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1 Introduction

2 Syntax of First-Order Languages

2.1 Alphabets

Definition 1. An alphabet is a non-empty set of symbols.

Example 2. Examples of alphabets include {a,b, c, . . . , z}, {c0, c1, c2, . . .}, and {�⌣,⋆,☀}.

Definition 3. Let A be an alphabet. A word (or string) over A is a �nite sequence of

symbols from A. The set of all words over A is denoted A∗. The length of a word over A is

the total number of symbols, counting repetition, which appear in the word. In particular,

we denote the empty word (of length zero) by ◻.

2.2 The Alphabet of a First-Order Language

Definition 4. Let A consist of exactly the following symbols:

(a) v0, v1, v2, . . . (variables);

(b) ¬,∧,∨,→,↔ (connectives: not, and, or, implies, if and only if);

(c) ∀,∃ (quanti�ers: for all, there exists);

(d) ≡ (equality);

(e) ), ( (right parenthesis, left parenthesis).

A �rst order language is a set S which is disjoint from A and consists of:

(1) for every n ≥ 1 a (possibly empty) set of n-ary relations symbols;
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(2) for every n ≥ 1 a set of n-ary function symbols;

(3) a set of constant symbols.

We let AS ∶= A ∪ S. (Technically it is usually LS, which we have yet to de�ne, which is

referred to as the �rst order language, as opposed to S.)

Remark 5. As of yet, these symbols have no meaning | they are nothing more than

symbols. Later we will attach meaning to them.

In general, even though the variables in a �rst-order language are always v0, v1, v2, . . .,

we will often use x,y, z, v,w as variables, despite the fact that it is formally incorrect.

Moreover, as convention, we will always use P,Q,R for relation symbols, use f, g,h for

function symbols, and use c,d, c0, c1, c2, . . . for constant symbols.

So far, any sequence of symbols from a �rst-order alphabet is called a word, even

though many of them have no intuitive meaning (for instance, (≡ ¬v0v54(). We clearly

cannot attach meaning to all words. As such, we will de�ne sentences, formulas, and

terms for a �rst-order language.

2.3 Terms and Formulas in First-Order Languages

Definition 6. Let S be a �rst-order language. The following words in AS∗ are called

S-terms :

(T1) every variable in A is an S-term;

(T2) every constant symbol in S is an S-term;

(T3) if n ≥ 1, the strings t1, . . . , tn are S-terms, and f ∈ S is an n-ary function symbol, then

ft1⋯tn is also an S-term.

We let TS denote the set of all S-terms.

Definition 7. Let S be a �rst-order language. The following words in AS∗ are called

S-formulas:

(F1) if t1 and t2 are S-terms then t1 ≡ t2 is an S-formula;

(F2) if n ≥ 1, t1, . . . , tn are S-terms, and R ∈ S is a n-ary relation symbol, then Rt1⋯tn is

an S-formula;

(F3) if φ is an S-formula, then ¬φ is an S-formula;

(F4) if φ and ψ are S-formulas, then (φ ∧ψ), (φ ∨ψ), (φ → ψ), and (φ ↔ ψ) are also

S-formulas;
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(F5) if φ is an S-formula and x is a variable, then ∀xφ and ∃xφ are also S-formulas.

In particular, S-formulas of the form F1 and F2 are called atomic formulas. We let LS

denote the set of all S-formulas.

Example 8. An example of an S-formula over the �rst-order language with symbol set

{R, f, P, c1, c2},

where R is a 2-ary relation symbol, f is a 1-ary function symbol, P is a 1-ary relation

symbol, and c1 and c2 are constant symbols, is

∃v12(∃v7Rfc1c2 → ∀v8Pv8).

Remark 9. We often will use abbreviations/modi�ed notations for formulas. For instance,

if < is a 2-ary relations symbol we may write a < b in place of < ab. We will also often drop

parentheses. For example, φ∧ψ∧ χ means ((φ∧ψ)∧ χ). Note that we have not assigned
any meaning to the symbol ∧, and it is not the case that ((φ∧ψ)∧χ) = (φ∧(ψ∧χ)), though
we will see that their interpretations will be `equivalent', in some appropriate sense.

2.4 Induction in the Calculus of Terms and in the Calculus of
Formulas

Definition 10. Let S be a �rst-order language. The function varS on all S-terms, which

gives the set of variables occurring in the term, is de�ned by:

varS(x) ∶= {x} (where x is a variable);

varS(c) ∶= ∅ (where c is a constant symbol);

varS(ft1⋯tn) ∶= varS(t1) ∪ ⋯ ∪ varS(tn) (where n ≥ 1, f ∈ S is an n-ary function

symbol, and t1, . . . , tn are S-terms).

Definition 11. Let S be a �rst-order language. The function SFS on all S-formulas, which

gives the set of subformulas of the formula, is de�ned by:

SFS(t1 ≡ t2) ∶= {t1 ≡ t2} (where t1 and t2 are S-terms);

SFS(Rt1⋯tn) ∶= {Rt1⋯tn} (where n ≥ 1, R is an n-ary relation symbol, and t1, . . . , tn
are S-terms);

SFS(¬φ) ∶= {¬φ} ∪ SFS(φ) (where φ is an S-formula);

SFS((φ☀ψ)) ∶= {(φ☀ψ)} ∪ SFS(φ) ∪ SFS(ψ) for all ☀ ∈ {∨,∧,→,↔} (where φ

and ψ are S-formulas);
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SFS(Qxφ) ∶= {Qxφ} ∪ SFS(φ) for all Q ∈ {∀,∃} (where x is a variable and φ is an

S-formula).

2.5 Free Variables and Sentences

Definition 12. Let S be a �rst-order language. The function freeS on all S-formulas,

which gives the set of free variables in the formula, is de�ned by:

freeS(t1 ≡ t2) ∶= varS(t2) ∪ varS(t2) (where t1 and t2 are S-terms);

freeS(Rt1⋯tn) ∶= varS(t1) ∪ ⋯ ∪ varS(tn) (where n ≥ 1, R ∈ S is an n-ary relation

symbol, and t1, . . . , tn are S-terms);

freeS(¬φ) ∶= freeS(φ) (where φ is an S-formula);

freeS((φ☀ψ)) ∶= freeS(φ) ∪ freeS(ψ) for all ☀ ∈ {∨,∧,→,↔} (where φ and ψ are

S-formulas);

freeS(Qxφ) ∶= freeS(φ) ∖ {x} for all Q ∈ {∀,∃} (where x is a variable and φ is an

S-formula).

Definition 13. Let S be a �rst-order language, and let φ be an S-formula. We say φ is

an S-sentence if free(φ) = ∅.

Definition 14. Let S be a �rst-order language, and let n ∈ N. We de�ne

LSn ∶= {φ ∈ LS; freeS(φ) ⊆ {v0, . . . , vn−1}}.

In particular, LS0 is the set of S-sentences.

3 Semantics of First-Order Languages

3.1 Structure and Interpretations

Definition 15. Let S be a �rst-order language. An S-structure is a pair (A,a), where A
is a non-empty set and a is a map on S such that:

(1) for every n ≥ 1 and every n-ary relation symbol R ∈ S, a(R) is an n-ary relation on

A;

(2) for every n ≥ 1 and every n-ary function symbol f ∈ S, a(f) is an n-ary function on

A;

(3) for every constant symbol c ∈ S, a(c) is an element of A.
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We call A the domain or universe of (A,a).

Remark 16. We will usually write RA in place of a(R) ⊆ An, fA in place of a(f) ∶ An → A,
and cA in place of a(c) ∈ A, where A = (A,a).

Example 17. Let S = {R, c,d}, where R is a 2-ary relation symbol and c and d are

constant symbols. Consider the S-structure A = (N,a), where RA = {(a,b); a ≤ b}, cA = 0,
and dA = 1. We think that Rcd and ∀x∃yRxy should be \true in A", while ∃yRxy should

be meaningless in A. We need to de�ne \true in A".

Definition 18. Let S be a �rst-order language, and let (A,a) be an S-structure. An

assignment in (A,a) is a map β ∶ {vn; n ∈ N}→ A.

Definition 19. Let S be a �rst-order language, let A be an S-structure, and let β be an

assignment in A. The pair (A, β) is called an S-interpretation.

Definition 20. Let S be a �rst-order language, let (A,a) be an S-structure, and let β be

an assignment in (A,a). For a ∈ A and a variable x, we let βa
x
be the assignment in (A,a)

given by

β
a

x
(vi) ∶=

⎧⎪⎪⎨⎪⎪⎩

β(vi) if x ≠ vi
a if x = vi

,

and we let ((A,a), β)a
x
be the S-interpretation ((A,a), βa

x
).

3.2 Standardization of Connectives

3.3 The Satisfaction Relation

Definition 21. Let S be a �rst-order language, and let I = (A, β) be an S-interpretation,
where A = (A,a). To every S-term t, we associate an element I(t) ∈ A as follows:

(a) I(x) ∶= β(x) (where x is a variable);

(b) I(c) ∶= a(c) (where c is a constant symbol);

(c) I(ft1⋯ftn) ∶= a(f)(I(t1), . . . ,I(tn)) (where n ≥ 1, f ∈ S is an n-ary function symbol,

and t1, . . . , tn are S-terms).

Definition 22. Let S be a �rst-order language, and let I = ((A,a), β) be an S-interpretation.
For an S-formula φ, we say I is a model of φ (or I satis�es φ, or φ holds in I), and

write I ⊧ φ, in the following situations:
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I ⊧ t1 ≡ t2 if I(t1) = I(t2) (where t1 and t2 are S-terms);

I ⊧ Rt1⋯tn if (I(t1), . . . ,I(tn)) ∈ a(R) (where n ≥ 1, R ∈ S is an n-ary relation

symbol, and t1, . . . , tn are S-terms);

I ⊧ ¬φ if not I ⊧ φ (where φ is an S-formula);

I ⊧ (φ ∨ψ) if I ⊧ φ or I ⊧ ψ (where φ and ψ are S-formulas);

I ⊧ (φ ∧ψ) if I ⊧ φ and I ⊧ ψ (where φ and ψ are S-formulas);

I ⊧ (φ→ ψ) if if I ⊧ φ then I ⊧ ψ (where φ and ψ are S-formulas);

I ⊧ (φ↔ ψ) if I ⊧ φ if and only if I ⊧ ψ (where φ and ψ are S-formulas);

I ⊧ ∀xφ if for all a ∈ A we have Ia
x
⊧ φ (where φ is an S-formula and x is a

variable);

I ⊧ ∃xφ if there is an a ∈ A such that Ia
x
⊧ φ (where φ is an S-formula and x

is a variable).

Moreover, for Φ ⊆ LS we write I ⊧Φ if I ⊧ φ for all φ ∈Φ.

3.4 The Consequence Relation

Definition 23. Let S be a �rst-order language, and let I be an S-interpretation, let φ ∈ LS
be an S-formula, and let Φ ⊆ LS be a set of S-formulas. We say φ is a consequence of Φ,

and write Φ ⊧S φ, if for all S-interpretations J such that J ⊧ Φ, we have J ⊧ φ. (We will

see later that this is independent of S, via the coincidence lemma.)

Example 24. For an S-formula φ, {(φ∧φ)} ⊧S φ. Indeed, if I ⊧ (φ∧φ), then by de�nition

we have I ⊧ φ and I ⊧ φ, so in particular we know I ⊧ φ. As I was arbitrary, we have

Φ ⊧S φ.

Definition 25. Let S be a �rst-order language, and let φ be an S-formula. We say that

φ is valid, and write ⊧S φ, if ∅ ⊧S φ.

Example 26. Examples of valid formulas include (φ ∨ ¬φ) and ∃xx ≡ x. The second

follows because the universe A is non-empty. So if we have any interpretation I, we can

take Ia
x
, for some a ∈ A, to be such that Ia

x
⊧ x ≡ x.

Definition 27. Let S be a �rst-order language, let φ be an S-formula, and let Φ be a set

of S-formulas. We say φ is satis�able, and write SatSφ, if there exists an S-interpretation
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I such that I ⊧ φ. We say Φ is satis�able, and write SatSΦ, if there exists an S-

interpretation I such that I ⊧ Φ. (We will see that this is indeed independent of S, via

the coincidence lemma.)

Remark 28. We see that φ is satis�able if and only if ¬φ is not valid.

Lemma 29. Let S be a �rst-order language, let φ be an S-formula, and let Φ be a set

of S-formulas. Then we have Φ ⊧S φ if and only if we do not have SatSΦ ∪ {¬φ}.

Proof. We have Φ ⊧S φ if and only if for all S-interpretations I such that I ⊧Φ, we have
I ⊧ φ. But this holds if and only if there is no S-interpretation I such that I ⊧ Φ while

not I ⊧ φ. But this holds if and only if there is no S-interpretation I such that I ⊧ Φ
and I ⊧ ¬φ, or equivalently, I ⊧ Φ ∪ {¬φ}. But this holds if and only if we do not have

SatSΦ ∪ {¬φ}.

Definition 30. Let S be a �rst-order language, and let φ and ψ be S-formulas. We say

that φ and ψ are logically equivalent, and write φ â⊧S ψ, if {φ} ⊧S ψ and {ψ} ⊧S φ.

Remark 31. We see that φ â⊧S ψ if and only if (φ↔ ψ) is valid.

Proposition 32. Let S be a �rst-order language, let x be a variable, and let φ and ψ

be S-formulas. Then:

(1) (φ ∧ψ) â⊧S ¬(¬φ ∨ ¬ψ);

(2) (φ→ ψ) â⊧S (¬φ ∨ψ);

(3) (φ↔ ψ) â⊧S (¬(φ ∨ψ) ∨ ¬(¬φ ∨ ¬ψ));

(4) ∀xφ â⊧S ¬∃x¬φ.

Proof. Exercise.

Remark 33. Thus the connectives ∧, →, and ↔, and the quanti�er ∀, are super
uous

(in the sense that given a formula, we can �nd a logically equivalent formula containing

none of these symbols). We will no longer consider them part of our language (that is, we

change the de�nition of A), but will continue to use them as shorthand.

(Though in reality we should keep them in our language and be aware that we can

always �nd a logically equivalent formula which contains none of them, given any formula

possibly containing them. Unfortunately the text we are following does not agree with us

on this.)
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Lemma 34. [Coincidence Lemma] Let S1 and S2 be �rst-order languages, let t ∈ TS1∩S2
be an S1 ∩ S2-term, and let φ ∈ LS1∩S2 be an S1 ∩ S2-formula. For any S1-interpretation

I1 = ((A1,a1), β1) and any S2-interpretation I2 = ((A2,a2), β2) such that A1 = A2:

(a) If a1 and a2 agree on the symbols occurring in t and if β1 and β2 agree on the

symbols occuring in varS1∩S2(t), then I1(t) = I2(t).

(b) If a1 and b2 agree on the symbols occurring in φ and if β1 and β2 agree on

freeS1∩S2(φ), then I1 ⊧ φ if and only if I2 ⊧ φ.

Proof. (a) This part is left as an exercise.

(b) We proceed by induction on φ.

First suppose φ = t1 ≡ t2 for S1 ∩ S2-terms t1 and t2. Suppose I1 and I2 are such

interpretations. Since I1 and I2 agree on the symbols in φ, they agree on the symbols

in t1. Since I1 and I2 agree on freeS1∩S2(t1 ≡ t2), they agree on varS1∩S2(t1) (indeed,

varS1∩S2(t1) ⊆ freeS1∩S2(t1 ≡ t2)). Hence I1(t1) = I2(t1). Similarly, I1(t2) = I2(t2). So
I1 ⊧ t1 ≡ t2 if and only if I1(t1) = I1(t2) if and only if I2(t1) = I2(t2) if and only if

I2 ⊧ t1 ≡ t2.
The cases Rt1⋯tn, ¬ψ, and (ψ ∨ χ) are equally straightforward.

Now suppose φ = ∃xψ, where the result holds for ψ. Suppose I1 and I2 are such

interpretations. Note that for freeS1∩S2(ψ) ⊆ freeS1∩S2(∃xψ)∪{x}. Now for any a ∈ A,
I1

a
x
and I2

a
x
agree on x certainly, and agree on freeS1∩S2(∃xφ) by assumption. Hence

they would agree on freeS1∩S2(ψ). We would then be able to apply the inductive

hypothesis to conclude that I1
a
x
⊧ ψ if and only if I2

a
x
⊧ ψ. Hence I1 ⊧ ∃xψ if and

only if there is an a ∈ A such that I1
a
x
⊧ ψ if and only if there is an a ∈ A such that

I2
a
x
⊧ ψ if and only if I2 ⊧ ∃xψ.

Thus the induction holds.

Remark 35. Now that we have the coincidence lemma, we can show that many of our

previous notions are actually independent of the underlying language. Namely, logical con-

sequence, logical equivalence, satisfaction, and validity are all independent of the language.

This is made precise in the next corollary (except for satisfaction, which is discussed after

reducts below).

Corollary 36. Let S1 and S2 be �rst-order languages, let φ,ψ ∈ LS1∩S2, and let Φ ⊆
LS1∩S2.

(1) Then Φ ⊧S1 φ if and only if Φ ⊧S2 φ.

(2) Then φ â⊧S1 ψ if and only if φ â⊧S2 ψ.
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Proof. Exercise.

Definition 37. Let S be a �rst-order language, let A = (A,a) be an S-structure, and let

φ ∈ LSn. We write A ⊧ φ[a0, . . . , an−1] for a0, . . . , an−1 ∈ A if (A, β) ⊧ φ for some assignment

β in A such that β(vi) = ai for i ∈ {0, . . . , n − 1}. If φ is an S-sentence then we will write

A ⊧ φ in place of A ⊧ φ[]. For an S-term t with varS(t) ⊆ {v0, . . . , vn−1} and a0, . . . , an−1 ∈ A,
we write tA[a0, . . . , an−1] in place of (A, β)(t), where β is an assignment in A such that

β(vi) = ai for i ∈ {0, . . . , n − 1}.

Remark 38. Note that these de�nitions are independent of β, in the sense that if we have

two such assignments β1 and β2, then (A, β1) ⊧ φ if and only if (A, β2) ⊧ φ. This follows
from the coincidence lemma (details as an exercise).

Definition 39. Let S and S ′ be �rst order languages with S ⊆ S ′. Let (A,a) be an S-

structure and let (A ′,a ′) be an S ′-structure. We say that (A,a) is a reduct of (A ′,a ′) and
(A ′,a ′) is an expansion of (A,a) if A = A ′ and if a and a ′ agree on S.

Remark 40. By the coincidence lemma, if φ is an S-formula with φ ∈ LSn then for any

a0, . . . , an−1 ∈ A we have A ⊧ φ[a0, . . . , an−1] if and only if A ′ ⊧ φ[a0, . . . , an−1] (where A is

a reduct of A ′).

Moreover, we can now show that satisfaction is independent of the underlying language.

Corollary 41. Let S1 and S2 be �rst-order languages and let Φ ⊆ LS1∩S2. Then SatS1Φ

if and only if SatS2Φ.

Proof. Exercise.

3.5 Two Lemmas on the Satisfaction Relation

Definition 42. Let S be a �rst-order language and let (A,a) and (B,b) be S-structures.

We say a map π ∶ A → B is an isomorphism from (A,a) to (B,b), and write π ∶ (A,a) ≅
(B,b) if:

(1) π is a bijection of A onto B;

(2) for every n ≥ 1, every n-ary relation symbol R ∈ S, and every a0, . . . , an−1 ∈ A,
(a0, . . . , an−1) ∈ a(R) if and only if (π(a0), . . . , π(an−1)) ∈ b(R);

(3) for every n ≥ 1, every n-ary function symbol f ∈ S, and every a0, . . . , an−1 ∈ A,
π((a(f))((a0, . . . , an−1))) = (b(f))((π(a0), . . . , π(an−1));

(4) for every constant symbol c ∈ S, π(a(c)) = b(c).
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We say (A,a) and (B,b) are isomorphic if there exists an isomorphism from (A,a) to

(B,b), and in this case we write (A,a) ≅ (B,b).

Lemma 43. [Isomorphism Lemma] Let S be a �rst-order language and let A = (A,a)
and B = (B,b) be S-structures. If A and B are isomorphic then for all S-sentences φ

we have A ⊧ φ if and only if B ⊧ φ.
Proof. As A and B are isomorphic, there exists an isomorphism π ∶ A → B. For any

S-interpretation (A, β) we have a naturally induced S-interpretation (B, π ○β).
First we will show that for every S-term t and every assignment β in A, π((A, β)(t)) =

(A, π○β)(t). We proceed by induction on S-terms. If x is a variable and β is an assignment

in A, then

π((A, β)(x)) = π(β(x)) = (π ○β)(x) = (B, π ○β)(x).
If c ∈ S is a constant symbol and β is an assignment in A, then

π((A, β)(c)) = π(a(c)) = b(c) = (B, π ○β)(c)

since π is an isomorphism. If f ∈ S is an n-ary function, t0, . . . , tn−1 are S-terms for which

the result holds, and β is an assignment in A, then

π((A, β)(ft0⋯tn−1)) = π((a(f))(((A, β)(t0), . . . , (A, β)(tn−1))))
= (b(f))((π((A, β)(t0)), . . . , π((A, β)(tn−1))))
= (b(f))(((A, π ○β)(t0), . . . , (A, π ○β)(tn−1)))
= (B, π ○β)(ft0⋯tn−1),

because π is an isomorphism and by inductive assumption.

