and s2vec: $\mathbb{S}^{n} \rightarrow \mathbb{R}^{\frac{n(n-1)}{2}}$ by

$$
\operatorname{s2vec}(X):=\left[\begin{array}{c}
X_{1,1} \\
\sqrt{2} X_{2,1} \\
\vdots \\
\sqrt{2} X_{n, 1} \\
X_{2,2} \\
\sqrt{2} X_{3,2} \\
\vdots \\
\sqrt{2} X_{n, 2} \\
\vdots \\
X_{n, n}
\end{array}\right] .
$$

2 Duality Theory

Theorem 81. [Theorem 2.8: A separation theorem] Let $n \in \mathbb{N}$ and let $\mathrm{G} \subseteq \mathbb{R}^{n}$. If G is a non-empty, closed convex set with $0 \notin G$, then there exists an $a \in \mathbb{R}^{n} \backslash\{0\}$ and an $\alpha \in \mathbb{R}_{++}$such that $\mathrm{a}^{\top} x \geq \alpha$ for all $x \in G$.

Proof. Since G is non-empty, let $\bar{\chi} \in G$. Set

$$
\mathrm{G}_{\overline{\mathrm{x}}}:=\left\{x \in \mathrm{G} ;\|x\|_{2} \leq\|\bar{x}\|_{2}\right\} .
$$

Note that $G_{\bar{x}}=G \cap\left\{x \in \mathbb{R}^{n} ;\|x\|_{2} \leq\|\bar{x}\|_{2}\right\}$ in the intersection of compact convex sets and is hence compact and convex. Moreover, it is non-empty because $\bar{\chi} \in G_{\bar{x}}$, and $0 \notin G_{\bar{x}}$ since $0 \notin G$. As such, there exists a unique point a in $G_{\bar{x}}$ which is closest to the origin. (Indeed, consider minimizing the continuous, strictly convex function $\|\cdot\|_{2}^{2}$ on the nonempty compact convex set $G_{\bar{\chi}}$.)

Since $a \in G_{\bar{x}}$ and $0 \notin G_{\bar{\chi}}, a \neq \in \mathbb{R}^{n} \backslash\{0\}$. Set $\alpha:=\|a\|_{2}^{2}>0$. Let $x \in G$. Since G is convex, for every $\lambda \in(0,1)$ we have $\lambda x+(1-\lambda) a \in G$. By choice of a, we have $\|a\|_{2} \leq\|z\|_{2}^{2}$ for all $z \in$ G. Therefore

$$
\|\lambda x+(1-\lambda) a\|_{2}^{2} \geq\|a\|_{2}^{2}
$$

But expanding the left side yields

$$
\|\lambda(x-a)+a\|_{2}^{2}=\lambda^{2}\|x-a\|_{2}^{2}+2 \lambda\langle x-a, a\rangle+\|a\|_{2}^{2} .
$$

Hence the first inequality becomes

$$
\lambda^{2}\|x-a\|_{2}^{2}+\lambda\langle x-a, a\rangle \geq 0
$$

which shows, since $\lambda>0$,

$$
(x-a)^{\top} a \geq-\frac{\lambda}{2}\|x-a\|_{2}^{2} .
$$

As this holds for all $\lambda \in(0,1)$, we get

$$
x^{\top} a-a^{\top} a \geq 0
$$

or equivalently

$$
x^{\top} a \geq \alpha
$$

Corollary 82. [Corollary 2.9] Let $n \in \mathbb{N}$ and let $\mathrm{G}_{1}, \mathrm{G}_{2} \subseteq \mathbb{R}^{n}$. If G_{1} and G_{2} are non-empty, disjoint, closed convex sets, and at least one of G_{1} and G_{2} is bounded, then there exists an $a \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\inf \left\{a^{\top} u ; u \in G_{1}\right\}>\sup \left\{a^{\top} v ; v \in G_{2}\right\} .
$$

Proof. Note that $G_{1}-G_{2}$ is clearly a non-empty convex set, which does not contain the origin because G_{1} and G_{2} are disjoint. Now we claim that it is closed. We will assume G_{2} si bounded (if G_{2} is unbounded then G_{1} must be bounded, and the proof is similar). Suppose $\left(g^{(k)}\right)_{k \in \mathbb{N}}$ is a sequence in $G_{1}-G_{2}$ which converges to some $g \in \mathbb{R}^{n}$. Then there exists sequences $\left(u^{(k)}\right)_{k \in \mathbb{N}}$ and $\left(v^{(k)}\right)_{k \in \mathbb{N}}$ in G_{1} and G_{2} respectively such that $g^{(k)}=u^{(k)}-v^{(k)}$ for each $k \in \mathbb{N}$. Since G_{2} is compact (it is closed and bounded), there is a subsequence $\left(v^{\left(k_{\mathrm{m}}\right)}\right)_{\mathfrak{m} \in \mathbb{N}}$ of $\left(v^{(\mathrm{k})}\right)_{\mathrm{k} \in \mathbb{N}}$ which converges to some $\overline{\mathrm{g}}_{2} \in \mathrm{G}_{2}$. Now note that the subsequence $\left(u^{\left(k_{\mathfrak{m}}\right)}\right)_{\mathfrak{m} \in \mathbb{N}}=\left(g^{\left(k_{\mathfrak{m}}\right)}\right)_{\mathfrak{m} \in \mathbb{N}}+\left(v^{\left(k_{m}\right)}\right)_{\mathfrak{m} \in \mathbb{N}}$ converges to $g+\bar{g}_{2}$. Since G_{1} is closed, $g+\bar{g}_{2} \in G_{1}$. Thus $g=\left(g+\bar{g}_{2}\right)-\bar{g}_{2} \in \mathrm{G}_{1}-\mathrm{G}_{2}$ and so $\mathrm{G}_{1}-\mathrm{G}_{2}$ is closed, as claimed.

