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2 Duality Theory

Theorem 81. [Theorem 2.8: A separation theorem] Let n ∈ N and let G ⊆ Rn. If

G is a non-empty, closed convex set with 0 ∉ G, then there exists an a ∈ Rn ∖ {0} and

an α ∈ R++ such that aTx ≥ α for all x ∈ G.

Proof. Since G is non-empty, let �x ∈ G. Set

G�x ∶= {x ∈ G; ∥x∥2 ≤ ∥�x∥2}.

Note that G�x = G ∩ {x ∈ Rn; ∥x∥2 ≤ ∥�x∥2} in the intersection of compact convex sets and

is hence compact and convex. Moreover, it is non-empty because �x ∈ G�x, and 0 ∉ G�x

since 0 ∉ G. As such, there exists a unique point a in G�x which is closest to the origin.

(Indeed, consider minimizing the continuous, strictly convex function ∥⋅∥22 on the non-

empty compact convex set G�x.)

Since a ∈ G�x and 0 ∉ G�x, a ≠∈ Rn ∖ {0}. Set α ∶= ∥a∥22 > 0. Let x ∈ G. Since G is convex,

for every λ ∈ (0, 1) we have λx + (1 − λ)a ∈ G. By choice of a, we have ∥a∥2 ≤ ∥z∥22 for all
z ∈ G. Therefore

∥λx + (1 − λ)a∥22 ≥ ∥a∥22 .

But expanding the left side yields

∥λ(x − a) + a∥22 = λ2 ∥x − a∥
2
2 + 2λ ⟨x − a,a⟩ + ∥a∥22 .

Hence the �rst inequality becomes

λ2 ∥x − a∥22 + λ ⟨x − a,a⟩ ≥ 0,

which shows, since λ > 0,
(x − a)Ta ≥ −λ

2
∥x − a∥22 .
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As this holds for all λ ∈ (0, 1), we get

xTa − aTa ≥ 0,

or equivalently

xTa ≥ α.

Corollary 82. [Corollary 2.9] Let n ∈ N and let G1,G2 ⊆ Rn. If G1 and G2 are

non-empty, disjoint, closed convex sets, and at least one of G1 and G2 is bounded,

then there exists an a ∈ Rn ∖ {0} such that

inf{aTu; u ∈ G1} > sup{aTv; v ∈ G2}.

Proof. Note that G1 −G2 is clearly a non-empty convex set, which does not contain the

origin because G1 and G2 are disjoint. Now we claim that it is closed. We will assume

G2 si bounded (if G2 is unbounded then G1 must be bounded, and the proof is similar).

Suppose (g(k))k∈N is a sequence in G1 −G2 which converges to some g ∈ Rn. Then there

exists sequences (u(k))k∈N and (v(k))k∈N in G1 and G2 respectively such that g(k) = u(k)−v(k)
for each k ∈ N. Since G2 is compact (it is closed and bounded), there is a subsequence

(v(km))m∈N of (v(k))k∈N which converges to some �g2 ∈ G2. Now note that the subsequence

(u(km))m∈N = (g(km))m∈N + (v(km))m∈N converges to g + �g2. Since G1 is closed, g + �g2 ∈ G1.
Thus g = (g + �g2) − �g2 ∈ G1 −G2 and so G1 −G2 is closed, as claimed.

By the previous theorem, there exists an a ∈ Rn∖{0} and an α ∈ R++ such that aTg ≥ α
for all g ∈ G1 −G2. So let u ∈ G1 and v ∈ G2. Then u − v ∈ G1 −G2, so

aTu − aTv = aT(u − v) ≥ α,

or equivalently

aTu ≥ α + aTv.

Taking the in�mum over all such u ∈ G1 yields

inf{aTu; u ∈ G1} ≥ α + aTv

for all v ∈ G2. Taking the supremum over all such v ∈ G2 yields

inf{aTu; u ∈ G1} ≥ α + sup{aTv; v ∈ G2} > sup{aTv; v ∈ G2}.