Next we will show that for every S-formula φ, for all assignments β in A we have

(A, β) ⊧ φ if and only if (A, π ○β) ⊧ φ. We proceed by induction on S-formulas. If t0 and

t1 are S-terms and β is an assignment in A, then

(A, β) ⊧ t0 ≡ t1 if and only if (A, β)(t0) = (A, β)(t1) (de�nition)

if and only if π((A, β)(t0)) = π((A, β)(t1)) (π is injective)

if and only if (A, π ○β)(t0) = (A, π ○β)(t1) (just saw)

if and only if (A, π ○β) ⊧ t0 ≡ t1.

The cases Rt0⋯tn−1, ¬ψ, and ψ ∨ χ are left as similar exercises. If ψ is an S-formula for

which the result holds, x is a variable, and β is an assignment in A, then

(A, β) ⊧ ∃xψ if and only if there is an a ∈ A such that (A, βa
x
) ⊧ ψ (de�nition)

if and only if there is an a ∈ A such that (B, π ○ (βa
x
)) ⊧ ψ (inductive assumption)

if and only if there is an a ∈ A such that (B, (π ○β)π(a)
x

) ⊧ ψ (de�nition)

if and only if there is a b ∈ B such that (B, (π ○β)b
x
) ⊧ ψ (π is surjective)

if and only if (B, π ○β) ⊧ ∃xψ.
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In particular, if we apply the last result to S-sentences φ, we see that (A, β) ⊧ φ if and

only if (B, π ○ β) ⊧ φ. But this means, since φ is a sentence, that A ⊧ φ if and only if

B ⊧ φ, as required.

Definition 44. Let S be a �rst-order language and let (A,a) and (B,b) be S-structures.

We say (A,a) is a substructure of (B,b), and write (A,a) ⊆ (B,b), if:

A ⊆ B;

for n ≥ 1 and n-ary relation symbols R ∈ S we have a(R) = b(R) ∩An;

for n ≥ 1 and n-ary function symbols f ∈ S we have a(f) = b(f)∣A;

and for constant symbols c ∈ S we have a(c) = b(c).

Example 45. Let a(+) be the usual addition on N, let a(0) be the natural number zero,

let b(+) be the usual addition on Z, and let b(0) be the integer zero. Then, for example,

(N, littlea) is a substructure of (Z, littleb) (as {+, 0}-structures, with + a binary function

symbol and 0 a constant symbol, of course).

3.6 Simple Formalizations

3.7 Some Remarks on Formalizability

3.8 Substitution

Remark 46. It is often convenient to substitute terms for variables, in a given term or

formula, as we will see later.

Definition 47. Let S be a �rst-order language and let t be an S-term. Let r ∈ N, let
x0, . . . , xr be pairwise distinct variables, and let t0, . . . , tr be S-terms. We de�ne

[t] t0⋯tr
x0⋯xr

as follows:

� If t is a variable then

[t] t0⋯tr
x0⋯xr

∶=
⎧⎪⎪⎨⎪⎪⎩

t if t ∉ {x0, . . . , xr}
ti if t = xi

;

� If t is a constant symbol then

[t] t0⋯tr
x0⋯xr

∶= t;
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� If t = ft ′1⋯t ′n for n-ary function symbol f ∈ S and S-terms t ′1, . . . , t
′
n, then

[t] t0⋯tr
x0⋯xr

∶= f[t ′1] t0⋯trx0⋯xr
⋯[t ′n] t0⋯trx0⋯xr

.

Definition 48. Let S be a �rst-order language and let φ be an S-formula. Let r ∈ N, let
x0, . . . , xr be pairwise distinct variables, and let t0, . . . , tr be S-terms. We de�ne

[φ] t0⋯tr
x0⋯xr

as follows:

� If φ = t ′1 ≡ t ′2 for S-terms t ′1 and t
′
2, then

[φ] t0⋯tr
x0⋯xr

∶= [t ′1] t0⋯trx0⋯xr
≡ [t ′2] t0⋯trx0⋯xr

;

� If φ = Rt ′1⋯t ′n for n-ary relation symbol R ∈ S and S-terms t ′1, . . . , t
′
n, then

[φ] t0⋯tr
x0⋯xr

∶= R[t ′1] t0⋯trx0⋯xr
⋯[t ′n] t0⋯trx0⋯xr

;

� If φ = ¬ψ for an S-formula ψ, then

[φ] t0⋯tr
x0⋯xr

∶= ¬[ψ] t0⋯tr
x0⋯xr

;

� If φ = ψ ∨ χ for S-formulas ψ and χ, then

[φ] t0⋯tr
x0⋯xr

∶= [ψ] t0⋯tr
x0⋯xr

∨ [χ] t0⋯tr
x0⋯xr

;

� If φ = ∃xψ for a variable x and an S-formula ψ, then let xi1 , . . . , xi` be the variables

such that xij ∈ freeS(∃xψ) and xij ≠ tij. Let

u ∶=
⎧⎪⎪⎨⎪⎪⎩

x if x ∉ {ti1 , . . . , ti`},
vmin{j∈N; vj∉varS(ti1)∪⋯∪varS(ti`) and vj does not occur in ψ} otherwise,

and de�ne

[φ] t0⋯tr
x0⋯xr

∶= ∃u[ψ] ti1⋯ti`u
xi1⋯xi`x

.

Example 49. For example, if R is a ternary relation symbol, f is a unary function symbol,

and c is a constant symbol, then

[∃v0Rv0v1v6] v1v0fcv0v1v6
= ∃v2[Rv0v1v6] v0fcv2v1v6v0

= ∃v2Rv2v0fc.
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Definition 50. Let S be a �rst-order language. Let r ∈ N, let x0, . . . , xr be pairwise distinct
variables, let a0, . . . , ar ∈ A, and let ((A,a), β) be an S-interpretation. We de�ne

βa0⋯ar
x0⋯xr

(y) ∶=
⎧⎪⎪⎨⎪⎪⎩

β(y) if y ∉ {x0, . . . , xr}
ai if y = xi,

and

((A,a), β)a0⋯ar
x0⋯xr

∶= ((A,a), βa0⋯ar
x0⋯xr

).

Lemma 51. [Substitution Lemma] Let S be a �rst-order language, let r ∈ N, let

t0, . . . , tr be S-terms, and let x0, . . . , xr be pairwise distinct variables. If t is an S-term

and φ is an S-formula then for all S-interpretations I = ((A,a), β) we have

I([t] t0⋯tr
x0⋯xr

) = II(t0)⋯I(tr)
x0⋯xr

(t)

and

I ⊧ [φ] t0⋯tr
x0⋯xr

if and only if II(t0)⋯I(tr)
x0⋯xr

⊧ φ.
Proof. The �rst part of the proof is by induction on terms t. Suppose �rst t = vi is a

variable. If vi = xj for some j ∈ {0, . . . , r} then

I([xj] t0⋯trx0⋯xr
) = I(tj) = II(t0)⋯I(tr)

x0⋯xr
(xj).

Otherwise,

I([t] t0⋯tr
x0⋯xr

) = I(t) = II(t0)⋯I(tr)
x0⋯xr

(t).

Suppose that t = c is a constant symbol. Then

I([c] t0⋯tr
x0⋯xr

) = I(c) = II(t0)⋯I(tr)
x0⋯xr

(c).

Now suppose t = ft ′1⋯t ′` for `-ary function symbol f and terms t ′0,⋯, t ′`, and suppose

the result holds for these terms. Then

I([ft ′0⋯t ′`] t0⋯trx0⋯xr
) = I(f[t ′0] t0⋯trx0⋯xr

⋯[t ′`] t0⋯trx0⋯xr
)

= f(I([t ′0] t0⋯trx0⋯xr
), . . . ,I([t ′`] t0⋯trx0⋯xr

))

= f(I(�t0)⋯I(tr)
x0⋯xr

(t ′0), . . . ,I
I(t0)⋯I(tr)
x0⋯xr

(t ′`))
= II(t0)⋯I(tr)

x0⋯xr
(ft ′0⋯t ′`).

This completes the �rst part of the proof.

The second part of the proof is by induction on formulas φ. Suppose φ = t ′1 ≡ t ′2 for
terms t ′1 and t

′
2. Then by the �rst part of the lemma, we have

I ⊧ [t ′1 ≡ t ′2] t0⋯trx0⋯xr
if and only if I ⊧ [t ′1] t0⋯trx0⋯xr

≡ [t ′2] t0⋯trx0⋯xr

if and only if I([t ′1] t0⋯trx0⋯xr
) = I([t ′2] t0⋯trx0⋯xr

)
if and only if II(t0)⋯I(tr)

x0⋯xr
(t ′1) = II(t0)⋯I(tr)

x0⋯xr
(t ′2)

if and only if II(t0)⋯I(tr)
x0⋯xr

⊧ t ′1 ≡ t ′2.
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Next suppose φ = Rt ′1⋯t ′` for `-ary relation symbol R and terms t ′1, . . . , t
′
`. Then we see

I ⊧ [Rt ′1⋯t ′`] t0⋯trx0⋯xr
if and only if I ⊧ R[t ′1] t0⋯trx0⋯xr

⋯[t ′`] t0⋯trx0⋯xr

if and only if (I([t ′1] t0⋯trx0⋯xr
), . . . ,I([t ′`] t0⋯trx0⋯xr

)) ∈ a(R)
if and only if (II(t0)⋯I(tr)

x0⋯xr
(t ′1), . . . ,I

I(t0)⋯I(tr)
x0⋯xr

(t ′`)) ∈ a(R)
if and only if II(t0)⋯I(tr)

x0⋯xr
⊧ Rt ′1⋯t ′`.

Now suppose φ = ¬ψ for a formula ψ, and that the result holds for ψ. Then

I ⊧ [¬ψ] t0⋯tr
x0⋯xr

if and only if I ⊧ ¬[ψ] t0⋯tr
x0⋯xr

if and only if not I ⊧ [ψ] t0⋯tr
x0⋯xr

if and only if not II(t0)⋯I(tr)
x0⋯xr

⊧ ψ
if and only if II(t0)⋯I(tr)

x0⋯xr
⊧ ¬ψ.

Next suppose φ = (ψ∨χ) for formulas ψ and χ, and that the result holds for ψ and χ.

Then we see

I ⊧ [(ψ ∨ χ)] t0⋯tr
x0⋯xr

if and only if I ⊧ ([ψ] t0⋯tr
x0⋯xr

∨ [χ] t0⋯tr
x0⋯xr

)
if and only if I ⊧ [ψ] t0⋯tr

x0⋯xr
or I ⊧ [χ] t0⋯tr

x0⋯xr

if and only if II(t0)⋯I(tr)
x0⋯xr

⊧ ψ of II(t0)⋯I(tr)
x0⋯xr

⊧ χ
if and only if II(t0)⋯I(tr)

x0⋯xr
⊧ (ψ ∨ χ).

Finally, suppose φ = ∃xψ for a variable x and a formula ψ, and that the result holds

for ψ. Let xi1 , . . . , xis be the variables among x0, . . . , xr such that xi ∈ free(∃xψ) and xi ≠ ti.
And let u be as in the de�nition of substitution. Then we get

I ⊧ [∃xψ] t0⋯tr
x0⋯xr

if and only if I ⊧ ∃u[ψ] ti1⋯tisu
xi1⋯xisx

if and only if there is an a ∈ A such that Ia
u
⊧ [ψ] ti1⋯tisu

xi1⋯xisx

if and only if there is an a ∈ A such that Ia
u

I
a
u
(ti1)⋯I

a
u
(tis)I

a
u
(u)

xi1⋯xisx
⊧ ψ

if and only if there is an a ∈ A such that Ia
u

I(ti1)⋯I(tis)a

xi1⋯xisx
⊧ ψ(1)

if and only if there is an a ∈ A such that I
I(ti1)⋯I(tis)a

xi1⋯xisx
⊧ ψ(2)

if and only if there is an a ∈ A such that I
I(ti1)⋯I(tis)

xi1⋯xis

a
x
⊧ ψ

if and only if I
I(ti1)⋯I(tis)

xi1⋯xis
⊧ ∃xψ

if and only if II(t0)⋯I(tr)
x0⋯xr

⊧ ∃xψ.

Note that (1) and (2) follow from the coincidence lemma. This completes the proof of the

substitution lemma.
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Proposition 52. Let S be a �rst-order language, let r ∈ N, let x0, . . . , xr be pairwise

distinct variables, let t0, . . . , tr be S-terms, and let φ be an S-formula. For n ∈ N, if
freeS(φ) ⊆ {x0, . . . , xr} and varS(ti) ⊆ {v0, . . . , vn−1} then φ t0⋯tr

x0⋯xr
∈ LSn. In particular, if

each ti is a constant symbol then φ t0⋯tr
x0⋯xr

is an S-sentence.

Proof. Exercise (uses a lemma which we have not stated | see book).

Definition 53. Let S be a �rst-order language. We de�ne the rank of a formula, rkS ∶
LS → N, inductively as follows:

rkS(φ) ∶= 0 for atomic formula φ;

rkS(¬φ) ∶= rkS(φ) + 1;

rkS((φ ∨ψ)) ∶= rkS(φ) + rkS(ψ) + 1;

rkS(∃xφ) ∶= rkS(φ) + 1.

4 A Sequent Calculus

4.1 Sequent Rules

4.2 Structural Rules and Connective Rules

4.3 Derivable Connective Rules

4.4 Quantifier and Equality Rules

4.5 Further Derivable Rules and Sequents

Definition 54. We de�ne the rules of the sequent calculus S:

Antecedent Rule (Ant):

φ1⋯φnφ
ψ1⋯ψmφ

if φ1, . . . ,φn ∈ {ψ1, . . . ,ψm}

Assumption Rule (Assm):

φ1⋯φnφ
if φ ∈ {φ1, . . . ,φn}

Proof by Cases (PC):

φ1⋯φnψφ
φ1⋯φn¬ψφ
φ1⋯φnφ
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Contradiction (Ctr):

φ1⋯φn¬φψ
φ1⋯φn¬φ¬ψ
φ1⋯φnφ

∨-rule for the Antecedent (∨A):

φ1⋯φnφχ
φ1⋯φnψχ

φ1⋯φn(φ ∨ψ)χ

∨-rules for the Succedent (∨S):

φ1⋯φnφ
φ1⋯φn(φ ∨ψ)

φ1⋯φnφ
φ1⋯φn(ψ ∨φ)

∃-introduction in the Antecedent (∃A):

φ1⋯φnφy
x
ψ

φ1⋯φn∃xφψ
if y ∉ free((φ1 ∨⋯ ∨φn)) ∪ free(∃xφ) ∪ free(ψ)

∃-introduction in the Succedent (∃S):

φ1⋯φnφ t
x

φ1⋯φn∃xφ

Re
exive rule for equality (≡):

t ≡ t
Substitution rule for equality (Sub):

φ1⋯φnφ t
x

φ1⋯φnt ≡ t ′φ t ′

x

Definition 55. Let S be a �rst-order language, let n ∈ N, and let φ1, . . . ,φn,φ ∈ LS.
We say φ1⋯φnφ is a sequent, with antecedent φ1⋯φn and succedent φ. If there is a

derivation of φ1⋯φnφ in the sequent calculus S, then we say φ1⋯φnφ is derivable and

write ⊢S φ1⋯φnφ.

Definition 56. Let S be a �rst-order language, let φ be an S-formula, and let Φ be a set

of S-formulas. We say φ is formally provable (or derivable) from Φ, and write Φ ⊢S φ,
if there is a �nite subset {φ1, . . . ,φn} ⊆Φ such that ⊢S φ1⋯φnφ.
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Definition 57. Let S be a �rst-order language, and let φ1⋯φnφ be a sequent. We say

φ1⋯φnφ is correct if {φ1, . . . ,φn} ⊧ φ.

Definition 58. Let S be a �rst-order language. We say a rule concerning the sequent

calculus is correct if whenever it is applied to correct sequents, it produces a correct

sequent.

4.6 Summary and Example

Theorem 59. [Soundness Theorem] Let S be a �rst-order language, let φ ∈ LS, and
let Φ ⊆ LS. If Φ ⊢S φ then Φ ⊧ φ.

Proof. Suppose Φ ⊢S φ. Then there are φ1, . . . ,φn ∈ Φ such that ⊢S φ1⋯φnφ. Hence it

su�ces to prove that all the rules of the sequent calculus S are correct. Indeed, if we have

this, then we get {φ1, . . . ,φn} ⊧ φ, and hence Φ ⊧ φ.
To this end, we go through the rules of S:

(Ant) Suppose φ1, . . . ,φn,φ ∈ LS, and assume that {φ1, . . . ,φn} ⊧ φ. We wish to show

that {ψ1, . . . ,ψm} ⊧ φ, given that φ1, . . . ,φn ∈ {ψ1, . . . ,ψm}. So suppose I is an

S-interpretation and that I ⊧ {ψ1, . . . ,ψm}. Since {φ1, . . . ,φn} ⊆ {ψ1, . . . ,ψm}, we
have I ⊧ {φ1, . . . ,φn}. Thus by assumption we see I ⊧ φ. As I was arbitrary, we

conclude {ψ1, . . . ,ψm} ⊧ φ. Thus the rule (Ant) is correct.

In fact, most of the remaining cases are similarly straightforward (with the possible

exception of (∃A)), and will therefore be left as exercises seeing as the sequent calculus is

not our primary object of concern in this course.

Remark 60. The converse of the soundness theorem, known as the completeness theorem,

also holds. We will work towards proving this in the next chapter.

4.7 Consistency

Definition 61. Let S be a �rst-order language and let Φ ⊆ LS. We say Φ is consistent,

and write ConSΦ, if there is no formula φ ∈ LS such that Φ ⊢S φ and Φ ⊢S ¬φ. We say

Φ is inconsistent, and write IncSΦ, if there is a formula φ ∈ LS such that Φ ⊢S φ and

Φ ⊢S ¬φ.

Lemma 62. Let S be a �rst-order language and let Φ ⊆ LS. Then IncSΦ if and only if

we have Φ ⊢S φ for all φ ∈ LS.

Proof. Suppose �rst that we have Φ ⊢S φ for all φ ∈ LS. Note v0 ≡ v0 ∈ LS and ¬v0 ≡ v0 ∈ LS.
Hence Φ ⊢S v0 ≡ v0 and Φ ⊢S ¬v0 ≡ v0. Thus IncSΦ.
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Conversely, suppose IncSΦ, and let φ ∈ LS. Since Φ is inconsistent, there exists a

formula ψ ∈ LS and φ1, . . . ,φn,ψ1, . . . ,ψm ∈ Φ such that there is a derivation of φ1⋯φnψ
and a derivation of ψ1⋯ψm¬ψ. So we get the following derivation:

⋮
(m) φ1⋯φnψ

⋮
(m +n) ψ1⋯ψm¬ψ

(m +n + 1) φ1⋯φnψ1⋯ψm¬φψ (Ant) on m

(m +n + 2) φ1⋯φnψ1⋯ψm¬φ¬ψ (Ant) on m +n
(m +n + 3) φ1⋯φnψ1⋯ψmφ (Ctr) on m +n + 1 and m +n + 2

As {phi1, . . . ,φn,ψ1, . . . ,ψm} ⊆Φ, we have Φ ⊢S φ, as required.

Corollary 63. Let S be a �rst-order language and let Φ ⊆ LS. Then ConSΦ if and

only if there is a formula φ ∈ LS which is not derivable form Φ.

Lemma 64. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas.

Then ConSΦ if and only if for all �nite subsets Φ0 ⊆Φ we have ConSΦ0.

Proof. Suppose �rst ConSΦ, and let Φ0 ⊆ Φ be �nite. Assume, for a contradiction, that

IncSΦ0. Then there is an S-formula φ such that Φ0 ⊢S φ and Φ0 ⊢S ¬φ. But since Φ0 ⊆Φ,
this means Φ ⊢S φ and Φ ⊢S ¬φ, contradicting ConSΦ. Hence ConSΦ0.

Conversely, suppose that for all �nite subsets Φ0 ⊆ Φ we have ConSΦ0. Assume, for

a contradiction, IncSΦ. Then there is some φ ∈ LS such that Φ ⊢S φ and Φ ⊢S ¬φ.
So there exist ψ1, . . . ,φn,ψ1, . . . ,ψm ∈ Φ such that ⊢S φ1⋯φnφ and ⊢S ψ1⋯ψmφ. Let

Φ0 = {ψ1, . . . ,φn,ψ1, . . . ,ψm}. Then Φ0 ⊢S φ and Φ0 ⊢S ¬φ. Therefore IncSΦ0. But

Φ0 ⊆Φ is �nite. Contradiction. Thus ConSΦ.

