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Abstract

In this paper we examine general relativity in dimensions other than 3 spatial
and 1 temporal dimension. Initially we examine general relativity in higher temporal
dimensions and present simple arguments as to why these cases can be eliminated. The
remaining part of the paper is dedicated to discussing (N+1) dimensional spacetimes
and observe how singularity theorems, stability, and black holes behave and depend
upon dimension.
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Introduction and History

Every day experience tells us that there are three spatial dimensions and one time dimen-
sions. Despite appearing to the modern physicist as an obvious idea, the notion of a four
dimensional universe was a revolutionary idea when first proposed. Indeed, for much of
human history, there were only three dimensions (x, y, z). However, in 1905, Minkowski,
building upon the work of Einstein’s special relativity, introduced the notion of time as a
fourth dimension thereby merging space and time famously stating that “henceforth space
by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality”[1].

The natural questions arises though: is (3+1) space-time privileged? Is there any fun-
damental reason that we live in a (3+1) universe? Could it be possible we in fact live in
an (N+1) dimensional universe but can only see N = 3 spatial dimensions of it? Or even
why are we privileged to only one temporal dimension? Why can’t consider an (N+M) di-
mensional universe? As we shall show, there are theoretical reasons for believing we live in
a universe with a single temporal dimension but when it comes to extra spatial dimensions,
they have not been ruled out and are currently being pursued by a variety of researchers.
Even then, the question still remains as to whether there is a deep fundamental reason we
live in a 4 dimensional universe other then it simply is that way.

To this day there are active research programmes into providing a unified theory of
physics that makes use of extra dimensions. However, the idea of using extra dimensions in
order to unify physics dates back to work in early 1910s by Nordstrom [2], albeit it did not
make the exact predictions as observed in nature. The earliest approach that was consistent
with Einstein’s general relativity, was the theories of Kaluza-Klein [3][4]. The idea, first
proposed by Nordstrom but developed by Klein and fully by Kaluza, was to consider a
five dimensional metric ds2 = gµνdx

µdxν with µ, ν = 0, 1, . . . , 4 subject to the constraint
∂4gµν = 0, the “cylinder condition”1, and rescaling such that g44 = 1. The idea is now
to take the remaining components of the metric g4i and identify those with the potential of
electromagnetism, Aµ. If one makes such an identification, it can be shown that the resulting
5 dimensional Ricci scalar is

R(5) = R(4) +
1

4
F µνFµν

with Fik = Ai,k − Ak,i. As can be seen, this agrees very closely with how one deals with
electromagnetism in general relativity. Klein also hoped that he would be able to unify the
new quantum mechanics with this theory and demonstrated that if the fifth dimension were
closed, its period would be l = 8×10−33m, much smaller than any known object. It was this
smallness that caused Klein to postulate that this was closely related to quantum mechanics.

Despite the appeal of the theory, even Einstein worked on it for a few years [5], it
gradually fell out of favour and ultimately abandoned and so too did the ideas of higher
dimensional theories for some time. However with the revival of string theory and braneworld
theories (which postulate higher dimensions) in the last twenty years, the interest in higher

1This name can be seen by looking at the line element for a cylinder ds2 = dr2 + r2dθ2 + dz2
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dimensional theories continues to be a topic of strong research interest. There is hopes that
nature makes use of other hidden higher dimensions that allow quantum mechanics and
gravity to be unified.

In this paper we shall consider some of the consequences of higher dimensional analogues
of classical general relativity such as higher time dimensions, lower spatial dimensions and
the consequences of the simpler mathematical structure, and higher spatial geometry and
its consequences. An understanding of how general relativity operates in other dimensions
potentially will give insight into why the universe appears to be (3+1). As an example we
will show that there do exist results related to black holes that are entirely dimensionally
dependent.