By the previous theorem, there exists an $a \in \mathbb{R}^{n} \backslash\{0\}$ and an $\alpha \in \mathbb{R}_{++}$such that $a^{\top} g \geq \alpha$ for all $\mathrm{g} \in \mathrm{G}_{1}-\mathrm{G}_{2}$. So let $u \in \mathrm{G}_{1}$ and $v \in \mathrm{G}_{2}$. Then $u-v \in \mathrm{G}_{1}-\mathrm{G}_{2}$, so

$$
a^{\top} u-a^{\top} v=a^{\top}(u-v) \geq \alpha,
$$

or equivalently

$$
a^{\top} u \geq \alpha+a^{\top} v .
$$

Taking the infimum over all such $u \in G_{1}$ yields

$$
\inf \left\{a^{\top} u ; u \in G_{1}\right\} \geq \alpha+a^{\top} v
$$

for all $v \in \mathrm{G}_{2}$. Taking the supremum over all such $v \in \mathrm{G}_{2}$ yields

$$
\inf \left\{a^{\top} u ; u \in G_{1}\right\} \geq \alpha+\sup \left\{a^{\top} v ; v \in G_{2}\right\}>\sup \left\{a^{\top} v ; v \in G_{2}\right\} .
$$

Theorem 83. [Theorem 2.11] Let $\mathrm{n} \in \mathbb{N}$ and let $\mathrm{G} \subseteq \mathbb{R}^{n}$. If G is a non-empty convex set with $0 \notin G$ then there exists an $a \in \mathbb{R}^{n} \backslash\{0\}$ such that $a^{\top} x \geq 0$ for all $x \in G$.

Proof. For $x \in G$, define

$$
\operatorname{HS}(x):=\left\{s \in \mathbb{R}^{n} ; s^{\top} x \geq 0,\|s\|_{2}=1\right\} .
$$

We need to show that

$$
\bigcap_{x \in G} H S(x) \neq \varnothing .
$$

Since each $\mathrm{HS}(x)$, for $x \in G$, is compact, it suffices to prove that the intersection is nonempty for any finite subset of G. So suppose $x^{(1)}, \ldots, x^{(k)} \in G$. Note that $\operatorname{conv}\left\{x^{(1)}, \ldots, x^{(k)}\right\}$ is a non-empty, closed, convex set. Moreover, it is a subset of G, so since $0 \notin G$, we get $0 \notin \operatorname{conv}\left\{x^{(1)}, \ldots, x^{(k)}\right\}$. Thus by theorem 2.8 , there exists an $a \in \mathbb{R}^{n} \backslash\{0\}$ such that $a^{\top} x \geq 0$ for all $x \in \operatorname{conv}\left\{x^{(1)}, \ldots, x^{(k)}\right\}$. So we see

$$
\frac{1}{\|a\|_{2}} a \in \bigcap_{x \in\left\{x(1), \ldots, x^{(k)}\right\}} H S(x) \neq \varnothing,
$$

as required.

Corollary 84. [Corollary 2.12] Let $n \in \mathbb{N}$ and let $\mathrm{G}_{1}, \mathrm{G}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$. If G_{1} and G_{2} are non-empty, disjoint convex sets, then there exists an $a \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\inf \left\{a^{\top} u ; u \in G_{1}\right\} \geq \sup \left\{a^{\top} v ; v \in G_{2}\right\} .
$$

Proof. Note that $\mathrm{G}_{1}-\mathrm{G}_{2}$ is a non-empty convex set, which does not contain the origin because G_{1} and G_{2} are disjoint. By the previous theorem, there exists an $a \in \mathbb{R}^{n} \backslash\{0\}$ such that $\mathrm{a}^{\top} x \geq 0$ for all $x \in \mathrm{G}_{1}-\mathrm{G}_{2}$. So let $u \in \mathrm{G}_{1}$ and $v \in \mathrm{G}_{2}$. Then $u-v \in \mathrm{G}_{1}-\mathrm{G}_{2}$, so $a^{\top}(u-v) \geq 0$, which shows

$$
a^{\top} u \geq a^{\top} v .
$$

Taking the infimum over $u \in G_{1}$ yields

$$
\inf \left\{a^{\top} u ; u \in G_{1}\right\} \geq a^{\top} v
$$

for all $v \in \mathrm{G}_{2}$. Taking the supremum over all $v \in \mathrm{G}_{2}$ yields

$$
\inf \left\{a^{\top} u ; u \in G_{1}\right\} \geq \sup \left\{a^{\top} v ; v \in G_{2}\right\} .
$$

Theorem 85. [Theorem 2.14: A Strong Duality Theorem] Let $n, m \in \mathbb{N}$, let $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$ be linear, let $\mathrm{b} \in \mathbb{R}^{\mathrm{m}}$, and let $\mathrm{C} \in \mathbb{S}^{n}$. If (D) has a Slater point and its objective value is bounded from above (on its feasible region) then (P) has an optimal solution and the optimal objective values of (P) and (D) are the same.