Lemma 65. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas. If

SatΦ then ConSΦ.

Proof. Suppose SatSΦ. Assume, for a contradiction, IncSΦ. Then there is some S-formula

φ ∈ LS such that Φ ⊢S φ and Φ ⊢S ¬φ. By the soundness theorem, we have Φ ⊧ φ and

Φ ⊧ ¬φ. As SatSΦ, there is some S-interpretation I such that I ⊧ Φ. So we have I ⊧ φ
and I ⊧ ¬φ. But this is absurd. Thus ConSΦ.

Lemma 66. Let S be a �rst-order language, let Φ ⊆ LS be a set of S-formulas, and let

φ ∈ LS be an S-formula.

(a) Φ ⊢S φ if and only if IncSΦ ∪ {¬φ}.

(b) Φ ⊢S ¬φ if and only if IncSΦ ∪ {φ}.
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(c) If ConSΦ then either ConSΦ ∪ {φ} or ConSΦ ∪ {¬φ}.

Proof. (a) Suppose Φ ⊢S φ. Then Φ ∪ {¬φ} ⊢S φ (Ant). But also Φ ∪ {¬φ} ⊢S ¬φ
(Assm). Hence IncSΦ ∪ {¬φ}.
Conversely, suppose IncSΦ∪{¬φ}. We saw this means Φ∪{¬φ} ⊢S ψ for any ψ ∈ LS,
so in particular, we have Φ ∪ {¬φ} ⊢S φ. Hence for some φ1, . . . ,φn ∈ Φ we have a

derivation, which we can add to:

⋮
φ1⋯φn¬φφ
φ1⋯φnφφ (Assm)

φ1⋯φnφ (PC)

Thus Φ ⊢S φ.

(b) This is left as an exercise; it is extremely similar to part (a).

(c) Suppose ConSΦ. Assume, for a contradiction, IncSΦ ∪ {φ} and IncSΦ ∪ {¬φ}. By

the above, this means Φ ⊢S φ and Φ ⊢S ¬φ. Hence IncSΦ. Contradiction. Thus

either ConSΦ ∪ {φ} and ConSΦ ∪ {¬φ}.

Remark 67. In the next chapter, we wish to prove the completeness theorem. To do this,

we will show that any consistent set of formulas is satis�able. Why is this su�cient?

Lemma 68. For n ∈ N, let Sn be a �rst-order language and let Φn ⊆ LSn be a set

of Sn-formulas. If for all n ∈ N we have Sn ⊆ Sn+1, ConSnΦn, and Φn ⊆ Φn+1, then

Con⋃n∈N Sn ⋃n∈NΦn.

Proof. Assume, for a contradiction, Inc⋃n∈N Sn ⋃n∈NΦn. As we saw, this means that there

is a �nite subset Ψ ⊆ ⋃N∈NΦn such that Inc⋃N∈N Sn Ψ. Since the sets of formulas are nested,

there is some k ∈ N such that Ψ ⊆ Φk. Hence Inc⋃N∈N SnΦk. In particular, this means that

Φk ⊢⋃n∈N Sn v0 ≡ v0 and Φk ⊢⋃n∈N Sn ¬v0 ≡ v0. So there are φ1, . . . ,φr,ψ1, . . . ,ψt ∈ Φk such

that ⊢⋃n∈N Sn φ1⋯φrv0 ≡ v0 and ⊢⋃n∈N Sn ψ1⋯ψt¬v0 ≡ v0. Note that there are �nitely many

symbols in these derivations. As the languages are nested, there is some m ≥ k such that

all the symbols are contained in ASm. Hence ⊢Sm φ1⋯φrv0 ≡ v0 and ⊢Sm ψ1⋯ψt¬v0 ≡ v0.
Thus Φk ⊢Sm v0 ≡ v0 and Φk ⊢Sm ¬v0 ≡ v0. Therefore IncSmΦk. But Φk ⊆ Φm, so we have

IncSmΦm. Contradiction. Thus the result holds.
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5 The Completeness Theorem

5.1 Henkin’s Theorem

Definition 69. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas. We

say Φ is negation complete if for every S-formula φ ∈ LS, either Φ ⊢S φ or Φ ⊢S ¬φ.

Definition 70. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas. We

say Φ contains witnesses if for all S-formulas φ ∈ LS and all variables x, there is an S-term

t ∈ TS such that Φ ⊢S (∃xφ→ φ t
x
).

Lemma 71. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas. If

Φ is consistent, negation complete, and contains witnesses, then:

(a) For all φ ∈ LS, Φ ⊢S ¬φ if and only if it is not the case that Φ ⊢S φ;

(b) For all φ,ψ ∈ LS, Φ ⊢S (φ ∨ψ) if and only if either Φ ⊢S φ or Φ ⊢S ψ;

(c) For all variables x and φ ∈ LS, Φ ⊢S ∃xφ if and only if there is a term t ∈ TS with
Φ ⊢S φ t

x
.

Proof. (a) Suppose Φ ⊢S ¬φ. Since ConSΦ, we cannot have Φ ⊢S φ.
Conversely, suppose we do not have Φ ⊢S φ. Since Φ is negation complete, we must

have Φ ⊢S ¬φ.

(b) Suppose Φ ⊢S (φ∨ψ). Assume we do not have Φ ⊢S φ. Since Φ is negation complete,

we must have Φ ⊢S ¬φ. Note that one can derive the rule

φ1⋯φn(φ ∨ψ)
φ1⋯φn¬φ
φ1⋯φnψ

(see page 65). We therefore have Φ ⊢S ψ, as required.
Suppose now Φ ⊢S φ. Then Φ ⊢S (φ ∨ψ) (by (∨S)).
Suppose now Φ ⊢S ψ. Then Φ ⊢S (φ ∨ψ) (by (∨S)).

(c) Suppose Φ ⊢S ∃xφ. Since Φ contains witnesses, there is some term t ∈ TS such that

Φ ⊢S (∃xφ→ φ t
x
). By modus ponens (see page 65), we get Φ ⊢S φ t

x
.

Conversely, suppose there is some term t ∈ LS such that Φ ⊢S φ t
x
. Then Φ ⊢S ∃xφ

(by (∃S)).
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Remark 72. As we said, we wish to prove the completeness theorem, and to do this, we

will show that any consistent set of formulas is satis�able. So given a consistent set of

formulas, how are we going to construct an interpretation which models this set? About the

only thing we can try to do is make our universe be the set of terms, and have everything

map to `itself', in some natural sense. But what if Φ ⊢S fx ≡ fy (for distinct variables x

and y)? Then we would need I(fx) = I(fy). But I(fx) = fx and I(fy) = fy, which are not

equal.

It turns out that this is the only issue which arises, and that we can look at the set of

terms modulo an equivalence relation which will make everything work out.

Definition 73. Let S be a �rst-order language and let t1 ∈ TS and t2 ∈ TS be S-terms. We

write t1 ∼ΦS t2 if Φ ⊢S t1 ≡ t2.

Lemma 74. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas.

Then ∼ΦS is an equivalence relation on TS.

Proof. First we show that ∼ΦS is re
exive. Let t ∈ tS. Then Φ ⊢S t ≡ t (by (≡)). Hence

t ∼ΦS t.

Symmetry and transitivity are left as exercises (use derived rules | see book).

Lemma 75. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas.

Let t1, . . . , tn, t ′1, . . . , t
′
n ∈ TS be S-terms, let f ∈ S be an n-ary function symbol, and let

R ∈ S be an n-ary function symbol. If t1 ∼ΦS t
′
1, . . . , tn ∼

Φ
S t

′
n, then ft1⋯tn ∼ΦS ft ′1⋯t ′n, and

Φ ⊢S Rt1⋯tn if and only if Φ ⊢S Rt ′1⋯t ′n.

Proof. Exercise (see book).

Definition 76. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas.

For t ∈ TS, we let t
Φ

S ∶= {t ′ ∈ TS; t ∼ΦS t ′} denote the equivalence class of t in TS. We let

TΦS ∶= TS/ ∼ΦS = {tΦS ; t ∈ TS} denote TS modulo the equivalence relation ∼ΦS .

Definition 77. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas.

De�ne aΦS as follows:

For n-ary relation symbol R ∈ S,

aΦS (R) ∶= {(t1
Φ

S , . . . , tn
Φ

S ) ∈ TΦS ; Φ ⊢S Rt1⋯tn};

For n-ary function symbol f ∈ S,

aΦS (f)((t1
Φ

S , . . . , tn
Φ

S )) ∶= ft1⋯tn
Φ

S ;
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For constant symbol c ∈ S,
aΦS (c) ∶= cΦS .

We set TΦS ∶= (TΦS ,aΦS ), an S-structure.
We also let βΦS (vi) ∶= vi

Φ
S for each i ∈ N, and de�ne the term interpretation associated

with Φ to be (TΦS , βΦS ).

Remark 78. By the previous lemma, the de�nitions above are independent of which

representatives we pick, and are hence well-de�ned.

Theorem 79. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas.

If Φ is consistent, negation complete, and contains witnesses, then Φ is satis�able.

Proof. We will show that IΦS ⊧Φ, which certainly shows SatΦ.

First we show that for all S-terms t ∈ TS we have IΦS (t) = t
Φ

S . We proceed by induction

on S-terms. Let x be a variable. Then IΦS (x) = βΦS (x) = x
Φ
S . Let c ∈ S be a constant symbol.

Then IΦS (c) = aΦS (c) = c
Φ
S . Suppose f ∈ S is an n-ary function symbol and t1, . . . , tn ∈ TS are

S-terms for which the result holds. Then

IΦS (ft1⋯tn) = aΦS (f)((IΦS (t1), . . . ,IΦS (tn))) = aΦS (f)((t1
Φ

S , . . . , tn
Φ

S )) = ft1⋯tn
Φ

S .

Next, we show that for all S-formulas φ ∈ LS, we have IΦS ⊧ φ if and only if Φ ⊢S φ. We

proceed by induction on the rank of rkS(φ). Suppose rkS(φ) = 0. If t1 and t2 are terms

with φ = t1 ≡ t2, then

IΦS ⊧ t1 ≡ t2 if and only if IΦS (t1) = IΦS (t2)
if and only if t1

Φ

S = t2
Φ

S

if and only if t1 ∼
Φ
S t2

if and only if Φ ⊢S t1 ≡ t2.

Otherwise, we must have φ = Rt1⋯tn for an n-ary relation symbol R ∈ S and terms

t1, . . . , tn ∈ TS. In this case

IΦS ⊧ Rt1⋯tn if and only if (IΦS (t1), . . . ,IΦS (tn)) ∈ aΦS (R)
if and only if (t1

Φ

S , . . . , tn
Φ

S ) ∈ aΦS (R)
if and only if Φ ⊢S Rt1⋯tn.

Now suppose rkS(φ) > 0, and that the result holds for all formulas of lesser rank. This

means φ is non-atomic. First suppose φ = ¬ψ for a formula ψ ∈ LS. Note that rkS(ψ) <
rkS(¬ψ). Hence

IΦS ⊧ ¬φ if and only if we do not have IΦS ⊧ φ
if and only if we do not have Φ ⊢S φ
if and only if Φ ⊢S ¬φ.
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Note the �nal step holds by lemma (71). Now suppose φ = (χ ∨ψ) for formulas χ,ψ ∈ LS.
Note that rkS(χ), rkS(ψ) < rkS((φ ∨ψ)). Hence

IΦS ⊧ (φ ∨ψ) if and only if IΦS ⊧ φ or IΦS ⊧ ψ
if and only if Φ ⊢S φ or Φ ⊢S ψ
if and only if Φ ⊢S (φ ∨ψ).

Note again that the �nal step holds by lemma (71). Finally, suppose φ = ∃xψ for a formula

ψ ∈ LS and a variable x. Note that rkS(ψ t
x
) < rkS(∃xψ) for any S-term t. Hence

IΦS ⊧ ∃xψ if and only if there is some a ∈ TΦS such that IΦS
a
x
⊧ ψ

if and only if there is some t ∈ TS such that IΦS
t
Φ
S

x
⊧ ψ

if and only if there is some t ∈ TS such that IΦS
IΦS (t)

x
⊧ ψ

if and only if there is some t ∈ TS such that IΦS ⊧ ψ t
x

if and only if there is some t ∈ TS such that Φ ⊢S ψ t
x

if and only if Φ ⊢S ∃xψ.

Once again, note that the �nal step holds by lemma (71).

Finally, we show IΦS ⊧Φ. Let φ ∈Φ. Then certainly Φ ⊢S φ. Therefore IΦS ⊧ φ.

5.2 Satisfiability of Consistent Sets of Formulas (the Countable
Case)

Lemma 80. Let S be a countable �rst-order language and let Φ ⊆ LS be a set of S-

formulas. If ConSΦ and freeS(Φ) is �nite, then there is some Θ ⊆ LS such that Φ ⊆ Θ
and Θ is consistent, negation complete, and contains witnesses.

Proof. First we construct a Ψ ⊆ LS which contains witnesses and satis�es Φ ⊆ Ψ. As S

is countable, so is LS and any subset of it. Let {∃xnφn; n ∈ N} be an enumeration of the

S-formulas which start with an existential quanti�er. We inductively de�ne ψn for n ∈ N.
Let n ∈ N and suppose we have de�ned ψm for all m < n. Let yn ∉ freeS(Φ ∪ {ψm; m <
n}∪{∃xnφn}) have least index (this exists because freeS(Φ) is �nite and there are �nitely

many symbols in {φm; m < n} ∪ {∃xnφn}). De�ne

ψn ∶= (∃xnφn → φn ynxn )

and let Ψ =Φ ∪ {ψn; n ∈ N}.
Certainly Φ ⊆ Ψ ⊆ LS. We claim that Ψ is consistent and contains witnesses. To see

that Ψ contains witnesses, suppose x is a variable and φ ∈ LS. Then ∃xφ = ∃xnφn for

some n ∈ N by construction. Consider the S-term yn. Note Ψ ⊢S (∃xφ → φyn
x
) because

(∃xφ→ φyn
x
) = ψn ∈ Ψ. Hence Ψ contains witnesses.
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Next we show that Ψ is consistent. Let Φn =Φ∪ {ψm; m < n}. Since Ψ = ⋃N∈NΦn with

Φn ⊆ Φn+1 for all n ∈ N, it su�ces to show ConSΦn for all n ∈ N (by lemma (68)). We

proceed by induction on n. Note Φ0 = Φ so ConSΦ0 because ConSΦ. Now let n ∈ N and

suppose ConSΦn. Assume, for a contradiction, IncSΦn+1. Note that Φn+1 = Φn ∪ {ψn}.
Suppose φ ∈ LS0 is an S-sentence. Since Φn+1 is inconsistent, there exist χ1, . . . , χ` ∈Φn such

that ⊢S χ1 . . . , χ`ψnφ. As an exercise, derive the rules

φ1⋯φn(ψ ∨ χ)φ
φ1⋯φnψφ

and
φ1⋯φn(ψ ∨ χ)φ
φ1⋯φnχφ

.

As we said, we have a derivation of χ1⋯χ`ψnφ, which we can add to now:

⋮
(m) χ1⋯χ`(¬∃xnφn ∨φn ynxn )φ

(m + 1) χ1⋯χ`¬∃xnφnφ (exercise on m)

(m + 2) χ1⋯χ`φn ynxnφ (exercise on m)

(m + 3) χ1⋯χ`∃xnφnφ ((∃A) on m + 2 since yn ∉ free({χ1, . . . , χ`} ∪ {∃xnφn} ∪ {φ}))
(m + 4) χ1⋯χ`φ ((PC) on m + 1 and m + 2)

In particular, if we take φ = ∃v0v0 ≡ v0 we get Φn ⊢S ∃v0v0 ≡ v0, and if we take φ = ¬∃v0v0 ≡
v0 we get Φn ⊢S ¬∃v0v0 ≡ v0 (because χ1, . . . , χ` ∈ Φn). Therefore IncSΦn. Contradiction.

Thus ConSΦn+1. This shows ConSΨ, and completes the veri�cation of the claim.

Now that we have constructed Ψ, we will construct Θ ⊆ LS which is consistent, negation

complete, and contains witnesses, with Ψ ⊆ Θ. This will complete the proof of the lemma.

As LS is countable, let LS = {φn; n ∈ N} be an enumeration. De�ne Θ0 = Ψ and for n ∈ N

Θn+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

Θn ∪ {φn} if ConSΘn ∪ {φn}
Θn if IncSΘn ∪ {φn}.

Let Θ = ⋃n∈NΘn.
Certainly Φ ⊆ Ψ ⊆ Θ ⊆ LS. We claim that Θ is consistent, negation complete, and con-

tains witnesses. That Θ contains witnesses follows from the fact that Ψ contains witnesses.

Indeed, if Ψ ⊢S (∃xφ → φ t
x
) then Θ ⊢S (∃xφ → φ t

x
) because Ψ ⊆ Θ. To show ConSΘ, it

again su�ces to show ConSΘn for all n ∈ N. We proceed by induction on n. Since Θ0 = Ψ
and we have ConSΦ, we get ConSΘ0. Let n ∈ N and suppose ConSΘn. If ConSΘn ∪ {φn}
then Θn+1 = Θn ∪ {φn} by de�nition, and hence ConSΘn+1. Otherwise, Θn+1 = Θn so by

inductive assumption ConSΘn+1. Thus ConSΘ. Finally, we need only show that Θ is

negation complete. Let φ ∈ LS. Then φ = φn for some n ∈ N. Assume we do not have

Θ ⊢S ¬φn. By a lemma in the previous chapter, we have ConSΘ ∪ {φn}. But Θn ⊆ Θ, so
this means ConSΘn ∪ {φn}. Hence φn ∈ Θn+1 ⊆ Θ. Therefore Θ ⊢S φn and so Θ is negation

complete.

Page 24 of 68



PMATH 432 Lecture Notes

5.3 Satisfiability of Consistent Sets of Formulas (the General Case)

Definition 81. Let S be a �rst-order language and let φ ∈ LS be an S-formula. Set cSφ to

be a distinct constant symbol which is not already in S. De�ne

S∗ ∶= S ∪ {cS∃xφ; ∃xφ ∈ LS}

and let

W(S) ∶= {(∃xφ→ φ cS
∃xφ

x
); ∃xφ ∈ LS} .

Lemma 82. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas. If

ConSΦ then ConS∗Φ ∪W(S).

Proof. Recall ConS∗Φ∪W(S) if and only if ConS∗Φ∗
0 for all �nite subsets Φ

∗
0 ⊆Φ∪W(S).

So let Φ∗
0 ⊆Φ∪W(S) be �nite. We will show SatS∗Φ∗

0 , since this implies ConS∗Φ∗
0 . Write

Φ∗
0 =Φ0 ∪ {(∃x1φ1 → φ1

c∃x1φ1
x1

), . . . , (∃xnφn → φn c∃xnφnxn
)},

where Φ0 ⊆Φ is �nite.

Since Φ0 is �nite, there is some countable language S0 ⊆ S such that Φ0 ⊆ LS0 . Clearly
ConSΦ implies ConS0Φ. And since Φ0 ⊆Φ, we get ConS0Φ0. Moreover, freeS(Φ0) is �nite
(because there are �nitely many symbols in Φ0). Hence by the previous lemma, we may

conclude that there is some Θ ⊆ LS0 which is consistent, negation complete, and contains

witnesses, and such that Φ0 ⊆ Θ. By the theorem before that, we conclude SatS0Φ0.

So let I ′ = ((A,a ′), β) be an S0-interpretation of Φ0 with I ′ ⊧ Φ0. Extend a ′ to a

de�ned on all of S. By the coincidence lemma, I = ((A,a), β) is an S-interpretation with

I ⊧Φ0. We need only extend this to an S∗-interpretation I∗ such that I∗ ⊧Φ∗
0 .

Fix b ∈ A. Pick, for i ∈ {1, . . . , n}, ai ∈ A such that if I ⊧ ∃xiφi then Iai
xi
, and otherwise

just set ai = b. Extend (A,a) to an S∗-structure by

a∗ (c∃xiφi) = ai

for i ∈ {1, . . . , n}, and
a∗ (cφ) = b

otherwise. Then I∗ = ((A,a∗), β) is an S∗-interpretation.
We claim I∗ ⊧ Φ∗

0 . By the coincidence lemma, I∗ ⊧ Φ0. So it remains to show

I∗ ⊧ (∃xiφi → φi
c∃xiφi
xi

) for each i ∈ {1, . . . , n}. To this end, let i ∈ {1, . . . , n}. Suppose

I∗ ⊧ ∃xiφi. By the coincidence lemma, this means I ⊧ ∃xiφi. Hence Iai
xi
⊧ φi. By the

coincidence lemma again, we have I∗ ai
xi
⊧ φi. By de�nition of a∗, this is just I∗

I∗(c∃xiφi)

xi
⊧

φi. By the substitution lemma, we get I∗ ⊧ φi
c∃xiφi
xi

. Therefore I∗ ⊧ (∃xiφi → φi
c∃xiφi
xi

).
So we have I∗ ⊧ Φ∗

0 . This means SatΦ∗
0 . We saw that this implies ConS∗Φ∗

0 . As Φ∗
0

was an arbitrary �nite subset, we have ConS∗Φ ∪W(S).
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Theorem 83. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas.

