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1 Introduction

Remark 1. Unfortunately, we take N = {1, 2, . . .} in these notes. We also use [n] ∶=
{1, 2, . . . , n} for n ∈ N.

Definition 2. A linear optimization problem, or a Linear Programming (LP) program,

is a problem of minimizing or maximizing a linear function of �nitely many real valued

variables subject to �nitely many linear equations and/or inequalities on those variables.

Definition 3. A Semi-de�nite Programming (SDP) problem is a problem of minimizing

or maximizing a linear function of �nitely many symmetric matrix variables with real

entries subject to �nitely many linear equations and linear inequalities on these variables

and subject to positive semi-de�niteness constraints on some of them.

Definition 4. Let n ∈ N. We let Rn×n denote the set of all n-by-n matrices with entries

from R. That is,

Rn×n ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,n
x2,1 x2,2 ⋯ x2,n
⋮ ⋮ ⋱ ⋮
xn,1 xn,2 ⋯ xn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

; xi,j ∈ R for all (i, j) ∈ [n]2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

Definition 5. Let n ∈ N and let X ∈ Rn×n. The transpose of X is given by

XT i,j ∶= Xj,i.

Definition 6. Let n ∈ N and let X ∈ Rn×n. We say X is symmetric if XT = X.

Definition 7. Let n ∈ N and let X ∈ Rn×n. The trace of X is given by

Tr(X) ∶=
n

∑
i=1
Xi,i.
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Definition 8. Let n ∈ N and let X,Y ∈ Rn×n. The inner product of X and Y is given by

⟨X,Y⟩ ∶= Tr(XTY).

Proposition 9. Let n ∈ N and let X,Y ∈ Rn×n. Then

⟨X,Y⟩ =
n

∑
i=1

n

∑
j=1
Xi,jYi,j.

Proof. Simply note

⟨X,Y⟩ = Tr(XTY) =
n

∑
i=1

(XTY)i,i =
n

∑
i=1

n

∑
j=1
XT i,jYj,i =

n

∑
i=1

n

∑
j=1
Xj,iYj,i.

Proposition 10. Let n,m ∈ N, let X ∈ Rn×m, and let Y ∈ Rm×n Then

Tr(XY) = Tr(YX).

Proof. We calculate

Tr(XY) =
n

∑
i=1

(XY)i,i =
n

∑
i=1

m

∑
j=1
Xi,jYj,i =

m

∑
j=1

n

∑
i=1
Yj,iXi,j =

m

∑
j=1

(YX)j,j = Tr(YX).

Proposition 11. Let n ∈ N and let X,P ∈ Rn×n. If P is non-singular (that is, det(P) ≠ 0)
then Tr(PXP−1) = Tr(X).

Proof. By the previous proposition, we calculate

Tr(PXP−1) = Tr(XP−1P) = Tr(XI) = Tr(X).

Definition 12. Let n ∈ N and let X ∈ Rn×n. Note that det(X − λI) is a polynomial in λ of

degree n. By the fundamental theorem of algebra, it has n roots (possibly repeated) over

C. These roots are called the eigenvalues of X.

Proposition 13. Let n ∈ N and let A,B ∈ Rn×n. If A and B are similar then they have

the same eigenvalues.

Proof. As A and B are similar, there is an invertible matrix P ∈ Rn×n such that A = PBP−1.
Then

det(A−λI) = det (PBP−1 − λPIP−1) = det (P(B − λI)P−1) = det(P)det(B−λI)det(P)−1 = det(B−λI).
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Definition 14. Let n ∈ N. We let Sn denote the set of n-by-n symmetric matrices with

entries in R. That is,
Sn ∶= {X ∈ Rn×n; X = XT}.

Proposition 15. Let X ∈ Sn. Then the eigenvalues of X are all real numbers.

Proof. Let λ ∈ C be an eigenvalue of X. This means that there exists a non-zero eigenvector

v such that Xv = λv. Note that since X is a real symmetric matrix, X = X and XT = X. It
follows that Xv = λv. So we get

λvTv = vTλv = vTXv = (vTXv)T = (vTλv)T = λvTv.

But

vTv =
n

∑
i=1
vivi = ⟨v, v⟩ > 0

because v is non-zero.

The �rst equation gives us (λ−λ)vTv = 0. Combining this with the second yields λ = λ,
or equivalently, λ ∈ R.

Definition 16. Let n ∈ N and let X ∈ Sn. As the n eigenvalues of X are real numbers, we

can order them. We let λ1(X) ≥ ⋯ ≥ λn(X) denote the eigenvalues of X in decreasing order.

We also de�ne

λ(X) ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

λ1(X)
⋮

λn(X)

⎤⎥⎥⎥⎥⎥⎥⎦

.

Definition 17. Let n ∈ N and let X ∈ Rn×n. We say X is orthogonal if XTX = I.

Definition 18. Let n ∈ N. We de�ne Diag ∶ Rn → Sn by

Diag(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 ⋯ 0

0 x2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

for all x ∈ Rn.

Theorem 19. [Theorem 1.8] Let n ∈ N and let X ∈ Sn. Then there exists an or-

thonormal matrix Q ∈ Rn×n such that

(1) X =QDiag(λ(X))QT .

Proof. Exercise.
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Definition 20. Let n ∈ N and let X ∈ Sn. For a matrix Q satisfying the previous the-

orem, the expression (1) is known as a Schur decomposition/eigenvalue decomposi-

tion/spectral decomposition of X.

Definition 21. Let n ∈ N, let X ∈ Sn, and let Q be a Schur decomposition of X. Then

the columns q(1), . . . , q(n) of Q are the eigenvectors of X corresponding to the eigenvalues

λ1(X), . . . , λn(X) respectively.

Definition 22. Let n ∈ N and let X ∈ Sn. We say X is positive semi-de�nite if for all

h ∈ Rn we have hTXh ≥ 0. We let

Sn+ ∶= {X ∈ Sn; x is positive semi-de�nite}.

Proposition 23. Let n ∈ N and let X ∈ Sn. Then X is positive semi-de�nite if and

only if λ(X) ≥ 0.

Proof. Suppose �rst that X is positive semi-de�nite. Since the eigenvalues λ(X) are or-

dered, it su�ces to prove that λn(X) ≥ 0.
Let Q be an orthonormal matrix which gives rise to a Schur decomposition of X.

