)
(3)(E, ǫ)

ν(3)(0)
= − (4π)

3/2

7ζ(3)

√
Gi(3,c)Re

√
Tc√

τ−1
GL − 2iE + κ2

3Tc

× (240)

{
1

τ−1
GL − iE + τ

−1/2
GL

[
τ−1
GL − 2iE + κ2

3Tc

]1/2

}
,

δν
(c)
(2)(E, ǫ)

ν(2)(0)
= − (4π)2

7ζ(3)
Gi(2,c)

T 2
c[

E2 + κ2
2Tcτ

−1
GL

] × (241)



1 − E√

E2 + κ2
2Tcτ

−1
GL

ln
E +

√
E2 + κ2

2Tcτ
−1
GL

κ
√
TcτGL



 ,

where κD = π
√
πD/7ζ(3).

In a dirty superconductor the calculations may be carried out in a similar
way with the only difference that the impurity renormalization of the Cooper
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Fig. 16. The theoretical curve of the energy dependence for the normalised correc-
tion to the single-particle density of states vs energy for a clean two-dimensional
superconductor above Tc.

vertices has to be taken into account [93]. The value of the fluctuation dip at
the Fermi level can be written in the form:

δν(d)(0)

ν(0)
∼ −

{√
Gi(3,d)ǫ

−3/2, D = 3
Gi(2,d)ǫ

−2, D = 2
. (242)

At large energies E ≫ τ−1
GL the DOS recovers its normal value, according to

the same laws (242) but with the substitution ǫ → E/Tc. It is interesting
that the critical exponents of the fluctuation correction of the DOS change
when moving from a dirty to a clean superconductor [94]: the analysis of
(240)-(241) gives

δν(c)(0)

ν(0)
∼ −

{√
Gi(3,c)ǫ

−1/2, D = 3
Gi(2,c)ǫ

−1, D = 2
. (243)

Another important respect in which the character of the DOS renormal-
ization differs strongly for the clean and dirty cases is the energy scale at
which this renormalization occurs. In the dirty case this energy turns out to

be [93] E
(d)
0 ∼ T−Tc ∼ τ−1

GL, while in the clean case E
(c)
0 ∼

√
Tc(T − Tc) [94].

To understand this important difference one has to study the character of the
electron motion in both cases [94]. The relevant energy scale in the dirty case
is the inverse of the time necessary for the electron to diffuse over a distance
equal to the coherence length ξ(T ). This energy scale coincides with the in-
verse relaxation time: t−1

ξ = Dξ−2(T ) ∼ τ−1
GL ∼ T −Tc. In the clean case, the

ballistic motion of the electrons gives rise to a different characteristic energy
scale t−1

ξ ∼ vF ξ
−1(T ) ∼ (Tcτ

−1
GL)1/2 ∼

√
Tc(T − Tc).
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One can check that the integration of (240)-(241) over all positive energies
gives zero:

∫ ∞

0

δν(E)dE = 0 (244)

This “sum rule” is a consequence of a conservation law: the number of quasi-
particles is determined by the number of cells in the crystal and cannot be
changed by the interaction. So the only effect which can be produced by the
inter-electron interaction is a redistribution of the energy levels near the Fermi
energy. The sum rule (244) plays an important role in the understanding of
the manifestation of the fluctuation DOS renormalization in the observable
phenomena. As we will see in the next Section the singularity in the tunnel-
ing current (at zero voltage), due to the density of states renormalization,
turns out to be much weaker than that in the DOS itself (ln ǫ instead of ǫ−1

or ǫ−2, see (242)-(243)). A similar smearing of the DOS singularity occurs
in the opening of the pseudo-gap in the c-axis optical conductivity, in the
NMR relaxation rate etc. These features are due to the fact that we must
always form the convolution of the DOS with some slowly varying function:
for example, a difference of Fermi functions in the case of the tunnel current.
The sum rule then leads to an almost perfect cancellation of the main singu-
larity at low energies. The main non-zero contribution then comes from the
high energy region where the DOS correction has its ‘tail’. Another impor-
tant consequence of the conservation law (244) is the considerable increase
of the characteristic energy scale of the fluctuation pseudo-gap opening with
respect to E0: this is eV0 = πT for tunneling and ω ∼ τ−1 for the c-axis
optical conductivity.

The effect of fluctuations on the tunnel current [179]. It is quite
evident that the renormalization of the density of states near the Fermi level,
even of only one of the electrodes, will lead to the appearance of anomalies
in the voltage-current characteristics of a tunnel junction. The quasiparticle
current flowing through it may be written as a convolution of the densities of
states with the difference of the electron Fermi distributions in each electrode
(L and R):

Iqp =
1

eRnνL(0)νR(0)
× (245)

∫ ∞

−∞

(
tanh

E + eV

2T
− tanh

E

2T

)
νL(E)νR(E + eV )dE,

where Rn is the Ohmic resistance per unit area and νL(0), νR(0) are the
densities of states at the Fermi levels in each of electrodes in the absence of
interaction. One can see that for low temperatures and voltages the expression
in parenthesis is a sharp function of energy near the Fermi level. Nevertheless,
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depending on the properties of the DOS functions, the convolution (245) may
exhibit different properties. If the energy scale of the DOS correction is much
larger than T , the expression in parenthesis in (245) acts as a delta-function
and the zero-bias anomaly in the tunnel conductivity strictly reproduces the
anomaly of the density of states around the Fermi level:

δG(V )

Gn(0)
=
δν(eV )

ν(0)
, (246)

where G(V ) is the differential tunnel conductance and Gn(0) is the back-
ground value of the Ohmic conductance supposed to be bias independent,
δG(V ) = G(V )−Gn(0). This situation, for instance, occurs in a junction with
one amorphous electrode [183], where the dynamically screened Coulomb in-
teraction is strongly retarded, which leads to a considerable suppression of
the density of states in the vicinity of the Fermi level, within τ−1 ≫ T.