If ConSΦ then SatΦ.

Proof. First we extend S to a bigger language S ′ and Φ to a bigger set Ψ of S ′-formulas,

such that ConS ′ and such that Ψ contains witnesses in S ′. To this end, let S0 = S, and
recursively de�ne Sn+1 = Sn∗ for n ∈ N. Also let Φ0 = Φ, and recursively de�ne Φn+1 =
Φn ∪W(Sn). Note that S0 ⊆ S1 ⊆ ⋯ and Φ0 ⊆Φ1 ⊆ ⋯. Set S ′ = ⋃n∈N Sn and Ψ = ⋃n∈NΦn. A

simple induction, using the previous lemma, shows that for each n ∈ N we have ConSnΦn.

By lemma (68) we conclude ConS ′ Ψ. Moreover, Ψ contains witnesses in S ′, because if

∃xφ ∈ LS ′ , then ∃xφ ∈ LSn for some n ∈ N, and so (∃xφ→ φ c∃xφ
x

) ∈W(Sn) ⊆ Ψ.
Next we extend Ψ to a bigger set Θ of S ′-formulas which is negation complete. Set

U = {Γ ; Ψ ⊆ Γ ⊆ LS ′ and ConS ′ Γ}.

We can partially order U by inclusion (that is, by ⊆). Note that U ≠ ∅ since Ψ ∈ U . Thus
we may apply Zorn's lemma.

Suppose D ⊆ U is a chain. Take Θ1 = ⋃D. Certainly Ψ ⊆ Θ1 ⊆ LS ′ . To show that Θ1 ∈ U ,
it remains to show ConS ′ Θ1. It su�ces to show ConS ′ Θ0 for any �nite subset Θ0 ⊆ Θ1, so
let Θ0 ⊆ Θ1 be �nite. As Θ0 is �nite and D is a chain, we have Θ0 ⊆ Γ for some Γ ∈ D. So
we see that ConS ′ Γ (as Γ ∈ U) implies ConS ′ Θ0. Hence ConS ′ Θ1. Thus Θ1 ∈ U , and it is

clearly an upper bound for D.
By Zorn's lemma, there exists a maximal element Θ ∈ U . Note that we immediately

know that Ψ ⊆ Θ and that ConS ′ Θ. We need only show that Θ is negation complete. So

suppose φ ∈ LS ′ . Since ConS ′ Θ, we have either ConS ′ Θ∪{φ} or ConS ′ Θ∪{¬φ} (by lemma

(66)). But since Θ is maximal, this forces us to have either Θ∪{φ} = Θ or Θ∪{¬φ}. That
is to say, either φ ∈ Θ or ¬φ ∈ Θ. But now it clearly is the case that Θ ⊢S ′ φ or Θ ⊢S ′ ¬φ.
Thus Θ is negation complete (and consistent).

Furthermore, Θ contains witnesses because Ψ did and Ψ ⊆ Θ. Thus Θ is a consistent,

negation complete set which contains witnesses. By theorem (79), SatΘ, as required.

5.4 The Completeness Theorem

Theorem 84. [Completeness Theorem] Let S be a �rst-order language, let Φ ⊆ LS
be a set of S-formulas, and let φ ∈ LS be an S-formula. If Φ ⊧ φ then Φ ⊢S φ.

Proof. SupposeΦ ⊧ φ. Assume, for a contradiction, that we do not haveΦ ⊢S φ. Consider
Φ∪ {¬φ}. Since Φ ⊧ φ, this set is not satis�able. But it is consistent because Φ /⊢S φ (see

lemma (66)). So we have a consistent set which is not satis�able. This contradicts the

previous theorem. Thus Φ ⊢S φ.

Corollary 85. Let S1 and S2 be a �rst-order language, let φ ∈ LS1∩S2, and let Φ ⊆
LS1∩S2. Then Φ ⊢S1 φ if and only if Φ ⊢S2 φ, and ConS1Φ if and only if ConS2Φ.
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Proof. By (36) and the completeness and soundness theorems, we have Φ ⊢S1 φ if and

only if Φ ⊧S1 φ if and only if Φ ⊧S2 φ if and only if Φ ⊢S2 φ.
By (41) and the completeness and soundness theorems, we have ConS1Φ if and only if

SatS1Φ if and only if SatS2Φ if and only if ConS2Φ.

6 The Löwenheim-Skolem Theorem and the Compact-

ness Theorem

6.1 The Löwenheim-Skolem Theorem

Theorem 86. [L�owenheim-Skolem Theorem] Let S be a �rst-order language and

let Φ ⊆ LS be a countable set of S-formulas. If SatΦ then there is an S-interpretation

with a countable domain which models Φ.

Proof. As Φ is countable, countably many symbols appear in it, and so we can pick a

countable language S0 ⊆ S which Φ ⊆ LS0 . In theorem (83), the extension Θ we get is

countable, because S0 is countable. Indeed, if S0 is countable then S0
∗ is countable, and

hence the set S ′ in the theorem is countable. It follows that LS
′

is countable. As Θ ⊆ LS ′ ,
Θ is countable.

Finally, note that the domain of the term interpretation is LS
′

modded out by some

equivalence relation. In particular, this domain is countable, as required.

6.2 The Compactness Theorem

Theorem 87. [Compactness Theorem] Let S be a �rst-order language, let φ ∈ LS be
an S-formula, and let Φ ⊆ LS be a set of S-formulas.

(a) Then Φ ⊧ φ if and only if there is a �nite subset Φ0 ⊆Φ such that Φ0 ⊧ φ.

(b) Then SatΦ if and only if for all �nite subsets Φ0 ⊆Φ we have SatΦ0.

Proof. (a) Suppose Φ ⊧ φ. Then Φ ⊢ φ. Hence there is a some {φ1, . . . ,φn} ⊆ Φ such

that ⊢ φ1⋯φnφ. Whence {φ1, . . . ,φn} ⊢ φ. Therefore {φ1, . . . ,φn} ⊧ φ.
Conversely, suppose there is a �nite Φ0 ⊆Φ such that Φ0 ⊧ φ. Clearly Φ ⊧ φ.

(b) Suppose SatΦ. So there is some S-interpretation I such that I ⊧Φ. If Φ0 ⊆Φ then

I ⊧ Φ0. In particular, this holds for all �nite subsets Φ0. Hence SatΦ0 for all �nite

subsets Φ0 ⊆Φ.
Conversely, suppose for all �nite subsets Φ0 ⊆ Φ we have SatΦ0. Assume, for a

contradiction, we do not have SatΦ. Then IncΦ. Hence there is some �nite subset

Φ0 ⊆Φ such that IncΦ0. Contradiction. Thus SatΦ.
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Theorem 88. Let S be a �rst-order language and let Φ ⊆ LS be a set of S-formulas.

If for every n ∈ N there is an S-interpretation with domain of size at least n which

models Φ, then there is an S-interpretation with in�nite domain which models Φ.

Proof. For n ∈ N, de�ne

φn ∶= ∃v0⋯∃vn−1(¬v0 ≡ v1 ∧⋯ ∧ ¬v0 ≡ vn−1⋯∧ ¬vn−1 ≡ v0 ∧⋯ ∧ vn−1 ≡ vn−1),

and let

Ψ =Φ ∪ {φn; n ≥ 12}.
We claim SatΨ. Let Ψ0 ⊆ Ψ be �nite. Then Ψ0 ⊆ Φ ∪ {φ12, . . . ,φN} for some N ∈ N. We

are given that there exists a model I of Φ with domain which has at least N elements.

Because the domain has size at least N, we get I ⊧ φn for all n ≤N. Therefore I ⊧ Ψ0 and
thus SatΨ0. By the compactness theorem, we have SatΨ.

Hence there is a model I of Ψ. For n ∈ N, since I ⊧ φn we know that the domain of

I has size at least n. As n ∈ N was arbitrary, the domain must be in�nite. Finally, note

I ⊧Φ because Φ ⊆ Ψ.

Theorem 89. [Upward L�owenheim-Skolem Theorem] Let S be a �rst-order lan-

guage, let Φ ⊆ LS be a set of S-formulas and let A be a set. If Φ is satis�able over an

in�nite domain then there is a model of Φ whose domain has cardinality at least ∣A∣.

Proof. For a ∈ A, let cSa be a distinct constant symbol not already in S. Let

Ψ =Φ ∪ {¬ca ≡ cb; a,b ∈ A, a ≠ b}.

We claim that Ψ is satis�able. By the compactness theorem, it su�ces to show that

any �nite subset is satis�able. So let Ψ0 ⊆ Ψ be �nite. Then Ψ0 ⊆ Φ ∪ {¬cai ≡ caj ; i, j ∈
{1, . . . , n}, i ≠ j} for some distinct a1, . . . , an ∈ A. We are given an S-interpretation

((B,b), β) which satis�es Φ and such that B is in�nite. As such, we can select dis-

tinct b1, . . . , bn ∈ B. Extend b to a de�ned on S ∪ {ca1 , . . . , can} by a(cai) = bi for

i ∈ {1, . . . , n}. By the coincidence lemma, ((B,a), β) ⊧Φ. Moreover, ((B,a), β) ⊧ ¬cai ≡ caj
for i, j ∈ {1, . . . , n} for which i ≠ j. Therefore ((B,a), β) ⊧ Ψ0 and thus SatΨ0.

This means that there is an S∪{ca; a ∈ A}-interpretation I which satis�es Ψ. As Φ ⊆ Ψ,
I ⊧ Φ. We need only �nd an injection from A to the domain of I. Write I = ((C, c), γ).
De�ne π ∶ A → C by π(a) = c(ca). This map is injective because it models the sentences

we added to Φ to create Ψ.

6.3 Elementary Classes

Definition 90. Let S be a �rst-order language and let Φ ⊆ LS0 be a set of S-sentences. We

de�ne the class of models of Φ to be

ModSΦ ∶= {A; A is an S-structure with A ⊧Φ}.
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Remark 91. Note ModSΦ is not a set; it is a class (whatever that is..).

Definition 92. Let S be a �rst-order language and let K be a class of S-structures. We

say K is elementary if there is an S-sentence φ ∈ LS0 such that K =ModS{φ}. We say K is

∆-elementary if there is a set of S-sentences Φ ⊆ LS0 such that K =ModSΦ.

Remark 93. Clearly any elementary class is a ∆-elementary class. On the other hand,

any ∆-elementary class is an intersection of elementary classes. Indeed,

ModSΦ = ⋂
φ∈Φ

ModS{φ}.

Definition 94. Let Sar ∶= {+, ⋅, 0, 1} be the language of arithmetic. Additionally, set

S<ar ∶= {+, ⋅, 0, 1,<}.
De�ne n(+) to be usual addition on N, n(⋅) to be usual multiplication on N, n(0) ∶= ∅

(the number zero), and n(1) ∶= {∅} (the number one). We set

N ∶= (N,n),

an Sar-structure. Extend n to n< with n<(<) being the usual order on N. We set

N< ∶= (N,n<),

an S<ar-structure.

Example 95. Let

φ1 ∶= ∀v0∀v1∀v2 + +v0v1v2 ≡ +v0 + v1v2
φ2 ∶= ∀v0 + v00 ≡ v0
φ3 ∶= ∀v0∀v1∀v2 ⋅ ⋅v0v1v2 ≡ ⋅v0 ⋅ v1v2
φ4 ∶= ∀v0 ⋅ v01 ≡ v0
φ5 ∶= ∀v0∃v1 + v0v1 ≡ 0
φ6 ∶= ∀v0(¬v0 ≡ 0→ ∃v1 ⋅ v0v1 ≡ 1)
φ7 ∶= ∀v0∀v1 + v0v1 ≡ +v1v0
φ8 ∶= ∀v0∀v1 ⋅ v0v1 ≡ ⋅v1v0
φ9 ∶= ¬0 ≡ 1
φ10 ∶= ∀v0∀v1∀v2 ⋅ v0 + v1v2 ≡ + ⋅ v0v1 ⋅ v0v2

be the �eld axioms, and let

φF ∶= φ1 ∧φ2 ∧φ3 ∧φ4 ∧φ5 ∧φ6 ∧φ7 ∧φ8 ∧φ9 ∧φ10.
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Then ModSar{φF} is the class of �elds.

Now for p ∈ N prime, let

χp ∶= +⋯ + 11⋯1 ≡ 0,
with p 1's and p − 1 +'s. Using our abusive notation for 2-ary relation symbols, this can

be written as 1 +⋯ + 1 ≡ 0 with p 1's.
Recall that a �eld F has characteristic p, for a prime p, if F ⊧ χp, and that it has

characteristic zero if F ⊧ ¬χq for all primes q ∈ N. Therefore

Fp ∶=ModSar{φF ∧ χp}

is the class of �elds of characteristic p, and is hence elementary. Moreover

F0 ∶=ModSar{φF} ∪ {¬χp; p ∈ N prime}

is the class of �elds of characteristic zero, and is hence ∆-elementary.

Proposition 96. The class F0 of �elds of characteristic zero is not elementary.

Proof. Assume, for a contradiction, that there exists an Sar-sentence φ such that F0 =
ModSar{φ}. Then {φF} ∪ {¬χp; p ∈ N prime} ⊧ φ. By compactness, there is some prime

q ∈ N such that {φF} ∪ {¬χp; p < q prime} ⊧ φ. Consider the �eld Z/qZ. As it is a �eld,

we have Z/qZ ⊧ φF. Moreover, Z/qZ ⊧ ¬χp for all p < q. Therefore Z/qZ ⊧ φ. Hence

Z/qZ ∈ F0 is a �eld of characteristic zero. This is absurd.

6.4 Elementarily Equivalent Structures

Definition 97. Let S be a �rst-order language and let A and B be S-structures. We say

A and B are elementarily equivalent, and write A ≡B, if for every S-sentence φ ∈ LS0 we
have A ⊧ φ if and only if B ⊧ φ.

Definition 98. Let S be a �rst-order language and let A be an S-structure. The theory

of A is

Th(A) ∶= {φ ∈ LS0 ; A ⊧ φ}.

Remark 99. The following is just a restatement of the isomorphism lemma in terms of

our new terminology.

Lemma 100. Let S be a �rst-order language and let A be an S-structure. Then

{B; B ≅ A} ⊆ {B; B ≡ A}.

Proof. Suppose B ≅ A. Let φ ∈ LS0 be an S-sentence. By the isomorphism lemma, we have

A ⊧ φ if and only if B ⊧ φ. Thus B ≡ A.
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Lemma 101. Let S be a �rst-order language and let A be an S-structure. Then

ModSTh(A) = {B; B ≡ A}.

Equivalently, for an S-structure B, we have B ≡ A if and only if B ⊧ Th(A).

Proof. Let B be an S-structure and suppose B ≡ A. Suppose φ ∈ Th(A). Then A ⊧ φ.
Since they are elementarily equivalent, we get B ⊧ φ. Therefore B ⊧ Th(A), and thus

B ∈ModSTh(A).
Conversely, let B be an S-structure and suppose B ∈ ModSTh(A). This means B ⊧

Th(A). Now let φ ∈ LS0 be an S-sentence. If A ⊧ φ then φ ∈ Th(A), and hence B ⊧ φ.
Now suppose B ⊧ φ and assume, for a contradiction, we do not have A ⊧ φ. Then A ⊧ ¬φ
and hence ¬φ ∈ Th(A). Therefore B ⊧ ¬φ and we conclude we do not have B ⊧ φ.
Contradiction. Hence A ⊧ φ. Thus A ⊧ φ if and only if B ⊧ φ, and so A ≡B.

Theorem 102. Let S be a �rst-order language and let A be an S-structure.

(a) If the domain of A is in�nite then the class {B; B ≅ A} of S structures which

are isomorphic to A is not ∆-elementary.

(b) The class {B; B ≡ A} of S-structures which are elementarily equivalent to A

is ∆-elementary, and moreover, this is the smallest ∆-elementary class which

contains A.

Proof. (a) Suppose the domain of A is in�nite. Assume, for a contradiction, that there is

some set Φ ⊆ LS0 of S-sentences such that {B; B ≅ A} =ModSΦ. Note Φ is satis�able

by A, which has in�nite domain. By the upward L�owenheim-Skolem theorem, there

is a model B of Φ whose domain has cardinality P(A), where A is the domain of

A. We cannot have B ≅ A because this would imply that their domains have the

same cardinality, which they don't by construction. Hence B ∈ ModSΦ yet B /≅ A.

Contradiction. Hence {B; B ≅ A} is not ∆-elementary.

(b) By the previous lemma we have {B; B ≡ A} = ModSTh(A), and hence it is ∆-

elementary.

Now suppose we have a ∆-elementary class of S-structures, K, with A ∈ K. Then

there exists a set of S-sentences Φ ⊆ LS0 such that K = ModSΦ. Suppose B is an

S-structure with B ≡ A. Let φ ∈ Φ. Then A ⊧ φ, and therefore B ⊧ φ. This means

B ⊧Φ and hence B ∈ModSΦ = K. Thus {B; B ≡ A} ⊆ K.

Definition 103. An Sar-structure which is elementarily equivalent to N, but not isomor-

phic to N, is called a non-standard model of arithmetic.
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Theorem 104. [Skolem's Theorem] There exists a non-standard model of arith-

metic whose domain is countable.

Proof. De�ne

Ψ = Th(N) ∪ {¬v0 ≡ n; n ∈ N},

where, for n ∈ N and n ≠ 0, n = +⋯+ 11⋯1 (with n − 1 +'s and n 1's), and 0 = 0. We claim

SatΨ. By the compactness theorem it su�ces to show SatΨ0 for all �nite subsets Ψ0 ⊆ Ψ.
To this end, let Ψ0 ⊆ Ψ be �nite. Then Ψ ⊆ Th(N)∪ {¬v0 ≡ 0, . . . ,¬v0 ≡N} for some N ∈ N.
Let β be any assignment in N. Then (N, βN+1

v0
) ⊧ Th(N) already, and moreover we see

(N, βN+1
v0

) ⊧ ¬v0 ≡ n for all n ≤N. Therefore (N, βN+1
v0

) ⊧ Ψ0 and so SatΨ0. Thus SatΨ.

By the L�owenheim-Skolem theorem, there is a model (A, β ′) of Ψ whose domain is

countable (indeed, Ψ is countable because Sar is countable). In particular, A ⊧ Th(N). As
we just saw, this means A ≡N. We need only show A /≅N.

Assume, for a contradiction, there exists an isomorphism π ∶N → A. By the de�nition

of an isomorphism, we �nd π(0) = 0A and π(1) = 1A. Moreover, for all n ∈ N, we have

π(n) = nA (check this). But β ′(v0) ∈ A with β ′(v0) ≠ nA for all n ∈ N. Thus π is not

surjective. Contradiction, as required.

Theorem 105. There is a non-standard model of Th(N<) whose domain is countable.

Proof. Exercise | similar to above.

Remark 106. One can explore what such a non-standard model of Th(N<) \looks like".

See the book.

7 The Scope of First-Order Logic

8 Syntactic Interpretations and Normal Forms

8.1 Term-Reduced Formulas and Relational Symbol Sets

Definition 107. Let S be a �rst-order language and let φ ∈ LS be an S-formula. We say

φ is term-reduced if all of its atomic subformulas are among the following forms:

1. Rx1⋯xn for n ∈ N, n-ary relation symbol R ∈ S, and variables x1, . . . , xn;

2. x ≡ y for variables x and y;

3. fx1⋯xn ≡ x for n ∈ N, n-ary function symbol f ∈ S, and variables x1, . . . , xn, s;

4. c ≡ x for constant symbol c ∈ S and variable x.
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Theorem 108. Let S be a �rst-order language and let ψ ∈ LS be an S-formula. Then

there is a term-reduced S-formula [ψ]∗ ∈ LS such that [ψ]∗ â⊧ ψ and freeS(ψ) =
freeS([ψ]∗).

