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In 1948 Richard Feynman reformulated quantum mechanics using a sum-over-all paths approach. In
this derivation he obtained a completely different way of looking at quantum mechanics that demon-
strates the close relationship between the classical action and the evolution of the wavefunction. In
this paper I will give a short overview of the propagator and how it can be used to describe the
system. Then I will discuss the results of the Feynman path integral formulation and its equivalence
to the Schrödinger equation. Finally I will explain how this method can be used to solve a specific
potential and discuss applications to more advanced topics.

HISTORY AND INTRODUCTION

Werner Heisenberg, Max Born, and Pascual Jordan
originally developed matrix mechanics in 1925 and a year
later Erwin Schrödinger came up with the differential
equation wave function approach. That same year, Paul
Dirac demonstrated that matrix mechanics is equivalent
to the wave function approach. These remained the stan-
dard approaches to quantum mechanics until 1948 when
Richard Feynman developed the path integral formula-
tion based off investigations by Eugene Wigner[1]. Feyn-
man’s formulation of quantum mechanics determines how
the wavefunction evolves in time by finding a propagator
which describes how the system evolves in time and which
is independent of the initial wavefunction. Feynman’s key
insight was to recognize the fact that this propagator is
directly related to the sum of all possible paths a particle
can take between two points.

OVERVIEW

The Feynman path integral formulation depends upon
finding the propagator for a given system. The propaga-
tor is a function that is independent of the initial con-
ditions and describes how a system evolves in time. In
quantum mechanics the propagator is as follows

U(t) =
∑

|ψn〉〈ψn|e−iEt/h̄ (1)

where we can write the wavefunction in the different
eigenstates evaluated in whatever basis happens to be
convenient. To obtain this result we recall the following
equation which describes how the wavefunction evolves
in time.

|Ψ(t)〉 = U(t)|Ψ(0)〉

All this says is that given some initial wavefunction at
some time t0, chosen arbitrarily to be zero, the prop-
agator, U(t), determines how the wavefunction evolves
in time. Analysis of this equation can lead us to the

Schrödinger Equation[2]. Now we will show how to de-
rive equation (1) following Shankar[3]. We first start with
the Schrödinger equation

ih̄
d

dt
|Ψ(t)〉 = H|Ψ(t)〉

From this we can obtain the time independent
Schrödinger equation as H|ψn〉 = En|ψn〉. We now
use an important property of Schrödinger equation in
that we can expand the original wavefunction out in
terms of the eigenkets |ψn〉; |Ψ(t)〉 =

∑
an(t)|ψn〉 where

an(t) = an(0) exp(−iEt/h̄) are obtained from the sepa-
ration of variables and a0(0) = 〈ψn|Ψ(0)〉. Now substi-
tuting back into the expansion for |Ψ(t)〉 we obtain

|Ψ(t)〉 =
∑

|ψn〉〈ψn|Ψ(0)〉e−iEt/h̄

=
∑

|ψn〉〈ψn|e−iEt/h̄|Ψ(0)〉
= U(t)|Ψ(0)〉

and hence we are able to obtain the expression for the
propagator. We can now completely describe the system
since this propagator is independent of the initial position
of the wavefunction and can describe how the wavefunc-
tion evolves in time. We also note that this is entirely
equivalent to another form of the propagator which we
write as U(t) = e−iHt/h̄ and the curious reader may con-
sult [2] to find a different derivation of (1). We also note
that this derivation assumes discrete and non-degenerate
energy levels but if we have a continuous spectrum, such
as the free particle, we replace the sum with an integra-
tion over |ψn〉. If we have degeneracies we have to double
sum over the degeneracies.

PATH INTEGRAL PROPAGATOR

As we have just seen above, if we are able to work out
the propagator we can completely describe the system at
any time. However there is a great difficulty in working
out these propagators due to the complicated nature of
the summations. Instead we turn to the path integral
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method due to Feynman to evaluate these propagators.
The actual derivation of the propagator is fairly involved
and too long to be derived in this short introduction but
can be read in either [3] or [4]. Instead I will discuss
the consequences of the path integral formulation. The
major result of the derivation is that between two points
(x, t) → (x′, t′)

U(x, t; x′, t′) = A
∑

all paths

eiS[x(t)]/h̄ (2)

where A is a normalisation factor and S[x(t)] is the clas-
sical action corresponding to each path and is denoted
by

S =
∫
Ldt

An alternate way to write this formulation to better ac-
knowledge that there are an infinite number of paths is

U(x, t;x′, t′) =
∫ x′

x

eiS[x(t)]/h̄D[x(t)] (3)

where it is implied by the D[x(t)] that we sum over all
the paths connecting (x, t), (x′, t′).