Proof. First suppose that $\mathrm{b}=0$. Then $\overline{\mathrm{X}}:=0$ is a feasible solution for (P), with objective value 0. Also, the given Slater point is a feasible solution for (D), with objective value 0 also. Hence by weak duality, \bar{S} is an optimal solution and the objective values agree.

So we may assume $b \neq 0$. Since the objective value of (D) is bounded above, it has an optimal value, say z^{*}. Define $G_{2}:=\mathbb{S}_{++}^{n}$ and

$$
\mathrm{G}_{1}:=\left\{\mathrm{C}-\mathcal{A}^{*}(\mathrm{y}) ; \mathrm{y} \in \mathbb{R}^{\mathrm{m}}, \mathrm{~b}^{\top} \mathrm{y} \geq z^{*}\right\} \subseteq \mathbb{S}^{n} .
$$

It is easy to see that G_{1} and G_{2} are both convex, and clearly G_{2} is non-empty.
We claim that G_{1} is also non-empty. Since $b \neq 0, \frac{z^{*}}{\|b\|_{2}^{2}} b \in \mathbb{R}^{m}$ and

$$
\mathrm{b}^{\top}\left(\frac{z^{*}}{\|\mathrm{~b}\|_{2}^{2}} \mathrm{~b}\right)=\frac{z^{*}}{\mathrm{~b}^{\top} \mathrm{b}}\left(\mathrm{~b}^{\top} \mathrm{b}\right)=z^{*} \geq z^{*} .
$$

Hence $\frac{z^{*}}{\|\mathrm{~b}\|_{2}^{2}} \mathrm{~b} \in \mathrm{G}_{1}$.
Next we claim that G_{1} and G_{2} are disjoint. Assume, for a contradiction, that they are not. This means that there exists a $\tilde{y} \in \mathbb{R}^{m}$ such that $b^{T} \tilde{y} \geq z^{*}$ and $C-\mathcal{A}^{*}(\tilde{y})>0$. But then \tilde{y} is feasible for (D), so since z^{*} is the optimal objective value, we must have $b^{\top} \tilde{y} \leq z^{*}$, and hence $b^{\top} \tilde{y}=z^{*}$. Consider $y(\epsilon):=\tilde{y}+\epsilon b$, for $\epsilon>0$. Since \mathcal{A}^{*} is linear and hence continuous, and since $C-\mathcal{A}^{*}(\tilde{y}) \in \mathbb{S}_{++}^{n}=\int\left(\mathbb{S}_{+}^{n}\right)$, there is some $\epsilon>0$ such that $C-\mathcal{A}^{*}(y(\epsilon)) \in \mathbb{S}_{++}^{n}$. In particular, $y(\epsilon)$ is feasible for (D). But it has objective value

$$
b^{\top} y(\epsilon)=b^{\top}(\tilde{y}+\epsilon b)=b^{\top} \tilde{y}+\epsilon b^{\top} b>b^{\top} \tilde{y}=z^{*}
$$

contradiction that z^{*} is the optimal objective value of (D). Thus the claim holds.
Now we can apply the previous corollary to get that there exists an $\tilde{X} \in \mathbb{S}^{n} \backslash\{0\}$ such that

$$
\sup \left\{\langle\tilde{X}, S\rangle ; S \in G_{1}\right\} \leq \inf \left\{\langle\tilde{X}, S\rangle ; S \in G_{2}\right\}
$$

Assume, for a contradiction, that $\inf \left\{\langle\tilde{X}, S\rangle ; S \in G_{2}\right\}<0$. This means that there is an $S \in G_{2}=\mathbb{S}_{++}^{n}$ such that $\langle\tilde{X}, S\rangle<0$. But now for any $\alpha \in \mathbb{R}_{++}, \alpha S \in \mathbb{S}_{++}^{n}=G_{2}$ and $\langle\tilde{X}, \alpha S\rangle=$ $\alpha\langle\tilde{X}, S\rangle \rightarrow-\infty$ as $\alpha \rightarrow \infty$. This contradicts that $\left\{\langle\tilde{X}, S\rangle ; S \in G_{2}\right\}$ is bounded below. Thus $\inf \left\{\langle\tilde{X}, S\rangle ; S \in G_{2}\right\} \geq 0$. On the other hand, $\alpha \mathrm{I} \in \mathbb{S}_{++}^{n}$ for all $\alpha \in \mathbb{R}_{++}=G_{2}$ and $\langle\tilde{X}, \alpha \mathrm{I}\rangle=$ $\alpha\langle\tilde{X}, I\rangle \rightarrow 0$ as $\alpha \rightarrow 0^{+}$. This shows $\inf \left\{\langle\tilde{X}, S\rangle ; S \in G_{2}\right\} \leq 0$ and thus $\inf \left\{\langle\tilde{X}, S\rangle ; S \in G_{2}\right\}=0$.