Proof. We de�ne [ψ]∗ recursively. For ψ ∈ LS, let xψ1 , x
ψ
2 , . . . list in order the variables not

in varS(ψ). De�ne:

[y ≡ x]∗ ∶= y ≡ x for variables x and y;

[c ≡ x]∗ ∶= c ≡ x for constant symbol c ∈ S and variable x;

[ft1⋯tn ≡ x]∗ ∶= ∃xft1⋯tn≡x1 ⋯∃xft1⋯tn≡xn ([t1 ≡ xft1⋯tn≡x1 ]∗∧⋯∧[tn ≡ xft1⋯tn≡xn ]∗∧fxft1⋯tn≡x1 ⋯xft1⋯tn≡xn ≡
x) for n ∈ N, S-terms t1, . . . , tn ∈ TS, n-ary function symbol f ∈ S, and variable x;

[t1 ≡ t2]∗ ∶= ∃xt1≡t21 ([t1 ≡ xt1≡t21 ]∗ ∧ [t2 ≡ xt1≡t21 ]∗) for S-terms t1 and t2, where t2 is not

a variable;

[Rt1⋯tn]∗ ∶= ∃xRt1⋯tn1 ⋯∃xRt1⋯tnn ([t1 ≡ xRt1⋯tn1 ]∗ ∧⋯∧ [tn ≡ xRt1⋯tnn ]∗ ∧ RxRt1⋯tn1 ⋯xRt1⋯tnn )
for n ∈ N, S-terms t1, . . . , tn ∈ TS, and n-ary relation symbol R ∈ S;

[¬φ]∗ ∶= ¬[φ]∗ for S-formula φ ∈ LS;

[(ψ1 ∨ψ2)]∗ ∶= ([ψ1]∗ ∨ [ψ2]∗) for S-formulas ψ1,ψ2 ∈ LS;

[∃xφ]∗ ∶= ∃x[φ]∗ for S-formula φ ∈ LS and variable x.

The desired result now follows from a simple induction | exercise.

Definition 109. Let S be a �rst-order language. We say S is relational if it contains only

relation symbols.

Definition 110. Let S be a �rst-order language. De�ne a symbol set Sr to consist of the

relation symbols in S, along with:

for every n ∈ N and n-ary relation symbol f ∈ S, an n + 1-ary relation symbol Ff;

and for every constant symbol c ∈ S, a 1-ary relation symbol Cc.

Remark 111. If S is a �rst-order language then Sr is a �rst-order language which is

relational.

Definition 112. Let S be a �rst-order language and let (A,a) be an S-structure. De�ne

ar on Sr by:

ar(R) ∶= a(R) for relation symbols R ∈ S;
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ar(Ff) ∶= {(a1, . . . , an,a(f)((a1, . . . , an))); (a1, . . . , an) ∈ An} for n ∈ N and n-ary func-

tion symbols f ∈ S;

ar(Cc) ∶= {(a(c))} for constant symbol c ∈ S.

We let (A,a)r ∶= (A,ar).

Remark 113. If S is a �rst-order language and A is an S-structure then Ar is an Sr-

structure.

Theorem 114. Let S be a �rst-order language.

(a) For every S-formula ψ ∈ LSn there is an Sr-formula [ψ]r ∈ LSrn such that for all

S-interpretations (A, β) we have (A, β) ⊧ ψ if and only if (Ar, β) ⊧ [ψ]r.

(b) For every Sr-formula ψ ∈ LSrn there is an S-formula [ψ]−r ∈ LSn such that for all

S-interpretations (A, β) we have (A, β) ⊧ [ψ]−r if and only if (Ar, β) ⊧ ψ.

Proof. (a) Let ψ ∈ LS be an S-formula. By the previous theorem, there is a formula φ ∈ LS
which is term-reduced and is logically equivalent to ψ, with freeS(ψ) = freeS(φ). In
particular, for any S-interpretation (A, β), we have (A, β) ⊧ ψ if and only if (A, β) ⊧
φ. Assuming we have de�ned and proved the result for term-reduced formulas,

we can let [ψ]r ∶= [φ]r. By assumption, for all S-interpretations (A, β) we have

(A, β) ⊧ φ if and only if (Ar, β) ⊧ [φ]r. Combining this with ψ â⊧ φ, we get the

desired result.

Therefore it su�ces to prove the result for term-reduced formulas. So suppose ψ ∈ LS
is a term-reduced S-formula. We proceed by induction on term-reduced formulas to

de�ne [ψ]r:

[Rx1⋯xn]r ∶= Rx1⋯xn for n ∈ N, n-ary relation symbol R ∈ S, and variables

x1, . . . , xn;

[x ≡ y]r ∶= x ≡ y for variables x and y;

[fx1⋯xn ≡ x]r ∶= Ffx1⋯xnx for n ∈ N, n-ary function symbol f ∈ S, and variables

x1, . . . , xn, x;

[c ≡ x]r ∶= Ccx for constant symbol c ∈ S and variable x;

[¬χ]r ∶= ¬[χ]r for term-reduced χ ∈ LS;
[(χ1 ∨ χ2)]r ∶= ([χ1]r ∨ [χ2]r) for term-reduced χ1, χ2 ∈ LS;
[∃xχ]r ∶= ∃x[χ]r for term-reduced χ ∈ LS and variable x.

Indeed, with this de�nition in place, it is easy to show, via induction, that for all

S-interpretations (A, β) we have (A, β) ⊧ ψ if and only if (Ar, β) ⊧ [ψ]r | exercise.
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(b) This is similar to part (a), we only note that in particular we will de�ne

[Fft1⋯tnt]−r ∶= ft1⋯tn ≡ t;
[Cct]−r ∶= c ≡ t.

The details are left as an exercise.

Corollary 115. Let S be a �rst-order language and let A and B be S-structures.

Then A ≡B if and only if Ar ≡Br.

Proof. Suppose �rst that A ≡ B and let ψ ∈ LSr0 be an Sr-sentence. By the theorem,

there exists an S-sentence [ψ]−r ∈ LS0 such that for all S-interpretations (A, β) we have

(A, β) ⊧ [ψ]−r if and only if (Ar, β) ⊧ ψ. So we see Ar ⊧ ψ if and only if A ⊧ [ψ]−r if and
only if B ⊧ [ψ]−r if and only if Br ⊧ ψ. Therefore Ar ≡Br.

Conversely, suppose Ar ≡ Br and let ψ ∈ LS0 be an S-sentence. By the theorem, there

exists an Sr-sentence [ψ]r ∈ LSr0 such that for all S-interpretations (A, β) we have (A, β) ⊧ ψ
if and only if (Ar, β) ⊧ [ψ]r. So we see A ⊧ ψ if and only if Ar ⊧ [ψ]r if and only ifBr ⊧ [ψ]r
if and only if B ⊧ ψ. Therefore A ≡B.

8.2 Syntactic Interpretations

8.3 Extensions by Definition

8.4 Normal Forms

Definition 116. Let S be a �rst-order language and let φ ∈ LS be an S-formula. We say

φ is in disjunctive normal form if there exist φ0,0, . . . ,φ0,b, . . . ,φa,0, . . . ,φa,b ∈ LS such that

each φi,j is either atomic or the negation of an atomic formula, and such that

φ = ((φ0,0 ∧⋯ ∧φ0,b) ∨⋯ ∨ (φa,0 ∧⋯ ∧φa,b)).

Definition 117. Let S be a �rst-order language and let φ ∈ LS be an S-formula. We de�ne

qnS ∶ LS → N by

qnS(t1 ≡ t2) ∶= 0 for S-terms t1 and t2;

qnS(Rt1⋯tn) ∶= 0 for n ∈ N, n-ary relations symbol R ∈ S, and S-terms t1, . . . , tn ∈ TS;

qnS(¬ψ) ∶= qnS(ψ) for S-formula ψ ∈ LS;

qnS((ψ1 ∨ψ2)) ∶= qnS(ψ1) + qnS(ψ2) for S-formulas ψ1,ψ2 ∈ LS;

qnS(∃xψ) ∶= qnS(ψ) + 1 for S-formula ψ ∈ LS and variable x.

Page 35 of 68



PMATH 432 Lecture Notes

We say φ is quanti�er-free if qnS(φ) = 0.

Theorem 118. Let S be a �rst-order language and let φ ∈ LS be an S-formula. If φ is

quanti�er-free then φ is logically equivalent to a formula in disjunctive normal form.

Proof. Let φ ∈ LS be an S-formula. Then there exists some k ∈ N such that φ ∈ LSk. Let

φ0, . . . ,φn be the atomic formulas which appear in φ. For an S-interpretation A = (A,a)
and (a0, . . . , ak−1) ∈ Ak, set

ψ(A,(a0,...,ak−1)) ∶= ψ0 ∧⋯ ∧ψn,

where

ψi ∶=
⎧⎪⎪⎨⎪⎪⎩

φi if A ⊧ φi[a0, . . . , ak−1]
¬φi if A ⊧ ¬φi[a0, . . . , ak−1].

Note that A ⊧ ψ(A,(a0,...,ak−1))[a0, . . . , ak−1] for S-interpretation A = (A,a) and (a0, . . . , ak−1) ∈
Ak. Moreover,

∣{ψ(A,(a0,...,ak−1)); A = (A,a) is an S-structure and (a0, . . . , ak−1) ∈ Ak with A ⊧ φ[a0, . . . , ak−1]}∣ ≤ 2n+1,

and so we can list it as χ1, . . . , χm. Let

χ ∶= χ1 ∨⋯ ∨ χm.

Note that χ is in disjunctive normal form.

We claim φ â⊧ χ. Suppose B = (B,b) is an S-interpretation and (b0, . . . , bk−1) ∈ Bk
is such that B ⊧ φ[b0, . . . , bk−1]. Then ψ(B,(b0,...,bk−1) = χi for some i ∈ {1, . . . ,m}. By

construction, we have B ⊧ φ[b0, . . . , bk−1], and hence B ⊧ χi[b0, . . . , bk−1]. By de�nition

we therefore have B ⊧ χ[b0, . . . , bk−1].
Conversely, suppose B = (B,b) is an S-interpretation and (b0, . . . , bk−1) ∈ Bk is such

that B ⊧ χ[b0, . . . , bk−1]. Then B ⊧ χi[b0, . . . , bk−1] for some i ∈ {1, . . . ,m}. Write χi =
ψ(A,(a0,...,ak−1)) for some S-structure A and some (a0, . . . , ak−1) ∈ Ak. So we have B ⊧
ψ(A,(a0,...,ak−1))[b0, . . . , bk−1]. By de�nition of ψ(A,(a0,...,ak−1)), we can see that this means

B ⊧ φj[b0, . . . , bk−1] if and only if A ⊧ φj[a0, . . . , ak−1], for each j ∈ {0, . . . , n}. Because φ is

obtained from φ0, . . . ,φn via only disjunctions and negations (since qnS(φ) = 0), it follows
from a simple induction that A ⊧ φ[a0, . . . , ak−1] if and only if B ⊧ φ[b0, . . . , bk−1] (check).
But we know A ⊧ φ[a0, . . . , ak−1], and thus we may conclude B ⊧ φ[b0, . . . , bk−1].

Therefore φ â⊧ χ and χ is in disjunctive normal form.

Definition 119. Let S be a �rst-order language and let φ ∈ LS be an S-formula. We say φ

is in conjunctive normal form if there exist φ0,0, . . . ,φ0,b, . . . ,φa,0, . . . ,φa,b ∈ LS such that

each φi,j is either atomic or the negation of an atomic formula, and such that

φ = ((φ0,0 ∨⋯ ∨φ0,b) ∧⋯ ∧ (φa,0 ∨⋯ ∨φa,b)).
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Definition 120. Let S be a �rst-order language and let φ ∈ LS be an S-formula. We say

φ is in prenex normal form if it is of the form

φ =Q0x0⋯Qmxmψ

for some Q0, . . . ,Qm ∈ {∀,∃}, some variables x0, . . . , xm, and some quanti�er-free S-formula

ψ ∈ LS.

Theorem 121. Let S be a �rst-order language and let φ ∈ LS be an S-formula. Then

φ is logically equivalent to an S-formula ψ ∈ LS in prenex normal form with freeS(φ) =
freeS(ψ).

Proof. Exercise | see class notes.

9 Extensions of First-Order Logic

10 Limitations of the Formal Method

10.1 Decidability and Enumerability

Remark 122. We will work at a relatively informal level when it comes to procedures.

The essential ideas of a procedure are as follows.

A procedure may run on inputs of words over a language. It may output. It may halt.

Basically, it is a �nite set of instructions.

We will be more precise when we get to a particular type of procedure, namely register

machines.

Remark 123. If we have a procedure P, then since it is essentially a �nite set of instruc-

tions, it can only refer to �nitely many symbols. This is not very compatible with in�nite

alphabets. If we have a countable alphabet, then this can easily be encoded in a new �nite

alphabet by putting 0, . . . , 9, 0, . . . , 9 into the new language and interpreting, for example,

v12 as v12.

As such, we will only consider �nite alphabets in the rest of this section, while keeping

in mind that what we do can be applied to countable alphabets.

Definition 124. Let A be an alphabet, let W ⊆ A∗ be a set of words over A, and let P

be a procedure. We say P is a decision procedure for W if for every input x ∈ A∗, P
eventually stops, having (before stopping) output exactly one word y ∈ A∗, where y = ◻ if

x ∈W and y ≠ ◻ if x ∉W.

We say W is decidable if there is a decision procedure for W.
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Definition 125. Let A be a �nite alphabet, let W ⊆ A∗ be a set of words over A, and let

P be a procedure. We say P is an enumeration procedure for W if P, once having been

started, eventually outputs exactly the words in W (possibly with repetition).

We say W is enumerable if there is an enumeration procedure for W.

Definition 126. Let A = {a0, . . . , an} be a �nite alphabet (with a given order) and let

x,y ∈ A∗ be words over A. We write x <L y if either len(x) < len(y), or len(x) = len(y) and
there exist i, j ∈ {0, . . . , n} and z,w,w ′ ∈ A∗ such that i < j and x = zaiw and y = zajw ′.

Then <L is called the lexicographical ordering on A∗.

Example 127. If A = {x,y, z} then ◻ <L z, z <L xy, and xyzyxy <L xyzyyx.

Example 128. Let A be a �nite alphabet. Then A∗ is enumerable. Indeed, there is clearly

a procedure for listing out the elements in A∗ in lexicographical order.

Example 129. The set {φ ∈ LS∞0 ; ⊧ φ} ⊆ A∞ is enumerable. Indeed, note that this is just

the set {φ ∈ LS∞0 ; ⊢ φ}. So we can generate all derivations of the sequent calculus of length

n on the �rst n formulas and the �rst n terms using sequents of length at most n, and

list any sentences found to be derivable. Do this for n ∈ N one at a time.

Theorem 130. Let A be a �nite alphabet and let W ⊆ A∗ be a set of words over A. If
W is decidable then W is enumerable.

Proof. Suppose W is decidable. Let P be a decision procedure for W. To list W, start

with a list for A∗ (as described in the example above). For each word x ∈ A∗, use P to

check whether x ∈W or x ∉W. If it is, then print x and continue. If it isn't, then continue

with the next word in A∗.

Theorem 131. Let A be a �nite alphabet and let W ⊆ A∗ be a set of words over A.
Then W is decidable if and only if W and A∗ ∖W are enumerable.

Proof. Suppose �rst that W is decidable. We just saw that this means that W is enumer-

able, so we need only show that A∗ ∖W is enumerable. But since W is decidable, we have

that A∗ ∖W is decidable. Indeed, given a decision procedure P for W, to check if x ∈ A∗
is a member of A∗ ∖W, we simply run P on x and check whether x ∉W or not. So by the

previous theorem again, we have that A∗ ∖W is enumerable.

Conversely, suppose thatW and A∗∖W are both enumerable. So there are enumeration

procedures P and Q forW and A∗∖W respectively. To decide whether x ∈W, run each of

P and Q on x (alternating one step at a time). At some point x will be printed by either

P or Q. If it is printed by P then x ∈W, and if it is printed by Q then x ∉W.
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Definition 132. Let A and B be �nite alphabets and let f ∶ A∗ → B∗ be a function. We

say f is computable if there exists a procedure that on every input x ∈ A∗ halts having

printed exactly one output f(x) ∈ B∗.

10.2 Register Machines

Definition 133. Let A = {a0, . . . , ar} be a �nite alphabet. We will let R0, R1, . . . denote

registers. At each stage of a computation, each register will contain a word from A∗. An
instruction is something of the following form:

(1)

L LET Ri = Ri + aj
for L, i ∈ N and j ∈ {0, . . . , r}. This means add the letter aj at the end of the word

currently in register Ri.

(2)

L LET Ri = Ri − aj
for L, i ∈ N and j ∈ {0, . . . , r}. This means remove the last letter from the word in

register Ri if it is aj.

(3)

L IF Ri = ◻ THEN L ′ ELSE L0 OR ⋯ OR Lr

for L,L ′, L0, . . . , Lr, i ∈ N. This means move to line L ′ if register Ri contains the empty

word, and move to line L` if register Ri contains a word which ends with a`.

(4)

L PRINT

for L ∈ N. This means print the word in register R0.

(5)

L HALT

for L ∈ N. This means end/stop/halt the computation.

For an instruction, the number L at the beginning is called its label. A register program

(or just program) over A is a �nite sequence α0, . . . , αk of instructions such that:

(i) Instruction αi has label i;

(ii) For any instruction of the form (3), all of L ′, L0, . . . , Lr are numbers in the range

{0, . . . , k};
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(iii) The last instruction αk is

k HALT,

and no other instructions are of the form (5).

Remark 134. Each register program gives rise to a procedure. Indeed, simply \run" the

list of instructions, altering the contents of the registers as necessary.

As a program is a �nite sequence of instructions, it can only mention �nitely many

registers. So for a given program, there are only �nitely many registers in play.

Definition 135. Let A = {a0, . . . , ar} be a �nite alphabet, let P be a register program,

and let x,y ∈ A∗ be words over A. We say P is started with x if P begins its computation

with x in register R0 and the empty word ◻ in the other registers.

We write P ∶ x → halt if P started with x eventually reaches the halt instruction. We

write P ∶ x → ∞ if we do not have P ∶ x → halt. We write P ∶ x → y if P started with x

eventually halts, having printed exactly one output y.

Remark 136. If we ever write an instruction as

L GOTO L ′,

then this should be understood as an abbreviation of

L IF R0 = ◻ THEN L ′ ELSE L ′ OR ⋯ OR L ′.

Definition 137. Let A = {a0, . . . , ar} be a �nite alphabet, let W ⊆ A∗ be a set of words

over A, and let P be a register program. We say P decides W if for all x ∈ A∗ we have

P ∶ x→ ◻ if x ∈W and P ∶ x→ y for some y ≠ ◻ if x ∉W.

We say W is register decidable (or R-decidable) if there is a register program which

decides W.

Definition 138. Let A = {a0, . . . , ar} be a �nite alphabet, let W ⊆ A∗ be a set of words

over A, and let P be a register program. We say P enumerates W if P started with ◻
prints out exactly the words in W (possibly with repetition and possibly with/without

halting).

We say W is register enumerable (or R-enumerable) if there is a register program

which enumerates W.

Definition 139. Let A = {a0, . . . , ar} and B = {b0, . . . , bs} be �nite alphabets, let F ∶ A∗ →
B∗ be a function, and let P be a register program over A ∪B = {a0, . . . , ar, b0, . . . , bs}. We

say P computes F if for all x ∈ A∗ we have P ∶ x→ F(x).
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We say F is register computable (or R-computable) if there is a register program which

computes F.

Remark 140. [Church's Thesis] Recall that a register program gives rise to a procedure

in the obvious way. It follows that if something is register decidable then it is also decidable.

The same holds with `decidable' replaced by `enumerable' or `computable'.

Church's Thesis states that for any reasonable model of computation, the converses

of the above three statements also hold. This cannot be proved as we do not have a

de�nition of `reasonable', and more importantly, because we do not have a rigorous notion

of `procedure'. We will use Church's Thesis when convenient, assuming it to hold in our

circumstances based on the experiences of others.

More generally, the Church Thesis (or the Church-Turing Thesis) says that our de�ni-

tion of `computability' does indeed capture the notion we are attempting to de�ne.

10.3 The Halting Problem for Register Machines

Definition 141. Let A = {a0, . . . , ar} be a �nite alphabet and let P be a register program

over A. We de�ne the alphabet

BA ∶= {a0, . . . , ar,A,B,C,D,E, F,G,H, I, J,K, L,M,N,O,P,Q,R, S, T,U,V,W,X,Y,Z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,=,+,−,◻, §}.

To P we associate a word over BA, by writing out the program explicitly and using § to

separate lines. We could of course de�ne this more rigorously but the idea should be clear

with an example.

Example 142. The register program

0 LET R1 = R1 + a0
1 PRINT

2 HALT

becomes the word

0LETR1 = R1 + a0§1PRINT§2HALT .