Consider Qen ∈ Rn. Since X is positive semi-de�nite, we know (Qen)TXQen ≥ 0. But we

can calculate

(Qen)TXQen = enTQTQDiag(λ(X))QTQen

= enTIDiag(λ(X))Ien
= enT Diag(λ(X))en

=
n

∑
i=1

n

∑
j=1
δi,nDiag(λ(X))i,jδj,n

= δn,nDiag(λ(X))n,nδn,n
= λn.

Thus λn ≥ 0 as required.
Conversely, suppose that λ(X) ≥ 0. Let h ∈ Rn. We must show hTXh ≥ 0. Again, let Q

be an orthonormal matrix which gives rise to a Schur decomposition of X. Well, note

hTXh = hTQDiag(λ(X))QTh

= (QTh)T Diag(λ(X))(QTh)

=
n

∑
i=1

n

∑
j=1

(QTh)iDiag(λ(X))i,j(QTh)j

=
n

∑
i=1
λi(X)(QTh)2i

Since λ(X) ≥ 0 we know λi(X) ≥ 0, and clearly (QTh)2i ≥ 0. Thus hTXh ≥ 0.
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Remark 24. For X ∈ Sn and h ∈ Rn,

⟨hhT , X⟩ = Tr((hhT)TX) = Tr(hhTX) = Tr(hTXh) = hTXh.

Hence a constraint of the form, for all h ∈ Rn hTXh ≥ 0, is actually in�nitely many linear

constraints on X (of a special type of course).

Definition 25. Let n ∈ N and let X ∈ Sn. We say X is positive de�nite if for all h ∈ Rn∖{0}
we have hTXh > 0. We let

Sn++ ∶= {X ∈ Sn; X is positive de�nite}.

Proposition 26. Let n ∈ N and let X ∈ Sn. Then X is positive de�nite if and only if

λ(X) > 0.

Proof. Suppose �rst that X is positive de�nite. Since the eigenvalues λ(X) are ordered, it
su�ces to prove that λn(X) > 0.

Let Q be an orthonormal matrix which gives rise to a Schur decomposition of X.

Consider Qen ∈ Rn ∖ {0} (indeed, Q is invertible and en ≠ 0). Since X is positive de�nite,

we know (Qen)TXQen > 0. But one can calculate, exactly as in the analogous proposition

above, that (Qen)TXQen = λn. Thus λn > 0 as required.
Conversely, suppose that λ(X) > 0. Let h ∈ Rn ∖ {0}. We must show hTXh > 0. Again,

let Q be an orthonormal matrix which gives rise to a Schur decomposition of X. Similarly

to the previous analogous proposition, we have

hTXh =
n

∑
i=1
λi(X)(QTh)2i = ⟨�h, �h⟩

where �h ∈ Rn is given by �hi ∶=
√
λi(X)(QTh)i for each i ∈ [n]. Note that since

√
λi(X) > 0,

h ≠ 0, and Q is invertible, we have that �h is non-zero. Thus hTXh = ⟨�h, �h⟩ > 0.

Definition 27. Let n ∈ N and let X ∈ Sn+. The square-root of X is

X
1
2 ∶=Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1(X) 0 ⋯ 0

0
√
λ2(X) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯

√
λn(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

QT ,

where Q gives rise to a Schur decomposition of X.

Proposition 28. Let n ∈ N and let X ∈ Sn+. Then the square-root of X is well-de�ned.

Proof. We need only show that the de�nition is independent of Q to show that X
1
2 is well-

de�ned. Suppose Q,R ∈ Rn×n both give rise to a Schur decomposition of X. Exercise.
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Proposition 29. Let n ∈ N and let X ∈ Sn. If X ∈ Sn+ then X
1
2 is symmetric and

λ (X 1
2) =

√
λ(X), and if X ∈ Sn++ then X−1 is symmetric and λ(X−1) = λ(X)−1.

Proof. Let Q give rise to a Schur decomposition of X.

Suppose X ∈ Sn+. One can compute directly that (X 1
2)
T

= X 1
2 , so X

1
2 is symmetric.

Also note that Q is a witness to the similarity of X
1
2 and

√
Diag(X), as is easily seen

via the de�nition of square-root (recall QT = Q−1). Hence by proposition (13), λ (X 1
2) =

λ (
√
Diag(X)) =

√
λ(X).

Suppose next X ∈ Sn++. Note that X is invertible since det(X) = ∏n
i=1 λi(X) ≠ 0. Now

observe

X−1 = (QDiag(λ(X))QT)−1 =Q (Diag(λ(X)))−1QT =Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
λ1(X) 0 ⋯ 0

0 1
λ2(X) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

λn(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

QT .

It follows immediately by calculating the transpose of X−1 from this that X−1 is symmetric.

Moreover, proposition (13) shows that λ(X−1) = λ(X)−1.

Proposition 30. Let n ∈ N and let X ∈ Sn. If X ∈ Sn+ then X
1
2 ∈ Sn+, and if X ∈ Sn++ then

X
1
2 ∈ Sn++. Moreover, if X ∈ Sn++ then X−1 ∈ Sn++.

Proof. Let Q give rise to a Schur decomposition of X.

Suppose �rst that X ∈ Sn+. By the previous proposition, λ (X 1
2) =

√
λ(X) ≥ 0. Thus

X
1
2 ∈ Sn+.
Now suppose that X ∈ Sn++. By the previous proposition, λ (X 1

2) =
√
λ(X) > 0. Thus

X
1
2 ∈ Sn++.
Finally, suppose X ∈ Sn++. By the previous proposition, λ(X−1) = λ(X)−1 > 0. Thus

X−1 ∈ Sn++.

Remark 31. For X ∈ Sn++, one can check (using the next proposition) that (X−1)
1
2 = (X 1

2)
−1
.

Hence we may write X−
1
2 . It follows from the previous proposition that X−

1
2 ∈ Sn++.

Proposition 32. Let n ∈ N and let X ∈ Sn+. Then X
1
2X

1
2 = X.