It is worth stressing that the proportionality between the tunneling cur-
rent and the electron DOS of the electrodes is widely accepted as an axiom,
but generally speaking this is not always so. As one can see from the previous
subsection, the opposite situation occurs in the case of the DOS renormal-
ization due to the electron-electron interaction in the Cooper channel: in this
case the DOS correction varies strongly already in the scale of E0 ∼ Eker ≪ T
and the convolution in (245) with the DOS (241) has to be carried out without
the simplifying approximations assumed to obtain (246). We will show that
the fluctuation induced pseudo-gap like structure in the tunnel conductance
differs drastically from the anomaly of the density of states (241), both in its
temperature singularity near Tc and in the energy range of its manifestation.

Let us first discuss the effect of the fluctuation suppression of the density
of states on the properties of a tunnel junction between a normal metal and
a superconductor above Tc. The effect under discussion turns out to be most
pronounced in the case of thin superconducting films (d≪ ξ(T )) and layered
superconductors like HTS cuprates. In order to derive the explicit expression
for the fluctuation contribution to the differential conductance of a tunnel
junction with one thin film electrode close to its Tc we differentiate (245)
with respect to voltage, and substitute the DOS correction given by (241).
This results in (see [179]):

δGfl(V, ǫ)

Gn(0)
=

1

2T

∫ ∞

−∞

dE

cosh2
(

E+eV
2T

)δν(2)(E, ǫ) ∼ (247)

∼ Gi(2) ln

(
2√

ǫ+
√
ǫ+ r

)
Reψ′′

(
1

2
− ieV

2πT

)
.

It is important to emphasize several nontrivial features of the result ob-
tained. First, the sharp decrease (ǫ−2(1)) of the density of electron states in
the immediate vicinity of the Fermi level generated by fluctuations surpris-
ingly results in a much more moderate growth of the tunnel resistance at zero
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Fig. 17. The theoretical prediction for the fluctuation-induced zero-bias anomaly in
tunnel-junction resistance as a function of voltage for reduced temperatures ǫ = 0.05
(top curve), ǫ = 0.08 (middle curve) and ǫ = 0.12 (bottom curve). The insert shows
the experimentally observed differential resistance as a function of voltage in an
Al-I-Sn junction just above the transition temperature

voltage (ln 1/ǫ). Second, in spite of the manifestation of the DOS renormal-

ization at the characteristic scales E
(d)
0 ∼ T − Tc or E

(cl)
0 ∼

√
Tc(T − Tc),

the energy scale of the anomaly developed in the I−V characteristic is much
larger: eV = πT ≫ E0 (see Fig. 17).

In the inset of Fig. 17 the result of measurements of the differential re-
sistance of the tunnel junction Al − I − Sn at temperatures slightly above
the critical temperature of Sn electrode is presented. This experiment was
done [184] with the purpose of checking the theory proposed [179]. The non-
linear differential resistance was precisely measured at low voltages which
permitted the observation of the fine structure of the zero-bias anomaly. The
reader can compare the shape of the measured fluctuation part of the dif-
ferential resistance (the inset in Fig. 17) with the theoretical prediction. It
is worth mentioning that the experimentally measured positions of the min-
ima are eV ≈ ±3Tc, while the theoretical prediction following from (247) is
eV = ±πTc. Recently similar results on an aluminium film with two regions of
different superconducting transition temperatures were reported [185]. The
observations of the pseudogap anomalies in tunneling experiments at tem-
peratures above Tc obtained by a variety of experimental techniques were
reported in [186,187,188,189,190]..

We will now consider the case of a symmetric junction between two su-
perconducting electrodes at temperatures above Tc. In this case, evidently,
the correction (247) has to be multiplied by a factor of ”two” because of
the possibility of fluctuation pairing in both electrodes. Furthermore, in view
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of the extraordinarily weak (∼ ln 1/ǫ) temperature dependence of the first
order correction, different types of high order corrections may manifest them-
selves on the energy scale eV ∼ T − Tc or

√
Tc(T − Tc). Among them are

the familiar AL and MT corrections which take place in the first order of Gi
but in the second order of the barrier transparency. Another type of higher
order correction appears in the first order of barrier transparency but in the
second of fluctuation strength (∼ Gi2) [179]. Such corrections are generated
by the interaction of fluctuations through the barrier and they can be evalu-
ated directly from (245) applied to a symmetric junction . The second order
correction in Gi can be written as [179]:

δG
(2)
fl (0, ǫ) ∼

∫ ∞

−∞

dE

cosh2
(

E
2T

)
[
δν(2)(E, ǫ)

]2
∼
Gi2(2)

ǫ3
(248)

This nonlinear fluctuation correction turns out to be small by Gi2 but its

strong singularity in temperature and opposite sign with respect to δG
(1)
fl

make it interesting. Apparently it leads to the appearance of a sharp maxi-
mum at zero voltage in G(V ) with a characteristic width eV ∼ T −Tc in the
immediate vicinity of Tc (one can call this peak as the hyperfine structure).
This result was confirmed in [191] but to our knowledge such corrections were
never observed in tunneling experiments.

One can see that δG
(1)
fl and δG

(2)
fl become of the same order at ǫ∗cr ∼ 3

√
Gi,

i.e. the critical region where nonlinear fluctuations effects become important
in the problem under consideration starts much before the thermodynamical
criterion ǫcr ∼ Gi. In the next Section we will discuss this early manifestation
of nonlinear fluctuation effects in transport phenomena.

6.6 Nonlinear fluctuation effects [14]

As we have already seen in the temperature region Gi ≪ ǫ ≪ 1 the thermo-
dynamic fluctuations of the order parameter Ψ can be considered to be Gaus-
sian. Nevertheless the example of the previous Section demonstrates that in
transport phenomena nonlinear effects, related with the interaction of fluctu-
ations (higher order corrections) can manifest themselves much earlier. It has
been found in paper [178], that nonlinear fluctuation phenomena restrict the
Gaussian region in the fluctuation conductivity of a superconducting film to
a new temperature scale:

√
Gi(2d) ≪ ǫ ≪ 1 (see also [110,111,179,115,192]).