Definition 143. Let A = {a0, . . . , ar} be a �nite alphabet and let P be a register program

over A. We can order BA by the lexicographical order <L. This gives a natural bijection

from N to B∗. So there exists an n ∈ N such that the word corresponding to P is the image

of n under this bijection. We de�ne the G�odel number of P to be

ξP ∶= a0⋯a0
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
n times

.
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Definition 144. Let A = {a0, . . . , ar} be a �nite alphabet. We let

Π ∶= {ξP; P is a register program over A},

Π ′
halt

∶= {ξP; P is a register program over A with P ∶ ξP → halt},

and

Πhalt ∶= {ξP; P is a register program over A with P ∶ ◻→ halt}.

Lemma 145. Let A = {a0, . . . , ar} be a �nite alphabet. Then Π is register decidable.

Proof. Let x ∈ A∗. One can check if x is purely composed of a0's. If it isn't, then x ∉ Π. If
it is, then it is composed on exactly n a0's, for some n ∈ N. Generate the nth word of BA∗
relative to the lexicographical ordering. Check if this represents a valid register program.

If it does then x ∈ Π. Otherwise x ∉ Π.

Theorem 146. [Undecidability of the Halting Problem] Let A = {a0, . . . , ar} be

a �nite alphabet.

(a) The set Π ′
halt

is not register decidable.

(b) The set Πhalt is not register decidable.

Proof. First we prove part (a). Assume, for a contradiction, that there is a program P0

which decides Π ′
halt

. This means that for any program P, we have

P0 ∶ ξP → ◻ if P ∶ ξP → halt ,

P0 ∶ ξP → y for some y ≠ ◻ if P ∶ ξP →∞.

We now construct a program P1 based on P0. To de�ne P1, replace the last instruction

k HALT

in P0 by

k IF R0 = ◻ THEN k ELSE k + 1 OR ⋯ OR k + 1,

and replace all instructions of the form

L PRINT

by

L GOTO k.

Finally, add the line

k + 1 HALT

and increment all labels appropriately.
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Note that

P1 ∶ ξP →∞ if P ∶ ξP → halt ,

P1 ∶ ξP → halt if P ∶ ξP →∞.

Indeed, if P ∶ ξP → halt then P0 ∶ ξP → ◻, so we must have gotten to a print instruction in

P0, which we replaced with a jump into an in�nite loop in P1, and similarly for the other

case.

But now we see that

P1 ∶ ξP1 →∞ if P1 ∶ ξP1 → halt ,

P1 ∶ ξP1 → halt if P1 ∶ ξP1 →∞,

which is of course absurd. Thus no program decides Π ′
halt

and it is not register decidable.

Now we turn to part (b). First we give a procedure that, given a program P, gives

another program P+ such that

(3) ξP ∈ Π ′
halt

if and only if ξP+ ∈ Πhalt.

Given P, compute ξP = a0⋯a0 (n times). Let P+ be the program that begins with the

lines

0 LET R0 = R0 + a0
⋮

n − 1 LET R0 = R0 + a0
followed by the lines of P with all labels increased by n. Clearly P+ has the required

property (3).

Now assume, for a contradiction, that we had a program which decides Πhalt. We will

use this to describe a program which decides Π ′
halt

. Given x ∈ A∗, �rst decide whether

or not x ∈ Π. If x ∉ Π then x ∉ Π ′
halt

. Otherwise, x = ξP for some program P, and we

can compute which program this is. Now we can compute P+ and ξP+. Now, using our

assumption, decide whether or not ξP+ ∈ Φhalt, and hence whether or not ξP ∈ Π ′
halt

. But

this contradicts part (a), so there is no such program and thus Πhalt is not decidable.

Lemma 147. The set Πhalt is enumerable.

Proof. To enumerate Πhalt, for each n ∈ N with n ≥ 1, generate the �nitely many programs

with G�odel number of length at most n and then run each of these programs with input

◻ for up to n steps. List out all programs which halted.

Corollary 148. The set A∗ ∖Πhalt is not enumerable.

Proof. Assume, for a contradiction, thatA∗∖Πhalt is enumerable. Since Πhalt is enumerable,

we saw that this means Πhalt is decidable. This contradicts the previous theorem.
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10.4 The Undecidability of First-Order Logic

10.5 Trahtenbrot’s Theorem and the Incompleteness of Second-
Order Logic

10.6 Theories and Decidability

Definition 149. Let S be a �rst-order language and let T ⊆ LS0 be a set of S-sentences.

We say that T is a theory if T is satis�able and whenever φ ∈ LS0 is such that T ⊧ φ, we
have φ ∈ T (that is, T is closed under logical consequence).

Example 150. For any S-structure A, the theory of A, Th(A), is a theory.

Definition 151. Let S be a �rst-order language and let Φ ⊆ LS0 be a set of S-sentences.

We let

Φ⊧ ∶= {φ ∈ LS0 ; Φ ⊧ φ}.

Proposition 152. Let S be a �rst-order language and let Φ ⊆ LS0 be a set of S-

sentences. If Φ is satis�able then Φ⊧ is a theory, and if Φ is a theory then Φ⊧ =Φ.

Proof. Suppose SatΦ. So there exists an S-structure A such that A ⊧Φ. Suppose φ ∈Φ⊧.
This means Φ ⊧ φ. As A ⊧ Φ, we see A ⊧ φ. Thus A ⊧ Φ⊧ and so SatΦ⊧. Now if Φ⊧ ⊧ φ
for some φ ∈ LS0, then Φ ⊧ φ (indeed, if I ⊧ Φ for an S-interpretation I, then I ⊧ Φ⊧ and
hence I ⊧ φ by assumption) and so φ ∈Φ⊧. So Φ⊧ is closed under logical consequence and

is thus a theory.

Now suppose that Φ is a theory. Certainly Φ ⊆ Φ⊧. Suppose φ ∈ Φ⊧. This means

Φ ⊧ φ. But Φ is closed under logical consequence, so φ ∈ Φ. Hence Φ⊧ ⊆ Φ and thus

equality holds.

Definition 153. Let ΦPA consist of exactly the following Sar-sentences:

∀v0¬ + v01 ≡ 0;
∀v0 + v00 ≡ v0;
∀v0 ⋅ v00 ≡ 0;
∀v0∀v1(+v01 ≡ +v11→ v0 ≡ v1);
∀v0∀v1 + v0 + v11 ≡ + + v0v11;
∀v0∀v1 ⋅ v0 + v11 ≡ + ⋅ v0v1v0;
for all variables x1, . . . , xn, y and all φ ∈ LSar such that freeSar(φ) ⊆ {x1, . . . , xn, y}, the sentence

∀x1⋯∀xn((φ 0
y
∧ ∀y(φ→ φ+y1

y
))→ ∀yφ).
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Remark 154. Note that N ⊧ ΦPA, so SatΦPA. This means that Φ⊧PA is a theory, called

�rst-order Peano arithmetic. This also means that Φ⊧PA ⊆ Th(N). We will in fact see that

Φ⊧PA ⊂ Th(N).

Definition 155. Let S be a �nite �rst-order language and let T ⊆ LS0 be a theory. We

say T is axiomatizable if there is a decidable set Φ ⊆ LS0 of S-sentences such that T = Φ⊧.
We say T is �nitely axiomatizable if there is a �nite set Φ ⊆ LS0 of S-sentences such that

T =Φ⊧.

Remark 156. Any �nite set is decidable, so a �nitely axiomatizable theory is axiomatiz-

able.

Theorem 157. Let S be a �nite �rst-order language and let T ⊆ LS0 be a theory. If T

is axiomatizable then T is enumerable.

Proof. Since T is axiomatizable, there exists a decidable set Φ ⊆ LS0 of S-sentences such

that T =Φ⊧. Generate systematically all derivable sequents and check in each case whether

the members of the antecedent belong to Φ (since it is decidable). If yes and the succedent

is a sentence, then output it.

Remark 158. It is not the case that an axiomatizable theory is necessarily decidable. The

set of all S∞-sentences is a counter example. See book for details.

Definition 159. Let S be a �rst-order language and let T ⊆ LS0 be a theory. We say that

T is complete if for every S-sentence φ ∈ LS0 we have φ ∈ T or ¬φ ∈ T .

Example 160. For any structure A, Th(A) is a complete theory.

Theorem 161. Let S be a �nite �rst-order language and let T ⊆ LS0 be a theory.

(a) If T is axiomatizable and complete then T is decidable.

(b) If T is enumerable and complete then T is decidable.

Proof. The previous theorem showed that if T is axiomatizable then T is enumerable, so

we need only prove part (b). For any S-sentence φ ∈ LS0, since T is complete, φ ∈ T or

¬φ ∈ T . Since T is consistent (as it is a theory), we cannot have both φ ∈ T and ¬φ ∈ T .
Hence exactly one of φ and ¬φ is in T .

To decide whether φ ∈ T , enumerate T until either φ or ¬φ appears. As we just argued,

one of them is in T and so will eventually appear. If φ appears then φ ∈ T , and if ¬φ
appears then φ ∉ T . Since they are not both in T , we will not produce the wrong answer.
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Definition 162. Let P be a register program over {∣} with k instructions such that Rn is

the largest register mentioned by the instructions of P, and let (L,m0, . . . ,mn) ∈ Nn+2 be
such that L ≤ k. We say that (L,m0, . . . ,mn) is the con�guration of P after s steps if P

started with ◻ runs for at least s steps, and after s steps, instruction L is to be executed

next, with registers R0, . . . , Rn containing m0, . . . ,mn respectively (by which we mean ∣⋯∣
mi times).

Theorem 163. [Undecidability of Arithmetic] The theory of arithmetic, Th(N),
is not decidable.

Proof. We will e�ectively assign, for each program P over {∣}, an Sar-sentence φP such

that N ⊧ φP if and only if P ∶ ◻ → halt. Indeed, assume we have this and assume, for a

contradiction, that Th(N) is decidable. Then to decide whether or not a program P over

{∣} is in Πhalt, we can compute φP and then decide whether or not φP is in Th(N), which
would decide the halting set Πhalt. This is absurd though, so it su�ces to prove this claim.

So we e�ectively construct φP. Let k be the label of the last line in P, and let Rn be

the biggest register mentioned by the instructions of P. By lemma (164), there exists an

e�ectively constructed Sar-formula χP ∈ LS2n+3 such that N ⊧ χP[`0, . . . , `n, L,m0, . . . ,mn] if
and only if P, started with con�guration (0, `0, . . . , `n), after �nitely many steps reaches

con�guration (L,m0, . . . ,mn). Now we let

φP ∶= ∃v0⋯∃vnχP(0, . . . , 0, k, v0, . . . , vn).

Since the only way program P can halt is to reach a con�guration of the form (k,m0, . . . ,mn)
after �nitely many steps, it is easy to see that N ⊧ φP if and only if P started with input

◻ halts. This completes the proof.

Lemma 164. This is the χP-lemma, which we have omitted | see class notes.

Proof. Omitted.

Lemma 165. [β-Function Lemma] This is the β-function lemma, which we have

omitted | see class notes.

Proof. Omitted.

Corollary 166. The theory of arithmetic, Th(N), is neither axiomatizable nor enu-

merable. In particular, Φ⊧PA ⊂ Th(N).

Proof. We saw that if a theory is complete and either axiomatizable or enumerable then it

is decidable, but we just saw that Th(N) is not decidable and we know that it is complete.

Moreover, since Φ⊧PA is axiomatizable (by ΦPA) and since Th(N) is not axiomatizable, they

cannot be equal. But we said Φ⊧PA ⊆ Th(N), and thus we conclude Φ⊧PA ⊂ Th(N).
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Definition 167. Let r ∈ N, let R ⊆ Nr be an r-ary relation, and let P be a program over

{∣}. We say P decides R if P started with con�guration (0, `0, . . . , `r−1) eventually halts,

producing ◻ if (`0, . . . , `r−1) ∈ R and producing n ≠ 0 otherwise. We say R is decidable if

there is a program over {∣} which decides R.

Definition 168. Let r ∈ N, let F ∶ Nr → N be an r-ary function, and let P be a program

over {∣}. We say P computes F if P started with con�guration (0, `0, . . . , `r−1) eventually

halts, producing F(`0, . . . , `r−1). We say F is computable if there is a program over {∣}
which computes F.

Theorem 169. Let r ∈ N, let R ⊆ Nr be an r-ary relation, and let f ∶ Nr → N be an r-ary

function.

(a) If R is decidable then there is an Sar-formula φ ∈ LSr such that for all (`0, . . . , `r−1) ∈
Nr,

(`0, . . . , `r−1) ∈ R if and only if N ⊧ φ[`0, . . . , `r−1].

(b) If f is computable then there is an Sar-formula φ ∈ LSr+1 such that for all (`0, . . . , `r) ∈
Nr+1,

f(`0, . . . , `r−1) = `r if and only if N ⊧ φ[`0, . . . , `r],

and in particular

N ⊧ ∃=1xφ(`0, . . . , `r−1, x).

Proof. We will prove (a) and leave (b) as a similar exercise. Let P be a program which de-

cides R. Let n ≥ r−1 be such that no register larger than Rn is mentioned in the instructions

of P. Let αL0 , . . . , αLm be the print instructions in P. Now we note that (`0, . . . , `r−1) ∈ R
if and only if P, beginning with con�guration (0, `0, . . . , `r−1, 0, . . . , 0), after �nitely many

steps reaches a con�guration of the form (Li, 0,m1, . . . ,mn) for some i ∈ {0, . . . ,m}. This
is because this is the only way to print ◻; arrive at a print instruction with 0 in register R0.

But this happens if and only if N ⊧ ∃x1⋯∃xn⋁mi=0 χP(`0, . . . , `r−1, 0, . . . , 0, Li, 0, x1, . . . , xn),
where χP is from lemma (164). So we let

φ ∶= ∃x1⋯∃xn
m

⋁
i=0

χP(v0, . . . , vr−1, 0, . . . , 0, Li, 0, . . . , 0).

It follows quickly from our discussion above that φ has the desired properties.
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10.7 Self-Referential Statements and Gödel’s Incompleteness The-
orems

Definition 170. Let Φ ⊆ LSar0 , let r ∈ N, let R ⊆ Nr be an r-ary relation, and let φ ∈ LSarr .

We say φ represents R in Φ if for all (n0, . . . , nr−1) ∈ Nr,

if (n0, . . . , nr−1) ∈ R then Φ ⊧ φ(n0, . . . , nr−1),
if (n0, . . . , nr−1) ∈ R then Φ ⊧ ¬φ(n0, . . . , nr−1).

We say R is representable in Φ if there exists a formula which represents R in Φ.

Definition 171. Let Φ ⊆ LSar0 , let r ∈ N, let F ∶ Nr → N be an r-ary function, and let

φ ∈ LSarr+1. We say φ represents F in Φ if for all (n0, . . . , nr) ∈ Nr+1,

if F(n0, . . . , nr−1) = nr then Φ ⊢ φ(n0, . . . , nr),
if F(n0, . . . , nr−1) ≠ nr then Φ ⊢ ¬φ(n0, . . . , nr),
Φ ⊢ ∃=1xφ(n0, . . . , nr−1, x).

We say F is representable in Φ if there exists a formula which represents F in Φ.

Lemma 172. Let Φ,Ψ ⊆ LSar0 .

(a) If Φ is inconsistent then every relation over N and every function over N is

representable in Φ.

(b) If Φ ⊆ Ψ then the relations and functions over N which are representable in Φ

are also representable in Ψ.

(c) If Φ is consistent and decidable then every relation representable in Φ is decid-

able and every function representable in Φ is computable.

Proof. (a) We can take 0 ≡ 0 to represent any relation or function over N. Indeed, since
Φ is inconsistent, Φ ⊢ φ for all φ ∈ LSar. Hence the de�nition is clearly satis�ed.

(b) If φ represents a relation or function in Φ, then φ also represents the same relation

or function in Ψ. Indeed, if Φ ⊧ ψ then Ψ ⊧ ψ for any ψ ∈ LSar.

(c) Suppose r ∈ N and R ⊆ Nr is an r-ary relation over N. Suppose φ ∈ LSr represents

R in Φ. Let (n0, . . . , nr−1) ∈ Nr. To decide whether or not (n0, . . . , nr−1) ∈ R, note
that Φ⊢ is enumerable, since Φ is decidable. So we can enumerate Φ⊢ until one of

φ(n0, . . . , nr−1) or ¬φ(n0, . . . , nr−1) appears. Since φ represents R in Φ, one of these

must appear by de�nition. Since Φ is consistent, both cannot appear. Thus exactly

one will appear and this tells us whether (n0, . . . , nr−1) ∈ R.
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Suppose r ∈ N and F ∶ Nr → N is an r-ary function over N. Suppose φ ∈ LSr+1 represents
F in Φ. Let (n0, . . . , nr−1) ∈ Nr. To compute F(n0, . . . , nr−1), again note that Φ⊢ is

enumerable. Enumerate Φ⊢ until a formula of the form φ(n0, . . . , nr−1,m) appears.

Since Φ is consistent and Φ ⊧ ∃=1xφ(n0, . . . , nr−1, x), exactly one such formula will

appear. This tells us F(n0, . . . , nr−1) =m.

Definition 173. Let Φ ⊆ LSar0 . We say Φ allows representations if all decidable relations

over N and all computable functions over N are representable in Φ.

Theorem 174. The theory of arithmetic, Th(N), allows representations.

Proof. Note that Th(N) is a complete theory. It is an easy exercise to observe that

theorem (169) directly implies the desired result (because it is complete).

Theorem 175. The set ΦPA allows representations.

Proof. Omitted.

Remark 176. To prove the previous theorem, we would proceed as in the proof that the

theory of arithmetic allows representations, which uses lemma (164). Hence it is required

to create an analogous lemma in which Th(N) is replaced by ΦPA.

Remark 177. For the remainder of this section, we �x an e�ective coding of the Sar-

formulas into N (called a G�odel numbering) which is surjective. For an Sar-formula

φ ∈ LSar we will write nφ for the G�odel number of φ.

The goal here is to examine self-referential formulas. Clearly a Sar-formula φ cannot

contain itself as a sub-formula, so it cannot directly talk about itself. But φ can mention

its G�odel number, nφ. It is in this sense that a formula can be self-referential.

Theorem 178. [Fixed-Point Theorem] Let Φ ⊆ LSar0 and let ψ ∈ LSar1 . If Φ allows

representations then there exists a φ ∈ LSar0 such that

Φ ⊢ (φ↔ ψ(nφ)).

Proof. De�ne the function F ∶ N2 → N by

F(k,m) ∶=
⎧⎪⎪⎨⎪⎪⎩

nχ(m) if k = nχ for some χ ∈ LSar1

0 otherwise.

Note that F is clearly computable and that F(nχ,m) = nχ(m) for any χ ∈ LSar1 .
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Since Φ allows representations, there exists an α ∈ LSar3 such that for all k,m, t ∈ N we

have

if F(k,m) = t then Φ ⊢ α(k,m, t),
if F(k,m) ≠ t then Φ ⊢ ¬α(k,m, t),
Φ ⊢ ∃=1zα(k,m, z).

Let

β ∶= ∀z(α(x, x, z)→ ψ(z))

and take

φ ∶= ∀z(α(nβ, nβ, z)→ ψ(z)).

We claim thatΦ ⊢ (φ↔ ψ(nφ)). First we show thatΦ ⊢ (φ→ ψ(nφ)). Well, note that

β ∈ LSar1 , so F(nβ, nβ) = nβ(nβ). But we see β(nβ) = φ, so this is actually F(nβ, nβ) = nφ.
By de�nition of α this means

(4) Φ ⊢ α(nβ, nβ, nφ).

Now it is clear by de�nition of φ that

{φ} ⊢ (α(nβ, nβ, nφ)→ ψ(nφ)).

So if Φ ⊢ φ then Φ ⊢ ψ(nφ). In other words, Φ ⊢ (φ→ ψ(nφ)).
It remains to show thatΦ ⊢ (ψ(nφ)→ φ). By de�nition of α we seeΦ ⊢ ∃=1zα(nβ, nβ, z).

Together with (4), we get

Φ ⊢ ∀z(α(nβ, nβ, z)→ z ≡ nφ).

Suppose Φ ⊢ ψ(nφ). Then the above shows Φ ⊢ ∀z(α(nβ, nβ, z)→ ψ(z)). However this is
just the de�nition of φ, so we have Φ ⊢ φ. That is to say, Φ ⊢ (ψ(nφ)→ φ).

Definition 179. Let Φ ⊆ LSar0 and let Ψ ⊆ LSar . We say Ψ is representable in Φ if the

unary relation {(nφ); φ ∈ Ψ} over N is representable in Φ.

Lemma 180. Let Φ ⊆ LSar0 . If Φ is consistent and allows representations then Φ⊢ is

not representable in Φ.

Proof. Assume, for a contradiction, that Φ⊢ is representable in Φ. This means that there

exists a formula χ ∈ LSar1 which represents {nφ; φ ∈Φ⊢} in Φ. In particular, for any α ∈ LSar0

we have

if α ∈Φ⊢ then Φ ⊢ χ(n),
if α ∉Φ⊢ then Φ ⊢ ¬χ(n).
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To put this another way, for any α ∈ LSar0 we have

if Φ ⊢ α then Φ ⊢ χ(nα),
if not Φ ⊢ α then Φ ⊢ ¬χ(nα).