One nice benefit of the mathematics of general relativity, differential geometry, is the full
generality it allows one to formulate the mathematics of the theory. A priori, we do not
need to select a psuedo-Riemannian manifold with signature (-,+,+,+) and indeed most of
the results of differential geometry (definitions of various tensorial quantities and identities
for example) are formulated in arbitrary dimensions.

Higher Time Dimensions

First we consider the problem of higher temporal dimensions. In our universe, as far as our
perception and experiments go, our universe has only one temporal dimension. However, the
question arises, can there exist more than one temporal dimension and if they do exist, why
don’t we observe them? Unlike higher spatial dimensions which can be physically pictured
easily, higher time dimensions do not provide an easy physical picture.

There are two different arguments that can be used to argue that time is simply one
dimensional. The first [6] is arguing based off the simple structure of the Minkowski geometry
while the other [7] is based off mathematical properties of partial differential equations.

The argument considered by Dorling [6] is very simple, short, and elegant taking about a
page. The idea is as follows. Consider an (M +N) dimensional Minkowski spacetime. Now
draw a spacelike or timelike straight line between two points. Suppose we take the timelike
line and, by bending it in a timelike direction, we can make it longer and similarly if we
bent it in a spacelike direction we could make it shorter. Similar reasoning applies for the
spacelike line except when we bend it in a spacelike direction we make it longer and when we
bend it in a timelike direction we make it shorter. Thus in arbitrary dimensions spacelike or
timelike geodesics are not maximal and hence are symmetric in this respect. Now consider
only a single time dimension. It is no longer possible to bend the line in a timelike direction
- since such a direction does not exist - thus bending it in a spacelike direction will only
make it shorter, hence the fact that timelike geodesics are maximal curves. This is a well
known property.

Now use fact to consider the decaying of a particle. An important property of decay is
conservation of energy-momentum which states that the initial energy-momentum will be
the same as the decay energy-momentum. From [6], “in other words it states that we can
draw a polygon in spacetime, whose sides are parallel to the velocity vectors of the original
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Figure 1: Conservation of energy-momentum of a decay process from [6]

particle and its decay products, and the lengths of the particle are proportional to the rest
masses of the particle and its decay products,” as illustrated in Figure 1. Now let us exploit
the fact that timelike geodesics are maximal. Since ma

0 is simply a particle at rest (and hence
a geodesic) it must be maximal and thus its length must be greater than the decay line, i.e.
the sums of mb

0 +mc
0 +md

0. Thus the types of decays are restricted due to this requirement
and in turn, are an important requirement for the stability of protons and electrons. This
requirement on the rest masses is entirely dependent upon the dimensionality of time and
if we remove this requirement of one temporal time dimension we could observe protons
decaying into neutrons or neutrinos. A similar argument also holds for photons. We do not
observe this in nature and hence strongly suggests the universe only makes use of one time
dimension.

These types of arguments also provide insight into the stability of tachyons. Since space-
like curves are not maximal, there is no such requirement on the rest masses of tachyons and
they would be very unstable. Supposing tachyons were stable, we could not eliminate the
possibility of photons decaying unstably into a tachyon and anti-tachyon pair. Additionally,
Dorling concludes that the relationship between higher dimensionality time and faster than
light are closely linked and since we don’t observe backwards in time causation there is more
evidence pointing to no higher temporal dimensions.

The second argument due to Tegmark [7] is based on the analysis of the PDEs underlying
general relativity. An important aspect of relativity is the ability to predict the future of
some field ψ at a future point based off its values within past light cone as some point, local
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causality. Now consider the classification of second order linear PDEs which can be generally
written as

(Aij∂i∂j + bi∂i + c)ψ = 0

We only need to be concerned with linear PDEs as we can always choose a small neigh-
bourhood (such as using a Riemann normal co-ordinate system) where we can linearlise the
equations of motion. It is possible classify the above PDE as follows: hyperbolic the eigen-
values of A are either all positive except one or vice versa, elliptic is all the eigenvalues are
of the same sign, and ultrahyperbolic otherwise. The prototypical of a PDE that is relevant
in much of physics is Klein-Gordon equation