In this Section we obtain expressions for the conductivity in the temperature
region Gi(2d) < ǫ <

√
Gi(2d), where both the perturbation theory works well

and the nonlinear fluctuation effects are important.
Let us start from the correlator (173) which can be expressed by means

of the Gi(2d) number:

〈Ψ∗
kΨk〉 =

T

ν

1

ǫ+ πD
8T k2

=
32π3

7ζ(3)
Gi(2d)

T 2

k2 + 8Tǫ
πD

. (249)
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The long-wave-length fluctuations with k2 < k2
min = 8T ǫ/πD can be consid-

ered as a local condensate. They lead to the formation of the pseudogap

∆pg =

[∫

k2.k2
min

d2k

(2π)
2 〈Ψ∗

kΨk〉
]1/2

≃ T
√
Gi(2d). (250)

in the single-particle spectrum of excitations.
Not very close to the transition (ǫ >

√
Gi(2d)) only excitations with ener-

gies E > ∆pg are important. The pseudogap does not play any role for them.
Thus, in this region of temperatures it is sufficient to consider fluctuations
in the linear approximation only (see [5,6,7]). However, in the temperature
region ǫ <

√
Gi(2d) the nonlinear fluctuation contribution of the excitations

with energies E < ∆pg becomes essential.
To take into account the spatial dependence of the order parameter we

will use the results obtained in [193]. It was shown there that the spatial vari-
ations of ∆pg act on single-particle excitations in the same way as magnetic
impurities do (the analogy between the effect of fluctuations and magnetic
impurities was observed in many papers, see for example, [194]). In this case,
the total pairbreaking rate Γ can be written as a sum of the pairbreaking
rate due to the magnetic impurities and the fluctuation term. Thus, the self-
consistent equation for Γ can be written in the following form [193]:

Γ =

∫
d2k

(2π)2
〈Ψ∗

kΨk〉
E + 1

2Dk2 + Γ
+

1

τs
. (251)

In the region E . Γ , Γ ≫ T ǫ we obtain from Eqs.(251), (249):

Γ ∼ T
(
Gi(2d)

)1/2 ≃ ∆pg, (252)

which coincides with the results obtained in [110,101].
Let us note, that the pair-breaking rate Γ was found to be of the order of

the pseudogap ∆pg. Thus, a wide maximum appears in the density of states
at E ∼ ∆pg. As we already saw (201), in purely 2D case the Maki-Thompson
correction to the conductivity saturates for T ǫ < Γ (where Γ = 8Tγϕ/π)
and takes the form [14]:

δσMT

σn
∼ T

Γ
Gi(2d) ln

πΓ

8T ǫ
. (253)

As it can be seen from Eqs.(252) such a saturation takes place when ǫ <√
Gi(2d). Similar results have been obtained in [110,111,115], with slightly

different numerical coefficients28. However, its exact value is not very impor-
tant since in the region T ǫ < Γ the Maki-Thompson correction is less singular

28 Note, that the numerical coefficient in Eq.(253) depends on the definition of
Gi(2d) and how the summation of higher order diagrams is made.
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than the Aslamazov-Larkin one and can be neglected. The latter does not
saturate when T tends to Tc but becomes more and more singular.

In the presence of the pseudogap if there is no equilibrium, the fluctuat-
ing Cooper pair lifetime increases with respect to the GL one: τfl = aτGL

(a > 1). Recall, that analogous changes in the coefficient a in the TDGL equa-
tions appear below the transition temperature (see e.g. [66,72,195,196,197]).
The growth of the coefficient a and, consequently, the increase of the fluc-
tuation lifetime is because the quasiparticles require more time to attain
thermal equilibrium (the corresponding time we denote as τe). A rough es-
timate gives a ∼ ∆pgτe. In the case of weak energy relaxation, τe has to be
determined from the diffusion equation taking account of the pseudogap (see
[196,197,198]). Note, that in this complicated case the coefficient a becomes a
non-local operator. Rough estimates give the following value for the thermal
equilibrium transition time τe ∼ (Dk2

min)−1 ∼ (T ǫ)−1. Taking into account
Eq.(250) we obtain from (11) for the paraconductivity contribution in the
discussed limit of the weak energy relaxation [14] :

δσ

σn
∼
Gi

3/2
(2d)

ǫ2
. (254)

Let us discuss now the role of the energy relaxation processes, character-
ized by a quasiparticle lifetime τε. Nonelastic electron scattering off phonons
and other possible collective excitations can decrease τε significantly. These
processes together with additional pairbreaking processes (due to magnetic
impurities or a magnetic field) lead to a decrease of the nonlinear effects. In
view of these processes, one can write the following interpolation formula for
the non-linear fluctuation conductivity [14]:

δσ

σn
∼

Gi
3/2
(2d)

ǫ
(
ǫ+ 1

Tτε

)(
1 + Γ

T
√

Gi(2d)

) . (255)

Note that Eqs.(254-255) are valid only if the parameters Γ and τε are such
that the correction to conductivity δσ is larger than the usual Aslamazov-
Larkin correction Eq.(99). If Γ > T , Tτε <

√
Gi(2d) or if T 2τε/Γ < Gi(2d),

than nonlinear effects are negligible and the usual result (99) is valid for all
ǫ > Gi(2d).

We see that the paraconductivity can exceed the value of the normal

conductivity σn in the region Gi(2d) < ǫ < Gi
3/4
(2d). Let us recall, that in this

region corrections to all the thermodynamic coefficients are still small and
the linear theory is well applicable.