From this we get $\sup \left\{\langle\tilde{X}, S\rangle ; S \in G_{1}\right\} \leq 0$. This means that $\langle\tilde{X}, S\rangle \leq 0$ for all $S \in G_{1}$, or equivalently, $\left\langle\tilde{x}, C-\mathcal{A}^{*}(y)\right\rangle \leq 0$ for all $y \in \mathbb{R}^{m}$ such that $b^{\top} y \geq z^{*}$. Rearranging and using the definition of the adjoint yields

$$
\begin{equation*}
\mathcal{A}(\tilde{X})^{\top} y \geq\langle\tilde{X}, C\rangle \tag{4}
\end{equation*}
$$

for all $y \in \mathbb{R}^{m}$ such that $b^{\top} y \geq z^{*}$. This shows that the LP

$$
\begin{aligned}
& \min \mathcal{A}(\tilde{X}) y \\
& \text { s.t.: } b^{\top} y \geq z^{*}
\end{aligned}
$$

is bounded below, and hence its dual

$$
\begin{array}{ll}
\max & z^{*} \alpha \\
\text { s.t.: } & \alpha b=\mathcal{A}(\tilde{X}) \\
& \alpha \geq 0
\end{array}
$$

is feasible. That is to say, there exists an $\alpha \in \mathbb{R}_{+}$such that $\alpha \mathrm{b}=\mathcal{A}(\tilde{\mathrm{X}})$.
Assume, for a contradiction, that $\alpha=0$. Then $\mathcal{A}(\tilde{X})=\alpha b=0$. We are given that (D) has a Slater point, say (\bar{S}, \bar{y}). And since we saw $\inf \left\{\langle\tilde{X}, S\rangle ; S \in G_{2}\right\}=0$, we have $\langle\tilde{X}, S\rangle \geq 0$ for all $S \in \mathbb{S}_{++}^{n}$. It follows that $\langle\tilde{X}, S\rangle \geq 0$ for all $S \in \mathbb{S}_{+}^{n}$, and thus $\tilde{X} \in \mathbb{S}_{+}^{n}$. Now we see, since $\tilde{X} \in \mathbb{S}_{+}^{n} \backslash\{0\}$ and $\bar{S} \in \mathbb{S}_{++}^{n}$,

$$
0<\langle\bar{S}, \tilde{x}\rangle=\langle\bar{S}, \tilde{x}\rangle+\langle\bar{y}, \mathcal{A}(\tilde{X})\rangle=\langle\bar{S}, \tilde{x}\rangle+\left\langle\mathcal{A}^{*}(\bar{y}), \tilde{x}\right\rangle=\left\langle\bar{S}-\mathcal{A}^{*}(\bar{y}), \tilde{x}\right\rangle=\langle C, \tilde{x}\rangle \leq 0
$$

where the last inequality follows because

$$
\langle C, \tilde{x}\rangle=\left\langle C-\mathcal{A}^{*}(\bar{y}), \tilde{x}\right\rangle+\left\langle\mathcal{A}^{*}(\bar{y}), \tilde{x}\right\rangle \leq\langle\bar{y}, \mathcal{A}(\tilde{x})\rangle=\langle\bar{y}, 0\rangle=0 .
$$

But this is absurd.
Thus $\alpha>0$. Set $\widehat{X}:=\frac{1}{\alpha} \tilde{X}$. By linearity of $\mathcal{A}, \mathcal{A}(\widehat{X})=\frac{1}{\alpha} \mathcal{A}(\tilde{X})=\frac{1}{\alpha} \alpha b=b$. And $\widehat{X} \in \mathbb{S}_{+}^{n}$ since $\tilde{X} \in \mathbb{S}_{+}^{n}$. Therefore \widehat{X} is feasible for (P). Moreover, the objective value of \widehat{X} is

$$
\langle C, \hat{X}\rangle=\frac{1}{\alpha}\langle C, \tilde{X}\rangle \leq \frac{1}{\alpha} \mathcal{A}(\tilde{X})^{\top} \frac{z^{*}}{\|b\|_{2}^{2}} \mathrm{~b}=\frac{1}{\alpha} \alpha \frac{z^{*}}{\|b\|_{2}^{2}} \mathrm{~b}^{\top} \mathrm{b}=z^{*} .
$$

By weak duality, since z^{*} was the optimal value of (D), we must have $\langle\mathrm{C}, \hat{X}\rangle \geq z^{*}$. Therefore $\langle C, \hat{X}\rangle=z^{*}$ as desired.

REMARK 86. The statement and the proof of this strong duality theorem generalize to convex optimization problems in conic form.

Even though the optimal objective values of (P) and (D) are the same, the optimal objective value of (D) may not be attained by any feasible solution.

The statement requires us to know that the objective function of (D) is bounded above on the feasible region. This is typically done by demonstrating a primal feasible solution.

Finally, note that if (D) has a Slater point, then the set of optimal solutions of (P) is compact.

Corollary 87. Let $n, m \in \mathbb{N}$, let $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$ be linear, let $\mathrm{b} \in \mathbb{R}^{m}$, and let $\mathrm{C} \in \mathbb{S}^{n}$. If (P) has a Slater point and its objective value is bounded from above (on its feasible region) then (D) has an optimal solution and the optimal objective values of (P) and (D) are the same.

Proof. This follows immediately because the dual of (D) is equivalent to (P).

Corollary 88. Let $n, m \in \mathbb{N}$, let $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$ be linear, let $\mathrm{b} \in \mathbb{R}^{m}$, and let $\mathrm{C} \in \mathbb{S}^{n}$. If both (P) and (D) have Slater points then (P) and (D) have optimal solutions and the optimal objective values of (P) and (D) are the same.

Proof. This is immediate by applying both the above strong duality theorem and its corollary (and using weak duality).

Example 89. There were two examples at this point which are omitted from this document, and a third referenced in the textbook.

There was also an infeasible SDP with no LP-like infeasibility certificate, motivating the following definition.