Proof. Let Q ∈ Rn×n be an orthogonal matrix giving rise to a Schur decomposition of X.
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Then we calculate

X
1
2X

1
2 =Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1(X) 0 ⋯ 0

0
√
λ2(X) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯

√
λn(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

QTQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1(X) 0 ⋯ 0

0
√
λ2(X) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯

√
λn(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

QT

=Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1(X) 0 ⋯ 0

0
√
λ2(X) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯

√
λn(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1(X) 0 ⋯ 0

0
√
λ2(X) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯

√
λn(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

QT

=Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1(X) 0 ⋯ 0

0 λ2(X) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ λn(X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

QT

= X,

since Q is orthogonal (that is, QTQ = I) and by the de�ning equation of Q (that is,

X =QDiag(λ(X))QT).

Lemma 33. Let n ∈ N, let X ∈ Sn+, and let i ∈ [n]. If Xi,i = 0 then for any j ∈ [n] we have

Xi,j = Xj,i = 0.

Proof. Let j ∈ [n] ∖ {i} (the result is given for j = i). Let β ∈ R. Note

0 ≤ (βei + ej)TX(βei + ej) = 2Xi,jβ +Xj,j

because X is positive semi-de�nite and because Xi,i = 0. If Xi,j were non-zero, then we

would be able to pick a particular β such that 2Xi,jβ +Xi,j < 0. But this isn't the case, so
we must have Xi,j = 0. Finally, since X is symmetric, Xj,i = Xi,j = 0.

Theorem 34. [Theorem 1.9: Cholesky Characterization of Sn+] Let n ∈ N and

let X ∈ Sn. Then X ∈ Sn+ if and only if there exists a lower triangular matrix B ∈ Rn×n
such that X = BBT .

Proof. Suppose �rst that there exists a lower triangular matrix B ∈ Rn×n such that X = BBT .
If h ∈ Rn then

hTXh = hTBBTh = (BTh)TI(BTh) ≥ 0

because I is positive semi-de�nite and BTh ∈ Rn. Note that we did not use the fact that B

is lower triangular.

Conversely, suppose that X ∈ Sn+. We will prove the claim by induction on n. Suppose

n = 1. This means X = [X1,1] and λ(X) = [X1,1]. Since X is positive semi-de�nite, λ(X) ≥ 0,
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and so X1,1 ≥ 0. Then we can take B = [
√
X1,1], which is trivially lower triangular, to get

BBT = [
√
X1,1] [

√
X1,1]

T = [
√
X1,1] [

√
X1,1] = [X1,1] = X.

Now suppose n > 1 and that the result holds for n − 1. Pick x ∈ Rn−1 and �X ∈ Rn−1 so
that

X = [X1,1 xT

x �X
] .

Note that X1,1 ≥ 0. Indeed, if X1,1 < 0 then

eT1Xe1 = X1,1 < 0,

contradicting that X ∈ Sn+. (Note that if X1,1 < 0, then we have a certi�cate h ∈ Rn such

that hTXh < 0 | in this case h = e1.)
So we have X1,1 ≥ 0. Also note that �X ∈ Sn−1+ . Indeed, �X is clearly symmetric, and if

h ∈ Rn−1 then
hT �Xh = [0 hT] [X1,1 xT

x �X
] [0
h
] ≥ 0

because X ∈ Sn+.
If X1,1 = 0, then by lemma (33) we know x = 0. By inductive assumption, there exists a

lower triangular matrix �B ∈ Rn−1×n−1 such that �X = �B�BT . Taking

B ∶= [0 0T

0 �B
]

we see

BBT = [0 0T

0 �B�BT
] = [0 0T

0 �X
] = X

as required.

So we may assume X1,1 > 0. Let b ∶= 1√
X1,1
x and consider

~X ∶= �X − bbT = �X − 1
X1,1
xxT .

Assume that ~X ∉ Sn−1+ . It is easy to see that ~X is symmetric, so this means that there is an
~h ∈ Rn−1 such that ~hT ~X~h < 0. Set h0 ∶= − 1

X1,1
xT ~h and consider

h ∶= [h0~h ] ∈ Rn.

We compute

hTXh = − 1
X1,1

(xT ~h)2 + ~hT �X~h

= − 1
X1,1

(xT ~h)2 + ~hT (bbT + ~X) ~h

= − 1
X1,1

(xT ~h)2 + ~hTbbT ~h + ~hT ~X~h

= ~hT ~X~h < 0,
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giving a certi�cate of non-positive semi-de�niteness.

So we may assume ~X ∈ Sn−1+ . Thus by inductive assumption, there exists a lower

triangular matrix ~B ∈ Rn−1×n−1 such that ~B~BT = ~X. Then we will take

B ∶= [
√
X1,1 0T

b ~B
] ,

which is clearly lower triangular. Computing

BBT = [
√
X1,1 0T

b ~B
] [

√
X1,1 bT

0 ~BT
] = [ X1,1

√
X1,1bT√

X1,1b bbT + ~B~BT
] = [X1,1 xT

x �X
] = X

yields the desired result.

Definition 35. Let n ∈ N, let p ∈ [1,∞), and let h ∈ Rn. The p-norm of h is

∥h∥p ∶= (
n

∑
j=1

∣hj∣p)
1
p

.

The ∞-norm of h is

∥h∥∞ ∶=max{∣hj∣ ; j ∈ [n]}.

Definition 36. Let n ∈ N, let p ∈ [1,∞], and let X ∈ Sn. The operator p-norm of X is

∥X∥p ∶=max{∥Xh∥p ; h ∈ Rn and ∥h∥p = 1}.

The Frobenius-norm of X is

∥X∥F ∶= ⟨X,X⟩
1
2 .

Remark 37. Let n ∈ N, let p ∈ [1,∞], and let X ∈ Sn. Then

∥X∥F = ⟨X,X⟩
1
2 = (Tr(XTX))

1
2 = (Tr(XX))

1
2 = ∥λ(X)∥2 .

To see this last equality, let Q ∈ Rn×n be an orthogonal matrix which gives rise to a Schur
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decomposition of X, and observe

Tr(XX) = Tr (QDiag(λ(X))QTQDiag(λ(X))QT)
= Tr (QDiag(λ(X))2QT)
= Tr (Diag(λ(X))2QTQ)
= Tr (Diag(λ(X))2)

= Tr

⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1(X)2 0 ⋯ 0

0 λ2(X)2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ λn(X)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠

=
n

∑
i=1
λi(X)2

= ∥λ(X)∥22 .

Definition 38. Let n ∈ N, let J ⊆ [n] be non-empty, and let X ∈ Rn×n. We de�ne XJ to be

the matrix X with each entries (i, j) where (i, j) ∈ J2.