Theorem 83. [Theorem 2.11] Let n ∈ N and let G ⊆ Rn. If G is a non-empty convex

set with 0 ∉ G then there exists an a ∈ Rn ∖ {0} such that aTx ≥ 0 for all x ∈ G.
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Proof. For x ∈ G, de�ne

HS(x) ∶= {s ∈ Rn; sTx ≥ 0, ∥s∥2 = 1}.

We need to show that

⋂
x∈G
HS(x) ≠ ∅.

Since each HS(x), for x ∈ G, is compact, it su�ces to prove that the intersection is non-

empty for any �nite subset ofG. So suppose x(1), . . . , x(k) ∈ G. Note that conv{x(1), . . . , x(k)}
is a non-empty, closed, convex set. Moreover, it is a subset of G, so since 0 ∉ G, we get

0 ∉ conv{x(1), . . . , x(k)}. Thus by theorem 2.8, there exists an a ∈ Rn∖{0} such that aTx ≥ 0
for all x ∈ conv{x(1), . . . , x(k)}. So we see

1
∥a∥2a ∈ ⋂

x∈{x(1),...,x(k)}
HS(x) ≠ ∅,

as required.

Corollary 84. [Corollary 2.12] Let n ∈ N and let G1,G2 ⊆ Rn. If G1 and G2 are

non-empty, disjoint convex sets, then there exists an a ∈ Rn ∖ {0} such that

inf{aTu; u ∈ G1} ≥ sup{aTv; v ∈ G2}.

Proof. Note that G1 − G2 is a non-empty convex set, which does not contain the origin

because G1 and G2 are disjoint. By the previous theorem, there exists an a ∈ Rn ∖ {0}
such that aTx ≥ 0 for all x ∈ G1 −G2. So let u ∈ G1 and v ∈ G2. Then u − v ∈ G1 −G2, so
aT(u − v) ≥ 0, which shows

aTu ≥ aTv.

Taking the in�mum over u ∈ G1 yields

inf{aTu; u ∈ G1} ≥ aTv

for all v ∈ G2. Taking the supremum over all v ∈ G2 yields

inf{aTu; u ∈ G1} ≥ sup{aTv; v ∈ G2}.

Theorem 85. [Theorem 2.14: A Strong Duality Theorem] Let n,m ∈ N, let

A ∶ Sn → Rm be linear, let b ∈ Rm, and let C ∈ Sn. If (D) has a Slater point and its

objective value is bounded from above (on its feasible region) then (P) has an optimal

solution and the optimal objective values of (P) and (D) are the same.
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Proof. First suppose that b = 0. Then �X ∶= 0 is a feasible solution for (P), with objective

value 0. Also, the given Slater point is a feasible solution for (D), with objective value 0

also. Hence by weak duality, �S is an optimal solution and the objective values agree.

So we may assume b ≠ 0. Since the objective value of (D) is bounded above, it has an

optimal value, say z∗. De�ne G2 ∶= Sn++ and

G1 ∶= {C −A∗(y); y ∈ Rm, bTy ≥ z∗} ⊆ Sn.

It is easy to see that G1 and G2 are both convex, and clearly G2 is non-empty.

We claim that G1 is also non-empty. Since b ≠ 0, z∗

∥b∥22
b ∈ Rm and

bT ( z∗

∥b∥22
b) = z∗

bTb
(bTb) = z∗ ≥ z∗.

Hence z∗

∥b∥22
b ∈ G1.

Next we claim that G1 and G2 are disjoint. Assume, for a contradiction, that they are

not. This means that there exists a ~y ∈ Rm such that bT ~y ≥ z∗ and C−A∗(~y) ≻ 0. But then
~y is feasible for (D), so since z∗ is the optimal objective value, we must have bT ~y ≤ z∗, and
hence bT ~y = z∗. Consider y(ε) ∶= ~y+εb, for ε > 0. Since A∗ is linear and hence continuous,

and since C −A∗(~y) ∈ Sn++ = ∫ (Sn+), there is some ε > 0 such that C −A∗(y(ε)) ∈ Sn++. In

particular, y(ε) is feasible for (D). But it has objective value

bTy(ε) = bT (~y + εb) = bT ~y + εbTb > bT ~y = z∗,

contradiction that z∗ is the optimal objective value of (D). Thus the claim holds.