6.7 The effect of fluctuation on the optical conductivity [199]

The optical conductivity of a layered superconductor can be expressed by

the same analytically continued electromagnetic response operator Q
(R)
αβ (ω)
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(see Exp.(180)) but in contrast to the d.c. conductivity case, calculated with-
out the assumption ω → 0. Let us recall that the paraconductivity tensor
in an a.c. field was already studied in Section 4 in the framework of the
TDGL equation [31] and the most interesting asymptotics for our discussion
(125)-(126), valid for ω ≪ T in the 2D regime, were calculated there. The
microscopic calculation of the AL diagram [98] shows that in the vicinity of
Tc and for ω ≪ T the leading singular contribution to the response oper-

ator Q
AL (R)
αβ arises from the fluctuation propagators rather than from the

Bα blocks, which confirms the TDGL results. Nevertheless the DOS and MT
corrections can be calculated only by the microscopic method, as was done
in [98,199]..

Let us note that the external frequency ων enters in the expression for
the DOS contribution to Qαβ(ω) only by means of the Green’s function
G(p, ωn+ν) and it is not involved in q integration. So, near Tc, even in the
case of an arbitrary external frequency, we can restrict consideration to the
static limit, taking into account only the propagator frequency Ωk = 0, and
to get [199]:

ReσDOS
αβ (ω) = − e2

2πs
κ̂ (ω, T, τ)Aαβ ln

[
2√

ǫ+ r +
√
ǫ

]
,

where the anisotropy tensor Aαβ was introduced in (189). Let us stress that,
in contrast to the AL frequency dependent contribution, this result has been
found with only the assumption ǫ ≪ 1, so it is valid for any frequency,
and impurity concentration. The function κ̂ (ω, T, τ) was calculated in [199]
exactly but we present here only its asymptotics for the clean and dirty cases:

κ̂d

(
ω, T ≪ τ−1

)
=

8

π





7ζ(3)
2π2 , ω ≪ T ≪ τ−1

(
T
ω

)2
, T ≪ ω ≪ τ−1

−πT 2

ω3τ , T ≪ τ−1 ≪ ω

,

κ̂cl

(
ω, T ≫ τ−1

)
=

π3

28ζ(3)





(Tτ)
2
, ω ≪ τ−1 ≪ T(

T
ω

)2
, τ−1 ≪ ω ≪ T

−4
(

T
ω

)3
, τ−1 ≪ T ≪ ω

.

The general expression for the MT contribution is too cumbersome, so we
restrict ourselves here to the important 2D overdamped regime (r ≪ ǫ ≤ γϕ):

σMT (an)(2D)
zz (ω) =

e2s

27η(2)

r2

γϕǫ

{
1, ω̃ ≪ τ−1

ϕ(
8Tcγϕ

πω

)2

, ω̃ ≫ τ−1
ϕ

σMT (an)(2D)
xx (ω) =

e2

8s





1
γϕ

ln
γϕ

ǫ , ω ≪ τ−1
ϕ(

8Tcγϕ

πω

)2

, ω ≫ τ−1
ϕ

.
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Let us discuss the results obtained. Because of the large number of pa-
rameters entering the expressions we restrict our consideration to the most
interesting c-axis component of the fluctuation conductivity tensor in the 2D
region (above the Lawrence-Doniach crossover temperature).

The AL contribution describes the fluctuation condensate response to the
applied electromagnetic field. The current associated with it can be treated as
the precursor phenomenon of the screening currents in the superconducting
phase. As was demonstrated above the characteristic ”binding energy ” of
fluctuation Cooper pair is of the order of T − Tc, so it is not surprising
that the AL contribution decreases when the electromagnetic field frequency
exceeds this value. Indeed ωAL ∼ T −Tc is the only relevant scale for σAL: its
frequency dependence does not contain T, τϕ and τ . The independence from
the latter is due to the fact that elastic impurities do not present obstacles
for the motion of Cooper pairs. The interaction of the electromagnetic wave
with the fluctuation Cooper pairs resembles, in some way, the anomalous
skin-effect where the reflection is determined by the interaction with the free
electron system.

The anomalous MT contribution also is due to fluctuation Cooper pairs,
but this time they are formed by electrons moving along self-intersecting tra-
jectories. Being the contribution related with the Cooper pair electric charge
transfer it does not depend on the elastic scattering time but it turns out to
be extremely sensitive to the phase-breaking mechanisms. So two character-
istic scales turn out to be relevant in its frequency dependence: T − Tc and
τ−1
ϕ . In the case of HTS, where τ−1

ϕ has been estimated as at least 0.1Tc, for
temperatures up to 5 ÷ 10K above Tc the MT contribution is overdamped,
it is determined by the value of τϕ and is almost temperature independent.

The DOS contribution to Reσ(ω) is quite different from those above.
In the wide range of frequencies ω ≪ τ−1 the lack of electron states at
the Fermi level leads to the opposite sign effect in comparison with the AL
and MT contributions: ReσDOS(ω) turns out to be negative and this means
an increase of the surface impedance, or, in other words, decrease of the
reflectance. Nevertheless, the applied electromagnetic field affects the electron
distribution and at very high frequencies ω ∼ τ−1 the DOS contribution
changes its sign. It is interesting that the DOS contribution, as a one-electron
effect, depends on the impurity scattering in a similar manner to the normal
Drude conductivity. The decrease of ReσDOS(ω) starts at frequencies ω ∼
min{T, τ−1} which for HTS are much higher than T − Tc and τ−1

ϕ .
The ω-dependence of Reσtot

zz with the most natural choice of parameters
(Tcr ≪ Tcǫ ≤ τ−1

ϕ ≪ min{T, τ−1}) is presented in Fig. 18.
Let us discuss it referring to a strongly anisotropic layered superconduc-

tor. The positive AL and MT contributions to σtot
zz , being suppressed by the

square of the interlayer transparency, are small in magnitude and they vary in
the low frequency region ω ∼ min{T−Tc, τ

−1
ϕ }. The DOS contribution is pro-

portional to the first order of transparency and remains in this region almost
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Fig. 18. The theoretical dependence [199] of the real part of the conductivity,
normalized by the Drude normal conductivity, on ω/T , ℜ [σ′(ω)] = Re [σ(ω)] /σn.
The dashed line refers to the ab-plane component of the conductivity tensor whose
Drude normal conductivity is σn