Definition 90. Let $n, m \in \mathbb{N}$, let $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$ be linear, let $b \in \mathbb{R}^{m}$, and let $C \in \mathbb{S}^{n}$. We say $\mathcal{A}^{*}(\mathrm{y}) \leqslant \mathrm{C}$ is almost feasible if for every $\epsilon>0$, there is a $\mathrm{C}^{\prime} \in \mathbb{S}^{n}$ such that $\left\|\mathrm{C}-\mathrm{C}^{\prime}\right\|<\epsilon$ and $\mathcal{A}^{*}(y) \leqslant \mathrm{C}^{\prime}$ is feasible.

Theorem 91. [Theorem 2.21] Let $n, m \in \mathbb{N}$, let $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$ be linear, and let $\mathrm{C} \in \mathbb{S}^{n}$.
(1) If there is $a \mathrm{D} \in \mathbb{S}_{+}^{n}$ such that $\mathcal{A}(\mathrm{D})=0$ and $\langle\mathrm{C}, \mathrm{D}\rangle\left\langle 0\right.$, then there is no $\mathrm{y} \in \mathbb{R}^{\mathrm{m}}$ such that $\mathcal{A}^{*}(\mathrm{y}) \leqslant \mathrm{C}$.
(2) If there is no $\mathrm{D} \in \mathbb{S}_{+}^{n}$ such that $\mathcal{A}(\mathrm{d})=0$ and $\langle\mathrm{C}, \mathrm{D}\rangle<0$, then $\mathcal{A}^{*}(\mathrm{y}) \leqslant \mathrm{C}$ is almost feasible.

Proof. First we verify (1). Suppose $\mathrm{D} \in \mathbb{S}_{+}^{n}$ is such that $\mathcal{A}(\mathrm{D})=0$ and $\langle\mathrm{C}, \mathrm{D}\rangle<0$. Assume, for a contradiction, that there is a $y \in \mathbb{R}^{m}$ such that $\mathcal{A}^{*}(y) \leqslant C$. Then

$$
0\rangle\langle\mathrm{C}, \mathrm{D}\rangle=\left\langle\mathrm{C}-\mathcal{A}^{*}(\mathrm{y}), \mathrm{D}\right\rangle+\left\langle\mathcal{A}^{*}(\mathrm{y}), \mathrm{D}\right\rangle \geq\left\langle\mathcal{A}^{*}(\mathrm{y}), \mathrm{D}\right\rangle=\langle\mathrm{y}, \mathcal{A}(\mathrm{D})\rangle=\langle\mathrm{y}, 0\rangle=0,
$$

which is absurd. Thus no such y exists.
Next we verify (2). Suppose there is no $\mathrm{D} \in \mathbb{S}_{+}^{n}$ such that $\mathcal{A}(\mathrm{D})=0$ and $\langle\mathrm{C}, \mathrm{D}\rangle<0$. Consider the SDP (D)

$$
\begin{gathered}
\sup \eta \\
\mathcal{A}^{*}(\mathrm{y})+\eta \mathrm{I} \leqslant \mathrm{C} \\
\eta \leq 0
\end{gathered}
$$

and its dual (P)

$$
\begin{gathered}
\inf \langle\mathrm{C}, \mathrm{X}\rangle \\
\mathcal{A}(\mathrm{x})=0 \\
\langle\mathrm{I}, \mathrm{X}\rangle \leq 1 \\
\mathrm{X} \geqslant 0 .
\end{gathered}
$$

Note that ($0,-\|C\|_{2}-1$) is a Slater point for (D). Moreover, the objective value is clearly bounded above on the feasible region because one of the constraints is $\eta \leq 0$. Therefore our strong duality theorem applies, and we conclude that (P) has an optimal solution and its value agrees with the optimal objective value of (D). Since $X=0$ is a feasible solution for (P), the optimal objective value of (P) is at least 0 . Suppose the optimal objective value of (P) were less than zero. Then there would be an $\mathrm{X} \geq 0$ with $\langle\mathrm{X}, \mathrm{I}\rangle \leq 1, \mathcal{A}(\mathrm{X})=0$, and $\langle C, X\rangle<0$. But this contradicts our initial assumption. Thus the optimal objective value of (D) is 0 .

So the optimal objective value of (P) is 0 . This means that there exists a sequence $\left(\left(y^{(k)}, \eta^{(k)}\right)\right)_{k=1}^{\infty}$ such that for all $k \in \mathbb{N}$ we have $\mathcal{A}^{*}\left(y^{(k)}\right)+\eta^{(k)} I \leqslant C$ and $\eta^{(k)} \leq 0$, and $\eta^{(k)} \rightarrow 0^{-}$. But now, for any $\epsilon>0$, we can pick $k \in \mathbb{N}$ such that $\left\|\eta^{(k)} I\right\|_{2}<\epsilon$ to get $\mathcal{A}^{*}\left(\mathrm{y}^{(\mathrm{k})}\right) \leqslant \mathrm{C}-\eta^{(\mathrm{k})} \mathrm{I}$ with $\left\|\mathrm{C}-\left(\mathrm{C}-\eta^{(\mathrm{k})} \mathrm{I}\right)\right\|_{2}=\left\|\eta^{(\mathrm{k})} \mathrm{I}\right\|_{2}<\epsilon$. Thus $\mathcal{A}^{*}(\mathrm{y}) \leqslant \mathrm{C}$ is almost feasible.