ψ;µνg
µν +m2ψ = 0

Depending on what type of PDE we are dealing with we obtain very different behaviour.
For example, hyperbolic problems are well posed initial value problems in the sense that if
we know the initial conditions we can predict the evolution of the equation. Clearly, if we
have a standard metric of (3+1) the equation is hyperbolic. Elliptic equations however are
well posed boundary value problems and are very sensitive to initial conditions2, hence if
one wants to predict the evolution of the equation, one must know the solution everywhere
along the manifold at any instant in time. We can write the Klein-Gordon equation as an
elliptic equation if we had a signature with the same sign.

As stated, hyperbolic equations are well posed if the initial condition along a surface
is known. In general relativity, this is the Cauchy surface which is identical to a manifold
being globally hyperbolic (hence the name). However the important caveat is that the
Cauchy surface being a spacelike hypersurface and if the hypersuface is instead timelike, the
problem becomes ill-posed.

There exists an interesting theorem [7] that states if we instead specify the initial data
on a cylinder (which is clearly not spacelike but instead spacelike and timelike) we can still
obtain the solution in some region bounded by two lightcones. Even more remarkable is that
we can take the radius of this circle to be arbitrarily small, effectively making the cylinder a
line, and still be able to obtain a solution. Unfortunately this results in an ill-posed problem
and hence an unpredictable solution.

This theorem also applies to the case of ultrahyperbolic equations. If we lived in a
universe with multiple temporal and spatial dimensions and we tried to specify the initial
data on a hypersurface (which is, by definition a manifold of degree n− 1) we would have a
hypersurface that is spacelike and timelike. Thus our problem is going to be ill-posed and
hence we would no longer be able to predict the future.

An interesting consequence of using this type of reasoning with PDE theory is that if we
swap the dimensions of space and time (which is just mathematically flipping the signs in
the equations) we would end up with a tachyon universe in which the minimal speed is c[7].
These results are summarised nicely in Figure 2.

2The classical example being Laplace’s equation with the solution decaying to 0 at infinity. Depending
on whether or not there is a point charge located somewhere, the solution is very different.
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Figure 2: A summary of the predictability of general relativity in various dimensions, from
[7]

Overall there is good reason to believe that the universe does not make use of extra
temporal dimensions as demonstrated by two arguments above. It also appears, however
that higher dimensional general relativity is also unstable, a result we will show below. One
workaround, as suggested in the introduction, is that the extra dimensions are very small
and hence the scales over which the unstability occurs is so small that is undetectable.

Lower Spatial Dimensions

In this section we look at general relativity in lower dimensions. While these types of
theories are clearly not physical they provide a testing ground for quantum gravities and
are, typically, easier to solve. Additionally, the dynamics of classical general relativity are
radically different in lower dimensions then in the other dimensions. It is worth pointing out
immediately that (0+1) or (1+0) theories have no meaning as there does not exist either a
timelike or a spacelike dimension so there is no general relativity.

When discussing temporal dimensions no reference was really made to the Einstein field
equations themselves, rather the underlying structure (hyperbolicity and Minkowski geom-
etry) itself. The question arises, what do the Einstein field equations look like in arbitrary
dimensions? Work in the early 20th century done by Weyl, Cartan, and Vermeil demon-
strated that the following dimensional independent argument holds[8].
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Arbitrary Dimension Field Equations

Suppose we want a theory that is of the form (indices vary from 0, 1, . . . , n− 1)

fαβ(gγδ) = κTαβ

where fαβ is some tensor function that depends upon the metric and a finitely many number
of its derivatives. Tαβ is the energy-momentum tensor that describes the matter in the
dimension chosen, and κ is dimensional coupling constant. We make the following three
assumptions