‖ = N(0)e2τv2
F . The solid line refers to the c-axis

component whose Drude normal conductivity is σn
⊥ = σn

‖J2s2/v2
F . In this plot we

have put Tτ = 0.3, EF /T = 50, r = 0.01, ǫ = 0.04, T τϕ = 4.

invariable. With a further increase of frequency min{T−Tc, τ
−1
ϕ } . ω the AL

and MT contributions decay; Reσ⊥ remains negative up to ω ∼ min{T, τ−1},
then it changes its sign at ω ∼ τ−1, reaches maximum and rapidly decreases.
The following high frequency behavior is governed by the Drude law. So
one can see that the characteristic pseudo-gap-like behavior in the frequency
dependence of the c-axis optical conductivity takes place: a transparency
window appears in the range ω ∈ [T − Tc, τ

−1].
In the case of the ab-plane optical conductivity the two first positive

contributions are not suppressed by the interlayer transparency, and exceed
considerably the negative DOS contribution in a wide range of frequencies.
Any pseudo-gap like behavior is therefore unlikely in σtot

xx (ω): the reflectivity
will be of the metallic kind.

6.8 Thermoelectric power above the superconducting transition
[203,201]

Thermoelectric effects are difficult both to calculate and to measure if com-
pared with electrical transport properties. At the heart of the problem lies
the fact that the thermoelectric coefficients in metals are the small resultant
of two opposing currents which almost completely cancel. In calculating the
thermoelectric power one finds that the electrons above the Fermi level carry
a heat current that is nearly the negative of that carried by the electrons
below EF . In the model of a monovalent metal in which band structure and
scattering probabilities are symmetric about EF , this cancellation would be
exact; in a real metal a small asymmetry survives. Because of their compen-
sated nature, thermoelectric effects are very sensitive to the characteristics
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of the electronic spectrum, presence of impurities and peculiarities of scatter-
ing mechanisms. The inclusion of many-body effects, such as electron-phonon
renormalization, multi-phonon scattering, drag effect, adds even more com-
plexity to the problem of calculating the thermoelectric power. Among such
effects, there is also the influence of thermodynamical fluctuations on the
thermoelectric transport in a superconductor above the critical temperature.
This problem has been attracting the attention of theoreticians for more than
twenty years, since the paper of Maki [202] appeared, where the logarithmi-
cally divergent AL contribution was predicted for the two-dimensional case.
So the AL term turns out to be less singular compared with the corresponding
correction to conductivity.

In every case where the main AL and MT fluctuation corrections are sup-
pressed for some reason, the contribution connected with fluctuation renor-
malization of the one-electron density of states (DOS) can become impor-
tant. The analogous situation also occurs in the case of the thermoelectric
coefficient [200,201]. Although the DOS term has the same temperature de-
pendence as the AL contribution [202,203], it turns out to be the leading
fluctuation contribution in both the clean and dirty cases, due to its specific
dependence on the electron mean free path.

We introduce the thermoelectric coefficient ϑ in the framework of linear
response theory as

ϑ =
1

T
lim
ω→0

Im[Q(eh)R(ω)]

ω

where Q(eh)R(ω) is the Fourier representation of the retarded correlation
function of electric Je and heat Jh current operators in Heisenberg represen-
tation:

Q(eh)R(X −X ′) = −Θ(t− t′)〈〈
[
Jh(X), Je(X ′)

]
〉〉.

Here X = (r, t) and 〈〈· · ·〉〉 represents both thermodynamical averaging and
averaging over random impurity positions. The correlation function Q(eh)R in
the diagrammatic technique is represented by a bubble with two exact elec-
tron Green’s functions and two external field vertices, the first, ev, associated
with the electric current operator and the second, i

2 (εn + εn+ν)v, associated
with the heat current operator (εn is fermionic Matsubara frequency) [172].
The first order fluctuation corrections to Q(eh)(ων) are represented by the
same diagrams as for conductivity (see Fig.9).

The first diagram describes the AL contribution to thermoelectric coeffi-
cient and was calculated in [202,203] with the electron-hole asymmetry factor
taken into account in the fluctuation propagator. Diagrams 2-4 represent the
Maki-Thompson contribution, neither anomalous nor regular parts of these
diagrams contribute to ϑ in any order of electron-hole asymmetry [172,203].
The contribution from diagrams 5-10 describes the correction to ϑ due to
fluctuation renormalization of the one-electron density of states. Evaluating
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it in the same way as (193) but with one heat current vertex one obtains a
vanishing result if electron-hole asymmetry is not taken into account. The
first possible source of this factor is contained in the fluctuation propagator;
it was used in [203] for the AL diagram but for the DOS contribution this cor-
rection results in non-singular contributions to ϑ only and can be neglected.
Another source of electron-hole asymmetry is connected with expansion of
energy-dependent functions in powers of ξ/EF near the Fermi level:

ν(ξ)v2(ξ) = ν(0)v2(0) + ξ

[
∂(ν(ξ)v2(ξ))

∂ξ

]

ξ=0

. (256)

Only the second term in Eq. (256) contributes to the thermoelectric coef-
ficient. Performing the integration over ξ , summations over fermionic fre-
quencies and analytical continuation of the result obtained we find that the
contribution to the thermoelectric coefficient associated with the DOS renor-
malization takes the form

ϑDOS
2D =

1

4π2

eTc

ν(0)v2
F

[
∂(νv2)

∂ξ

]

ξ=0

κ∗(Tτ) ln[
2√

ǫ+
√
ǫ+ r

], (257)

where

κ∗(Tτ) = − 1 + π
8Tτ

Tτ
[
ψ
(

1
2 + 1

4πTτ

)
− ψ

(
1
2

)
− 1

4πTτ ψ
′ ( 1

2

)] (258)

=

{
8π2

7ζ(3)Tτ ≈ 9, 4Tτ T τ ≫ 1

(Tτ)
−1

Tτ ≪ 1
.