Theorem 92. [ThEOREM 2.22] Let $\mathfrak{n} \in \mathbb{N}$, let $\mathrm{C} \in \mathbb{S}^{n}$, and let $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$ be linear. Then there exists $a \mathrm{D} \in \mathbb{S}^{n}$ such that $\mathrm{D} \geqslant 0, \mathcal{A}(\mathrm{D})=0$, and $\langle\mathrm{C}, \mathrm{D}\rangle\langle 0$, if and only if $\mathcal{A}^{*}(\mathrm{y}) \leqslant \mathrm{C}$ is not almost feasible.

Note that (0) hos a Slater point $\bar{y}=0, Y=-\|C\|_{2}-1$ and its objective value is bounded above. Therefore Strong Duality theorem apples.

By Strong Duality Theorem, Gro optimal objective values of this primal-dual pair 20140529 ave the same. Moreover, $\bar{X}:=0$ is a facastle solution with o gjeetive value 0 , and by assumption (about fo) it is optimal. Then either $\exists(\bar{y}, \bar{y})$ feasible with $\bar{y}=0$ $\left(A^{*}(y) \leqslant C\right.$ is feasible) or at least there is a sequence $\left\{y^{(k)}, y_{k}\right\}$ such that $A^{*}\left(y^{(1)}\right)+y_{k} I \leqslant C, \quad y_{k} \rightarrow 0^{-}$. Therefore, in either case, $x^{+}(y) \leqslant C$ is a most feasible.

Theorem 2.22: There exits $D \geqslant 0$ such that $A(D)=0,\langle c, 0\rangle<0$ if and only it the system $A^{*}(y) \leqslant C$ is not a most feasible.
Proof: (k) was proved in the $2.21(b)$.
$\Leftrightarrow 1$: Suppose there exits such a ($A)$. WLOG, pick such D with $\langle C, D\rangle=-1$. Then for all C^{\prime} such that $\left\|C \cdot C^{\prime}\right\|<\|O\| \|^{-1}$, our choice for D proves $A^{t}(y)<C C^{\prime}$ hes no solutions.

What can we do if Saber condition fails? In many applications, we formulate say a primal SDP and that is the object of main interest?

$$
\text { (P) inf } \begin{array}{r}
\langle c, x\rangle \\
A(x)=b \\
x \geqslant 0
\end{array}
$$

Suppose neither (P) nor (i) has a Slater point. Borwein-Wolkowicz:
If $\{x \neq 0 ; A(x)=b\} \neq \phi$ then it has a relative interior; restrict your space to the affine hull of

$$
\operatorname{relint}\{x \geqslant 0 ; A(x)=b\} .
$$

In this smaller dimensional space, we do have Stater points. Then our strong duality theorem applies.
To apply this idea to (SDP), we need to look at the geometry of \mathbb{S}_{t}^{n}.
$K \subset \mathbb{R}^{d}$ is a dosed convex cone, a dosed convex cone $G \leq K$ such that $\forall u, v \in K$ with $u+v \in G$ we have $u, v \in G$, is called a Foxe of K. A face G of K exposed il $\exists a \in \mathbb{R}^{d}\{\{0\}$ st

$$
G=\{x \in K ;\langle a, x\rangle=0\}
$$

and

$$
\left.K \subseteq\left\{x \in \mathbb{R}^{d} ; \quad a x\right\rangle \geq 0\right\}
$$

G is a proper lace of K A Gisafued o K

$$
\text { ad } 6+t \text { and } 6+\alpha
$$

Theorem 225.
(a) Every face G of S^{n} is idathid by a liver subspace $L \subseteq \mathbb{R}^{n}$

$$
\begin{aligned}
& G /=\left\{X_{c} \mathbb{S}_{+}^{n} ; \operatorname{Nul}(X) \geq L\right\}, \\
& \operatorname{relint}(G)=\left\{x \in \mathbb{S}_{+}^{*} ; \operatorname{Nul}(X)=L\right\} ;
\end{aligned}
$$

(1) Every propel face of $\mathbb{S}_{t}^{\prime \prime}$ is egooed.
(c) Every face G S pogctiontly oppose (ie:
($G \in(I-Q) S_{n}^{n}(I Q)$
\& where Q_{i} the orthogonal prigetion ont Invar abrpace L defining G.
In fact, every foe G of $S_{+}^{n}+i$ lineate isomorphic to \mathbb{S}_{+}^{k} for some $k \leq n$. G is the image of

$$
\left\{\left[X_{0} \| \in \mathbb{E}_{k_{k} ;}, X \subset \mathbb{S}_{+}^{k}\right\}\right. \text { for }
$$

Recall the extreme rays (one dimensional faces) of es:

$$
h^{T} \text { for } h \in \mathbb{R}^{n} \text {. }
$$

Every extreme may is linearly isornorphic vader as uslomorphism of S^{n} to

$$
\left\{\left[\begin{array}{l}
0_{0}^{\infty} \\
0
\end{array}\right] \in \mathbb{S}^{0} ; \alpha \in \mathbb{R}_{1}\right\} \quad\left(h=e_{1}\right)
$$

Thus, once we denitrify the minimal fore (wot infusion) o(S_{5} which contains our feasible region $\left\{x \in \mathbb{E}_{n}^{-} ; A(x)=b\right\}$, we an ugatrid our problem to S_{+}^{k} and for this smatter dimensional care, we do have a Slater point.