An immediate consequence of this formula is that all
paths are equally weighted. Thus a question arises is as
to how the classical path is favoured in the classical limit
and by what mechanism is the classical path chosen over
the other paths if they are equally weighted?

One way to think of the above formula is for each path
to represent a vector in the complex plane. Assume, with-
out loss of generality, that each vector is of unit length.
Here the action determines the phase of the vector. As we
move far away from the classical path there is destructive
interference as all the different non-classical paths tend
to cancel each other out. As we move towards the classi-
cal path the picture changes. We know that Hamilton’s
principle is

δS = δ

∫
Ldt = 0

which serves as the basis for analytical classical mechan-
ics as both the Hamiltonian and Lagrangian formulation
follow from it. What it states is that the variation along
the classical path is at an extremum. Thus when we start
moving towards the particles classical path we start hav-
ing constructive interference because the variation in the
path is zero and hence we are able to regain the classical
path. This means that the destructive interference effec-
tively cancels the contribution of all paths that are not
near the classical path and constructive interference near
the classical path allows us to regain the classical path.
Thus despite all being equally weighted the classical path
is very important.

Above the term ’moving towards the particles classical
path’ was used, but what exactly do we mean by ’mov-
ing towards’? How far away from the particle’s classical
path must we go before we encounter destructive interfer-
ence? Effectively we can make an elementary guess that
S[xcl(t)]/h̄ ≈ π or otherwise if the action is πh̄ away from
the classical path we have destructive interference. The
classical action of a macroscopic particle is on the order
of 1 erg sec ≈ 1027h̄[3] which is much greater then πh̄. In
this case we are well beyond the πh̄ and hence the clas-
sical path completely dominates the sum. However for
an electron, which has a very tiny mass, has an approxi-
mate action of h̄/6[3] which is well within the πh̄ needed
and thus we cannot think of the electron moving along
it’s classical path since many of the non-classical paths
contribute to the summation.

EQUIVALENCE TO THE SCHRÖDINGER
EQUATION

Feynman has now told us the propagator is equiva-
lent to summing over the action of all the possible paths
between two points. But does this give us the correct
result as predicted by the Schrödinger equation? To
show the equivalence imagine a system evolving from
(x − ξ, t − ε) → (x, t)[5]. We know that the propaga-
tor tells us exactly how this system evolves and we can
approximate this as a straight line and constant velocity
between the two points. Thus we are only summing over
a single path

Ψ(x, t) ≈ A

∫ ∞

−∞
dξeiS/h̄Ψ(x− ξ, t− ε)

where A is a normalisation constant and the action is
determined by S = [1/2m(ξ/ε)2 − V (x)]ε which is the
action to the first order of epsilon. Now we have that

Ψ(x, t) ≈ A

∫ ∞

−∞
dξe

imξ2

2h̄ε e−
i
h̄ V (x)εΨ(x− ξ, t− ε)

with the intention of taking the limit ε → 0. Now as
the we take this limit the first exponential oscillates very
rapidly unless the ξ is smaller then the ε. Thus if we pick
a small neighbourhood about ξ such that it is smaller
then ε we can expand out terms into Taylor Series about
ε, ξ and hence

Ψ(x, t) ≈ A

∫ ∞

−∞
dξe

imξ2

2h̄ε [Ψ− ∂Ψ
∂t

ε− i

h̄
V Ψε + · · ·

−∂Ψ
∂x

ξ +
1
2

∂2Ψ
∂x2

ξ2 + · · · ]
Now that we have expanded the terms, the Ψ is inde-
pendent of ξ and hence all the integrals can easily be
performed as they are all Gaussian integrals.