Example 39. For example,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

5 6 7 8

9 10
√
2 12

13 14 π 16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦{1,3}

= [1 3

9
√
2
] .

Lemma 40. Let n ∈ N, let J ⊆ [n] be non-empty, and let X ∈ Sn+. Then XJ ∈ S#J+ .

Proof. Let h ∈ R#J (and assume it is indexed by J instead of [#J]). De�ne �h ∈ Rn by �lling
in the indices not in J with zeros. Since X ∈ Sn+ and because �ht = 0 for t ∉ J, we get

hTXJh =∑
k∈J
∑
`∈J
hk (XJ)k,` h` =∑

k∈J
∑
`∈J

�hkXk,`�h` =
n

∑
k=1

n

∑
`=1

�hkXk,`�h` = �hTX�h ≥ 0.

Hence XJ ∈ S#J.

Proposition 41. [Proposition 1.10] Let n ∈ N and let X ∈ Sn. Then the following

are equivalent:

(1) X ∈ Sn+;

(2) λ(X) ≥ 0;

(3) There exists a µ ∈ Rn+ and h(1), . . . , h(n) ∈ Rn such that X = ∑nk=1 µkh(k)h(k)T ;
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(4) There exists a B ∈ Rn×n such that X = BBT (and we may choose B to be lower

triangular);

(5) For every non-empty J ⊆ [n], det(XJ) ≥ 0;

(6) For all S ∈ Sn+, ⟨S,X⟩ ≥ 0.

Proof. We already saw in proposition (23) that (1) and (2) are equivalent.

Next we show that (3) is equivalent to the �rst two. Suppose �rst that X ∈ Sn+. Consider
λ(X) ∈ Rn+ (by (2)), and let Q give rise to a Schur decomposition of X. Let q(1), . . . , q(n)

denote the columns of Q. Suppose (i, j) ∈ [n]2. Then note

Xi,j = (QDiag(λ(X))QT)
i,j
=

n

∑
k=1
λk(X)Qi,kQk,j,

while

(
n

∑
k=1
λ(X)kq(k)q(k)T)

i,j

=
n

∑
k=1
λk(X)Qi,kQk,j.

Thus

X =
m

∑
k=1
λ(X)kq(k)q(k)T .

Conversely, suppose (3) is satis�ed. Suppose h ∈ Rn. Observe

hTXh = hT (
n

∑
k=1
µkh

(k)h(k)T)h =
n

∑
k=1
µk (hTh(k)) (hTh(k))T ≥ 0.

Indeed, we have seen many times that for xT ∈ Rn we have xxT ≥ 0 (it is a sum of squares!)

and we are given that µk ≥ 0.
We already saw in theorem (34) that (1) is equivalent to (4).

Now we show that (5) is equivalent to (1) through (4). Suppose �rst that (1) through

(4) hold, and let J ⊆ [n] be non-empty. By lemma (40), XJ ∈ S#J. By (2), we get λ (XJ) ≥ 0.
Thus det (XJ) =∏λ (XJ) ≥ 0.

Conversely, suppose that (5) holds. Exercise.

Finally, we show that (6) is equivalent to (1) up to (5). First, suppose that for all

S ∈ Sn+ we have ⟨S,X⟩ ≥ 0. Suppose h ∈ Rn. Then

hTXh = Tr(hTXh) = Tr(hhTX) = ⟨hhT , X⟩ ≥ 0

because hhT ∈ Sn+ (we have seen this many times). Thus X ∈ Sn+.
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Conversely, suppose that X ∈ Sn+. Let S ∈ Sn+. By (3), there exists µ ∈ Rn+ and

h(1), . . . , h(n) ∈ Rn such that S = ∑nk=1 µkh(k)h(k)T . So

⟨S,X⟩ = Tr(STX)
= Tr(SX)

= Tr(
n

∑
k=1
µkh

(k)h(k)TX)

=
n

∑
k=1
µkTr (h(k)h(k)TX)

=
n

∑
k=1
µkTr (h(k)TXh(k))

=
n

∑
k=1
µkh

(k)TXh(k) ≥ 0

because µ ≥ 0 and X ∈ Sn+.

Proposition 42. Let n ∈ N. Then int(Sn+) = Sn++ (as subspaces of Sn).

Proof. Let X ∈ Sn++ and let ε > 0. Suppose S ∈ Sn. Exercise | how best to do this?

Proposition 43. Let n ∈ N and let X ∈ Sn. Then the following are equivalent:

(1) X ∈ Sn++;

(2) λ(X) > 0;

(3) There exists a µ ∈ Rn++ and linearly independent {h(1), . . . , h(n)} ⊆ Rn such that

X = ∑nk=1 µkh(k)h(k)T ;

(4) There exists an invertible B ∈ Rn×n such that X = BBT (and we may choose B to

be lower triangular);

(5) For all k ∈ [n], det(X[k]) > 0;

(6) For all S ∈ Sn+ ∖ {0}, ⟨S,X⟩ > 0;

(7) X ∈ Sn+ and rank(X) = n.

Proof. We saw in proposition (26) that (1) and (2) are equivalent.

First we show that (1) and (2) are equivalent to (3). Suppose �rst that X ∈ Sn++. Let

Q ∈ Rn×n give rise to a Schur decomposition of X and let q(1), . . . , q(n) ∈ Rn denote the

columns of Q. Note that since Q is invertible (because QQT = I) we must have that

{q(1), . . . , q(n)} is linearly independent. Finally, note

X =QDiag(λ(X))QT =
n

∑
k=1
λk(X)q(k)q(k)T .
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Conversely, suppose that (3) holds. Let h ∈ Rn ∖ {0}. Then

(2) hTXh = hT (
n

∑
k=1
µkh

(k)h(k)T)h =
n

∑
k=1
µk (h(k)Th)

T

(h(k)Th) =
n

∑
k=1
µk (h(k)Th)

2

≥ 0

since µ > 0. To show strict inequality, it su�ces to show that one of the terms is positive.

Assume, for a contradiction, that (h(k)Th)
2

= 0 for each k ∈ [n]. This means ⟨h(k), h⟩ =
h(k)Th = 0 for each k ∈ [n]. But {h(1), . . . , h(n)} is linearly independent and hence a basis,

so ⟨x,h⟩ = 0 for all x ∈ Rn. This implies h = 0. Contradiction. Thus one of the terms in

equation (2) is positive as required and X ∈ Sn++.
Next we show the equivalence of (7) to (2). Suppose �rst that X ∈ Sn++. Clearly S ∈ Sn+.