1. fαβ depends at most on the second order derivatives of the metric

2. fαβ is linear in the second derivatives of the metric

3. Diffeomorphism invariance of Tαβ is satisfied, i.e. fαβ ;β = 0

Then Weyl et al showed that the resulting field equations are uniquely given by

fαβ = Gαβ + Λgαβ

where Gαβ is the Einstein tensor in n dimensions. Thus the Einstein field equations written
in arbitrary dimension are given by

Rαβ −
1

2
Rgαβ + Λgαβ = κTµν

We can reabsorb the cosmological constant into the definition of the energy-momentum
tensor and we thus obtain

Rαβ −
1

2
Rgαβ = κTµν

which is identical to equations Einstein derived from other arguments. We shall show later
that a generalisation of Sakharov’s argument will also yield the same equation.

Two and Three Dimensional Gravity

Let us now consider (1+1) and (2+1) dimensional gravity. However we immediately run into
problems. Recalling a course in the differential geometry of surfaces in 2 and 3 dimensions
elucidates the potential problem. The Riemann curvature tensor, which generalises the idea
of curvature to higher dimensions, becomes a much simpler equation. Indeed, for some
surfaces, it depends solely on the determinant of the metric, up to a constant. Thus, we
look closer at the number of independent components amongst the various tensors to fully
investigate what is going on.

Recall that through the various symmetries and Bianchi identities the number of inde-
pendent components of the Riemann curvature tensor is n2(n2 − 1)/12, which, when n = 2,
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yields only one component. Similarly, since the Ricci tensor and the Ricci scalar are con-
tractions of the Riemann curvature tensor, they will only have one term as well. Thus, in
two dimensions, Ricci scalar = Ricci tensor = Riemann. The explicit dependence is given
by [8]

Rαβδγ =
1

2
R(gαδgβγ − gαγgβδ)

let us now take the trace

Rβγ = Rα
βαγ =

1

2
R(δααgβγ − δαγ gβα)

=
1

2
R(2gβγ − gβγ)

=
1

2
Rgβγ ⇒ Rαβ −

1

2
gαβR = Gαβ = 0

thus, the Einstein tensor is 2 dimensions vanish identically! Thus, by the very definition of
the field equations, the energy-momentum tensor must be zero and hence things simply fall
apart. Thus Einstein’s formulation of gravity does not exist in two dimensions and must be
replaced with something else that is not general relativity. See [9] for an explanation of how
this can be achieved using a constant curvature model.

Thus, we must consider at least a 3 dimensional space. However, we again run into
problems. How many independent components of the Ricci scalar are there? Since it is a
symmetric tensor, there are n+ (n− 1) + . . .+ 2 + 1 = n(n+ 1)/2 independent components.
What happens in n = 3? The number of independent components is now 6. What about
the Riemann curvature tensor? 32(32 − 1)/12 = 72/12 = 6! Thus in three dimensions
the Riemann curvature tensor is completely determined by the Ricci tensor. Recalling that
the Riemann curvature tensor can be decomposed into the traceless Weyl tensor and the
Ricci tensor, we confirm the well known fact that the Weyl tensor vanishes identically in 3
dimensions.

It is also not hard to show that the number of components of the Einstein tensor is
identical to the Ricci tensor. It follows immediately as

Gαβ = Rαβ −
1

2
gαβR

whereupon taking the trace yields

G =
(2− n)

2
R⇒ Rαβ = Gαβ −

1

n− 2
Ggαβ

except in n = 2 as we showed above. However, this immediately tells us something very
surprising about (2+1) Einstein gravity. Recall that that the Riemann tensor is directly
proportional to the Ricci tensor which is directly proportional to the Einstein tensor which
is proportional, via the field equations to the matter distribution

Rαβδγ ∝ Rαβ ∝ Gαβ ∝ Tαβ

thus the Riemann tensor depends directly upon the energy-momentum tensor3 and if the

3The exact relationship[8] is Rαβδγ = κ[(gαγTβδ + gβδTαγ − gαδTβγ − gβγTαδ) + T (gαδgβγ − gαγgβδ)]
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energy-momentum tensor vanishes, so does the Riemann tensor. Thus whenever Tαβ =
0, Rαβδγ = 0 identically. So whenever there is no energy-momentum, the spacetime is per-
fectly flat.