Summing Eq. (257) with the AL contribution [203] one can find the total
correction to the thermoelectric coefficient in the case of a 2D superconduct-
ing film of thickness d :

ϑDOS + ϑAL

ϑ0
= −0.17

1

EFτ

1

pFd
ln

(
Tc

T − Tc

)[
κ∗(Tcτ) + 5.3 ln

ωD

Tc

]
,

Assuming ln(ωD/Tc) ≈ 2 one finds that the DOS contribution dominates
the AL one for any value of impurity concentration: κ∗ has a minimum at
Tτ ≈ 0.3 and even at this point the DOS term is twice as large. In both
limiting cases Tτ ≪ 1 and Tτ ≫ 1 this difference strongly increases.

In practice, although the Seebeck coefficient S = −ϑ/σ is probably the
easiest to measure among the thermal transport coefficients, the comparison
between experiment and theory is complicated by the fact that S cannot be
calculated directly; it is rather a composite quantity of the electrical conduc-
tivity and thermoelectric coefficient. As both ϑ and σ have corrections due to
superconducting fluctuations, the total correction to the Seebeck coefficient
is given by

∆S = S0

(
∆ϑ

ϑ0
− ∆σ

σ0

)
(259)
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We see that the fluctuations result in a decrease of the absolute value of the
overall Seebeck coefficient as the temperature approaches Tc.

The situation is complicated additionally in HTS materials, where the
temperature behavior of the background value of the thermoelectric power
remains unknown. This does not permit to extract precisely from the ex-
perimental data the fluctuation part ∆ϑ to compare it with the theoretical
prediction. Nevertheless the very sharp maximum in the Seebeck coefficient
experimentally observed in a few papers [204,205,206] seems to be unrelated
to the fluctuation effects. This conclusion is supported by recent analysis
of the temperature dependence of the thermoelectric coefficient close to the
transition in Refs. [207].

6.9 The effect of fluctuations on NMR characteristics [176]

Preliminaries. In this Section we discuss the contribution of superconduct-
ing fluctuations to the spin susceptibility and the NMR relaxation rate. For
both these effects the interplay of different fluctuation contributions is un-
usual with respect to the case of the conductivity. Like in the case of the
optical conductivity, the fluctuation contributions to the spin susceptibility
and the NMR relaxation rate can manifest themselves as the opening of a
pseudogap already in the normal phase, a phenomenon which is characteristic
to HTS compounds.

We begin with the dynamic spin susceptibility χ
(R)
± (k, ω) = χ±(k, iων →

ω + i0+) where

χ±(k, ων) =

∫ 1/T

0

dτeiωντ 〈〈T̂τ

(
Ŝ+(k, τ)Ŝ−(−k, 0)

)
〉〉. (260)

Here Ŝ± are the spin raising and lowering operators, T̂τ is the time ordering
operator, and the brackets denote thermal and impurity averaging in the

usual way. The uniform, static spin susceptibility is given by χs = χ
(R)
± (k →

0, ω = 0) while the dynamic NMR relaxation rate is given by

1

T1T
= lim

ω→0

A

ω

∫
d3k

(2π)
3 Imχ

(R)
± (k, ω) (261)

where A is a positive constant involving the gyromagnetic ratio.
For non-interacting electrons χ0

±(k, ων) is determined by the usual loop
diagram. Simple calculations lead to the well known results for T ≪ EF :
χ0

s = ν (Pauli susceptibility) and (1/T1T )
0

= Aπν2 (Korringa relaxation).
We will present the fluctuation contributions in a dimensionless form by
normalizing to the above results.

To leading order inGi the fluctuation contributions to χ± can be discussed
with the help of the same diagrams drawn for the conductivity in Fig. 9. It is
important to note that the role of the external vertices (electron interaction
with the external field) is now played by the Ŝ±(k, τ) operators. This means
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that the two fermion lines attached to the external vertex must have opposite
spin labels (up and down). Consequently, the Aslamazov-Larkin diagram for
χ± does not exist since one cannot consistently assign a spin label to the
central fermion for spin-singlet pairing. The next set of diagrams to consider
is the Maki-Thompson contribution. While the MT diagrams for χ± appear
to be identical to those for the conductivity, there is an important difference
in topology which arises from their spin structure. It is easy to see, by drawing
the fluctuation propagator explicitly as a ladder of attractive interaction lines,
that the MT diagram is a non-planar graph with a single fermion loop. In
contrast the MT graph for the conductivity is planar and has two fermion
loops. The number of loops, in accordance with the rules of diagrammatic
technique [92], affects the sign of the contribution.

The diagrams 5 and 6 represent the effect of fluctuations on the single-
particle self energy, leading to a decrease in the DOS. The DOS diagrams 7
and 8 include impurity vertex corrections (note that these have only a single
impurity scattering line as additional impurity scattering in the form of a
ladder has a vanishing effect). Finally 9 and 10 are the DOS diagrams with
the Cooperon impurity corrections.

Spin Susceptibility[208,176]. We note that, when the external frequency
and momentum can be set to zero at the outset, as is the case for χs, there
is no anomalous MT piece (which as we shall see below is the most singu-
lar contribution to 1/T1). The MT diagram 2 then yields a result which is
identical to the sum of the DOS diagrams 5 and 6.

In the clean limit (Tcτ ≫ 1) the fluctuation contribution is given by
χfl

s = χs2+χs5+χs6; all other diagrams turn out to be negligible. In the dirty
case (Tcτ ≪ 1), the DOS diagrams 5 and 6, together with the regular part of
the MT diagram (2), yield the same result as in the clean limit (of the order
O(Tc/EF )). One can see, that this contribution is negligible in comparison
with the expected dominant one for the dirty case of the order O(1/EF τ).
A thorough study of all diagrams shows that the important graphs in the
dirty case are those with the Cooperon impurity corrections MT 3 and 4,
and the DOS ones 9 and 10. This is the unique example known to us where
the Cooperons, which play a central role in the weak localization theory,
give the leading order result in the study of superconducting fluctuations.
Diagrams 3 and 4 give one half of the final result given below; diagrams 9
and 10 provide the other half. The total fluctuation susceptibility is χfl

s =
χs3 + χs4 + χs9 + χs10. Interesting, that in both the clean and dirty cases
χfl

s/χs
(0) can be expressed by the same formula if one expresses the coefficient

in terms of the GL number Gi(2) (176):

χfl
s

χs
(0)

= −2Gi(2) ln

(
2√

ǫ+
√
ǫ+ r

)
. (262)

It is tempting to explain the negative sign of the fluctuation contribution
to the spin susceptibility in Eq. (262) as arising from a suppression of the DOS
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at the Fermi level. But one must keep in mind that only the contribution of
diagrams 5 and 6 can strictly be interpreted in this manner; the MT graphs
and the coherent impurity scattering described by the Cooperons do not
permit such a simple interpretation.