Ψ(x, t) ≈ A

√
2πih̄ε

m

[
Ψ +

(
−∂Ψ

∂t
− i

h̄
V Ψ +

ih̄

2m

∂2Ψ
∂x2

)
ε + · · ·

]

2



J. Phy334 4, 0014 (2009). JOURNAL OF PHYS 334 December 19, 2009

Now to make the terms in the order of ε vanish we set
A = (m/2πih̄ε)1/2 and hence the terms in front of the ε
are

ih̄
∂Ψ
∂t

=
h̄2

2m

∂2Ψ
∂x2

+ V Ψ (4)

which is the time-dependent Schrödinger equation.
Thus the Feynman path integral formulation is entirely
equivalent to the Schrödinger wave equation.

APPLICATION

To demonstrate the Feynman path integral formula-
tion, we will look at the case of the general potential
V = a + bx + cx2 + dẋ + exẋ, of which the well-known
harmonic oscillator is a special case. The evaluation of
path integrals of this form can be found in both [4] and
[2] and hence I will discuss only the results. It can be
found that for the above potential the propagator is

U(x, t; x′, t′) = eiScl/h̄A(t) (5)

This is a very interesting result because it says that the
propagator depends only on the classical path and some
function A(t) which has to be determined through other
means. Consider the case of the free particle. As we ex-
plained above it makes sense that the classical path plays
an important role in the evaluation of the path integral
and we even reasoned that it dominates the calculation.
It turns out that it completely dominates the summation
and we can easily work out the propagator for the free
particle.

Now consider the harmonic oscillator. Suppose we
wanted to write it down in position space in the form
(1). We can derive all the wave functions and energy
levels and then plug them in to obtain the propagator in
position space

U(x, t;x′, t′) =
∑

|ψ〉〈ψ|e−iEt/h̄

=
∞∑

n=0

An exp
(
−mω

2h̄
x2

)
Hn(x)×

An exp
(
−mω

2h̄
x′2

)
Hn(x′)

× exp[−i(n + 1/2)ω(t− t′)]

where Hn(x) are the Hermite polynomials[6]. This is a
very complicated sum and once evaluated can completely
describe the system. Evaluating the sum is no easy task
and no attempt to do so will be made here. However if

we instead look at the propagator from Feynman’s point
of view, all we need to do is obtain the classical action of
the oscillator and we are within a function A(t) from the
sum. The classical action is easily derived as

Scl =
mω

2 sinωt
[(x2

0 + x′2) cos ωt− 2x0x
′]

In this case the function A(t) can be evaluated using
Fourier series [4] and works out to be

A(t) =
( m

2πh̄it

)1/2

Thus the propagator for the harmonic oscillator is

U =
( m

2πh̄it

)1/2
[

imω

2h̄ sin ωt
[(x2

0 + x′2) cos ωt− 2x0x
′]
]

(6)

This expression for the propagator can in fact be used
to find the energy levels and the wave functions[4] and
we are able to completely describe the harmonic oscilla-
tor without resorting to solving a complicated PDE but
instead the equation of motion for a harmonic oscillator,
which is much easier.

CONCLUSION

While this method looks much more complicated, the
path integral formulation has a much deeper application
in quantum mechanics. One such example is that it al-
lows us to formulate driven quantum harmonic oscilla-
tors which play an important role in quantum electrody-
namics since we can represent the E-M field as quantum
driven harmonic oscillators [4]. Finally the path integral
method leads to perturbation calculations through Feyn-
man diagrams and plays an important role in relativistic
quantum mechanics alongside the Dirac equation.

[1] R.P. Feynman, Rev. Mod. Phys 20, 367 (1948).
[2] J.J Sakurai, Modern Quantum Mechanics (Pearson Edu-

cation, 1994)
[3] R. Shankar, Principles of Quantum Mechanics (Plenum

Press, 1980)
[4] R.P Feynman and A. R. Hibbs, Path Integrals and Quan-

tum Mechanics (McGraw-Hill Book Company, 1965)
[5] M.G. Calkin, Lagrangian and Hamiltonian Mechanics

(World Scientific Publishing, 1998)
[6] D. Griffiths, Introduction to Quantum Mechanics (Pearson

Education, 2005)

3