Another interesting property of three dimensional gravity is that it has no Newtonian
limit [8]. It seems, a priori, that the argument used to obtain the (3+1) Newtonian limit
of general relativity should not depend on dimension, but in the case of (2+1) gravity it
no longer holds. The problem arises in that when one considers the small perturbations of
the metric gαβ = ηαβ + hαβ, |h| � 1 one obtains the following Poisson equation (identifying
h00 ≈ −2φ from the geodesic equation)

∇2φ = κ
n− 3

2(n− 2)
ρ

which in the case of n = 3 the equation becomes completely independent of the density. Thus
there does not exist an equivalent Newtonian limit for a (2+1) dimensional theory. A related
result that can be derived through similar calculations is what gravitational waves look like
in a (2+1) theory. Without doing the calculation, it is quite clear that if the Weyl tensor
vanishes and Riemann tensor is flat outside matter, then one should not expect gravitational
waves and this is exactly what occurs [8]. This raises the question whether the lack of a
Newtonian limit is related to the flatness of spacetime outside matter. Unfortunately this
is not the case as a simple (1+1) dimensional electromagnetic theory produces a Newtonian
limit but does not produce electromagnetic radiation. Thus one is led to the conclusion that
this relationship is simply a property of (2+1) dimensional spacetimes.

Thus lower dimensional versions of general relativity are radically different from the
standard (3+1) dimensional with the (1+1) case not existing and the (2+1) case have very
bizarre dynamics. Despite this, if modifications are made to the formulation of general
relativity in these dimensions, with a theory of quantum gravity in mind, it is possible to
reformulate these equations into a form which does not yield trivial dynamics, however such
a discussion is beyond the scope of this paper.

Higher Spatial Dimensions

We now turn to higher spatial dimensional theories. Unlike the situation in lower dimensions,
higher spatial dimensions do not encounter such difficulties and allow for a much richer classes
of phenomena.

Stability

In the section on higher temporal dimensions, it was mentioned that higher dimensional
spatial dimensions, in classical general relativity, are unstable. The unstability of such
theories can be argued using Poisson-type equations. Since Newton’s law of gravitation
decays as an inverse square and the surface area of a sphere grows as r2 the two effects
perfectly cancel out in Gauss’ law. However if we have any other type of law the two do not
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cancel out and we will not obtain stability. To see why, we follow a similar argument due
to [10] although first due to Ehrenfest in a less rigorous form. From quantum field theory
we have that when an exchange of a massless particle between two particle occurs, the
propagator depends upon 1/k2 which follows from the interacting terms in the Lagrangian.
Since the potential is given by the Fourier transform we have that

V (r) ∝
∫
d3keik·x

1

k2 ∼
1

r

In higher dimensions, (l+3+1) we have the modification that

V (r) ∝
∫
d3+lkeik·x

1

k2 ∼
1

r1+l

which gives a different force law so, without modification, higher dimensional general rela-
tivity is unstable.

Sakharov’s Idea

In the 1960s Sakharov [11] developed a method of deriving general relativity from an effective
field theory. To see what happens in higher dimensions, consider the following effective field
theory action

Seff =

∫
M

dnx
√
g(Lmatter + Lmatterquantum + c1 + c2R + c3O(R2))

This integral will diverge unless we introduce a minimum cutoff length lc. By dimensional
analysis we can determine the values of the constants recalling that [R] ∼ l−2

c1 = λ1l
−n
c c2 = λ2l

−n+2
c c3 = λ3l

−n+4
c

since the minimum cut-off length is very small we have that c1 � c2 � c3 � . . .. If now
consider the variation of the action we obtain