Moreover,

det(X) =
n

∏
k=1
λk(X) > 0

and hence X is invertible, or equivalently, rank(X) = n.
Conversely, suppose that X ∈ Sn+ and rank(X). The former assumption shows that

∏n
k=1 λk(X) ≥ 0. The latter says ∏n

k=1 λk(X) = det(X) ≠ 0, and so we conclude ∏n
k=1 λk(X) > 0.

Hence λk(X) ≠ 0 for all k ∈ [n], and so since we already knew λk(X) ≥ 0 we conclude

λk(X) > 0 as required.
Next we show that (4) is equivalent to (1) and (7). Suppose �rst that X ∈ Sn++. By

theorem (34), we get that there exists a lower triangular matrix B ∈ Rn×n such that X = BBT .
But det(B)2 = det(B)det(BT) = det(BBT) = det(X) ≠ 0 by (7), so B is invertible.

Conversely, suppose that (4) holds. Then we already know from the characterization

of positive semi-de�nite matrices that X ∈ Sn+. But also note that det(X) = det(BBT) =
det(B)det(BT) = det(B)2 ≠ 0 and so rank(X) = n. Thus (7) is satis�ed.

Next we show that (6) is equivalent to (3). Suppose �rst that X ∈ Sn++. Let S ∈ Sn++. By
(3), there exists µ ∈ Rn++ and linearly independent (in particular, non-zero) h(1), . . . , h(n) ∈
Rn such that S = ∑nk=1 µkh(k)h(k)T . So

⟨S,X⟩ = Tr(STX)
= Tr(SX)

= Tr(
n

∑
k=1
µkh

(k)h(k)TX)

=
n

∑
k=1
µkTr (h(k)h(k)TX)

=
n

∑
k=1
µkTr (h(k)TXh(k))

=
n

∑
k=1
µkh

(k)TXh(k) > 0

because µ > 0 and X ∈ Sn++ (recall h(k) is non-zero for each k ∈ [n]).
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Conversely, suppose that (6) holds. Suppose h ∈ Rn ∖ {0}. Then

hTXh = Tr(hTXh) = Tr(hhTX) = ⟨hhT , X⟩ > 0

because hhT ∈ Sn+ ∖ {0} (as h ≠ 0). Thus X ∈ Sn++.
Finally we show that (5) is equivalent to the others. Exercise.

Definition 44. Let n ∈ N, let j ∈ [n], and let M ∈ Rn×n. We de�ne

Bj(M) ∶= {λ ∈ C; ∣λ −Mj,j∣ ≤∑
i≠j

∣Mj,i∣} .

Theorem 45. [Gerschgorin Disc Theorem] Let n ∈ N, let λ ∈ C, and let M ∈ Rn×n.
If λ is an eigenvalue of M then

λ ∈
n

⋃
j=1
Bj(M).

Proof. Exercise.

Definition 46. Let n ∈ N and let M ∈ Rn×n. We say M is diagonally dominant if for all

i ∈ [n] we have
Xi,i ≥∑

j≠i
∣Xi,j∣ .

We say M is strictly diagonally dominant if for all i ∈ [n] we have

Xi,i >∑
j≠i

∣Xi,j∣ .

Corollary 47. Let n ∈ N and let X ∈ Sn. If X is diagonally dominant then X ∈ Sn+,
and if X is strictly diagonally dominant then X ∈ Sn++.

Proof. Suppose �rst that X is diagonally dominant and let i ∈ [n]. It follows immediately

that Bj(X) ⊆ {z ∈ C; R(z) ≥ 0} for each j ∈ [n]. By theorem (45), λi(X) ∈ Bj(X) for

some j ∈ [n]. Since X is symmetric, we know that λi(X) ∈ R. Combining the above two

observations we see λi(X) = R(λi(X)) ≥ 0. Thus λ(X) ≥ 0. By our many equivalences of

positive semi-de�niteness, X ∈ Sn+.
Next suppose that X is strictly diagonally dominant and let i ∈ [n]. This time we

have Bj(X) ⊆ {z ∈ C; R(z) > 0} for each j ∈ [n]. By theorem (45), λi(X) ∈ Bj(X) for some

j ∈ [n]. Since X is symmetric we have λi(X) ∈ R. Combining the above two observations

we see λi(X) =R(λi(X)) > 0. Thus λ(X) > 0. By our many equivalences of positive de�nite

matrices, X ∈ Sn++.
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Corollary 48. Let n ∈ N and let M ∈ Sn. Then there exists a µ0 ∈ R such that

X + µI ∈ Sn++ for all µ ≥ µ0.

Proof. Let µ ∈ R. Note that

(X + µI)i,i = Xi,i + µ >∑
j≠i

∣Xi,j∣ =∑
j≠i

∣(X + µI)i,j∣

for su�ciently large µ. That is to say, X+µI is strictly diagonally dominant for su�ciently

large µ and hence, by the previous corollary, positive de�nite.

Definition 49. Let n ∈ N and let X,S ∈ Sn. We write X ≽ S if X − S ∈ Sn+. We write X ≻ S
if X − S ∈ Sn++.

Definition 50. Let E be a Euclidean space and let K ⊆ E. We say K is a convex cone if

for all x, v ∈ K and all α ∈ R++ we have x + v ∈ K and αx ∈ K.

Definition 51. Let E be a Euclidean space and let K ⊆ E be a convex cone. We say K is

pointed if it contains no lines.

Definition 52. Let n,m ∈ N and let A ∶ Sn → Rm. The adjoint of A, denoted A∗, is given
by

⟨A∗(y), X⟩Sn ∶= yTA(x)

for all y ∈ Rm and all X ∈ Sn.

Remark 53. In the situation above, there exist matricesA1, . . . ,Am ∈ Sn such that (A(X))k =
⟨Ak, X⟩ for each k ∈ [m]. But now we can see that for any y ∈ Rm and any X ∈ Sn we have

⟨
m

∑
k=1
ykAk, X⟩ =

m

∑
k=1
yk ⟨Ak, X⟩ =

m

∑
k=1
yk (A(X))k = yTA(X).