Since Φ is consistent, we also know

if Φ ⊢ ¬χ(nα) then not Φ ⊢ χ(nα)

and hence

if Φ ⊢ ¬χ(nα) then not Φ ⊢ α.
Combining everything we get

not Φ ⊢ α if and only if Φ ⊢ ¬χ(nα)

for any α ∈ LSar0 .

But we can apply the �xed-point theorem to ¬χ to conclude that there is a formula

φ ∈ LSar0 such that

Φ ⊢ (φ↔ ¬χ(nφ)).
Putting the last two equations together (with φ in place of α) yields

Φ ⊢ φ if and only if Φ ⊢ ¬χ(nφ) if and only if not Φ ⊢ φ.

Contradiction.

Theorem 181. [Tarski's Theorem] Let Φ ⊆ LSar0 . If Φ is consistent and allows

representations then Φ⊧ is not representable in Φ.

In particular, Th(N) is not representable in Th(N).

Proof. Since Φ⊧ =Φ⊢, the �rst part follows immediately form the previous lemma.

To see that the theory of arithmetic is not representable in itself, note that Th(N) is

consistent and allows representations, and that Th(N)⊧ = Th(N) because it is a theory.

Therefore this is a direct consequence of the �rst part of the theorem.

Theorem 182. [G�odel's First Incompleteness Theorem] Let Φ ⊆ LSar0 . If Φ is

consistent, decidable, and allows representations, then there is an Sar-sentence φ ∈
LSar0 such that neither Φ ⊢ φ nor Φ ⊢ ¬φ.

Proof. Assume, for a contradiction, that for every Sar-sentence φ ∈ LSar0 , we have either

Φ ⊢ φ or Φ ⊢ ¬φ. Then Φ⊢ is a complete theory (because Φ is consistent). Since Φ is

decidable, Φ⊢ is enumerable. But we saw that a complete enumerable theory was decidable.

Thus Φ⊢ is decidable. Since Φ allows representations, this means Φ⊢ is representable in

Φ. But because Φ is consistent and allows representations, the previous lemma says that

Φ⊢ is not representable in Φ. Contradiction.
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Definition 183. Let Φ ⊆ LSar0 be decidable and allow representations. Fix some (any)

e�ective enumeration of all derivations in the sequent calculus. We de�ne a binary relation

HΦ ⊆ N2 by (t,m) ∈ HΦ if and only if the mth derivation in the sequent calculus ends with

a sequent of the form ψ0⋯ψk−1φ with ψ0, . . . ,ψk−1 ∈Φ and t = nφ.

Remark 184. Note that HΦ is decidable since Φ is decidable. It is not hard to see

that Φ ⊢ φ if and only if there is an m ∈ N such that (nφ,m) ∈ HΦ. Since Φ allows

representations, there is some formula ψΦ ∈ LSar2 which represents HΦ in Φ. If we let

DerΦ ∶= ∃v1ψΦ(v0, v1), then we can apply the �xed-point theorem to ¬DerΦ to get that

there exists some φΦ ∈ LSar0 such that

Φ ⊢ (φΦ↔ ¬DerΦ(nφΦ)).

Lemma 185. Let Φ ⊆ LSar0 be decidable and allow representations. If Φ is consistent

then not Φ ⊢ φΦ.

Proof. Assume, for a contradiction, that Φ ⊢ φΦ. Then there exists an m ∈ N such that

(nφΦ,m) ∈ HΦ. Since ψΦ represents HΦ in Φ, we see Φ ⊢ ψΦ(nφΦ ,m). That is to say,

Φ ⊢ DerΦ(nφΦ) (by de�nition of Der).

Now note that our original assumption, combined with the de�nition of φΦ, yields

Φ ⊢ ¬DerΦ(nφΦ). Thus Φ is inconsistent. Contradiction.

Remark 186. Note that Φ ⊢ 0 ≡ 0, so we have ConΦ if and only if not Φ ⊢ ¬0 ≡ 0. We

hence de�ne

ConsisΦ ∶= ¬DerΦ(n¬0≡0).

For Φ ⊇ΦPA, the previous lemma can be formalized as

Φ ⊢ (ConsisΦ → ¬DerΦ(nφΦ)),

though it is relatively tedious. We assume that this has been done in the next theorem.

Theorem 187. [G�odel's Second Incompleteness Theorem] Let Φ ⊆ LSar0 . If Φ is

consistent and decidable, and ΦPA ⊆Φ, then not Φ ⊢ ConsisΦ.

Proof. Assume, for a contradiction, that Φ ⊢ ConsisΦ. Then by the unproven remark, we

get Φ ⊢ ¬DerΦ(nφΦ). But we saw that Φ ⊢ (φΦ ↔ ¬DerΦ(nφΦ)), so this means Φ ⊢ φΦ.
This contradicts the previous lemma.
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11 Free Models and Logic Programming

12 An Algebraic Characterization of Elementary Equiv-

alence

12.1 Finite and Partial Isomorphisms

Definition 188. Let S be a �rst-order language, let A = (A,a) and B = (B,b) be S-

structures, and let p ∶ A → B be a partial function. We say p is a partial isomorphism

from A to B if:

1. p is injective;

2. for every n-ary relation symbol R ∈ S and all a1, . . . , an ∈ dom(p),

(a1, . . . , an) ∈ a(R) if and only if (p(a1), . . . , p(an)) ∈ b(R);

3. for every n-ary function symbol f ∈ S and all a,a1, . . . , an ∈ dom(p),

a(f)(a1, . . . , an) = a if and only if b(f)(p(a1), . . . , p(an)) = p(a);

4. for every constant symbol c ∈ S and all a ∈ dom(p),

a(c) = a if and only if b(c) = p(a).

Definition 189. Let S be a �rst-order language and let A and B be S-structures. We let

Part(A,B) denote the set of all partial isomorphisms from A to B.

Example 190. The empty map is a partial isomorphism between any two S-structures,

vacuously.

Example 191. If π ∶ A ≅ B and C ⊆ A then π∣C ∈ Part(A,B). That is to say, the

restriction of an isomorphism is a partial isomorphism. In particular, an isomorphism is a

partial isomorphism.

Example 192. The partial map p ∶ R → Z given by p(2) ∶= 2 and p(3) ∶= 6 is a partial

isomorphism from (R,a) to (Z,b) (as {0,+}-structures with the standard a and b). Indeed,

there are no relation symbols to check, 2 and 3 can never be added to get back 2 or 3 and

2 and 6 can never be added to get back 2 or 6, and a(0) = 0 ∉ dom(p) and b(0) ∉ range(p).
On the other hand, the partial map q ∶ R→ Z given by q(2) ∶= 2 and q(3) ∶= 4 is not a

partial isomorphism from (R,a) to (Z,b). Indeed, we have q(2) + q(2) = 2 + 2 = 4 = q(3)
while 2 + 2 = 4 ≠ 3.
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Finally, the partial map g ∶ R → Z given by g(n) ∶= n for all n ∈ Z is a partial

isomorphism which is surjective but not an isomorphism.

Proposition 193. Let S be a relational �rst-order language, let A = (A,a) and B =
(B,b) be S-structures, let r ∈ N, and let a0, . . . , ar−1 ∈ A, b0, . . . , br−1 ∈ B. De�ne the

partial map p ∶ A→ B by p(ai) ∶= bi for all i ∈ {0, . . . , r− 1}. Then p ∈ Part(A,B) if and
only if for every atomic S-formula ψ ∈ LSr we have

A ⊧ ψ[a0, . . . , ar−1] if and only if B ⊧ ψ[b0, . . . , br−1].

Proof. First suppose that p is a partial isomorphism from A toB. Since S is relational, the

only terms are variables, and hence the only atomic formulas are equality of variables or

relations applied to variables. Suppose �rst we have Rvi1⋯vin for vi1 , . . . , vin ∈ {v0, . . . , vr−1}
and R ∈ S is an n-ary relation symbol. Then

A ⊧ Rvi1⋯vin[a0, . . . , ar−1] if and only if (ai1 , . . . , ain) ∈ a(R)
if and only if (p (ai1) , . . . , (ain)) ∈ b(R)
if and only if (bi1 , . . . , bin) ∈ b(R)
if and only if B ⊧ Rvi1⋯vin[b0, . . . , br−1].

Now suppose we have vi1 ≡ vi2 for vi1 , vi2 ∈ {v0, . . . , vr−1}. Then

A ⊧ vi1 ≡ vi2[a0, . . . , ar−1] if and only if ai1 = ai2
if and only if p(ai1) = p(ai2) (p is injective)

if and only if bi1 = bi2
if and only if B ⊧ vi1 ≡ vi2[b0, . . . , br−1].

Conversely, suppose that for every atomic S-formula ψ ∈ LSr we have A ⊧ ψ[a0, . . . , ar−1]
if and only if B ⊧ ψ[b0, . . . , br−1]. Since S is relational, we need only show that p is

injective and that it respects relations symbols. Suppose that p(ai1) = p(ai2) for some

ai1 , ai2 ∈ {a0, . . . , ar−1}. Then bi1 = bi2 , so B ⊧ vi1 ≡ vi2[b0, . . . , br−1]. Since this is an

atomic formula, by our assumption we get A ⊧ vi1 ≡ vi2[a0, . . . , ar−1], which means that

ai1 = ai2 . Thus p is injective. Now suppose that R ∈ S is an n-ary relation symbol and

ai1 , . . . , ain . Then

(ai1 , . . . , ain) ∈ a(R) if and only if A ⊧ Rvi1⋯vin[a0, . . . , ar−1]
if and only if B ⊧ Rvi1⋯vin[b0, . . . , br−1]
if and only if (bi1 , . . . , bin) ∈ b(R),

which shows that p respects relation symbols. Thus p is a partial isomorphism.

Example 194. Example omitted.
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Definition 195. Let S be a �rst-order language, let A = (A,a) and B = (B,b) be S-

structures, and let (In)n∈N be a sequence. We write (In)n∈N ∶ A ≅f B if:

for every n ∈ N, In ≠ ∅ and In ⊆ Part(A,B);

Forth Property: for every n ∈ N and all p ∈ In+1, a ∈ A, there exists a q ∈ In such that p ⊆ q and

a ∈ dom(q);

Back Property: for every n ∈ N and all p ∈ In+1, b ∈ B, there exists a q ∈ In such that p ⊆ q and

b ∈ range(q).

We say that A and B are �nitely isomorphic, and write A ≅f B, if there is a sequence

(In)n∈N such that (In)n∈N ∶ A ≅f B.

Remark 196. A partial isomorphism in In can be extended n times (�rst to In−1, then to

In−2 ... and �nally to I0).

Definition 197. Let S be a �rst-order language, let A = (A,a) and B = (B,b) be S-

structures, and let I ⊆ Part(A,B). We write I ∶ A ≅p B if (I)n∈N ∶ A ≅f B. We say A and B

are partially isomorphic, and write A ≅p B, if there is an I such that I ∶ A ≅p B.

Remark 198. If two structures are partially isomorphic then they are �nitely isomorphic.

It can be checked without too much trouble that if A ≅f B then B ≅f A, and similarly for

≅p.

Lemma 199. Let S be a �rst-order language and let A = (A,a) and B = (B,b) be

S-structures.

(1) If A ≅B then A ≅p B.

(2) If A ≅p B then A ≅f B.

(3) If A ≅f B and A or B is �nite then A ≅B.

(4) If A ≅p B and A and B are countable then A ≅B.

Proof. (1) It is easy to verify that if π ∶ A ≅B then {π} ∶ A ≅p B.

(2) It is immediate from de�nition that if I ∶ A ≅p B then (I)n∈N ∶ A ≅f B.

(3) We will assume A is �nite; the other case is similar. Write A = {a1, . . . , ar}. Suppose
we have (In)n∈N ∶ A ≅f B. As Ir+1 ≠ ∅, let p0 ∈ Ir+1. For i ∈ {0, . . . , r}, given pi ∈ Ir−i+1
pick pi+1 ∈ Ir−i with pi ⊆ pi+1 and a ∈ dom(pi+1) (by the Forth Property). Now

pr ∈ I1 ⊆ Part(A,B) with dom(pr) = A. It remains to show that range(pr) = B to
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conclude that pr is an isomorphism. Assume, for a contradiction, that there is some

b ∈ B∖ range(pr). Then there exists a p ∈ I0 with b ∈ range(p) and pr ⊆ p. But this is
not possible because there is nothing left in A which could map to b. Contradiction.

Thus pr ∶ A ≅B.

(4) If either A or B is �nite, then we can apply (2) and (3) to conlude the desired result.

Otherwise, we can write A = {a0, a1, . . .} and B = {b0, b1, . . .}. Suppose we have

I ∶ A ≅p B. As I ≠ ∅, let p0 ∈ I. For i ∈ {1, 3, 5, . . .}, given pi−1, pick pi ∈ I such that

pi−1 ⊆ pi and a i−1
2

∈ dom(pi) (via the Forth Property). For i ∈ {2, 4, 6, . . .}, given pi−1,
pick pi ∈ I such that pi−1 ⊆ pi and b i−2

2

∈ range(pi) (via the Back Property). Since

they are nested, we can take p = ⋃n∈N pn. It is easy to check that p ∈ Part(A,B).
Moreover, by construction we have dom(p) = A and range(p) = B. Thus p ∶ A ≅B.

Definition 200. De�ne

Φdord ∶= {∀x¬ < xx, ∀x∀y∀z((< xy∧ < yz)→< xz), ∀x∀y(< xy ∨ x ≡ y∨ < yx),
∀x∀y(< xy→ ∃z(< xz∧ < zy)), ∀x∃y < xy, ∀x∃y < yx}.

A dense linear ordering without endpoints is a member of Mod{<}Φdord.

Theorem 201. Any two countable dense linear orderings without endpoints are iso-

morphic.

Proof. We will show that any two dense linear orderings without endpoints are partially

isomorphic. The desired result then follows by applying the previous lemma.

Suppose A and B are dense linear orderings without endpoints. Let

I = {p ∈ Part(A,B); dom(p) is �nite}.

We claim that I ∶mfA ≅p B. Note �rst that I ≠ ∅ since ∅ ∈ I. And clearly I ⊆ Part(A,B).
Next we check the Forth property. Suppose p ∈ I and a ∈ A. Write dom(p) = {a1, . . . , ar}.
Because p is a partial isomorphism and we are dealing with dense linear orders with-

out endpoints, there is some b ∈ B which has the same relation (with respect to <) to

p(a1), . . . , p(ar) as a has to a1, . . . , ar (�ll in the details). Then one can check p∪{(a,b)} ∈
I. Since p ⊆ p ∪ {(a,b)} and a ∈ dom(p ∪ {(a,b)}), we are done. The Back property is

proved analogously. Thus the claim holds.

Definition 202. De�ne

Φσ ∶= {∀x(¬x ≡ 0↔ ∃yσy ≡ x), ∀x∀y(σx ≡ σy→ x ≡ y)} ∪ ⋃
m≥1

{∀x¬ σ⋯σ
´¸¶
m times

x ≡ x}.

A successor structure is a member of Mod{σ,0}Φσ.
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Proposition 203. Let A and B be successor structures. Then A ≅f B.

Proof. Exercise | see notes from class.

12.2 Fräıssé’s Theorem

12.3 Proof of Fräıssé’s Theorem

Definition 204. Let S be a �rst-order language. We de�ne qrS ∶ LS → N to be the

maximum number of nested quanti�ers occurring in a formula:

qrS(φ) ∶= 0 for atomic φ;

qrS(¬φ) ∶= qrS(φ);

qrS((φ ∨ψ)) ∶=max{qrS(φ),qrS(ψ)};

qrS(∃xφ) ∶= qrS(φ) + 1.

Remark 205. Recall that given a �rst-order language S, we constructed a relation �rst-

order language Sr. And given an S-structure A, we constructed an Sr-structure Ar. One

fact we proved was that A ≡B if and only if Ar ≡Br. If we look back at the construction

it is easy to see that

Part(A,B) = Part(Ar,Br)
It follows that A ≅f B if and only if Ar ≅f Br.

Theorem 206. [Fra��ss�e's Theorem] Let S be a finite �rst-order language and let A

and B be S-structures. Then A ≡B if and only if A ≅f B.

Proof. Suppose �rst that A ≅f B. So there exists a sequence (In)n∈N such that (In)n∈N ∶
A ≅f B. We claim that for all S-formulas φ ∈ LS, for all r,n ∈ N, all p ∈ In, and all

a0, . . . , ar−1 ∈ dom(p), if qrS(φ) ≤ n then

A ⊧ φ[a0, . . . , ar−1] if and only if B ⊧ φ[p(a0), . . . , p(ar−1)].

We proceed by induction on formulas. If φ is atomic, then this follows immediately

from lemma (193).

The remainder of the proof is omitted for the time being.

Remark 207. We've actually shown that for any n ∈ N, A ≅n B if and only if A ≡n B (see

the book for these de�nitions).

Proposition 208. Any two dense linear orders without endpoints are elementarily

equivalent.
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Proof. We saw in theorem (201) that any two dense linear orders without endpoints are

partially isomorphic. We know that this implies that they are �nitely isomorphic. Since

{<} is �nite, we can apply Fra��ss�e's Theorem to conclude that they are elementarily equiv-

alent.

Proposition 209. Any two successor structures are elementarily equivalent.

Proof. We saw in proposition (203) that any two successor structures are �nitely isomor-

phic. Since {σ, 0} is �nite, we can apply Fra��ss�e's Theorem to conclude that they are

elementarily equivalent.

Lemma 210. Let S be a �rst-order language and let T ⊆ LS0 be a theory. Then T is

complete if and only if any two models of T are elementarily equivalent.

Proof. Suppose T is complete, and let A,B ∈ModS T and φ ∈ LS0. If φ ∈ T , then A ⊧ φ and

B ⊧ φ. Otherwise, since T is complete, we know ¬φ ∈ T . Hence not A ⊧ φ and not B ⊧ φ.
Thus A ≡B.

Conversely, suppose any two models of T are elementarily equivalent. Let φ ∈ LS0. Let
A be such that A ⊧ T . If A ⊧ φ, then for any B ⊧ T we have B ⊧ φ (because A ≡B). Thus

T ⊧ φ. Because T is a theory this means φ ∈ T . Otherwise we can do the same thing with

¬φ (because in this case we know A ⊧ ¬φ) to conclude ¬φ ∈ T . Thus T is complete.

Corollary 211. (1) The theory Φ⊧dord of dense linear orderings without endpoints

is complete and decidable.

(2) The theory Φ⊧σ of successor structures is complete and decidable.

Proof. The following proof applies to either claim. By the lemma, to show that the theory

is complete, it su�ces to prove that any two such structures are elementarily equivalent.

But this is exactly the content of the previous propositions. Since axiomatizably complete

theories are decidable, the whole result follows (both Φdord and Φσ are decidable).

12.4 Ehrenfeucht Games

13 Lindström’s Theorem

Introduction to Computability Theory

Remark 212. Previously our model of computation had been register machines. We now

are going to look at a di�erent model of computation, namely Turing Machines. Note that

by Church's Thesis, we will be able to do the exact same things in each of these models.
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However, some things are easier to do with Turing Machines, and some things are easier

to do with register machines, so there is good reason to prefer one over the other in this

section.

Definition 213. A Turing Machine consists of a �nite program, �nitely many states,

and has a read-only (oracle) and a read-write (work) in�nite tape.

A Turing program is a �nite list of instructions of the form

qiXYqjZD1D2,

where qi, qj are states, X,Y,Z ∈ {0, 1}, and D1,D2 ∈ {L,R}.
If a Turing Machine is in state qi and is reading X on the oracle tape and Y on the

work tape, and if qiXYqjZD1D2 is an instruction in the program, then the machine will

write Z on the work tape in place of Y, shift its work tape reading head one place to

the left/right (depending on D1), and shift its work tape reading head one place to the

left/right (depending on D2). The state q0 is the halting state.

We can e�ectively list all Turing programs. Let P0, P1, P2, . . . be such a list. To each

program Pi we can associate a partial function φi ∶ N → N as follows. If Pi, started in

state q1 with n + 1 consecutive 1's on the work tape and all 0's on the oracle tape, with

work reading head at the leftmost 1, eventually reaches the halting state q0, then we write

φi(n) ↓, and we let φi(n) be the number of 1's on the work tape when it halts. If Pi, when

started as above, never halts, we write φi(n) ↑. We let Wi ∶= dom(φi).

Definition 214. Let A ⊆ N. We say A is computable if there is an i ∈ N such that χA = φi.

Definition 215. Let A ⊆ N. We say A is computably enumerable if there is an i ∈ N
such that dom(φi) = A.

Remark 216. These notions correspond to decidable and enumerable respectively.

Also note that W0,W1,W2, . . . is an e�ective listing of all computably enumerable sets.