Rµν −
1

2
gµνR−

c1
2c2

gµν =
1

2c2
Tµν

which is identical to the action obtained by generalising the Einstein-Hilbert action. How-
ever, we can immediately see that the constants will be different in higher dimensions by
simple dimensional arguments. Additionally, we cannot compare the constant c2 with an ex-
perimental value because we will obtain a different set of equations for Newton’s laws which
are not realised in nature so without modification they would not be the same. However, the
important point is that a higher dimensional analogue of the effective field theory will yield
an action similar to the Einstein-Hilbert action up to some dimensional coupling constant.
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Singularity Theorems

To derive the singularity theorems, we assume a globally hyperbolic spacetime. As discussed
above in terms of temporal dimensions, these types of conditions are important to ensuring
that we have proper casual structure on the manifold. We now consider the derivation of
singularity theorems in higher dimensional general relativity. We have that we can decompose
any tensor as follows

Bµν = ωµν + σµν + tµν

where ωµν is an anti-symmetric tensor, σµν is a symmetric and traceless tensor, and tµν is
everything else. It is quite clear that 2ωµν = Bµν −Bνµ from anti-symmetry. We now define
a common quantity known as the projection tensor

hµν = gµν + ξµξν g(ξ, ξ) = −1 ∇ξξ = 0

for ξ along a geodesic. It is also important to note that we have

Tr(hνµ) = gµν(gµν + ξµξν) = n− 1

We now define a quantity known as the expansion

θ = Bµνhµν

with the property that Tr(B) = θ which follows immediately from the above description.
Thus we now define the remaining two tensors as

σµν =
1

2
(Bµν +Bνµ)−Bµν

and since we define this to be traceless

tµν =
1

n− 1
θhµν

these three tensors are known as, ωµν the twist tensor, σµν the shear tensor, tµν the expansion
tensor.

Since θ tells us the evolution of geodesics, we now derive the higher dimensional version
of the Raychaudhuri equation. Following [12][13] we that

ξµBαβ;µ = −Bµ
βBαµ +Rαβµγξ

µξγ

where, upon taking the trace and recalling that ξ = d/dτ we will obtain an evolution
equation. Taking the trace of the right hand side of the above results in a Ricci tensor
which will be given by the Einstein field equations while the first term involves slightly more
attention. We have that the term Tr(B2) is given by

Tr(B2) = gµνBα
µBνα = ωνµω

νµ + σµνσ
µν +

1

(n− 1)2
θ2hµνh

µν
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We now need to calculate the trace of the projection tensor

hµνhµν = (gµν + ξµξν)(gµν + ξµξν) = n− 1

Now we appeal to the Einstein field equations (derived above)

Rµν −
1

2
gµνR = κTµν

In higher dimensions we have that

R =
2κ

2− n
so the Einstein field equations now read

Rµν = κ

(
Tµν −

1

n− 2
T

)
Putting this all together we obtain

d

dτ
θ = − 1

n− 1
θ2 − σ2 − ω2︸ ︷︷ ︸
negative

−Rµνξ
µξν︸ ︷︷ ︸

pos or neg?

we want the last term to be positive, thus we require that

Tµνξ
µξν +

1

n− 2
T ≥ 0

thus we can define the strong energy condition to be

Tµνξ
µξν ≥ − T

n− 2
ξνξν < 0 (1)

when n = 2 we obtain the regular strong energy condition. Now assuming the strong energy
condition, we can re-write the Raychaudhuri equation to obtain

d

dτ
θ−1 ≥ 1

n− 1
(2)

thus even in higher dimensions we would still expect to obtain Big Bang/Big Crunch cos-
mological singularities.

Even those this simple result seems to suggest that we can generalise singularity theorems
to higher dimensions, however we must trend carefully. Since these results are essentially
topological results, a result holding in one dimension does not necessarily mean it will hold
in others and, even when it does, the result might hold for very different reasons. For some
guidance, consider the Poincairé conjecture which, while it is now known to be true in higher
dimensions, the cases of n = 3, 4 took substantially more work then the result for n > 4.