Note that in non-linear optimization adding redundant constraints can change the behaviour of the dual.
ex $\quad C=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], A_{1}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \quad A_{2}=\left[\begin{array}{lll}1 & & \\ & 1\end{array}\right] \quad l:=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(P) inf X_{11}

$$
x=\left[\begin{array}{ccc}
1 & 0 & x_{33} \\
0 & 0 & 0 \\
x_{31} & 0 & x_{33}
\end{array}\right] \geqslant 0
$$

The optimal value is dearly 1 .
(D) $\sup y_{2}$

$$
\left[\begin{array}{cc}
y_{2} & \\
1-y_{2} & \\
-y_{1} & -y_{2} \\
-y_{2} & 0
\end{array}\right] \geqslant 0
$$

The optimal value is dearly 0 .

Consider adding the redvant constraint $\left\langle A_{3}, X\right\rangle=0$ for

$$
A_{3}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
$$

to (P). Note (P) remains unchanged. New dual:

$$
\left[\begin{array}{cc}
y_{2} \\
1-y_{2} & \\
& -y_{1} \\
& -y_{2}-y_{3}-y_{3}
\end{array}\right] \geqslant 0
$$

has optimal value l as we no longer require $-y_{2}=0$.

$$
\begin{array}{r}
\text { inf }\langle c, x\rangle \\
A(x)=b \\
x \geqslant 0
\end{array}
$$

$$
20140603
$$

Suppose (P) has feasible solutions).
Restrict the feasible region to the minimal face of \mathbb{S}_{t}^{n}.
A key lemur to hep us arrive at the minimal face:
($)$ Lemma 2.27: Let $A: \mathbb{S}^{\prime \prime} \rightarrow \mathbb{R}^{m}$ linear, be \mathbb{R}^{m}, such that (P) is leaidle. Then exactly one of the following holds:
(I) $A^{(}(X)=b, X \in \mathbb{S}_{++}^{+}$;
(II) $A^{2}(y) \in \mathbb{E}^{2}+\{0\}$ and $b^{\top} y=0$

If (I) does not had, then $\exists \bar{y} \in \mathbb{R}^{m}$ sent that $A^{*}(\bar{y})=: \bar{S} \in S+M\{0\}$ and $0=b^{2} \bar{y}$. So

$$
O=b^{\top} \bar{Y}=A(\bar{X})^{\top} \bar{y}=\left\langle\tilde{X}, A^{n}(\bar{y})\right\rangle=\langle\bar{S}, \hat{X}\rangle
$$

We proved
$\langle\bar{s}, X\rangle=0 \quad \forall$ feasible X.
Ramana [late] gave an explicit construction. We will work with the dual for as cor primal.
(0) $\sup _{A^{4}(y)}^{b^{\top}}(y)$

(ELSD) sit: $A(U: W)=b$
We Uh

$$
u \geqslant 0
$$

where W_{n} is a linear silspace of S" explicitly represented as the feasible region of an SOp with n $2 n \times 2$ matin vaviglles. (see textbook)
 $(E L D D)$ his the same oplnad value and $\exists(\bar{u}, \bar{W})$ father in (ELSD) which attains that optime value.

Recall theorem 2.22. Using theorem 2.8, we obtain
 (I) $A^{2}(y) \& C$ is faille:
(II) $\exists u \geqslant 0$, We W_{n} what $A(u+(u)=0,\langle c, u+w\rangle=-1$.

The prius theorem implies
Theorem 2.30: SDP feasibility is in $N(P \cap c o-N P$ in the real number machine model.

Theorem 2.31 : In the Turing a chine Model, if SOP-feasibility is in NP then it is in NPPco-NP.

It turns out in almost all "applications" we can find SDP formulations which satisfy the Slater condition.
Suppose ce \mathbb{R}^{n} is given and we want to solve

$$
\text { inf } c^{T} x
$$

where F is a compact subset of \mathbb{R}^{n}. Suppose $\exists\left(: S^{S^{n+1}} \rightarrow \mathbb{R}^{m}\right.$ linear such that

$$
F=\left\{x \in \mathbb{R}^{n} ; A\left(\left[\begin{array}{ll}
{\left[\begin{array}{c}
x \\
x
\end{array} x\right.} & \times
\end{array}\right]\right)=0\right\} \leftarrow \text { Homogeneos Equally form }
$$

Let $Q \in \mathbb{S}^{n}, q \in \mathbb{R}^{n}, \gamma \in \mathbb{R}$ be given. Consider the quadratic equation

$$
x^{\top} Q x+2 q^{\top} x+\gamma=0 \text {. }
$$

Note any quadratic in n-vaniables can be written this way. But this is just

$$
\left\langle\left[\begin{array}{ll}
\gamma & q^{\top} \\
q & Q
\end{array}\right]_{1}\left[\begin{array}{ll}
1 & x^{\top} \\
x & x x^{\top}
\end{array}\right]\right\rangle=0 .
$$

Consider an arbitrary quadratic inequality

$$
\begin{aligned}
& x^{\top} Q x+2 q^{\top} x+\gamma \leq 0, \\
\Leftrightarrow & x^{\top} Q x+2 q^{\top} x+y+\tilde{s}^{2}=0 \\
\Leftrightarrow & \left\langle/ \| \sim\left\{\left[\begin{array}{lll}
\gamma & q^{\top} & 0 \\
q & Q & 0 \\
0 & 0^{\top} & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & x^{\top} & \tilde{s} \\
x & x^{\top} & \tilde{s} x \\
\tilde{s} \tilde{s}^{\top} & \tilde{s}^{2}
\end{array}\right]\right\rangle=0 .\right.
\end{aligned}
$$