Thus

A∗(y) =
m

∑
k=1
ykAk.

Definition 54. Let n,m ∈ N, C ∈ Sn, b ∈ Rm, and let A ∶ Sn → Rm be a linear transforma-

tion. The primal SDP in standard equality form, denoted (P), is:

inf ⟨C,X⟩
A(X) = b

X ≽ 0
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The dual SDP of (P), denoted (D), is:

sup bTy

A∗(y) ≼ C

Remark 55. Continuing from the previous remark, we may rewrite the primal SDP as:

inf ⟨C,X⟩
⟨Ai, X⟩ = bi for each i ∈ [n]

X ∈ Sn+

And the dual SDP can be written as:

sup bTy

A∗(y) + S = C
S ≽ 0

Definition 56. Let E be a Euclidean space and let K ⊆ E be a convex cone. The dual

cone of K is

K∗ ∶= {s ∈ E; ⟨s, x⟩ ≥ 0 ∀x ∈ K}.

Proposition 57. Let E be a Euclidean space and let K ⊆ E be a convex cone. Then

K∗ is a convex cone.

Proof. Suppose v,w ∈ K∗ and α ∈ R++. Suppose x ∈ K. Then

⟨v +w,x⟩ = ⟨v, x⟩ + ⟨w,x⟩ ≥ 0 + 0 = 0

and

⟨αv, x⟩ = α ⟨v, x⟩ ≥ ⟨v, x⟩ ≥ 0.

Thus v +w,αv ∈ K∗ and so K∗ is a convex cone.

Remark 58. The primal-dual pair is useful in more general settings. In fact, we can replace

the convex cone Sn+ by any convex cone K. That is, given c ∈ Rn, b ∈ Rm, A ∶ Rn → Rm, and
a convex cone K ⊆ Rn, we can look at

inf ⟨c, x⟩ sup ⟨b,y⟩
A(x) = b A∗(y) + s = c

x ∈ K s ∈ K∗
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Definition 59. Let E be a Euclidean space and let K ⊆ E be a convex cone. The auto-

morphism group of K is

Aut(K) ∶= {T ∶ E→ E; T is an invertible linear transformation such that T(K) = K}.

Definition 60. Let E be a Euclidean space and let K ⊆ E be a pointed, closed convex

cone with non-empty interior. We say K is self-dual if there exists an inner product on

Rn under which K = K∗. We say K is homogeneous if for every pair x, v ∈ int(K) there

exists an automorphism T ∈ Aut(K) such that T(x) = v. We say K is symmetric if it is

both self-dual and homogeneous.

Definition 61. Let E be a Euclidean space and let K ⊆ E be a pointed, closed convex

cone with non-empty interior. A ray of K is a set of the form

{αx; α ∈ R+}

for some x ∈ K ∖ {0}.

Definition 62. Let E be a Euclidean space, let K ⊆ E be a pointed, closed convex cone

with non-empty interior, and let R be a ray of K. We say R is extreme if for every pair of

rays R1, R2 of K such that R ⊆ R1 + R2, we have R ∈ {R1, R2}.

Theorem 63. Let n ∈ N. Then Sn+ is a pointed, closed convex cone with non-empty

interior which is symmetric (under the trace inner product). Moreover,

ext(Sn+) = {hhT ; h ∈ Rn, ∥h∥2 = 1}.

Proof. First note that by our characterization of positive semi-de�niteness, we saw that

for a symmetric matrix X ∈ Sn we have X ∈ Sn+ if and only if ⟨X,S⟩ ≥ 0 for all S ∈ Sn+. That
is to say,

(3) Sn+ = {X ∈ Sn; ⟨X,S⟩ ≥ 0 ∀S ∈ Sn} = ⋂
S∈Sn

{X ∈ Sn; ⟨X,S⟩ ≥ 0}

is the intersection of closed convex cones (check), and is therefore a closed convex cone.

Also we already saw that int(Sn+) = Sn++ is non-empty (indeed, In ∈ Sn++).
Next we show that Sn+ contains no lines. Assume, for a contradiction, that it does

contain a line, say {X + αD; α ∈ R} ⊆ Sn+ for some X ∈ Sn+ and some D ∈ Sn ∖ {0}. Then for

all S ∈ Sn+ and all α ∈ R we have

0 ≤ ⟨X +αD,S⟩ = ⟨X,S⟩ +α ⟨D,S⟩ ,

and hence ⟨D,S⟩ = 0 (otherwise we could pick an α to violate the above equation). Then

⟨D,S⟩ = 0 ≥ 0 for all S ∈ Sn+, so by the characterization of positive semi-de�nite matrices we
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get D ∈ Sn+. Similarly, −D ∈ Sn+ (because {X+αD; α ∈ R} = {X+α(−D); α ∈ R}). So λ(D) ≥ 0
and λ(−D) = −λ(D) ≥ 0. Therefore λ(D) = 0. But for a symmetric matrix, this means

D = 0 (briey, D =QDiag(λ(D))QT =Q0QT = 0). Contradiction. Thus Sn+ is pointed.

So we have that Sn+ is a pointed, closed cone with non-empty interior. We can now

show that it is symmetric. In fact, we already see in equation (3) that Sn+ is self-dual under
the standard trace inner product.

To conclude that Sn+ is symmetric, it remains to show that it is homogeneous. We will

show that for every X ∈ int(Sn+) = Sn++ that there is a TX ∈ Aut(Sn+) such that TX(X) = I.
From here, for any pair X,V ∈ Sn++, T−1X ○TV ∈ Aut(Sn++) satis�es (T−1X ○TV)(V) = T−1X (TV(V)) =
T−1X (I) = X, showing that Sn++ is homogeneous. Let X ∈ Sn++ and de�ne TX ∶ Sn → Sn by

TX(V) = X− 1
2VX−

1
2 for all V ∈ Sn. First, TX is invertible because its inverse is easily seen to

be TX−1 (X is invertible because it is positive de�nite), and it is clearly linear. It is also

easy to see that

TX(X) = X−
1
2XX−

1
2 = (X 1

2)
−1
X

1
2X

1
2 (X 1

2)
−1
= II = I.