Thus should we expect the singularity theorems to generalise to higher dimensions? The
subject of singularity theorems on manifolds becomes a mathematically detailed topic with
different topological considerations on manifolds leading to different results. Fortunately,
many results do generalise. Consider the following theorem of Gannon [14][15][16]
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Theorem 1 (Gannon). Let Mn be a spacetime which satisfies the null energy condition
Rµνv

µν ≥ 0 for all timelike and null vν, and admits a smooth spacelike Cauchy hypersur-
face Σ ⊆ M which is regular near infinity. If Σ is non-simply connected then Mn is null
geodesically incomplete.

Following Wald this theorem shows that a spacetime that is asymptotically flat and
has initial non-trivially topology, the spacetime will eventually obtain a singularity. This
result was first proved only for n = 4 however the result can be generalised to higher
dimensions[16]. However, a result that does not generalise to higher dimensions is a result
due to Hawking about topological properties of asymptotically flat static black holes which
was shown recently to be false in higher dimensions[16].

Results of this type lead to interesting results about potential cosmic censorship, and
in this case, topological censorship[17] in which observers are prohibited from learning too
much about the topological structure of the spacetime. The ideas of a topological censorship
is certainly an interesting idea because even though general relativity predicts very bizarre
topological behaviour, it hides such behaviour from any observer. Again, as with the cosmic
censorship hypothesis there is hope that a quantum gravity would solve such problems. Such
topics are an on-going area of research and many interesting results are being obtained yearly
- the counterexample to Hawking’s result was found in 2006 and generalisations of Gannon’s
theorem were obtained in 2010, so new results are being obtained yearly.

Black holes

It would be negligent to not discuss generalisations of black holes to higher spacetimes
although they were not covered in the course. Much research has gone into discovering
higher dimensional analogues of black holes in higher dimensional spacetimes.

To illustrate how the simpler results of black holes generalise, considered the higher
dimensional analogue of the Reissner-Nordstrom black holes. Unlike the singularity theorems
which do not necessarily generalise nicely, black hole results do. Choosing appropriately
scaled units, we can write down the action for both cases as [18]

S =

∫
dnx
√
−g
(
R + 4πFαβF

αβ
)

which applying a variational principle yields

Rαβ −
1

2
gαβR = −8π(Fα

λFβλ −
1

4
gαβFλτF

λτ )

where both results are exactly what we would expect from regular general relativity and
electromagnetism. A technicality is that in higher dimensions the electromagnetic potential
is slightly modified

A0 =
q

nrn
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as mentioned above. Plugging these in and grinding through the calculations one obtains a
solution of the form

ds2 =−
(

1− 2m

(n− 3)r(n−3)
+

8πq2

(n− 3)(n− 2)r2(n−3)

)
dt2

+

(
1− 2m

(n− 3)rn−3
+

8πq2

(n− 3)(n− 2)r2(n−3)

)−1

dr2

+ r2dθ21 + r2 sin2 θ1dθ
2
2 + . . .

where we would continue on with the proper n-2 dimensional metric on a sphere. As we can
see, the result generalises nicely the result of charged non-rotating black holes in 4 dimensions
to higher dimensions. As can be seen, the structure of the equations is very similar but the
horizons are going to be located at slightly different locations which could, in principle, we
used to test higher dimensional theories.

The most famous result of higher dimensional black holes is due to Myers-Perry [19] which
generalises the results of the Kerr black holes to arbitrary dimensions. Such a discovery was
important for string theory which uses higher dimensional analogues of general relativity,
albeit in a different formulation. Much work has also been done in five dimensional black
holes where very interesting phenomena can occur, such as so-called black ring solutions
which have no four dimensional analogue and are the solutions that violate Hawkings result
from above. Since black holes contain some of the richest applications of general relativity,
understanding how they behave in higher dimensions is crucial to understanding how possible
quantum gravities that exploit higher dimensions behave [20].