Definition 217. Let f ∶ N→ N be a partial function. We say f is partially computable if

there is an i ∈ N such that f = φi.

Definition 218. Let f ∶ N → N be a function. We say f is computable (or total) if there

is an i ∈ N such that f = φi.

Definition 219. Let e, s, x, y ∈ N. We write φe,s(x) ↓ and φe,s(x) ∶= y if program Pe,

started with input x and empty oracle, halts within s steps and outputs y. We write
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φe,s(x) ↑ if program Pe, started with input x and empty oracle, has not yet halted within

s steps. We let

We,s ∶= {y ∈ N; φe,s(y) ↓}.

Definition 220. We de�ne ⟨⋅, ⋅⟩ ∶ N ×N→ N by

⟨x,y⟩ ∶= 1
2
(x2 + 2xy + y2 + 3x + y)

for all (x,y) ∈ N ×N.

Remark 221. The standard pairing function ⟨⋅, ⋅⟩ is a bijection, and can be computed

(say, using a Turing Machine).

Definition 222. Let R ⊆ N2 be a binary relation. We say R is computable if

{⟨x,y⟩ ; (x,y) ∈ R}

is computable.

Definition 223. Let R ⊆ N2 be a binary relation. We say R is computably enumerable if

{⟨x,y⟩ ; (x,y) ∈ R}

is computably enumerable.

Definition 224. Let A ⊆ N. We say A is Σ1 if there is a computable relation R ⊆ N2 such
that for all x ∈ N, x ∈ A if and only if there is a y ∈ N such that (x,y) ∈ R.

Theorem 225. Let A ⊆ N. Then A is computably enumerable if and only if A is Σ1.

Proof. First suppose that A is computably enumerable. Then A = We for some e ∈ N.
Note x ∈ We if and only if there is an s ∈ N such that x ∈ We,s. Moreover, the relation

{(x, s) ∈ N2; x ∈ We,s} is computable. Indeed, given n ∈ N, we can compute x, s ∈ N such

that n = ⟨x, s⟩. From here we can run Pe with input x for s steps and see if it has halted

yet. Thus A is Σ1.

Conversely, suppose A is Σ1. So there is a computable relation R ⊆ N2 such that, x ∈ A
if and only if there exists a y ∈ N such that (x,y) ∈ R. Consider the program that on

input x ∈ N, asks for each y ∈ N in turn (in order) whether (x,y) ∈ R, and halts if there

is ever an a�rmative answer. Then since R is computable, P = Pe for some e ∈ N, and
A = dom(φe) =We. Thus A is computably enumerable.
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Theorem 226. Let A ⊆ N be non-empty. Then A is computably enumerable if and

only if it is the range of a computable function.

Proof. First suppose that f ∶ N → N is computable and A = range(f). Note x ∈ A if

and only if there exists a z ∈ N such that x = f(z). Since f is computable, the relation

{(x, z); x = f(z)} is computable. Hence A is Σ1. But we just saw that this means A is

computably enumerable.

Conversely, suppose that A is computably enumerable. As A is non-empty, let a ∈ A.
De�ne f ∶ N→ N by

f(⟨x, s⟩) ∶=
⎧⎪⎪⎨⎪⎪⎩

x if x ∈We,s,

a otherwise.

Then f is computable and range(f) = A.

Theorem 227. There is no e�ective listing of the computable functions.

Proof. Assume, for a contradiction, that f0, f1, f2, . . . is an e�ective listing of the com-

putable functions. De�ne g ∶ N → N by g(n) ∶= fn(n) + 1 for all n ∈ N. As each fn is

computable, g is computable. But g(n) ≠ fn(n) and so g ≠ fn, for each n ∈ N, so g is not

in our list. Contradiction.

Definition 228. We de�ne

K ∶= {e ∈ N; φe(e) ↓}

to be the usual halting set, and

K0 ∶= {⟨e,n⟩ ; (e,n) ∈ N2, φe(n) ↓}.

Proposition 229. The set K is not computable.

Proof. Assume, for a contradiction, that K is computable. Then the function

g(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

φx(x) + 1 if x ∈ K,
0 otherwise,

is computable. So g = φe for some e ∈ N. As g is total, g(e) ↓. Hence φe(e) ↓, and so e ∈ K.
But now φe(e) = g(e) = φe(e) + 1, which is absurd.

Proposition 230. The set K0 is not computable.

Proof. Note e ∈ K if and only if ⟨e, e⟩ ∈ K0. So if K0 were computable, then K would be

computable, which it isn't. Thus K0 is not computable.
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Definition 231. Let A,B ⊆ N. We say A is many-one reducible to B, and write A ≤m B,
if there is a computable function f such that x ∈ A if and only if f(x) ∈ B.

Remark 232. We have seen K ≤m K0 (via n↦ ⟨n,n⟩).

Theorem 233. Let A,B ⊆ N.

(a) If A ≤m B and B is computable then A is computable.

(b) If A ≤m B and B is computably enumerable then A is computably enumerable.

Proof. (a) Let x ∈ N. To compute whether x ∈ A, �rst compute f(x), then compute

whether f(x) ∈ B.

(b) As B is computably enumerable, there exists an e ∈ N such that B =We. Note x ∈ A
if and only if f(x) ∈ B, if and only if there is an s ∈ N such that f(x) ∈ We,s. This

means A is Σ1, and is hence computably enumerable.

Theorem 234. [s-m-n Theorem] If φ is a partially computable function on N2
(corresponding to starting a Turing Maching with x + 1-many 1's, followed by a 0,

followed by y + 1-many 1's), then there exists a computable function f such that

φf(x)(y) = ψ(x,y)

for all (x,y) ∈ N2.

Proof. Omitted.

Remark 235. We have seen that K ≤m K0. We now show that K0 ≤m K, so that the two

sets are equivalent in the sense of many-one reducibility.

Proposition 236. We have K0 ≤m K.

Proof. De�ne a partially computable function ψ by

ψ(⟨e,n⟩ , y) ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if φe(n) ↓ ,
↑ otherwise.

The program for ψ on input (x,y) �rst decodes x into ⟨e,n⟩, and then runs Pe with input

n. If Pe halts, it outputs 0.

By the s-m-n theorem, there is a computable function f ∶ N→ N such that

φf(⟨e,n⟩)(y) = ψ(⟨e,n⟩ , y).
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We claim that x ∈ K0 if and only if f(x) ∈ K. First suppose ⟨e,n⟩ ∈ K0. Then φe(n) ↓,
so ψ(⟨e,n⟩ , f(⟨e,n⟩)) = 0 by de�nition. This means φf(⟨e,n⟩)(f(⟨e,n⟩)) = 0, and so in

particular φf(⟨e,n⟩)(f(⟨e,n⟩)) ↓. Thus f(⟨e,n⟩) ∈ K. Conversely, suppose ⟨e,n⟩ ∉ K0. Then
φe(n) ↑, so ψ(⟨e,n⟩ , f(⟨e,n⟩)) ↑ by de�nition. This means φf(⟨e,n⟩)(f(⟨e,n⟩)) ↑. Thus

f(⟨e,n⟩) ∉ K. Thus the claim holds and so K0 ≤m K.

Remark 237. Suppose We is a computably enumerable set, for some e ∈ N. Then n ∈We

if and only if ⟨e,n⟩ ∈ K0. Hence We ≤m K0. It is easy to check that if A ≤m B and B ≤m C
then A ≤m C, for any A,B,C ⊆ N. Thus we conclude that We ≤m K, for any e ∈ N.

We call K (and K0) complete since they can uniformly compute any computably enu-

merable set. That is to say, there exists a computable function F ∶ N2 → N such that for all

e ∈ N, y ∈We if and only if F(e,y) ∈ K.
We would hope that this relation ≤m captures the complexity (computability-wise) of

a set. On the other hand, it also makes sense that for any set A ⊆ N, A and �A would be

equivalent in such a sense. However, if A is any non-computable, computably enumerable

set, then �A /≤m A.

Definition 238. Let A,B ⊆ N. We say A is Turing reducible to B, and write A ≤T B, if
there is a Turing program Pe such that if B is on the oracle tape, then Pe started on input

n, after �nitely many steps halts with 1 on the work tape if n ∈ A and 0 on the work tape

if n ∉ A.

Definition 239. Let B ⊆ N and let e ∈ N. Just as the program Pe induced a partial

function φe by putting all zeros on the oracle tape, the program Pe and the set B induce

a partial function ΦB
e , by putting B on the oracle tape. We let WB

e ∶= dom(ΦB
e ).

For x, s, y ∈ N, we write ΦB
e,s(x) ∶= y if Pe started with input x and oracle B halts within

s steps, having output y. For x,y ∈ N, we write ΦB
e (x) ↓ and ΦB

e (x) ∶= y if there exists an

s ∈ N such that ΦB
e,s(x) = y. For x ∈ N, we write ΦB

e (x) ↑ if there is no (y, s) ∈ N2 such that

ΦB
e,s(x) = y.

Remark 240. If A ≤T B we will write A = ΦB
e , even though the former is a set and the

latter is a partial function.

Also note that Φ∅
e = φe.

Moreover, if ΦB
e (x) ↓, then it halts after �nitely many steps, and so it may only have

looked at a �nite segment of the oracle B. That is to say, if ΦB
e (x) = y then there is a

�nite initial segment σ ⊆ B such that all queries to B are within the segment σ. In this

case we write Φσ
e(x) ∶= y. Note that if Φσ

e,s(x) = y then for any τ ⊇ σ and any t ≥ s we have
Φτ
e,t(x) = y.
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Example 241. Consider the program Pe which on input n ∈ N, sums the numbers on the

oracle tape between 2n + 1 and 3n (inclusive). For any n ∈ N, we query a �nite initial

segment of the oracle tape, but for any m ∈ N we can �nd an n ∈ N such that Pe on input

n queries position m of the oracle.

Note Φ∅
e (n) = 0 and ΦN

e (n) = n.

Definition 242. Let A,B ⊆ N. We say A is computably enumerable in B if there is a

program Pe such that A =WB
e .

Definition 243. Let A,B ⊆ N. We say A is Σ1 in B if there is a B-computable binary

relation R such that x ∈ A if and only if there exists a y ∈ N such that (x,y) ∈ R.

Theorem 244. Let A,B ⊆ N. Then A is computably enumerable in B if and only if A

is Σ1 in B.

Proof. Suppose �rst that A is computable enumerable in B. So there is an e ∈ N such that

A = WB
e . Consider the relation R = {(x, s) ∈ N2; x ∈ WB

e,s}. This is B-computable, clearly.

And x ∈ A if and only if there exists an s ∈ N such that (x, s) ∈ R. Thus A is Σ1 in B.

Conversely, suppose that A is Σ1 in B. So there exists a B-computable relation R such

that x ∈ A if and only if there exists a y ∈ N such that (x,y) ∈ R. Consider the program

Pe which on input n ∈ N, checks for each y ∈ N one at a time if (n,y) ∈ R (since this is

B-computable). Indeed, this will halt on input x with oracle B if and only if there is a

y ∈ N such that (x,y) ∈ R, if and only if x ∈ A. Thus A =WB
e is computably enumerable in

B.

Definition 245. Let A ⊆ N. We de�ne the jump of A to be

A ′ ∶= {e ∈ N; ΦA
e (e) ↓}.

Example 246. We have ∅ ′ = K, the halting set.

Definition 247. Let A,B ⊆ N. We write A ≡T B if A ≤T B and B ≤T A. We write A <T B if

A ≤T B but A /≡T B.

Proposition 248. Let A,B ⊆ N.

(1) The jump A ′ is computably enumerable in A.

(2) We have A <T A ′.

(3) If A is computably enumerable in B then A ≤T B ′.
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(4) If A ≤T B then A ′ ≤T B ′.

Proof. Exercise.

Remark 249. If ∅ ≤T A ≤T ∅ ′ then ∅ ′ ≤T A ′ ≤T ∅ ′′.

Definition 250. Let A ⊆ N. We say A is low if A ′ = ∅ ′. We say A is high if A ≤T ∅ ′ and

A ′ ≡T ∅ ′′.

Theorem 251. There exists a non-computable low set.

Proof. We will build such a set A by stages. At each stage s + 1 we will have αs ⊆ αs+1 be
�nite binary strings. We will then let A = ⋃s∈Nαs.

Our construction will not be computable, but it will be ∅ ′-computable. That is, at

each stage s + 1, we will ask �nitely many questions of a ∅ ′-oracle. The set A will then

be ∅ ′-computable, since to compute whether x ∈ A, run the construction until ∣αs∣ > x, at
which point x ∈ A if and only if αs(x) = 1.

As we build A, we will meet for each e ∈ N the requirement

Re ∶ χA ≠ φe.

This will ensure that A is not computable. We will accomplish these tasks during the even

stages of the construction. During the odd stages of the construction, we will ensure that

A is low. To do this we will decide whether or not ΦA
e (e) ↓. Since the construction will

be ∅ ′-computable, this will ensure that A ′ ≤T ∅ ′.

We begin the construction. Let α0 ∶= ∅.
Suppose we are at stage 2e + 1, given α2e. Ask the ∅ ′-oracle the question

∃σ ⊇ α2e∃tΦσ
e,t(e) ↓ .

(Indeed, this is a Σ1-question, so given α2e we can e�ectively �nd the appropriate location

of the ∅ ′-oracle to check, where a 1 means `yes' and a 0 means `no'.) If the answer is `yes',

then we can e�ectively �nd such a σ, and set α2e+1 ∶= σ. If the answer is `no', then we let

α2e+1 ∶= α2e.
Suppose we are at stage 2e + 2, given α2e+1. Ask the ∅ ′-oracle the question

∃tφe,t(∣α2e+1∣) ↓ .

If the answer is `yes', then compute φe(∣α2e+1∣). If φe(∣α2e+1∣) = 0 then let α2e+2 ∶= α2e+11,
and otherwise let α2e+2 ∶= α2e+10. If the answer is `no', then let α2e+2 ∶= α2e+10.

This completes the construction. Note that at each even step we strictly increase the

length of αs, so we can let A = ⋃s∈Nαs.
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First we verify that A is low. We will describe a ∅ ′-computable procedure to decide

for each e ∈ N whether e ∈ A ′. First we use the ∅ ′-oracle to compute α2e. Next ask the

question

∃σ ⊇ α2e∃tΦσ
e,t(e) ↓ .

If the answer is `yes', then we picked α2e+1 such that Φα2e+1
e (e) ↓, and hence ΦA

e (e) ↓ and
e ∈ A ′. If the answer is `no', then we know ΦA

e (e) ↑ (if it didn't, then the answer to the

question would be `yes'), and so e ∉ A ′. Thus A is low.

Finally we verify that A is not computable. We need to show χA ≠ φe for each e ∈ N.
Suppose φe is total (ie computable) (if it isn't then clearly φe ≠ χA). Then at step 2e + 2,
the answer to the question

∃tφe,t(∣α2e+1∣) ↓
was yes. But this means we de�ned α2e+2 so that α2e+2(∣α2e+1∣) ≠ φe(∣α2e+1∣). Hence χA ≠ φe.
Thus A is not computable.

Lemma 252. [Limit Lemma] Let g ∶ N → N be a function. Then g is ∅ ′-computable

if and only if there exists a computable function f ∶ N2 → N such that for all x ∈ N,
g(x) = lims f(x, s).
Proof. Suppose �rst that such an f exists. We can ∅ ′-compute g as follows. Let x ∈ N.
For each s ∈ N, ask

∃t > sf(x, t) ≠ f(x, s).
If the answer is `no' at some stage s, then g(x) = limt f(x, t) = f(x, s). If the answer is `yes'
at some stage s, then continue to the next stage s+1. Since g is total and g(x) = lims f(x, s),
this procedure must eventually terminate, and produce the correct answer.

Conversely, suppose g is ∅ ′-computable. Then g =ΦK
e for some e ∈ N. Let (Ks)s∈N be a

computable enumeration of K = ∅ ′. De�ne

f(x, s) ∶=
⎧⎪⎪⎨⎪⎪⎩

ΦKs
e,s(x) if it converges,

0 otherwise.

For any x ∈ N, since g(x) = ΦK
e (x), there is some σ ⊂ K and some t ∈ N such that g(x) =

Φσ
e,t(x). Let s0 ≥ t be such that for all n ≤ ∣σ∣, n ∈ K if and only if n ∈ Ks0 . Then for all

s ≥ s0 we have ΦKs
e,s(x) = g(x). Thus g(x) = lims f(x, s).

Theorem 253. There exists a non-computable, low, computably enumerable set.

Proof. We will construct such a set A by stages, similarly to before. We will meet the

requirements

Pe ∶ χA ≠ φe,
Ne ∶ ∃∞sΦAs

e,s(e) ↓ Ô⇒ ΦA
e (e) ↓ ,
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for each e ∈ N, where As is the �nite amount of A enumerated by the end of stage s.

The requirements Pe clearly ensure that S is not computable (just like last time). The

requirements Ne will ensure that A is low. Indeed, suppose A meets the Ne requirements.

Let

f(e, s) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if ΦAs
e,s(e) ↓ ,

0 otherwise.

Because Ne holds, we have lims f(e, s) = χA ′(e) (check). Therefore A ′ is limit computable

and hence ∅ ′-computable (that is, A is low).

Plan to meet requirement Pe: Choose some xe ∈ N. Wait for a stage s where φe,s(xe) ↓=
0. If this never occurs, then keep xe out of A (and so χA(xe) = 0 ≠ φe(xe)). If such a stage

s is encountered, then enumerate xe into A (and so χA(xe) = 1 ≠ 0 = φe(xe)).
Plan to meet requirement Ne: It would be nice not to enumerate into A, however

this doesn't match the strategy for Pe's. If we see that ΦAs
e,s(e) ↓, then we will attempt

to preserve the \use" of this computation. That is, we will try not to enumerate into A

below ∣σ∣, where σ is the least such that Φσ
e,s(e) ↓.

We will make use of witnesses xe,s, where we will ensure that xe = lims xe,s exists and

that χA(xe) ≠ φe(xe). If ΦAs
e,s(e) ↓ then there is some �nite σ ⊆ As such that Φσ

e,s(e) ↓.
So if we do not enumerate any number less than ∣σ∣ into A after stage s, then ΦA

e (e) ↓.
To attempt to preserve computations, we will have restraint functions r(e, s). The idea is

that only requirements Pi for i ≤ e will be allowed to have witnesses below the restraint

for requirement Ne.

We begin the construction. Let r(e, 0) = 0 and xe,0 = ⟨e, 0⟩ for each e, and let A0 = ∅.
Suppose we are at stage s + 1. First, suppose φe,s+1(xe,s) ↓= 0 for some unsatis�ed Pe

with e ≤ s. Then enumerate xe,s into As+1 and declare Pe satis�ed.

Next, for all e ≤ s such that ΦAs+1
e,s+1(e) ↓, let r(e, s + 1) be the \use of the computation"

(ie the greatest number of the oracle queried during the computation, plus one).

Finally, for all e ≤ s, if Pe is not satis�ed then let xe,s+1 be the least number y of the

form ⟨e, z⟩ such that y > r(i, s + 1) for all i < e. Otherwise let xe,s+1 = xe,s. This completes

the construction. The veri�cation that the construction produces the desired set A is the

content of the following lemmas.

Lemma 254. For each e ∈ N, there is at most one stage s when xe,s is enumerated into

A.

Proof. If xe,s is enumerated into A at stage s, then Pe is declared satis�ed, and there is no

more enumeration of witnesses of the form xe,t into A.

Lemma 255. For all e ∈ N, lims r(e, s) exists (and is �nite).

Proof. Suppose r(e, s) ≠ 0. Then Φ
As↾r(e,s)
e,s (e) ↓. Then r(e, s + 1) = r(e, s) unless As+1 ↾

r(e, s) ≠ As ↾ r(e, s) (ie unless some number less than r(e, s) is enumerated into A at stage
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s + 1). But by our construction, this number would be of the form xi,s with i ≤ e. So by

the previous lemma, this can only happen �nitely often. Hence the sequence eventually

becomes constant.

Lemma 256. The requirements Ne are met.

Proof. Let e ∈ N. Let s be such that r(e, t) = r(e, s) for all t ≥ s (this is possible by the

previous lemma). If r(e, s) = 0, then ΦAt
e,t ↑ for all t > s, and so there is nothing to meet. If

r(e, s) = 0, then ΦAt
e,t ↓=ΦAs

e,s(e) for all t > s, so ΦA
e (e) ↓, meeting the requirement Ne.

Lemma 257. The requirements Pe are met.

Proof. Let e ∈ N. Let s be such that r(i, s) = limt r(i, t) for all i < e. Then xe,t = xe,s for all
t ≥ s. If φe,t(xe,t) ↓= 0, then xe,t ∈ A so χA ≠ φe. If φe(xe,s) ≠ 0, then xe,s ∉ A, so χA ≠ φe.
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