Now we can apply the previous corollary to get that there exists an ~X ∈ Sn ∖ {0} such

that

sup{⟨~X,S⟩ ; S ∈ G1} ≤ inf{⟨~X,S⟩ ; S ∈ G2}.

Assume, for a contradiction, that inf{⟨~X,S⟩ ; S ∈ G2} < 0. This means that there is an

S ∈ G2 = Sn++ such that ⟨~X,S⟩ < 0. But now for any α ∈ R++, αS ∈ Sn++ = G2 and ⟨~X,αS⟩ =
α ⟨~X,S⟩ → −∞ as α → ∞. This contradicts that {⟨~X,S⟩ ; S ∈ G2} is bounded below. Thus

inf{⟨~X,S⟩ ; S ∈ G2} ≥ 0. On the other hand, αI ∈ Sn++ for all α ∈ R++ = G2 and ⟨~X,αI⟩ =
α ⟨~X, I⟩→ 0 as α→ 0+. This shows inf{⟨~X,S⟩ ; S ∈ G2} ≤ 0 and thus inf{⟨~X,S⟩ ; S ∈ G2} = 0.

From this we get sup{⟨~X,S⟩ ; S ∈ G1} ≤ 0. This means that ⟨~X,S⟩ ≤ 0 for all S ∈ G1, or
equivalently, ⟨~X,C −A∗(y)⟩ ≤ 0 for all y ∈ Rm such that bTy ≥ z∗. Rearranging and using

the de�nition of the adjoint yields

(4) A(~X)Ty ≥ ⟨~X,C⟩

for all y ∈ Rm such that bTy ≥ z∗. This shows that the LP

min A(~X)y
s.t.: bTy ≥ z∗
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is bounded below, and hence its dual

max z∗α

s.t.: αb = A(~X)
α ≥ 0

is feasible. That is to say, there exists an α ∈ R+ such that αb = A(~X).
Assume, for a contradiction, that α = 0. Then A(~X) = αb = 0. We are given that (D)

has a Slater point, say (�S, �y). And since we saw inf{⟨~X,S⟩ ; S ∈ G2} = 0, we have ⟨~X,S⟩ ≥ 0
for all S ∈ Sn++. It follows that ⟨~X,S⟩ ≥ 0 for all S ∈ Sn+, and thus ~X ∈ Sn+. Now we see, since
~X ∈ Sn+ ∖ {0} and �S ∈ Sn++,

0 < ⟨�S, ~X⟩ = ⟨�S, ~X⟩ + ⟨�y,A(~X)⟩ = ⟨�S, ~X⟩ + ⟨A∗(�y), ~X⟩ = ⟨�S −A∗(�y), ~X⟩ = ⟨C, ~X⟩ ≤ 0,

where the last inequality follows because

⟨C, ~X⟩ = ⟨C −A∗(�y), ~X⟩ + ⟨A∗(�y), ~X⟩ ≤ ⟨�y,A(~X)⟩ = ⟨�y, 0⟩ = 0.

But this is absurd.

Thus α > 0. Set X̂ ∶= 1
α
~X. By linearity of A, A(X̂) = 1

α
A(~X) = 1

α
αb = b. And X̂ ∈ Sn+ since

~X ∈ Sn+. Therefore X̂ is feasible for (P). Moreover, the objective value of X̂ is

⟨C, X̂⟩ = 1
α
⟨C, ~X⟩ ≤ 1

α
A(~X)T z∗

∥b∥22
b = 1

α
α z∗

∥b∥22
bTb = z∗.

By weak duality, since z∗ was the optimal value of (D), we must have ⟨C, X̂⟩ ≥ z∗. Therefore
⟨C, X̂⟩ = z∗ as desired.

Remark 86. The statement and the proof of this strong duality theorem generalize to

convex optimization problems in conic form.

Even though the optimal objective values of (P) and (D) are the same, the optimal

objective value of (D) may not be attained by any feasible solution.

The statement requires us to know that the objective function of (D) is bounded above

on the feasible region. This is typically done by demonstrating a primal feasible solution.

Finally, note that if (D) has a Slater point, then the set of optimal solutions of (P) is
compact.