Conclusions

The question of what the dimensions of the universe we live is currently an active area of
research in theoretical physics. As was discussed, we have strong reason to believe that
there is no good evidence that the universe exploits a higher time dimension but instead
just uses a single time dimension. This is an interesting observation given the asymmetry
between the spatial and temporal dimensions. Of course, there is no reason why the universe
couldn’t have chosen higher temporal dimensions and simply had more exotic particle decays.
Perhaps there is a deep fundamental reason for this.

Along those lines, the symmetry of the Einstein field equations in 4 dimensions is also
unknown if it has deep significance. In mathematics, the four dimensional nature of manifolds
is very different from lower and higher dimensions with results being simple to prove in n < 4
and n > 4 but difficult for n = 4 such as the aforementioned Poincaré conjecture among
others4. So perhaps from a mathematical perspective there is a reason that the universe
chose four dimensions.

However, it also the case that the physical results do not exhibit any particular behaviour
in any dimension. Take, for example, singularity theorems. As shown above, the existence

4Wikipedia has a good listing on the 4-manifold page
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of a cosmological singularity doesn’t depend on dimension and will exist in any dimension.
Similarly, the result of Gannon does not really depend too much on dimension. Even in
black hole physics, where interesting black hole behaviour does occur, many of the results
tend to be well behaved in all dimensions and that fourth dimension is not picked out for
any particular reason.

In the section on higher dimensional general relativity it was shown that the theory is
unstable without modification. However, in the introduction, the ideas of Kaluza-Klein were
mentioned which posit that we can have a five dimensional world if the fifth dimension is
very tiny. If this dimension is very tiny compared with the others, the issues of stability are
not as big of a problem since these instabilities are constrained to very tiny length scales
which will not be observed in our everyday (3+1) world.

These ideas were revived in 1999 by Randall and Sundrum to solve the hierarchy problem.
They postulated that if gravity lived in a fifth dimension but the other three forces were
constrained to a four dimensional world, then one would be able to explain why gravity is so
weak; it doesn’t entirely live on our (3+1) universe. In effect, they postulate that gravity is
weak simply because we are only seeing a slice of it permeating through our four dimensional
world and it is fact much stronger but we are not able to see this strength at all. Additionally,
the bounds on the sizes of such dimensions are no longer on the level of 10−30m but become
as large as 1 mm! Thus there exist “large” extra dimensions we just don’t see them. One
advantage of this is that we are able to probe Newton’s laws of gravity at such length scales
albeit with very precise and detailed experiments which, while possible, are difficult to do.
However it is much better than having dimensions so small we cannot even fathom how to
test experimentally.

Of course, with the Randall Sundrum theory, which happens to be a popular higher
dimensional theory, it is not without its very detractors. Perhaps the most obvious criticism
is that there is simply no reason as to why gravity is able to probe the extra dimensions
while the other forces are constrained to our universe. One could always bring up anthropic
principle, as is often done, but that line of reasoning is hardly intellectually satisfying.

So where is the future of general relativity in higher dimensions? As demonstrated above,
we cannot simply allow the Einstein field equations to exist in higher dimensions without
modification. The way of modifying such theories are wide and varied with braneworld
type theories being the most popular. Alternative formulations include f(R) theories ,
scalar-tensor theories, Gauss-Bonnet theories, and Lovelock gravity. One can, for example,
formulate higher dimensional actions based off the Cartan formalism[21] and deduce certain
properties of the action that would be more susceptible to quantum gravities. By far the
most important thing holding back the higher dimensional theories is that of experimental
verification. As we probe higher energies and smaller regimes, we put more bounds on the
possible theories on nature which, for or for worse, has so far but restrictions on the more
popular idea of theoretical physicists. However, from these experimental tests, we should be
able to gain insight into whether the universe actually exploits higher dimensions.
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