Finally, if V ∈ Sn+ then for any h ∈ Rn we have

hTTX(V)h = hTX− 1
2VX−

1
2h = (X− 1

2h)
T

X (X− 1
2h) ≥ 0

because X ∈ Sn+. Hence TX(Sn+) ⊆ Sn+. To see the reverse inclusion, let V ∈ Sn+ and then note

TX(X
1
2VX

1
2 ) = X− 1

2X
1
2VX

1
2X−

1
2 = IVI = V.

Thus T(Sn+) = Sn+ and so T ∈ Aut(K). This shows that Sn+ is homogeneous and hence

symmetric.

It remains to show ext(Sn+) = {hhT ; h ∈ Rn, ∥h∥2 = 1}. Exercise.

Definition 64. Let d1, d2 ∈ N and let K1 ⊆ Rd1 , K2 ⊆ Rd2. We de�ne

K1 ⊕K2 ∶= {[u
v
] ∈ Rd1+d2 ; u ∈ K1, v ∈ K2} .

Proposition 65. Let d1, d2 ∈ N and let K1 ⊆ Rd1, K2 ⊆ Rd2. Then (K1 ⊕K2)∗ = K∗1 ⊕K∗2 .

Proof. Let (x,y) ∈ Rd1 ⊕ Rd2 . First suppose that (x,y) ∈ (K1 ⊕K2)∗. We will show that

(x,y) ∈ K∗1 ⊕ K∗2 . That is, we need to show x ∈ K∗1 and y ∈ K∗2 . Suppose z ∈ K1. Then

(z,w) ∈ K1 ⊕K2 for some w ∈ K2, so

⟨x, z⟩ = ⟨(x,y), (z,w)⟩ − ⟨y,w⟩ ≥ − ⟨y,w⟩ ...
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Remark 66. Let n,m ∈ N, C ∈ Rn×n, b ∈ Rm, and A ∶ Sn → Rm. Suppose we have

n1, . . . , nr ∈ N such that n1 +⋯ +nr = n. Consider the optimization problem (P):

inf ⟨C,X⟩
A(X) = b

X ∈ Sn1+ ⊕⋯⊕ Snr+

When n1 = ⋯ = nr = 1, we have a regular linear program (since S1+ is just R+). Therefore
linear programming (from CO 250) is a special case of what we are doing (CO 471).

Note that the dual is (D):

sup bTy

A∗(y) + S = C
S ∈ Sn1+ ⊕⋯⊕ Snr+

This is because Sn1+ ⊕⋯⊕ Snr+ is self-dual.

Theorem 67. [Theorem 1.17: Weak Duality] Let n,m ∈ N, C ∈ Rn×n, b ∈ Rm,
A ∶ Sn → Rm, and n1, . . . , nr ∈ N satisfy n1 + ⋯ + nr = n. If �X and (�y, �S) are feasible

solutions for (P) and for (D) (given above) respectively, then we have

⟨C, �X⟩ − ⟨b, �y⟩ = ⟨�X, �S⟩ ≥ 0.

Proof. We simply compute

⟨C, �X⟩ − ⟨b, �y⟩ = ⟨A∗(�y) + �S, �X⟩ − ⟨A(�X), �y⟩
= ⟨A∗(�y), �X⟩ + ⟨�S, �X⟩ − ⟨A(�X), �y⟩
= ⟨�y,A(�X)⟩ + ⟨�S, �X⟩ − ⟨A(�X), �y⟩
= ⟨�S, �X⟩ = ⟨�X, �S⟩ ≥ 0.

Definition 68. Let (P) be an SDP problem, and let �X be a feasible solution of (P). We

say �X is a Slater point of (P) if X ≻ 0.

Proposition 69. Let n ∈ N and let X,S ∈ Sn+. Then ⟨X,S⟩ = 0 if and only if XS = 0.

Proof. Suppose �rst that XS = 0. Then ⟨X,S⟩ = Tr(XTS) = Tr(XS) = Tr(0) = 0.
Conversely, suppose that ⟨X,S⟩ = 0. Then

⟨X 1
2S

1
2 , X

1
2S

1
2 ⟩ = Tr((X 1

2S
1
2)
T

(X 1
2S

1
2)) = Tr (S 1

2XS
1
2) = Tr (XS 1

2S
1
2) = Tr (XTS) = ⟨X,S⟩ = 0,

which shows X
1
2S

1
2 = 0. Thus XS = X 1

2X
1
2S

1
2S

1
2 = X 1

20S
1
2 = 0. Also note SX = STXT = (XS)T =

0T = 0.
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Theorem 70. Let n ∈ N, let k ∈ [n], and let X ∈ Sn. Then

λk(X) = min
dim(L)=n−k+1

{ max
h∈L∖{0}

{h
TXh

hTh
}}

and

λk(X) = max
dim(L)=k

{ min
h∈L∖{0}

{h
TXh

hTh
}} .

Proof. Exercise.

Example 71. Taking k = 1 in the above and using either equation, we get that the largest

eigenvalue of X is

λ1(X) = max
h∈Rn∖{0}

{h
TXh

hTh
} .

Lemma 72. [Lemma 1.22: Schur Complement] Let k,m ∈ N, let T ∈ Sk++, let X ∈ Sm,
let U ∈ Rm×k, and de�ne

M ∶= [T UT

U X
] .

Then M ≽ 0 if and only if X −UT−1UT ≽ 0, and M ≻ 0 if and only if X −UT−1UT ≻ 0.

Proof. Let

L ∶= [ I 0

UT−1 I
] .

It is easy to compute that

M = L [T 0

0 X −UT−1UT]L
T .

Note that L is invertible (indeed, det(L) = det(I)det(I) = 1 ≠ 0), so we also have

[T 0

0 X −UT−1UT] = L
−1M (L−1)T .

But we already know that if V is a positive (semi-)de�nite matrix then AVAT is a positive

(semi-)de�nite matrix (assuming A is invertible in the positive de�nite case). Therefore

the desired results follow by four applications of this observation, as well as the fact that

[T 0

0 X −UT−1UT]

is positive (semi-)de�nite if and only if X − UT−1UT is positive (semi-)de�nite (because

T ∈ Sn++).
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Definition 73. Let k,m ∈ N, let T ∈ Sk++, let X ∈ Sm and let U ∈ Rm×k. Then X −UT−1UT
is called the Schur Complement of T in

[T UT

U X
] .

Remark 74. In the special case that T = [1], we see

[1 xT

x X
] ≽ 0 if and only if X − xxT ≽ 0.