Corollary 87. Let n,m ∈ N, let A ∶ Sn → Rm be linear, let b ∈ Rm, and let C ∈ Sn. If

(P) has a Slater point and its objective value is bounded from above (on its feasible

region) then (D) has an optimal solution and the optimal objective values of (P) and

(D) are the same.

Proof. This follows immediately because the dual of (D) is equivalent to (P).
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Corollary 88. Let n,m ∈ N, let A ∶ Sn → Rm be linear, let b ∈ Rm, and let C ∈ Sn. If

both (P) and (D) have Slater points then (P) and (D) have optimal solutions and the

optimal objective values of (P) and (D) are the same.

Proof. This is immediate by applying both the above strong duality theorem and its

corollary (and using weak duality).

Example 89. There were two examples at this point which are omitted from this docu-

ment, and a third referenced in the textbook.

There was also an infeasible SDP with no LP-like infeasibility certi�cate, motivating

the following de�nition.

Definition 90. Let n,m ∈ N, let A ∶ Sn → Rm be linear, let b ∈ Rm, and let C ∈ Sn. We say

A∗(y) ≼ C is almost feasible if for every ε > 0, there is a C ′ ∈ Sn such that ∥C −C ′∥ < ε
and A∗(y) ≼ C ′ is feasible.

Theorem 91. [Theorem 2.21] Let n,m ∈ N, let A ∶ Sn → Rm be linear, and let C ∈ Sn.

(1) If there is a D ∈ Sn+ such that A(D) = 0 and ⟨C,D⟩ < 0, then there is no y ∈ Rm
such that A∗(y) ≼ C.

(2) If there is no D ∈ Sn+ such that A(d) = 0 and ⟨C,D⟩ < 0, then A∗(y) ≼ C is almost

feasible.

Proof. First we verify (1). Suppose D ∈ Sn+ is such that A(D) = 0 and ⟨C,D⟩ < 0. Assume,

for a contradiction, that there is a y ∈ Rm such that A∗(y) ≼ C. Then

0 > ⟨C,D⟩ = ⟨C −A∗(y),D⟩ + ⟨A∗(y),D⟩ ≥ ⟨A∗(y),D⟩ = ⟨y,A(D)⟩ = ⟨y, 0⟩ = 0,

which is absurd. Thus no such y exists.

Next we verify (2). Suppose there is no D ∈ Sn+ such that A(D) = 0 and ⟨C,D⟩ < 0.
Consider the SDP (D)

sup η

A∗(y) + ηI ≼ C
η ≤ 0

and its dual (P)

inf ⟨C,X⟩
A(x) = 0
⟨I,X⟩ ≤ 1

X ≽ 0.
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Note that (0,− ∥C∥2−1) is a Slater point for (D). Moreover, the objective value is clearly

bounded above on the feasible region because one of the constraints is η ≤ 0. Therefore

our strong duality theorem applies, and we conclude that (P) has an optimal solution and

its value agrees with the optimal objective value of (D). Since X = 0 is a feasible solution

for (P), the optimal objective value of (P) is at least 0. Suppose the optimal objective

value of (P) were less than zero. Then there would be an X ≥ 0 with ⟨X, I⟩ ≤ 1, A(X) = 0,
and ⟨C,X⟩ < 0. But this contradicts our initial assumption. Thus the optimal objective

value of (D) is 0.
So the optimal objective value of (P) is 0. This means that there exists a sequence

((y(k), η(k)))∞k=1 such that for all k ∈ N we have A∗(y(k)) + η(k)I ≼ C and η(k) ≤ 0, and
η(k) → 0−. But now, for any ε > 0, we can pick k ∈ N such that ∥η(k)I∥2 < ε to get

A∗(y(k)) ≼ C − η(k)I with ∥C − (C − η(k)I)∥2 = ∥η(k)I∥2 < ε. Thus A∗(y) ≼ C is almost

feasible.

Theorem 92. [Theorem 2.22] Let n ∈ N, let C ∈ Sn, and let A ∶ Sn → Rm be linear.

Then there exists a D ∈ Sn such that D ≽ 0, A(D) = 0, and ⟨C,D⟩ < 0, if and only if

A∗(y) ≼ C is not almost feasible.
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