Relaxation Rate[209,210,204,176]. The calculation of the fluctuation
contribution to 1/T1 requires rather more care than χs because of the sub-
tleties of analytic continuation. Let us define the local susceptibility

K(ων) =

∫
(dk)χ+−(k, ων).

In order to write down the fluctuation contribution to 1/T1 for the case
of an arbitrary impurity concentration including the ultra-clean case let us
start from the anomalous MT contribution and evaluate it using the standard
contour integration techniques

lim
ω→0

1

ω
ImK(an)R(ω) = −πν

2

8

∫
(dq)L(q, 0)K(q), (263)

K(q) = 2τ

∫ ∞

−∞

dz

cosh2(z/4Tτ)

1(√
l2q2 − (z − i)2 − 1

)×

1(√
l2q2 − (z + i)2 − 1

) . (264)

We have used the impurity vertices in the general form (233). The first simple
limiting case for (264) is lq ≪ 1, when the square roots in the denominator
can be expanded and K(q) = 2π/Dq2. As we already know from Section
8.4 this corresponds to the usual local approximation and covers the domain
Tcτ ≪ 1/

√
ǫ. Introducing the pair breaking rate γϕ as an infrared cut off one

can find:

δ (1/T1)
MT (an)

(1/T1)
0 =

28ζ(3)

π4
Gi(2,d)

1

ǫ− γϕ
ln(ǫ/γϕ). (265)

The other limiting case is the “ultra-clean limit” when the characteristic q-
values satisfy lq ≫ 1. This is obtained when Tτ ≫ 1/

√
ǫ ≫ 1. From (264)

we then find K(q) = 4 ln(lq)/vq, which leads to

δ(1/T1)
MT (an)

(1/T1)0
=

π3

√
14ζ(3)

Gi(2,cl)
1√
ε

ln(Tτ
√
ǫ). (266)

We note that in all cases the anomalous MT contribution leads to an en-
hancement of the NMR relaxation rate over the normal state Korringa value.
In particular, the superconducting fluctuations above Tc have the opposite
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sign to the effect for T ≪ Tc (where 1/T1 drops exponentially with T ). One
might argue that the enhancement of 1/T1 is a precursor to the coherence
peak just below Tc. Although the physics of the Hebel-Slichter peak (pile-up
of the DOS just above gap edge and coherence factors) appears to be quite
different from that embodied in the MT process, we note that both effects
are suppressed by strong inelastic scattering.

We now discuss the DOS and the regular MT contributions which are
important when strong dephasing suppresses the anomalous MT contribution
discussed above. The local susceptibility arising from diagrams 5 and 6 can
be easily evaluated. The other remaining contribution is from the regular
part of the MT diagram. It can be shown that this regular contribution is
exactly one half of the total DOS contribution from diagrams 5 and 6. All
other diagrams either vanish (as is the case for graphs 7 and 8) or contribute
at higher order in 1/EF τ (this applies to the graphs with the Cooperon
corrections). The final results can be presented in a unique way for the clean
(but not ultra-clean) and dirty cases by means of the Gi(2) number :

δ(1/T1)
DOS

(1/T1)0
= −12Gi(2) ln

(
2√

ǫ+
√
ǫ+ r

)
. (267)

The negative DOS contribution to the NMR relaxation rate is evident
from the Korringa formula and it sign seems very natural while the sign of
the positive Maki-Thompson contribution can generate a questions about its
physical origin. Let us consider a self-intersecting trajectory and the motion
of the electron along it with fixed spin orientation (let us say ”spin up”). If,
after passing a full turn, the electron interacts with the nucleus and changes
its spin state and momentum to the opposite value it can pass again along
the previous trajectory moving in the opposite direction . Interaction of the
electron with itself on the previous stage of the motion is possible due to the
retarded character of the Cooper interaction and such a pairing process, in
contrast to the AL one, turns out to be an effective mechanism for relax-
ation near Tc. This purely quantum process opens a new mechanism of spin
relaxation, and so contributes positively to the relaxation rate 1/T1.

In the case of the nuclear magnetic relaxation rate calculations, the elec-
tron interaction causing nuclear spin flip is considered. If one would try to
imagine an AL process of this type he would be in trouble, because the
electron-nuclei scattering with spin-flip evidently transforms the initial sin-
glet state of the fluctuation Cooper pair in a triplet-one, which is forbidden
in the scheme discussed. So the formally discovered absence of the AL con-
tribution to the relaxation rate is evident enough.

It is worth mentioning that the cancellation of the MT and DOS con-
tributions to conductivity found in Section 8.4 is crucial for the fluctuation
contributions to the NMR relaxation rate. In fact, the MT and DOS con-
tributions here have the same structure as in the conductivity while the AL
contribution is absent. So the full fluctuation correction to the NMR relax-
ation rate in clean superconductor simply disappears.
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Discussion. The main results of this Section, valid for ǫ ≪ 1, can be sum-
marized as follows:

(1) Fluctuations lead to a suppression of the spin susceptibility χs , due
to the combined effect of the reduction of the single particle density of states
arising from the self energy contributions, and of the regular part of the MT
process.

(2) “Cooperon” impurity interference terms, involving impurity ladders
in the particle-particle channel, are crucial for the χs suppression in the dirty
limit.