Not that every polynomial inequality can be beaten down to a system of quadratic inequalities.

$$
\begin{aligned}
& 10 x_{1}^{4} x_{2}^{3}+x_{2}^{2}+7 x_{3}^{5}-3 \leq 0 \\
\Leftrightarrow & x_{4}=x_{1}^{2}, x_{5}=x_{4}^{4}, x_{6}=x_{2}^{2}, x_{7}=x_{2} x_{6}, x_{8}=x_{3}^{2}, x_{9}=x_{8}^{2}, x_{10}=x_{9} x_{3} \\
& 10 x_{5}^{4} x_{7}+x_{2}^{2}+7 x_{10}-3 \leq 0
\end{aligned}
$$

Proposition 2.52: Solution oft of every finite system of polynomial equations and nequalines can be expressed nl Honvogenows Equality Torn. Whee that due to $x_{j}^{2} x_{j}=0 \forall j \in\left\{x_{1}, \ldots, n\right\}$ being a system of quadialio equations, 0,I IP and O, MIP are both special cases.

$$
\begin{aligned}
& \mathcal{F}=\operatorname{conv}\{\{1 x ; x \in \mathcal{x}\} \\
& c^{\top} x<\rightarrow\left\langle\left[\begin{array}{ll}
0 / 1 / c^{\top} \\
1 / c c & 0
\end{array}\right],\left[\begin{array}{ll}
1 & x^{\top} \\
x & x
\end{array}\right]\right\rangle
\end{aligned}
$$

A SDP lavation of F is

$$
\hat{\rho}=\left\{\left[\begin{array}{ll}
1 & x^{\top} \\
x & x
\end{array}\right] \in \mathbb{E}_{+}^{n+1} ; A\left(\left[\begin{array}{ll}
1 & x^{\top} \\
x & x
\end{array}\right]\right)=0\right\} \supseteq \mathcal{F}
$$

Theorem 2.33: Let FCR be a set which adult a Howaoqneose Equally Form nercsentation and conv(F) is full dimensional. Then \hat{P} has a Ster point. Poof: $\exists\left\{\mathrm{V}^{(1)}, \ldots, V^{(n)}, V^{(n+1)} \subseteq \in(\sqrt{\text { 童 }}\right.$ such that

$$
\left\{\binom{1}{\left.v^{(01}\right)}, \ldots,\binom{1}{v^{\prime 2 n+1}}\right\}
$$

is linearly independent in \mathbb{R}^{n+}. Thacebore

$$
\binom{1}{v^{(i)}}\left(1 V^{(i, i)}\right) \in \hat{\mathscr{S}} \quad \forall i \in\{1, \ldots+1\}
$$

Since $\hat{\rho}$ is convex, every convex conlumation of these matrices lie in $\hat{\rho}$. So

$$
V:=\frac{1}{n+1} \sum_{i=1}^{n+1}\binom{1}{v^{(i)}}\left(1 v^{(i)}\right) \in \hat{\Gamma} \subseteq \mathbb{S}_{+}^{n+1}
$$

Bugpropsition III, Vo $S_{i+i}^{i_{i+1}^{+1}}$ and is a Slater paint for \hat{P}.
What if $\operatorname{dim}(\operatorname{conv}(f))=d<n$?
Once we know what d is, in 1 constructive way, then we can apply the above conductor of Sutler points for a subtle sot relaxation.
Suppose we knew the of fine WUI $F, \mathcal{F} \in \mathbb{R}^{n}$ and $L \in \mathbb{R}^{d x}$ arch that $x \in \mathbb{x} \Rightarrow x=l+L^{\prime} y$ for some $y \in \mathbb{R}^{d}$.
read chap 2,3

Define

$$
\begin{aligned}
& \mathcal{L}: \mathbb{S}^{n+1} \rightarrow S^{d+1} \\
& \mathcal{L}(Z):=\left[\begin{array}{ll}
1 & l^{\top} \\
0 & L
\end{array}\right] Z\left[\begin{array}{ll}
1 & 0 \\
l & L^{T}
\end{array}\right] \\
& \mathcal{L}^{*}: S^{d+1} \rightarrow S^{n+1} \\
& \mathcal{L}^{*}(W)=\left[\begin{array}{ll}
1 & 0 \\
l & L^{\top}
\end{array}\right] W^{1}\left[\begin{array}{ll}
1 & l^{\top} \\
0 & L
\end{array}\right] \\
& I: S^{d+1} \rightarrow \mathbb{R}^{m} \\
& T\left((W):=A\left(\mathcal{L}^{*}(W)\right)\right.
\end{aligned}
$$

We have an equivalent formulation of F in Homogeneous Equality Form with linear trans formation A.
Note that the now formulation corves ponds to a full-dimersional set (the d dimensional convex will of F). The corresponding SDP relaxation has the feasible region

$$
\hat{P}_{2}=\left\{\left[\begin{array}{ll}
1 & y^{\top} \\
y & y
\end{array}\right]^{2} S_{+}^{d+1}, \bar{A}\left(\left[\begin{array}{ll}
1 & y^{\top} \\
y & y^{\top}
\end{array}\right]\right)=0\right\}
$$

Theorem 2.34: Slater condition holds for $\hat{\rho}_{2}$.