Definition 75. Let n,m,p,q ∈ N, let U ∈ Rm×n, and let V ∈ Rp×q. The Kronecker Product

(or Tensor Product) of U and V is

U⊗V ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

U1,1V ⋯ U1,nV

⋮ ⋱ ⋮
Um,1V ⋯ Um,nV

⎤⎥⎥⎥⎥⎥⎥⎦

∈ Rmp×nq.

Proposition 76. Let n,m ∈ N, let U ∈ Sn and let V ∈ Sm. If λ1, . . . , λn and µ1, . . . , µm
are the eigenvalues of U and of V respectively, then λ1µ1, . . . , λ1µm, . . . , λnµ1, . . . , λnµm
are the eigenvalues of U ⊗ V (not necessarily in decreasing order). Moreover, if

u(1), . . . , u(n) and v(1), . . . , v(m) are the eigenvectors of U and V respectively, then u(1)⊗
v(1), . . . , u(1) ⊗ v(m), . . . , u(n) ⊗ v(1), . . . , u(n) ⊗ v(m) are the eigenvectors of U⊗V.

Proof. Let (i, j) ∈ [n]×[m]. Clearly u(i)⊗v(j) is non-zero because u(i) and v(j) are non-zero
(as they are eigenvectors). We will show that (U⊗V) (u(i) ⊗ v(j)) = λiµj (u(i) ⊗ v(j)).

So we calculate

(U⊗V) (u(i) ⊗ v(j)) =

⎡⎢⎢⎢⎢⎢⎢⎣

U1,1V ⋯ U1,nV

⋮ ⋱ ⋮
Um,1V ⋯ Um,nV

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

u
(i)
1 v

(j)

⋮
u

(i)
n v(j)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑nk=1 (U1,kV) (u(i)
k v

(j))
⋮

∑nk=1 (Un,kV) (u(i)
k v

(j))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

(Vv(j))∑nk=1U1,ku
(i)
k

⋮
(Vv(j))∑nk=1Un,ku

(i)
k

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

µjv(j)λiu
(i)
1

⋮
µjv(j)λiu

(i)
n

⎤⎥⎥⎥⎥⎥⎥⎦
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= λiµj

⎡⎢⎢⎢⎢⎢⎢⎣

u
(i)
1 v

(j)

⋮
u

(i)
n v(j)

⎤⎥⎥⎥⎥⎥⎥⎦
= λiµj (u(i) ⊗ v(j)) .

Corollary 77. Let n,m ∈ N, let U ∈ Sn, and let V ∈ Sm. If U,V ≽ 0 then U ⊗ V ≽ 0,
and if U,V ≻ 0 then U⊗V ≽ 0.

Proof. First note that it is easy to check that U⊗V ∈ Snm.
Suppose U ∈ Sn+ and V ∈ Sm+ . Then all the eigenvalues of U and of V are non-negative. By

the previous proposition, all the eigenvalues of U⊗V are non-negative. Thus U⊗V ∈ Snm+ .

Suppose U ∈ Sn++ and V ∈ Sm++. Then all the eigenvalues of U and of V are positive. By

the previous proposition, all the eigenvalues of U⊗V are positive. Thus U⊗VSnm++ .

Definition 78. Let n ∈ N and let X,S ∈ Rn×n. The Hadamard Product of X and S is

de�ned by

(X⊙ S)i,j ∶= Xi,jSi,j

for all (i, j) ∈ [n]2.

Corollary 79. Let n ∈ N and let X,S ∈ Sn. If X,S ≽ 0 then X ⊙ S ≽ 0, and if X,S ≻ 0
then X⊙ S ≻ 0.

Proof. Suppose X,S ∈ Sn+. We saw that X⊗ S ∈ Sn+. Moreover, X⊙ S is a symmetric minor

of X⊗ S (check) and therefore X⊙ S ∈ Sn+ by lemma (40).

Suppose X,S ∈ Sn++. We saw that X⊗S ∈ Sn++. Again, X⊙S is a symmetric minor of X⊗S,
and therefore X⊙ S ∈ Sn++ by an unstated lemma which is analogous to lemma (40).

Definition 80. Let n ∈ N. De�ne vec ∶ Rn×n → Rn2
by

vec(X) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1,1
⋮
Xn,1
⋮
X1,n
⋮

Xn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and s2vec ∶ Sn → R
n(n−1)

2 by

s2vec(X) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1,1√
2X2,1
⋮√
2Xn,1
X2,2√
2X3,2
⋮√
2Xn,2
⋮

Xn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2 Duality Theory

Theorem 81. [Theorem 2.8: A separation theorem] Let n ∈ N and let G ⊆ Rn. If

G is a non-empty, closed convex set with 0 ∉ G, then there exists an a ∈ Rn ∖ {0} and

an α ∈ R++ such that aTx ≥ α for all x ∈ G.

Proof. Since G is non-empty, let �x ∈ G. Set

G�x ∶= {x ∈ G; ∥x∥2 ≤ ∥�x∥2}.

Note that G�x = G ∩ {x ∈ Rn; ∥x∥2 ≤ ∥�x∥2} in the intersection of compact convex sets and

is hence compact and convex. Moreover, it is non-empty because �x ∈ G�x, and 0 ∉ G�x

since 0 ∉ G. As such, there exists a unique point a in G�x which is closest to the origin.

(Indeed, consider minimizing the continuous, strictly convex function ∥⋅∥22 on the non-

empty compact convex set G�x.)

Since a ∈ G�x and 0 ∉ G�x, a ≠∈ Rn ∖ {0}. Set α ∶= ∥a∥22 > 0. Let x ∈ G. Since G is convex,

for every λ ∈ (0, 1) we have λx + (1 − λ)a ∈ G. By choice of a, we have ∥a∥2 ≤ ∥z∥22 for all
z ∈ G. Therefore

∥λx + (1 − λ)a∥22 ≥ ∥a∥22 .

But expanding the left side yields

∥λ(x − a) + a∥22 = λ2 ∥x − a∥
2
2 + 2λ ⟨x − a,a⟩ + ∥a∥22 .

Hence the �rst inequality becomes

λ2 ∥x − a∥22 + λ ⟨x − a,a⟩ ≥ 0,

which shows, since λ > 0,
(x − a)Ta ≥ −λ

2
∥x − a∥22 .
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