(3) The processes which dominate the results in (1) and (2) above have
usually been ignored in fluctuation calculations (conductivity, 1/T1, etc.).
The spin susceptibility is unusual in that the AL and the anomalous MT
terms, which usually dominate, are absent.

(4) For weak pair-breaking (1/τϕ ≪ Tc), an enhancement of 1/T1T ,
coming from the positive anomalous MT term, takes place [210,176].

(5) Strong dephasing suppresses the anomalous MT contribution, and
1/T1 is then dominated by the less singular DOS and the regular MT terms.
Being negative, these contributions lead to a suppression of spectral weight
and a decrease in 1/T1.

An intensive controversy took place in recent years in relation to the
magnetic field dependence of the fluctuation contribution to 1/T1. The sit-
uation here resembles much the situation with the magnetoconductivity:
a positive MT contribution is suppressed by the magnetic field while the
magnetic field dependent part of the DOS contribution increases with the
growth of the field. But in contrast to the magnetoconductivity, which can
be measured extremely precisely, the NMR relaxation rate measurements
are much more sophisticated. The result of this delicate competition, de-
pending on many parameters (r, γϕ, τ,), was found in HTS materials to be
qualitatively different in experiments of various groups. The absence of a
strong positive AL contribution, possible d-pairing, killing the MT contri-
bution [210], small magnitude of the sum of MT and DOS effects even in
the case of s-pairing, lack of the precise values of r, γϕ, τ, leading to contra-
dictive theoretical predictions[176,113,180,212], the dispersion in the qual-
ity of samples and experimental methods were the reason of this discussion
[113,213,214,215,44,216].

7 Conclusions

Several comments should be made in conclusion. As was mentioned in the
Introduction the first ”fluctuation boom” took place at the end of 60’s -
beginning of 70’s, just after the discovery of the fluctuation smearing of the
superconducting transition and formulation of the microscopic theory of fluc-
tuations. The discovery of HTS reanimated this interest and, in order to ac-
count for the specifics of these layered structures with high critical tempera-



Fluctuation Phenomena in Superconductors 119

tures, low charge carrier concentration and other particularities, considerable
progress in studies of fluctuation phenomena was achieved (see for instance
the conference proceedings [217,218] and the extensive review article [76]). As
it is recognized now the optimally or overdoped phases of HTS compounds
present an example of a ”bad” Fermi liquid. The accounting for superconduct-
ing fluctuations is identical to including of the electron-electron interaction
beyond the Fermi-liquid approximation. As a result a lot of anomalies of the
normal state properties of such HTS compounds can be explained. The situ-
ation was found to be much more sophisticated in underdoped phases where
the quasiparticle approach, which from we have started this Chapter, fails.

In the fluctuation theory discussed above, as in modern statistical physics
in general, two methods have been used mainly: they are the diagrammatic
technique and the method of functional (continual) integration over the or-
der parameter. Each of them as we have seen, has its own advantages and
disadvantages and in different parts of this review we used the former or the
latter.

The years of the fluctuation boom coincided with the maximum devel-
opment of the diagrammatic methods of many body theory in Condensed
Matter Theory. This methods turns out to be extremely powerful: any phys-
ical problem, after its clear formulation and writing down the Hamiltonian,
can be reduced to the summation of some classes of diagrams. The diagram-
matic technique is especially comfortable for problems containing some small
parameter. In the theory of superconducting fluctuations such a small pa-
rameter exists: as we have seen, it is the Ginzburg-Levanyuk number Gi(D)

which is expressed as some powers of the ratio max{Tc, τ
−1}/EF . This is

why superconducting fluctuations led to the appearance of the small correc-
tions to different physical values in a wide range of temperatures, and due
to this smallness these corrections can be evaluated quantitatively. On the
other hand their specific dependence on nearness to the critical temperature
T − Tc permits to separate them in experiment from other effects.

In those cases when fluctuations are small it is possible to restrict their
summation to the ladder approximation only. The diagrammatic technique
permits in a unique way to describe the quantum and classical fluctuations,
the thermodynamical and transport effects

In the description of thermodynamic fluctuations the method of func-
tional integration turned out to be simpler. The ladder approximation in
the diagrammatic approach is equivalent to the Gaussian approximation in
functional integration. The method of functional integration turns out to
be more effective too in the case of strong fluctuations, for instance, in the
immediate vicinity of the phase transition. The final equations of the renor-
malization group carried out by means of functional integrations turn out to
be equivalent to the result of the summation of the parquet diagrams series.
Nevertheless the former derivation is much more simple.
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There is one another reason why we have tried to use both methods and
even to carry out some results in both ways. In its explosive development of
the last decades physics became an ”oral science” . In the process of such
direct communication near a blackboard it is difficult to write and to read
some cumbersome formulas. The language of diagrams is much more com-
prehensive: by drawing them the speaker demonstrates that this one is small
and that one has to be taken into account for this and that reasons clear
for the experienced listener. The success of the diagrammatic technique in
some sense is similar to the success of geometry in Ancient Greece, where the
science was ”oral” too.

This advantage of the diagrammatic technique transforms into its dis-
advantage when there is no direct communication between the speaker and
listener. It is difficult to learn the diagrammatic technique by a textbook on
your own, when no one helps you to find the necessary insight on a complex
graph. May be because of similar reasons geometry disappeared in Middle
Ages when direct communications between scientists was minimal while the
”written” algebra had continued to develop. Operating with Osvald Spen-
gler ”prosymbols” we can say that the diagrammatic technique belongs more
to the Ancient Greece culture style with its ”finite body” prosymbol, while
functional integration, side by side with the Vikings travels to unknown lands
and Leibnitz analysis of infinitesimals, is an evident modern contribution to
West-European culture with its ”infinite space” prosymbol.

That is why, suspecting that the modern physics in the near future can
fall down to a ”New Middle Ages” period, we have carried out some results
by means of functional integration instead of the diagrammatic technique.
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